thieza graziella araujo da silva goes de melo · 2 thieza graziella araujo da silva goes de melo...

95
1 THIEZA GRAZIELLA ARAUJO DA SILVA GOES DE MELO ANTIDEPRESSIVOS MODIFICAM A EXTINÇÃO DE UMA MEMÓRIA AVERSIVA EM RATAS Dissertação apresentada à Universidade Federal do Rio Grande do Norte, para obtenção do título de Mestre em Psicobiologia. Natal 2011

Upload: others

Post on 29-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

1

THIEZA GRAZIELLA ARAUJO DA SILVA GOES DE MELO

ANTIDEPRESSIVOS MODIFICAM A EXTINÇÃO DE UMA MEMÓRIA

AVERSIVA EM RATAS

Dissertação apresentada à

Universidade Federal do Rio Grande

do Norte, para obtenção do título de

Mestre em Psicobiologia.

Natal

2011

2

THIEZA GRAZIELLA ARAUJO DA SILVA GOES DE MELO

ANTIDEPRESSIVOS MODIFICAM A EXTINÇÃO DE UMA MEMÓRIA

AVERSIVA EM RATAS

Dissertação apresentada à

Universidade Federal do Rio Grande do

Norte, para obtenção do título de

Mestre em Psicobiologia.

Orientadora: Profª. Drª. Regina Helena da Silva

Co-Orientador: MSc PhD Geison de Souza

Izídio

Natal

2011

3

Título: ANTIDEPRESSIVOS MODIFICAM A EXTINÇÃO DE UMA MEMÓRIA

AVERSIVA EM RATAS

Autor: Thieza Graziella Araújo da Silva Góes de Melo

Data da defesa: 16/05/2011

Banca Examinadora:

___________________________________

Profª. Drª. Flávia Teixeira da Silva

Universidade Federal de Sergipe, SE

___________________________________

Profª. Drª. Elaine Cristina Gavioli

Universidade Federal do Rio Grande do Norte, RN

___________________________________

Profª. Drª. Regina Helena da Silva

Universidade Federal do Rio Grande do Norte, RN

4

AGRADECIMENTOS

À minha família e amigos, pela compreensão. Especialmente minha mãe, por

estar sempre presente e ter sempre me dado o melhor exemplo a ser seguido. As

minhas conquistas são tão minhas quanto dela e, algumas vezes, talvez até mais

dela que minhas. Ao meu noivo, Tiago, também sempre presente, inclusive nos

finais de semana, em experimento, me dando suporte. Ao meu padrasto, Pai-Tio

Guilherme que tem, com toda certeza, ―direito‖ a pelo menos 1 cm² do certificado. À

minha avó, meu exemplo de vida, e que me mostrou que tudo pode ser feito com

paciência, boa vontade e um pouquinho de ousadia.

À professora Regina que me acompanha desde a iniciação científica, dando

suporte acadêmico/científico e que verdadeiramente me ensinou a fazer ciência,

mesmo sob as circunstâncias mais adversas.

Ao LEME, no corpo de seus ICs, mestrandos, doutorandos, pós-docs e

professores pela ajuda durante os experimentos e dos quais recebi não menos que

amizade. Dentro do LEME agradeço especialmente às duas pessoas que

participaram mais diretamente nos experimentos e revisões, Luane e Geison.

Aos dois psiquiatras que me forneceram suporte técnico e informações

clínicas Drª Nádira Hazboun e Drº Francisco Márcio Pinheiro.

À UFRN, CAPES, CNPq, FAPERN e PPG em Psicobiologia pelo apoio

financeiro e estrutural.

A todos os professores e colegas do programa de pós-graduação em

Psicobiologia.

Por fim, mas tão importante quanto, agradeço a todos os que não citei, mas

sem os quais eu não poderia ter realizado esse trabalho.

5

Resumo

Os tratamentos de depressão, transtorno de estresse pós-traumático e outras psicopatologias que se utilizam de antidepressivos podem estar associados à melhora de déficits cognitivos relacionados a esses transtornos. Embora os mecanismos pelos quais a melhora nos déficits cognitivos ocorre não estejam totalmente esclarecidos, alterações na extinção de memórias aversivas podem estar presentes nestas psicopatologias. Além disso, pesquisas com animais de laboratório geralmente são realizadas com indivíduos do sexo masculino, e recentemente verificamos que a extinção de uma tarefa aversiva é diminuída em ratas quando comparada ao desempenho de ratos. No presente estudo, ratas Wistar foram tratadas prolongadamente com antidepressivos utilizados na clínica (nortriptilina, fluoxetina ou mirtazapina) e testadas na esquiva discriminativa em labirinto em cruz elevado e no teste do nado forçado, a fim de avaliar a aprendizagem, a memória, a extinção, a ansiedade e comportamentos relacionados à depressão. A exploração do braço aversivo na sessão de treino foi semelhante em todos os grupos, mostrando que todos os grupos aprenderam a tarefa, havendo, porém, uma melhora no desempenho dos grupos tratados com nortriptilina e mirtazapina. Na sessão teste todos os animais evocaram a tarefa. O tratamento prolongado com a fluoxetina, mas não com os outros antidepressivos, promoveu uma melhora na extinção da memória aversiva da EDLC. No teste de nado forçado, os animais tratados com fluoxetina e mirtazapina apresentaram diminuição na duração da imobilidade, comparados ao veículo. Em conclusão, os antidepressivos podem interferir no aprendizado, mas não na evocação de memórias aversivas. Além disso, ratas tratadas com fluoxetina apresentam um aumento da extinção da tarefa aversiva, em comparação ao veículo, enquanto os demais tratamentos impediram a extinção dessa tarefa. Além disso, tanto a fluoxetina como a mirtazapina foram eficazes no teste de nado forçado, sugerindo dissociação entre os efeitos antidepressivos e extinção de memórias aversivas. Palavras chaves: fluoxetina, nortriptilina, mirtazapina, ratas, memória aversiva,

depressão, ansiedade.

6

Abstract

Treatment of major depression, posttraumatic stress disorder and other psychopathologies with antidepressants can be associated with improvement of the cognitive deficits related to these disorders. Although the mechanisms of these effects are not completely elucidated, alterations in extinction of aversive memories are believed to be present in these psychopathologies. Moreover, researches with laboratory animals usually focus on male subjects, and we have recently verified that extinction of an aversive task is reduced in female rats when compared to males. In the present study, female rats were long-term treated with clinically used antidepressants (fluoxetine, nortriptyline or mirtazapine) and tested in the plus-maze discriminative avoidance and forced swimming tests in order to evaluate learning, memory, extinction, anxiety and depression-related behaviors. All groups learned the task, but learning was somewhat faster in nortriptyline and mirtazapine-treated animals . Task retrieval was also showed by all experimental groups. Chronic treatment with fluoxetine, but not with the other antidepressants, increased extinction of the discriminative task. In the forced swimming test, animals treated with fluoxetine and mirtazapine showed decreased immobility duration. In conclusion, antidepressants interfere with learning and female rats treated with fluoxetine presented increased extinction of the aversive memory task. On the other hand, both fluoxetine and mirtazapine were effective in the forced swimming test, suggesting dissociation between the antidepressant effects and the extinction of aversive memories. Keywords: discriminative avoidance task, sex differences, forced swimming test,

aversive memory, depression, anxiety.

7

Sumário

I. INTRODUÇÃO ............................................................................................ 8

II. OBJETIVOS .............................................................................................. 20

III. ARTIGO PARA SUBMISSÃO................................................................... 21

IV. CONCLUSÃO E CONSIDERAÇÕES FINAIS........................................... 55

V. REFERÊNCIAS ......................................................................................... 57

8

I. Introdução

O uso de antidepressivos, sozinhos ou em combinação com a psicoterapia, é

largamente difundido. Além da grande indicação para o tratamento de

psicopatologias como transtornos de humor e ansiedade (Marks et al. 1998; Brunello

et al. 2001; Nandam et al. 2007), eles são também indicados como uma opção

alternativa para doenças debilitantes funcionais como, por exemplo, a síndrome da

fadiga crônica, a fibromialgia, enxaquecas ou dores de cabeça crônicas e dores

faciais atípicas (Marks et al. 2008; Mao et al. 2010).

A depressão é uma psicopatologia já devidamente classificada no Manual de

Diagnóstico e Estatística de Doenças Mentais (em inglês Diagnostic and Statistical

Manual of Mental Disorders), com suas últimas modificações na classificação para

diagnóstico em sua quarta edição e no Texto Revisado (2000). Também consta na

Classificação Estatística Internacional de Doenças e Problemas Relacionados (CID-

10) na sessão de transtornos mentais e comportamentais. Estima-se que o

transtorno depressivo acometa aproximadamente 10% da população mundial e é

considerado um dos maiores males da atualidade. A sua incidência também é

destacada incorrendo até duas vezes mais em mulheres que em homens (Fava &

Kendler 2000; Mahendran & Yap 2005; Bekker & van Mens-Verhulst 2007). A

depressão pode se apresentar como um episódio único (episódio depressivo),

caracterizado por ser um período mínimo de duas semanas, durante as quais há um

humor deprimido ou perda de interesse ou prazer por quase todas as atividades. Em

crianças e adolescentes o humor pode ser irritável ao invés de triste. Nesse período

é comum que se apresentem pelo menos quatro sintomas adicionais, extraídos de

uma lista que inclui: alterações no apetite ou peso, no sono e na atividade

9

psicomotora; diminuição da energia; sentimentos de desvalia ou culpa; dificuldades

para pensar, concentrar-se ou tomar decisões, ou pensamentos recorrentes sobre

morte ou ideação suicida; planos ou tentativas de suicídio. Sintomas físicos são

comumente encontrados no episódio depressivo maior: propensão ao choro,

irritabilidade, ruminação obsessiva, ansiedade, fobias, preocupação com a saúde

física e queixas de dores, tanto de cabeça, quanto no corpo (APA 2000; Fava &

Kendler 2000). Alguns indivíduos podem apresentar ataques de pânico que ocorrem

segundo um padrão que satisfaz os critérios para transtorno de pânico. Em crianças

pode ocorrer ansiedade de separação. Alguns indivíduos observam dificuldade nos

relacionamentos íntimos, diminuição das interações sociais satisfatórias ou

dificuldades no funcionamento sexual (APA 2000). A manifestação de episódios

depressivos pode ainda vir como um transtorno depressivo maior, o qual é

caracterizado pela ocorrência de um ou mais episódios depressivos, sem história de

episódios maníacos, mistos ou hipomaníacos.

Usualmente, pacientes diagnosticados com depressão apresentam também

sintomas de ansiedade, com variadas intensidades, tais como: preocupação,

nervosismo, ataques de pânico, sintomas de fobia, transtornos obsessivo-

compulsivos, entre outros (APA 2000). Os pacientes depressivos que possuem

elevados níveis de ansiedade podem apresentar quadros mais severos e

recuperação mais demorada. Além disso, a depressão pode ainda se apresentar

comorbidamente com outros transtornos de ansiedade (Marques 2001; Aragonès et

al. 2009) e transtornos relacionados a substâncias, transtorno de pânico, transtorno

obsessivo-compulsivo, anorexia nervosa, bulimia nervosa e transtorno da

personalidade borderline (APA 2000). Assim, não é surpreendente que se aplique o

10

uso de antidepressivos também ao tratamento de outros transtornos como os da

ansiedade (APA 2000; Marques 2001).

A incidência desses demais transtornos também pode ser relacionada à

comorbidade deles com a depressão. Os transtornos de ansiedade mais comuns em

mulheres, em sua grande maioria (Bekker & van Mens-Verhulst 2007) são os de

maiores índices de comorbidade com a depressão. Dessa forma é imperativa a

necessidade de uma maior atenção à sintomatologia diferenciada apresentada pelos

indivíduos do sexo feminino. Mulheres e crianças podem apresentar mais

comumente o humor irritado (APA 2000) e essa alteração no humor pode ser

sintoma apenas da depressão e não ter nenhuma relação com outros transtornos de

humor ou ansiedade. Paralelamente, a perda de peso pode estar associada mais

facilmente aos transtornos alimentares, que podem ser a causa da depressão (APA

2000; Mischoulon et al. 2010; Modrzejewska 2010).

O tratamento de transtornos do humor é geralmente complexo, prolongado e

adequado a cada indivíduo. Estudos com indivíduos saudáveis sugerem que a

percepção de faces com expressões negativas começam a aparecer após o 7º dia

de tratamento (Harmer et al. 2010), diminuição de perceptção essa, associada aos

efeitos terapêuticos do uso contínuo de antidepressivos. Existem várias classes de

drogas antidepressivas disponíveis na atualidade, com propriedades

farmacodinâmicas distintas. De forma geral, tais fármacos aumentam as

concentrações de monoaminas na fenda sináptica, mas apenas esse aumento,

embora necessário, não é suficiente para explicar a remissão dos sintomas

(Arantes-Gonçalves & Coelho 2006).

As primeiras teorias para explicar as bases fisiológicas da depressão surgiram

em torno da hipótese da redução das concentrações de serotonina (5-HT) e

11

noradrenalina (NA) na fenda sináptica, visto que drogas que depletam as reservas

desses neurotransmissores são indutoras de quadros depressivos (Freis 1954; Guay

2010; Tian et al 2010; Aia et al 2011; Ghia et al 2011), e o mecanismo de ação dos

agentes depressivos mais utilizados envolve aumento da disponibilidade desses

neurotransmissores (Kent 2000). Contudo, uma hipótese mais recente sobre a

fisiopatologia e tratamento da depressão envolve também adaptação e plasticidade

neural. De acordo com essa hipótese, a depressão seria resultado de uma falha na

execução de respostas adaptativas apropriadas ao estresse e a estímulos aversivos,

ou seja, perda da plasticidade sináptica. A isso pode se associar o fato de que a

exposição crônica a situações de estresse induz um quadro semelhante à

depressão, com redução dos níveis hipocampais de fator neurotrófico derivado do

encéfalo (BDNF – do inglês brain-derived neutrophic factor) (Gould et al. 1999; Sen

et al. 2003; Arantes-Gonçalves & Coelho 2006), componente da família das

neurotrofinas, que, entre várias outras moléculas, apresenta um papel

reconhecidamente importante na plasticidade sináptica (Arantes-Gonçalves &

Coelho 2006; Monfils 2007; Kalueff 2007).

Essa plasticidade em adultos também pode ocorrer através da neurogênese

(Gould & Gross 2002), que também é regulada pelos antidepressivos (Santarelli et

al. 2003). Normalmente é restrita ao hipocampo, nas zonas subventricular e

subgranular do giro denteado (Garcia-Vendugo et al. 1998; Santarelli et al. 2003).

Isso corrobora os estudos que mostram hipocampo diminuído em indivíduos

deprimidos (Manji et al. 2002; Nestler & Carlezon Jr. 2006) e atividade aumentada

na amígdala (Drevets 2001). Existe também a evidência de que o estresse impede a

neurogênese e estaria relacionado a essa diminuição hipocampal (Kloet et al. 2005;

Gerritsen et al. 2011).

12

Dentre as várias opções de antidepressivos os mais prescritos são os

inibidores seletivos de recaptação de serotonina (ISRS) tanto para adultos como

para crianças (Dunlop & Davis 2008; Denizot et al. 2009). Introduzidos na clínica no

final da década de 80 (Kent 2000), os ISRS agem bloqueando a ação do

transportador de serotonina. Dessa forma eles impedem a recaptação do

neurotransmissor, o que prolonga a sua exposição ao receptor, (Vázquez-Palacios

2004) e aumentando a atividade do sistema monoaminérgico no cérebro (Tsai et al.

2009). Dentre os antidepressivos dessa classe a fluoxetina é o mais prescrito

(Dunlop & Davis 2008). É importante ressaltar que a serotonina (5-HT) possui

também um papel regulador na divisão celular e um papel crítico no controle da

proliferação das células adultas neurais, fato que explicaria sua eficácia na melhora

dos sintomas depressivos considerando o papel da neurogênese hipocampal na

fisiopatologia da depressão (Santarelli et al. 2003; Paizanis et al. 2007)

Os antidepressivos tricíclicos são uma classe mais antiga de fármacos

utilizados no tratamento da depressão. Eles agem inibindo a recaptação

monoaminérgica não seletivamente. Alguns fármacos mais conhecidos dessa classe

são a amitriptilina, clomipramina, desipramina, imipramina, nortriptilina e a doxepina.

De interesse para o presente estudo, a nortriptilina inibe a recaptação de

noradrenalina e menos potencialmente da serotonina, sendo também agonista do

receptor 5-HT2 (Sanchez & Hyttel 1999; Wing & Shoaib 2007). Além disso, ela age

induzindo uma diminuição na expressão (downregulation) dos receptores β-

adrenérgicos (Morishita & Aoki 2002). Apesar de não ser largamente prescrita, a

nortriptilina continua sendo uma opção para indivíduos não responsivos a outros

antidepressivos e para sujeitos suscetíveis à síndrome de serotonina, um efeito

13

colateral importante decorrente do tratamento com ISRS (Dagtekin et al. 2010; Diaz

& Maroteaux 2011).

Os antidepressivos tetracíclicos são uma nova classe de drogas utilizadas no

tratamento da depressão, também chamados de atípicos, introduzidos depois da

década de 80 (Kent 2000). Dentre estes, o antidepressivo atípico mirtazapina atua

especificamente sobre as transmissões noradrenérgica e serotonérgica

(noradrenergic and serotonergic specific antidepressants, NaSSA, em inglês) e é

usado para tratar transtornos de humor e ansiedade (Gambi et al. 2005; Rauggi et

al. 2005). A mirtazapina aumenta as transmissões noradrenérgica e serotonérgica

central através da inibição dos autoreceptores α2 e heteroreceptores

noradrenérgicos α2 em sinapses serotonérgicas (Bengtsson et al. 2000; Gambi et al.

2005). Além disso, é um agonista do receptor 5-HT1A (Rogóz et al. 2005) e também

age bloqueando receptores, 5-HT2A, 5-HT2C e 5-HT3 e histaminérgicos H1 (Haddjeri

1998; Davis & Wilde 1996; Arnone 2009; de Boer 1995; Rauggi et al. 2005). A

mirtazapina não possui efeitos na recaptação de monoaminas, além de apresentar

baixa afinidade para receptores dopaminérgicos e alguns subtipos de receptores

serotonérgicos.

Apesar dos efeitos clínicos de antidepressivos serem semelhantes entre os

sexos, aspectos farmacocinéticos e farmacodinâmicos de sua ação podem ser

distintos entre os sexos. Uma evidência dessa diferenciação para as respostas aos

antidepressivos é a melhor responsividade do sexo feminino aos ISRS e as altas

taxas de abandono do tratamento com tricíclicos (Dalla et al. 2009), comparando-se

aos homens. Já em modelos animais, alguns estudos mostram não haver diminuição

da imobilidade no nado forçado em fêmeas tratadas com um antidepressivo

14

tricíclico, enquanto machos respondem positivamente ao mesmo tratamento e com a

mesma dose (Barros & Ferigolo 1998).

Assim como em grande parte dos casos de diversos transtornos

psicopatológicos, pacientes com diagnóstico de depressão, não raramente

apresentam prejuízos cognitivos, além de todo quadro afetivo característico (Yaffe

1999; Ravnkilde 2002; Pardo 2006). Dentre esses prejuízos incluem-se alterações

nas funções de memória e aprendizado (Burt 1995; Weiland-Fiedler 2004). Esses

prejuízos cognitivos seriam revertidos através do tratamento com antidepressivos

(Austin et al. 2001; Castaneda et al. 2007) e evidências sugerem que essa melhora

está associada ao aumento de neurogênese (Duman & Monteggia 2006; Dranovsky

& Hen 2006; Nandam et al. 2007; Paizanis et al. 2007; Sahay & Hen 2007; Pittenger

& Duman 2008) e a modificações no sistema monoaminérgico (Lee et al. 2010).

Independente da presença de outros tipos de prejuízos cognitivos,

comumente as psicopatologias estão relacionadas a experiências e memórias

emocionais aversivas (APA 2000; Phelps & LeDoux 2005) e há muito se preconiza

que as vítimas desses transtornos poderiam se beneficiar com a diminuição dos

sintomas através de uma ressignificação da memória aversiva formada (Freud

1914). Sugere-se que a ressignificação dessas memórias ocorreria através de um

processo de extinção, que é dependente de mecanismos plásticos (Gabriele &

Packard, 2006). Extinção seria a formação de uma nova memória relacionada à

anteriormente formada, sem, contudo, substituir a memória anterior, passando a

existir paralelamente (Gabriele & Packard, 2006). Sendo assim, alterações no

processo normal de extinção de memórias aversivas poderiam estar relacionadas

com a fisiopatologia de alguns transtornos neuropsiquiátricos. Enquanto essa

relação já foi bem estudada para o transtorno do estresse pós-traumático (Rauch et

15

al. 2006; Krystal & Neumeister 2009), a participação de processos relacionados à

memória emocional e a fisiopatologia da depressão não está bem estabelecida

(Blaney 1986; Newman & Sweet 1992; Ilsley et al. 1995; Veiel 1997; Fava & Kendler

2000; Ravnkilde 2002). Apesar de prejuízos na memória serem comuns em diversos

transtornos de ansiedade e relatados na depressão, a conexão entre

antidepressivos e memória permanece ainda não completamente elucidada (Austin

et al. 2001). Os resultados dos estudos prévios são bastante controversos, mesmo

em machos. Estudos que avaliam a extinção de memórias aversivas após a

administração de drogas com efeito antidepressivo mostram resultados

contraditórios. Dentre estes estudos, alguns, utilizando machos, verificam os efeitos

do rolipram, uma droga com efeitos ansiolíticos e antidepressivos. Essa droga

diminuiu a extinção em um teste de medo condicionado e em um paradigma de

resposta de sobressalto potencializada pelo medo (Monti et al. 2006; Mueller et al.,

2010). Além disso, este fármaco melhorou o desempenho no labirinto aquático de

Morris, aumentando a distância e o tempo em que os animais nadam no quadrante

no qual previamente havia uma plataforma submersa; e ainda impediu a extinção

relacionada a uma tarefa de esquiva passiva (Cheng et al, 2010). Um outro estudo

foi realizado com um modelo animal para transtorno de estresse pós-traumático,

característico pela ausência de extinção da memória do evento traumático (APA

2000). Nesse estudo, a cicloserina-D (DCS), droga utilizada como auxiliar em

tratamentos antidepressivos, melhorou a extinção em testes de condicionamento de

medo em machos (Yamamoto et al. 2008).

Sabe-se que o mecanismo psicofisiológico de várias doenças (a depressão,

por exemplo) é diferente entre os sexos (Bekker & van Mens-Verhulst 2007; Kim et

al. 2010; Wooley et al. 2010). Em humanos, as mulheres são o gênero mais afetado

16

pelas doenças debilitantes funcionais e em grande parte dos transtornos

psicopatológicos a proporção dos indivíduos atingidos é de duas mulheres para cada

homem (Mahedran & Yap 2005; Bekker & van Mens-Verhulst 2007). Apesar de não

se descartar fatores culturais e sociais, diversas evidências indicam que a principal

origem dessas diferenças está relacionada aos hormônios esteróides gonadais

(Toufexis et al. 2006; Solomon & Herman 2009), que podem ter efeitos nas vias

neuroquímicas (Kelly et al. 1999). Além disso, aspectos do dimorfismo sexual no

funcionamento do sistema nervoso também podem estar relacionados a estas

diferenças (Bruder et al. 2001; Esel et al. 2005; Monteggia et al 2007; Elaković et al.

2011).

Apesar dos estudos sugerirem que diferenças sexuais são importantes, a

maioria dos estudos pré-clínicos utiliza somente machos ao invés de ambos os

sexos (Kim et al. 2010; Zucker & Beery 2010). Alguns estudos que comparam efeitos

entre machos e fêmeas no teste do nado forçado têm mostrado resultados

contraditórios. Dependendo da droga utilizada, machos respondem ao tratamento,

diminuindo o tempo de imobilidade, seguindo o esperado para o modelo, e fêmeas

não (Barros & Ferigolo 1998). Também foi demonstrado que a fase do ciclo pode ser

uma importante característica levando as fêmeas a ter desempenhos diferentes de

acordo com a fase do ciclo estral na qual se encontram (Gouveia Jr. et al 2008).

Deve-se também ressaltar que não apenas condições patológicas podem ser

diferentes entre os sexos, mas também mecanismos de atividades cognitivas

fisiológicas normais como a memória e a ansiedade. Ribeiro et al. (2010), por

exemplo, encontraram diferenças na extinção de uma tarefa de memória aversiva

entre machos e fêmeas, mostrando uma diminuição da extinção em fêmeas, que

17

pode ter relação com a predominância de psicopatologias em seres humanos do

sexo feminino.

No presente estudo, nós utilizamos o modelo utilizado por Ribeiro et al.

(2010): a esquiva discriminativa em labirinto em cruz elevado (EDLC). A EDLC é um

método adequado para estudos concomitantes de memória/aprendizado e

medo/ansiedade em modelos animais. Consiste em um labirinto em cruz elevado

modificado, onde um dos braços fechados possui dois estímulos aversivos (sendo

um sonoro de intensidade equivalente a 80dB e um luminoso de 100W). Os animais

são submetidos a uma sessão de treino, na qual uma vez colocados individualmente

no centro do labirinto por 10 min, poderão explorar os braços, recebendo os

estímulos aversivos cada vez que o animal entrar com as quatro patas no braço

aversivo, até a saída do braço em questão. O tempo de permanência e o total de

entradas nos braços abertos e em cada braço fechado são quantificados. Decorridas

24 horas da sessão de treino é efetuada uma sessão de teste, na qual não se aplica

o estímulo aversivo. Dessa forma, ao longo da sessão pode-se também avaliar a

extinção da tarefa previamente aprendida, uma vez que os animais agora aprendem

que não há mais estímulos aversivos naquela localização. Este modelo foi

inicialmente descrito por Silva (1997) e Silva & Frussa-Filho (2000), que

padronizaram o modelo com machos e averiguaram que, usualmente os três

minutos iniciais são referentes à evocação da memória adquirida e os demais à

extinção.

Da mesma forma em que ocorre no labirinto em cruz elevado convencional, a

exploração dos braços abertos na EDLC reflete os níveis de ansiedade (Pellow et al.

1985; Pellow & File 1986), pois os ratos possuem medo inato de ambientes abertos

e de altura, o que fará com que eles evitem esses braços. De acordo com os níveis

18

de ansiedade a exploração desses braços poderá aumentar ou diminuir.

Considerando que alterações nos níveis de ansiedade podem afetar o perfil

comportamental dos animais em modelos animais de estudo de memória, o modelo

da EDLC apresenta a grande vantagem de permitir a avaliação simultânea destes

dois parâmetros (Calzavara et al. 2004; Silva & Frussa-Filho 2000). A diferenciação

entre os braços fechados (aversivo e não-aversivo) serve como parâmetro para

avaliação de memória e aprendizado. Esse modelo permite ainda a avaliação da

atividade locomotora que pode ser realizada por meio da exploração de todos os

braços e do centro, pelo total de passagens entre os braços (Silva et al. 2002) ou,

ainda, quantificando-se a distância total percorrida (Ribeiro et al., 2010).

Para avaliação do efeito de antidepressivos sobre a memória, o aprendizado,

a ansiedade e a atividade locomotora simultaneamente à depressão é preciso

associar a EDLC a um teste que possa avaliar comportamentos relacionados à

depressão. Dentre estes, o teste do nado forçado (TNF) é um modelo experimental

amplamente utilizado na comunidade científica mundial. O TNF tem sido utilizado

como modelo experimental em estudos sobre depressão, onde a imobilidade do

animal é interpretada como forma de desamparo aprendido, ou seja, o animal não

tenta mais escapar da situação aversiva (Porsolt 1977; 1978). Ou seja,

classicamente neste teste comportamental, antidepressivos causam a diminuição da

imobilidade dos animais no teste (Porsolt 1977). A escalada (climbing) é outra

medida que pode ser avaliada neste modelo comportamental. O tempo de escalada

ainda não está tão bem validada quanto o tempo de imobilidade, mas alguns autores

sugerem que antidepressivos tendem a aumentar este parâmetro comportamental,

como uma tentativa de fuga da situação (neste caso o cilindro com água). De

relevância para o presente trabalho, já foi observada uma diferença na ocorrência da

19

tentativa de fuga de situações aversivas, entre machos e fêmeas (Ribeiro et al.

2010), embora em outro tipo de tarefa comportamental. A diminuição da duração da

imobilidade e o aumento do tempo de escalada podem estar relacionados a uma

melhora dos sintomas tipo depressivos através da transmissão noradrenérgica

(Detke et al. 1995, 1997; Reneric & Lucki 1998; Page et al. 1999; Cryan & Lucki

2000; Lopez-Rubalcava & Lucki 2000; Cryan et al. 2002a; Reneric et al. 2002;

Consoni et al. 2006).

Com base em todas as evidências expostas, neste estudo, ratas foram

tratadas com três tipos diferentes de antidepressivos (fluoxetina, nortriptilina e

mirtazapina) de três classes farmacológicas diferentes (antidepressivos ISRS,

tricíclicos e atípicos) e testadas na EDLC. Até o presente momento, não existem

artigos publicados avaliando a ação de antidepressivos nesse aparato

comportamental. Adicionalmente, as ratas foram testadas no TNF, a fim de avaliar

comportamentos relacionados à depressão após o tratamento prolongado com

antidepressivos.

20

II. Objetivos

Objetivo Geral

O presente estudo propôs-se a averiguar os efeitos de três antidepressivos

provenientes de classes farmacológicas distintas no aprendizado, memória,

extinção, ansiedade/emocionalidade e comportamento de desamparo aprendido em

ratas. Tendo em vista a prevalência dos transtornos relacionados à depressão e

ansiedade em mulheres e a pequena quantidade de pesquisas relacionando os

efeitos desses fármacos em processos cognitivos em indivíduos do sexo feminino, a

nossa proposta pretende contribuir no avanço da compreensão dos efeitos destas

classes de drogas em fêmeas.

Objetivos específicos

(a) Avaliar as diferentes etapas de memória (aquisição, consolidação, evocação e

extinção) em fêmeas tratadas com os antidepressivos na EDLC;

(b) Avaliar os comportamentos relacionados à ansiedade em fêmeas tratadas com

os antidepressivos na EDLC;

(c) Avaliar possíveis efeitos locomotores dos fármacos utilizados;

(d) Avaliar o efeito antidepressivo em ratas das drogas utilizadas nos esquemas de

tratamento e doses específicos aqui utilizados.

21

III. Artigo para submissão

Date of submission:

ANTIDEPRESSANTS FLUOXETINE, NORTRIPTYLINE AND MIRTAZAPINE

MODIFIES THE EXTINCTION OF AN AVERSIVE MEMORY AND THE ANXIETY IN

FEMALE RATS

Thieza G. Melo, Geison S. Izídio, Luane S. Ferreira, Diego S. Silveira, Priscila

T. Macedo, Alícia Cabral, Alessandra M. Ribeiro, Regina H. Silva

Memory Studies Laboratory

Department of Physiology

Universidade Federal do Rio Grande do Norte

59.078-970, Natal, RN, Brazil·.

*Corresponding author: Regina H. Silva

Laboratório de Estudos da Memória

Departamento de Fisiologia - Centro de Biociências

Universidade Federal do Rio Grande do Norte

Av. Salgado Filho, s/n - Caixa Postal 1511 - CEP 59078-970 - Natal, RN, Brazil

fax: (55) 84 3211 9206 e-mail: [email protected]

Progress In Neuropsychopharmacology & Biological Psychiatry (Classificação

Qualis A2, em Fevereiro de 2011)

Keywords: discriminative avoidance task, sex differences, forced swimming

test, aversive memory, depression, anxiety.

22

Abstract

Treatment of major depression, posttraumatic stress disorder and other

psychopathologies with antidepressants can be associated with improvement of the

cognitive deficits related to these disorders. Although the mechanisms of these

effects are not completely elucidated, alterations in extinction of aversive memories

are believed to be present in these psychopathologies. Moreover, researches with

laboratory animals usually focus on male subjects, and we have recently verified that

extinction of an aversive task is reduced in female rats when compared to males. In

the present study, female rats were long-term treated with clinically used

antidepressants (fluoxetine, nortriptyline or mirtazapine) and tested in the plus-maze

discriminative avoidance and forced swimming tests in order to evaluate learning,

memory, extinction, anxiety and depression-related behaviors. All groups learned the

task, but learning was somewhat faster in nortriptyline and mirtazapine-treated

animals. Task retrieval was also showed by all experimental groups. Chronic

treatment with fluoxetine, but not with the other antidepressants, increased extinction

of the discriminative task. In the forced swimming test, animals treated with fluoxetine

and mirtazapine showed decreased immobility duration. In conclusion,

antidepressants interfere with learning and female rats treated with fluoxetine

presented increased extinction of the aversive memory task. On the other hand, both

fluoxetine and mirtazapine were effective in the forced swimming test, suggesting

dissociation between the antidepressant effects and the extinction of aversive

memories.

23

1. Introduction

Psychopathological conditions such mood and anxiety disorders are frequently

related to aversive emotional experiences (APA, 2000) that could benefit from a

reframing of the aversive memory formatted, which is usually attempted in

psychotherapeutic procedures (Freud, 1914). It has also been suggested that the

cognitive deficits present in these disorders are reversed by treatment with

antidepressants (Austin et al., 2001; Castaneda et al., 2007), which are largely

indicated for both anxiety and mood disorders (Marks et al., 1998; Brunello et al.,

2001; Nandam et al., 2007). Several studies indicate that the improvement of these

cognitive deficits is associated with hippocampal neurogenesis (Santarelli et al.,

2003; Duman and Monteggia, 2006; Dranovsky and Hen, 2006; Nandam et al., 2007;

Paizanis et al., 2007; Sahay and Hen, 2007; Pittenger and Duman, 2008), which

would explain the delay of amelioration of depressive symptoms after the beginning

of clinical treatment. Despite memory deficits being common in many anxiety and

depression- related disorders the relationship between the improvement of

depression or anxiety symptoms by antidepressants treatment, as well as their effect

on memory, remains to be elucidated (Austin et al., 2001).

It is known that both the prevalence (Mahedran et al., 2006; Bekker and van

Mens-Verhulst, 2007) and the psychophysiological mechanisms of some

psychopathologies, including depression, differ between the sexes, being the

females the most affected gender (Kim et al., 2010; Wooley et al., 2010). The source

of these differences can be gonadal steroids (Toufexis et al., 2006; Solomon and

Herman, 2009) and their possible effects on neurochemical pathways (Kelly et al.,

1999).

24

Regardless the mentioned relevant gender differences, most of the preclinical

studies use males instead of females (Olivier et al., 2008; Kim et al., 2010; Zucker

and Beery, 2010). In this respect, it is important to mention that not only mechanisms

related to diseases, but also normal cognition has been shown to differ between

sexes. Specifically, studies with animal models usually show better spatial learning in

males and stronger emotional memory in females (Canli et al., 2002; Astur et al.,

2004; Rilea et al., 2004; Hamann, 2005; Jonassom, 2005; Blokland et al., 2006).

Interestingly, in a recent work, Ribeiro et al. (2010) found decreased extinction of an

aversive memory task in female rats when compared to males. It was suggested that

a diminished capacity of extinction of aversive memories could be related to the

predominance of certain psychopathological disorders in this gender. Although

several animal studies were held to investigate the effects of antidepressants on

memory (Marks et al., 1998; Austin et al., 2001; MacQueen et al., 2002; Nestler et

al., 2002; Castaneda et al., 2007; Schulz et al., 2007; Paizanis et al., 2007), they

were mostly conducted with male subjects. In addition, few studies have aimed to

study the effects of antidepressants specifically on the extinction of aversive

memories. Some studies were conducted investigating the effects of rolipram (which

has both antidepressant and anxiolytic effects) on male rodents. In these studies,

decrements in extinction of conditioned fear and in fear-potentiated startle paradigms

were shown (Monti et al. 2006; Mueller et al., 2010). The same drug also had

improved cognition related to the Morris water maze and impaired extinction in a

passive avoidance task (Cheng et al., 2010). In another animal study, D-cycloserine

(used as an adjuvant in antidepressant therapy), enhanced extinction in a

conditioned fear task (Yamamoto et al., 2008).

25

In the present study, we investigated the effects of three antidepressants

(fluoxetine, nortriptyline and mirtazapine) of different pharmacological classes on

learning, memory and extinction of an aversive task in female rats, as well as anxiety

and depression-related behaviors in the same subjects. Fluoxetine is a selective

serotonin reuptake inhibitor (SSRI), the most prescribed class of antidepressants

(Dunlop and Davis, 2008). Nortriptyline is a tricyclic antidepressant, an older class of

drugs, and act by nonselective inhibition of monoaminergic reuptake. Although these

compounds are no longer largely prescribed, they are still an option to individuals

which are non-responsive to other antidepressants and to subjects susceptible to the

serotonin syndrome (Dagtekin et al., 2010). Finally, the atypical antidepressant

mirtazapine is used to treat both mood and anxiety disorders (Rauggi et al., 2005;

Gambi et al., 2005) and enhances central noradrenergic and serotonergic

neurotransmission through inhibition of the noradrenergic α2-autoreceptor and α2-

heteroreceptor in serotonergic synapses (Bengtsson et al., 2000; Gambi et al., 2005).

We used the plus-maze discriminative avoidance task (PMDAT) to evaluate

concomitantly memory and anxiety-related behaviors. Several studies performed with

this task have shown the effects of memory-enhancing or amnestic drugs,

procedures that modify anxiety-like behaviors and/or locomotor activity (Silva et al.,

1997; Silva and Frussa-Filho, 2000; Silva et al., 2002a; Silva et al., 2002b). It also fits

for the evaluation of learning and extinction processes, by the evaluation of aversive

arm avoidance across the behavioral sessions (Silva et al., 2004; Ribeiro et al., 2010;

see Methods). Additionally, female rats were also tested in the forced swimming test

(FST) in order to evaluate depression-related behaviors.

2. Materials and Methods

26

2.1 Animals

Three-month-old female Wistar rats (120–230g), from our own colony were

housed in groups of 4 animals in plastic cages (30 x 37 x 16 cm) in a room with

acoustic isolation, airflow and controlled conditions of temperature (24 – 26 °C),

humidity and luminosity (12h light: 12h dark, lights on 06h30). Food and water were

available ad libitum throughout the experiments. Animal care was according to

Brazilian law nº 11.794/2008 for the use of animals in research, and all experiments

were approved by the local ethical committee (CEUA-UFRN). All efforts were made

to minimize animal pain, suffering or discomfort as well as the number of animals

used.

2.2 Procedures and drugs

Animals were allocated to one of four groups (n=8 - 10): (a) treated with

fluoxetine (20mg/ml/kg daily; Medley, Brazil), (b) nortriptyline (20mg/ml/kg daily;

Novartis, Brazil), (c) mirtazapine (10mg/ml/kg daily; Torrent, India), or (d) vehicle

(physiological saline with Tween 20%), all injected intraperitoneally, once a day, for

20 days. The drugs were dilluted in physiological saline containing three drops of

Tween-20 per 1ml. The duration of treatments and doses were chosen based on

previous studies (Dazzi et al., 2001; Dulawa et al., 2003; Rauggi et al., 2005; Gambi,

2005; Rógòz, 2005; Consoni et al., 2006; Miyamoto et al., 2010; McNamara et al.,

2010; Rógòz, 2010). During the treatment period, injections were held simultaneously

with estrous cycle control (through vaginal smears) at 6 p.m. There was no

27

predominance of any stage among the experimental groups during the experiments

(data not shown). Rats were handled for the whole injection period, for 5 minutes per

day. From the 17th day of treatment onwards, behavioral tests started at 1:30 p.m.

and injections and cycle control continued at 6 p.m., after the behavioral procedure.

2.3 Plus-maze discriminative avoidance task (PMDAT)

In order to evaluate the effects of the antidepressants on learning, memory,

extinction and anxiety, we used the PMDAT. The apparatus is a modified elevated

plus-maze made of wood with two open arms (50 cm lenght x 15 cm width) and two

closed arms (50 cm lenght x 15 cm width x 40 cm high), in one of which aversive

stimuli (light and noise) were presented in the training session, as described

previously (Ribeiro et al., 2010). The animals were placed individually in the center of

the maze, for 10 minutes in each session, with the head turned to the intersection

between the open arms, to explore the maze. In the training session the aversive

stimuli (100-watt light and an 80 dB noise applied through a lamp and a speaker

placed over the aversive enclosed arm) were given every time the animal entered

this closed arm, remaining until the animal left the arm. In the testing/extinction

session, 24h later, the animal was allowed to explore the apparatus without the

stimuli (the lamp and the speaker were still present over the aversive arm, but turned

off). In both sessions the animals were also evaluated for other measures related to

anxiety. The other parameters used were risk assessment and head dipping. The risk

assessment behavior is defined by body stretching to look into the locations of the

apparatus before entering (or not) them (Rodgers et al., 1997). The head dipping was

characterized by an attempt to look ―under‖ the maze with the head pointing the floor

28

(Rodgers et al., 1997). A decrease in risk assessment behavior and an increase in

head dipping indicate less anxious behavior (Rodgers and Dalvi, 1997; Rodgers et

al., 1997). Distance traveled in the apparatus, percent time spent in the aversive

enclosed arm (time spent in aversive enclosed arm / time spent in both enclosed

arms) and percent time spent in open arms (time spent in open arms / time spent in

both open and enclosed arms) were registered min by min throughout the sessions

and used to evaluate motor activity, learning/memory/extinction and anxiety,

respectively. The behavior of the animals was monitored and analyzed by the video-

tracking software ANY-maze, Stoelting, USA.

2.4 Forced Swimming Test (FST)

For evaluation of the depression-related behaviors we used the FST (Porsolt

et al., 1977). This test consists in placing the animal in a cylinder (40 cm high, 25 cm

diameter) with water (30 cm deep) in a temperature of 24 to 27°C, for two

consecutive days. On the first day, animals were submitted to 15 min of forced

exposure (pre-test session) with no behavioral observation. In the second day, 24 h

after the pre-test session, rats were placed once again in the water tank (test

session) in the same conditions described above and total immobility duration,

climbing behavior and the latency to engage in immobility were registered for 5 min.

2.5 Statistical Analyses

Data from behavioral tests were analyzed with one- or two-way analysis of

variance (ANOVA) with Bonferroni‘s tests for post-hoc comparisons. In addition to the

29

total length of the sessions in the PMDAT, behavioral sessions were divided in 5

blocks of 2 minutes each. Comparison among these blocks was used to evaluate

learning (training) or extinction (test) of the task. ANOVAs with repeated measures

were used to compare the percent time spent in the aversive and open arm

throughout PMDAT sessions and pairwise comparisons was used. We used the

software SPSS (version 17) to perform the statistical analysis. Differences were

considered significant at p<0.05.

3. Results

Plus-maze discriminative avoidance task:

Groups of all treatments presented similar percentage of time spent in the

aversive enclosed arm in the training session, suggesting that all groups learned the

task [F (3,34) = 0.32; p = 0.811] (Fig. 1A). The analysis of the percent time in the

aversive arm with repeated measures ANOVA revealed a time (2 minutes session

blocks) effect [F (2,87) = 20.80; p < 0.001], but not treatment [F (3,31) = 0.73; p =

0.54] or time x treatment interaction effects [F (8,63) = 1.34; p = 0.226] (Fig. 1B).

Indeed, paired samples t-test showed that all groups presented significant

decrements in aversive arm exploration (comparing to first block), starting in the

second block for nortriptyline (t = 4.93; p = 0.002) and mirtazapine (t = 4.92; p =

0.002). From the third block onwards all groups showed significant decrements

(Block 3: vehicle t = 4.77, p < 0.001; fluoxetine t = 3.58, p = 0.007; nortriptyline t =

4.17, p = 0.004; mirtazapine t = 3.74, p = 0.007. Block 4: vehicle t = 3.56, p = 0.006;

fluoxetine t = 1.95, p = 0.08; nortriptyline t = 3.86, p = 0.006; mirtazapine t = 4.80, p =

0.002. Block 5: vehicle t = 5.05, p < 0.001; fluoxetine t = 2.33, p = 0.04; nortriptyline t

= 4.71, p < 0.002; mirtazapine t = 4.60, p = 0.002) compared to the percent time in

30

the aversive arm during the first session block (paired samples t-test) (Fig. 1B). The

ANOVA for the 2 minutes session blocks showed no difference between the groups

for each session (for the first block [F (3,34) = 0.58; p = 0.62], second [F (3,34) =

1.00; p = 0.40], third [F (3,34) = 1.04; p = 0.38], fourth [F (3,34) = 1.30; p = 0.29] and

fifth [F (3,34) = 2.03; p = 0.13]).

Comparison of the exploration of the aversive arm was marginally significant in

the test session [F (3,34) = 2.52; p = 0.07], and pos hoc analysis with Bonferroni‘s

test indicated no difference between the groups (p > 0.05) (Fig. 1C). The analysis of

the percent time in the aversive arm in two-minute session blocks throughout the test

session with repeated measures ANOVA revealed a time effect [F (3,68) = 3.57; p =

0.01] and time x treatment interaction [F (3, 31) = 53.72; p < 0.001] , but not a

treatment effect [F (8,63) = 1.34; p = 0.22] (Fig. 1D). Only vehicle- and fluoxetine-

treated groups presented significant increases in aversive arm exploration compared

to the first block throughout the session [fluoxetine from the third block onwards

(block 3: t = -3.22, p = 0.01; block 4: t = -2.54, p = 0.03; block 5: t = -3.28, p = 0.01

and vehicle in the fourth and fifth blocks (t = -2.78, p = 0.02 and t = -3.32, p = 0.009,

respectively)]. None of the groups have shown significant changes in the second

block, and nortriptyline- mirtazapine-treated animals did not modify aversive arm

exploration across the session blocks (Block 2: vehicle t = -0.96, p = 0.35; fluoxetine t

= -1.74, p = 0.12; nortriptyline t = 0.42, p = 0.68; mirtazapine t = 1.60, p = 0.15. Block

3: vehicle t = -1.67, p = 0.12; nortriptyline t = 0.56, p = 0.58; mirtazapine t = 1.37, p =

0.21. Block 4: nortriptyline t = 0.29, p = 0.77; mirtazapine t = 0.49, p = 0.63. Block 5:

(nortriptyline t = -0.95, p = 0.37; mirtazapine t = 0.61, p = 0.56) compared to the

percent time in the aversive arm during the first session block (paired samples t-test)

(Fig. 1D).

31

Percentage of time spent in the open arms did not differ between different

treatments, suggesting that animals did not present anxiety-related differences

[training session: F (3,34) = 0.060; p = 0.98; test session: F (3,34) = 0.50; p = 0.68]

(Fig. 2). Similarly, no differences were found in the frequency of head dipping

[training session: F (3,34) = 1.352; p = 0.276; test session: F (3,34) = 0.060; p = 0.98]

(Fig.3C and D). A treatment effect was found for time spent in risk assessment in the

test [F (3,34) = 3.876; p = 0.018] (Fig. 3B), but not in the training session [F (3,34) =

0.278; p = 0.841] (Fig. 3A). In the test session, the post hoc with Bonferroni‘s test

showed a significant difference between vehicle and fluoxetine (p = 0.04), while the

comparison between vehicle and nortriptyline almost reached significance (p = 0.05).

When the whole sessions were considered for analysis, ANOVA revealed a

treatment effect in the distance traveled in the apparatus [F (3,34) = 4.56; p < 0.01]

and [F (3,34) = 3.86; p < 0.05] in training and test, respectively. Post hoc with

Bonferroni‘s test showed that animals treated with mirtazapine exhibited a

significantly decreased locomotor activity compared to the other groups (Table 1).

In the forced swimming test, ANOVA revealed a treatment effect in immobility

duration [F (3,33) = 13.64; p < 0.001]. Post hoc with Bonferroni‘s test showed that

animals treated with fluoxetine and mirtazapine had decreased immobility duration

compared with the control and nortriptyline groups (Fig. 4A). The latency to start

immobility was not different among the groups (data not shown). Moreover, ANOVA

revealed a treatment effect on climbing behavior [F (3,33) = 4.17; p = 0.014]. Post

hoc with Bonferroni‘s test showed that fluoxetine group had an increased time in

climbing behavior (p = 0.009) compared with nortriptyline group (Fig. 4B).

32

33

Figure 1. Percent time spent in the aversive arm (%TAV) of the plus-maze

discriminative avoidance task by female rats repeatedly treated with vehicle (vehi),

20mg/kg fluoxetine (fluox), 20 mg/kg nortriptyline (nort) or 10 mg/kg mirtazapine

(mirt): (A) The whole training session; (B) Blocks of two minutes across the training

session; (C) The whole test session; (D) Blocks of two minutes across the test

session. ANOVA with repeated measures revealed time effects (session blocks) in

training and test sessions; #p < 0.05 compared to first block (paired samples t-test).

34

Figure 2. Percent time spent in the open arms (%TAB) of the plus-maze

discriminative avoidance task by female rats repeatedly treated with vehicle (vehi),

20mg/kg fluoxetine (fluox), 20 mg/kg nortriptyline (nort) or 10 mg/kg mirtazapine

(mirt): (A) Training session; (B) Test session.

35

36

Figure 3. Time spent in risk assessment and frequency of head dipping on the plus-

maze discriminative avoidance task by female rats repeatedly treated with vehicle

(vehi), 20mg/kg fluoxetine (fluox), 20 mg/kg nortriptyline (nort) or 10 mg/kg

mirtazapine (mirt): (A) Training session for risk assessment; (B) Test session for risk

assessment; (C) Training session for head dipping behavior; (D) Test session for

head dipping behavior. ANOVA revealed a treatment effect on risk assessment test

session; *p < 0.05 compared to vehicle; +p = 0.05 compared to vehicle (ANOVA

followed by Bonferroni‘s test).

37

Figure 4. Time spent in immobility and climbing behavior on the forced swim test by

female rats repeatedly treated with vehicle (vehi), 20mg/kg fluoxetine (fluox), 20

mg/kg nortriptyline (nort) or 10 mg/kg mirtazapine (mirt): (A) The time spent in

immobility on test session; (B) The time spent in climbing behavior on test session; *p

< 0.05 compared to vehi; §p < 0.05 compared to fluox and mirt; ¥p < 0.05 compared

to nort (ANOVA followed by Bonferroni‘s test).

38

Table 1. Distance travelled in meters in both training and test session by female rats

repeatedly treated with vehicle, 20mg/kg fluoxetine, 20 mg/kg nortriptyline or 10

mg/kg mirtazapine; *p<0.05 compared to all other groups (ANOVA followed by

Bonferroni‘s test).

4. Discussion

In summary, our data showed that some antidepressants could interfere on

both learning and memory processes, more specifically on the acquisition and, more

importantly, extinction of an aversive task. The nortriptyline- and mirtazapine-treated

groups learned the task faster than the vehicle and fluoxetine counterparts, as

demonstrated by a significant decrease in the aversive arm exploration earlier in the

training session (see figure 1B). During the test session, vehicle and fluoxetine

groups have shown extinction of the task, i.e., significant increases in aversive arm

exploration across the session blocks, what did not occur in the other groups (see

figure 1D). Moreover, the extinction was anticipated by treatment with fluoxetine. The

treatment with fluoxetine and nortriptyline also reduced one of the anxiety-related

behaviors in the elevated plus-maze discriminative avoidance task (risk assessment

behavior, see figure 3B). Results obtained in the forced swimming test showed that

Treatment Training Test

Vehicle 19,0±2,4 21,1±1,9

Fluoxetine 20,0±3,0 21,6±4,4

Nortriptyline 22,9±3,1 16,8±4,4

Mirtazapine 10,4±0,5* 8,5±2,3*

39

treatment with fluoxetine and mirtazapine reduced the immobility time, which is

consistent with the antidepressant-like effects of these drugs (see figure 4A).

As mentioned above, the analysis of the aversive arm exploration throughout

the test session of the PMDAT provides indication of both task retrieval (beginning of

session) and extinction (subsequent session blocks) (Ribeiro et al., 2010). Indeed,

with the aversive stimuli no longer present, the animals avoid the aversive arm at

first, but eventually realize the arm is now safe and increase its exploration, reaching

the amount they would explore a regular enclosed arm by chance (or even more,

since this arm is almost novel for them in the test session). This pattern is usually

observed in males, but in a previous study we have shown that female rats keep

avoiding the aversive arm until the end of the test, or even at a subsequent retest

(Ribeiro et al., 2010). The lack of extinction by females points out to stronger

consolidation and/or impaired extinction of aversive memories, which is in line with

the better emotional memory usually reported for women (Canli et al., 2002;

Hamann, 2005). In particularly, this lack of extinction is similar to what occur in some

anxiety disorders, as for example, the posttraumatic stress disorder (PTSD), and it

could be related to the greater prevalence of depression and anxiety disorders

among female gender (Kendler et al., 2001; Mahedran, 2005; Rauch et al., 2006;

Bekker and van Mens-Verhulst, 2007).

In the present study, however, females did show extinction of the task. The

amount of aversive arm exploration by the end of the test was still lower than that

previously observed for males, but this result suggests that the lack of extinction of

this task by females may not be unequivocal. Further, and more importantly, the

presented data indicated that the SSRI fluoxetine was capable of increasing or

speeding up the process of extinction in females. Although speculative, one might

40

raise the hypothesis that fluoxetine could exert its therapeutic action by modulating

the extinction of aversive memories. In line with this reasoning, this drug has been

shown potential benefits in the treatment of PTSD, which has a close relationship

with deficits in extinction of traumatic memories (APA, 2000; Quirk et al., 2006;

Yamamoto et al., 2008; 2009). Moreover, despite the effects of fluoxetine treatment

on males in the same test has not been investigated yet, these results, taking

together with previous extinction studies performed with males (see Introduction)

suggest an important role of gender in the ability of antidepressants in modifying

extinction.

The SSRIs are one of most commonly prescribed drugs for treating mood and

anxiety disorders (Marks et al., 1998; Brunello et al., 2001; Nandam et al., 2007).

Their action includes an improvement on cognitive deficits caused by the disease

(Austin et al., 2001; Castaneda et al., 2007) through the stimulation of the

neurogenesis in males (Duman and Monteggia, 2006; Dranovsky and Hen, 2006;

Nandam et al., 2007; Paizanis et al., 2007; Sahay and Hen, 2007; Pittenger and

Duman, 2008), which is also needed for the extinction process (Gabriele and

Packard., 2006). Treatment with fluoxetine also induces an increase in BDNF

releasing, which may cause reactivation of the neuronal plasticity (Castrén and

Rantamäki, 2010). In addition, another study has shown that brain-derived

neurotrophic factor (BDNF) is also needed for the extinction of a memory (Gabriele

and Packard, 2006). However, further clarification is needed about the role of BDNF

in depression, because antidepressant effects of nortriptyline and escitalopram

appear to be unrelated to hippocampal BDNF expression in female rats, (Hansson et

al., 2011). Previous studies have demonstrated that antidepressants may induce

synaptic reorganization in the amygdala (McEwen and Chattarji, 2004). For example,

41

fluoxetine administered chronically to adult rats reduces, in the amygdala, the

polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a molecule

involved in the synaptogenesis (Varea et al. 2007; Homberg et al., 2011). It has also

been proposed that some types of antidepressants could elicit an increase on the

perception of the threat cues and improve the trace of the formatted memory

avoiding or decreasing its extinction (Rawlings et al., 2010). In summary, it seems

plausible that the clinical action of antidepressants could be related to a modulation

of plastic processes related to extinction of aversive memories.

On the other hand, in the present study, both mirtazapine and nortriptyline

groups were not able to extinguish the task. This lack of extinction of the aversive

memory could be related to the disturbance on emotional processing and persistence

of the negative events instead of the neutral and good events (Beck et al., 1979;

Harmer, 2010). That could be due to the modulation promoted by these drugs of the

perception of the threat cues (Rawlings et al., 2010) and to the decrease of

perception of aversive and rewarding stimuli seen in clinical studies (Harmer et al.,

2006; McGabe et al., 2010). One of the effects of mirtazapine and nortriptyline is a

decrease on HPA axis activity (Schüle et al., 2002; 2006), which we expected would

improve the extinction, oppositely to what happened. An increase in HPA axis activity

could damage the extinction process, as shown in a study with post-sepsis rats which

received dexamethasone in low doses, and were tested on the inhibitory avoidance

task (Cassol-Jr et al., 2010). In addition, it is known that the higher the sensitivity to

cortisol, higher is the response to stressful events in the amygdala (Morgan and

LeDoux, 1995), and lower is the activation of hippocampus and prefrontal cortex

(Lebrón et al., 2004). As a result of these effects, a damage of the extinction of any

42

aversive memory formatted could appear (Morgan and LeDoux, 1995; Lebrón et al.,

2004; Quirk et al., 2006).

The hypolocomotor effects observed here in females treated with mirtazapine

have already been found in other studies in this same dose range (Reneric et al.,

2002) or not (Rauggi et al., 2005). It is interesting to note that, in the present study,

the hypolocomotor effects were specifically found in the plus-maze discriminative

avoidance task, i.e. they were not present in the forced swimming test. It is known

that mirtazapine enhances both 5-HT and NA neurotransmissions, yet differently

from monoamine reuptake inhibitors since its antidepressant effects are mediated

through the direct antagonism of both α2 and 5-HT2C receptors (de Boer et al., 1996;

Haddjeri et al., 1996). It has been shown that this mediation can cause

hypolocomotor effects (Franowicz et al., 2002). Mirtazapine also induces blockage of

histamine-H1 receptors, other possible mechanism that may produce sedation and

decrease the exploratory activity (Schüle et al., 2003; 2006; Gambi et al., 2005).

Usually, the clinical treatment with antidepressants, although possibly inducing

an increase in anxiety at the beginning of the treatment, has overall an anxiolytic

effect (for a review see Borsini et al., 2002; Drapier et al., 2006). Studies with male

rodents also have shown that the antidepressants could have an anxiolytic effect

acutely (Silva et al., 1999; Kurt et al., 2000; Holmes and Rodgers 2003; Drapier et

al., 2006). The treatment with antidepressants fluoxetine and nortriptyline reduced

the anxiety-related behaviors at least in one of the evaluated ethological parameters.

However, this effect was observed only in the test session. A possible explanation

would be that the presence of a stressful context (the aversive stimuli) in the training

session would interfere with evaluation of the anxiety-like behavior. Indeed, in the

test session the animals could explore more freely the apparatus and we could have

43

a better evaluation of the parameters. On the other hand, some authors argue that

the evaluation of anxiety-related behaviors in a re-exposition to the conventional

elevated plus-maze is not adequate, because the reasoning of the paradigm implies

novelty (File, 1990).

Still regarding possible anxiolytic effects of antidepressant drugs in animal

models, despite the fact that most of anxiety and mood disorders are twice more

frequent in females than in males (Bekker and van Mens-Verhulst, 2007) there is a

strong bias towards the use of male animals to study these phenotypes (Wald and

Wu, 2010; Zucker and Beery, 2010). This type of bias is not rare once most of drugs

are tested in males and most of behavioral apparatus were developed using male

rats. Thus it, is very important taking into account not only classical variables, but

also the ethopharmacological parameters, when studying females in elevated plus-

maze and their derived apparatus Cruz et al. (1994) showed that classical variables,

like time spent in and number of entries into the open arms, which express ―anxiety‖

levels, loaded together with end-exploring, head dipping and risk assessment in a

principal components analysis. In addition, Carobrez and Bertoglio (2005)

emphasized the advantages of using this ethopharmacological measures for the

purpose of avoid false negative results, what normally occur if we consider only

classical parameters. To our knowledge, there were a few studies evaluating the

effects of chronic treatment with nortriptyline in behavioral tests related to anxiety.

For example, Brocco et al. (2002) showed that mice exposed to a novel environment

failed to elevate the locomotion suggesting absence of anxiolytic effect. In opposite,

the effects of chronic fluoxetine treatment were already been evaluated in the

literature with some studies demonstrating anxiolytic (Griebel et al., 1995; Durand et

44

al. 1999; Mirza et al., 2007) while others showed anxiogenic effects (File et al., 1999;

Robert et al., 2011).

The forced swimming test is normally used in the screening of antidepressant

drugs, with immobility duration levels being used to measure indices of ―behavioral

despair‖ (Borsini and Meli, 1988). Moreover, the immobility presented by the animal

is reversed by repeated antidepressant treatment and for this reason it is used as an

index of ‗depressive-like‘ state (Cryan et al., 2005; Porsolt et al., 1978). In the present

study, animals treated with fluoxetine and mirtazapine, as expected, showed

decreased time of immobility duration in the forced swimming test. However, females

treated with nortriptyline did not exhibit this decrease, at a dose that was previously

shown to be effective in a study with males (Consoni et al., 2006). They also showed

less climbing behavior than fluoxetine–treated animals, suggesting that nortriptyline

group were less active in this behavioral test. However, the possibility that these

effects were only due to alterations in locomotion seems unlikely, because in the

plus-maze discriminative avoidance task there were no significant decreases in

ambulation of nortriptyline-treated animals.

An important issue to consider when studying female rodents behavior is the

significant variation across the phases of the estrous cycle (Marcondes et al., 2001;

Milad et al., 2009). In the present study, the estrous cycle stage was determined daily

throughout treatment and behavioral procedures. In the behavioral test days, we did

not found any predominance of phase in the experimental groups. In this respect, it is

known that females in proestrous present low immobility duration in the forced

swimming test (Contreras et al., 1998). In addition, progesterone chronically

administered at low doses reverted depressive-like behaviors and had

antidepressant effects during the diestrous phase (Andrade et al., 2010). In the

45

present study it was not possible to separate the animals according to the cycle

phase in each behavioral experiment. Moreover, the relevance of this separation

would be jeopardized by the fact that a prolonged drug treatment was performed, i.e.,

all rats received drug treatment at all phases. Even so, more experiments are needed

to investigate if the lack of effect of nortriptyline group could be dependent on the

estrous cycle stage. In conclusion, data reported in the present study showed that

the treatment with antidepressant drugs modified the learning and extinction of an

aversive task of females. Groups treated with nortriptyline and mirtazapine

accelerated the learning of an aversive task compared to fluoxetine and vehicle. The

fluoxetine promoted an improvement on extinction of the discriminative task,

antecipating the process when compared to the vehicle counterparts. These results

contribute to the investigation of sex differences in the neurobiology of anxiety and

depression-related disorders, as well as the possibitily of gender-based

pharmacotherapy in the near future.

46

5. References

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 2000. 4th ed. Washington, DC: American Psychatric Association.

Andrade, S., Silveira, S.L., Arbo, B.D., Batista, B.A., Gomez, R., Barros, H.M.,

Ribeiro, M.F. 2010. Sex-dependent antidepressant effects of lower doses of progesterone in rats. Physiol Behav. Apr 19; 99(5):687-90.

Astur, R.S., Tropp, J., Sava, S., Constable, R.T. & Marku, E.J. 2004. Sex

differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation. Behavioral Brain Research, 151, 103-115.

Austin, M.-P., Mitchell, P., Goodwin, G.M. 2001. Cognitive deficits in

depression: Possible implications for functional neuropathology, British Journal of Psychiatry 178, 200-206.

Babbini, M., Gaiardi, M., Bartoletti, M. 1976. Effects of combined treatment

with nortriptiline and lorazepam on conflict behavior and motility of rats. Psychopharmacology (Berl). Aug 17;48(3):251-4.

Beck, A.T., Rush, A.J., Shaw, B.F., Emery, G. 1979. Cognitive Therapy of

Depression. Guilford. Bengtsson, H.J., Kele, J., Johansson, J. Hjorth, S. 2000. Interaction of the

antidepressant mirtazapine with α2-adrenoceptors modulating the release of 5-HT in different rat brain regions in vivo, Naunyn-Schmiedeberg‘s Arch Pharmacol 362 :406–412.

Bekker, M.H.J., Mens-Verhulst, J. van, 2007. Anxiety Disorders: Sex

Differences in Prevalence, Degree, and Background, But Gender-Neutral Treatment, Gender Medicine/VoL 4, SUPPL. B, 2007.

Bigos, K.L., Pollock, B.G., Stankevich, B.A., Bies, R.R. 2009. Sex differences

in the pharmacokinetics and pharmacodynamics of antidepressants: an updated review. Gend Med. Dec;6(4):522-43. Review. Nature 465 10 June.

Blokland, A., Rutten, K., Prickaerts, J. 2006. Analysis of spatial orientation

strategies of male and female Wistar rats in a Morris water escape task. Behav. Brain Res., 171, 216-224.

Borsini, F., Meli, A. 1988. Is the forced swimming test a suitable model for

revealing antidepressant activity? Psychopharmacology (Berl);94(2):147-60. Borsini, F., Podhorna, J., Marazziti, D. 2002. Do animal models of anxiety

predict anxiolytic-like effects of antidepressants? Psychopharmacology, 163:121–141.

Brocco, M., Dekeyne, A., Veiga, S., Girardon, S., Millan, M.J. 2002. Induction

of hyperlocomotion in mice exposed to a novel environment by inhibition of serotonin

47

reuptake. A pharmacological characterization of diverse classes of antidepressant agents. Pharmacol Biochem Behav. Apr;71(4):667-80.

Brunello, N., Davidson, J.R., Deahl, M., Kessler, R.C., Mendlewicz, J.,

Racagni, G., Shalev, A.Y., Zohar, J. 2001. Posttraumatic stress disorder: diagnosis and epidemiology, comorbidity and social consequences, biology and treatment. Neuropsychobiology ;43(3):150-62.

Cassol-Jr., O.J., Comim, C.M., Petronilho, F., Constantino, L.S., Streck, E.L.,

Quevedo, J., Dal-Pizzol, F. 2010. Low dose dexamethasone reverses depressive-like parameters and memory impairment in rats submitted to sepsis. Neuroscience Letters 473; 126–130

Canli, T., Desmond, J., Zhao, A., Gabrielli, J.D.E. 2002. Sex differences in the

neural basis of emotional memories. PNAS, 99(16), 10789-10794. Castaneda, A.E., Tuulio-Henriksson, A., Marttunen, M., Suvisaari, J,

Lönnqvist, J. 2007. A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. J. Affect. Disord.

Castrén, E., Rantamaki, T. 2010. The Role of BDNF and Its Receptors in

Depression and Antidepressant Drug Action: Reactivation of Developmental Plasticity. Dev Neurobiol. Apr;70(5):289-97.

Cheng, Y.F., Wang, C., Lin, H.B., Li, Y.F., Huang, Y., Xu, J.P., Zhang, H.T.

2010. Inhibition of phosphodiesterase-4 reverses memory deficits produced by Aβ25-35 or Aβ1-40 peptide in rats. Psychopharmacology (Berl). Oct; 212(2):181-91.

Consoni, F.T., Vital, M.A., Andreatini, R. 2006. Dual monoamine modulation

for the antidepressant-like effect of lamotrigine in the modified forced swimming test. Eur Neuropsychopharmacol, v 16(6), p. 451-458.

Contreras, C.M., Martinez-Mota, L., Saavedra, M. 1998. Desipramine restricts

estral cycle oscillations in swimming. Prog Neuropsychopharmacol Biol Psychiatry, v. 22, p. 1121-1128,

Cryan, J.F., Valentino, R.J., Lucki, I. 2005. Assessing substrates underlying

the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev ;29:547–69.

Dagtekin, O., Marcus, H., Müller, C., Böttinger, B.W., Spöhr, F. 2010. Liquid

therapy for serotonin syndrome after intoxication with venlafaxine, lamotrigine and diazepam, Minerva Anestesiologica, v. 76.

Dalla, C., Pitychoutis, P.M., Kokras, N., Papadopoulou-Daifoti, Z. 2009. Sex

Differences in Animal Models of Depression and Antidepressant Response. Basic & Clinical Pharmacology & Toxicology, 106, 226–233.

Dazzi, L., Spiga, F., Pira, L., Ladu, S., Vacca, G., Rivano, A., Jentsch, J.D.,

Biggio, G. 2001. Inhibition of stress- or anxiogenic-drug-induced increases in

48

dopamine release in the rat prefrontal cortex by long-term treatment with antidepressant drugs. Journal of Neurochemistry, 76, 1212±1220.

De Boer, T.H., Nefkens, F., van Helvoirt, A. and Delft, A.M. van. 1996.

Differences in modulation of noradrenergic and serotonergic transmission by the alpha-2 adrenoceptor antagonists, mirtazapine, mianserin and idazoxan, J. Pharmacol. Exp. Ther. 277, pp. 852–860.

Dranovsky, A., Hen, R. 2006. Hippocampal Neurogenesis: Regulation by

Stress and Antidepressants, Biol Psychiatry;59:1136–1143. Drapier, D., Bentué-Ferrer, D., Laviolle, B., Millet, B., Allain, H., Bourin,

M., Reymann, J.M. 2007. Effects of acute fluoxetine, paroxetine and desipramine on rats tested on the elevated plus-maze. Behav Brain Res, Jan 25;176(2):202-9.

Dulawa, S.C., Holick, K.A., Gundersen, B., Hen, H. 2004. Effects of Chronic

Fluoxetine in Animal Models of Anxiety and Depression. Neuropsychopharmacology 29, 1321–1330.

Duman, R.S., Monteggia L.M. 2006. A Neurotrophic Model for Stress-Related

Mood Disorders, Biol Psychiatry;59:1116–1127. Dunlop, B.W., & Davis, P.G. 2008. Combination Treatment With

Benzodiazepines and SSRIs for Comorbid Anxiety and Depression: A Review, Prim Care Companion J Clin Psychiatry;10:222–228.

File, S.E. 1990. One-trial tolerance to the anxiolytic effects of chlordiazepoxide

in the plus-maze. Psychopharmacology (Berl), 100(2):281-2. File, S.E., Ouagazzal, A.M., Gonzalez, L.E., Overstreet, D.H. 1999. Chronic

fluoxetine in tests of anxiety in rat lines selectively bred for differential 5-HT1A receptor function. Pharmacol Biochem Behav. Apr;62(4):695-701.

Franowicz, J.S., Kessler, L.E., Borja, C.M.D., Kobilka, B.K., Limbird, L.E.,

Arnsten, A.F.T. 2002. Mutation of the 2A-Adrenoceptor Impairs Working Memory Performance and Annuls Cognitive Enhancement by Guanfacine. The Journal of Neuroscience, October 1, 22(19):8771–8777.

Freud, S. Recordar, repetir e elaborar. 1914, reediction of 1976. Gabriele, A., Packard, M.G. 2006. Evidence of a role for multiple memory

systems in behavioral extinction. Neurobiology of Learning and Memory, v.85 p.289–299.

Gambi, F., De Berardis, D., Campanella, D., Carano, A., Sepede, G., Salini,

G., Mezzano, D., Cicconetti, A., Penna, L., Salerno, R.M., Ferro, F.M. 2005. Mirtazapine treatment of Generalized Anxiety Disorder: a fixed dose, open label study. Journal of Psychopharmacology. v.19, p.483-487.

49

Griebel, G., Blanchard, D.C., Agnes, R.S., Blanchard, R.J. 1995. Differential modulation of antipredator defensive behavior in Swiss-Webster mice following acute or chronic administration of imipramine and fluoxetine. Psychopharmacology (Berl). Jul;120(1):57-66.

Haddjeri, N., Blier, P., Montigny, C. de. 1996. Effect of the alpha-2

adrenoceptor antagonist mirtazapine on the 5-hydroxytryptamine system in the rat brain, J. Pharmacol. Exp. Ther. 277 pp. 861–871)

Hamann, S. 2005. Sex differences in the responses of the human amygdala.

The neuroscientist, 11, 288-293. Hansson, A.C., Rimondini, R., Heilig, M., Mathé, A.A., Sommer, W.H. 2011.

Dissociation of antidepressant-like activity of escitalopram and nortriptyline on behaviour and hippocampal BDNF expression in female rats. J Psychopharmacol. Jan 24.

Harmer, C.J., Mackay, C.E., Reid, C.B., Cowen, P.J., Goodwin, G.M. 2006.

Antidepressant Drug Treatment Modifies the Neural Processing of Nonconscious Threat Cues. Biol Psychiatry;59:816–820.

Harmer, C.J. 2010. Antidepressant drug action: a neuropsychological

perspective. Depression and Anxiety 27: 231–233. Heim, C., Nemeroff, C.B. 2009. Neurobiology of posttraumatic stress disorder.

CNS Spectr. Jan;14(1 Suppl 1):13-24. Hildebrandt, M.G., Steyerberg, E.W., Stage, K.B., Passchier, J., Kragh-

Soerensen P. 2003. Are gender differences important for the clinical effects of antidepressants? Am J Psychiatry ;160:1643–50.

Holmes A, Rodgers RJ. 2003. Prior exposure to the elevated plus-maze

sensitizes mice to the acute behavioral effects of fluoxetine and phenelzine. Eur J Pharmacol, 459:221–30.

Homberg JR, Olivier JD, Blom T, Arentsen T, van Brunschot C, Schipper

P, Korte-Bouws G, van Luijtelaar G, Reneman L. 2011. Fluoxetine exerts age-dependent effects on behavior and amygdala neuroplasticity in the rat. PLoS One. Jan 31;6(1):e16646.

Jonasson, Z. 2005. Meta-analysis of sex differences in rodent models of

learning and memory: a review of behavioral and biological data. Neurosci. Biobehav. Rev., 28, 811- 825.

Kelly, S.J., Ostrowski, N.L., Wilson, M.A. 1999. Gender Differences in Brain

and Behavior: Hormonal and Neural Bases, Pharmacology Biochemistry and Behavior, Vol. 64, No. 4, pp. 655–664.

50

Kendler, K.S., Thornton, L.M., Prescott, C.A. 2001. Gender differences in the rates of exposure to stressful life events and sensitivity to their depressogenic effects. Am. J. Psychiatry, 158, 587-93.

Kim, J.H., Richardson, R. 2010. New Findings on Extinction of Conditioned

Fear Early in Development: Theoretical and Clinical Implications, Biol Psychiatry ;67:297–303.

Krystal, J.H., Neumeister, A. 2009. Noradrenergic and serotonergic

mechanisms in the neurobiology of posttraumatic stress disorder and resilience, Brain Research 1293 13-23.

Kornstein, S.G., Schatzberg, A.F., Thase, M.E., Yonkers, K.A., McCullough,

J.P., Keitner, G. I. et al. 2000. Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am J Psychiatry;157:1445–52.

Kubzansky, L.D., Koenen, K.C., Jones, C., Eaton, W.W. 2009. A Prospective

Study of Posttraumatic Stress Disorder Symptoms and Coronary Heart Disease in Women. Health Psychol. January; 28(1): 125–130.

Kurt, M., Arik, A.C., Celik, S. 2000. The effects of sertraline and fluoxetine on

anxiety in the elevated plus-maze test in mice. J Basic Physiol Pharmacol, 11:173–80.

Lebrón, K., Milad, M.R., Quirk, G.J. 2004. Delayed Recall of Fear Extinction in Rats With Lesions of Ventral Medial Prefrontal Cortex. Learn. Mem. 11: 544-548

MacQueen, G.M., Campbell, S., McEwen, B.S., Macdonald, K., Amano, S.,

Joffe, R.T., Nahmias, C., Young, L.T. 2003. Course of illness, hippocampal function, and hippocampal volume in major depression. PNAS, February 4, vol. 100, no. 3, 1387–1392.

Mahendran, R., Yap, H.L. 2005. Clinical practice guidelines for depression.

Singapore Medical Journal. v.46, n.11, p.610-615. Marcondes, F.K., Miguel, K.J., Melo, L.L., Spadari-Bratfisch, R.C. 2001.

Estrous cycle influences the response of female rats in the elevated plus-maze test. Physiol & Behav 74:435– 440.

Marks, I., Lovell, K., Noshirvani, H., Livanou, M., Thrasher, S. 1998. Treatment

of Posttraumatic Stress Disorder by Exposure and/or Cognitive Restructuring, Arch Gen Psychiatry, 55:317-325.

McCabe, C., Mishor, Z., Cowen, P.J., Harmer, C.J. 2010. Diminished Neural

Processing of Aversive and Rewarding Stimuli During Selective Serotonin Reuptake Inhibitor Treatment. BIOL PSYCHIATRY;67:439–445.

McEwen, B.S., Chattarji, S. 2004. Molecular mechanisms of neuroplasticity

and pharmacological implications: the example of tianeptine. Eur Neuropsychopharmacol. Dec;14.

51

McFarlane, A.C., Papay, P. 1992. Multiple diagnoses in posttraumatic stress

disorder in the victims of a natural disaster. J Nerv Ment Dis;180;498-504. McNamara, R.K., Able, J.A., Rider, T., Tso, P., Jandacek, R. 2010. Effect of

chronic fluoxetine treatment on male and female rat erythrocyte and prefrontal cortex fatty acid composition. Prog Neuropsychopharmacol Biol Psychiatry. Oct 1;34(7):1317-21.

Milad, M.R., Igoe, S.A., Lebron-Milad, K., Novales, J.E. 2009. Estrous cycle

phase and gonadal hormones influence conditioned fear extinction. Neuroscience 164:887-895.

Miyamoto, D., Iijima, M., Yamamoto, H., Nomura, H., Matsuki, N. 2010.

Behavioural effects of antidepressants are dependent and independent on the integrity of the dentate gyrus. Int J Neuropsychopharmacol. Nov 3:1-10.

Mirza NR, Nielsen EØ, Troelsen KB. 2007. Serotonin transporter density and

anxiolytic-like effects of antidepressants in mice. Prog Neuropsychopharmacol Biol Psychiatry. May 9;31(4):858-66.

Monti, B., Berteotti, C., Contestabile, A. 2006. Subchronic rolipram delivery

activates hippocampal CREB and arc, enhances retention and slows down extinction of conditioned fear. Neuropsychopharmacology 31, 278 e 286.

Morgan, M.A., LeDoux, J.E. 1995. Differential Contribution of Dorsal and

Ventral Medial Prefrontal Cortex to the Acquisition and Extinction of Conditioned Fear in Rats. Behavioral Neuroscience, Vol. 109, No. 4, 681-688

Mueller, E.M., Hofmann, S.G., Cherry, J.A. 2010. The type IV

phosphodiesterase inhibitor rolipram disturbs expression and extinction of conditioned fear in mice. Neuropharmacology 59; 1 e 8.

Nandam, L.S., Jhaveri, D., Bartlett, P. 2007. 5-HT7, neurogenesis and

antidepressants: a promising therapeutic axis for treating depression, Clinical and Experimental Pharmacology and Physiology 34, 546–551.

Nestler, E.J., Barrot, M., DiLeone, R.J., Eisch, A.J., Gold, S.J., Monteggia,

L.M. 2002. Neurobiology of depression. Neuron; 34:13–25. Olivier, J.D., Van Der Hart, M.G., Van Swelm, R.P., Dederen, P.J., Homberg,

J.R., Cremers, T., Deen, P.M., Cuppen, E., Cools, A.R., Ellenbroek, B.A. 2008. A study in male and female 5-HT transporter knockout rats: an animal model for anxiety and depression disorders. Neuroscience. Mar 27;152(3):573-84.

Paizanis, E., Hamon, M., Lanfumey, L. 2007. Hippocampal Neurogenesis,

Depressive Disorders, and Antidepressant Therapy, Neural Plasticity, v., Article ID 73754, 7 pages.

52

Pittenger, C. & Duman, R.S. Stress, 2008. Depression, and Neuroplasticity: A Convergence of Mechanisms, Neuropsychopharmacology REVIEWS 33, 88–109.

Porsolt, R.D., Le Pichon, M., Jalfre, M. 1977. Depression: a new animal model

sensitive to antidepressant treatment. Nature, v. 266, p.730-732. Porsolt, R.D., Anton, G., Blavet, N., Jalfre, M. 1978. Behavioural despair in

rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol ;47:379–91.

Quirk, G.J., Garcia, R., González-Lima, F. 2006. Prefrontal Mechanisms in

Extinction of Conditioned Fear. BIOL PSYCHIATRY;60:337–343 Rauch, S.L., Shin, L.M., Phelps, E.A. 2006. Neurocircuitry models of

posttraumatic stress disorder and extinction: human neuroimaging research – past, present, and future. Biol. Psychiatry, 60, 376-382.

Rauggi, R., Cassanelli, A., Raone, A., Tagliamonte, A., Gambarana, C. 2005.

Study of mirtazapine antidepressant effects in rats. International Journal of Neuropsychopharmacology, v.8, p. 369–379.

Rawlings, N.B., Norbury, R., Cowen, P.J., Harmer C.J. 2010. A single dose of

mirtazapine modulates neural responses to emotional faces in healthy people. Psychopharmacology 01 September.

Reneric, J.P., Bouvard, M., Stinus, L. 2002. In the rat forced swimming test,

chronic but not subacute administration of dual 5-HT/NA antidepressant treatments may produce greater effects than selective drugs. Behav Brain Res 136: 521–532.

Ribeiro, A.M, Barbosa, F.F, Godinho, M.R, Fernandes, V.S, Munguba, H.,

Alves, L.M, Melo, T.G, Barbosa, M.T, Silva, R.H. 2010. Sex differences in aversive memory in rats: possible role of extinction and reactive emotional factors. Brain and Cognition Volume 74, Issue 2, November, Pages 145-151.

Rilea, S.L., Roskos-Ewoldsen, B., Boles, D. 2004. Sex differences in spatial

ability: a lateralization of function approach. Brain and Cognition, 56, 332-343. Robert G, Drapier D, Bentué-Ferrer D, Renault A, Reymann JM. 2011. Acute

and chronic anxiogenic-like response to fluoxetine in rats in the elevated plus-maze: Modulation by stressful handling. Behav Brain Res. Jul 7;220(2):344-8.

Rodgers, R.J., Cao, B.-J., Dalvi, A., Holmes, A. 1997. Animal models of

anxiety: an ethological perspective Braz J Med Biol Res 30(3). Rodgers, R.J., Dalvi, A. 1997. Anxiety, Defence and the Elevated Plus-maze.

Neuroscience and Biobehavioral Reviews, Vol. 21, No. 6, pp. 801–810. Rogóz, Z., Skuza, G., Legutko, B. 2005. Repeated treatment with mirtazapine

induces brain derived neurotrophic factor gene expression in rats. Journal of Physiology and Pharmacology. v.56, n.4, p.661-671.

53

Rogóż, Z. 2010. Effects of co-treatment with mirtazapine and low doses of

risperidone on immobility time in the forced swimming test in mice. Pharmacol Rep. Nov-Dec;62(6):1191-6.

Sahay, A. & Hen R. 2007. Adult hippocampal neurogenesis in depression,

Nature Neuroscience v.10; 9; september. Santarelli, L., Saxe, M., Gross, C., Battaglia, F., Dulawa, S., Weisstaub, N.,

Lee, J., Duman, R., Arancio, O., Belzung, C., Hen, R. 2003. Requirement of hippocampal neurogenesis for the behavioral effectc of antidepressants. Science vol 301, 8 August.

Silva, M.T., Alves, C.R., Santarem, E.M. 1999. Anxiogenic-like effect of acute

and chronic fluoxetine on rats tested on the elevated plus-maze. Braz J Med Biol Res, 32:333–9.

Silva, R.H., Bellot, R.G., Vital, M.A. & Frussa-Filho, R. 1997. Effects of long-

term ganglioside GM1 administration on a new discriminative avoidance test in normal adult mice. Psychopharmacology, 129, 322-328.

Silva, R.H. & Frussa-Filho, R. 2000. The plus-maze discriminative acoidance

task: a new model to study memory-anxiety interactions. Effects of chlordiazepoxide and caffeine. J Neurosci. Methods, 102, 117-125.

Silva, R.H., Abílio, V.C., Torres-Leite, D., Bergamo, M., Chinen, C.C., Claro,

F.T., Carvalho, R.C. & Frussa-Filho, R. 2002a. Concomitant development of oral dyskinesia and memory deficits in reserpine-treated male and female mice. Behav. Brain. Res., 132, 171-177.

Silva, R.H., Kameda, S.R., Carvalho, R.C., Rigo, G.S., Costa, K.L., Taricano,

I.D. & Frussa-Filho, R. 2002b. Effects of amphetamine on the plus-maze discriminative avoidance task in mice. Psychopahrmacology, 160, 9-18.

Silva, R.H., Chehin, A.B., Kameda, S.R., Takatsu-Coleman, A.L., Abilio, V.C.,

Tufik, S. & Frussa-Filho, R. 2004. Effects of pre- or post-training paradoxical sleep deprivation on two animal models of learning and memory in mice. Neurobiol. Learn. Mem., 82, 90-98.

Solomon, M.B., Herman, J.P. 2009. Sex differences in psychopathology: Of

gonads, adrenals and mental illness, Physiology & Behavior 97 250–258. Schüle, C., Baghai, T., Goy, J., Bidlingmaier, M., Strasburger, C., Laakmann,

G. 2002. The influence of mirtazapine on anterior pituitary hormone secretion in healthy male subjects. Psychopharmacology 163:95–101

Schüle, C., Baghai, T., Zwanzger, P., Ella, R., Eser, D., Padberg, F., Möller,

H.-J., Rupprecht, R. 2003. Attenuation of hypothalamic-pituitary-adrenocortical hyperactivity in depressed patients by mirtazapine. Psychopharmacology 166:271–275.

54

Schüle, C., Baghai, T.C., Eser, D., Zwanzger, P., Jordan, M., Buechs, R.,

Rupprecht, R. 2006. Time course of hypothalamic-pituitary-adrenocortical axis activity during treatment with reboxetine and mirtazapine in depressed patients. Psychopharmacology (Berl). Jul;186(4):601-11.

Schulz, D., Buddenberg, T., Huston, J.P. 2007. Extinction-induced ―despair‖ in

the water maze, exploratory behavior and fear: Effects of chronic antidepressant treatment. Neurobiology of Learning and Memory 87; 624–634.

Toufexis, D.J., Myers, K.M., Davis, M. 2006. The effect of gonadal hormones

and gender on anxiety and emotional learning, Hormones and Behavior 50 539–549. Varea, E., Castillo-Gómez, E., Gómez-Climent, M.A., Blasco-Ibáñez,

J.M., Crespo, C., Martínez-Guijarro, F.J., Nàcher, J. 2007. Chronic antidepressant treatment induces contrasting patterns of synaptophysin and PSA-NCAM expression in different regions of the adult rat telencephalon. Eur Neuropsychopharmacol. Jul;17(8):546-57.

Wald, C., & Wu C. 2010. Biomedical research. Of mice and women: the bias in

animal models. Science, Mar 26;327 (5973):1571-2. Woolley, D.G., Vermaercke, B. Beeck, H. O. de, Wagemans, J., Gantois, I.,

D‘Hooge, R. Swinnen, S. P., Wenderoth, N. 2010. Sex differences in human virtual water maze performance: Novel measures reveal the relative contribution of directional responding and spatial knowledge. Behavioural Brain Research 208 408–414.

Yamamoto, S., Morinobu, S., Fuchikami, M., Kurata, A., Kozuru, T.,

Yamawaki, S. 2008. Effects of Single Prolonged Stress and D-Cycloserine on Contextual Fear Extinction and Hippocampal NMDA Receptor Expression in a Rat Model of PTSD. Neuropsychopharmacology, 33, 2108–2116

Yamamoto, S., Morinobu, S., Takei, S., Fuchikami, M., Matsuki, A., Yamawaki,

S., Liberzon, I. 2009. Single prolonged stress: toward an animal model of posttraumatic stress disorder. Depress Anxiety.;26 (12):1110-7.

Zucker I, Beery AK. 2010. Males still dominate animal studies. Nature, Jun

10;465(7299):690.

55

AUTHOR INFORMATION PACK

6 Jan 2011 www.elsevier.com/locate/pnp 1

PROGRESS IN NEUROPSYCHOPHARMACOLOGY & BIOLOGICAL

PSYCHIATRY

An International Research, Review, and News Journal

AUTHOR INFORMATION PACK

TABLE OF CONTENTS

• Description

• Audience

• Impact Factor

• Abstracting and Indexing

• Editorial Board

• Guide for Authors

ISSN: 0278-5846

DESCRIPTION

.

Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international

and multidisciplinary research, review and news journal. One of its main aims is to

assure rapid publication of authoritative reviews and research papers dealing with

56

experimental and clinical aspects of neuro-psychopharmacology and biological

psychiatry. Another important aim of the journal is to supply pertinent information,

provided by national and international bodies, that contributes to progress in the

scientific and professional fields. Finally, the journal intends to foster and encourage

communications between members of the communities of neuro-

psychopharmacology and biological psychiatry.

Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish

work on the actions of biological extracts unless the pharmacological active

molecular substrate and/or specific receptor binding properties of the extract

compounds are elucidated.

US National Institutes of Health (NIH) voluntary posting ("Public Access")

policy

Progress in Neuropsychopharmacology & Biological Psychiatry and Elsevier facilitate

the author's response to the NIH Public Access Policy. For more details please see

the Guide for authors

Fraudulent 'phishing' e-mails soliciting scholarly papers have been circulating

which claim to originate from Elsevier, Inc. and are directed to prospective

authors and editors. The fraudulent e-mail messages currently in circulation

generally contain "Manuscript Submission" or "Call for Papers" in the subject

line and are typically sent using e-mail accounts supported by Gmail, Hotmail

or by other free e-mail providers. Typically, the body of these messages

contain a "Call for Papers," requesting that authors submit scholarly articles

57

via e-mail for publication by Elsevier in various Elsevier journals and other

publications. Ultimately, these fraudulent e-mails involve a request for the

victims to send "handling fees" to cover the processing of the article that has

been submitted.

Please be assured that Elsevier, Inc. is in no way associated with this

fraudulent e-mail campaign. In addition, please be advised that Elsevier does

not solicit intellectual property from authors in this fashion, and does not

utilize Gmail, Hotmail, or any other free thirdparty e-mail providers in

communications with authors and editors.

AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 2

If you receive any e-mail messages that appear to be a part of this fraudulent

solicitation, DO NOT respond to the message and do not open any attachments

contained in the message. Rather, please forward the message to Elsevier's

Fraud Department at [email protected]. We will use the information

included in the message to aid in our investigation.

AUDIENCE

.

Neuroscientists, pharmacologists, psychiatrists, psychologists in both basic and

clinical research.

IMPACT FACTOR

.

2009: 2.823 © Thomson Reuters Journal Citation Reports 2010

58

ABSTRACTING AND INDEXING

.

BIOSIS

Cambridge Scientific Abstracts

Chemical Abstracts

Current Contents/BIOMED Database

Current Contents/Index to Scientific Reviews

Current Contents/Life Sciences

EMBASE

Elsevier BIOBASE

MEDLINE®

Research Alert

SCISEARCH

Science Citation Index

Scopus

EDITORIAL BOARD

.

Editor-in-Chief:

Guy Drolet, Neurosciences, Centre de Recherche du CHUL (CHUQ), RC-9800 2705

Laurier, Quebec, G1V 4G2,

Canada

Assistant Editor:

Sylvie Laforest,

Emeritus Editor:

59

Paul Bédard,

Founding Editor:

C. Radouco-Thomas*,

Editorial Board:

O. Akyol, Ankara, Turkey

H. Belmaker, Beersheva, Israel

P. Blier, Ottawa, Canada

M-H. Bloch, New Haven, CT, USA

C. Davidson, London, UK

S.I. Deutsch, Washington, DC, USA

K. Domschke, Münster, Germany

F. Graeff, Ribeirao Preto SP, Brazil

L. He, Shanghai, China

F. Holsboer, München, Germany

A.V. Kalueff, Tampere, Finland

K. Kasai, Tokyo, Japan

T. Kato, Wako, Japan

Y.-K. Kim, Ansan City, South Korea

AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 3

S.K. Kulkarni, Chandigarh, India

P-Y. Lin, Kaohsiung, Taiwan, ROC

M. Maes, Maastricht, Netherlands

K. Melkersson, Sollentuna, Sweden

D. Morilak, San Antonio, TX, USA

D. Muck-Seler, Zagreb, Croatia

60

C. Rouillard, Quebec, QC, Canada

J. Samochowiec, Szczecin, Poland

A. Serretti, Bologna, Italy

R. Silva, Natal, Brazil

H. Singh Duggal, Tecumseh, MI, USA

D. Stein, Cape Town, South Africa

R. Szeszko, Glen Oaks, NY, USA

S. Tsai, Taipei, Taiwan, ROC

P. Vezina, Chicago, IL, USA

M. Xu, Boston, MA, USA

X-Y. Zhang, Houston, TX, USA

AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 4

GUIDE FOR AUTHORS

.

INTRODUCTION

Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international

and multidisciplinary research, review and news journal. One of its main aims is to

assure rapid publication of authoritative reviews and research papers dealing with

experimental and clinical aspects of neuro-psychopharmacology and biological

psychiatry. Another important aim of the journal is to supply pertinent information,

provided by national and international bodies, that contributes to progress in the

scientific and professional fields. Finally, the journal intends to foster and encourage

communications between members of the communities of neuro-

psychopharmacology and biological psychiatry.

61

Studies on natural products The journal does not publish work on the actions of

biological extracts unless the pharmacological active molecular substrate and/or

specific receptor binding properties of the extract compounds are elucidated.

Types of paper

1. Original research articles

2. Review articles: Mini-reviews or comprehensive reviews of cutting edge work, or

syntheses of cutting edge work that has been done in the past two years

As of 1st December 2010, Letters to the Editor are no longer accepted for publication

in the journal.

Page charges

This journal has no page charges.

BEFORE YOU BEGIN

Ethics in Publishing

For information on Ethics in Publishing and Ethical guidelines for journal publication

see http://www.elsevier.com/publishingethics and

http://www.elsevier.com/ethicalguidelines.

Policy and ethics

The work described in your article must have been carried out in accordance with

The Code of Ethics of the World Medical Association (Declaration of Helsinki) for

experiments involving humans

http://www.wma.net/en/30publications/10policies/b3/index.html; EC Directive

62

86/609/EEC for animal experiments

http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm; Uniform

Requirements for manuscripts submitted to Biomedical journals http://www.icmje.org.

This must be stated at an appropriate point in the article.

Conflict of interest

All authors are requested to disclose any actual or potential conflict of interest

including any financial, personal or other relationships with other people or

organizations within three years of beginning the submitted work that could

inappropriately influence, or be perceived to influence, their work. See also

http://www.elsevier.com/conflictsofinterest.

Submission declaration

Submission of an article implies that the work described has not been published

previously (except in the form of an abstract or as part of a published lecture or

academic thesis), that it is not under consideration for publication elsewhere, that its

publication is approved by all authors and tacitly or explicitly by the responsible

authorities where the work was carried out, and that, if accepted, it will not be

published elsewhere including electronically in the same form, in English or in any

other language, without the written consent of the copyright-holder.

Contributors

Each author is required to declare his or her individual contribution to the article: all

authors must have materially participated in the research and/or article preparation,

63

so roles for all authors should be described. The statement that all authors have

approved the final article should be true and included in the disclosure.

Changes to authorship

This policy concerns the addition, deletion, or rearrangement of author names in the

authorship of accepted manuscripts:

AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 5

Before the accepted manuscript is published in an online issue: Requests to add or

remove an author, or to rearrange the author names, must be sent to the Journal

Manager from the corresponding author of the accepted manuscript and must

include: (a) the reason the name should be added or removed, or the author names

rearranged and (b) written confirmation (e-mail, fax, letter) from all authors that they

agree with the addition, removal or rearrangement. In the case of addition or removal

of authors, this includes confirmation from the author being added or removed.

Requests that are not sent by the corresponding author will be forwarded by the

Journal Manager to the corresponding author, who must follow the procedure as

described above. Note that: (1) Journal Managers will inform the Journal Editors of

any such requests and (2) publication of the accepted manuscript in an online issue

is suspended until authorship has been agreed.

After the accepted manuscript is published in an online issue: Any requests to add,

delete, or rearrange author names in an article published in an online issue will follow

the same policies as noted above and result in a corrigendum.

Copyright

64

Upon acceptance of an article, authors will be asked to complete a 'Journal

Publishing Agreement' (for more information on this and copyright see

http://www.elsevier.com/copyright). Acceptance of the agreement will ensure the

widest possible dissemination of information. An e-mail will be sent to the

corresponding author confirming receipt of the manuscript together with a 'Journal

Publishing Agreement' form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including

abstracts for internal circulation within their institutions. Permission of the Publisher is

required for resale or distribution outside the institution and for all other derivative

works, including compilations and translations (please consult

http://www.elsevier.com/permissions). If excerpts from other copyrighted works are

included, the author(s) must obtain written permission from the copyright owners and

credit the source(s) in the article. Elsevier has preprinted forms for use by authors in

these cases: please consult http://www.elsevier.com/permissions.

Retained author rights

As an author you (or your employer or institution) retain certain rights; for details you

are referred to: http://www.elsevier.com/authorsrights.

Role of the funding source

You are requested to identify who provided financial support for the conduct of the

research and/or preparation of the article and to briefly describe the role of the

sponsor(s), if any, in study design; in the collection, analysis and interpretation of

data; in the writing of the report; and in the decision to submit the paper for

65

publication. If the funding source(s) had no such involvement then this should be

stated. Please see http://www.elsevier.com/funding.

Funding body agreements and policies

Elsevier has established agreements and developed policies to allow authors whose

articles appear in journals published by Elsevier, to comply with potential manuscript

archiving requirements as specified as conditions of their grant awards. To learn

more about existing agreements and policies please visit

http://www.elsevier.com/fundingbodies.

Open access

This journal offers you the option of making your article freely available to all via the

ScienceDirect platform. To prevent any conflict of interest, you can only make this

choice after receiving notification that your article has been accepted for publication.

The fee of $3,000 excludes taxes and other potential author fees such as color

charges. In some cases, institutions and funding bodies have entered into agreement

with Elsevier to meet these fees on behalf of their authors. Details of these

agreements are available at http://www.elsevier.com/fundingbodies. Authors of

accepted articles, who wish to take advantage of this option, should complete and

submit the order form (available at

http://www.elsevier.com/locate/openaccessform.pdf). Whatever access option you

choose, you retain many rights as an author, including the right to post a revised

personal version of your article on your own website. More information can be found

here: http://www.elsevier.com/authorsrights .

66

Language and language services

Please write your text in good English (American or British usage is accepted, but not

a mixture of these). Authors who require information about language editing and

copyediting services pre- and post-submission please visit

http://webshop.elsevier.com/languageediting or our customer support site at

http://support.elsevier.com for more information.

AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 6

Submission

Submission to this journal proceeds totally online and you will be guided stepwise

through the creation and uploading of your files. The system automatically converts

source files to a single PDF file of the article, which is used in the peer-review

process. Please note that even though manuscript source files are converted to PDF

files at submission for the review process, these source files are needed for further

processing after acceptance. All correspondence, including notification of the Editor's

decision and requests for revision, takes place by e-mail removing the need for a

paper trail.

Submit your article Please submit your article via http://ees.elsevier.com/pnp/

Referees

Please submit, with the manuscript, the names, addresses and e-mail addresses of 3

potential referees. Note that the editor retains the sole right to decide whether or not

the suggested reviewers are used.

67

Genetic Association Studies

Progress in Neuro-Psychopharmacology & Biological Psychiatry is interested in

Genetics/Association studies that are replicable and generalizable. The following

guidelines are offered in pursuit of this goal. (1) Studies need to be sufficiently large.

(2) Information about subject ethnicity, and how it was determined, should be

provided. The use of an analytic strategy that controls for potential stratification, such

as family-controlled association, or structured association, is encouraged. (3) There

must be a clear description of how the phenotype was ascertained. (4) Negative

studies should always include estimates of power. Confirmation of the functional

consequences of a common disease-associated variant is useful information, but

does not substitute for a rigorous demonstration of a statistically significant

association. Analysis of pathways or candidate regional analysis is encouraged over

single gene studies. Candidate gene studies must have strong positional or biological

rationale or precedents in the literature that motivate gene choice. For studies of non-

functional variants, there should generally be sufficiently dense marker coverage to

allow a relatively comprehensive analysis of common variants within a gene or

genes. Analysis of the extent of marker coverage using standard methods to assess

linkage disequilibrium should be presented. If rare variants are being tested, the

same method of assessment (sequencing, copy number assessment, etc.) should be

used in both case and control groups. We will consider both negative and positive

association studies, as well as large replication studies. Negative studies should be

based on an attempt to replicate previous studies. Power calculations considering

reasonable effect sizes must be provided to show that the study had sufficient power

to be informative.

68

NIH voluntary posting ("Public Access")

US National Institutes of Health (NIH) voluntary posting ("Public Access")

Elsevier facilitates author response to the NIH voluntary posting request (referred to

as the NIH "Public Access Policy"; see

http://www.nih.gov/about/publicaccess/index.htm) by posting the peerreviewed

author's manuscript directly to PubMed Central on request from the author, 12

months after formal publication. Upon notification from Elsevier of acceptance, we will

ask you to confirm via email (by e-mailing us at [email protected])

that your work has received NIH funding and that you intend to respond to the NIH

policy request, along with your NIH award number to facilitate processing. Upon such

confirmation, Elsevier will submit to PubMed Central on your behalf a version of your

manuscript that will include peer-review comments, for posting 12 months after

formal publication. This will ensure that you will have responded fully to the NIH

request policy. There will be no need for you to post your manuscript directly with

PubMed Central, and any such posting is prohibited.

PREPARATION

Use of wordprocessing software

It is important that the file be saved in the native format of the wordprocessor used.

The text should be in single-column format. Keep the layout of the text as simple as

possible. Most formatting codes will be removed and replaced on processing the

article. In particular, do not use the wordprocessor's options to justify text or to

hyphenate words. However, do use bold face, italics, subscripts, superscripts etc.

When preparing tables, if you are using a table grid, use only one grid for each

69

individual table and not a grid for each row. If no grid is used, use tabs, not spaces,

to align columns. The electronic text should be prepared in a way very similar to that

of conventional manuscripts AUTHOR INFORMATION PACK 6 Jan 2011

www.elsevier.com/locate/pnp 7 (see also the Guide to Publishing with Elsevier:

http://www.elsevier.com/guidepublication). Note that source files of figures, tables

and text graphics will be required whether or not you embed your figures in the text.

See also the section on Electronic illustrations. To avoid unnecessary errors you are

strongly advised to use the "spell-check" and "grammar-check" functions of your

wordprocessor.

LaTeX

If the LaTeX file is suitable, proofs will be produced without rekeying the text. The

article should preferably be written using Elsevier's document class "elsarticle", or

alternatively any of the other recognized classes and formats supported in Elsevier's

electronic submissions system, for further information see

http://www.elsevier.com/wps/find/authorsview.authors/latex-ees-supported.

The Elsevier "elsarticle" LaTeX style file package (including detailed instructions for

LaTeX preparation) can be obtained from the Quickguide:

http://www.elsevier.com/latex. It consists of the file: elsarticle.cls, complete user

documentation for the class file, bibliographic style files in various styles, and

template files for a quick start.

Article structure

Title

The title of the paper should be brief; no longer than 100 characters in length, and

should capture and communicate the key message of your research to a broader

70

audience. To aid this, abbreviations, unless familiar to a broad audience, should be

avoided.

Subdivision - numbered sections

Divide your article into clearly defined and numbered sections. Subsections should

be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in

section numbering). Use this numbering also for internal cross-referencing: do not

just refer to "the text". Any subsection may be given a brief heading. Each heading

should appear on its own separate line.

Original research articles should be organized as follows:

Introduction

State the objectives of the work and provide an adequate background, avoiding a

detailed literature survey or a summary of the results.

Methods

This section should contain explicit, concise descriptions of all procedures, materials

and methods used in the investigation to enable the reader to judge their accuracy,

reproducibility, etc. To increase clarity, headings should be used throughout. For

example, the following subheadings, which should be numbered, could be used:

Experimental articles: Animals, Drugs, Apparatus, Experimental procedure, and

Statistical analysis.

Clinical articles: Patient population, Drug administration, Study design, Assessment

instruments, and Data analysis. Depending on the type of article they are preparing,

authors could introduce any other subheadings they find useful.

Results

This section usually contains the experimental data, but no extended discussion of

their significance. The results should be illustrated (figures and tables); data are

71

usually easier for readers to grasp if they are represented in graphic or tabular form,

rather than discursively. Graphic presentation of data is preferred. Data should not be

needlessly repeated in text. Sufficient data may allow interested but non-expert

readers to judge the variability and reliability of the results. The section should be

well structured using appropriate subheadings.

Discussion

This should be pertinent to the results. Speculative discussion is not discouraged

provided it is based on the data presented. The discussion should be as concise as

possible and well structured, using appropriate subheadings.

Conclusion

A short paragraph of conclusions (5 to 10 lines) should be included.

Essential title page information

• Title. Concise and informative. Titles are often used in information-retrieval

systems. Avoid abbreviations and formulae where possible.

AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 8

• Author names and affiliations. Where the family name may be ambiguous (e.g., a

double name), please indicate this clearly. Present the authors' affiliation addresses

(where the actual work was done) below the names. Indicate all affiliations with a

lower-case superscript letter immediately after the author's name and in front of the

appropriate address. Provide the full postal address of each affiliation, including the

country name, and, if available, the e-mail address of each author.

• Corresponding author. Clearly indicate who will handle correspondence at all

stages of refereeing and publication, also post-publication. Ensure that telephone

and fax numbers (with country and area code) are provided in addition to the e-

72

mail address and the complete postal address. Contact details must be kept up

to date by the corresponding author.

• Present/permanent address. If an author has moved since the work described in

the article was done, or was visiting at the time, a "Present address" (or "Permanent

address") may be indicated as a footnote to that author's name. The address at

which the author actually did the work must be retained as the main, affiliation

address. Superscript Arabic numerals are used for such footnotes.

Abstract

A concise and factual abstract is required. The abstract should state briefly the

purpose of the research, the principal results and major conclusions. An abstract is

often presented separately from the article, so it must be able to stand alone. For this

reason, References should be avoided, but if essential, then cite the author(s) and

year(s). Also, non-standard or uncommon abbreviations should be avoided, but if

essential they must be defined at their first mention in the abstract itself.

Graphical abstract

A Graphical abstract is optional and should summarize the contents of the article in a

concise, pictorial form designed to capture the attention of a wide readership online.

Authors must provide images that clearly represent the work described in the article.

Graphical abstracts should be submitted as a separate file in the online submission

system. Image size: Please provide an image with a minimum of 531 × 1328 pixels (h

× w) or proportionally more. Preferred file types: TIFF, EPS, PDF or MS Office files.

See http://www.elsevier.com/graphicalabstracts for examples.

73

Highlights

Highlights are mandatory for this journal. They consist of a short collection of bullet

points that convey the core findings of the article and should be submitted in a

separate file in the online submission system. Please use 'Highlights' in the file name

and include 3 to 5 bullet points (maximum 85 characters per bullet point including

spaces). See http://www.elsevier.com/researchhighlights for examples.

Keywords

Immediately after the abstract, provide a maximum of 6 keywords, using American

spelling and avoiding general and plural terms and multiple concepts (avoid, for

example, "and", "of"). Be sparing with abbreviations: only abbreviations firmly

established in the field may be eligible. These keywords will be used for indexing

purposes.

Abbreviations

Define abbreviations that are not standard in this field in a footnote to be placed on

the first page of the article. Such abbreviations that are unavoidable in the abstract

must be defined at their first mention there, as well as in the footnote. Ensure

consistency of abbreviations throughout the article.

Acknowledgements

Collate acknowledgements in a separate section at the end of the article before the

references and do not, therefore, include them on the title page, as a footnote to the

title or otherwise. List here those individuals who provided help during the research

(e.g., providing language help, writing assistance or proof reading the article, etc.).

74

Units

Follow internationally accepted rules and conventions: use the international system

of units (SI). If other units are mentioned, please give their equivalent in SI.

Drug nomenclature

Generic names should be used in text, tables and figures. Trade names and the

name and city of their manufacturer may be mentioned in parentheses in the first text

reference to the drug, but should not appear in titles, figures or tables. Chemical

names could also be used. Code numbers could be given in brackets. When a trade

name is used, it should be capitalized; general or chemical names are not

capitalized. The chemical nature of new drugs must be given when known. The form

of drug used in calculations of doses (e.g., base or salt) should be indicated.

AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 9

Footnotes

Footnotes should be used sparingly. Number them consecutively throughout the

article, using superscript Arabic numbers. Many wordprocessors build footnotes into

the text, and this feature may be used. Should this not be the case, indicate the

position of footnotes in the text and present the footnotes themselves separately at

the end of the article. Do not include footnotes in the Reference list.

Table footnotes

Indicate each footnote in a table with a superscript lowercase letter.

Artwork

Electronic artwork

75

General points

• Make sure you use uniform lettering and sizing of your original artwork.

• Save text in illustrations as "graphics" or enclose the font.

• Only use the following fonts in your illustrations: Arial, Courier, Times, Symbol.

• Number the illustrations according to their sequence in the text.

• Use a logical naming convention for your artwork files.

• Provide captions to illustrations separately.

• Produce images near to the desired size of the printed version.

• Submit each figure as a separate file.

A detailed guide on electronic artwork is available on our website:

http://www.elsevier.com/artworkinstructions

You are urged to visit this site; some excerpts from the detailed information are

given here.

Formats

Regardless of the application used, when your electronic artwork is finalised, please

"save as" or convert the images to one of the following formats (note the resolution

requirements for line drawings, halftones, and line/halftone combinations given

below):

EPS: Vector drawings. Embed the font or save the text as "graphics".

TIFF: color or grayscale photographs (halftones): always use a minimum of 300 dpi.

TIFF: Bitmapped line drawings: use a minimum of 1000 dpi.

TIFF: Combinations bitmapped line/half-tone (color or grayscale): a minimum of 500

dpi is required.

DOC, XLS or PPT: If your electronic artwork is created in any of these Microsoft

Office applications please supply "as is".

76

Please do not:

• Supply files that are optimised for screen use (like GIF, BMP, PICT, WPG); the

resolution is too low;

• Supply files that are too low in resolution;

• Submit graphics that are disproportionately large for the content.

Color artwork

Please make sure that artwork files are in an acceptable format (TIFF, EPS or MS

Office files) and with the correct resolution. If, together with your accepted article, you

submit usable color figures then Elsevier will ensure, at no additional charge, that

these figures will appear in color on the Web (e.g., ScienceDirect and other sites)

regardless of whether or not these illustrations are reproduced in color in the printed

version. For color reproduction in print, you will receive information regarding

the costs from Elsevier after receipt of your accepted article. Please indicate

your preference for color in print or on the Web only. For further information on the

preparation of electronic artwork, please see

http://www.elsevier.com/artworkinstructions.

Please note: Because of technical complications which can arise by converting color

figures to "gray scale" (for the printed version should you not opt for color in print)

please submit in addition usable black and white versions of all the color illustrations.

Figure captions

Ensure that each illustration has a caption. Supply captions separately, not attached

to the figure. A caption should comprise a brief title (not on the figure itself) and a

description of the illustration. Keep text in the illustrations themselves to a minimum

but explain all symbols and abbreviations used.

77

Tables

Number tables consecutively in accordance with their appearance in the text. Place

footnotes to tables below the table body and indicate them with superscript

lowercase letters. Avoid vertical rules. Be sparing in the use of tables and ensure that

the data presented in tables do not duplicate results described elsewhere in the

article.

AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 10

References

Citation in text

Please ensure that every reference cited in the text is also present in the reference

list (and vice versa). Any references cited in the abstract must be given in full.

Unpublished results and personal communications are not recommended in the

reference list, but may be mentioned in the text. If these references are included in

the reference list they should follow the standard reference style of the journal and

should include a substitution of the publication date with either "Unpublished results"

or "Personal communication" Citation of a reference as "in press" implies that the

item has been accepted for publication.

Web references

As a minimum, the full URL should be given and the date when the reference was

last accessed. Any further information, if known (DOI, author names, dates, reference

to a source publication, etc.), should also be given. Web references can be listed

separately (e.g., after the reference list) under a different heading if desired, or can

be included in the reference list.

References in a special issue

78

Please ensure that the words 'this issue' are added to any references in the list (and

any citations in the text) to other articles in the same Special Issue.

Reference style

Text: All citations in the text should refer to:

1. Single author: the author's name (without initials, unless there is ambiguity) and

the year of publication;

2. Two authors: both authors' names and the year of publication;

3. Three or more authors: first author's name followed by "et al." and the year of

publication.

Citations may be made directly (or parenthetically). Groups of references should be

listed first alphabetically, then chronologically.

Examples: "as demonstrated (Allan, 1996a, 1996b, 1999; Allan and Jones, 1995).

Kramer et al.

(2000) have recently shown ...."

List: References should be arranged first alphabetically and then further sorted

chronologically if necessary. More than one reference from the same author(s) in the

same year must be identified by the letters "a", "b", "c", etc., placed after the year of

publication.

Examples:

Reference to a journal publication:

Van der Geer, J., Hanraads, J.A.J., Lupton, R.A., 2000. The art of writing a scientific

article. J. Sci.

Commun. 163, 51–59.

Reference to a book:

79

Strunk Jr., W., White, E.B., 1979. The Elements of Style, third ed. Macmillan, New

York.

Reference to a chapter in an edited book:

Mettam, G.R., Adams, L.B., 1999. How to prepare an electronic version of your

article, in: Jones, B.S.,

Smith , R.Z. (Eds.), Introduction to the Electronic Age. E-Publishing Inc., New York,

pp. 281–304.

Journal abbreviations source

Journal names should be abbreviated according to

Index Medicus journal abbreviations: http://www.nlm.nih.gov/tsd/serials/lji.html;

List of serial title word abbreviations: http://www.issn.org/2-22661-LTWA-online.php;

CAS (Chemical Abstracts Service): http://www.cas.org/sent.html.

Video data

Elsevier accepts video material and animation sequences to support and enhance

your scientific research. Authors who have video or animation files that they wish to

submit with their article are strongly encouraged to include these within the body of

the article. This can be done in the same way as a figure or table by referring to the

video or animation content and noting in the body text where it should be placed. All

submitted files should be properly labeled so that they directly relate to the video file's

content. In order to ensure that your video or animation material is directly usable,

please provide the files in one of our recommended file formats with a maximum size

of 10 MB. Video and animation files supplied will be published online in the electronic

version of your article in Elsevier Web products, including ScienceDirect:

http://www.sciencedirect.com. Please supply 'stills' with your files: you can choose

80

any frame from the video or animation or make a separate image. These will be used

instead of standard icons and will personalize the link to your video data. For more

detailed instructions please visit our video instruction pages at

http://www.elsevier.com/artworkinstructions.

AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 11

Note: since video and animation cannot be embedded in the print version of the

journal, please provide text for both the electronic and the print version for the

portions of the article that refer to this content.

Supplementary data

Elsevier accepts electronic supplementary material to support and enhance your

scientific research. Supplementary files offer the author additional possibilities to

publish supporting applications, highresolution images, background datasets, sound

clips and more. Supplementary files supplied will be published online alongside the

electronic version of your article in Elsevier Web products, including ScienceDirect:

http://www.sciencedirect.com. In order to ensure that your submitted material is

directly usable, please provide the data in one of our recommended file formats.

Authors should submit the material in electronic format together with the article and

supply a concise and descriptive caption for each file. For more detailed instructions

please visit our artwork instruction pages at

http://www.elsevier.com/artworkinstructions.

Submission checklist

81

The following list will be useful during the final checking of an article prior to sending

it to the journal for review. Please consult this Guide for Authors for further details of

any item.

Ensure that the following items are present:

One Author designated as corresponding Author:

• E-mail address

• Full postal address

• Telephone and fax numbers All necessary files have been uploaded

• Keywords

• All figure captions

• All tables (including title, description, footnotes) Further considerations

• Manuscript has been "spellchecked" and "grammar-checked"

• References are in the correct format for this journal

• All references mentioned in the Reference list are cited in the text, and vice versa

• Permission has been obtained for use of copyrighted material from other sources

(including the Web)

• Color figures are clearly marked as being intended for color reproduction on the

Web (free of charge) and in print or to be reproduced in color on the Web (free of

charge) and in black-and-white in print

• If only color on the Web is required, black and white versions of the figures are also

supplied for printing purposes

For any further information please visit our customer support site at

http://support.elsevier.com.

AFTER ACCEPTANCE

82

Use of the Digital Object Identifier

The Digital Object Identifier (DOI) may be used to cite and link to electronic

documents. The DOI consists of a unique alpha-numeric character string which is

assigned to a document by the publisher upon the initial electronic publication. The

assigned DOI never changes. Therefore, it is an ideal medium for citing a document,

particularly 'Articles in press' because they have not yet received their full

bibliographic information. The correct format for citing a DOI is shown as follows

(example taken from a document in the journal Physics Letters B):

doi:10.1016/j.physletb.2010.09.059

When you use the DOI to create URL hyperlinks to documents on the web, they are

guaranteed never to change.

Proofs

One set of page proofs (as PDF files) will be sent by e-mail to the corresponding

author (if we do not have an e-mail address then paper proofs will be sent by post)

or, a link will be provided in the e-mail so that authors can download the files

themselves. Elsevier now provides authors with PDF proofs which can be annotated;

for this you will need to download Adobe Reader version 7 (or higher) available free

from http://www.adobe.com/products/acrobat/readstep2.html. Instructions on how to

annotate PDF files will accompany the proofs (also given online). The exact system

requirements are given at the Adobe site:

http://www.adobe.com/products/reader/systemreqs. If you do not wish to use the

PDF annotations function, you may list the corrections (including replies to the Query

Form) and return them to Elsevier in an e-mail. Please list your corrections quoting

83

line number. If, for any reason, this is not possible, then mark the corrections and any

other comments

AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 12

(including replies to the Query Form) on a printout of your proof and return by fax, or

scan the pages and e-mail, or by post. Please use this proof only for checking the

typesetting, editing, completeness and correctness of the text, tables and figures.

Significant changes to the article as accepted for publication will only be considered

at this stage with permission from the Editor. We will do everything possible to get

your article published quickly and accurately. Therefore, it is important to ensure that

all of your corrections are sent back to us in one communication: please check

carefully before replying, as inclusion of any subsequent corrections cannot be

guaranteed. Proofreading is solely your responsibility. Note that Elsevier may

proceed with the publication of your article if no response is received.

Offprints

The corresponding author, at no cost, will be provided with a PDF file of the article

via e-mail. For an extra charge, paper offprints can be ordered via the offprint order

form which is sent once the article is accepted for publication. The PDF file is a

watermarked version of the published article and includes a cover sheet with the

journal cover image and a disclaimer outlining the terms and conditions of use.

AUTHOR INQUIRIES

For inquiries relating to the submission of articles (including electronic submission

where available) please visit this journal's homepage. You can track accepted articles

at http://www.elsevier.com/trackarticle and set up e-mail alerts to inform you of when

an article's status has changed. Also accessible from here is information on

84

copyright, frequently asked questions and more. Contact details for questions arising

after acceptance of an article, especially those relating to proofs, will be provided by

the publisher.

© Copyright 2010 Elsevier | http://www.elsevier.com

85

IV. Considerações finais e conclusões

Os presentes resultados demonstraram que o grupo tratado com fluoxetina

manteve o aprendizado e a evocação da tarefa nos mesmos níveis que os

desempenhados pelo grupo veículo; porém exibiu uma aceleração no processo de

extinção da memória aversiva. A nortriptilina e a mirtazapina aumentaram a

velocidade de aprendizado da tarefa aversiva, o que pode ser relacionado a uma

ênfase aos estímulos aversivos, um efeito inesperado resultante do uso de

antidepressivos (Harmer et al. 2006; McGabe et al. 2010; Rawlings et al. 2010). Já

na sessão teste essas drogas impediram a extinção da tarefa. A nortriptilina

demonstrou efeitos na redução da ansiedade apenas sob um dos aspectos

etológicos, o que pode sugerir uma necessidade de maior dosagem para que

possam ser observados efeitos ansiolíticos mais expressivos em fêmeas. Essa

ausência de diferenças nos parâmetros mais clássicos do labirinto em cruz elevado

no tocante a ansiedade atenta para a importância da observação dos aspectos

etológicos no modelo utilizado. Além disso, as fêmeas tratadas com mirtazapina

exibiram uma menor atividade locomotora no treino e teste da EDLC, sugerindo um

efeito hipolocomotor da dose da droga utilizada, apesar de o mesmo não ocorrer

com machos nas mesmas condições (Rauggi 2005). Por fim, no TNF os grupos de

fêmeas tratados com fluoxetina e mirtazapina apresentaram decréscimo de

imobilidade, um resultado que sugere um efeito antidepressivo destas drogas neste

teste comportamental. O grupo tratado com fluoxetina ainda apresentou aumento do

tempo de escalada. Já a nortriptilina apresentou um resultado atípico no TNF,

sugerindo uma possível necessidade de aumento de dosagem para observação de

efeitos antidepressivos.

86

Estes resultados sugerem que a fluoxetina pode exercer sua ação terapêutica

facilitando a extinção de memórias aversivas, correlatas ou não a transtornos de

humor e ansiedade. A mirtazapina apesar de promover um efeito antidepressivo em

animais submetidos ao teste do nado forçado, não foi capaz de promover a extinção

da memória aversiva, o que sugere uma dissociação entre a melhora dos sintomas

depressivos e possíveis efeitos sobre a extinção da memória para esse fármaco.

Estudos como o nosso sugerem que a investigação das diferenças sexuais na

neurobiologia da ansiedade e transtornos associados à depressão pode contribuir

com a melhora na escolha mais adequada para o tratamento farmacológico mais

específico, com melhores efeitos em curto prazo e com menores efeitos colaterais

baseados no gênero. Além disso, nossos dados corroboram a premissa de que os

efeitos terapêuticos de ISRS podem estar relacionados à facilitação da extinção de

memórias aversivas. Mais estudos são necessários para o esclarecimento dos

mecanismos relacionados a esse efeito.

87

V. Referências

Aia, P. G., Revuelta, G. J., Cloud, L. J., Factor, S. A. 2011. Tardive Dyskinesia.

Curr Treat Options Neurol, Mar 3. American Psychiatric Association. 2000. Diagnostic and Statistical Manual of

Mental Disorders. Publication Manual. 4th ed. Washington, DC. Aragonès, E., Piñol, J. L., Labad, A. 2009. Comorbilidad de la depresión mayor con

otros trastornos mentales comunes en pacientes de atención primaria, Aten Primaria, 41(10):545–551.

Arantes-Gonçalves, F. & Coelho, R. 2006. Depression and treatment. Apoptosis,

neuroplasticity and antidepressants. Acta Médica Portuguesa. v.19, p.9-20. Arnone D., Horder, J., Cowen, P. J., Harmer, C. J. 2009. Early effects of

mirtazapine on emotional processing. Psychopharmacology, v 203, p.685–691. Austin, M.-P., Mitchell, P., Goodwin, G. M. 2001. Cognitive deficits in depression:

Possible implications for functional neuropathology, British Journal of Psychiatry, 178, 200-206.

Barros, H. M. T. & Ferigolo, M. 1998. Ethopharmacology of imipramine in the

forced-swimming test: gender differences. Neuroscience and Biobehavioral Reviews 23 279–286.

Bengtsson, H. J., Kele, J., Johansson, J. Hjorth, S. 2000. Interaction of the

antidepressant mirtazapine with α2-adrenoceptors modulating the release of 5-HT in different rat brain regions in vivo. Naunyn Schmiedeberg’s Arch Pharmacol, 362:406–412.

Bekker, M. H. J., Mens-Verhulst, J. van. 2007. Anxiety Disorders: Sex Differences

in Prevalence, Degree, and Background, But Gender-Neutral Treatment, Gender Medicine, VoL 4, Suppl. B.

Blaney, P. H. 1986. Affect and memory: a review. Psychol. Bull. 99, 229– 246.

Bruder, G. E., Stewart, J. W., Tenke, C. E., McGrath, P. J., Leite, P.,

Bhattacharya, N., Quitkin, F. M. 2001. Electroencephalographic and perceptual asymmetry differences between responders and nonresponders to an SSRI antidepressant. Biol Psychiatry. Mar 1;49(5):416-25.

Brunello, N., Davidson, J. R., Deahl, M., Kessler, R.C., Mendlewicz, J., Racagni,

G., Shalev, A. Y., Zohar, J. 2001. Posttraumatic stress disorder: diagnosis and

epidemiology, comorbidity and social consequences, biology and treatment. Neuropsychobiology. 43(3):150-62.

Calzavara, M. B., Medrano, W. A., Levin, R., Kameda, S. R., Andersen, M. L.,

Tufik, S., Silva, R. H., Frussa-Filho, R., Abilio, V. C. 2009. Neuroleptic Drugs

88

Revert the Contextual Fear Conditioning Deficit Presented by Spontaneously Hypertensive Rats: A Potential Animal Model of Emotional Context Processing in Schizophrenia. Schizophrenia Bulletin, v. 35, p. 748-759.

Castaneda, A. E., Tuulio-Henriksson, A., Marttunen, M., Suvisaari, J, Lönnqvist,

J. 2007. A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. J. Affect. Disord. Feb;106(1-2):1-27.

Cheng, Y. F., Wang, C., Lin, H. B., Li, Y. F., Huang, Y., Xu, J. P., Zhang, H. T.

2010. Inhibition of phosphodiesterase-4 reverses memory deficits produced by Aβ25-35 or Aβ1-40 peptide in rats. Psychopharmacology (Berl). Oct;212(2):181-91.

Consoni, F. T., Vital, M. A., Andreatini, R. 2006. Dual monoamine modulation for

the antidepressant-like effect of lamotrigine in the modified forced swimming test. Eur Neuropsychopharmacol, v 16(6), p. 451-458.

Cryan, J.F. & Lucki, I. 2000. Antidepressant-like behavioral effects mediated by 5-

hydroxytryptamine (2C) receptors. J. Pharmacol. Exp. Ther. 295, 1120– 1126. Cryan, J.F., Markou, A., Lucki, I. 2002. Assessing antidepressant activity in rodents:

recent developments and future needs. Trends Pharmacol. Sci..23 (5), 238– 245.

Cryan JF, Valentino RJ, Lucki I. 2005. Assessing substrates underlying the

behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev, 29:547–69.

Dagtekin, O., Marcus, H., Müller, C., Böttinger, B. W., Spöhr, F. 2010. Liquid

therapy for serotonin syndrome after intoxication with venlafaxine, lamotrigine and diazepam, Minerva Anestesiologica, v. 76.

Davis, R. & Wilde, M. I. 1996. Mirtazapine: A review of its pharmacology and

therapeutic potential in the management of major depression. CNS Drugs, 5, 389–402.

De Boer, T. 1995. The effects of mirtazapine on central noradrenergic and

serotonergic neurotransmission. Int Clin Psychopharmacol, 10: 19–23. Denizot, H., Laporte, F., Llorca, P.-M. 2009. Traitement psychotrope à long terme

dans les dépressions de l‘enfant. Archives de pédiatrie, 16, 1208–1212. Detke, M. J., Rickels, M., Lucki, I. 1995. Active behaviors in the rat forced

swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 121, 66– 72.

Detke, M. J., Johnson, J., Lucki, I. 1997. Acute and chronic antidepressant drug

treatment in the rat forced swimming test model of depression. Exp. Clin. Psychopharmacol. 5, 107– 112.

89

Diaz, S. L. & Maroteaux, L. 2011. Implication of 5-HT2B receptors in the serotonin

syndrome. Neuropharmacology. Jan 26. Dranovsky, A. & Hen, R. 2006. Hippocampal Neurogenesis: Regulation by Stress

and Antidepressants, Biol Psychiatry, 59:1136–1143 Drevets, W. 2001. Neuroimaging and neuropathological studies of depression:

implications for the cognitive-emotional features of mood disorders. Current Opinion in Neurobiology, 11:240–249.

Duman, R. S. & Monteggia L. M. A. 2006. Neurotrophic Model for Stress-Related

Mood Disorders, Biol Psychiatry, 59:1116–1127. Dunlop, B. W. & Davis, P. G. 2008. Combination Treatment With Benzodiazepines

and SSRIs for Comorbid Anxiety and Depression: A Review, Prim Care Companion J Clin Psychiatry;10:222–228.

Elaković, I., Djordjevic, A., Adzic, M., Djordjevic, J., Radojčić, M., Matić, G. 2011.

Gender-specific response of brain corticosteroid receptors to stress and fluoxetine. Brain Res. Apr 12;1384:61-8.

Esel, E., Ozsoy, S., Tutus, A., Sofuoglu, S., Kartalci, S., Bayram, F., Kokbudak,

Z., Kula, M. 2005. Effects of antidepressant treatment and of gender on serum

leptin levels in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry. May;29(4):565-70.

Fava, M. & Kendler, K. S. 2000. Major Depressive Disorder, Neuron, Vol. 28, 335–

341, November. Findling, R. L. Pagano, M. E., McNamara, N. K., Stansbrey, R. J., Faber, J.

E., Lingler, J., Demeter, C. A., Bedoya, D., Reed, M. D. 2009. The short-term

safety and efficacy of fluoxetine in depressed adolescents with alcohol and cannabis use disorders: a pilot randomized placebo-controlled trial. Child and Adolescent Psychiatry and Mental Health, v 3:11.

Freis, E. D. 1954. Mental depression in hypertensive patients treated for long periods

with large doses of reserpine. N Engl J Med. Dec 16;251(25):1006-8. Freud, S. 1914. Recordar, repetir e elaborar. Reedição de 1976.

Gabriele, A. & Packard, M. G. 2006. Evidence of a role for multiple memory systems

in behavioral extinction. Neurobiology of Learning and Memory, v.85 p.289–299.

Gambi, F., De Berardis, D., Campanella, D., Carano, A., Sepede, G., Salini, G.,

Mezzano, D., Cicconetti, A., Penna, L., Salerno, R. M., Ferro, F. M. 2005. Mirtazapine treatment of Generalized Anxiety Disorder: a fixed dose, open label study. Journal of Psychopharmacology. v.19, p.483-487.

90

Garcia-Vendugo, J. M., Doetsch, F., Wichterle, H., Lim, D. A. 1998. Architecture

and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol. Aug;36(2):234-48.

Gerritsen, L., Comijs, H. C., van der Graaf, Y., Knoops, A. J., Penninx, B. W.,

Geerlings, M. I. 2011. Depression, Hypothalamic Pituitary Adrenal Axis, and Hippocampal and Entorhinal Cortex Volumes-The SMART Medea Study. Biol Psychiatry. Mar 23.

Ghia, J. E., Park, A. J., Blennerhassett, P., Khan, W. I., Collins, S. M. 2011.

Adoptive transfer of macrophage from mice with depression-like behavior enhances susceptibility to colitis. Inflamm Bowel Dis. Jan 18.

Glannon, W. 2006. Psychopharmacology and memory. Journal of Medical Ethics.

v.32, n.2, p.74-78. Gould, E., Beylin, A., Tanapat, P., Reeves, A., Shors, T. J. 1999. Learning

enhances adult neurogenesis in the hippocampal formation, nature neuroscience, v. 2 no 3, march.

Gould, E. & Gross, C. G. 2002. Neurogenesis in adult mammals: some progress

and problems. J Neurosci. Feb 1;22 (3):619-23. Gouveia Jr, A., Afonseca, T. L., Maximino, C., Dominguez, R., Morato, S. 2008.

Influence of gender and estrous cycle in the forced swim test in rats. Psychology & Neuroscience, 1, 2, 191 – 197.

Guay, D. R. 2010. Tetrabenazine, a monoamine-depleting drug used in the treatment

of hyperkinetic movement disorders. Am J Geriatr Pharmacother. Aug;8(4):331-73.

Haddjeri, N., Blier, P., De Montigny, C. 1998. Acute and long-term actions of the

antidepressant drug mirtazapine on central 5-HT neurotransmission. Journal of Affective Disorders. v.51, p.255–266.

Harmer, C.J., Mackay, C.E., Reid, C.B., Cowen, P.J., Goodwin, G.M. 2006.

Antidepressant Drug Treatment Modifies the Neural Processing of Nonconscious Threat Cues. Biol Psychiatry, 59:816–820.

Harmer, C. J., Goodwin, G. M., Cowen, P. J. 2009. Why do antidepressants take so

long to work? A cognitive neuropsychological model of antidepressant drug action, The British Journal of Psychiatry 195, 102–108.

Harmer, C. J., Cowen, P. J., Goodwin, G. M. 2010. Efficacy markers in depression.

Journal of Psychopharmacology, June 8. Ilsley, J. E., Moffoot, A. P., O’Carroll, R. E. 1995. An analysis of memory

dysfunction in major depression. Journal of Affective Disorders, 35, 1–2.

91

Kalueff, A. V. 2007. Neurobiology of Memory and Anxiety: From Genes to Behavior.

Neural Plasticity. p.1-12. Kelly, S. J., Ostrowski, N. L., Wilson, M. A. 1999. Gender Differences in Brain and

Behavior: Hormonal and Neural Bases, Pharmacology Biochemistry and Behavior, Vol. 64, No. 4, pp. 655–664.

Kent, J. M. 2000. SNaRIs, NaSSAs, and NaRIs: new agents for the treatment of

depression. The Lancet, v.355, p.911-918, mar. Kim, J. H. & Richardson, R. 2010. New Findings on Extinction of Conditioned Fear

Early in Development: Theoretical and Clinical Implications, Biol Psychiatry 67:297–303.

Kloet, E. Ron de, Jöels, M., Holsboer, F. 2005. Stress and the brain: from

Adaptation to disease. Nature Reviews Neuroscience, Volume 6, June, 463. Krystal, J. H. & Neumeister, A. 2009. Noradrenergic and serotonergic mechanisms

in the neurobiology of posttraumatic stress disorder and resilience, Brain Research 1293; 13-23.

Lee, S. Jeong, J. Kwak, Y. Park S. K. 2010. Depression research: where are we

now? Molecular Brain, 3:8. Lopez-Rubalcava, C. & Lucki, I. 2000. Strain differences in the behavioral effects of

antidepressant drugs in the rat forced swimming test. Neuropharmacology 22, 191– 199.

Mahendran, R. & Yap, H. L. 2005. Clinical practice guidelines for depression.

Singapore Medical Journal. v.46, n.11, p.610-615. Manji, H. K., Drevets, W. C., Charney, D. S. 2001. The cellular neurobiology of

depression. Nature Med 7:541–547. Mao, J., Gold, M. S., Backonja, M. M. 2011. Combination Drug Therapy for Chronic

Pain: A Call for More Clinical Studies, The Journal of Pain, volume 12, Issue 2, Pages 157-166, February.

Marques, C. 2001. Tratamento farmacológico do transtorno obsessivo-compulsivo.

Revista Brasileira de Psiquiatria, v 23(Supl II), p.49-51. Marks, D. M. Han, C., Krulewicz, S., Pae, C., Peindl, K., Patkar, A. A., Masand P.

S. 2008. History of depressive and anxiety disorders and paroxetine response

in patients with irritable bowel syndrome: post hoc analysis from a placebo-controlled study. Prim Care Companion J Clin Psychiatry, 10:368-375.

Marks, I., Lovell, K., Noshirvani, H., Livanou, M., Thrasher, S. 1998. Treatment of

Posttraumatic Stress Disorder by Exposure and/or Cognitive Restructuring, Arch Gen Psychiatry, 55:317-325.

92

McCabe, C., Mishor, Z., Cowen, P.J., Harmer, C.J. 2010. Diminished Neural

Processing of Aversive and Rewarding Stimuli During Selective Serotonin Reuptake Inhibitor Treatment. Biol Psychiatry, 67:439–445.

Mischoulon D., Eddy, K. T., Keshaviah, A., Dinescu, D., Ross, S. L., Kass, A. E.,

Franko, D. L., Herzog, D. B. 2010. Depression and eating disorders: Treatment and course. J Affect Disord. Nov 23.

Modrzejewska, R. 2010. Comorbidity in adolescence: simultaneous declaration of

depressive, eating, obsessive-compulsive symptoms and use of psychoactive substances in the general population of 17 year old students in a big city. Psychiatr Pol. Sep-Oct;44(5):651-63.

Monfils, M. H., Cowansage, K. K., LeDoux, J. E. 2007. BDNF: linking fear learning

to memory consolidation. Molecular Pharmacology Fast Forward. p, mai. Morishita, S. & Aoki, S. 2002. Effects of tricyclic antidepressants on protein kinase

C activity in rabbit and human platelets in vivo. Journal of Affective Disorders 70 329–332.

Monteggia, L. M., Luikart, B., Barrot, M., Theobold, D., Malkovska, I., Nef, S.,

Parada, L. F., Nestler, E. J. 2007. Brain-Derived Neurotrophic Factor Conditional Knockouts Show Gender Differences in Depression-Related Behaviors. Biol Psychiatry 61:187–197.

Monti, B., Berteotti, C., Contestabile, A. 2006. Subchronic rolipram delivery

activates hippocampal CREB and arc, enhances retention and slows down extinction of conditioned fear. Neuropsychopharmacology 31, 278 e 286.

Mueller, E. M., Hofmann, S. G., Cherry, J. A. 2010. The type IV phosphodiesterase

inhibitor rolipram disturbs expression and extinction of conditioned fear in mice. Neuropharmacology 59, 1 e 8.

Nandam, L. S., Jhaveri, D. & Bartlett, P. 2007. 5-HT7, neurogenesis and

antidepressants: a promising therapeutic axis for treating depression, Clinical and Experimental Pharmacology and Physiology 34, 546–551.

Nestler, E. J. & Carlezon Jr., W. A. 2006. The Mesolimbic Dopamine Reward Circuit

in Depression. Biol Psychiatry 59:1151–1159. Newman, P. J. & Sweet, J. J. Depressive disorders. In A. E. Puente & R. J.

McCaffrey (Eds.), Handbook of neuropsychological assessment: A biopsychosocial perspective. (1992) (pp. 263–307). New York: Plenum Press.

Page, M. E., Detke, M. J., Dalvi, A., Kirby, L. G., Lucki, I. 1999. Serotonergic

mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test. Psychopharmacology (Berl.) 147, 162– 167.

93

Paizanis, E., Hamon, M., Lanfumey, L. 2007. Hippocampal Neurogenesis,

Depressive Disorders, and Antidepressant Therapy. Neural Plasticity, v. 2007, Article ID 73754, 7 pages.

Pardo, J. V., Pardo, P. J., Humes, S. W., Posner, M. I. 2006. Neurocognitive

dysfunction in antidepressant-free, non-elderly patients with unipolar depression: Alerting and covert orienting of visuospatial attention. Journal of Affective Disorders. v.92, p,71-78.

Pellow, S., Chopin, P., File, S. E., Briley, M. 1985. Validation of open:closed arm

entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. Aug;14(3):149-67.

Pellow, S. & File, S. E. 1986. Anxiolytic and anxiogenic drug effects on exploratory

activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav. Mar;24(3):525-9.

Phelps, E. A. & LeDoux, J. E. 2005. Contributions of the Amygdala to Emotion

Processing: From Animal Models to Human Behavior. Neuron, Vol. 48, 175–187, October 20.

Pittenger, C. & Duman, R. S. 2008. Stress, Depression, and Neuroplasticity: A

Convergence of Mechanisms. Neuropsychopharmacology REVIEWS 33, 88–109.

Porsolt, R. D., Le Pichon, M., Jalfre, M. 1977. Depression: a new animal model

sensitive to antidepressant treatment. Nature, v. 266, p.730-732. Porsolt, R. D., Anton, G., Blavet, N., Jalfre, M. 1978. Behavioural despair in rats: a

new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–91. Rauggi, R. Cassanelli, A., Raone, A., Tagliamonte, A., Gambarana, C. 2005.

Study of mirtazapine antidepressant effects in rats. International Journal of Neuropsychopharmacology, v.8, p. 369–379.

Rauch S. L., Shina, L. M., Phelps, E. A. 2006. Neurocircuitry Models of

Posttraumatic Stress Disorder and Extinction: Human Neuroimaging Research—Past, Present, and Future. Biol Psychiatry, 376-382.

Rawlings, N.B., Norbury, R., Cowen, P.J., Harmer C.J. 2010. A single dose of

mirtazapine modulates neural responses to emotional faces in healthy people. Psychopharmacology 01 September.

Ravnkilde, B., Videbech. P., Clemmensen, K., Egander, A., Rasmussen, N. A.

Rosenberg, R. 2002. Cognitive deficits in major depression. Scandinavian

Journal of Psychology. 43, 239–251. Reneric J. P., Bouvard, M., Stinus, L. 2002. In the rat forced swimming test, chronic

but not subacute administration of dual 5-HT/NA antidepressant treatments may produce greater effects than selective drugs. Behav. Brain Res. 15, 521–532.

94

Reneric, J. P. & Lucki, I. 1998. Antidepressant behavioral effects by dual inhibition

of monoamine reuptake in the rat forced swimming test. Psychopharmacology (Berl.) 136, 190– 197.

Ribeiro, A. M., Barbosa, F. F., Godinho, M. R., Fernandes, V. S., Munguba, H.

Alves, L. M., Melo, T. G., Barbosa, M. T., Silva, R. H. 2010. Sex differences in

aversive memory in rats: possible role of extinction and reactive emotional factors. Brain and Cognition Volume 74, Issue 2, November, Pages 145-151.

Rogóz, Z., Skuza, G., Legutko, B. 2005. Repeated treatment with mirtazapine

induces brain derived neurotrophic factor gene expression in rats. Journal of Physiology and Pharmacology. v.56, n.4, p.661-671.

Sahay, A. & Hen R. 2007. Adult hippocampal neurogenesis in depression, Nature

Neuroscience v.10; 9; September. Sánchez, C. & Hyttel, J. 1999. Comparison of the Effects of Antidepressants and

Their Metabolites on Reuptake of Biogenic Amines and on Receptor Binding, Cellular and Molecular Neurobiology, Vol. 19, No. 4.

Sen, S., Nesse, R. M., Stoltenberg, S. F., Li, S., Gleiberman, L., Chakravarti, A.,

Weder, A.B., Burmeister, M. 2003. A BDNF Coding Variant is Associated with

the NEO Personality Inventory Domain Neuroticism, a Risk Factor for Depression, Neuropsychopharmacology 28, 397–401.

Silva, R. H., Bellot, R. G., Vital, M. A. B. F., Frussa-Filho, R. 1997. Effects of Long

- Term Ganglioside GM1 Administration on a New Discriminative Avoidance Test in Normal Adult Mice. Psychopharmacology, v. 129, p. 322-328.

Silva, R. H. & Frussa-Filho, R. 2000. The plus-maze discriminative avoidance task:

a new model to study memory–anxiety interactions. Effects of chlordiazepoxide and caffeine. Journal of Neuroscience Methods. v.102, p.117–125,

Silva, R. H. Kameda, S. R., Carvalho, R. C., Rigo, G. S., Costa, K. L., Taricano, I.

D., Frussa-Filho, R. 2002. Effects of amphetamine on the plus-maze discriminative avoidance task in mice. Psychopharmacology. v.160, p.9-18.

Solomon, M. B. & Herman, J. P. 2009. Sex differences in psychopathology: Of

gonads, adrenals and mental illness. Physiology & Behavior 97; 250–258. Tian, J. S., Cui, Y. L., Hu, L. M., Gao, S., Chi, W., Dong, T. J., Liu, L.P. 2010.

Antidepressant-like effect of genipin in mice. Neurosci Lett. Aug 2;479(3):236-9. Tsai, S.-J., Hong, C.-J., Liou, Y.-J., Chen, T.-J., Chen, M.-L., Hou, S.-J., Yen, F.-

C., Yu, Y. W.-Y. 2009. Haplotype analysis of single nucleotide polymorphisms in the vascular endothelial growth factor (VEGFA) gene and antidepressant treatment response in major depressive disorder. Psychiatry Research 169; 113–117.

95

Toufexis, D. J., Myers, K. M., Davis, M. 2006. The effect of gonadal hormones and

gender on anxiety and emotional learning, Hormones and Behavior 50; 539–549.

Vázquez-Palacios, G. 2004. Antidepressant-like effects of the acute and chronic

administration of nicotine in the rat forced swimming test and its interaction with flouxetine. Pharmacology, Biochemistry and Behavior. v.78, p.165–169.

Veiel, H. 1997. A preliminary profile of neuropsychological deficits associated with

major depression. Journal of Clinical and Experimental Neuropsychology. 19, 587–603.

Weiland-Fiedler, P. Erickson, K., Waldeck, T., Luckenbaugh, D. A., Pike,

D., Bonne, O., Charney, D. S., Neumeister, A. 2004.Evidence for continuing neuropsychological impairments in depression. Journal of Affective Disorders. v.82, p.253–258.

Wing, V. C. & Shoaib, M. 2007. Examining the clinical efficacy of bupropion and

nortriptyline as smoking cessation agents in a rodent model of nicotine withdrawal. Psychopharmacology 195:303–313.

Woolley, D. G., Vermaercke, B. Beeck, H. O. de, Wagemans, J., Gantois, I.,

D’Hooge, R. Swinnen, S. P., Wenderoth, N. 2010. Sex differences in human

virtual water maze performance: Novel measures reveal the relative contribution of directional responding and spatial knowledge. Behavioural Brain Research 208 408–414.

Yaffe, K., Blackwell, T, Gore, R, Sands, L, Reus, V, Browner, W. S. 1999.

Depressive symptons and cognitive decline in nondemented elderly women. A prospective study. Archives of General Psychiatry. v.56, p.425-430.

Yamamoto, S., Morinobu, S., Takei, S., Fuchikami, M., Matsuki, A., Yamawaki,

S., Liberzon, I. 2009. Single prolonged stress: toward an animal model of

posttraumatic stress disorder. Depress Anxiety. 26 (12):1110-7. Zucker, I. & Beery, A. K. 2010. Males still dominate animal studies. Nature. Jun

10;465(7299):690.