sistema de monitoramento de consumo de …fabro/if66j/relatorios_finais/2014_1... · pouca oferta...

46
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DIRETORIA DE GRADUAÇÃO E EDUCAÇÃO PROFISSIONAL DEPARTAMENTO ACADÊMICO DE ELETRÔNICA DEPARTAMENTO ACADÊMICO DE INFORMÁTICA CURSO DE BACHARELADO EM ENGENHARIA DA COMPUTAÇÃO CAUÃ BARNEZE ROCHA HENRIQUE SIMIÃO FERREIRA LEANDRO FERREIRA HEROSO RAFAEL HENRIQUE ZALESKI SISTEMA DE MONITORAMENTO DE CONSUMO DE ÁGUA DOMÉSTICO COM A UTILIZAÇÃO DE UM HIDRÔMETRO DIGITAL TRABALHO DE DISCIPLINA – OFICINA DE INTEGRAÇÃO 3 CURITIBA 2014

Upload: vutuyen

Post on 15-Mar-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DIRETORIA DE GRADUAÇÃO E EDUCAÇÃO PROFISSIONAL

DEPARTAMENTO ACADÊMICO DE ELETRÔNICA DEPARTAMENTO ACADÊMICO DE INFORMÁTICA

CURSO DE BACHARELADO EM ENGENHARIA DA COMPUTAÇÃO

CAUÃ BARNEZE ROCHA HENRIQUE SIMIÃO FERREIRA LEANDRO FERREIRA HEROSO RAFAEL HENRIQUE ZALESKI

SISTEMA DE MONITORAMENTO DE CONSUMO DE ÁGUA DOMÉSTICO COM A UTILIZAÇÃO DE UM HIDRÔMETRO DIGITAL

TRABALHO DE DISCIPLINA – OFICINA DE INTEGRAÇÃO 3

CURITIBA

2014

Page 2: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

CAUÃ BARNEZE ROCHA HENRIQUE SIMIÃO FERREIRA LEANDRO FERREIRA HEROSO RAFAEL HENRIQUE ZALESKI

SISTEMA DE MONITORAMENTO DE CONSUMO DE ÁGUA

DOMÉSTICO COM A UTILIZAÇÃO DE UM HIDRÔMETRO DIGITAL

Trabalho de Disciplina de Graduação – Oficina de Integração 3, apresentado ao Curso de Engenharia de Computação, do Departamento Acadêmico de Eletrônica e do Departamento Acadêmico de Informática, da Universidade Tecnológica Federal do Paraná – UTFPR, como requisito parcial para obtenção da aprovação na disciplina.

Professores: Guilherme Alceu Schneider

Gustavo Benvenutti Borba

CURITIBA 2014

Page 3: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

RESUMO

ROCHA, Cauã Barneze; FERREIRA, Henrique Simião; HEROSO, Leandro Ferreira; ZALESKI, Rafael Henrique. Sistema de monitoramento de consumo de água doméstico com a utilização de um hidrômetro digital. 2014. 43 f. Relatório Final (Oficina de Integração 3) – Engenharia de Computação, Departamento Acadêmico de Informática, Universidade Tecnológica Federal do Paraná. Curitiba, 2014. O presente projeto, desenvolvido para a disciplina de Oficina de Integração 3, do curso de Engenharia de Computação, da Universidade Tecnológica Federal do Paraná, apresenta os conteúdos teóricos e a descrição do desenvolvimento de um protótipo de hidrômetro digital para captação do consumo residencial de água e exibição dos dados através de gráficos em dispositivos móveis. O sistema é composto de um equipamento que deve ser acoplado a saída de água que deseja-se monitorar e de um aplicativo desenvolvido para rodar em plataformas Android. Palavras chave: Hidrômetro Digital. Consumo de Água. Android.

Page 4: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

ABSTRACT

ROCHA, Cauã Barneze; FERREIRA, Henrique Simião; HEROSO, Leandro Ferreira; ZALESKI, Rafael Henrique. Monitoring system of domestic water consumption using a digital hydrometer. 2014. 43 p. Relatório Final (Oficina de Integração 3) – Engenharia de Computação, Departamento Acadêmico de Informática, Universidade Tecnológica Federal do Paraná. Curitiba, 2014. This project, developed to the subject of Integration Workshop 3, part of the course of Computer Engineering in the Federal Technological University of Paraná, presents the theory and a description for the development of a prototype of a digital Hydrometer to register the residential water consumption and show the data through graphics in mobile devices. The system is compounded by an equipment which have to be coupled on the water outlets aimed to monitor and an application developed to run in Android platforms. Keywords: Digital Hydrometer. Water Consumption. Android.

Page 5: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

LISTA DE ILUSTRAÇÔES

Figura 1 - Diagrama de blocos simplificado de um microcontrolador ........................ 17

Figura 2 - Real-Time Clock........................................................................................ 19

Figura 3 - Funcionamento do sensor de fluxo de água ............................................. 21

Figura 4 - Gráfico do volume de água em função do número de voltas do sensor ... 23

Figura 5 - Determinação do coeficiente ..................................................................... 24

Figura 6 – Foto do circuito do hidrômetro .................................................................. 25

Figura 7 – Tela inicial do aplicativo com botões grandes e intuitivos ........................ 26

Figura 8 - Tela de visualização do consumo ............................................................. 27

Figura 9 - Tela anterior, após o gráfico ser deslocado horizontalmente com gesto na

tela. ........................................................................................................................... 28

Figura 10 - Tela do gráfico após aumentar a resolução do gráfico até chegar no dia

09/04/2008 ................................................................................................................ 28

Figura 11 - Especificação da tabela consumo ........................................................... 29

Figura 12 - Fluxograma com as atividades de cada ator durante o processo de

transmissão de dados ............................................................................................... 31

Figura 13 – Parte inferior do invólucro ...................................................................... 32

Figura 14 – Parte superior do invólucro .................................................................... 32

Figura 15 – Processo de impressão do invólucro ...................................................... 33

Figura 16 – Processo de impressão do invólucro ...................................................... 34

Figura 17 – Parte superior do invólucro .................................................................... 35

Figura 18 – Disposição do circuito no interior do invólucro ....................................... 36

Figura 19 – Uso do sensor em uma torneira ............................................................. 37

Page 6: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

LISTA DE ABREVIATURAS, SIGLAS E ACRÔNIMOS

CPU – Central Processing Unit

CSV - Comma-separated values

EEPROM – Electrically-Erasable Programmable Read-Only Memory

I2C – Inter-Integrated Circuit

IDE – Integrated Development Environment

RTC – Real-Time Clock

SCL – Serial Clock

SDA – Serial Data

Page 7: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

SUMÁRIO

1 INTRODUÇÃO .................................................................................................. 11

1.1 TEMA ........................................................................................................... 11

1.2 DELIMITAÇÃO DO ESTUDO ........................................................................ 12

1.3 PROBLEMA .................................................................................................. 12

1.4 OBJETIVOS .................................................................................................. 13

1.4.1 Objetivo Geral ................................................................................................ 13

1.4.2 Objetivos Específicos ...................................................................................... 13

1.5 JUSTIFICATIVA............................................................................................ 14

1.6 PROCEDIMENTOS METODOLÓGICOS ........................................................ 15

1.7 EMBASAMENTO TEÓRICO .......................................................................... 16

1.8 ESTRUTURA DO TRABALHO ...................................................................... 16

2 FUNDAMENTAÇÃO TEÓRICA ........................................................................ 17

2.1 Microcontroladores e Arduino .......................................................................... 17

2.1.1 Microcontroladores ......................................................................................... 17

2.1.2 Arduino .......................................................................................................... 18

2.2 Real-Time Clock ............................................................................................. 19

2.3 Bluetooth ....................................................................................................... 20

2.4 Memória EEPROM ......................................................................................... 20

2.5 Android .......................................................................................................... 21

2.6 Sensor de fluxo de água YF-S201 ..................................................................... 21

2.7 Protocolo I2C ................................................................................................. 22

3 DESENVOLVIMENTO ...................................................................................... 22

3.1 Hardware ....................................................................................................... 22

3.2 Aplicativo ...................................................................................................... 26

3.2.1 Interface ......................................................................................................... 26

3.2.2 Lógica ............................................................................................................ 28

3.3 Comunicação entre hardware e aplicativo .......................................................... 29

3.4 Invólucro ........................................................................................................ 31

4 RESULTADOS ................................................................................................... 35

5 CONSIDERAÇÕES FINAIS ............................................................................... 39

5.1 Sugestões para trabalhos futuros ....................................................................... 39

REFERÊNCIAS ......................................................................................................... 41

Page 8: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

APÊNDICE(S) ........................................................................................................... 44

APÊNDICE A – Riscos ................................................................................................ 44

APÊNDICE B – Circuito do Sistema ............................................................................. 47

Page 9: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

11

1 INTRODUÇÃO

Setenta por cento da superfície do planeta é coberta por água, quase toda

salgada e, portanto, imprópria para o consumo humano. Apenas 2,5% desse total é

potável e a maior parte das reservas (cerca de 80%) está concentrada em geleiras

nas calotas polares [1].

Essa quantidade mínima de recursos aliada ao contínuo e intenso

crescimento demográfico ao longo dos anos, o desenvolvimento industrial e, por

consequência, o aumento do consumo de água nas grandes cidades, tem sido um

dos principais temas de discussões e palestras de conscientização por todo o

mundo.

Um assunto recorrente que há muito deixou de ser restrito às regiões áridas e

desérticas com baixa disponibilidade de água per capita, faz com que governos e

organizações de todo o mundo estejam com atenções voltadas para a criação de

políticas de consumo sustentável, programas de educação ambiental, alternativas e

soluções para a redução e controle do uso da água.

Seguindo essa linha e visando facilitar a percepção por parte de um cidadão

do consumo de água em sua residência, esse trabalho apresenta um protótipo

capaz de adquirir dados em um ponto de consumo escolhido pelo usuário e

apresentar essas informações através de gráficos em um dispositivo móvel

1.1 TEMA

De acordo com a Organização das Nações Unidas, o uso de 110 litros de

água por dia é suficiente para suprir as necessidades de consumo e higiene de uma

pessoa. Entretanto, estatísticas apontam que o brasileiro chega a consumir em

média duzentos litros de água por dia, o que representa aproximadamente 75% a

mais do consumo necessário diário recomendado [2]. E enquanto em países com

pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma

média de consumo de 15 litros diários por pessoa, nos Estados Unidos este valor

chega a 575 litros [3]. Muitas vezes este excesso é causado por falta de

conscientização, falta de controle ou simplesmente pelo descuido.

Page 10: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

12

A importância da água para a vida torna essencial que seu uso seja feito

com parcimônia. Para tanto, este projeto busca auxiliar o indivíduo no controle do

consumo em um determinado ponto da residência como, por exemplo, chuveiros,

torneiras ou máquinas de lavar.

A necessidade de um acompanhamento do consumo mais detalhado e que

possa ser feito pelo próprio consumidor é uma demanda que vem ganhando espaço

em soluções nos últimos anos. É importante ressaltar que já existem produtos e

ferramentas similares no mercado para o monitoramento do consumo de energia

elétrica em residências [4].

Inspirado em projetos de monitoramento de consumo em um determinado

ponto de uma residência, o protótipo aqui apresentado será capaz de, através da

instalação de um dispositivo de baixo custo contendo um medidor de vazão de água,

um Arduino, um RTC (Real Time Clock), uma bateria e um transmissor Bluetooth,

coletar dados que poderão ser recuperados em um dispositivo com sistema Android

e suporte à comunicação Bluetooth e apresentar essas informações através de

gráficos para o consumidor.

1.2 DELIMITAÇÃO DO ESTUDO

Esse trabalho busca auxiliar os indivíduos no controle do uso de água em

suas residências, fornecendo uma ferramenta que facilita o consumo consciente e

sustentável. Com o objetivo de desenvolver um produto acessível ao usuário final,

procurou-se componentes de baixo custo e uma interface para receber os dados que

fosse comum e de fácil aquisição: smartphones e tablets.

1.3 PROBLEMA

Atualmente, em períodos de escassez de chuvas, os governos e

distribuidoras utilizam rodízios na distribuição da água e, em casos mais severos,

até aplicações de multas para quem passa de seu consumo médio mensal, como o

acontecido recentemente em São Paulo [5].

O assunto sustentabilidade e escassez de água é bastante ativo nas

principais convenções mundiais relacionadas ao meio ambiente e, em muitas das

Page 11: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

13

discussões, são apresentadas alternativas e propostas de conscientização e melhor

uso de nossos recursos naturais.

Muitos indivíduos utilizam uma quantidade de água além do necessário para

tarefas simples do dia-a-dia e, com o sistema de registro de consumo atual, não é

possível acompanhar facilmente e adquirir consciência do quanto se está gastando

em uma atividade simples, como lavar a louça. Outro fator que pode acarretar em

altos gastos é a possibilidade de vazamentos em algum cano da residência.

A partir dos problemas apresentados, este projeto procura encontrar uma

nova maneira de medir o consumo de água em pontos isolados de residências. É

um sistema para o usuário e não para a empresa fornecedora, que proporcionará

uma visão mais nítida da quantidade de água que passa em um determinado local

no decorrer do tempo.

1.4 OBJETIVOS

Nesta seção são apresentados os objetivos geral e específicos do trabalho,

relativos ao problema anteriormente apresentado.

1.4.1 Objetivo Geral

Desenvolver uma ferramenta para monitorar o consumo de água em um

ponto de uma residência através de um dispositivo que possua sistema operacional

Android e comunicação por Bluetooth através de dados fornecidos por um

hidrômetro digital.

1.4.2 Objetivos Específicos

Levantar dados do consumo de água a cada segundo, acumulando essa

informação para obter dados em intervalos de tempo de uma hora em um

determinado ponto de uma residência escolhido pelo usuário do sistema;

Transmitir os dados de consumo armazenados no sistema de captação,

através de um transmissor Bluetooth, para um aplicativo Android em um

dispositivo com suporte a comunicação Bluetooth;

Page 12: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

14

Traçar os padrões de consumo de água do ponto onde o sistema de captação

foi acoplado e exibi-lo através de gráficos apropriados para o tipo de dado a

ser visualizado no aplicativo mobile;

Permitir ao usuário verificar o histórico de medições e ter um panorama

preciso do consumo do ponto de captação onde o sistema está acoplado

através de algoritmos de agrupamento e representação dos dados.

1.5 JUSTIFICATIVA

Os constantes debates e preocupações acerca do uso racional da água

mostram que as ações necessárias para reduzir esse consumo desenfreado devem

começar na residência de cada cidadão.

Atualmente, o controle da quantidade de água que gastamos é restrito a um

acompanhamento mensal, através da leitura realizada pela companhia de

saneamento de cada região e relativo ao consumo total da residência. Essa

estratégia não permite que o consumidor saiba o consumo exato de um ponto

específico da unidade consumidora como uma torneira, uma máquina de lavar, ou

um chuveiro.

Além disso, podemos citar os problemas de rateio da conta de água em

condomínios. Nesses, existe apenas um ou alguns medidores de água que são

utilizados para medir o consumo total do condomínio ou de conjuntos de

apartamentos. Apesar da obrigatoriedade da instalação de medidores individuais por

apartamento em alguns estados, como é o caso do Rio de Janeiro [6], essa medida

ainda é recente e só é aplicável a novas construções.

“O sistema de medição individual consiste na instalação de equipamento

capaz de medir o consumo de água de cada apartamento, fazendo com que o

morador pague somente por aquilo que consumir” [7]. Isso significa, na prática,

segundo [8], que através do monitoramento de edificações que foram adaptadas

para a leitura individual dos consumos, verifica-se uma redução no consumo global

dos edifícios na faixa de 30% e, na conta de cada condômino, em diversos casos a

redução do valor da conta supera 50%.

O avanço tecnológico possibilitou a criação de diversos dispositivos que

evitam o desperdício de água nas residências, como torneiras com sensores que

desligam automaticamente quando ninguém está utilizando, válvulas de descarga

Page 13: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

15

com diferentes opções de vazão e arejadores (“um dispositivo instalado na

extremidade da torneira que diminui a seção da passagem de água e que permite a

entrada de ar dando assim a impressão de maior pressão e volume de água”) [9].

Entretanto, existem poucas soluções no mercado que fornecem ao

consumidor uma maneira simples de acompanhar o gasto de um ponto específico de

sua residência. Com o auxílio de ferramentas tecnológicas, hoje é possível monitorar

com muito mais precisão o perfil de consumo de uma determinada residência

usando dispositivos relativamente comuns, como os smartphones e tablets.

1.6 PROCEDIMENTOS METODOLÓGICOS

A classificação da pesquisa realizada no presente trabalho, que procura

explorar técnicas mais eficazes e tecnológicas de medição de consumo de água,

tem natureza aplicada, pois pretendemos construir uma ferramenta para aplicação

prática, comum do dia-a-dia das pessoas e voltada a problemas específicos. Devido

ao fato de objetivarmos apurar a eficácia no consumo da água, a pesquisa será

qualitativa. Em relação aos objetivos, ela é predominantemente descritiva. Quanto

aos procedimentos técnicos ela se utiliza de pesquisas bibliográficas e

experimentais.

A pesquisa será feita inicialmente com o levantamento teórico sobre noções

básicas de mecânica dos fluídos para o melhor entendimento do funcionamento e

das limitações do sensor de vazão utilizado, além das características técnicas da

rede de distribuição. Em uma segunda etapa, serão feitos testes experimentais de

precisão, calibração e utilização do sensor de fluxo de água, que possibilitarão uma

correta interpretação das informações coletadas.

Possuindo uma visão mais ampla das limitações do sistema proposto,

elaborar-se-á o aplicativo para Android sem a comunicação implementada, apenas

realizando testes com dados fictícios, conjuntamente com o desenvolvimento do

protótipo de hardware inicial.

Com o protótipo funcionando e o aplicativo interpretando corretamente os

dados, será dado início a etapa final que compreende a comunicação software-

Page 14: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

16

hardware através da especificação do protocolo Bluetooth. Testes com o sistema

final serão realizados e registrados.

1.7 EMBASAMENTO TEÓRICO

Referente ao tema consumo de água, serão utilizados como referencial

teórico artigos publicados pela Organização das Nações Unidas, Unesco, Sabesp e

trabalhos de [8]. No que se refere ao desenvolvimento do sistema embarcado

utilizaremos os Datasheets disponibilizados pelos fabricantes dos componentes

utilizados e a referência oficial do microcontrolador Arduino, disponível online. Para o

desenvolvimento do aplicativo Android será utilizada a referência oficial do Google

para desenvolvedores Android, também disponível online. Para o protocolo de

comunicação de dados do sistema, o livro [10].

1.8 ESTRUTURA DO TRABALHO

O trabalho terá a estrutura abaixo apresentada.

Capítulo 1 - Introdução: são apresentados o tema, as delimitações da pesquisa, o

problema e a premissa, os objetivos da pesquisa, a justificativa, os procedimentos

metodológicos, as indicações para o embasamento teórico, e a estrutura geral do

trabalho.

Capítulo 2 - Fundamentação Teórica: são apresentados os conceitos e

equipamentos necessários para a construção do hidrômetro digital.

Capítulo 3 – Desenvolvimento: é apresentado o funcionamento do sistema de

coleta do consumo e do aplicativo mobile para a exibição dos dados.

Capítulo 4 – Apresentação e Análise dos Resultados: são apresentados os

resultados obtidos e discussões pertinentes.

Capítulo 5 – Considerações finais: serão retomadas a pergunta de pesquisa e os

seus objetivos e apontado como foram solucionados, respondidos, atingidos, por

meio do trabalho realizado. Além disto, serão sugeridos trabalhos futuros que

poderiam ser realizados a partir do estudo realizado.

Page 15: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

17

2 FUNDAMENTAÇÃO TEÓRICA

Para uma melhor compreensão e análise do funcionamento e princípios

envolvidos em um sistema de medição de vazão de água, é fundamental

entendermos todos os conceitos nesse processo, bem como as características das

tecnologias utilizadas na construção do protótipo e do aplicativo de monitoramento.

Assuntos, esses, que serão tratados no decorrer dessa seção.

2.1 Microcontroladores e Arduino

2.1.1 Microcontroladores

Um microcontrolador é um circuito integrado composto de diversos elementos

computacionais e periféricos que se comunicam entre si, como pode ser visualizado

no diagrama de blocos da Figura 1, consistindo em um sistema computacional

completo [11]. Cada componente possui uma função específica explicada

brevemente na sequência.

Figura 1 - Diagrama de blocos simplificado de um microcontrolador

Fonte: [12]

Unidade Central de Processamento (CPU): Assim como nos computadores

normais, a CPU de um microcontrolador é responsável por realizar as

operações lógicas e aritméticas, entre outras, sobre os dados recebidos;

Page 16: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

18

Memória: Onde todos os dados e programas ficam armazenados, antes,

durante e depois do processamento pela CPU;

Entradas: Dispositivos conectados nas entradas do microcontrolador

fornecem os dados para a CPU processar, estes dados vêm de um sistema

externo;

Saídas: Os dispositivos conectados nas saídas do microcontrolador recebem

os dados após o processamento feito pela CPU.

Além dos componentes principais existem vários periféricos como

conversores AD e DA e temporizadores que podem ser incluídos em um

microcontrolador. Alguns desses periféricos e informações mais detalhadas sobre o

funcionamento de um microcontrolador podem ser vistas em [11].

2.1.2 Arduino

O Arduino é uma ferramenta de hardware, mais especificamente uma placa

microcontroladora, para a criação de computadores que utilizem sensores e

atuadores que possam interagir mais com o mundo físico ao contrário de um

computador convencional. O Arduino é composto por dois componentes principais:

uma plataforma computacional física de código aberto baseada em um

microcontrolador e um ambiente de desenvolvimento para a criação de aplicações

computacionais (IDE). Essa ferramenta contém o que é necessário para sua

operação através de um computador comum, e por isso é utilizado amplamente em

ambientes didáticos. Existem vários modelos diferentes de Arduino e estes podem

ser consultados no site oficial do Arduino Team [13].

O Arduino pode ser utilizado para desenvolver objetos interativos, que

recebem entradas de uma grande variedade de chaves ou sensores, controlando

uma grande variedade de luzes, motores e outras saídas físicas. O Arduino é capaz

de armazenar aplicações criadas em seu ambiente de desenvolvimento podendo

assim realizar as funções desejadas por contra própria, sem a necessidade de um

computador [13].

O uso de um Arduino pode ser estendido através do uso de placas de circuito

periféricas contendo outros dispositivos, por exemplo um módulo Bluetooth,

Page 17: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

19

chamadas Shields. Shields são conectados diretamente ao Arduino, utilizando as

portas adequadas [14].

2.2 Real-Time Clock

Um relógio de tempo real (ou RTC, do inglês, Real-Time Clock), é um sistema

composto normalmente por um circuito integrado, conforme Figura 2, um cristal

oscilador e uma fonte de energia. O RTC é capaz de fornecer o tempo atual quando

necessário, pois o mesmo o mantém sempre atualizado, possibilitando a

equipamentos eletrônicos a implementação de funções como alarme e calendário.

Figura 2 - Real-Time Clock

Fonte: [15]

Um RTC só pode ser tão preciso quanto a sua referência usada, normalmente

um cristal oscilador. A frequência característica de um cristal depende do formato do

mesmo e pode ser controlada pelo fabricante dependo dos ângulos em que o

mesmo é cortado. Porém a manufatura de cristais com diferentes ângulos requer um

trabalho complexo e custoso [16]. Os cristais mais utilizados oscilam em frequências

de 32,768 kHz devido ao seu custo-benefício e facilidade de fabricação.

Page 18: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

20

2.3 Bluetooth

A tecnologia Bluetooth começou a nascer em 1994, quando engenheiros da

Ericsson Mobile Communications pesquisavam a viabilidade de uma tecnologia que

permitisse uma interface de rádio de baixo custo e baixo consumo de energia entre

telefones celulares e seus acessórios. Em 1997, o conceito por trás do Bluetooth já

havia se desenvolvido e se tornado mais ambicioso, buscando permitir a

comunicação entre os mais diversos tipos de dispositivos em suas trocas de dados e

trazendo funções importantes de pareamento e reconhecimento automático de

dispositivos. Entretanto, apenas em maio de 1998 o Bluetooth foi oficialmente

anunciado e a versão 1.0 de sua especificação veio em julho de 1999 [17].

2.4 Memória EEPROM

As memórias EEPROM - Eletrically Erasable Programmable Read Only

Memory - fazem parte da família de memórias não voláteis, ou seja, a informação

gravada persiste mesmo quando não há alimentação.

Essas memórias são uma evolução das memórias EPROM, as quais

permitem que o usuário apague os dados e as reprograme tão frequentemente

quanto desejado. Por essa característica, as EEPROM e as EPROM foram

projetadas originalmente para pesquisa e desenvolvimento de aplicações, em que a

necessidade de alterar o programa armazenado diversas vezes é bastante comum

[18].

A EEPROM possui diversas vantagens sobre a EPROM, dentre elas, a

capacidade de apagar e reescrever bytes individuais na matriz de memória e o fato

de poder ser apagada eletricamente, característica essa que lhe dá o nome [18].

Essa última vantagem faz com que, uma vez que o mecanismo de transporte

de cargas necessita de correntes muito baixas, o consumo das EEPROM tende a

ser menor e, além disso, o apagamento e a programação dessas podem ser feitos

no próprio circuito [18].

Page 19: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

21

2.5 Android

Inicialmente desenvolvido pela empresa Android Inc. que, posteriormente em

2005 foi adquirida pela Google, o Android é um sistema operacional mobile baseado

no kernel do Linux [19]. Com uma interface baseada na manipulação direta do

usuário, foi pensado, primeiramente, para dispositivos com telas sensíveis ao toque

como é o caso de smartphones e tablets.

O seu código fonte é liberado pelo Google sob licenças de uso open source,

apesar de os dispositivos mais recentes serem uma combinação de software

proprietário e open source.

Com grande presença no mercado de dispositivos mobile como celulares e

tablets, e com uma elevada quantidade de aplicações de terceiros desenvolvidos

para o Android, esse sistema operacional foi escolhido para o esse projeto pelo

conhecimento prévio dos envolvidos e pela capacidade de atender a grande maioria

dos donos de dispositivos mobile.

2.6 Sensor de fluxo de água YF-S201

O sensor de fluxo de água YF-S201 consiste de uma carcaça plástica, um

rotor e um sensor de efeito Hall. Conforme o fluxo de água passa pela câmara de

água do sensor, faz movimentar as pás acopladas ao rotor. A medida com que a

vazão de água aumenta, a velocidade com que o rotor gira aumenta

proporcionalmente. O sensor de efeito Hall detecta quando o rotor com as pás

completa um giro. Assim que essa volta completa é detectada, o sensor de efeito

Hall envia um pulso de 5V no cabo de saída do sensor. Essa descrição de

funcionamento é ilustrada pela Figura 3.

Figura 3 - Funcionamento do sensor de fluxo de água

Page 20: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

22

Fonte: [20]

De acordo com [21], esse sensor é capaz de trabalhar em uma vazão de até

30 L por minuto, com uma pressão não superior a 2 Mpa e possui uma margem de

erros de aproximadamente 3%.

A escolha desse sensor deu-se pelo fato do seu excelente custo benefício, já

que possui valor baixo, mas é capaz de atender as especificações do projeto. Para o

seu correto funcionamento, foi preciso determinar as suas características quanto à

razão do número de voltas (ou pulsos) por litro. Esse processo será descrito em uma

seção posterior.

2.7 Protocolo I2C

O protocolo I2C trata-se de um conjunto de especificações para construir um

barramento universal e simples que garanta a compatibilidade de circuitos

integrados de diferentes fabricantes. Sua definição foi feita inicialmente pela Philips

[22] e a comunicação projetada para utilizar um número reduzido de pinos. A

especificação lançada em 1998 permitiu uma velocidade de comunicação máxima

de até 3,4 Mbits por segundo.

Todos os dispositivos I2C comunicam-se através de 2 pinos que são

interconectados: Serial Data (SDA) e Serial Clock (SCL). Cada equipamento

conectado ao barramento pode receber um endereço via software e o limite máximo

de conexões que o barramento suporta depende apenas da carga capacitiva

máxima do barramento, que é de 400 pF.

3 DESENVOLVIMENTO

3.1 Hardware

A primeira etapa de desenvolvimento do hidrômetro digital foi a determinação

do coeficiente para calibração do sensor de fluxo de água.

Esse coeficiente é uma constante que relaciona o número de voltas do rotor

com a quantidade de água que passa através do sensor. Essa determinação do

Page 21: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

23

coeficiente é necessária devido às diferenças nos processos de fabricação e na

precisão dos componentes que fazem parte do sensor.

Para determinar a constante, foram necessárias inúmeras medições conforme

o procedimento descrito abaixo:

1 – O Sensor é conectado ao Arduino e encaixado no cano antes da torneira.

2 – Foi desenvolvido um programa para que o Arduino possa contar as voltas

do sensor, acumulá-las e mostrar o resultado a cada segundo no monitor serial.

3 – Abria-se a torneira e a água era despejada dentro de uma jarra graduada

com medições com intervalos de 50 mL e um volume máximo de 2 litros.

4 – Após um intervalo de tempo qualquer, a torneira é fechada.

5 – Registra-se o volume de água contido na jarra.

6 – O coeficiente é calculado através da divisão do número de voltas de cada

medição pelo volume de água mensurado.

7 – Após esses passos a jarra é esvaziada e o processo é retomado a partir

do passo número 3.

Esses testes foram realizados repetidamente com variados volumes e para

mais de uma torneira resultando no gráfico apresentado na Figura 4.

Figura 4 - Gráfico do volume de água em função do número de voltas do sensor

Fonte: Autoria própria

0

0,5

1

1,5

2

2,5

0 100 200 300 400 500 600 700 800 900

Vo

lum

e (L

)

Número de Voltas

Gráfico do volume de água em função do número de voltas

Page 22: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

24

Como pode-se observar na Figura 4, a razão entre o volume de água e o

número de voltas é diretamente proporcional. Com exceção de alguns pontos que

ficaram fora da reta e que podem ser explicados pela utilização de uma vazão da

torneira muito baixa e por erros oriundos de falha humana, é possível verificar que a

relação é linear.

Para determinar qual seria o coeficiente a ser utilizado para os cálculos do

consumo de água, foi traçado um gráfico correlacionando o coeficiente (nesse caso

em número de voltas por litro) com o volume de água medido, conforme mostrado

na Figura 5.

Figura 5 - Determinação do coeficiente

Fonte: Autoria própria

O gráfico da Figura 5 retrata um padrão de funcionamento do sensor muito

próximo ao especificado pelo fabricante. De todas as medidas realizadas, com

exceção de 2 ou 3 distorções já explicadas anteriormente, é possível afirmar que a

taxa de erro não foi superior a 3,5%1.

1 Equação utilizada para a determinação do erro:

���� = |����������� − ���������|

����������100[%]

0

100

200

300

400

500

600

0 0,5 1 1,5 2 2,5

Co

efic

ien

te (

Vo

ltas

/ L

)

Volume (L)

Determinação do Coeficiente

Coeficiente Coeficiente Médio

Page 23: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

25

O coeficiente encontrado através dessas medições foi de 430 voltas por litro,

um valor bem próximo do especificado pelo fabricante que é de 450 voltas por litro.

Com o coeficiente determinado, foi possível, então, integrar todos os outros

componentes do hidrômetro (Figura 6, mais detalhes no apêndice B).

Figura 6 – Foto do circuito do hidrômetro

Fonte: Autoria Própria

A cada segundo o hardware recupera de uma variável temporária o número

de voltas realizadas pelo sensor. O hidrômetro então, com base no coeficiente e no

número de voltas realizadas, calcula a quantidade de água que passou pela

tubulação naquele segundo e acumula em uma outra variável auxiliar.

Em intervalos de uma hora, o hardware recupera os valores do consumo

acumulado nessa variável e grava na memória EEPROM essas informações

juntamente com os dados referentes à data e à hora das medições fornecidos pelo

RTC.

Sempre que o usuário solicitar uma sincronização pelo aplicativo, o Arduino

recuperará as informações da EEPROM e as enviará para o dispositivo mobile via

Bluetooth de acordo com o explicado em seções posteriores.

Page 24: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

26

3.2 Aplicativo

3.2.1 Interface

O aplicativo foi desenvolvido para ser abrangente e de fácil utilização, para

que qualquer usuário final não tenha dúvidas a respeito de como acessar suas

funções. Logo que o aplicativo é aberto, o menu inicial é lançado com dois botões

grandes ao usuário, o que evita que ele selecione uma função sem ter a intenção

explícita de fazê-lo (Figura 7).

Figura 7 – Tela inicial do aplicativo com botões grandes e intuitivos

Fonte: Autoria própria

Conforme pode ser observado na Figura 7, o primeiro botão, ao topo, é a

sincronização dos dados entre o aplicativo e o dispositivo físico. O processo é todo

automatizado e não requer mais que um simples clique do usuário, sendo explicado

com mais detalhes na seção que trata da comunicação Bluetooth. O segundo botão,

por sua vez, permite ao usuário visualizar um gráfico de barras com os detalhes do

seu consumo com uma resolução máxima de uma hora. O gráfico é gerado

dinamicamente com base no banco de dados do aplicativo, que recebe os dados a

cada sincronização do usuário.

A Figura 8 apresenta uma tela de consumo. Acima, do lado esquerdo, temos

o logotipo do aplicativo, enquanto que do lado direito temos o botão voltar, que

desempenha a importante função de fechar a tela de consumo quando o usuário não

quiser mais visualizá-la. Segundo [23], o topo esquerdo é o local mais importante de

Page 25: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

27

uma aplicação para celulares, sendo o topo direito a segunda posição mais

importante e de maior visibilidade. Ao centro e ocupando a maior parte da tela fica o

gráfico de consumo, cujo eixo horizontal representa um intervalo de datas e o eixo

vertical representa o consumo, que são indicados acima das respectivas barras. É

possível aumentar a resolução da visualização, clicando em uma das barras.

Figura 8 - Tela de visualização do consumo

Fonte: Autoria própria

Ao clicar em uma das barras, o aplicativo indica, abaixo do título “consumo”,

onde o usuário clicou (em qual ano, qual mês e qual dia). E a legenda do eixo

horizontal é ajustada, além de um novo botão surgir na parte inferior da tela,

oferecendo a opção de diminuir a resolução da visualização em um nível em relação

ao atual. Existem três níveis, sendo eles: anual, mensal e diário. Para percorrer o

gráfico em relação ao eixo horizontal, já que não é possível colocar todas as barras

na tela ao mesmo tempo, o usuário deve fazer um gesto arrastando o gráfico para o

lado, o que faz com que o gráfico se desloque o equivalente a duas barras, para a

direita ou para a esquerda, conforme ilustra a Figura 9. A Figura 10 apresenta um

exemplo da máxima resolução de tempo (consumo de um dia).

Page 26: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

28

Figura 9 - Tela anterior, após o gráfico ser deslocado horizontalmente com gesto na tela.

Fonte: Autoria própria

Figura 10 - Tela do gráfico após aumentar a resolução do gráfico até chegar no dia 09/04/2008

Fonte: Autoria própria

3.2.2 Lógica

A lógica do aplicativo mobile consiste em receber os dados do hidrômetro,

tratá-los e armazená-los em um banco de dados para que possam ser exibidos

através de gráficos para o usuário.

Page 27: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

29

Os dados recebidos pelo aplicativo são gravados na tabela consumo em um

banco de dados utilizando a biblioteca Sqlite do Android, confome especificada na

Figura 11.

Figura 11 - Especificação da tabela consumo

Fonte: Autoria Própria

O aplicativo salva automaticamente os dados de consumo em uma planilha

CSV no próprio dispositivo, o que permite a visualização destes em um computador

e a realização de controles, cálculos e estatísticas mais avançadas. Esta planilha

pode ser encontrada na pasta do sistema de diretórios do dispositivo com o nome

“watermeter” e contém os dados recebidos após uma sincronização.

3.3 Comunicação entre hardware e aplicativo

O que motivou a escolha do Bluetooth na comunicação do hidrômetro digital

foi que todos os celulares com Android a partir da versão 2.3 devem,

obrigatoriamente, possuir suporte a comunicação Bluetooth e seus principais

protocolos [19]. Além disso, o transmissor possui baixo custo e baixo consumo,

permitindo um hardware acessível para o consumidor final. O resultado desta

escolha é um sistema de comunicação abrangente, de baixo consumo e baixo custo.

O módulo Bluetooth utilizado possui um alcance teórico de até dez metros, o

que é suficiente, pois entende-se que o usuário realiza a sincronização do consumo

perto do aparelho. A distância influencia negativamente na sincronização, o que

torna ela mais lenta e sujeita a erros, portanto sugere-se uma distância menor que

Page 28: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

30

três metros para uma comunicação rápida e eficaz do hidrômetro com o dispositivo

mobile.

Para assegurar que os dados recebidos pelo software foram os mesmos

dados enviados e que nada foi perdido um protocolo de comunicação foi

implementado.

A comunicação foi realizada pelo envio de strings com a seguinte construção:

no início de cada string recebida está presente o caractere “h” para informar o início

dos dados seguidos por dois dígitos informando qual o tamanho da cadeia de

caracteres de cada dado na medição e quatro dígitos para a quantidade de

medições enviadas. Há então o envio das medições, cada uma iniciando pelo

caractere “d” seguido de ano, mês, dia, hora, litro e mililitro e finalizando a string com

o caractere “t”. Exemplo de string com duas medições realizadas em 4/06/2014 às

15 e 16 horas: H150002|D201406041500156|D201406041600899|T.

Caso a string recebida no software atenda aos termos acima citados, haverá

maior confiabilidade nos dados, o que permite enviar uma confirmação ao

hidrômetro do recebimento integral destes e podendo, portanto, apagá-los da

memória. Caso contrário, o dispositivo de medição continuaria operando

normalmente e ao usuário seria solicitado, através do aplicativo, que realizasse uma

nova sincronização.

As atividades realizadas por cada ator no processo de transmissão de dados

entre o hidrômetro e o aplicativo mobile está descrito na Figura 12.

Page 29: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

31

Figura 12 - Fluxograma com as atividades de cada ator durante o processo de transmissão de dados

Fonte: Autoria própria

3.4 Invólucro

Como a utilização do sensor de fluxo envolve o contato direto com a água, foi

necessário criar um invólucro que pudesse ser capaz de conter todos os

Page 30: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

32

componentes eletrônicos, permitir que os contatos do sensor possam ser ligados no

Arduino e, acima de tudo, garantir uma vedação apropriada.

Para isso, optou-se pelo desenvolvimento de um modelo de invólucro

impresso em um impressora 3D.

O processo de criação do invólucro impresso iniciou-se com o planejamento

do seu tamanho e formato. Como mostram as Figura 13 e Figura 14, o invólucro é

retangular, com bordas arredondadas e de pequeno tamanho para facilitar o seu

transporte e sua instalação em qualquer local.

Figura 13 – Parte inferior do invólucro

Fonte: Autoria própria

Figura 14 – Parte superior do invólucro

Fonte: Autoria própria

Page 31: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

33

Para garantir que qualquer usuário possa realizar a troca das baterias

necessárias para o funcionamento do dispositivo ou de qualquer componente que

possa sofrer alguma avaria, o invólucro foi projetado para que a parte superior seja

encaixada e desencaixada de forma simples e rápida. Apesar disso, o uso de uma

borracha de vedação garante que, quando fechado, a água seja mantida fora do

interior do invólucro, onde estão os componentes eletrônicos.

Apesar de medir pouco mais de 10 cm x 6 cm x 8 cm, cada parte do invólucro

levou mais de 10 horas para ser completamente impressa. As Figuras 15 e 16

ilustram dois momentos parciais dessa impressão.

Figura 15 – Processo de impressão do invólucro

Fonte: Autoria própria

Page 32: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

34

Figura 16 – Processo de impressão do invólucro

Fonte: Autoria própria

A impressora utilizada para a impressão do invólucro funciona da seguinte

forma: O injetor de matéria esquenta e suga um filete plástico que está em uma

bobina. Na medida em que o material derrete, ele é injetado em uma base, que se

movimenta em dois eixos e cria as camadas. O processo é feito camada por

camada, assim, quando uma fica pronta, outra se inicia até que o objeto fique

totalmente pronto [24].

Page 33: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

35

4 RESULTADOS

Após a montagem do protótipo de funcionamento do sistema, foi possível

realizar o registro do consumo de água em uma torneira e armazenar os dados em

uma memória não-volátil até a sincronização com um aplicativo para dispositivos

mobile desenvolvido pela equipe. O aplicativo gerou uma tabela CSV e armazenou

no cartão de memória do aparelho e também exibiu os dados recebidos do

hidrômetro através de gráficos de fácil utilização.

Foi desenvolvido e impresso em uma impressora 3D um protótipo de

invólucro para proteger o hardware de um possível contato com água. O invólucro

mostrou-se resistente a passagem de água quando suas partes foram submersas

em um recipiente cheio de líquido.

Entretanto, apesar de planejado, o invólucro impresso possui pequenas falhas

decorrente do seu processo de fabricação. As duas partes que formam a caixa do

hidrômetro sofreram uma pequena deformação conhecida como warping durante

sua impressão. Essa deformação ocorre quando a cola necessária para segurar o

modelo 3D na base da impressora começa a se soltar e as bordas da peça dobram-

se levemente para cima [25]. Tal deformação não torna o invólucro inutilizável,

apenas pouco agradável visualmente (Figura 17).

Figura 17 – Parte superior do invólucro

Page 34: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

36

Fonte: Autoria própria

Como pode-se observar na Figura 18, a disposição do circuito no interior do

invólucro preenche um espaço razoável garantindo ao usuário a facilidade de

identificar baterias e componentes caso seja necessário trocá-los, e, como era

planejado, se houver alguma alteração de definição do projeto, permite que sejam

utilizados outros componentes no hidrômetro sem a necessidade de se desenvolver

uma outra caixa para armazenar os componentes.

Figura 18 – Disposição do circuito no interior do invólucro

Fonte: Autoria própria

Na Figura 19 é possível perceber como pode ser instalado o sensor de fluxo

em um ponto da residência. Para esse tipo de torneira foi necessário utilizar um

adaptador devido ao diâmetro da entrada do sensor ser diferente do diâmetro da

saída da torneira. Apesar de o sensor ter sido utilizado após a saída de água da

torneira, caso possível, o sensor pode ser posicionado antes da torneira sem risco

de mau funcionamento.

Page 35: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

37

Figura 19 – Uso do sensor em uma torneira

Fonte: Autoria própria

O objetivo de criar um dispositivo de baixo custo foi atingido, pois foram

gastos pouco menos de R$ 120,00 (cento e vinte reais), conforme Tabela 1, no

desenvolvimento do protótipo e o valor poderia ser até 40% menor se os

componentes fossem importados.

É importante ressaltar, entretanto, que o custo aqui discriminado não inclui o

invólucro impresso na impressora 3D. A opção por utilizar tal técnica de construção

deu-se pelo fato do material ser uma doação e, caso considerado, o custo do

equipamento e do material utilizado para fazer o invólucro poderia impossibilitar o

projeto no viés econômico.

Page 36: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

38

Tabela 1 – Relação do custo dos materiais para o desenvolvimento do projeto

QUANTIDADE PRODUTO PREÇO

1 Módulo Transmissor Bluetooth JY-MCU HC 06

R$ 39,90

1 Arduino Nano R$ 49,90

1 RTC DS1307 R$ 6,00

1 Bateria de Lítio CR2032 R$ 1,50

1 Cristal Oscilador de 32.768 kHz R$ 1,50

1 Sensor de Fluxo YF-S201 R$ 14,90

1 EEPROM 256kb AT24C256 R$ 4,30

VALOR TOTAL R$ 118,00

O resultado obtido no projeto foi o esperado e, apesar de ser um protótipo,

seu funcionamento já é uma solução do problema descrito.

Page 37: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

39

5 CONSIDERAÇÕES FINAIS

Apesar de todas as dificuldades encontradas durante o desenvolvimento

desse projeto, podemos afirmar que os objetivos foram atingidos de forma

satisfatória e que o protótipo provou ser viável no viés econômico, no que diz

respeito à usabilidade e ao seu propósito inicial que é o controle e a conscientização

do consumo racional da água.

A facilidade de uso e a simplicidade do aplicativo mobile torna o projeto apto a

ser utilizado por qualquer pessoa com um mínimo de conhecimento da plataforma

Android.

A oportunidade proporcionada no decorrer do projeto de utilizar pela primeira

vez uma impressora 3D foi de grande valia. Uma tecnologia nova e que está

começando a ganhar espaço nos setores acadêmicos e até mesmo particulares,

possibilitou a criação rápida e customizada do invólucro.

De uma forma geral, é possível perceber que, mesmo após finalizado, ainda

restaram algumas possibilidades de melhorias do projeto inicialmente proposto.

Facilidades a serem acrescentadas e características que não foram abordadas

nesse trabalho podem e devem ser utilizadas para a criação de um protótipo

melhorado conforme já argumentado.

5.1 Sugestões para trabalhos futuros

O sistema atual só permite que um hidrômetro envie dados ao aplicativo,

portanto é interessante o desenvolvimento de um sistema “multi-hidrantes” no futuro,

que permita que o usuário instale o equipamento em vários pontos de sua casa e

monitore-os através de um único dispositivo móvel.

Outra função interessante seria a sincronização automática dos dados através

da rede local da casa onde o dispositivo está instalado. Adicionando suporte a

comunicação wi-fi no sistema de medição, ele enviaria automaticamente seus dados

aos dispositivos finais, ou seja, os dispositivos móveis. Tal desenvolvimento tornaria

a tarefa de sincronização mais prática e menos dependente do usuário.

Atualmente, na primeira vez que é utilizado o dispositivo, é necessário

configurar a data e hora atual no RTC. Esse processo pode ser melhorado para que,

Page 38: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

40

quando haja a primeira sincronização do dispositivo, o dispositivo mobile envie

através do módulo Bluetooth informações contendo a data e hora atual do aparelho.

Esse dado poderia ser tratado pelo hidrômetro e enviado automaticamente ao RTC,

facilitando o processo de configuração inicial do sistema.

Page 39: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

41

REFERÊNCIAS

[1] Portal Brasil. Saiba mais sobre água, consumo consciente e recursos hídricos no Brasil. 17 set 2010. Disponível em: <http://www.brasil.gov.br/ciencia-e-tecnologia/2010/10/agua-e-consumo-consciente>. Acesso em 02 Ago 2014.

[2] SABESP. Uso racional da água. Disponível em: <http://www.sabesp.com.br/CalandraWeb/CalandraRedirect/?temp=2&temp2=3&proj=sabesp&pub=T&nome=Uso_Racional_Agua_Generico&db&docid=DAE20C6250A162698325711B00508A40>. Acesso em 12 Jul 2014.

[3] PNUD. Pôr fim à crise no setor da água e do saneamento básico. In: ONU. Relatório do desenvolvimento humano 2006. Disponível em <http://www1.folha.uol.com.br/folha/brasil/20061108-idh-capitulo_1.pdf>. Acesso em: 06 Jun 2014.

[4] Kill A Watt. P3 International. Disponível em <http://www.p3international.com/products/p4400.html>. Acesso em 25 Ago 2014.

[5] G1 Ribeirão e Franca. Alckmin anuncia multa a quem aumentar consumo de água em SP. 24 Abr 2014. Disponível em < http://g1.globo.com/sp/ribeirao-preto-franca/noticia/2014/04/geraldo-alckmin-anuncia-multa-quem-desperdicar-agua-em-sp.html>. Acesso em 16 Ago 2014.

[6] O GLOBO. Hidrômetros individuais, obrigatórios nas novas construções, são procurados também por prédios antigos. 17 mai 2011. Disponível em <http://oglobo.globo.com/economia/imoveis/hidrometros-individuais-obrigatorios-nas-novas-construcoes-sao-procurados-tambem-por-predios-antigos-2772897>. Acesso em 29 Jul 2014.

[7] XAVIER, Márcia. Medidores individuais de água reduzem consumo. O TEMPO. Economia. 14 jul 2013. Disponível em <http://www.otempo.com.br/capa/economia/medidores-individuais-de-%C3%A1gua-reduzem-consumo-1.680133>. Acesso em 02 Jul 2014.

[8] COELHO, Adalberto Cavalcanti; MAYNARD, João Carlos de Britto. Medição individualizada de água em apartamentos. Recife: Editora Comunicarte, 1999. [9] PERONA, Jean François. Eficiência do uso da água nas edificações. 2011. 49f. Monografia (Especialização em Construção Civil). Universidade Federal de Minas Gerais, Belo Horizonte, 2011. Disponível em <http://www.cecc.eng.ufmg.br/trabalhos/pg2/75.pdf>. Acesso em 02 Jul 2014.

[10] STALLINGS, Willian. Data and Computer Communications. 10ª Edição. Prentice Hall, 2013.

[11] HEATH, Steve. Embedded Systems Design. 2 ed. London: Newnes, 2003.

Page 40: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

42

[12] KINOPF, Bruno Silva; ROCHA, Cauã Barneze; CHOCIAY, Lucas; CABRAL, Mariana F. Machado; ZALESKI, Rafael Henrique. Sistema de Identificação de Participantes em Postos de Controle de Corridas de Orientação. 2013. 34 f. Relatório Final (Oficina de Integração 2) - Engenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba, 2013.

[13] Arduino Team. What is Arduino? Disponível em: <http://www.arduino.cc/en/Guide/Introduction>. Acesso em 06 Jun 2014.

[14] MCROBERTS, Michael. Beginning Arduino. New York: Apress, 2010.

[15] DS1307 Real time clock. Disponível em: <http://mlab.taik.fi/paja/?p=2837>

Acesso em 25/08/2014.

[16] Digi-Key Corporation. Enabling Timekeeping Function and Prolonging

Battery Life in Low Power Systems. Disponível em:

<http://www.digikey.com/en/articles/techzone/2011/dec/enabling-timekeeping-

function-and-prolonging-battery-life-in-low-power-systems>. Acesso em: 15 ago

2013.

[17] MILLER, Michael. Discovering Bluetooth. 2001.

[18] TOCCI, Ronald. Sistemas Digitais. 8ª Edição. Editora Pearson, 2003.

[19] Google Inc. Android 2.3 Compatibility Definition. 2010. Disponível em:

<http://static.googleusercontent.com/media/source.android.com/pt-

BR//compatibility/android-2.3-cdd.pdf>. Acesso em 15 Ago 2014.

[20] Hall effect sensor. Disponível em

<http://www.beananimal.com/media/7374/hall-effect-flow-sensor-animation.gif>

Acesso em 18 Jul 2014.

[21] Seeed Wiki. G1/2 Water Flow sensor. Disponível em

<http://www.seeedstudio.com/wiki/index.php?title=G1/2_Water_Flow_sensor>.

Acesso em 22 Jul 2014.

[22] IRAZABAL, Jean-Marc; BLOZIS, Steve. I2C Manual. Philips Semiconductors.

2003. Disponível em:

<http://www.nxp.com/documents/application_note/AN10216.pdf>. Acesso em 07 Ago

2014.

Page 41: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

43

[23] NUDELMAN, Greg. Android Design Patterns: Interaction Design Solutions for Developers. 2013.

[24] GRASEL, Grasiel Felipe. Como funciona a impressão 3D? Disponível em: <http://www.tecnocurioso.com.br/2013/como-funciona/impressao-3D> Acesso em 28 Ago 2014.

[25] Tuesday Tips: How to Minimize Warp. Disponível em: <http://cubify.com/blog/tuesday-tips-how-to-minimize-warp/> Acesso em 28 Ago 2014.

Page 42: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

44

APÊNDICE(S)

APÊNDICE A – Riscos

Projeto: Sistema de Telemetria para Controle Doméstico de Consumo de Água

Através de um Hidrômetro Digital

1º Etapa: Identificação do Risco

Denominação do Risco: Queima ou avaria do microcontrolador No da Identificação: 2

Descrição do Risco: Possíveis problemas que possam acontecer com o microcontrolador escolhido,

tais como queima ou perda por fatores diversos.

2º Etapa: Avaliação do Risco

Impacto: Alto: (X) Médio/Alto: ( ) Médio: ( ) Médio/Baixo: ( ) Baixo: ( )

O microcontrolador é uma peça fundamental do projeto, desta forma qualquer problema seria de alto

impacto.

Probabilidade: Alto: ( ) Médio/Alto: ( ) Médio: ( ) Médio/Baixo: (X) Baixo: ( )

A equipe tem experiência no manuseio do Arduino, mas mesmo assim algum problema inesperado

pode ocorrer.

3º Etapa: Resposta ao Risco

Sempre ter cuidado com o manuseio do microcontrolador e qualquer mudança sempre deve ser

avaliada e revisada por outro membro da equipe. Adquirir um microcontrolador reserva ou ter a

possibilidade de mudar para outro parecido e que tenha fácil disponibilidade.

Impacto Reavaliado: Médio Probabilidade Reavaliada: Baixo

Elaborado por: Cauã, Henrique, Leandro e Rafael Data: 07/05/2014

Page 43: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

45

1º Etapa: Identificação do Risco

Denominação do Risco: Problemas na precisão ou mal

funcionamento do sensor de fluxo.

No da Identificação: 3

Descrição do Risco: O sensor pode não possuir a precisão desejada, não atuar conforme o

esperado ou ter problemas com o limite máximo de pressão.

2º Etapa: Avaliação do Risco

Impacto: Alto: ( ) Médio/Alto: (X) Médio: ( ) Médio/Baixo: ( ) Baixo: ( )

Caso o sensor não seja compatível com as necessidades mínimas do projeto, será necessário

substituí-lo ou controlar melhor a vazão de água

Probabilidade: Alto: ( ) Médio/Alto: (X) Médio: ( ) Médio/Baixo: ( ) Baixo: ( )

Em experiências anteriores, nas disciplinas mais práticas do curso, como oficinas de integração, os

sensores já foram fonte de problemas nos mais variados tipos de projeto.

3º Etapa: Resposta ao Risco

Estudar detalhadamente as características dos sensores disponíveis e escolher o que melhor se

adequa ao projeto. Possuir uma lista de sensores que possam substituir o escolhido sem que afete o

funcionamento do sistema. Sempre testar o sistema em um ambiente controlado

Impacto Reavaliado: Médio Probabilidade Reavaliada: Baixo

Elaborado por: Cauã, Henrique, Leandro e Rafael Data:07/05/2014

Page 44: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

46

1º Etapa: Identificação do Risco

Denominação do Risco: Comunicação sem fio entre estação de

medição e base não estabelecida.

No da Identificação: 1

Descrição do Risco: Problemas com o módulo Bluetooth, sem o qual a estação base não seria

capaz de receber os dados do sistema embarcado, e consequentemente, não apresentar os dados

das medições ao usuário, assim não atingindo o objetivo do projeto.

2º Etapa: Avaliação do Risco

Impacto: Alto: ( ) Médio/Alto: (X) Médio: ( ) Médio/Baixo: ( ) Baixo: ( )

O sistema embarcado poderia continuar registrando as medições, porém essas não seriam mostradas

ao usuário.

Probabilidade: Alto: ( ) Médio/Alto: ( ) Médio: (X) Médio/Baixo: ( ) Baixo: ( )

Devido a falta de conhecimento pleno do funcionamento do módulo de bluetooth, a equipe está sujeita

a complicações de implementação, mas devido ao alto número de referencial disponível na internet

com problemas semelhantes, esse risco não se torna alto.

3º Etapa: Resposta ao Risco

Estratégias e Ações: Estudar detalhadamente o módulo e a especificação Bluetooth. Manter sempre

uma documentação bem detalhada e fácil de se usar. Adquirir um módulo reserva para casa de

avaria no principal.

Impacto Reavaliado: Médio/Baixo Probabilidade Reavaliada: Baixo

Elaborado por: Cauã, Henrique, Leandro e Rafael Data: 07/05/2014

Page 45: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

47

APÊNDICE B – Circuito do Sistema

Page 46: SISTEMA DE MONITORAMENTO DE CONSUMO DE …fabro/IF66J/Relatorios_Finais/2014_1... · pouca oferta de água, como Angola, Camboja, Etiópia, Haiti e Ruanda há uma média de consumo

48