universidade fernando...

76
1 UNIVERSIDADE FERNANDO PESSOA FACULDADE DE CIÊNCIAS DA SAÚDE CIÊNCIAS FARMACÊUTICAS TRABALHOS PRÁTICOS – protocolos experimentais QUÍMICA ANALÍTICA II 2009/2010

Upload: dangthuan

Post on 10-Nov-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

1

UNIVERSIDADE FERNANDO PESSOA

FACULDADE DE CIÊNCIAS DA SAÚDE

CIÊNCIAS FARMACÊUTICAS

TRABALHOS PRÁTICOS – protocolos experimentais

QUÍMICA ANALÍTICA II

2009/2010

Page 2: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

2

ÍNDICE

Página

INDICAÇÕES GERAIS - Normas gerais de trabalho em laboratório 03

1. Cronograma das aulas práticas 05

2. Assiduidade mínima obrigatória 06

3. Sistema de Avaliação 06

4. Protocolos experimentais 07

T1 - Preparação e padronização de soluções necessárias para uso em

volumetrias de ácido-base: preparação de uma solução diluída de

HCl e padronização com tetraborato de sódio (bórax) e preparação

de uma solução de NaOH e padronização com hidrogenoftalato de

potássio

07

T2 - Determinação da pureza de uma amostra de ácido acetilsalicílico 15

T3 – Determinação de cloretos numa amostra de água potável pelos

métodos de Charpentier-Volhard e de Fajans

17

T4 – Determinação do magnésio em formulações farmacêuticas por

quelatometria. Determinação de cálcio por titulação de substituição

21

T5 – Preparação de soluções padrão de iodato de potássio e tiossulfato

de sódio

26

T6 – Quantificação da vitamina C num suplemento 29

T7 – Determinação de peróxido de hidrogénio numa água oxigenada

comercial. Determinação da percentagem de hipoclorito de sódio

numa lixívia comercial

32

T8 – Determinação de alguns parâmetros característicos de um

procedimento analítico

37

T9 – Determinação espectrofotométrica do teor de ferro em comprimidos 41

T10 – Determinação espectrofotométrica de fósforo inorgânico numa

amostra de soro sanguíneo

44

Anexo. Fichas para registo de resultados, observações e cálculos

Page 3: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

3

INDICAÇÕES GERAIS

O trabalho laboratorial exige da parte do aluno uma atitude especial. Para que os

objectivos do trabalho sejam atingidos, e a segurança no laboratório mantida, as instruções

quanto à execução do protocolo experimental devem ser previamente estudadas. Só assim

será possível compreender o procedimento, planear o trabalho, gerir adequadamente o seu

tempo de execução e saber como actuar caso se seja confrontado com alguma contrariedade.

Deve-se trabalhar sem pressa, com método e cuidado, evitando deste modo acidentes e

eventuais danos no material do laboratório.

Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

Regras de protecção pessoal e também colectiva: 1- Nunca permanecer sozinho num laboratório.

2- Proibido comer ou beber dentro do laboratório.

3- Proibido correr, gritar ou comportar-se de outros modos incorrectos e que perturbem o

trabalho das outras pessoas.

4- Obrigatório usar bata.

5- Sempre que as normas de segurança o indiquem e sempre que estiver a manusear

reagentes deve colocar os óculos de protecção individual.

6- Prender os cabelos compridos especialmente se trabalhar com chamas: estes ardem com

extrema facilidade.

7- Usar calçado adequado: os sapatos abertos ou de salto muito alto não protegem

convenientemente nem facilitam o andar.

8- As lentes de contacto não são aconselhadas para pessoas que trabalham diariamente nos

laboratórios porque os vapores existentes podem acumular-se entre o olho e a lente e

reagir com elas causando efeitos adversos no olho.

9- Ter conhecimento prévio da toxicidade, poder corrosivo e inflamabilidade dos reagentes

com que vai trabalhar (Consultar as fichas de segurança dos reagentes com que vai trabalhar antes de os manusear). Em caso de dúvida, peça esclarecimento ao docente.

10- Não abrir recipientes de reagentes para cheirar ou espreitar.

11- Nunca efectuar pipetagens com a boca mesmo que seja de água.

12- Nunca misturar reagentes ou produtos sobre os quais não tenha conhecimento da sua

compatibilidade química.

13- Limpar imediatamente reagentes ou produtos que tenham sido derramados.

14- Qualquer salpico de reagente na pele deve ser removido com água e sabão.

15- Lavar as mãos com frequência durante e no fim do trabalho laboratorial.

16- Não verter restos de soluções nas pias, sem perguntar; quando tiver de deitar reagentes

líquidos na canalização, ponha água a correr.

Page 4: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

4

17- Não deitar pontas ou outros objectos sólidos na canalização.

18- Nunca deixar placas ou discos de aquecimento ligadas sem aviso. Assinalar devidamente

equipamentos que estão a temperatura elevada, assim como objectos quentes: o vidro e a

cerâmica quente têm exactamente a mesma aparência que os mesmos materiais frios.

17-No final do trabalho, deixar limpo o local de trabalho. RESÍDUOS LABORATORIAIS:

A actividade laboratorial é forçosamente produtora de resíduos líquidos e sólidos sendo alguns

deles de perigosidade considerável. Como resíduos definem-se quaisquer substâncias ou

objectos de que o detentor se desfaz ou tem intenção ou obrigação de se desfazer,

nomeadamente os previstos na Portaria nº 818/97, de 5 de Setembro, que aprova a lista

harmonizada, que abrange todos os resíduos, designada por Catálogo Europeu de Resíduos

(CER). Esta portaria adopta a Decisão comunitária nº 94/3/CE, de 20 de Dezembro de 1993.

A primeira etapa no processo de tratamento dos resíduos consiste na minimização da sua

produção. Num laboratório de Química a prevenção de resíduos urbanos é conseguida através

da preferência por métodos de análise geradores de menor quantidade de resíduos ou que

sejam mais fáceis de tratar e ainda pela utilização de menor quantidade e volume de materiais

e optando sempre por materiais menos poluentes e de mais fácil reciclagem. No final de cada trabalho laboratorial os alunos devem procurar os frascos colectores de resíduos adequados para cada situação e nunca verter na canalização restos de soluções sem

previamente perguntar ao professor o destino a dar a uma solução.

Page 5: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

5

1. CRONOGRAMA DAS AULAS PRÁTICAS Turmas de 2ª e 3ª feira

Aula nº Data Síntese programática

1 1/2 Fevereiro Apresentação do programa e dos objectivos da componente laboratorial da unidade

curricular de QA II. Indicação das normas de avaliação à componente laboratorial.

Organização dos grupos de trabalho.

2 8/9 Fevereiro T1 - Preparação e padronização de soluções para uso em volumetrias de ácido-

base:

- preparação de uma solução diluída de HCl e padronização com tetraborato de

sódio (bórax)

preparação de uma solução de NaOH e padronização com hidrogenoftalato de

potássio

3 15/16 Fevereiro Pausa Lectiva

4 22/23 Fevereiro T2 - Determinação da pureza de uma amostra de ácido acetilsalicílico

5 01/02 Março T3 – Determinação de cloretos numa amostra de água potável pelo método de

Charpentier-Volhard e de Fajans.

6 08/09 Março T4 – Determinação do magnésio em formulações farmacêuticas por quelatometria.

Determinação de cálcio por titulação de substituição

7 15/16 Março T5 – Preparação e padronização de soluções de iodato de potássio e tiossulfato de

sódio

8 22/23 Março Teste de avaliação prático

29/30 Março Pausa Lectiva

05/06 Abril Pausa Lectiva

9 12/13 Abril T6 – Quantificação da vitamina C num suplemento

10 19/20 Abril T7 – Determinação de peróxido de hidrogénio numa água oxigenada comercial.

Determinação da percentagem de hipoclorito de sódio numa lixívia comercial

11 26/27 Abril T8 – Determinação de alguns parâmetros característicos de um procedimento

analítico

12 03/04 Maio T9 – Determinação espectrofotométrica do teor de ferro em comprimidos

13 10/11 Maio T10 – Determinação espectofotométrica de fósforo inorgânico numa amostra de soro

sanguíneo.

14 17/18 Maio Teste de avaliação prático

15 24/25 Maio Aula para reposição de 1 trabalho prático. Os alunos que efectuaram todos os

trabalhos previstos ao longo do semestre não necessitam comparecer a esta aula.

Page 6: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

6

Turmas de 4ª feira

Aula nº Data Síntese programática 1 3 Fevereiro Apresentação do programa e dos objectivos da componente laboratorial da unidade

curricular de QA II. Indicação das normas de avaliação à componente laboratorial.

Organização dos grupos de trabalho.

2 10 Fevereiro T1 - Preparação e padronização de soluções para uso em volumetrias de ácido-

base:

- preparação de uma solução diluída de HCl e padronização com tetraborato de

sódio (bórax)

preparação de uma solução de NaOH e padronização com hidrogenoftalato de

potássio

3 17 Fevereiro T2 - Determinação da pureza de uma amostra de ácido acetilsalicílico

4 24 Fevereiro T3 – Determinação de cloretos numa amostra de água potável pelo método de

Charpentier-Volhard e de Fajans.

5 03 Março T4 – Determinação do magnésio em formulações farmacêuticas por quelatometria.

Determinação de cálcio por titulação de substituição

6 10 Março T5 – Preparação e padronização de soluções de iodato de potássio e tiossulfato de

sódio

7 17 Março Teste de avaliação prático

8 24 Março T6 – Quantificação da vitamina C num suplemento

31 Março Pausa Lectiva

07 Abril Pausa Lectiva

9 14 Abril T7 – Determinação de peróxido de hidrogénio numa água oxigenada comercial.

Determinação da percentagem de hipoclorito de sódio numa lixívia comercial

10 21 Abril T8 – Determinação de alguns parâmetros característicos de um procedimento

analítico

11 28 Abril T9 – Determinação espectrofotométrica do teor de ferro em comprimidos

12 05 Maio T10 – Determinação espectofotométrica de fósforo inorgânico numa amostra de soro

sanguíneo.

13 12 Maio Aula para reposição de 1 trabalho prático. Os alunos que efectuaram todos os

trabalhos previstos ao longo do semestre não necessitam comparecer a esta aula.

14 19 Maio Teste de avaliação prático

15 26 Maio Consulta e discussão dos elementos considerados para a avaliação prática da

unidade curricular como forma de validação das competências dos alunos.

Page 7: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

7

2. ASSIDUIDADE MÍNIMA OBRIGATÓRIA

Conforme consta no Regulamento Pedagógico da Universidade Fernando Pessoa, a

percentagem mínima de frequência das práticas-laboratoriais para os cursos da área da saúde

é 80 % sendo que “A eventual justificação de faltas, por meios legalmente aceites, não dispensa

o aluno do cumprimento efectivo da percentagem das aulas, práticas, prático-laboratoriais e

clínicas.” (artigo 14º).

Tendo em conta o disposto no artigo 15º do mesmo regulamento, “O uso de bata é obrigatório nas aulas prático-laboratoriais”. A sua falta é “impeditiva da participação nas

sessões de formação” e conduz à marcação de falta à aula, falta essa que “é injustificável e

conta para o cálculo da assiduidade obrigatória.

É também obrigatório o uso de óculos de protecção sendo, de igual modo, a sua falta

impeditiva de participação na aula e conducente à marcação de uma falta.

3. SISTEMA DE AVALIAÇÃO A aprovação à componente prática laboratorial da unidade curricular de Química Analítica II

corresponde à obtenção de 1,5 ECTS, e compreenderá a avaliação de três parâmetros

distintos:

Elementos para avaliação individualizada

1) Desempenho em laboratório - perguntas sobre o protocolo experimental em

execução, preparação de trabalhos, comportamento, assiduidade, pontualidade, etc

(ponderação de 10% na nota prática)

2) Execução de dois testes escritos – 17 de Março ou 22/23 de Março de 2010

17,18 e 19 de Maio de 2010

(ponderação de 50% na nota prática – 25 % cada teste)

O teste será constituído por perguntas de índole prática (cálculos e tratamento de dados,

metodologia experimental, princípios de funcionamento, etc.) dos trabalhos realizados nas

aulas práticas. Caso seja necessário serão utilizados os dados adquiridos pelos alunos nos

referidos trabalhos. Cada aluno terá 2 horas para proceder à resolução individual deste teste.

Page 8: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

8

Elementos para avaliação por grupo

3) Fichas de resultados experimentais e respectivos cálculos

(ponderação de 40% na nota prática)

Preenchimento de uma ficha de registo de resultados e tratamento dos mesmos durante a aula

prática. É suficiente a entrega de uma ficha de resultados por grupo e por trabalho. As fichas

serão classificadas como positivas ou negativas, sendo necessário para aprovação à

componente prática que pelo menos metade das classificações sejam positivas.

Situações em que, por inadequado desempenho dos alunos, não seja possível efectuar o

tratamento dos resultados em tempo útil (ou seja, no decorrer da aula prática), é indispensável

a entrega de uma folha com o registo dos valores experimentais obtidos (devidamente

identificada e assinada por todos os elementos do grupo que estiveram presentes na aula). Os

alunos dispõem então de um prazo máximo de 1 semana para a entrega dos respectivos

cálculos havendo, no entanto, uma penalização de 20 % na nota final da ficha. Findo o prazo

para a entrega, as fichas não serão corrigidas nem consideradas para avaliação, sendo por

isso contabilizadas como zero no cálculo da nota laboratorial.

Page 9: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

9

4. PROTOCOLOS EXPERIMENTAIS

Trabalho nº1 – Preparação e padronização de soluções para uso em volumetrias de ácido-base

– preparação de uma solução diluída de HCl e padronização com tetraborato de sódio (bórax)

– preparação de uma solução de NaOH e padronização com hidrogenoftalato de potássio

1. Introdução

A preparação e padronização (ou aferição) de soluções é um procedimento fundamental

em Química Analítica Quantitativa. Uma solução padrão é aquela cuja concentração é

conhecida com rigor (incerteza inferior a 0,1 %), podendo ser preparada por dois processos

diferentes, conforme se dispõe ou não de uma substância primária ou padrão:

(1) técnica directa - quando o soluto é uma substância primária pode preparar-se

directamente a solução padrão; a preparação implica a avaliação rigorosa de uma

massa (balança analítica) correspondente à quantidade necessária e subsequente

diluição (em material volumétrico) com necessária exactidão para obter a

concentração pretendida; nesta situação a solução final é designada de solução de

padrão primário.

(2) técnica indirecta - quando o soluto não é uma substância primária, prepara-se uma

solução inicial de concentração aproximada e posteriormente determina-se a sua

concentração exacta. Geralmente esta aferição (determinação rigorosa da

concentração da solução) é efectuada por análise volumétrica (titulação) com uma

substância primária ou com uma solução padrão (isto é, uma solução previamente

aferida com uma substância primária).

Substâncias primárias são compostos que preenchem uma série de requisitos como por

exemplo:

- elevado grau de pureza - disponíveis comercialmente na forma pura (não mais de

0,01 % de impurezas) ou facilmente purificavéis (ex.: sublimação ou recristalização);

- serem fáceis de secar e não serem higroscópicas - alguma água adquirida durante

armazenagem deve ser facilmente removida por secagem, sem decomposição da

substância;

- terem composição bem definida e os elementos da sua composição devem ser tais

que uma alteração da abundância isotópica natural não afecte materialmente o peso

molecular;

- estabilidade ao ar e em solução;

Page 10: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

10

- baixa volatilidade;

- elevada massa molar - diminuição do erro associado à pesagem (se o erro associado

a cada pesagem na balança for ± 1x10-4 g para uma substância com massa molar de

50 g mol-1 isso significa 2x10-6 moles enquanto que para uma substância cuja massa

molar de 5000 g mol-1 a incerteza será de apenas 2x10-8 moles;

Conforme mencionado anteriormente, nestes casos é possível calcular directamente o

número de moles do composto a partir da massa avaliada numa balança analítica e da massa

molecular da substância.

As soluções padrão devem depois ser conservadas de modo a manter inalterada a sua

natureza e concentração. Os cuidados essenciais a ter para a preservação destas soluções,

dependem na sua natureza mas, de um modo geral são:

- após preparação devem ser transferidas para um frasco limpo e seco;

- os frascos devem ser quimicamente resistentes, bem rolhados, evitando a evaporação

do solvente;

- devem usar-se frascos de plástico (polietileno) no caso de soluções alcalinas, soluções

de EDTA, soluções de peróxidos e soluções de metais (Pb2+, Zn2+, Hg2+, ...);

- soluções sensíveis à luz (como é o caso das soluções de Ag+) devem ser armazenadas

em frascos cor âmbar ou opacos;

- soluções facilmente oxidáveis devem ser mantidas em atmosfera inerte;

- o material das rolhas deve ser criteriosamente escolhido (ex.: evitar rolhas de borracha

ou cortiça com soluções de Ag+ dado que a matéria orgânica reduz o catião);

- o rótulo deve ser legível, sem recurso a abreviaturas, indicar a natureza e concentração

da solução, data de preparação e nome do preparador e quaisquer outras indicações

que sejam consideradas úteis.

Neste trabalho pretende-se explicar como se podem preparar duas das soluções padrão

mais utilizadas em volumetrias de ácido-base: solução de ácido clorídrico e solução de

hidróxido de sódio.

Page 11: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

11

1ª Parte - Preparação e padronização de uma solução de ácido clorídrico

1. Introdução

Sendo o ácido clorídrico um ácido muito forte e de custo relativamente reduzido, e dada

a grande estabilidade das suas soluções aquosas (superior a 1 ano), é frequente o seu uso

como padrão em volumetrias de ácido-base. Dado que não se trata de uma substância

primária, a preparação de uma solução faz-se de forma indirecta: prepara-se uma solução de

concentração aproximada a partir de HCl concentrado [solução aquosa com cerca de 37%

(m/m) e densidade de 1,19], calculando a quantidade necessária para preparar o volume de

solução desejado.

A solução obtida terá então de ser titulada com uma substância primária adequada

como, por exemplo, o bórax (tetraborato de sódio com dez moléculas de água de cristalização

- Na2B4O7.10H2O; MM = 381,37 g/mol). O bórax dissolve-se em água (mais facilmente a

quente) dando origem ao anião tetrahidroxiborato [B(HO)4]- que, sendo uma partícula

anfiprótica predominantemente básica [pKa(H3BO3) = 9,24], reage quantitativamente com o

catião H+ do ácido clorídrico, segundo as equações:

Na2B4O7.10H2O (s) 2 H3BO3 + 2 [B(HO)4]- + 2 Na+ (aq) + 3 H2O [B(HO)4]- + H+ (aq) H3BO3 + H2O

O ponto final da titulação é determinado usando um indicador corado, cuja escolha é

feita atendendo ao pH no ponto de equivalência que é próximo de 5. Este valor situa-se na

zona de viragem do vermelho de metilo, havendo uma mudança de cor de vermelho para

amarelo, sendo próximo do expoente do ponto médio respectivo. Pode-se também provar que

a viragem do referido indicador está contida na zona de variação brusca de pH verificada junto

do ponto de equivalência. A fim de aumentar a nitidez da mudança de cor, é conveniente

misturar-lhe azul de metilo, sendo a cor deste corante indiferente às mudanças de pH. Este

indicador modificado de vermelho de metilo com azul de metileno tem uma zona de viragem

compreendida entre 4,2 e 6,3, de azul arroxeado para verde (ou cinzento).

Na titulação, pesa-se rigorosamente o bórax, que se dissolve em água, constituindo o

titulado. O titulante será a própria solução de ácido clorídrico, cuja molaridade se pretende

fixar.

2. Procedimento experimental

2.1. Material, reagentes e equipamento

- 1 frasco de vidro de 1 L - 1 proveta de 1 L - 1 proveta de 50 mL

Page 12: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

12

- 3 matrazes de 250 mL - 1 bureta de 25 mL - 1 goblé de 25 mL - 1 espátula - placa de aquecimento - balança analítica - solução de HCl concentrado - bórax seco (num exsicador sobre uma solução saturada de sacarose e cloreto de

sódio) - solução indicadora de vermelho de metilo [0,1 %(m/v)] com azul de metileno

2.2. Execução prática Preparação de uma solução de HCl Para um frasco de vidro, bem lavado e passado por água desionizada, deite 750 mL de água

desionizada (proveta de 1 L) e transfira cuidadosamente cerca de 33 mL de HCl concentrado

(medidos com uma proveta – tenha muito cuidado ao manusear HCl concentrado). Feche o

frasco, agite até o seu conteúdo ficar homogéneo e rotule-o devidamente.

Titulação da solução de HCl preparada Na balança analítica, pese 3 amostras de boráx seco (num exsicador sobre uma solução

saturada de açúcar e cloreto de sódio). As amostras, com uma massa de 1,4 a 1,6 g devem

ser pesadas directamente para um matrás (se exceder a tara da balança, pese por diferença).

Registe a massa pesada (com as 4 casas decimais).

Com uma proveta, adicione 50 mL de água desionizada (ou mais, se necessário) e

aqueça um pouco, agitando de vez em quando, até o bórax se dissolver completamente.

Deixe a solução arrefecer até à temperatura ambiente (a zona de viragem do indicador é

sensível à temperatura e além disso a constante de autoprotólise da água também é afectada),

junte 2 a 3 gotas de indicador modificado de vermelho de metilo com azul de metileno à

solução, que deve ficar esverdeada.

Prepare uma bureta com a solução de HCl a titular. Para isso, comece por lavar a bureta

com a solução que será utilizada (descarte esse volume de lavagem). Preencha a bureta com

a solução de HCl. Verifique se há vazamento ou bolhas (não prossiga a titulação nesses

casos) e certifique-se que a parte inferior da bureta também esteja preenchida com solução.

Anote o volume inicial (com as 2 casas decimais) e efectue a titulação (de forma não muito

rápida e com contínua agitação) até a cor da solução mudar para azul arroxeado ou cinzento

neutro. Registe o volume final (com as 2 casas decimais).

Terminadas as titulações, esvazie a bureta para o frasco de restos de HCl e lave-a com

água desionizada, colocando-a depois no suporte, invertida e com a torneira aberta.

Page 13: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

13

Repita os ensaios, até obter dois ensaios concordantes:

m1

V1

m2 V2

- ≤5

1000

m1

V1

m2 V2

+ 2

Para cada ensaio, a partir da massa de bórax e do volume de HCl gasto em cada

titulação, calcule a concentração molar do ácido.

O resultado deve ser apresentado como a média aritmética de pelo menos dois valores

concordantes.

2ª Parte - Preparação e padronização de uma solução de hidróxido de sódio

1. Introdução

O reagente mais empregue na preparação de soluções padrões alcalinas é o hidróxido

de sódio. O hidróxido de sódio também não é uma substância primária, uma vez que é muito

higroscópico e carbonata-se com facilidade (reacção de OH- com CO2 atmosférico, com

formação de anião carbonato), com consequente diminuição da concentração de OH-.

As soluções de hidróxido devem ser armazenadas em frascos de polietileno, dado que o

vidro é atacado pelo hidróxido (NaOH reage com os silicatos que constituem o vidro com

formação de silicatos solúveis).

Conforme mencionado, as soluções de NaOH devem estar isentas de carbonato, uma

vez que este, sendo uma base, iria afectar as reacções de titulação. Como o hidróxido de sódio

sólido contém sempre uma certa quantidade de carbonato de sódio é necessário eliminá-lo.

Para isso, aproveita-se a circunstância de o carbonato de sódio ser insolúvel em soluções

muito concentradas de hidróxido de sódio (40-50 %). A partir das soluções concentradas

podem depois preparar-se outras mais diluídas, tendo o cuidado de ferver a água de diluição,

para que fique isenta de dióxido de carbono (CO2) e não haja carbonatação do hidróxido de

sódio.

A substância primária a que mais frequentemente se recorre para determinar o título da

solução de hidróxido de sódio é um ácido carboxílico fraco denominado hidrogenoftalato de

potássio (KC8H5O4; MM = 204,23 g/mol; pKa1 = 5.1; pKa2 = 7.9) que reage

estequiometricamente com o hidróxido na proporção 1:1. É encontrado no comércio com

pureza de 99,95 a 100,05%, possui peso equivalente elevado, não é higroscópico e apresenta

estabilidade à secagem.

O hidrogenoftalato de potássio (KHP) deverá ser seco durante, pelo menos, 2 horas a

uma temperatura de 110-120 ºC. Em seguida, deve ser colocado num exsicador para que

retorne à temperatura ambiente e possa então ser pesado.

Page 14: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

14

Na padronização da solução de NaOH com biftalato de potássio, uma quantidade do

sólido é pesada, dissolvida em água, e a solução resultante após adição do indicador

fenolftaleína é titulada com a solução da base até o aparecimento de coloração rósea.

KHC8H4O4 + NaOH KNaC8H4O4 + H2O

2. Procedimento experimental

2.1. Material, reagentes e equipamento

- 1 frasco de polietileno de 1 L

- 3 matrazes de 250 mL

- 1 bureta de 25 mL

- 1 goblé de 25 mL - 1 proveta de 1 L

- 2 provetas de 50 mL

- 1 espátula

- balança analítica

- solução de NaOH 40% (m/v)

- hidrogenoftalato de potássio seco (num exsicador sobre sílica gel)

- solução indicadora de fenolftaleína (0,2% fenolftaleína em 90% de etanol)

- água fervida

2.2. Execução prática Preparação de uma solução de NaOH Num frasco de polietileno, lavado e passado por água desionizada, deite 950 mL de água

previamente fervida e arrefecida ao abrigo do ar. Adicione 50 mL de solução de NaOH a 40 %

(medidos com uma proveta). Tape o frasco e agite até homogeneizar. Rotule-o devidamente.

Titulação da solução de NaOH preparada

Na balança analítica, pese três amostras de ftalato ácido de potássio puro e seco, com

peso compreendido entre 1,5-1,7 g. As pesagens devem ser efectuadas directamente para o

matrás (se exceder a tara da balança, pese por diferença). Registe a massa pesada (com as 4

casas decimais).

Com uma proveta, adicione 50 mL de água desionizada e fervida (ou mais se

necessário) e agite até dissolução completa do sal. Adicione 2 a 3 gotas de fenolftaleína.

Certifique-se que a bureta está limpa e lavada com solução de NaOH antes de

preenchê-la com a solução que será usada na titulação. Verifique se há perda de solução ou

bolhas (não prossiga a titulação nesses casos) e certifique-se que a parte inferior da bureta

também esteja preenchida com solução. Coloque um fundo branco (por exemplo, uma folha de

papel) sob o matrás para facilitar a visualização da viragem do indicador. Anote o volume inicial

Page 15: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

15

(com as 2 casas decimais) e efectue a titulação, de forma lenta e sob contínua agitação, até a

cor da solução mudar para rosa TÉNUE persistente por 30 segundos. Registe o volume final

(com as 2 casas decimais).

Repita o procedimento (isto é, a titulação) para os outros 2 matrazes.

Page 16: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

16

Trabalho nº2 – Determinação da pureza de uma amostra de ácido acetilsalicílico

1. Introdução

Neste trabalho, pretende-se determinar o teor, em massa, de ácido acetilsalicílico (ácido

2-acetoxibenzóico; CH3COOC6H4COOH) em comprimidos de analgésicos como Melhoral®,

Aspirina®, AAS®, etc.

O ácido acetilsalicílico (MM = 180,16 g/mol) é um ácido fraco que se hidrolisa quando

tratado com uma solução quente de hidróxido de sódio para dar acetato de sódio e salicilato

de sódio, de acordo com a reacção:

CH3COOC6H4COOH + 2 NaOH CH3COONa + C6H4(OH)COONa

O excesso de hidróxido de sódio (que não reagiu com o ácido acetilsalicílico) pode ser

determinado por titulação com uma solução padrão de ácido clorídrico. Desta forma, calcula-se

por diferença a concentração de ácido acetilsalicílico.

2. Procedimento experimental

2.1. Material, reagentes e equipamento - 3 matrazes de 100 mL

- 3 vidros de relógio

- 1 bureta de 25 mL

- 1 goblé de 25 mL

- 1 pipeta volumétrica de 10 mL

- 1 pipeta volumétrica de 25 mL

- balança analítica

- Placa de aquecimento

- comprimidos contendo ácido acetilsalicílico

- solução indicadora de vermelho de fenol a 0,1% (m/v)

- solução padrão de HCl

- solução padrão de NaOH

calor

Page 17: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

17

2.2. Execução prática

a) Preparação da amostra - Coloque 1 comprimido da amostra a analisar num matrás de 100 mL.Identifique o

matrás marcando-o como - Amostra 1.

- Adicione 25,00 mL de solução de hidróxido de sódio ao matrás e dissolva o

comprimido.

- Coloque o matrás na placa de aquecimento e deixe em ebulição durante cerca de 10

minutos. Retire e deixe arrefecer totalmente até à temperatura ambiente.

- Entretanto identifique mais dois matrazes de 100 mL - Amostras 2 e 3 - e coloque em

cada um deles um comprimido da amostra em análise. Repita o procedimento anterior

com a dissolução com hidróxido de sódio e o aquecimento durante 10 minutos.

- Findo o aquecimento, deixe as soluções arrefecerem até à temperatura ambiente.

b) Titulação - Prepare uma bureta com a solução padrão de ácido clorídrico. Lave a bureta com a

solução (descarte esse volume de lavagem). Preencha a bureta, verifique se está a

verter ou se contém bolhas (não prossiga a titulação nesses casos). Certifique-se que a

parte inferior da bureta também está preenchida com solução. Anote o volume inicial

(com as 2 casas decimais).

- Adicione 3 gotas de solução indicadora de vermelho de fenol (a solução deverá ficar

avermelhada) à solução a titular (amostras 1,2 e3).

- Inicie a titulação (tenha o cuidado de o fazer apenas quando as soluções estiverem à

temperatura ambiente), adicionando lentamente e com agitação contínua a solução

padrão de HCl até a solução adquirir uma coloração amarela. Registe o volume final

(não se esqueça que os volumes devem ser lidos com 2 casas decimais).

c) Ensaio para confirmação da concentração da solução de hidróxido

- Titule isoladamente 15,00 mL de solução de hidróxido de sódio.

Nota: Confirme com o docente se é ou não necessário efectuar este passo.

Nota: De acordo com indicações da Farmacopeia Portuguesa, os comprimidos de AAS contêm

no mínimo 95,0% e, no máximo, 105,0% da quantidade de C9H8O4 indicada no rótulo.

Page 18: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

18

Trabalho nº3 – Determinação de cloretos numa amostra de água potável pelos métodos de Charpentier-Volhard e de Fajans

1. Introdução

O doseamento do ião cloreto em solução é vulgarmente efectuado por métodos,

baseados em volumetrias de precipitação de cloreto de prata. São exemplos, os métodos

directos de Mohr e Fajans, com detecção por recurso a um segundo precipitado corado e um

indicador de adsorção, respectivamente, e o método de retorno, conhecido como o de

Charpentier-Volhard com detecção por formação de um complexo corado.

O método de Charpentier-Volhard, assenta numa volumetria de retorno na qual o anião

cloreto é precipitado com um excesso de catião prata (I) rigorosamente medido, sendo a

quantidade de catião prata (I) que não reagiu avaliada por titulação com uma solução padrão

anião tiocianato (SCN-), utilizando-se o ião ferro (III) como indicador. O ponto final da titulação é

indicado pela cor laranja do complexo [Fe(SCN)]2+ formado com o primeiro excesso de

tiocianato.

Equações que traduzem as reacções:

Cl- (aq) + total Ag+ (aq) AgCl (s) + excesso Ag+ (aq)

excesso Ag+ (aq) + SCN- (aq) AgSCN (s)

Fe3+ (aq) + SCN- (aq) [Fe(SCN)]2+ (aq)

(complexo cor laranja)

Tratando-se de uma argentometria (titulação com Ag+), o pH da solução tem que ser

inferior a 10 para evitar a precipitação de AgOH e Ag2O; por outro lado, o indicador do ponto

final exige um pH ≤ 3, para impedir a formação de hidroxissais de ferro (III) ou mesmo hidróxido

de ferro [Fe(OH)3]. Assim, a titulação é efectuada em meio fortemente ácido (a solução é

acidulada com HNO3) apresentando a vantagem de aniões como arseniato (AsO43-), fosfato

(PO43-), oxalato (C2O4

2-), sulfureto (S2-) e carbonato (CO32-), que precipitam com o Ag+ em meio

alcalino, deixarem de interferir na determinação.

No entanto existem algumas limitações associadas ao uso desta metodologia,

designadamente:

- O facto de o precipitado de AgCl adsorver alguns iões prata, o que origina o

aparecimento de um ponto final prematuro; contudo, este problema pode ser

ultrapassado por agitação enérgica da solução até que a cor cor-de-laranja que

assinala o ponto final se mantenha de forma persistente.

Page 19: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

19

- Como o AgCl (s) é mais solúvel que o AgSCN (s) (KpsAgSCN = 1,1 × 10-12; KpsAgCl =

1,78 × 10-10), existe o risco de, quando toda a prata em excesso tiver reagido, o SCN-

deslocar parte do cloreto do precipitado de AgCl: AgCl (s) + SCN- (aq) AgSCN (s) + Cl-.

Nesta circunstância o ponto final atenua-se e portanto há um maior consumo SCN- o

que se traduz em resultados baixos na análise de Cl-.

Esta limitação pode ser ultrapassada, isolando o precipitado de AgCl por filtração

antes de iniciar a titulação ou adicionando uma pequena quantidade de um líquido

imiscível que recobre as partículas de AgCl e evita que interajam com o SCN-. O

líquido mais indicado é o nitrobenzeno.

No método de Fajans os cloretos são determinados por titulação com nitrato de prata,

formando precipitado branco de AgCl. O ponto final da titulação é visualizado por meio de um

indicador de adsorção: a diclorofluoresceína. Este indicador é um corante aniónico que tem

uma cor amarela-esverdeada em solução, mas que fica rosa quando é adsorvido à superfície

do precipitado de AgCl carregado positivamente. No início da titulação as partículas coloidais

de AgCl encontram-se carregadas negativamente por estarem rodeadas de iões cloreto. Nesta

fase a solução terá uma coloração amarela-esverdeada. Na proximidade do ponto de

equivalência a carga dos colóides passa a ser positiva pela quantidade de catiões prata

existentes. A solução toma agora uma coloração rosa-avermelhada porque o indicador,

carregado negativamente, é adsorvido à superfície do coloide carregado positivamente. É

importante evidenciar que a mudança de cor do indicador é provocada pela alteração na

adsorção e não na precipitação. A adição de dextrina à solução titulante evita a coagulação

excessiva do precipitação na proximidade do ponto de equivalência e, por isso, aumenta a

superfície de adsorção disponível para o indicador melhorando a nitidez do ponto final.

As titulações que utilizam indicadores de adsorção são rápidas, rigorosas e fiáveis, no

entanto as suas aplicações estão limitadas a um número reduzido de reacções em que

ocorrem precipitados que se formem rapidamente.

Nesta titulação, tal como nas outras argentometrias, a luz deve ser evitada, pois

decompõe os sais de prata e os indicadores de adsorção. É também necessário controlar o pH,

porque este indicador é um ácido fraco que tem de estar em solução na sua forma aniónica.

2. Procedimento experimental

2.1 Material, reagentes e equipamento

Método de Charpentier–Volhard

- 3 matrazes de 250 mL

- 1 pipeta volumétrica de 20 mL

- 1 pipeta volumétrica de 10 mL

- 2 pipetas graduadas de 5 mL

Page 20: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

20

- 1 bureta de 25 mL

- 1 goblé de 25 mL

- solução padrão de AgNO3

- solução padrão de tiocianato de potássio (KSCN)

- solução ácido nítrico (HNO3) 6 mol/L

- solução indicadora saturada de sulfato de amónio e ferro (III) em água

- amostra de água a analisar

- água desionizada

Método de Fajans

- 3 matrazes de 250 mL

- 1 proveta de 50 mL

- 1 pipeta volumétrica de 15 mL

- 1 pipeta graduada de 10 mL

- 1 pipeta de Pasteur

- 1 bureta de 25 mL

- 1 goblé de 25 mL

- pHmetro

- soluções tampão para calibração do eléctrodo

- solução padrão de AgNO3

- solução anião cloreto

- solução indicadora de diclorofluoresceína

- suspensão de dextrina 10%

- água desionizada

2.2. Execução prática

Determinação de cloretos pelo Método de Charpentier-Volhard - Prepare uma bureta com a solução padrão de tiocianato de potássio (KSCN). Leia e

registe o volume inicial da bureta.

- Para um matrás adicione: 10,00 mL (pipeta volumétrica) de solução de amostra a

analisar, 5 mL de HNO3 6 mol/L, 5 mL de solução indicadora de ferro (III) 0, 1 mol/L e

20,00 mL de uma solução padrão de AgNO3 (pipeta volumétrica).

- Agitando contínua e vigorosamente o matrás, adicione da bureta o titulante até o

líquido sobrenadante ficar laranja ( o mais ténue possível) e persistente à agitação.

Leia e registe o volume final na bureta.

- Repita os ensaios até obter dois volumes concordantes: | (20,00 - ∆V) 1ºensaio - (20,00 - ∆V)

2ºensaio | ≤ 0,10 mL, em que ∆V é o volume gasto em cada ensaio.

Page 21: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

21

Determinação de cloretos pelo Método de Fajans - Verifique e o pH da amostra se encontra entre 4 – 10; acerte para estes valores caso

seja necessário.

- Coloque em cada matrás 15,00 mL (pipeta volumétrica) de amostra a dosear. Adicione

30 mL de água desionizada (em proveta).

- Agite muito bem o frasco que contém a suspensão de dextrina e adicione a cada

matrás 10 mL desta suspensão.

- Prepare uma bureta com a solução padrão de nitrato de prata.

- A cada um dos matrazes adicione 10 gotas de solução indicadora de

diclorofluoresceína, agite.

- Titule imediatamente com a solução padrão de nitrato de prata até viragem de cor

amarelo-esverdeado para rosa-avermelhada. É essencial a agitação vigorosa da

mistura para que seja bem visível o ponto de viragem. Não deixe que a luz do sol

incida directamente sobre os matrazes de titulação ou o frasco que contém a solução

de nitrato de prata. Registe o volume de solução gasto da bureta.

Nota importante: Este procedimento deve ser seguido para cada réplica,

individualmente, e imediatamente antes de se proceder a titulação.

- Repita os ensaios até obter dois volumes concordantes: | ∆V 1ºensaio - ∆V 2ºensaio | ≤ 0,10 mL,

em que ∆V é o volume de solução de nitrato de prata gasto em cada ensaio.

Page 22: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

22

Trabalho nº4 – Determinação do magnésio em formulações farmacêuticas por quelatometria. Determinação de cálcio por titulação de substituição

1ª Parte - Determinação do magnésio em formulações farmacêuticas por quelatometria

1. Introdução

A determinação de iões metálicos é muitas vezes efectuada por volumetria de

complexação, usando o EDTA (ácido etilenodiaminotetracético) como titulante na presença de

um indicador metalocrómico em meio alcalino.

O EDTA é o agente quelante mais vulgarmente empregue sendo um ácido tetraprótico

razoavelmente forte as duas primeiras protólises (H4Y).

Como é pouco solúvel em água utiliza-se o respectivo sal dissódico.(Na2H2Y, 2 H2O),

bastante solúvel. Tanto o EDTA como o seu sal podem ser utilizados como substâncias

primárias. Assim, podem preparar-se soluções padrão de EDTA por pesagem rigorosa do

sólido, dissolução deste e diluição rigorosa a volume exacto.

As soluções de EDTA não devem ser acondicionadas em frascos de vidro pois poderia

dar-se a formação de quelatos de Ca2+ e Mg2+ com consequente diminuição da concentração.

Devem, portanto, ser armazenadas em frascos de polietileno.

Os quelatos entre EDTA e o ião são do tipo 1:1 podendo ser representados pela seguinte

equação geral.

Mn+ (aq) + H2Y2- (aq) [MY](4-n)- (aq) + 2 H+ (aq)

Com a formação de quelato ocorre libertação de protões (diminuição de pH), o que pode

impedir a formação quantitativa. A solução deve ser tamponada, de tal forma que o pH ao

longo da titulação seja mantido entre valores convenientes, independentemente da quantidade

de protões libertada. Para tal utiliza-se uma solução tampão de NH4Cl/NH3, pH mais ou menos

de 8,9, não sendo aconselhável aumentar o pH acima de 10 devido à possibilidade de

formação de precipitados de Mg(OH)2. Adicionalmente a cor do indicador também depende do

pH da solução.

HOOCH2C

HOOCH2C

CH2COOH

CH2COOH

N—CH2—CH2—N

Page 23: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

23

Os indicadores usados em quelatometrias são indicadores metalocrómicos, que são

compostos orgânicos corados capazes de formarem, com diferentes catiões, quelatos com

cores diferentes daquela que apresentam quando livres em solução. Assim, estes indicadores

mudam de cor ao ligar-se a um ião metálico, voltando a apresentar a cor correspondente à

forma livre quando o ião metálico se liga ao EDTA.

Neste trabalho, o indicador utilizado é o negro de Eriocromo T que é um pó de brilho

metálico utilizado em dispersão com NaCl (1:100). Em solução aquosa o corante forma um

quelato com o catião a titular de cor vinosa:

Mn+ (aq) + Indm- (aq) [MInd](m-n)- (aq)

Este indicador também possui propriedades ácido-base:

H2Ind- HInd2- Ind3-

Assim a reacção da titulação na vizinhança do ponto de equivalência leva a uma

alteração de cor no titulado de vermelho vinoso para azul, marcando assim o final da titulação:

[MInd] + H2Y2- (aq) [MY]2- + HInd2- + H+ (aq)

2. Procedimento experimental

2.1 Material, reagentes e equipamento - 1 pipeta volumétrica de 5 mL

- 1 bureta de 25 mL

- 1 goblé de 25 mL

- 3 matrazes de 250 mL

- 1 pipeta graduada de 5 mL

- 1 microespátula

- solução padrão de EDTA

- formulação farmacêutica de magnésio para análise

- solução tampão de NH4+/NH3indicador sólido de negro de ericromo T (misturado com

cloreto de sódio na proporção de 1: 100)

2.2. Execução prática

pH<6,3 vermelho vinoso

6,3<pH<11,6 azul

pH>11,6 laranja

vermelho-vinosa

vermelho-vinosa azul

Page 24: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

24

- Prepare uma bureta com a solução padrão de EDTA. Leia e registe o volume inicial da

bureta (com as 2 casas decimais).

- Adicione para um matrás: 5,00 mL (pipeta volumétrica) de solução de catião magnésio

a analisar, 5 mL (proveta) de solução tampão NH4+/NH3, uma pequena porção de

indicador sólido de negro de eriocromo T (com a microespátula). A solução deve ficar

com uma cor vinosa.

- Agitando continuamente o matrás, adicione da bureta a solução de EDTA até a solução

virar para azul.

- Leia e registe o volume final na bureta (com as 2 casas decimais). Repita os ensaios

até obter dois volumes concordantes:

| ∆V 1ºensaio - ∆V 2ºensaio | ≤ 0,10 mL, em que ∆V é o volume de solução de EDTA gasto em cada ensaio.

2ª Parte - Determinação de cálcio por titulação de substituição

1. Introdução

Em algumas circunstâncias, designadamente quando os iões de metais não reagem (ou

reagem insatisfatoriamente) com um indicador metálico, em vez de se recorrer a uma titulação

directa ou uma titulação de retorno, é preferível empregar a metodologia da titulação de

deslocamento ou substituição.

Neste tipo de volumetria, a solução que contém o catião metálico (Mn+) a determinar (neste

caso, Ca2+) é tratada com um excesso (não medido) de um complexo entre um outro catião de metal

(Cn+) com o EDTA [Cn+-EDTA], ocorrendo a seguinte reacção:

Mn+ (aq) + CY(4-n)- (aq) [MY](4-n)- (aq) + Cn+ (aq)

A quantidade de catião Cn+ (que é equivalente à do catião metálico Mn+ que se pretende

determinar) é depois titulada com uma solução padrão de EDTA.

Neste trabalho prático, aplica-se este procedimento analítico à determinação de catião cálcio.

De facto, a titulação directa dos iões cálcio (usando como indicador negro de eriocromo T) dá um

ponto final difícil de reconhecer, não sendo por isso um método adequado. A alternativa é então

tratar a solução que contém o ião metálico a determinar (Ca2+) com um excesso de Mg-EDTA, a fim

de libertar uma quantidade equivalente de ião Mg2+, que depois é titulado com uma solução padrão

de EDTA que dá origem a um ponto final mais nítido.

O fundamento do método é então o facto de o quelato Ca-EDTA ser mais estável do que o

quelato Mg-EDTA [Kformação(Ca-EDTA) = 1010,69; Kformação(Mg-EDTA) = 108,79].

Quando o Mg-EDTA é adicionado à amostra, o magnésio é deslocado do complexo com EDTA

pelo cálcio da amostra, ficando o Mg2+ livre em solução.

Page 25: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

25

Ca2+ (aq) + MgY2- (aq) [CaY]2- (aq) + Mg2+ (aq)

Efectua-se depois a titulação directa do magnésio libertado com uma solução padrão de EDTA,

na presença de uma reduzida quantidade de um indicador metalocrómico. Até próximo do volume

equivalente, o Mg2+ livre vai sendo progressivamente complexado com EDTA (equação A). Muito

próximo do ponto de equivalência, a concentração de Mg2+ livre aproxima-se de zero, e o EDTA

desloca o Mg2+ do complexo Mg-indicador, causando uma alteração de cor na solução, que indica o

ponto final da titulação (equação B).

Mg2+ (aq) + H2Y2- (aq) [MgY]2- (aq) + 2 H+ (aq) (equação A) [MgInd] + H2Y2- (aq) [MgY]2- + HInd + H+ (aq) (equação B)

2. Procedimento experimental

2.1 Material, reagentes e equipamento - 3 matrazes de 250 mL

- 1 pipeta volumétrica de 10 mL

- 1 pipeta graduada de 2 mL

- 1 pipeta graduada de 1 mL

- 1 bureta de 25 mL

- 1 goblé de 25 mL

- pipetas Pasteur

- pHmetro

- soluções tampão para calibração do eléctrodo

- solução padrão de EDTA

- solução tampão NH4Cl/NH3

- solução de NaOH 0,1 M

- solução de negro de eriocromo T

- solução de Na2MgY

- solução problema de cálcio

2.2. Execução prática

- Medir o pH da amostra com um aparelho de medição do pH. Se a solução de cálcio a

analisar estiver ácida, neutralize com solução de hidróxido de sódio.

- A 10,00 mL de solução a analisar, adicione 2 mL da solução tampão NH4Cl/NH3, 1 mL

de solução de Na2MgYe uma pequena quantidade do indicador de negro de eriocromo

T.

- Prepare uma bureta com a solução padrão de EDTA. Leia e registe o volume inicial da

bureta (com as 2 casas decimais). Titule até mudança de vermelho para azul (titular

lentamente perto do ponto final). Anote o volume final (com as 2 casas decimais).

Page 26: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

26

- Repita o ensaio até obter, pelo menos, dois resultados concordantes. Utilize como

critério de concordância: | ∆V 1ºensaio - ∆V 2ºensaio | ≤ 0,10 mL, em que ∆V é o volume gasto

em cada ensaio.

Page 27: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

27

Trabalho nº5 – Preparação de soluções padrão de iodato de potássio e tiossulfato de sódio

1. Introdução

O iodato de potássio (KIO3) é uma substância primária pelo que é possível preparar

soluções de concentração rigorosamente conhecida por pesagem rigorosa do sólido, sua

dissolução e diluição a volume exacto. As soluções assim preparadas designam-se de solução

padrão primário.

O tiossulfato de sódio (Na2S2O3) é frequentemente usado como agente redutor em

volumetrias de oxidação-redução. De facto, as suas soluções são tradicionalmente usadas nas

metodologias iodométricas, pois o tiossulfato é um bom reagente redutor na titulação do iodo

(triiodeto) libertado: 2 S2O32- S4O6

2- + 2 e-.

Normalmente as soluções são preparadas a partir do sal pentahidratado, Na2S2O3.5H2O

(MM 248,17374 g/mol), que não possui características de padrão primário pois é higroscópico,

o que acarreta uma incerteza quanto ao seu conteúdo de água. No entanto, quando anidro, o

sal é estável a 120 ºC durante muito tempo, podendo então, sob estas condições, ser usado

como padrão primário.

Assim, a situação mais comum é preparar soluções de tiossulfato de sódio de

concentração próxima da desejada e depois proceder à determinação da sua concentração

rigorosa por titulação com padrões primários de iodato (KIO3) ou dicromato de potássio

(K2Cr2O7). As soluções de tiossulfato devem ser preparadas com água destilada previamente

fervida para eliminar o dióxido de carbono dissolvido (que pode causar uma lenta

decomposição com formação de enxofre coloidal que confere turbidez à solução) e também

prevenir a decomposição do tiossulfato por bactérias. É comum adicionar algumas gotas de

clorofórmio (que actua como eficaz agente preservante) e uma pequena quantidade de

carbonato de sódio (no máximo 0,1 g Na2CO3/L) de forma a assegurar o pH correcto da

solução(é conseguido um mínimo de actividade bacteriana para um pH entre 9-10). A solução

deve ser armazenada em frasco escuro (âmbar) logo após a preparação de modo a evitar a

exposição à luz, que também tende a acelerar a sua decomposição.

Neste trabalho, vai usar-se o iodato de potássio para padronização da solução de

tiossulfato de sódio. Este sal (iodato) em meio ácido (meio moderadamente acidulado com

ácido sulfúrico) oxida quantitativamente o iodeto a triiodeto:

IO3- + 8 I- + 6 H+ → 3 I3- + 3 H2O

Posteriormente, ao adicionar a solução de tiossulfato à solução que contém o anião

triiodeto, a reacção ocorre rápida e estequiometricamente (a pH < 5) dando origem aos aniões

tetrationato (S4O62-) e iodeto:

Page 28: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

28

2 S2O32- + I3- → S4O6

2- + 3 I-

2. Procedimento experimental

2.1. Material, reagentes e equipamento - 2 frascos de vidro de 1 L

- 1 balão volumétrico de 1 L

- 1 goblé de 250 mL

- balança analítica e 2 espátulas

- balança de precisão e espátula

- etiquetas para rótulo

- iodato de potássio puro e previamente seco a 110-120 oC por 2 ½ horas (num

exsicador sobre sílica gel)

- tiossulfato de sódio pentahidratado (Na2S2O3.5H2O, sólido)

- iodeto de potássio (sólido)

- carbonato de sódio (sólido)

- clorofórmio

- 1 proveta de 1 L

- 1 proveta de 50 mL

- 1 pipeta graduada de 5 mL

- 1 pipeta graduada de 2 mL

- 3 matrazes de 250 mL

- 1 bureta de 25 mL

- solução de ácido sulfúrico 3 M

- solução indicadora de amido 1% m/v

2.2. Execução prática

a) Preparação da solução padrão de iodato de potássio Faça os cálculos necessários de modo a preparar 1 L de solução padrão de iodato de

potássio (KIO3; MM 214,001 g/mol) com uma concentração de 0,01 M.

De acordo com os cálculos que realizou, efectue a pesagem rigorosa da massa de iodato

de potássio puro e previamente seco em estufa a 110-120 oC por 2 ½ horas (registe a massa

com 4 casas decimais). Transfira quantitativamente o sólido para um balão volumétrico de 1 L.

Para isso, deve dissolver o sólido em pequenas porções de água desionizada e proceder à sua

transferência para o balão. Deve repetir esta operação até que todo o sólido tenha sido

dissolvido e colocado no balão. No final, complete o volume e homogenize conveniente a

solução. Transfira a solução para o frasco de vidro, calcule a concentração molar do sal na

solução e escreva-a no rótulo.

Page 29: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

29

b) Preparação de uma solução de tiossulfato de sódio (Na2S2O3) - Pese 25 g de tiossulfato de sódio pentahidratado (Na2S2O3.5H2O). Para uma proveta,

meça 1 L água desionizada, recentemente fervida e arrefecida. Use a água medida,

para transferir o sólido para um frasco de vidro escuro, bem lavado e passado por

água desionizada.

- Em seguida, adicione à solução 0,1 g de carbonato de sódio (para ajuste do valor de

pH da solução) e 3 a 5 gotas de clorofórmio (para prolongar a manutenção das

características da solução).

- Feche o frasco e agite até o seu conteúdo ficar homogéneo. Rotule-o devidamente.

Nota: Se após algum tempo, existirem sólidos no interior da solução, proceda às sua

filtração antes de a padronizar

c) Titulação da solução de tiossulfato de sódio (Na2S2O3) preparada

- Usando a balança analítica pese directamente para um matrás de 250 mL (se exceder

a tara da balança, pese por diferença) entre 0,10 e 0,12 g de iodato de potássio puro

e seco durante pelo menos 2 ½ horas a uma temperatura de 120 ºC e, em seguida,

armazenado num exsicador. Registe a massa pesada (com as 4 casas decimais).

- Adicione 50 cm3 de água desionizada previamente fervida e arrefecida à temperatura

ambiente (com uma proveta). Agite periodicamente a solução resultante até a

dissolução total do iodato adicionado, o que pode demorar alguns minutos.

- Após a sua dissolução, adiciona-se 2 g de iodeto de potássio e 5 mL de ácido

sulfúrico 2 mol/L. Homogeneize.

Nota importante: Este procedimento deve ser seguido para cada réplica,

individualmente, e imediatamente antes de se proceder a titulação.

- Prepare uma bureta, previamente limpa e pré-lavada com a própria solução com a

solução de tiossulfato de sódio (Na2S2O3) a titular. Anote o volume inicial (com 2

casas decimais) e efectue a titulação, sob agitação constante, até que a cor castanha

mude para amarelo pálido.

- Nesta altura, adicione 2 mL de solução de amido (indicador) e prossiga a titulação,

lentamente, até a brusca mudança da cor azul para incolor. Registe o volume final.

- Repita o procedimento mais 2 vezes.

Acrescente no rótulo a concentração rigorosa da solução.

Uma vez que estas soluções não mantêm a molaridade por muito tempo, é conveniente

verificá-la antes de a usar no trabalho para que é necessária.

Page 30: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

30

Trabalho nº6 – Quantificação da vitamina C num suplemento

1. Introdução

O ácido ascórbico (C6H8O6), vulgarmente designado por vitamina C, é

um nutriente essencial que não pode ser sintetizado pelo nosso organismo,

tendo de ser fornecido por ingestão de alimentos ou medicação. Para além

das suas propriedades antioxidantes, participa na síntese da hidroxiprolina,

um aminoácido constituinte do colagénio, que é uma proteína estrutural do

tecido conjuntivo. Contribui também para o aumento das ligações cruzadas do

colagénio e é fundamental para o bom desenvolvimento muscular. O ácido

ascórbico é um sólido cristalino de cor branca, inodoro, hidrossolúvel e pouco

solúvel em solventes orgânicos, que tem propriedades ácidas e redutoras.

ácido ascórbico (C6H8O6)

Esta presente em frutas e legumes mas é extremamente instável: reage com o oxigénio

do ar, com a luz e até mesmo com a água sendo também destruída por temperaturas elevadas.

Também sofre oxidação irreversível, perdendo a sua actividade biológica, em alimentos frescos

quando guardados por longos períodos.

A carência de vitamina C no organismo provoca fadiga, anorexia e dores musculares,

enquanto as deficiências graves são causadoras de avitominose designada por escorbuto,

anemia e astenia entre outras consequências Em doses moderadas, favorece a formação dos

dentes e ossos, previne gripes, fraqueza muscular e infecções, ajuda o sistema imunológico e

a respiração celular, estimula as glândulas supra-renais, protege os vasos sanguíneos e é

importante para o funcionamento adequado dos glóbulos brancos do sangue.

Aos valores de pH normalmente encontrados no meio intracelular, o ácido ascórbico

encontra-se predominantemente na sua forma ionizada, o ascorbato.

O ácido ascórbico é um agente redutor moderado que em solução aquosa é capaz de

ceder 2 e- à espécie oxidante, originando ácido dehidroascórbico:

Ácido Ascórbico (C6H8O6) + H2O Ácido dehidroascórbico (C6H6O7) + 2 H+ + 2 e-

Neste trabalho experimental efectua-se o doseamento do ácido ascórbico num

suplemento vitamínico por meio de uma iodometria. Neste tipo de reacção de redox, utiliza-se o

carácter redutor do ácido ascórbico para o quantificar, através da reacção em meio ácido, com

o anião triiodeto (I3-; substância oxidante) que é reduzido a anião iodeto (I-):

Ácido Ascórbico (C6H8O6) + I3- + H2O Ácido dehidroascórbico (C6H6O6) + 3 I- + 2 H+

Page 31: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

31

Inicialmente, promovem-se as condições para que haja excesso de I3- em quantidade

rigorosamente conhecida. Isto é conseguido através da reacção do iodato de potássio (KIO3)

com iodeto de potássio (KI) em meio fortemente ácido:

IO3- + 8 I- + 6 H + 3 I3- + 3 H2O De facto, o iodato de potássio é uma boa substância padrão para gerar triiodeto:

adiciona-se a uma quantidade rigorosamente conhecida de iodato (volume rigoroso de uma

solução padrão de KlO3) um excesso de KI (reagente sólido), que ocasiona uma quantidade

previsível de I3-.

Por reacção de oxidação-redução, o I3- formado reage rapidamente com o ácido

ascórbico, consumindo-o na totalidade. O excesso de I3- (que não reagiu com o ácido

ascórbico) é seguidamente titulado com uma solução padrão de tiossulfato de sódio, sendo os

aniões tiossullfato (S2O32-) oxidados a tetrationato (S4O6

2-), segundo a equação:

I3- (aq) + 2 S2O32- 3 I-+ S4O6 2-

As soluções de I3- apresentam uma intensa cor de tijolo, enquanto as soluções de I- são

incolores, contudo, é costume adicionar-se um pouco de uma solução de cozimento de amido

que proporciona uma detecção mais sensível do ponto final. O amido forma um complexo de

cor azul-escuro intenso com o iodo e a mudança de cor de azul para incolor é indicativa do

ponto final da titulação.

O anião I3- é fixado nos interstícios das moléculas de β-amilose, uma das

macromoléculas constituintes do amido, formando-se um composto de inserção de cor azul-

escuro intenso. Esta reacção só é reversível para pequenas quantidades de I3–, por isso só se

adiciona o indicador quando a solução já contém pouco I3-. A mudança de cor de azul para

incolor é indicativa do ponto final da titulação.

2. Procedimento experimental

2.1 Material, reagentes e equipamento - 1 pipeta graduada de 10 mL

- 1 vidro de relógio

- 1 balão volumétrico de 100 mL

- 3 matrazes de 250 mL

- 1 pipeta volumétrica de 15 mL

- 1 pipeta volumétrica de 50 mL

- 1 pipeta graduada de 2 mL

- 1 bureta 25 mL

- 1 goblé de 25 mL

- balança de precisão e espátula

Page 32: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

32

- solução de ácido sulfúrico 2 mol/L

- solução indicadora de cozimento de amido a 1%

- solução padrão de iodato de potássio

- solução padrão de tiossulfato de sódio

- iodeto de potássio (reagente sólido)

- comprimidos de suplemento vitamínico contendo vitamina C

2.2. Execução prática

- Prepare uma bureta com a solução padrão de tiossulfato de sódio. Registe o valor

inicial da bureta (com 2 casas decimais).

- Dissolva um comprimido, no goblé em cerca de 75 mL de água desionizada e transfira

a solução para um balão volumétrico de 100 mL. Lave muito bem o goblé com água e

transfira a solução de “lavagem” para o balão. Afira o volume a 100 mL.

- Com uma pipeta volumétrica, retire 15 mL da solução de vitamina C para 3 matrazes

de 250 mL.

- Adicione 10 mL de ácido sulfúrico 2 mol/L, a cada um dos matrazes (que já contêm os

15 mL de solução de vitamina C).

- Adicione 2 g de KI (reagente sólido pesado no goblé de 50 mL) e 50,00 mL da solução

padrão de KIO3. Agite muito bem o conteúdo do matrás; a mistura deve apresentar-se

castanha-avermelhada (cor característica do anião triiodeto).

- Anote o volume inicial e efectue a titulação com a solução padrão de Na2S2O3, sob

agitação constante, até que a solução fique cor de amarelo-pálido. Nesta altura

interrompa, momentaneamente, a titulação para adicionar ao conteúdo do matrás 2

mL da solução indicadora de amido. O titulado deverá ficar azul-escuro. Prossiga a

titulação, lentamente, até ao desaparecimento brusco da cor azul. Registe o valor final

na bureta.

- Repita o ensaio até obter três valores concordantes: | ∆V 1ºensaio - ∆V 2ºensaio | ≤ 0,10 mL, em

que ∆V é o volume de solução de tiossulfato de sódio gasto em cada ensaio.

Page 33: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

33

Trabalho nº7 – Determinação de peróxido de hidrogénio numa água oxigenada (H2O2) comercial.

1ª Parte - Determinação de peróxido de hidrogénio numa água oxigenada (H2O2) comercial

1. Introdução

O peróxido de hidrogénio que, em solução aquosa, é conhecido

comercialmente como água oxigenada, é um líquido claro de fórmula

química H2O2.

O peróxido de hidrogénio anidro, em estado puro, é um líquido

incolor, límpido, viscoso (com uma densidade relativa de 1,44),

praticamente inodoro com um característico sabor amargo. Trata-se de

um poderoso oxidante, usado vulgarmente como antisséptico e

desinfectante de feridas.

Foi desenvolvido na década de 1920 para conter problemas de

infecções e gangrena em soldados em frente de batalha. A pesquisa

buscava um produto barato, fácil de transportar e usar, que pudesse ser

conservado de forma fácil e à temperatura ambiente, sem problemas

colaterais.

Durante a segunda guerra mundial, a redução no número de baixas e amputações foi

tremenda, graças ao uso da água oxigenada. De facto, soluções de concentrações reduzidas

(3-9%) são dos mais potentes desinfectantes – quando em contacto com cortes, feridas, etc., o

peróxido de hidrogénio decompõe-se em água e oxigénio:

H2O2 H2O + 1/2 O2

O tratamento efectivo dos ferimentos é então devido ao poder antisséptico do O2

libertado (que mata alguns tipos de microorganismos capazes de causar infecções).

A solução com 3% de peróxido de hidrogénio (solução de água oxigenada de uso

medicinal comum) liberta aproximadamente 10 vezes o seu volume de oxigénio à pressão e

temperatura normais (os limites da Farmacopeia Portuguesa é no mínimo 2,5% e no máximo

3,5% e, portanto, se o valor estiver contido neste intervalo, a Água Oxigenada está conforme a

Farmacopeia Portuguesa).

Neste trabalho pretende-se dosear o teor de peróxido de hidrogénio (H2O2) numa

amostra de “água oxigenada comercial” (água oxigenada de uso farmacêutico) por titulação

Page 34: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

34

com uma solução padrão de permanganato de potássio (KMnO4), de acordo com as normas da

Farmacopeia Portuguesa.

A titulação do peróxido de hidrogénio é efectuada com uma solução de permanganato de

potássio e envolve a seguinte reacção (meio ácido):

2 MnO4- + 6 H+ + 5 H2O2 2 Mn2+ + 8 H2O + 10 O2

Não há indicadores presentes nesta titulação, é uma reacção auto-indicada, pois há uma

espécie química que apresenta variação de cor nas suas formas oxidada e reduzida. Neste

caso, o indicador interno é o ião permanganato, MnO4-, que tem cor violeta mas que quando

sofre redução, transforma-se no ião manganésio (II), Mn2+, que é incolor. Assim, quando todo o

redutor estiver titulado, uma única gota em excesso tornará toda a solução cor de rosa, uma

mistura do violeta com o incolor, indicando desta forma o ponto final da titulação.

A redução do ião permanganato a Mn2+ só ocorre em meio fortemente ácido e para

acidificar o meio adiciona-se H2SO4 ao titulado. Em outras condições de pH, nomeadamente

meios fracamente ácidos, neutros ou fracamente alcalinos e meios fortemente alcalinos,

formam-se respectivamente os compostos: MnO2 e MnO42-.

É vulgar a indicação da concentração da “água oxigenada” em volumes. Isto acontece

porque há uma relação entre a concentração de peróxido de hidrogénio e o volume de oxigénio

formado, isto é, a quantidade de oxigénio gasoso que pode ser libertado por um litro de água

oxigenada em condições normais de pressão e temperatura, de acordo com a sua equação de

dissociação: H2O2 H2O + 1/2 O2.

2. Procedimento experimental

2.1. Material, reagentes e equipamento

- 2 pipetas volumétricas de 10 mL

- 1 balão volumétrico de 100 mL

- 1 proveta de 25 mL

- 1 pipeta graduada de 10 mL

- 3 matrazes de 250 mL

- 1 bureta de 25 mL

- 1 goblé de 25 mL

- solução padrão de permanganato de potássio (KMnO4; MM 158,0339 g/mol)

- solução H2SO4 1:8 v/v

- amostra a analisar

2.2. Execução prática

a) Preparação da solução de água oxigenada

Page 35: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

35

- Transfira uma alíquota de 5,00 mL (pipeta volumétrica) da água oxigenada comercial

10 volumes para um balão volumétrico de 100 mL e complete o volume com água

destilada. Homogenize.

b) Titulação da solução de água oxigenada (H2O2) com uma solução padrão de permanganato de potássio (KMnO4)Para um matrás, transfira uma alíquota de 10,00 mL

da solução de água oxigenada diluída (com pipeta volumétrica). Adicione 20 mL água

desionizada (proveta). Junte 8 mL de solução de H2SO4 1:8 v/v.

- Lave e encha a bureta com a solução padrão de permanganato de potássio (KMnO4).

- Proceda a titulação com solução de KMnO4 (bureta), até o aparecimento de coloração

rósea TÉNUE na solução do matrás, que persista por mais de 30 segundos, o que

indica o final da titulação (a cor da solução deve ser o mais ténue possível, mas

persistente à agitação).

- Lave bem o matrás e repita a titulação.

- Repita o procedimento até obter valores concordantes: | ∆V 1ºensaio - ∆V 2ºensaio | ≤ 0, 10 mL, em

que ∆V é o volume de solução de permanganato de potássio gasto em cada ensaio.

2ª Parte - Determinação da percentagem de hipoclorito de sódio numa lixívia comercial

1. Introdução

O agente branqueador e responsável pela acção de desinfecção nas lixívias comerciais

é o hipoclorito de sódio, que é produzido pela reacção do cloro com o hidróxido de sódio. Em

solução aquosa, o hipoclorito de sódio dissocia-se em ião sódio e em ião hipoclorito, sendo

este último o agente branqueador, através de uma reacção de oxidação-redução entre o ião

hipoclorito (o agente oxidante) e a mancha colorida ou nódoa a remover (agente redutor).

Neste trabalho, recorre-se a 2 reacções de oxidação-redução para determinar a

capacidade de oxidação de uma lixívia.

A uma solução contendo uma amostra de lixívia, adiciona-se uma quantidade em

excesso, de um agente redutor, tal como o ião iodeto (quantidade em excesso não medida de

iodeto de potássio em meio ácido). Os agentes oxidantes contidos na lixívia, tal como o

hipoclorito de sódio, oxidam o ião iodeto a iodo de acordo com a reacção:

HClO (aq) + H+ + 2 e- Cl- + H2O Eº = + 1,49 V 2 I- I2 + 2 e- Eº = - 0,54 V

HClO (aq) + H+ + 2 I- I2 + Cl- + H2O ∆Eº = + 0,95 V

Page 36: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

36

O iodo (I2) formado na solução é então determinado por titulação como uma solução

padrão de tiossulfato, que reduz estequiometricamente o iodo de acordo com a reacção:

2 S2O32- S4O62- + 2 e- Eº = - 0,09 V I2 + 2 e- 2 I- Eº = + 0,54 V 2 S2O32- + I2 2 I- + S4O62- Eº = + 0,45 V

À medida que a titulação se desenvolve, a concentração de iodo na solução diminui e a

solução passa de uma cor castanha para uma cor amarelo pálido próximo do final da reacção,

a qual está completa quando a solução fica totalmente incolor. Como esta transição de cor é

muito difícil de detectar, adiciona-se uma pequena quantidade de solução de cozimento de

amido quando a solução se torna amarelo pálida, onde então o iodo livre forma um complexo

azul de cor intensa. A detecção do ponto final da titulação é atingido pela adição de ião

tiossulfato até ao desaparecimento da cor azul.

2. Procedimento experimental

2.1. Material, reagentes e equipamento

- 1 balão volumétrico de 100 mL

- 1 matrás de 250 mL

- 1 pipeta volumétrica de 25 mL

- 1 pipeta volumétrica de 10 mL

- 1 pipeta graduada de 10 mL

- 1 proveta de 5 mL ou 1 pipeta graduada 5 mL

- 1 pipeta graduada de 1 mL

- 1 proveta de 100 mL

- 1 bureta

- 1 goblé de 25 mL

- solução padrão de tiossulfato de sódio (Na2S2O3) 0,09 M

- solução de iodeto de potássio (KI) a 10 %

- solução de HCl 6 M

- solução indicadora de cozimento de amido

2.2. Execução prática

- Para um balão volumétrico de 100 mL, meça 5,00 mL (pipeta volumétrica) da lixívia a

analisar. Perfaça o volume com água desionizada.

- Prepare convenientemente a bureta com a solução titulante de Na2S2O3.

- Para um matrás, meça 100 mL de água e 10,0 mL de solução KI a 10%. Adicione

25,00 mL (pipeta volumétrica) da lixívia diluída e 4 mL de HCl 6 M (proveta ou pipeta

graduada). Agite a solução e inicie imediatamente a titulação.

Page 37: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

37

- Adicione a solução de Na2SO3 de modo relativamente rápido até a solução adquirir um

tom amarelo suave; nessa altura interrompa momentaneamente a titulação e adicione

1 mL de solução de cozimento de amido; reinicie a adição de titulante gota-a-gota, até

desaparecer a cor azul.

- Lave bem o matrás e repita a titulação.

- Repita o procedimento até obter valores concordantes: | ∆V 1ºensaio - ∆V 2ºensaio | ≤ 0,10 mL, em

que ∆V é o volume de solução de permanganato de potássio gasto em cada ensaio.

- Terminado o trabalho, lave convenientemente a bureta e restante material de

laboratório.

Page 38: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

38

Trabalho nº8 – Determinação de alguns parâmetros característicos de um procedimento analítico

1. Introdução

Quando se pretende efectuar uma determinação quantitativa de um dado analito, existem

geralmente várias metodologias analíticas disponíveis. A escolha de uma metodologia, em

detrimento das outras, baseia-se numa série de critérios bem estabelecidos e que têm em conta

parâmetros analíticos característicos do procedimento em causa.

Neste trabalho prático pretende-se determinar os parâmetros analíticos que mais

vulgarmente são avaliados para depois ajuizar quanto à qualidade (características de

desempenho) de um dado procedimento experimental.

Utilizando como composto padrão o permanganato de potássio (KMnO4) em solução

aquosa, vão ser determinados:

- a precisão fotométrica,

- a linearidade fotométrica,

- a sensibilidade do método

- os limites de detecção e de quantificação do procedimento.

Em solução aquosa, este sal apresenta um espectro de absorção na região 400 a 700 nm,

correspondente à absorção do ião permanganato.

De forma a determinar o melhor comprimento de onda para efectuar determinações

quantitativas (isto é, comprimento de onda a que corresponde o máximo de absorvância) inicia-se

o trabalho efectuando a medição da absorvância de uma solução de permanganato de potássio a

diversos comprimentos de onda de radiação incidente (entre 400 e 700 nm). A esse comprimento

de onda determina-se, depois, a precisão fotométrica, intervalo dinâmico de trabalho, sensibilidade

e os limites de detecção e quantificação da metodologia.

A concentração analítica pode ser correlacionada com as absorvâncias medidas através da

lei de Lambert-Beer:

A = ε b c

em que A é a absorvância medida, c a concentração analítica molar (mol dm-3), e ε a

absortividade molar (mol-1 dm3 cm-1) e b o percurso óptico, ou seja a espessura da célula de

medida (cm).

A precisão fotométrica relaciona-se directamente com a estabilidade das medidas

efectuadas num espectrofotómetro. Um modo de estimar este parâmetro será através dos desvios

padrão das leituras efectuadas (σA), através da seguinte equação:

Page 39: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

39

( )1n

SS2

AiAA −

−=σ ∑ ,

onde SA,i é sinal do analito para as diferentes medidas e SA o seu valor médio. A precisão

fotométrica está directamente relacionada com o ruído de fundo, e depende da zona espectral (ou

seja, do comprimento de onda) e da concentração do analito. Numa situação ideal o

espectrofotómetro não devia ter variações superiores a 1% para qualquer medida efectuada.

Linearidade fotométrica corresponde à gama de concentrações para a qual a resposta do

espectrofotometro é linear, ou seja, quando a relação entre a concentração ([A]) e o sinal (SA)

pode ser descrita por uma recta do tipo:

SA=m [A] + b

Sempre que possível uma medida analítica deve ser efectuada nesta gama de

concentrações, que se pretende seja suficientemente extensa para evitar diluições das amostras.

Ou seja, o método escolhido para uma determinada análise deve ter um intervalo dinâmico de

trabalho (gama linear dinâmica) (DRA) o mais elevado possível. Por definição:

DRA=SA,max/SA,min

em que SA,max corresponde ao sinal máximo e SA,min ao sinal mínimo da gama de linearidade.

A sensibilidade de um método de análise relaciona-se directamente com a possibilidade de

distinguir duas concentrações de analito muito próximas. Os factores que limitam a sensibilidade

de um método são o declive da recta de calibração e a precisão fotométrica. Para medidas

efectuadas no mesmo espectrofotómetro, com igual precisão fotométrica, um declive maior da

recta de calibração corresponderá ao método de maior sensibilidade.

O limite de detecção (LD) de um método é a quantidade (concentração, peso...) mínima do

analito que se pode detectar com um determinado grau de confiança. Este limite depende da

razão da intensidade do sinal do analito em relação às flutuações da medida do branco. Isto

significa que, a menos que o sinal do analito seja 3 vezes superior às variações aleatórias do sinal

do branco (Sb), uma detecção correcta do sinal do analito não é possível. O sinal mínimo

detectável (SLD) pode ser calculado do seguinte modo:

SLD = Sb + 3 sb

onde Sb é o sinal médio do branco para um dado número de medidas (entre 20 e 30), e sb o

desvio padrão dessas medidas.

A quantidade correspondente ao limite de detecção (LD), é depois calculada recorrendo à

curva de calibração estipulada para a metodologia nas mesmas condições experimentais, que se

assume constante para baixas concentrações.

Page 40: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

40

O limite de quantificação (LQ) ou limite de determinação pode ser obtido considerando que

este deve ser igual a 10 vezes o desvio padrão da medida quando a concentração é zero. Deste

modo, para estimar o seu valor, procede-se como anteriormente descrito para o limite de

detecção, mas considerando um factor multiplicativo de 10 para calcular o seu valor:

SLQ = Sb + 10 sb

A concentração mínima determinável (limite de quantificação) é depois calculada por

interpolação na curva de calibração que se assume constante para baixas concentrações.

2. Procedimento experimental

2.1. Material, reagentes e equipamento

- 1 balão volumétrico de 250 mL - 1 balão volumétrico de 100 mL - 10 balões volumétricos de 50 mL - 7 pipetas volumétricas de 25 mL - 2 pipetas volumétricas de 20 mL - 2 pipetas volumétricas de 10 mL - 1 pipeta volumétrica de 2 mL - 2 cuvetes plástico - 1 goblé de 250 mL para desperdício - espectrofotómetro - solução padrão aquosa de permanganato de potássio (KMnO4) 0,0500 M

2.2. Execução prática

A partir da solução padrão aquosa de permanganato de potássio (KMnO4) 0,0500 M

prepare, por diluição com água desionizada, 250,0 mL de uma solução padrão intermédia com

uma concentração de 5,00x10-3 M.

Usando a solução intermédia, prepare 100,0 mL de uma solução aquosa de

permanganato com uma concentração de 1,00x10-4 M.

Usando 2 células de plástico (uma para o branco e outra para a solução de

permanganato), efectue o traçado do espectro (entre 400 e 700 nm) seguindo as instruções

fornecidas pelo professor.

As células que vão ser utilizadas nas medições espectrofótometricas para este trabalho

são de plástico, sendo necessários alguns cuidados especiais na sua utilização:

- ao manusear a célula nunca deve colocar dedadas nas paredes transparentes

da célula;

- a célula deve ser cheia até cerca de ¾, depois de a lavar duas a três vezes,

com uma pequena quantidade de solução a analisar;

Page 41: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

41

- antes das medições deve limpar as paredes com um papel macio para retirar

solução que esteja na zona exterior da célula mas sem riscar a mesma;

- a célula deve ser colocada dentro do espectrofotómetro de modo a que a

radiação atravesse as paredes transparentes; no caso do espectrofotómetro

de feixe duplo deve ser colocada no respectivo porta-amostras uma célula

equivalente contendo apenas o branco, ou seja o solvente.

Determinação das características de desempenho da metodologia analítica

Para balões de 50 mL prepare por diluições sucessivas soluções de KMnO4 de

concentrações iguais a: 1,00x10-2, 5,00x10-3, 1,0x10-3, 5,00x10-4, 2,00x10-4, 1,00x10-4, 5x10-5,

2x10-5, 1x10-5 e 5x10-6 M.

Notas: - diluições sucessivas quer dizer que a 1ª solução a preparar é obtida por diluição da

solução de KMnO4 0,050 M (i.e. solução mãe fornecida); a 2ª solução é obtida por de

diluição da 1ª solução que preparou, a 3ª solução a partir da 2ª e assim,

sucessivamente

- na preparação destas soluções deve ter em conta que as diluições têm de ser feitas de

modo rigoroso (deverá utilizar as pipetas volumétricas disponíveis na sua banca de

trabalho) e que tem de aferir convenientemente os balões com água desionizada

Com as condições do espectrofotómetro optimizadas para o máximo de

absorvância da espécie a analisar (determinado anteriormente aquando do traçado do

espectro), leia as absorvâncias das soluções padrão da mais diluída (ou seja do branco) para a

mais concentrada. Deste modo evita a lavagem da célula.

No final, coloque novamente o branco no suporte do espectrofotómetro (não se esqueça

de lavar convenientemente a célula) e efectue um mínimo de 20 leituras de absorvância do

branco com intervalos de 10 segundos.

Por último, efectue 10 leituras de absorvância (também em intervalos de 10 segundos)

para as soluções de permanganato com concentrações de 5,00x10-4 e de 5,00x10-5 M, que

preparou.

Page 42: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

42

Trabalho nº9 – Determinação espectrofotométrica do teor de ferro em comprimidos

1. Introdução

Neste procedimento, o ferro existente no comprimido é dissolvido em ácido, reduzido a

Fe2+ com hidroquinona, e complexado com 1,10-fenantrolina para formar um complexo

fortemente corado cuja absorvância é lida a 508 nm.

2. Procedimento experimental

2.1. Material, reagentes e equipamento

- 1 goblé de 100 mL e vidro de relógio a servir de tampa - 2 goblés de 50 mL - 15 balões volumétricos de 100 mL - 3 goblés de 25 mL - 1 proveta de 25 mL - 1 pipeta volumétrica de 5 mL - 2 pipetas volumétricas de 10 mL - 1 pipeta graduada de 2 mL - 2 pipetas graduadas de 5 mL - funil e papel de filtro - 1 bureta - placa de aquecimento - solução aquosa hidroquinona (10 g dm-3; preparada de fresco e armazenada em frasco

escuro) - solução aquosa de citrato de trisódio (25 g dm-3) - solução de 1,10-fenantrolina (dissolver 2,5 g em 100 mL de etanol e adicionar 900 mL

de água; armazenar em frasco escuro) - comprimidos com ferro - solução padrão de ferro - solução de HCl 6 M

Hidroquinona Quinona

1,10-Fenantrolina Tris (1,10-fenantrolina) ferro (II)

Page 43: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

43

2.2. Execução prática

a) Pré-tratamento da amostra - Coloque 1 comprimido ou suspensão do material a analisar num goblé de 100 mL.

- Adicione 25 mL de HCl 6 M, tape com um vidro de relógio, e aqueça quase à

ebulição, sem deixar ferver (na hotte), durante 15 min.

- Filtre, directamente para um balão volumétrico de 100 mL, transferindo

quantitativamente o conteúdo do goblé para o matrás por lavagem sucessivas com

pequenas porções de água.

- Deixe a solução arrefecer, complete o balão até à marca e agite a solução.

- Dilua 5,00 mL desta solução num balão volumétrico de 100 mL (se o comprimido

contiver a indicação de ter uma quantidade de Fe < 15 mg, use um volume de 10,00

mL em vez de 5,00 mL).

b) Preparação das soluções padrão

- Prepare uma bureta com a solução padrão de ferro.

- Meça 10,00 mL da solução padrão de ferro (contida na bureta) para um balão

volumétrico de 100 mL. Adicione 3 mL da solução de citrato para o ajuste de pH a

3,5. Junte 2 mL de solução de hidroquinona (agente redutor) e 3 mL de solução de

1,10–fenantrolina, dilua até à marca e agite convenientemente para homogeneizar a

solução.

- Em seguida, prepare mais 7 soluções padrão de trabalho de ferro. Para isso, meça

para diferentes balões volumétricos de 100 mL os seguintes volumes de solução

padrão de ferro: 8.00, 6.00, 5.00, 4.00, 3.00, 2.00 e 1.00 mL. A cada um dos balões

adicione 3 mL solução de citrato de sódio. Por fim, junte 2 mL de solução de

hidroquinona, 3 mL de solução de 1,10–fenantrolina, dilua até à marca e

homogeneize a solução.

- Prepare também uma solução de referência (branco) que não contenha Fe mas

possua a mesma quantidade de hidroquinona e 1,10–fenantrolina que os outros

padrões (se usar um balão volumétrico de 100 mL, 2 e 3 mL, respectivamente).

- Espere pelo menos 15 minutos e depois meça absorvância de cada solução a 508

nm.

Nota: O complexo Tris (1,10-fenantrolina) ferro (II) formado é estável por um

alargado período de tempo. Assim, deverá preparar todas as soluções - quer de

padrões quer da amostra (ver parágrafo seguinte) - aguardar pelo menos os 15

minutos e ler as absorvâncias de cada uma delas na mesma altura.

Page 44: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

44

c) Preparação da amostra para análise - Transfira 5,00 mL da solução de suplemento vitamínico para três balões

volumétricos de 100 mL e adicione a cada um deles 4 mL de solução de citrato.

Junte 2 mL de solução de hidroquinona, 3 mL de solução de 1,10–fenantrolina, dilua

até à marca e agite convenientemente.

- Espere pelo menos 15 minutos e depois meça absorvância de cada solução a 508

nm.

Page 45: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

45

Trabalho nº10 – Determinação espectrofotométrica de fósforo inorgânico numa amostra de soro sanguíneo

1. Introdução

O anião fosfato é o principal anião existente no sangue, sendo um elemento de

importância nutricional necessário em quantidade superior a 100 mg/dia . No corpo humano,

grande parte está presente nos ossos, na forma de fosfato de cálcio, conferindo-lhes a sua

rigidez. Além disso, encontra-se em todos as células do corpo, constituindo um importante

sistema tampão intracelular. A sua presença é também indispensável para a produção de

compostos de elevada energia (ex. ATP), núcleo-proteínas, ácidos nucleicos, fosfolipídeos e

algumas proteínas. Assim, um dos testes clínicos efectuados numa análise de sangue é a

determinação do teor de fósforo inorgânico no soro sanguíneo. O intervalo normal de fósforo no

soro é de cerca de 30-45 mg/L para os adultos e 45-65 mg/L para as crianças. Um aumento

destes níveis pode ser indicação de hipoparatiroidismo, doença de Addison ou nefrite crónica

enquanto que uma diminuição poderá ter como origem hiperparatiroidismo ou diabetes melito.

Neste trabalho, o fósforo inorgânico presente numa amostra de soro sanguíneo reage

com o molibdato [Mo(VI)] de amónio para formar fosfomolibdato de amónio. Este composto é

depois reduzido com um agente redutor de força média para produzir “azul de molibdénio”, que

confere à solução uma cor azul susceptível de determinação colorimétrica.

As equações que traduzem as reacções são:

7 PO43- + 12 (NH4)6Mo7O24 7 (NH4)3PO4·12MoO3 + 51 NH4+ + 72 OH- (NH4)3PO4·12MoO3 + agente redutor- espécie Mo(V) (azul)

1. Procedimento experimental

2.1. Material e reagentes

- 1 balão volumétrico de 100 mL

- 9 balões volumétricos de 25 mL

- 1 pipeta volumétrica de 1 mL

- 1 pipeta volumétrica de 2 mL

- 1 pipeta volumétrica de 4 mL

- 1 pipeta volumétrica de 6 mL

- 1 pipeta volumétrica de 8 mL

- 1 pipeta volumétrica de 10 mL

- 12 tubos de ensaio (15x150 mm) e respectivo suporte

- micropipeta de 1000 µL

azul de molibdénio

Page 46: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

46

- 1 goblé de 250 mL para desperdícios

- vortex

- espectrofotómetro e cuvete

- amostra de plasma ou soro humano

- solução de ácido tricloroacético a 5% (m/v)solução redutora de ácido

aminonaftosulfónico

- solução padrão de fósforo

- solução de molibdato de amónio

2.2. Execução prática

Para um balão volumétrico de 100 mL, pipete 1,00 mL da solução mãe de fósforo e

perfaça o volume do balão com ácido tricloroacético (TCA) 5%.

Atenção: O ácido tricloroacético é extremamente corrosivo. Evite o contacto com a pele.

Nunca deve ser pipetado com a boca.

Transfira 2,00 mL de amostra de soro para 7 balões volumétricos de 25 mL. Para 6

desses balões pipete 1,00, 2,00, 4,00, 6,00, 8,00 e 10,00 mL, respectivamente, da uma solução

padrão de fósforo que acabou de preparar. Em seguida dilua todos os balões com TCA 5%.

Transfira 5,00 mL de cada balão para tubos de ensaio diferentes. Para um outro tubo de

ensaio pipete 5,00 mL de TCA 5% (branco).

Adicione aos 8 tubos de ensaio, 1,00 mL de reagente de molibdato e misture. Finalmente

adicionar 400 µL de reagente ácido aminonaftosulfónico e agite convenientemente (use o

vortex).

Aguarde pelo menos 10 minutos e meça a absorvância de cada solução a 690 nm.

Page 47: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

47

ANEXOS

Page 48: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

48

T1 - PREPARAÇÃO DE UMA SOLUÇÃO DE ÁCIDO CLORÍDRICO (HCl) E PADRONIZAÇÃO

COM TETRABORATO DE SÓDIO (BÓRAX) – Grupos 1 a 4

Ficha para registo de resultados, observações e cálculos

Data de realização do trabalho: Horário da aula: Grupo nº

Nomes: Nº de inscrição:

Qual o objectivo deste trabalho e qual o princípio (ou princípios) em que assenta a análise efectuada ? Apresentação de resultados:

Solução de HCl (solução titulante)

Ensaio nº Massa de bórax (g) Volume inicial (cm3) Volume final (cm3) Volume gasto (∆V, cm3) 1

2

3

4

5

Cálculos para verificar a concordância dos resultados:

Page 49: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

49

Calcule, para cada ensaio, a molaridade da solução de HCl.

Resultado final (média aritmética de pelo menos 2 ensaios concordantes).

ESCREVA NO RÓTULO A CONCENTRAÇÃO RIGOROSA DA SOLUÇÃO.

Page 50: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

50

T1 - PREPARAÇÃO DE UMA SOLUÇÃO DE HIDRÓXIDO DE SÓDIO (NaOH) E

PADRONIZAÇÃO COM HIDROGENOFTALATO DE POTÁSSIO (KHP) – Grupos 5 a 8

Ficha para registo de resultados, observações e cálculos

Data de realização do trabalho: Horário da aula: Grupo nº

Nomes: Nº de inscrição:

Qual o objectivo deste trabalho e qual o princípio (ou princípios) em que assenta a análise efectuada ? Apresentação de resultados:

Solução de NaOH (solução titulante) Ensaio nº Massa de KHP (g) Volume inicial (cm3) Volume final (cm3) Volume gasto (∆V, cm3)

1

2

3

4

5

Calcule, para cada ensaio, a molaridade da solução de NaOH.

Page 51: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

51

Cálculo da concentração de NaOH (mol/L) da solução preparada (média aritmética de pelo menos 2 ensaios concordantes). ESCREVA NO RÓTULO A CONCENTRAÇÃO RIGOROSA DA SOLUÇÃO.

Page 52: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

52

T2 - DETERMINAÇÃO DA PUREZA DE UMA AMOSTRA DE ÁCIDO ACETILSALICÍLICO

Ficha para registo de resultados, observações e cálculos

Data de realização do trabalho: Horário da aula: Grupo nº

Nomes: Nº de inscrição:

Dados: [HCl]padrão = [NaOH]padrão = MM [AAS] = 180,16 g/mol Apresentação de resultados:

Solução de HCl (solução titulante) Ensaio nº Volume inicial (cm3) Volume final (cm3) Volume gasto (∆V, cm3)

AAS

1

2

3

4

NaoH

1

2

3

4

Confirmação da concentração da solução de hidróxido de sódio

Page 53: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

53

Cálculo do número de moles iniciais de hidróxido de sódio Cálculo do número de moles de hidróxido de sódio que não reagiu com o ácido acetilsalicílico (em cada ensaio) Cálculo do número de moles de ácido acetilsalicílico (em cada ensaio) Cálculo da quantidade de ácido acetilsalicílico presente em cada um dos comprimidos Cálculo da pureza média dos comprimidos (em % m/m)

Page 54: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

54

T3 - DETERMINAÇÃO DE CLORETOS NUMA AMOSTRA DE ÁGUA POTÁVEL PELOS

MÉTODOS DE CHARPENTIER-VOLHARD E DE FAJANS

Ficha para registo de resultados, observações e cálculos

Data de realização do trabalho: Horário da aula: Grupo nº

Nomes: Nº de inscrição:

Dados: [AgNO3]padrão = [KSCN]padrão = Diluição da amostra (se efectuada): Qual o objectivo deste trabalho e qual o princípio (ou princípios) em que assenta a análise efectuada ? Apresentação de resultados:

Método de Charpentier-Volhard Solução de KSCN (solução titulante)

Ensaio nº Volume de amostra (cm3) Volume inicial (cm3) Volume final (cm3) Volume gasto (∆V, cm3) 1

2

3

4

Verificação da concordância dos resultados: | (20,00 - ∆V) 1ºensaio - (20,00 - ∆V) 2ºensaio | ≤ 0,10 mL, em que ∆V é

o volume gasto em cada ensaio.

Page 55: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

55

Calcule, para cada ensaio, a concentração em cloreto:

Resultado final (média aritmética de pelo menos 2 ensaios concordantes).

Método de Fajans

Solução de AgNO3 (solução titulante) Ensaio nº Volume de amostra (cm3) Volume inicial (cm3) Volume final (cm3) Volume gasto (∆V, cm3)

1

2

3

4

Verificação da concordância dos resultados: | ∆V 1ºensaio - ∆V 2ºensaio | ≤ 0,10 mL, em que ∆V é o volume de

solução de nitrato de prata gasto em cada ensaio.

Page 56: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

56

Calcule, para cada ensaio, a concentração em cloreto.

Resultado final (média aritmética de pelo menos 2 ensaios concordantes).

Page 57: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

57

Apresente os cálculos efectuados para estabelecer a concordância dos resultados

obtidos pelas metodologias utilizadas (Charpentier-Volhard e Fajans).

Comente as limitações e vantagens de cada um dos 2 métodos utilizados.

Calcule a concentração da solução amostra em anião cloreto (expressa em mg/L).

Page 58: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

58

T4 - DETERMINAÇÃO DO MAGNÉSIO EM FORMULAÇÕES FARMACÊUTICAS POR

QUELATOMETRIA E DETERMINAÇÃO DE CÁLCIO POR TITULAÇÃO DE SUBSTITUIÇÃO

Ficha para registo de resultados, observações e cálculos

Data de realização do trabalho: Horário da aula: Grupo nº

Nomes: Nº de inscrição:

1ª Parte - Determinação do magnésio em formulações farmacêuticas por quelatometria Dados: [Na2EDTA]padrão = MM(Mg2+) = 24,305 g/mol Concentração de magnésio na formulação farmacêutica (informação indicada pelo fabricante): Qual o objectivo deste trabalho e qual o princípio (ou princípios) em que assenta a análise efectuada ? Apresentação de resultados:

Solução de Na2EDTA (solução titulante) Ensaio nº Volume inicial (cm3) Volume final (cm3) Volume gasto (∆V, cm3)

1

2

3

4

Verificação da concordância dos resultados: | ∆V 1ºensaio - ∆V 2ºensaio | ≤ 0,10 mL, em que ∆V é o volume de

solução de EDTA gasto em cada ensaio

Page 59: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

59

Cálculo da concentração de Mg2+ na solução (mol/L) Cálculo da quantidade de Mg2+ (mg) na formulação farmacêutica Comparação da quantidade de Mg2+ no farmáco com eventuais indicações do laboratório fabricante

Page 60: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

60

2ª Parte - Determinação de cálcio por titulação de substituição Dados: [Na2EDTA]padrão = MM(Ca2+) = 40,08 g/mol Concentração de cálcio na formulação farmacêutica (informação indicada pelo fabricante): Qual o objectivo deste trabalho e qual o princípio (ou princípios) em que assenta a análise efectuada ? Apresentação de resultados:

Solução de Na2EDTA (solução titulante) Ensaio nº Volume inicial (cm3) Volume final (cm3) Volume gasto (∆V, cm3)

1

2

3

4

Verificação da concordância dos resultados: | ∆V 1ºensaio - ∆V 2ºensaio | ≤ 0,10 mL, em que ∆V é o volume gasto

em cada ensaio.

Cálculo da concentração de cálcio na solução analisada (mol/L e mg/L) Comparação da quantidade de Ca2+ no farmáco com eventuais indicações do laboratório fabricante

Page 61: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

61

T5 – PREPARAÇÃO E PADRONIZAÇÃO DE SOLUÇÕES PADRÃO DE IODATO DE

POTÁSSIO (KIO3) E TIOSSULFATO DE SÓDIO (Na2S2O3)

Ficha para registo de resultados, observações e cálculos

Data de realização do trabalho: Horário da aula: Grupo nº

Nomes: Nº de inscrição:

Dados: MM [KIO3] = 214,00 g/mol

1ª Parte - Preparação de soluções padrão de iodato de potássio (KIO3) Massa de iodato de potássio pesada (g): Concentração molar da solução de iodato de potássio (mol L-1):

2ª Parte - Preparação de uma solução de tiossulfato de sódio (Na2S2O3) e padronização com iodato de potássio (KIO3)

Apresentação de resultados:

Solução de tiossulfato de sódio (Na2S2O3) - solução titulante Ensaio nº Massa de KIO3 (g) Volume inicial (cm3) Volume final (cm3) Volume gasto (∆V, cm3)

1

2

3

4

Page 62: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

62

Calcule, para cada ensaio, a concentração da solução de Na2S2O3 (mol/L) preparada

Cálculo da concentração de Na2S2O3 (mol/L) da solução preparada (média aritmética de pelo menos 2 ensaios concordantes).

Page 63: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

63

T6 - QUANTIFICAÇÃO DA VITAMINA C NUM SUPLEMENTO

Ficha para registo de resultados, observações e cálculos

Data de realização do trabalho: Horário da aula: Grupo nº

Nomes: Nº de inscrição:

Dados: [KIO3] padrão = [Na2S2O3]padrão = Concentração da vitamina C no comprimido (informação indicada pelo fabricante): Massa comprimido analisado (g): Ácido ascórbico (C6H8O6): MM = 176,13 g/mol Qual o objectivo deste trabalho e qual o princípio (ou princípios) em que assenta a análise efectuada ? Apresentação de resultados:

Solução de tiossulfato de sódio (Na2S2O3) - solução titulante

Ensaio nº Volume inicial (cm3) Volume final (cm3) Volume gasto (∆V, cm3) 1

2

3

4

Verificação da concordância dos resultados: : | ∆V 1ºensaio - ∆V 2ºensaio | ≤ 0,10 mL, em que ∆V é o volume de

solução de tiossulfato de sódio gasto em cada ensaio.

Calcule do número de moles iniciais de iodato de potássio (KIO3)

Page 64: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

64

Calcule do número de anião triiodeto formado (I3-) Calcule o número de moles de anião triiodeto que não reagiu com o ácido ascórbico (nº mol I3- em excesso)

Calcule o número de moles de ácido ascórbico

Massa de ácido ascórbico por comprimido

Comparação da quantidade de ácido ascórbico no farmáco com as indicações do laboratório fabricante

Page 65: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

65

T7 - DETERMINAÇÃO DE PERÓXIDO DE HIDROGÉNIO NUMA ÁGUA OXIGENADA (H2O2)

COMERCIAL. DETERMINAÇÃO DA PERCENTAGEM DE HIPOCLORITO DE SÓDIO NUMA

LÍXIVIA COMERCIAL.

Ficha para registo de resultados, observações e cálculos

Data de realização do trabalho: Horário da aula: Grupo nº

Nomes: Nº de inscrição:

1ª Parte - Determinação de peróxido de hidrogénio numa água oxigenada (H2O2) comercial Concentração em peróxido de hidrogénio (informação do fabricante): Volume de amostra: Diluição da amostra (se efectuada): [KMnO4]padrão =

Apresentação de resultados:

Solução de permanganato de potássio (KMnO4) - solução titulante

Ensaio nº Volume inicial (cm3) Volume final (cm3) Volume gasto (∆V, cm3) 1

2

3

4

Verificação da concordância dos resultados: | ∆V 1ºensaio - ∆V 2ºensaio | ≤ 0,10 mL, em que ∆V é o volume de

solução de permanganato de potássio gasto em cada ensaio.

Page 66: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

66

Cálculo da concentração molar de peróxido de hidrogénio da amostra

Cálculo da concentração da amostra em volumes

Comparação da concentração obtida com indicações do laboratório fabricante

Page 67: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

67

2ª Parte – Determinação da percentagem de hipoclorito de sódio numa lixívia comercial Concentração em hipoclorito de sódio (informação do fabricante): Volume de amostra:. Diluição da amostra (se efectuada): [Na2S2O3]padrão = MM (NaOCl) = 74,44 g/mol Apresentação de resultados:

Solução de tiossulfato de sódio (Na2S2O3) - solução titulante Ensaio nº Volume inicial (cm3) Volume final (cm3) Volume gasto (∆V, cm3)

1

2

3

4

Verificação da concordância dos resultados: | ∆V 1ºensaio - ∆V 2ºensaio | ≤ 0, 10 mL, em que ∆V é o volume de

solução de tiossulfato de sódio gasto em cada ensaio.

Page 68: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

68

Cálculo da concentração molar de hipoclorito de sódio da amostra.

Cálculo da concentração de hipoclorito de sódio em percentagem

Comparação da concentração obtida com indicações do fabricante

Page 69: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

69

T8 - DETERMINAÇÃO DE ALGUNS PARÂMETROS CARACTERÍSTICOS DE UM

PROCEDIMENTO ANALÍTICO

Ficha para registo de resultados, observações e cálculos

Data de realização do trabalho: Horário da aula: Grupo nº

Nomes: Nº de inscrição:

Apresentação de resultados: a) Traçado do espectro electrónico

Comprimento de onda (nm) Absorvância Comprimento de onda (nm) Absorvância

λmáximo =

Page 70: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

70

b) Traçado da curva de calibração

Conc. KMnO4 (mol L-1) Absorvância

c) Leituras do Branco

Leitura nº Absorvância Leitura nº Absorvância

1 11

2 12

3 13

4 14

5 15

6 16

7 17

8 18

9 19

10 20

Page 71: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

71

d) Ensaios de precisão

KMnO4 5,00x10-4 M KMnO4 5,00x10-5 M Leitura nº Absorvância Leitura nº Absorvância

1 11

2 12

3 13

4 14

5 15

6 16

7 17

8 18

9 19

10 20

Page 72: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

72

T8 - DETERMINAÇÃO DE ALGUNS PARÂMETROS CARACTERÍSTICOS DE UM

PROCEDIMENTO ANALÍTICO (continuação)

Ficha para registo de resultados, observações e cálculos

Data de realização do trabalho: Horário da aula: Grupo nº

Nomes: Nº de inscrição:

No tratamento de resultados e discussão deve efectuar todos os cálculos e discutir todos os tópicos que achar conveniente. Contudo, deve efectuar os cálculos e responder obrigatoriamente às alíneas seguintes:

(a) Qual é o intervalo de linearidade do método, a equação resultante de ajuste dos pontos experimentais

e o valor da absortividade molar média (ε na lei de Beer)?

(b) Quais são os limites de detecção e de quantificação? (c) Qual a sensibilidade do método e a precisão para os 2 valores de concentração testados?

Page 73: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

73

T9 - DETERMINAÇÃO ESPECTROFOTOMÉTRICA DO TEOR DE FERRO EM COMPRIMIDOS

Ficha para registo de resultados, observações e cálculos

Data de realização do trabalho: Horário da aula: Grupo nº

Nomes: Nº de inscrição:

Dados: Concentração de ferro no comprimido (informação indicada pelo fabricante): Massa comprimido analisado (g): Apresentação de resultados:

Conc. Fe (mg L-1) Absorvância

Determine a equação resultante do ajuste dos pontos experimentais do sinal obtido (absorvância) em função da concentração em ferro.

Page 74: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

74

Determine a absortividade molar média (ε na lei de Beer) do complexo [Fe(1,10-fenantrolina)32+]. Determine, para cada ensaio, por interpolação gráfica na equação de ajuste, a concentração em ferro presente na amostra em miligramas por litro.

Com os valores de concentração obtidos, calcule a média (x), desvio padrão (s) e desvio padrão relativo (DPR). Compare os resultados obtidos com os valores esperados.

Page 75: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

75

T10 – DETERMINAÇÃO ESPECTROFOTOMÉTRICA DE FÓSFORO INORGÂNICO NUMA

AMOSTRA DE SORO SANGUÍNEO

Ficha para registo de resultados, observações e cálculos

Data de realização do trabalho: Horário da aula: Grupo nº

Nomes: Nº de inscrição:

Volume de amostra: Diluição da amostra (se efectuada): Conc. solução padrão de fósforo =

Apresentação de resultados:

Solução nº Conc. Fósforoadicionada (mol L-1) Absorvância 1

2

3

4

5

6

7

8

Determine a concentração em fósforo adicionada a cada uma das soluções em que foram realizadas as medidas de absorvância. Introduza os valores obtidos no quadro acima apresentado Determine a equação resultante do ajuste dos pontos experimentais do sinal obtido (absorvância) em função da concentração de fósforo (mg/L).

Page 76: UNIVERSIDADE FERNANDO PESSOAhomepage.ufp.pt/pedros/qaII/Protocolos_(2009-2010)_acesso_cortado.pdf · Para prevenir o risco de acidentes deve adoptar-se algumas regras de conduta:

76

Determine, por interpolação gráfica na equação de ajuste, a concentração em fósforo presente na amostra em mg por litro.

Diga, resumidamente, no que consiste o método de adição padrão e em que situações deve ser aplicado referindo-se às suas vantagens.