programa de pós-graduação em genética, conservação e...

126
Instituto Nacional de Pesquisas da Amazônia INPA Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva Filogenia e biogeografia de três famílias de aves do Neotrópico Mateus Ferreira Manaus, Amazonas Fevereiro, 2018

Upload: others

Post on 12-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

Instituto Nacional de Pesquisas da Amazônia – INPA

Programa de Pós-Graduação em Genética, Conservação

e Biologia Evolutiva

Filogenia e biogeografia de três famílias de aves do

Neotrópico

Mateus Ferreira

Manaus, Amazonas

Fevereiro, 2018

Page 2: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

Mateus Ferreira

Filogenia e biogeografia de três famílias de aves do

Neotrópico

Orientador: Dra. Camila Cherem Ribas

Tese apresentada ao Instituto Nacional de

Pesquisas da Amazônia como requisito para

obtenção do grau de doutor em Genética,

Conservação e Biologia Evolutiva.

Manaus, Amazonas

Fevereiro, 2018

Page 3: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

ii

Folha reservada para a banca julgadora da versão final da tese 1

2

Page 4: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

iii

Ficha Catalográfica 3

4

Page 5: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

iv

Agradecimentos 5

Agradeço primeiramente a minha orientadora Camila Ribas, pela paciência e confiança 6

que depositou em mim durante esses anos de orientação. Sem sombra de dúvidas, esse trabalho 7

não seria possível sem essa amizade e parceria. 8

Ao meu co-orientador, Joel Cracraft, com quem tive a sorte de trabalhar durante o meu 9

doutorado sanduíche. Pelas excelentes conversas e orientações sobre biogeografia e sobre os 10

padrões e processos que moldaram a diversidade de aves no mundo. 11

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e ao 12

programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, do Instituto 13

Nacional de Pesquisas da Amazônia, pela concessão da bolsa de doutorado no país e bolsa 14

sanduíche (# 88881.133440/2016-01), que tornaram este projeto possível. 15

Aos curadores e responsáveis pelas coleções científicas que gentilmente cederam 16

material para que este trabalho fosse desenvolvido: Fátima Lima e Antonita Santana (MPEG); 17

Marlene Freitas (INPA); Nate Rice (ANSP), Cristina Miyaki (LGEMA), Donna Dittman e 18

Robb Brumfield (LSU), Paul Sweet e Tom Trombone (AMNH), Mark Robbins (KU), John 19

Bates e Ben Marks (FMNH), Brian K. Schmidt (USNM), Sharon Birks (UWBM). E, a todas as 20

pessoas envolvidas nas expedições de coleta dessas institutições. 21

Ao projeto “Dimensions US-Biota: Assembly and evolution of the Amazon biota and 22

its environment: an integrated approach”, um projeto financiado conjuntamente pela Fundação 23

de Amparo à Pesquisa de São Paulo (FAPESP #2012/50260-6) e pelo National Science 24

Fundation (NSF DEB 1241056). Cujo apoio e financiamento foram essenciais para a execução 25

das várias etapas desse doutorado. 26

A todos os colegas do EBBA, pela constante ajuda e pelas excelentes discussões e 27

incentivos, e pelo café, especialmente pelos cafés: Robs, Fernanda, Rafael, Claudinha, Érico, 28

Erik, Lídia, Renatinha, Jessica, Nelson, Carol, Waleskinha e todo mundo que passou por aqui. 29

Ao pessoal que me aguentou durante esse doutorado: Maricota, Leandro, Marina, Ana, 30

Marizita, Derek, Miquéias, Pedro, Cadu e Manu. Em especial à Romina, pela caminhada lado 31

a lado durante toda a execução desse projeto, pelos puxões de orelha quando eu precisei e por 32

ter me aguentado todo esse período. 33

Ao pessoal do LTBM, Giselle e Paula, pela excelente companhia, pelos cafés e ajudas 34

quando precisei. 35

Page 6: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

v

To everyone who received me at the AMNH during my sandwich fellowship: Lydia, 36

Bill, Tom, Paul, Gabi, Brian, Luke, and Peter. A special thanks to Jessica and Laís for all the 37

support and friendship during my time in NY. 38

Também gostaria de agradecer ao Laboratório Nacional de Computação Científica 39

(LNCC/MCTI) por fornecer recursos de computação de alto desempenho através do 40

supercomputador SDumont, fundamentais para as análises realizadas neste estudo. 41

Por fim, um agradecimento especial para a minha família, que me apoiou 42

incondicionalmente em todo esse percurso, e cuja ajuda foi essencial para a finalização deste 43

doutorado. 44

45

Page 7: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

vi

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

“Nothing in biology makes sense except in the light of evolution” 65

Theodosius Dobzhansky 66

67

“Life and Earth evolve together” 68

Leon Croizat 69

70

Page 8: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

vii

71

Resumo 72

O Neotrópico é uma das regiões com os maiores índices de biodiversidade do planeta e muito 73

tem se questionado sobre a origem de tamanha diversidade. Acredita-se que os padrões de 74

diversidade atual dentro da região sejam um resultado da complexa história geomorfológica e 75

climática da região. Entre os eventos geomorfológicos mais discutidos estão o soerguimento 76

dos Andes e consequente reestruturação da drenagem continental, e o fechamento do Istmo do 77

Panamá, que permitiu a troca intercontinental de biotas. Neste trabalho foram selecionadas três 78

famílias de aves do Neotrópico. A família Trogonidae tem uma distribuição Pantropical, 79

ocorrendo também nas regiões subtropicais e tropicais da África e Ásia, no entanto, a maior 80

diversidade encontra-se justamente na região Neotropical. As famílias Bucconidae e Galbulidae 81

são duas famílias irmãs endêmicas do Neotrópico. Foram selecionadas amostras de todas as 82

espécies e quase todas as subespécies descritas para os três grupos. Para as espécies amplamente 83

distribuídas foram selecionadas amostras ao longo de toda a distribuição e uma análise prévia 84

para verificar a estrutura filogeográfica de cada grupo, com base nesses resultados, foram 85

selecionadas amostras para o sequenciamento de milhares de loci de regiões Ultra Conservadas 86

(Ultraconserved Elements, UCE). Dessa forma, compilamos três estudos nessa tese. No 87

primeiro capítulo, foi estudado um complexo de aves da família Galbulidae associada aos 88

ambientes de areia branca na região Amazônica. Através da comparação entre marcadores 89

moleculares com diferentes métodos de herança, DNA mitocondrial e nuclear (UCE), pudemos 90

observar um conflito entre esses dois marcadores. Através deste conflito foi possível propor um 91

modelo de diversificação para os ambientes de areia branca na região. No segundo capítulo 92

analisamos a diversificação global da família Trogonidae, com o auxílio dos UCEs 93

reconstruímos a relação filogenética entre todas as espécies da família e estimamos uma árvore 94

datada da diversificação de Trogonidae. No terceiro e último capítulo, analisamos os padrões 95

de diversificação das famílias Galbulidae e Bucconidae através de uma abordagem 96

filogeográfica e filogenética. Neste trabalho pudemos observar que a diversidade do grupo se 97

encontra claramente subestimada. 98

99

100

101

Page 9: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

viii

Abstract 102

The Neotropical region has one of the highest biodiversity index in the planet and several 103

hypotheses have been proposed to explain the origin of such diversity. Currently, landscape 104

and climatic evolution are credited to be the two main processes responsible for shaping the 105

patterns. Landscape evolution includes, for example, the Andean uplift and consequent 106

continental drainage reconfiguration, and the closure of the Isthmus of Panama, which 107

allowed the Great American Biotic Interchange. In the present study we selected three 108

Neotropical families of birds. Trogonidae has a Pantropical distribution, members of this 109

family inhabit tropical and subtropical regions of Africa, Asia, however, the highest diversity 110

is currently found in the Americas. Galbulidae and Bucconidae are sister families and 111

endemics to the Neotropics. WE sampled all species and almost all subspecies currently 112

recognized for this three families, and for widespread species we thoroughly sampled 113

throughout their distributions to uncover hidden phylogeographic patterns. Based on these 114

results, we selected the samples to sequence thousands of Ultraconserved Elements (UCE). 115

Thus, we compiled three studies for this thesis. In the first chapter, we studied one Galbulidae 116

species complex associated with the Amazonian White-sand environments. We compared 117

between molecular markers that have different heritage systems, the mtDNA and nuDNA 118

(UCE), where we recovered contrasting histories between markers, and based on these results 119

we proposed a diversification model for the White-sand environments. In the second chapter, 120

we analyzed the global diversification of Trogonidae, employing thousands of UCE loci to 121

propose a phylogenetic hypothesis between all species currently recognized, and we also 122

estimated a fossil calibrated time tree for Trogonidae diversification. At last, in the third 123

chapter, we analyzed the diversification patterns for Galbulidae and Bucconidae using a 124

phylogeographic/phylogenetic approach. In this chapter it was clear how these groups 125

diversity in underestimated by currently taxonomic approach. 126

127

Page 10: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

ix

Sumário 128

129

Agradecimentos .................................................................................................. iv 130

Resumo ............................................................................................................... vii 131

Abstract ............................................................................................................. viii 132

Introdução Geral ................................................................................................. 1 133

Objetivos............................................................................................................... 7 134

Capítulo 1 ............................................................................................................. 8 135

Abstract ............................................................................................................................................ 10 136

1. Introduction ............................................................................................................................. 11 137

2. Methods .................................................................................................................................... 13 138

2.1. Taxon sampling ................................................................................................................. 13 139

2.2. DNA extraction, amplification and sequencing................................................................. 14 140

3. Results ...................................................................................................................................... 17 141

3.1. Sanger sequencing and haplotype networks ..................................................................... 17 142

3.2. mtDNA genome and time tree ........................................................................................... 18 143

3.3. UCE sequencing, RAxML and Species trees ..................................................................... 18 144

4. Discussion ................................................................................................................................. 19 145

4.1. mtDNA and nuDNA incongruence .................................................................................... 19 146

4.2. Biogeography of WSE avifauna ........................................................................................ 23 147

4.3. Evolution in the White-sand environments ........................................................................ 24 148

5. Conclusion ................................................................................................................................ 26 149

Acknowledgements .......................................................................................................................... 27 150

Funding ............................................................................................................................................ 27 151

References ........................................................................................................................................ 28 152

Capítulo 2 ........................................................................................................... 38 153

Abstract ............................................................................................................................................ 39 154

Introduction ..................................................................................................................................... 40 155

Results .............................................................................................................................................. 43 156

UCE sequencing........................................................................................................................... 43 157

Phylogenetic inference ................................................................................................................ 43 158

Time-calibrated tree .................................................................................................................... 44 159

Discussion ......................................................................................................................................... 44 160

Phylogenomic contribution to the reconstruction of Trogonidae diversification .................. 44 161

Diversification and biogeography of Trogons ........................................................................... 46 162

Africa and Asia diversification ................................................................................................... 48 163

Neotropical diversification ......................................................................................................... 50 164

Page 11: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

x

Conclusion ........................................................................................................................................ 52 165

Materials and Methods ................................................................................................................... 53 166

Taxon sampling and DNA extraction ........................................................................................ 53 167

UCE and exons assembly ............................................................................................................ 53 168

Phylogenetic relationships and species tree analysis ................................................................ 54 169

Dating analysis ............................................................................................................................. 55 170

Acknowledgements .......................................................................................................................... 55 171

References ........................................................................................................................................ 56 172

Capítulo 3 ........................................................................................................... 71 173

Abstract ............................................................................................................................................ 72 174

Introduction ..................................................................................................................................... 73 175

Material and Methods ..................................................................................................................... 75 176

Sampling and DNA isolation ......................................................................................................... 75 177

Phylogeographic structure and UCE sampling ............................................................................ 76 178

UCE assembly ............................................................................................................................... 76 179

Phylogenetic relationship .............................................................................................................. 77 180

Results .............................................................................................................................................. 77 181

Phylogeographic results ................................................................................................................ 77 182

UCE sequencing ............................................................................................................................ 78 183

Phylogenetic results ...................................................................................................................... 78 184

Discussion ......................................................................................................................................... 79 185

Phylogenetic results ...................................................................................................................... 79 186

Galbulidae systematics .................................................................................................................. 80 187

Bucconidae systematics ................................................................................................................. 83 188

Conclusion ........................................................................................................................................ 88 189

Acknowledgements .......................................................................................................................... 88 190

References ........................................................................................................................................ 89 191

Síntese Geral .................................................................................................... 107 192

Referências Bibliográficas .............................................................................. 108 193 194

195

196

197

Page 12: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

1

198

199

Introdução Geral 200

201

O Neotrópico é uma das regiões biogeográficas com uma das maiores biodiversidades 202

do mundo (Jetz et al., 2012; Holt et al., 2013), mesmo que uma grande parcela dessa diversidade 203

ainda seja desconhecida (Kier et al., 2005; Hopkins, 2007; Barrowclough et al., 2016). Na 204

região Neotropical, os biomas Mata Atlântica, Cerrado e Amazônia despontam como hotspots 205

de biodiversidade altamente ameaçados pela ação humana (Myers et al., 2000; Mittermeier et 206

al., 2003; Colombo e Joly, 2010). Em especial para a região Amazônica, que abrange mais de 207

40% da área total do Neotrópico, desde que Wallace (1852), fez suas primeiras observações 208

sobre a importância dos rios na delimitação da distribuição de diferentes espécies de primatas, 209

vários trabalhos foram realizados demonstrando a importância dos afluentes do rio Amazonas 210

na estruturação da diversidade alfa da região (Vanzolini e Willians, 1970; Cracraft, 1985; 211

Haffer, 1985; Ávila-Pires, 1995). A comparação e aparente congruência dos padrões de 212

distribuição geográfica permitiu a elaboração de algumas hipóteses sobre quais processos 213

poderiam ter dado origem a esses padrões (revisões em Haffer (1997) e Leite e Rogers (2013)), 214

incluindo as variações climáticas do Pleistoceno, em especial o Último Máximo Glacial (LGM 215

– Last Glacial Maximum, ca. 20.000 anos) (Haffer, 1969; Brown et al., 1974); a influência das 216

incursões marinhas (Nores, 1999; 2004); e a formação dos rios da bacia Amazônica (Bates et 217

al., 2004; Ribas et al., 2012). Contudo, essas hipóteses foram formuladas com base apenas na 218

distribuição geográfica dos táxons, com o advento da filogeografia (Avise et al., 1987; Avise, 219

2009) e técnicas de datação molecular (Bromham e Penny, 2003; Bromham et al., 2017) novas 220

teorias foram propostas e além da congruência entra a distribuição geográfica o tempo de 221

diversificação também passou a fazer parte da comparações (Donoghue e Moore, 2003). Como 222

consequência, a teoria dos refúgios associados aos eventos climáticos do LGM foi parcialmente 223

rejeitada, já que as espécies se mostraram mais antigas que os ciclos glaciais mais recentes 224

(Colinvaux et al., 2000; Bush e Oliveira, 2006). As incursões marinhas, por outro lado, seriam 225

muito antigas para explicar a origem das espécies (Hoorn, 1993), favorecendo o modelo da 226

hipótese dos rios como barreira. 227

Atualmente, no entanto, o que sabemos sobre a complexidade da diversidade Amazônica 228

sugere que mais de um processo está por trás de sua origem (Bush, 1995; Bates et al., 2008; 229

Smith et al., 2014). Todos os eventos que moldaram a paisagem do Neotrópico ao longo do 230

Page 13: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

2

tempo podem ter influenciado a diversificação da biota, por exemplo: A) o fim do “isolamento 231

esplêndido” (Simpson, 1980; Dacosta e Klicka, 2008) após o estabelecimento do Istmo do 232

Panamá (Haug e Tiedeman, 1998; Coates e Stallard, 2013; Lessios, 2015; Odea et al., 2016). 233

B) O soerguimento da cadeia de montanha dos Andes (Garzione et al., 2008; Hoorn et al., 2010; 234

Horton, 2018), que influenciou drasticamente não só a drenagem da bacia Amazônica (Hoorn 235

e Wesselingh, 2010; Latrubesse et al., 2010; Shephard et al., 2010; Nogueira et al., 2013; Hoorn 236

et al., 2017), como também o clima de todo o continente (Hartley, 2003; Ehlers e Poulsen, 237

2009; Insel et al., 2009). C) A influência das flutuações climáticas do Pleistoceno também 238

voltou a fazer parte das discussões, especialmente com relação ao estabelecimento de diferentes 239

regimes de precipitação dentro do continente (Cheng et al., 2013; Wang et al., 2017). 240

Dessa forma, faz-se necessário investigar não somente a evolução do modelo através das 241

variáveis biológicas, mas também quais processos físicos podem ter influenciado a sua 242

diversificação (Baker et al., 2014). Por exemplo, o estabelecimento do atual curso 243

transcontinental do rio Amazonas, ainda bastante discutido na literatura, varia entre o final do 244

Mioceno (10 – 7 Ma) (Hoorn e Wesselingh, 2010; Hoorn et al., 2017), início do Plioceno (~5 245

Ma) (Latrubesse et al., 2010), ou ainda, durante o Pleistoceno (2,5 Ma) (Nogueira et al., 2013; 246

Rossetti et al., 2015). Nesse sentido, estudando um gênero de aves (Psophiidae: Psophia) que 247

é restrita aos ambientes de terra-firme, e dessa forma suscetível às mudanças na drenagem da 248

Amazônia, Ribas et al. (2012) propuseram um modelo de diversificação da fauna de terra firme 249

ao correlacionar os eventos de diversificação das espécies do gênero ao estabelecimento de 250

barreiras associadas aos principais afluentes da bacia, favorecendo o modelo do 251

estabelecimento do rio Amazonas durante o Pleistoceno. O modelo proposto por Ribas et al. 252

(2012) sugere que para compreender os fatores que influenciaram a evolução da paisagem, 253

como o efeito da formação de um determinado rio na diversificação de espécies de terra-firme, 254

deve-se buscar padrões congruentes, temporais e espaciais, de diversificação em grupos que 255

serão de fato afetados diretamente pela barreira (e.g. Polo, (2015)). Em contraponto, análises 256

que buscam explicar a diversificação na Amazônia através de um único processo, como por 257

exemplo, a importância dos rios como barreira utilizando uma ampla gama de táxons com 258

nichos variados (Oliveira et al., 2017; Santorelli et al., 2018; Smith et al., 2014) tendem a 259

refutar esta teoria, já que diferentes organismos respondem de diferentes maneiras aos 260

processos e eventos históricos. Dessa forma, aceitando que a diversificação na Amazônia é 261

inerentemente complexa, o teste de hipóteses deve ser feito de maneira dirigida, ou seja, deve-262

se buscar grupos taxonômicos que tenham sido potencialmente influenciados pelas barreiras 263

Page 14: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

3

em questão. Só assim será possível estabelecer a importância biológica de um determinado 264

evento e gerar dados importantes para o estabelecimento dos modelos de evolução 265

geomorfológica da região (Baker et al., 2014). 266

Essa iluminação recíproca entre os processos físicos e bióticos, no entanto, só é possível 267

levando em consideração o fato de que qualquer evento de diversificação só pode ser 268

correlacionado com um evento biogeográfico se duas condições forem respeitadas: 1) as 269

unidades biológicas utilizadas devem ser comparáveis entre si e devem representar linhagens 270

com uma história evolutiva única; 2) a relação filogenética entre essas linhagens deve 271

representar de fato a história de diversificação do grupo. 272

A primeira condição refere-se ao fato de que as unidades utilizadas no estudo devem 273

representar linhagens independentes. Geralmente, entende-se que espécies devem ser a unidade 274

básica para qualquer estudo de ecologia, evolução, ou biogeografia, no entanto, essa prática 275

pode ser particularmente problemática na Amazônia, uma vez que grande parte das espécies 276

amplamente distribuídas pela região na realidade representam um complexo de linhagens 277

evolutivas independentes (Ribas et al., 2012; D’horta et al., 2013; Fernandes et al., 2013; 278

Fernandes et al., 2014; Hrbek et al., 2014; Boubli et al., 2015; Thom e Aleixo, 2015; Byrne et 279

al., 2016; Carneiro et al., 2016; Boubli et al., 2017; Ferreira et al., 2017; Lima et al., 2017; 280

Ribas et al., 2018). Para aves, em particular, esse déficit entre a taxonomia atualmente 281

reconhecida e a real diversidade está diretamente relacionado ao fato de que a definição daquilo 282

que reconhecemos como espécie ainda é muito influenciado pelo tipo de conceito de espécie 283

utilizado, em especial o conceito biológico de espécie (Mayr, 1942), que implica no 284

reconhecimento de metapopulações isoladas reprodutivamente. No entanto, o reconhecimento 285

de isolamento reprodutivo em populações naturais é particularmente difícil, especialmente em 286

populações alopátricas, onde é impossível observar naturalmente esse contato. Mesmo em 287

populações parapátricas, o contato e estabelecimento de uma zona híbrida não necessariamente 288

ameaça o statu quo das espécies envolvidas (Weir et al., 2015). Especialmente, porque a 289

capacidade de hibridização entre espécies, mesmo distantes, parece ser uma característica 290

sinapomórfica para aves (Grant e Grant, 1992; Gill, 1998; Harrison e Larson, 2014). 291

O conceito de espécie, mesmo sendo um dos assunto centrais para os estudo de evolução 292

e ecologia, permanece ainda sem definição clara e é sem dúvida um dos pontos mais discutidos 293

dentro da biologia (Mayr, 1976; Donoghue, 1985; Isaac et al., 2004; De Queiroz, 2005; Aleixo, 294

2007; Joseph et al., 2008; Aleixo, 2009; De Queiroz, 2011; Cellinese et al., 2012; De Queiroz, 295

2012; Willis, 2017). Ressaltando o impacto dessa escolha entre um conceito ou outro e do nosso 296

Page 15: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

4

atual conhecimento sobre a taxonomia de aves, um estudo recente demonstrou que a diversidade 297

das aves é, pelo menos, duas vezes maior do que a atualmente reconhecida (Barrowclough et 298

al., 2016). Por exemplo, dentro da Neotrópico, um dos padrões mais observados é a existência 299

de espécies amplamente distribuídas, compostas por diferentes subespécies morfologicamente 300

distintas e geograficamente estruturadas, as quais foram, no entanto, agrupadas dentro de uma 301

mesma espécie devido a existência da possibilidade dessas populações hibridizarem caso 302

entrem em contato. 303

A segunda condição está relacionada aos problemas de conflitos entre a história de um 304

único gene e a história da espécie (Degnan e Rosenberg, 2009; Knowles, 2009). Esse conflito 305

tem se tornado cada vez mais evidente em face do desenvolvimento de técnicas de 306

sequenciamento massivo em paralelo (Metzker, 2010). Apesar de estarem se tornando mais 307

acessíveis, o sequenciamento e análise do genoma completo para organismos não modelo ainda 308

é impraticável para trabalhos que requerem amostragem de muitos indivíduos. Dessa forma, 309

algumas técnicas de se utilizar representações reduzidas foram desenvolvidas. Duas abordagens 310

dominam o cenário atualmente, uma delas é a utilização de enzimas de restrição para sítios 311

específicos ao longo de todo o genoma, denominada RAD-seq (restriction-site-associated DNA 312

sequencing) (Davey et al., 2011); e a outra é a utilização de sondas de RNA desenvolvidas para 313

capturar regiões específicas do genoma (Grover et al., 2012; Lemmon et al., 2012; Lemmon e 314

Lemmon, 2013). Uma das abordagens de sequenciamento de captura é a técnica que utiliza 315

sondas específicas para regiões do genoma ultra conservadas (do inglês, Ultra Conserved 316

Elements, UCE) (Faircloth et al., 2012). Essas regiões ultra conservadas foram selecionadas 317

pois permitem a utilização de um mesmo conjunto de sondas para realizar estudos em diversos 318

níveis taxonômicos, pois apesar das regiões centrais serem altamente conservadas, as regiões 319

flanqueadoras possuem variação suficiente tanto para recuperar relações mais antigas 320

(Mccormack et al., 2012; Crawford et al., 2015; Faircloth et al., 2015), quanto mais recentes 321

(Bryson et al., 2016; Manthey et al., 2016), inclusive utilizadas em radiações adaptativas 322

(Meiklejohn et al., 2016), onde altos níveis de separação incompleta de linhagens (do inglês, 323

Incomplete Lineage Sorting, ILS) sejam esperados (Degnan e Rosenberg, 2006; Oliver, 2013). 324

De modo a tentar então lançar alguma luz sobre os possíveis eventos que moldaram a 325

diversificação da biota Neotropical, foram selecionadas três famílias de aves: Trogonidae, 326

Galbulidae e Bucconidae. As três famílias possuem representantes por toda a região 327

Neotropical, incluindo várias espécies, ou grupo de espécies, amplamente distribuídas. A 328

família Trogonidae tem distribuição Pantropical, estando ausente apenas da região Australiana. 329

Page 16: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

5

Representantes dessa família, popularmente conhecidos como surucuás, são aves de médio 330

porte e sua dieta varia entre insetívora e onívora, apresentam plumagem com coloração bastante 331

chamativa, e são reconhecidas por serem más dispersoras, não sendo capazes de realizar voos 332

de longa distância (Collar, 2017). Apesar de apresentarem plumagem bastante distinta, a 333

morfologia interna da família é bastante conservada e a sua monofilia nunca foi questionada 334

(Livezey e Zusi, 2007; Collar, 2017). No entanto, a relação entre trogonídeos e outras aves não 335

passeriformes já foi bastante controversa (Cracraft, 1981; Maurer e Raikow, 1981; Monteros, 336

2000; Mayr, 2003; Livezey e Zusi, 2006). Atualmente, aceita-se que a família seja uma das 337

primeiras linhagens a diversificar dentro da radiação de Coracimorphae sendo grupo irmão de 338

todas as outras famílias do grupo Core Landbirds (Jarvis et al., 2015; Prum et al., 2015). 339

Atualmente são reconhecidas 45 espécies (Collar, 2017; Gill e Donsker, 2018; Ramsen et al., 340

2018) distribuídas em sete gêneros. A região Neotropical contém a maior diversidade da 341

família, com quatro gêneros e cerca de 30 espécies. A região Asiática contém dois gêneros e 12 342

espécies, e por último, a região Africana, possui um gênero com três espécies. Apesar da maior 343

diversidade da família ser encontrada no Neotrópico, a existência de fósseis na Europa (Mayr, 344

1999; Kristoffersen, 2002; Mayr, 2005) sugere uma origem no Paleártico e posterior dispersão 345

e colonização da distribuição atual. Diversos trabalhos já tentaram abordar a relação 346

filogenética entre os representantes da família (Monteros, 1998; Johansson e Ericson, 2005; 347

Moyle, 2005; Dacosta e Klicka, 2008; Ornelas et al., 2009; Hosner et al., 2010), entretanto, 348

nenhum foi capaz de resolver a relação entre os gêneros. O último trabalho publicado (Hosner 349

et al., 2010), e o único a incluir representantes de todos os gêneros, recuperou uma parafilia 350

entre regiões geográficas, sugerindo um cenário biogeográfico bem mais complexo, em que a 351

região Neotropical, por exemplo, tenha sido ocupada por pelo menos três linhagens distintas. 352

As famílias Galbulidae e Bucconidae formam um clado já bem estabelecido, tanto com 353

caracteres morfológicos (Livezey e Zusi, 2007), quanto dados moleculares (Hackett et al., 2008; 354

Prum et al., 2015). Dentro da ordem Piciformes, são as únicas famílias com representantes com 355

distribuição exclusivamente neotropical, formando o grupo irmão das outras famílias de 356

Piciformes (Prum et al., 2015). A família Galbulidae é composta por aves de pequeno a médio 357

porte, asas arredondadas e um bico longo e afilado utilizado para capturar insetos durante o 358

voo. Possui 19 espécies distribuídas em cinco gêneros diferentes (Tobias, 2017; Gill e Donsker, 359

2018; Ramsen et al., 2018). As espécies da família são geralmente agrupadas em oito grupos 360

zoogeográficos, seis desses grupos representam complexos de espécies com distribuições 361

alopátricas ou parapátricas, e dois são espécies amplamente distribuídas (Collar, 2017). A 362

Page 17: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

6

família Bucconidae também inclui aves de pequeno a médio porte, asas curtas e arredondadas, 363

tendo como característica uma cabeça relativamente grande, atualmente são reconhecidas 35 364

espécies para a família distribuídas em nove gêneros (Gill e Donsker, 2018; Ramsen et al., 365

2018). Os trabalhos de filogeografia desenvolvidos com representantes da família Bucconidae 366

– Malacoptila (Ferreira et al., 2017), Monasa e Nonnula (Soares, 2016) e Nystalus (Duarte, 367

2015) – demonstraram que a diversidade reconhecida pela taxonomia tradicional para esses 368

grupos é subestimada, já que existem muito mais linhagens genéticas geograficamente isoladas 369

do que táxons reconhecidos, demonstrando a importância da condução dos estudos de 370

filogeografia para elucidar a delimitação taxônomica dessas espécies amplamente distribuídas. 371

Dessa forma, o presente trabalho tem por objetivo reconstruir a relação filogenética entre 372

todas as linhagens dessas três famílias de modo a reconstruir a história de diversificação desses 373

três grupos. Para tanto, foram amostrados indivíduos ao longo da distribuição de todas as 374

espécies amplamente distribuídas para uma análise prévia da estrutura genética de cada uma 375

dessas linhagens. Com base nos resultados obtidos previamente foram selecionadas amostras 376

representativas de cada um desses agrupamento, tentando incluir, sempre que possível, um 377

representante para cada um dos táxons reconhecidos. Para essas amostras foram sequenciados 378

mais de 2000 loci de UCE, e com base nessa representação reduzida do genoma foram 379

realizadas análises para a reconstrução filogenética dos grupos. 380

381

382

Page 18: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

7

383

384

Objetivos 385

386

O objetivo geral foi investigar a história biogeográfica da região Neotropical com base 387

nas relações filogenéticas entre todos os táxons atualmente reconhecidos para as famílias 388

Trogonidae, Bucconidae e Galbulidae baseado em dados de sequenciamento genômico. Sendo 389

que para isso foi necessário: 390

Capítulo 1: revisar a taxonomia e compreender os processos de isolamento e fluxo 391

gênico em um contexto espacial; 392

Capítulo 2: compreender a origem de táxons Neotropicais em uma família amplamente 393

distribuída; 394

Capítulo 3: compreender a estrutura filogeográfica de espécies amplamente distribuídas 395

em duas famílias Neotropicais para com isso obter uma reconstrução filogenética representativa 396

da diversificação do grupo. 397

398

399

Page 19: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

8

400

401

402

403

404

405

406

407

408

409

Capítulo 1 410

411

412

Ferreira, M.; Fernandes, A.M.; Aleixo, A.; Antonelli, 413

A.; Olsson, U.; Bates, J.M.; Cracraft, J.; Ribas, C.C. 414

Evidence for mtDNA capture in the jacamar Galbula 415

leucogastra / chalcothorax species-complex and 416

insights on the evolution of white-sand environments 417

in the Amazon basin. Molecular Phylogenetics and 418

Evolution (no prelo) 419

420

421

422

Page 20: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

9

423

424

Manuscript submission to Molecular Phylogenetics and Evolution 425 Contribution type: Original article 426 427 Evidence for mtDNA capture in the jacamar Galbula leucogastra / chalcothorax species-428 complex and insights on the evolution of white-sand environments in the Amazon basin. 429

430 Ferreira, Mateusa*; Fernandes, Alexandre M.b; Aleixo, Alexandrec; Antonelli, Alexandred,e,f; 431 Olsson, Urban d,f; Bates, Jonh M.g; Cracraft, Joelh; Ribas, Camila C.i 432

433 a Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, INPA, 434 Manaus, AM, Brazil 435 b Unidade Acadêmica de Serra Talhada, UFRPE, Serra Talhada, PE, Brazil 436 c Coordenação de Zoologia, MPEG, Belém, PA, Brazil 437 d Department of Biological and Environmental Sciences, University of Gothenburg, SE-413 438 19 Gothenburg, Sweden 439 e Gothenburg Botanical Garden, SE-413 19 Gothenburg, Sweden 440 f Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden 441 gDepartment of Ornithology, FMNH, Chicago, IL, USA 442 h Department of Ornithology, AMNH, New York, NY, USA 443 i Coordenação de Biodiversidade, INPA, Manaus, AM, Brazil 444

*Corresponding author 445 446 Correspondence: Mateus Ferreira, Coordenação de Biodiversidade, Instituto Nacional de 447

Pesquisas da Amazônia, CEP 69080-971, Manaus-AM, Brazil 448 E-mail: [email protected] 449

450

Page 21: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

10

Abstract 451

Jacamar species are found throughout Amazonia, with several different species occupying 452

forested habitats, but one species-complex, Galbula leucogastra / chalcothorax, inhabits areas 453

of open vegetation, known as white-sand environments (WSE). Previous studies of WSE birds 454

recovered shallow genetic structure in mtDNA coupled with signs of gene flow among WSE 455

areas. Here we characterize diversification of the G. leucogastra/chalcothorax species-complex 456

with dense sampling across its distribution, using mitochondrial DNA and Ultraconserved 457

Elements (UCE) loci. We performed likelihood and Bayesian analysis to recover the 458

phylogenetic relationships among populations using a concatenated approach, as well as a 459

species-tree analysis using *BEAST. The mtDNA results recovered at least six geographically-460

structured lineages in which G. chalcothorax was embedded within lineages of G. leucogastra. 461

In contrast, analysis of UCE data with both concatenated and species-tree approaches recovered 462

G. chalcothorax as sister to all G. leucogastra lineages. We hypothesize that the mitochondrial 463

genome of the Madeira population of G. leucogastra was captured by G. chalcothorax early in 464

their initial divergence, and we suggest how WSE evolution and the co-evolution of mtDNA 465

genes and nuclear genes might have played a role in this rare event. 466

467

Keywords: White-sand environments, Amazonia, Galbulidae, jacamars, mtDNA capture, UCE 468

469

Page 22: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

11

1. Introduction 470

White-sand environments (WSE) represent a unique type of habitat within Amazonia. 471

Apart from the continuous forest habitats found all over the basin, the WSE consists of patches 472

of differentiated habitats scattered in the landscape and isolated by the forest matrix (Adeney 473

et al., 2016). WSE consist of a continuum from open non-forested habitats, such as campinas, 474

with a predominance of grass and shrubland, to denser vegetation, called campinaranas and 475

varillales, all associated with sandy soils. This insular characteristic of WSE continues to 476

intrigue researchers as to how the ecosystem and its specialized biota evolved, how it responded 477

to Pleistocene glacial cycles, and whether the specialized biota disperse through the forest 478

matrix among patches of WSE (Brown and Benson, 1977; Anderson, 1981; Capurucho et al., 479

2013; Matos et al., 2016). Besides its characteristic fragmentation, WSE are more 480

physiologically stressful and challenging from an ecological and evolutionary perspective, 481

making them much more taxonomically selective, with overall diversity being smaller when 482

compared with adjacent forest areas (Borges, 2003; Fine et al., 2010; Laranjeiras et al., 2014; 483

Adeney et al., 2016), although several new species endemic to this habitat having recently been 484

described (Whitney and Alonso, 1998, 2005; Alonso and Whitney, 2001; Cohn-Haft and Bravo, 485

2013; Cohn-Haft et al., 2013). Some studies point to a recent and dynamic history for WSE 486

(Latrubesse and Franzinelli, 2002; Rossetti et al., 2012), yet this habitat is usually associated 487

with ancient soils (Adeney et al., 2016). Although some plant species have a loose association 488

with WSE (Fine and Baraloto, 2016), others are tightly associated with them, such as species 489

of Pagamea (Vicentini, 2016). The same can be observed for other organisms (Cohn-Haft, 490

2008; Vriesendorp et al., 2006), especially birds (Borges et al., 2016a; Borges et al., 2016b). 491

Therefore, the combination of persistent white-sand soils with recent climatic and landscape 492

changes must have had an important influence on the evolution and distribution of WSE and of 493

the biota that inhabits them. 494

Page 23: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

12

The few phylogeographic studies of WSE birds that have been undertaken, show little 495

genetic diversity with no geographic structure throughout Amazonia (Polytmus theresiae, 496

Matos et al., 2016); or shallow but geographically structured genetic diversity, with significant 497

migration rates between some populations (Tachyphonus phoenicius, Matos et al., 2016; 498

Xenopipo atronitrens, Capurucho et al., 2013). In general, results obtained so far for WSE birds 499

suggest that: (1) black-water flooded forest (igapó), due to similarities to WSE in vegetation 500

structure, may facilitate dispersal between isolated WSE patches; and, (2) Pleistocene glacial 501

periods, especially the Last Glacial Maximum, are temporally correlated with geographical 502

expansion of populations of species specialized in WSE. 503

These studies have been based on mtDNA markers (Capurucho et al., 2013), or on a 504

combination of mtDNA and a single nuclear marker (Matos et al., 2016). Until recently, most 505

phylogeographic studies have employed mtDNA. Its characteristic maternal inheritance, 506

comparatively small effective population size, rapid rate of mutation, and lack of 507

recombination, coupled with the fact that it is easy to amplify and sequence, have long made 508

mtDNA markers ideal for phylogeographic studies (Avise et al., 1987; Avise, 2009). However, 509

there are potential biases and limitations associated with these data (Zink and Barrowclough, 510

2008) and hybridization and introgression could be overlooked (Carling and Brumfield, 2008). 511

Thus, the inclusion of nuclear markers often yields different perspectives. That said, no markers 512

are without biases and the inclusion of autosomal markers entail other problems, such as 513

discordances between gene trees and species-trees (Knowles, 2009), as well as between the 514

history of mtDNA and nuclear markers, especially because the small number of nuclear loci 515

employed usually do not have enough information in recent divergences (Zink and 516

Barrowclough, 2008; Daly-Engel et al., 2012; Toews and Brelsford, 2012; Sloan et al., 2017). 517

These latter studies demonstrated the value of using several different markers to truly 518

understand species/lineage histories, yet until the advent of high throughput parallel sequencing 519

Page 24: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

13

techniques, such multi-loci analyses were very time-consuming and uneconomical (Metzker, 520

2010). One of the new genomic markers made accessible by next-generation sequencing 521

technologies is Ultra-Conserved Elements – UCE (Faircloth et al., 2012; McCormack et al., 522

2013). The use of UCEs provides access to large quantities of genomic data to assess 523

relationships at multiple time and taxonomic scales (Faircloth et al., 2012), from very old 524

radiations (Moyle et al., 2016), to more recent ones (Smith et al., 2014; Harvey et al., 2016; 525

Manthey et al., 2016). 526

Here, we investigate a rare pattern of evolutionary diversification in Amazonian WSE 527

avifauna by reconstructing the phylogeography of a jacamar species-complex using genomic 528

data. The jacamars (family Galbulidae) are exclusive to the Neotropics, with 19 species and 5 529

genera, mostly associated with wooded, lowland forest habitat (Stotz et al., 1996; Tobias, 530

2017). In Amazonia, most species are restricted to upland (terra firme) and flooded (varzea and 531

igapó) forests, with only two species (Galbula leucogastra and G. chalcothorax) known to 532

occur in WSE (Borges et al., 2016a). Galbula leucogastra and G. chalcothorax were previously 533

considered subspecies of a single species (Peters, 1948; Haffer, 1974), but were split by Parker 534

and Remsen (1987), based on diagnostic plumage and size differences. A phylogeny of the 535

family, based on multiple gene regions, indicates that G. leucogastra and G. chalcothorax are 536

sister-species with high support (Witt, 2004). Here we first investigate the distribution of 537

mtDNA diversity within these two species by sampling individuals from throughout their 538

distributions. Then, based on these results, we obtained sequences of thousands of genomic 539

markers (UCE) for a subset of samples to reconstruct their history of diversification and make 540

inferences about the evolution of WSE. 541

542

2. Methods 543

2.1. Taxon sampling 544

Page 25: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

14

We sampled 35 individuals covering almost the entire distribution of the Galbula 545

leucogastra / chalcothorax (Table S1). As outgroups, we used one sample of G. albicollis (Witt, 546

2004). All tissues sequenced are represented by voucher specimens deposited in ornithological 547

collections in Brazil and the USA (Table S1). 548

2.2. DNA extraction, amplification and sequencing 549

DNA was extracted using a modified phenol-chloroform protocol (Sambrook and 550

Russel, 2001). We used published DNA primers (Sorenson et al., 1999) to amplify and 551

sequence two mitochondrial genes (Cytochrome b [cytb], and NADH subunit 2 [ND2]) for all 552

individuals following standard PCR protocols. For a subset of individuals (see below) we 553

extracted DNA using the DNeasy kit (Qiagen Inc.) following the manufacturer’s protocol, and 554

sent the extracts to RapidGenomics® (Gainsville, FL) for sequencing, using a probe set 555

targeting 2321 loci of Ultra Conserved Elements (UCE) plus 98 conserved exons from genes 556

that were previously used in phylogenetic analysis (Harvey et al., 2017). Some of the exons 557

used were flanked by introns, which are more variable, and were the focus of this capture. More 558

information about the capture and sequencing of UCE loci can be found in Faircloth et al. 559

(2012). 560

2.3. Phylogenetic analysis and haplotype networks 561

Phylogenetic analysis of the mtDNA genes using the complete dataset (cytb and ND2, 562

N=35) was performed using Bayesian Inference (BI) implemented in MrBayes 3.2.6 (Ronquist 563

et al., 2012). Both genes were concatenated and the best partition scheme and substitution 564

model were selected by PartitionFinder 2.1.1 using the Bayesian Information Criteria (BIC) 565

(Lanfear et al., 2016). We partitioned the genes by codon position, considering possible 566

saturation in the codon’s third position. Four parallel simultaneous runs were performed, for a 567

total of 4x107 generations, with trees sampled every 1000 generations. We discarded the first 568

Page 26: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

15

10% of trees as burn-in after checking the ESS values of each run in Tracer 1.6 (Rambaut et 569

al., 2014). We used TCS v1.21 (Clement et al., 2000) to reconstruct haplotype networks. 570

2.3.1. UCE and exons assembly 571

Based on the results of the mtDNA, we selected eight samples for UCE sequencing 572

(Table 1). The raw data received from Rapid Genomics were processed using the Phyluce script 573

pack (Faircloth 2016). Sequences with adapter contamination, and those of low-quality, were 574

trimmed using illumiprocessor (Faircloth, 2013) and Trimmomatic (Bolger et al., 2014). After 575

the sequences were ‘cleaned’ we employed Trinity RNASeq assembler r201331110 (Grabherr 576

et al., 2011) to assemble the contigs using a de novo method. The contigs were then compared 577

with the UCE database to identify which UCE loci were sequenced. Since Trinity does not 578

recover information on heterozygote loci we performed a second round of assembly using the 579

contigs that were identified as a reference to map the clean reads back to it using the Bowtie2 580

(Langmead et al., 2009; Langmead and Salzberg 2012) plugin in Geneious R7.1 (Kearse et al., 581

2012). The consensus sequence of each individual, derived from the reads, mapped back to each 582

reference, was called using a threshold of 75% with a depth of at least 5 reads. We then aligned 583

each locus using MAFFT (Katoh and Standley, 2013) with default options, and prepared the 584

input matrix for the subsequent analysis. To infer the phylogenetic relationship among all 585

samples we concatenated all the UCE loci and employed RAxML v8.2 (Stamatakis, 2014) 586

under a Maximum Likelihood analysis. Since we recovered almost all UCE loci for each 587

sample, we only used loci that were shared among all samples, with the final matrix having 588

2271 loci. This matrix was analyzed by running RAxML to search for the optimal tree, under 589

the fast hill climbing algorithm, and bootstraping was performed with the autoMRE algorithm 590

in the program. 591

The 98 exons targeted were from 47 different genes. Because some of the sequences 592

included intronic regions, which are prone to indels, de novo assembly was not an option. 593

Page 27: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

16

Therefore, we mapped all the probes to the Galbula dea genome, identified the genes that were 594

targeted, and then used the whole gene-sequences to map the reads back following the same 595

approach that we used for UCE loci. Since recombination is not expected to happen inside one 596

gene, all exonic regions recovered belonging to the same gene were considered to be connected 597

in the species-tree (ST) analysis. 598

2.3.2. Mitochondrial genome assembly and time tree 599

As a byproduct of the UCE sequencing we also recovered the complete mtDNA genome. 600

We mapped all the Trinity contigs from each specimen to two reference mtDNA genomes from 601

representatives of close related families, the Downy Woodpecker, Dryobates pubescens (Aves, 602

Picidae; NC_027936.1), and the Ivory-billed Araçari, Pteroglossus azara (Aves, 603

Ramphastidae; DQ780882.1, Prum et al., 2015). After we identified the contigs from each 604

individual we used those contigs to map back the reads of that same specimen, again using 605

Bowtie2 to check for coverage depth. Incongruences found between reads and contigs were 606

checked manually. The complete mtDNA genomes were then aligned using MAFFT (Katoh 607

and Standley, 2013) under default options. The mtDNA genomes downloaded from GenBank 608

were used to import annotations. Coding regions were manually checked for codon translations, 609

and translated protein sequences were compared to check for frame shifts and stop codons. We 610

employed the concatenated coding regions in BEAST 1.8.2 (Drummond et al., 2012) to 611

estimate a time tree calibrated with the cytochrome b mutational rate of 0.0105 (normal 612

distribution, SD=0.0034) substitution.lineage-1.million years-1 (Weir and Schluter, 2008). The 613

best partition scheme and substitution model were selected by PartitionFinder 2.1.1 under the 614

Bayesian Information Criteria (BIC) (Lanfear et al., 2016). Two independent runs of 108 615

generations were performed sampling trees every 1000 generations. Convergence, posterior 616

distributions, and ESS values were checked in Tracer 1.6 (Rambaut et al., 2014). 617

2.3.3. Species-tree analysis 618

Page 28: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

17

Considering the possibility that concatenation might result in highly supported but 619

inaccurate results (Kubatko and Degnan 2007; Weisrock et al., 2012, but see Gatesy and 620

Springer 2014), we performed a species-tree analysis, which infers the most likely species-tree 621

based on individual gene trees, using the StarBEAST2 (Ogilvie et al., 2017) template in the 622

BEAST v.2.4.6 package (Bouckaert et al., 2014). Even though StarBEAST2 was developed to 623

deal with huge amounts of data, we selected only the loci that had more than four parsimony 624

informative sites (PIS) among our samples. This latter step reduces the total time of analysis 625

and also avoids including loci lacking phylogenetic signal, which would create noise in the 626

analysis. We employed PartitionFinder2 (Lanfear et al., 2016) to check for the best partition 627

scheme and substitution model. Trees models were unlinked, except for exons from the same 628

gene, in which case we linked tree models across different partitions. We used a Yule model of 629

speciation, and ploidy was set to 2.0, unless genes were from the Z chromosome (in which case, 630

ploidy=1.5). We also included the complete mtDNA as a single locus, with ploidy=1.0. 631

632

633

3. Results 634

3.1. Sanger sequencing and haplotype networks 635

We sequenced 996 bp and 1013 bp, respectively, of the cytb and ND2 dataset. The best 636

partitioning scheme consisted of four partitions (cytb_pos1 = K80+I; ND2_pos2+cytb_pos2 = 637

HKY; ND2_pos3+cytb_pos3 = GTR+G; ND2_pos1 = HKY+I). The BI analysis, and the 638

haplotype network, recovered eight allopatric mtDNA lineages, six of them are well-supported 639

clades, while two of them are represented by a single individual each (Fig. 1). Although all 640

clades corresponding to the allopatric lineages had strong support, basal relationships among 641

them were poorly supported, the only exceptions being the sister relationships between Guiana 642

and Negro clades and between G. chalcothorax and the Madeira lineage of G. leucogastra. 643

Page 29: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

18

Haplotypes networks were recovered using the concatenated matrix of cytb and ND2 in 644

which all missing data were discarded (1304 bp). Almost all networks were indicative of recent 645

population expansion, with little to no genetic diversity within lineages, except for the Madeira 646

lineage and for G. chalcothorax, for which we recovered a different haplotype for each 647

specimen. It is worth noting that samples from different banks of the Tapajós River are 648

separated by six mutational steps (Fig. 1: light and dark green), and that samples of G. 649

chalcothorax (Fig.1: light and dark brown) exhibit almost the same number of mutations among 650

them as they do in relation to the haplotypes from the Madeira lineage. 651

3.2. mtDNA genome and time tree 652

We recovered the complete mitochondrial genome from all samples sequenced for 653

UCEs. In contrast to our cytb+ND2 tree, the tree based on all the mtDNA coding genes was 654

highly supported (Fig. 2). Molecular dating indicates that diversification of the mtDNA lineages 655

started in the Middle Pleistocene, at about 1.5 million years ago (mya) (95%HPD = 2.4 - 0.75). 656

Although all nodes were recovered with high support, the first three splits occurred in a short 657

period of time, with short internodes, suggesting a rapid radiation among lineages from 658

southern, northern and western Amazonia (Fig. 2). The earliest divergence is suggested to have 659

been between populations separated by the Amazon River (Fig. 2). In both mtDNA analyses 660

(cytb+ND2 and mtDNA genome), G. chalcothorax was recovered as the sister-group to the G. 661

leucogastra lineage from the west bank of Madeira River, with their divergence dating of 662

around 0.74 mya (95%HPD = 1.21 – 0.38), therefore rendering G. leucogastra paraphyletic. 663

The lineages from the north bank of the Amazon River were also recovered as sister-groups, 664

and diverged roughly around the same time, 0.61 mya (95%HPD = 1 – 0.31). The most recent 665

divergence occurred between lineages separated by the Tapajós River at 0.28 mya (95%HPD = 666

0.47 – 0.13). 667

3.3. UCE sequencing, RAxML and Species trees 668

Page 30: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

19

The complete UCE matrix, which included only those loci shared among all samples, 669

contained 2271 UCE loci, with mean locus length of 543.06 bp (see Table 1 for total number 670

of reads, Trinity contigs, UCE and exon loci recovered from each sample; for alignments, total 671

number of loci, and locus information, see Table 2). The concatenated RAxML tree recovered 672

G. chalcothorax as sister to all other samples of G. leucogastra with high bootstrap support 673

(p=100, Fig. 3). Thus, the earliest divergence is here suggested to have occurred between an 674

eastern and a western population, unlike the pattern suggested by the mitochondrial data. The 675

first split within G. leucogastra is between lineages north and south of the Amazon River, 676

followed by a split across the Madeira River (p=100), and then younger splits across the Tapajós 677

(p=96) and the Aripuanã (p=76). 678

For the StarBEAST species-tree we used 124 loci that had more than four parsimony 679

informative sites. The species-tree was identical in topology to the concatenated RAxML UCE 680

phylogeny, with some differences in statistical support, including two nodes without strong 681

support in the species-tree (p<0.95) (Fig. 3). In both the concatenated and the species-trees, we 682

found contrasting differences compared to the mtDNA genome tree. Besides the nature of the 683

earliest split in the complex, the most significant one is that the nuclear data recover G. 684

leucogastra as monophyletic and sister to G. chalcothorax with strong statistical support; the 685

mtDNA genome tree, in contrast, found G. leucogastra to be paraphyletic, and G. chalcothorax 686

as sister to the G. leucogastra Madeira lineage (Fig. 2). Furthermore, in the UCE trees the G. 687

leucogastra Aripuanã lineage (Fig. 3, dark pink) was strongly clustered with samples 688

distributed east of the Madeira River (Fig. 3). 689

690

4. Discussion 691

4.1. mtDNA and nuDNA incongruence 692

Page 31: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

20

Historically the Purplish Jacamar (G. chalcothorax) was considered a subspecies of the 693

Bronzy Jacamar (G. leucogastra) (Peters, 1948; Haffer, 1974). Parker and Remsen (1987) 694

proposed that the two taxa be recognized as separate species based on their distinct phenotypes: 695

G. leucogastra is bronzy-green, with some suffused metallic blue, and a white belly, whereas 696

G. chalcothorax is tinged reddish-purple, and has a black belly with only the feathers tips being 697

white. Although these color characters seem to fluctuate across populations, G. chalcothorax is 698

distinctly larger than G. leucogastra (Haffer, 1974). Parker and Remsen (1987) also suggested 699

that Haffer (1974) did not recognize G. chalcothorax as a full species because of the supposition 700

they would interbreed if the two taxa came together, but they also noted (p. 98) that “the absence 701

of major river barriers between their ranges suggests that no interbreeding occurs or would 702

occur”. 703

The structure recovered by the mtDNA data within G. leucogastra, with five well 704

supported mtDNA clades, suggests that current taxonomic treatment misrepresents the diversity 705

within this species, which currently includes only two subspecies: G. l. leucogastra and G. l. 706

viridissima (Griscom and Greeway, 1941). Surprisingly, mtDNA data also revealed that all G. 707

leucogastra specimens from the Madeira clade, the geographically closest to G. chalcothorax 708

is sister to G. chalcothorax with high support, but with no shared haplotypes among species 709

(Fig. 1, 2). In contrast, the UCE concatenated RAxML tree as well as the UCE species-tree 710

recovered G. leucogastra and G. chalcothorax as monophyletic sister species, with the Madeira 711

lineage of G. leucogastra sister to G. leucogastra lineages from SE Amazonia (i.e. Aripuanã 712

and Tapajós lineages, Fig. 3). Multiple explanations have been proposed for conflict in 713

mitochondrial and nuclear histories (summarized in Table 1). 714

In the G. leucogastra / G. chalcothorax diversification mitochondrial capture may have 715

been influenced by the populational and ecological context of differentiation within WSE. After 716

the lineages in the south diverged east and west of the Madeira, the ancestral lineages of G. 717

Page 32: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

21

chalcothorax and those of the Madeira met and hybridized. Although it is difficult to determine 718

when the contact started, it ended around 0.74 mya, as shown in our mtDNA time tree. 719

Moreover, even though the ranges of G. leucogastra and G. chalcothorax appear to be currently 720

allopatric (Tobias 2017), they approach each other between the Purus and Juruá rivers (Fig. 1). 721

Therefore, past gene flow may have been possible during drier climatic periods in SW 722

Amazonia (see below) (Mayle et al., 2004; Bush, 2017). mtDNA clades found within G. 723

leucogastra are more structured and differentiated than the clades found within the other WSE 724

birds, but all of them agree in recovering a well supported clade in northern Amazonia, and 725

with the Madeira being an important barrier in the south (Cracraft, 1985; Borges et al., 2012; 726

Ribas et al., 2012; Fernandes et al., 2013; Fernandes et al., 2014; Ferreira et al., 2017). The 727

maintenance of such structured mtDNA lineages may indicate that little or no gene flow is 728

present between the lineages, suggesting that the forest matrix is important for maintaining 729

allopatry. 730

Although mtDNA may reflect species boundaries (Hill, 2017), recent studies have 731

shown a number of cases in which apparent mtDNA paraphyly is not just derived from improper 732

taxonomy (McKay and Zink, 2010) but also from mtDNA introgression among adjacent 733

populations (see also Toews and Brelsford, 2012). For example, a mitochondrial sweep was 734

proposed in the certhiola complex in the Old World warbler genus Locustella, which is 735

comprised of three species (certhiola, ochotensis and pleskei). Phylogenetic studies using 736

mtDNA and nuDNA recovered conflicting results in that pleskei was paraphyletic relative to 737

certhiola and ochotensis on the mtDNA tree, whereas the nuDNA species-tree recovered 738

species monophyly (Drovetski et al., 2015). In addition, these authors found signs of 739

asymmetrical introgression, in which the species expanding its range (ochotensis) appears to 740

have invaded the species with a smaller ranges (pleskei), resulting in mtDNA introgression from 741

the species with large Ne to the one with smaller Ne. nuDNA introgression was in the opposite 742

Page 33: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

22

direction, causing the paraphyly observed in the mtDNA tree (Drovetski et al., 2015). A similar 743

scenario was found in the eastern Australian rosellas (Platycercus, Shipham et al., 2017). The 744

three species of the subgenus Violania showed discordances between RADseq data and mtDNA 745

trees. Whereas the RAD trees recovered P. eximius as sister to the clade P. venustus and P. 746

adscitus, the mtDNA phylogeny recovered P. venustus as sister to P. adscitus and P. eximius. 747

Furthermore, when data for the isolated Tasmanian P. e. diemenensis were added, the same 748

relationship as those from the RAD data were recovered, suggesting that the subspecies of P. 749

eximius from the mainland (P. e. eximius) captured the mtDNA from P. adscitus. 750

Although these two documented cases represent examples of how mitochondrial sweeps 751

could occur in populations with known zones of hybridization, genetic and phenotypic data 752

suggest that there is no current hybrid zone corresponding to the conflict between UCE and 753

mtDNA reported here. Furthermore, isolation might lead to co-evolution of mitochondrial and 754

nuclear genes involved in cellular respiration, which could function as a post-zygotic barrier to 755

gene flow, due to Bateson-Dobzhansky-Muller Incompatibility (BDMI) (Orr, 1996). Given the 756

fragmented distribution of WSE in Amazonia, it is possible that the occupation of new patches, 757

or the fragmentation of previously continuous habitats into smaller patches due to landscape 758

evolution, followed by some time in allopatry, could lead to the mtDNA structure we observe 759

nowadays and consequent coevolution with nuclear background. All lineages we recovered for 760

this complex have deep structure in the mtDNA haplotypes, even between lineages with 761

adjacent distributions, such as Guiana and Negro lineages or Aripuanã and Tapajós lineages 762

(Fig. 3). Sex-biased traits, such as differential dispersal, hybrid fitness or mate choice are 763

commonly used to explain discordances between mtDNA and nuDNA (Excoffier, 2009; Toews 764

and Brelsford, 2012). However, in a recent review of this process, Bonnet et al. (2017) 765

simulated several scenarios and observed that the only way to have massive discordance in all 766

simulations, without detectable nuclear introgression, is when there is positive selection acting 767

Page 34: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

23

on mitochondrial lineages. Surprisingly, Bonnet et al. (2017) were unable to detect 768

mitochondrial adaptive introgression using Tajima’s D and Fu’s Fs tests, reinforcing the 769

argument that these tests have low statistical power to detect adaptive introgression (Bonnet et 770

al., 2017). In addition, the mtDNA can accumulate deleterious mutations quickly, and in small 771

populations, drift could spread these deleterious mutations across the whole population in short 772

periods of time. Therefore, small populations may accumulate several deleterious mutations 773

and the “defective” mtDNA lineage can be supplanted by a foreign mtDNA lineage (Llopart et 774

al., 2014; Hulsey et al., 2016; Sloan et al., 2017). This hypothesis can be more plausible if 775

effects of the mtDNA sweep are more beneficial than the disadvantageous effects of 776

mitonuclear incompatibilities. This event, combined with the fact that both species occupy 777

different habitats inside the WSE, could explain why we observe the incongruences between 778

mtDNA and nuDNA. 779

4.2. Biogeography of WSE avifauna 780

In phylogeographic studies of the Black Manakin (Xenopipo atronitrens, Pipridae), 781

Capurucho et al. (2013) found the largest mtDNA divergences to correspond to populations 782

found across the Branco and Amazonas rivers. Similar results were observed for the Red-783

shouldered Tanager (Tachyphonus phoenicius, Thraupidae, Matos et al., 2016), but with greater 784

isolation between opposite margins of the Amazon river. The divergence times estimated 785

between northern and southern lineages within X. atronitrens and T. phoenicius were 0.92 and 786

0.88 Ma, respectively, both slightly younger than the mean age estimate we obtained for the 787

first divergence on the mtDNA tree (~1.5 Ma, 95%HPD = 0.75 - 2.4) in G. leucogastra, but 788

with overlap of confidence intervals. Another WSE specialist studied, the Green-tailed 789

Goldenthroat (Polytmus theresiae, Trochilidae), showed no genetic structure, but exhibited 790

signs of recent population expansion (Matos et al., 2016). Signs of recent gene flow among 791

otherwise isolated populations of the aforementioned species contrast with the highly-792

Page 35: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

24

structured lineages recovered here. Although we found evidence for an ancient capture event 793

of mtDNA lineages, there is no evidence of current gene flow between G. leucogastra and G. 794

chalcothorax. Xenopipo atronitrens and G. leucogastra/chalcothorax are found in both WSE 795

and black-water flooded forest, T. phoenicius in WSE and savannas, and P. theresiae in WSE, 796

black-water flooded forest and savannas (Borges et al., 2016b). When compared to the other 797

WSE species, G. leucogastra and G. chalcothorax are the only exclusive insectivores, meaning 798

that they need not have as extensive foraging areas as do frugivores or nectarivores (Levey and 799

Stiles, 1992), and hence they are potentially more prone to isolation and differentiation (Burney 800

and Brumfield, 2009). 801

4.3. Evolution in the White-sand environments 802

White-sand environments cover an area of approximately 5% of the Amazon basin 803

(Adeney et al., 2016). They can be covered by different kinds of vegetations, from open 804

grasslands to different types of forest. In general, these communities grow on nutrient poor and 805

highly acidic soils, usually associated with quarzitic sand, even though some clay and silt can 806

also be found with varying amounts of organic matter (Adeney et al., 2016). This complex 807

environment, however, does not share a single history, since different patches of WSE may 808

have different geological origins (Prance and Schubart 1978; Frasier et al., 2008). 809

Podzolization, a natural process in which all nutrients are leached away from the top layers of 810

soil, leaving only sand (Sauer et al., 2007), appears to be a principal cause of in loco formation 811

of the white sand soils, especially in northeastern Amazonia (Nascimento et al., 2004). In 812

central, northwestern, and southern Amazon, white sand soils can be found as fluvial deposits 813

of ancient rivers (Roddaz et al., 2005), or abandoned ancient paleochannels (Latrubesse, 2002; 814

Cordeiro et al., 2016). In western Amazonia, white sand formations date to before the Andean 815

uplift, and are probably a result of westward rivers flowing from the Guiana and Brazilian 816

shields to the Pacific Ocean, during the Early Miocene (Hoorn, 1993). These sandy sediments 817

Page 36: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

25

were reorganized and recycled multiple times within the basin during the Andean uplift, giving 818

patches of WSE in western Amazonia a very insular and scattered characteristic, especially 819

because most of these sediments are now covered by more recent clay-rich sediments derived 820

from the Andes. This mosaic of sediments is reflected in soils with distinct edaphic conditions, 821

which influence floristic composition that ultimately influences local bird communities 822

(Pomara et al., 2012). 823

Phylogeographic studies of WSE specialized birds suggest that they have recently 824

occupied the Amazonian WSE from east to west (Whitney and Alonso, 1998; Capurucho et al., 825

2013; Matos et al., 2016). Also, most of WSE birds have sister groups inhabiting other open 826

vegetation habitats and not the adjacent Amazonian humid forest formations, such as terra-827

firme or varzea (Rheindt et al., 2008; Capurucho et al., 2013; McGuire et al., 2014; Matos et 828

al., 2016). This suggests the colonization of Amazonian WSE by lineages that had already 829

evolved in open habitats, instead of ancestral lineages from neighboring humid forest. In this 830

sense, Galbula leucogastra and Galbula chalcothorax are unlike other WSE taxa since all other 831

Galbula species are found in forest habitats (Witt, 2004; Tobias, 2017). 832

The WSE were probably more widespread throughout the continent before Andean 833

uplift, thus extant WSE lineages of birds should be the ones resilient enough to endure the 834

reconfiguration of the Amazon basin (Campbell et al., 2006; Hoorn et al., 2010; Nogueira et 835

al., 2013). The pattern of more genetic diversity in the east we observe today should be then 836

related to the fact that during the Pleistocene climatic cycles, eastern Amazonia experienced 837

greater fluctuations in precipitation (Wang et al., 2017). Although these cyclical oscillations 838

were not enough to replace forest with savannas (Bush, 2017; Wang et al., 2017), they may 839

have affected forest structure (Barthe et al., 2017; Cowling et al., 2001). This could have 840

facilitated contact between different patches of WSE in the East, especially for birds that can 841

use black-water flooded forest, allowing them to expand their distribution and colonize 842

Page 37: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

26

previously unoccupied patches of WSE. The paleoclimatic record (Cheng et al., 2013; Wang et 843

al., 2017) suggests that western Amazonia remained as humid as it is today throughout the 844

Pleistocene climatic oscillations, while eastern Amazonia experienced about 42% less rainfall 845

when compared with modern values (Wang et al., 2017). Even though eastern Amazonia 846

experienced drier climate, there is no evidence suggesting replacement of forest by savanna 847

(Bush et al., 2017). So, the existence of WSE in western Amazonia would occur only in 848

scattered patches in recycled quartzite soils reminiscent of ancient fluvial deposits (Hoorn, 849

1993), or as fluvial deposits of ancient rivers (Latrubesse, 2002). This scenario of contracting 850

WSE areas in the west, because of recycling soils during Andean uplift, and WSE expansion in 851

the east, especially during Pleistocene climatic cycles, would probably explain the smaller Ne 852

of G. chalcothorax and the mtDNA capture from G. leucogastra as it expanded its distribution 853

during dry cycles. 854

855

5. Conclusion 856

Here we shown an instance of clear discordance between phylogenetic relationships 857

recovered using mtDNA and nuclear data. Interestingly, nuclear data agrees with current 858

taxonomy, which is based on phenotypic patterns, while the mtDNA relationships seem to be 859

related to an old event of mtDNA capture. The capture event relates to what is currently known 860

about the distinct biogeographical histories of WSE in Eastern and Western Amazonia. While 861

these results raise important issues about apparent mtDNA paraphyly of taxa and the 862

straightforward use of mtDNA relationships in taxonomy, they also show that interesting 863

biogeographic histories can be uncovered when enough data is available, allowing for a 864

comparison with mtDNA. This will be an important contribution of NGS for studies for recent 865

speciation and taxonomy. 866

867

Page 38: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

27

868

Acknowledgements 869

We thank the curator and curatorial assistants of the Academy of Natural Science of Drexel 870

University, Philadelphia, USA (ANSP); Field Museum of Natural History, Chicago, USA 871

(FMNH); Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil (INPA); Lousiana State 872

University Museum of Natural Science, Baton Rouge, USA (LSUMZ); and Museu Paraense 873

Emílio Goeldi, Belém, Brazil (MPEG), for borrowing tissue samples under their care. We thank 874

S. W. Cardiff and N. Rice for helping us with LSUMZ and ANSP specimens, respectively. We 875

are also grateful for all collectors involved in the fieldwork throughout Amazon that make this 876

paper possible. We thank J. M. G. Capurucho and S. H. Borges for early inputs on this paper. 877

878

Funding 879

Support to M.F.’s graduate research was provided by CAPES PhD fellowship, and CAPES 880

PDSE fellowship (# 88881.133440/2016-01), support also from the AMNH Frank M. Chapman 881

Memorial Fund. Support to A.M.F. during his post-doc studies was provided by CNPq 882

(#500488/2012-6). Laboratory and Sanger sequencing costs were partly covered by grants to 883

A. Aleixo (CNPq # 471342/2011-4 and FAPESPA # ICAAF 023/2011) and A.Antonelli from 884

the European Research Council under the European Union’s Seventh Framework Programme 885

(FP/2007-2013, ERC Grant Agreement n. 331024), the Knut and Alice Wallenberg Foundation 886

through a Wallenberg Academy Fellowship, the Swedish Research Council (2015-04857), and 887

the Swedish Foundation for Strategic research. A.Aleixo, C.C.R., J.M.B., J.C. and M.F. also 888

thanks the grant Dimensions US-Biota-São Paulo: Assembly and evolution of the Amazon biota 889

and its environment: an integrated approach, co-funded by the US National Science Fundation 890

(NSF DEB 1241056) to J.C. and the Fundação de Amparo à Pesquisa do Estado de São Paulo 891

(FAPESP grant #2012/50260-6) to Lucia Lohmann. A. Aleixo and C.C.R. are supported by 892

Page 39: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

28

CNPq research productivity fellowships. The authors acknowledge the National Laboratory for 893

Scientific Computing (LNCC/MCTI, Brazil) for providing HPC resources of the SDumont 894

supercomputer, which have contributed to the research results reported within this paper. 895

896

References 897

898

Adeney, J.M., Christensen, N.L., Vicentini, A., Cohn-Haft, M., 2016. White-sand Ecosystems 899 in Amazonia. Biotropica 48, 7-23. 900

Alonso, J.A., Whitney, B.M., 2001. A new Zimmerius tyrannulet (Aves: Tyrannidae) from 901 white sand forests of northern Amazonian Peru. Wilson Bulletin 113, 1-9. 902

Anderson, A.B., 1981. White-sand vegetation of Brazilian Amazonia. Biotropica 13, 199-210. 903

Avise, J.C., 2009. Phylogeography: retrospect and prospect. J Biogeogr 36, 3-15. 904 Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A., 905

Saunders, N.C., 1987. Intraspecific phylogeography: The mitochondrial DNA bridge 906 between population genetics and systematics. Ann Rev Ecol Syst 18, 489-522. 907

Barthe, S., Binelli, G., Hérault, B., Scotti-Saintagne, C., Sabatier, D., Scotti, I., 2017. Tropical 908 rainforest that persisted: inferences from the Quaternary demographic history of eight tree 909 species in the Guiana Shield. Mol Ecol 26, 1161-1174. 910

Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina 911

sequence data. Bioinformatics 30, 2114-2120. 912 Bonnet, T., Leblois, R., Rousset, F., Crochet, P.-A., 2017. A reassessment of explanations for 913

discordant introgressions of mitochondrial and nuclear genomes. Evolution 71, 2140-914

2158. 915 Borges, S.H., 2003. Species poor but distinct: bird assemblages in white sand vegetation in Jaú 916

National Park, Brazilian Amazon. Ibis 146, 114-124. 917 Borges, S.H., Da Silva, J.M.C., 2012. A New Area of Endemism for Amazonian Birds in the 918

Rio Negro Basin. Wilson J Ornithol 124, 15-23. 919

Borges, S.H., Cornelius, C., Moreira, M., Ribas, C.C., Cohn-Haft, M., Capurucho, J.M.G., 920 Vargas, C., Almeida, R., 2016a. Bird communities in Amazonian white-sand vegetation 921

patches: effects of landscape configuration and biogeographic context. Biotropica 48, 922 121-131. 923

Borges, S.H., Cornelius, C., Ribas, C., Almeida, R., Guilherme, E., Aleixo, A., Dantas, S., 924 Santos, M.P.D., Moreira, M., 2016b. What is the avifauna of Amazonian white-sand 925 vegetation. Bird Conserv Int 26, 192-204. 926

Bouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., 927 Rambaut, A., Drummond, A.J., 2014. BEAST 2: a software platform for Bayesian 928

evolutionary analysis. PLoS computational biology 10, e1003537. 929 Brown, K.S., Benson, W.W., 1977. Evolution in Modern Amazonian Non-Forest Islands: 930

Heliconius hermathena. Biotropica 9, 95-117. 931 Burney, C.W., Brumfield, R.T., 2009. Ecology predicts levels of genetic differentiation in 932

neotropical birds. Am Nat 174, 358-368. 933

Bush, M.B., 2017. Climate science: The resilience of Amazonian forests. Nature 541, 167-168. 934 Campbell, K.E., Frailey, C.D., Romero-Pittman, L., 2006. The Pan-Amazonian Ucayali 935

Peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon 936 River system. Palaeogeogr Palaeoclimatol Palaeoecol 239, 166-219. 937

Page 40: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

29

Capurucho, J.M.G., Cornelius, C., Borges, S.H., Cohn-Haft, M., Aleixo, A., Metzger, J.P., 938

Ribas, C.C., 2013. Combining phylogeography and landscape genetics of Xenopipo 939 atronitens (Aves: Pipridae), a white sand campina specialist, to understand Pleistocene 940 landscape evolution in Amazonia. Biol J Linn Soc 110, 60-76. 941

Carling, M.D., Brumfield, R.T., 2008. Haldane's rule in an avian system: using cline theory and 942 divergence population genetics to test for differential introgression of mitochondrial, 943

autosomal, and sex-linked loci across the Passerina bunting hybrid zone. Evolution 62, 944 2600-2615. 945

Cheng, H., Sinha, A., Cruz, F.W., Wang, X., Edwards, R.L., d'Horta, F.M., Ribas, C.C., Vuille, 946 M., Stott, L.D., Auler, A.S., 2013. Climate change patterns in Amazonia and biodiversity. 947 Nature Commun 4, 1411. 948

Clement, M., Posada, D., Crandall, K.A., 2000. TCS: a computer program to estimate gene 949 genealogies. Mol Ecol 9, 1657-1659. 950

Cohn-Haft, M., 2008. Estudos temático de impacto da BR-319: Aves. Internal Report. INPA, 951 Manaus, Brazil. 952

Cohn-Haft, M., Bravo, G.A., 2013. A new species of Herpsilochmus antwren from west of the 953 Rio Madeira in Amazonian Brazil. In: del Hoyo, J., Elliot, A., Sargatal, J., Christie, D. 954

(Eds.), Handbook of the birds of the world. Special volume. New species and global 955 index. Lynx Ediciones, Barcelona, Spain, pp. 272-276. 956

Cohn-Haft, M., Santos, M.A., Fernandes, A.M., Ribas, C., 2013. A new species of Cyanocorax 957 jay from savannas of the central Amazon. In: del Hoyo, J., Elliot, A., Sargatal, J., Christie, 958 D. (Eds.), Handbook of the birds of the world. Special volume. New species and global 959

index. Lynx Ediciones, Barcelona, Spain, pp. 306-310. 960

Cordeiro, C.L.O., Rossetti, D.F., Gribel, R., Tuomisto, H., Zani, H., Ferreira, C.A.C., Coelho, 961 L., 2016. Impact of sedimentary processes on white-sand vegetation in an Amazonian 962 megafan. J Trop Ecol 32, 498-509. 963

Cowling, S.A., Maslin, M.A., Sykes, M.T., 2001. Paleovegetation Simulations of Lowland 964 Amazonia and Implications for Neotropical Allopatry and Speciation. Quat Res 55, 140-965 149. 966

Cracraft, J., 1985. Historical biogeography and patterns of differentiation within the South 967 American Avifauna: Areas of Endemism. Ornithol Monogr 36, 49-84. 968

Daly-Engel, T.S., Seraphin, K.D., Holland, K.N., Coffey, J.P., Nance, H.A., Toonen, R.J., 969 Bowen, B.W., 2012. Global phylogeography with mixed-marker analysis reveals male-970 mediated dispersal in the endangered scalloped hammerhead shark (Sphyrna lewini). PloS 971

one 7, e29986. 972 Drovetski, S.V., Semenov, G., Red'kin, Y.A., Sotnikov, V.N., Fadeev, I.V., Koblik, E.A., 2015. 973

Effects of asymmetric nuclear introgression, introgressive mitochondrial sweep, and 974 purifying selection on phylogenetic reconstruction and divergence estimates in the Pacific 975

clade of Locustella warblers. PloS one 10, e0122590. 976 Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., 2012. Bayesian phylogenetics with 977

BEAUti and the BEAST 1.7. Mol Biol Evol 29, 1969-1973. 978 Excoffier, L., Foll, M., Petit, R.J., 2009. Genetic Consequences of Range Expansions. Ann Rev 979

Ecol Evol Syst 40, 481-501. 980

Faircloth, B.C., 2013. illumiprocessor: a trimmomatic wrapper for parallel adapater and quality 981 trimming. http://dx.doi.org/10.6079/J9ILL. 982

Faircloth, B.C., 2016. PHYLUCE is a software package for the analysis of conserved genomic 983 loci. Bioinformatics 32, 786-788. 984

Faircloth, B.C., McCormack, J.E., Crawford, N.G., Harvey, M.G., Brumfield, R.T., Glenn, 985 T.C., 2012. Ultraconserved elements anchor thousands of genetic markers spanning 986

multiple evolutionary timescales. Syst Biol 61, 717-726. 987

Page 41: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

30

Fernandes, A.M., 2013. Fine-scale endemism of Amazonian birds in a threatened landscape. 988

Biodivers Conserv 22, 2683-2694. 989 Fernandes, A.M., Cohn-Haft, M., Hrbek, T., Farias, I.P., 2014. Rivers acting as barriers for bird 990

dispersal in the Amazon. Rev Bras Ornitol 22, 363-373. 991 Ferreira, M., Aleixo, A., Ribas, C.C., Santos, M.P.D., 2017. Biogeography of the Neotropical 992

genus Malacoptila (Aves: Bucconidae): the influence of the Andean orogeny, Amazonian 993

drainage evolution and palaeoclimate. J Biogeogr 44, 748-759. 994 Fine, P.V.A., Baraloto, C., 2016. Habitat endemism in white-sand forests: Insights into the 995

mechanisms of lineage diversification and community assembly of the Neotropical Flora. 996 Biotropica 48, 24-33. 997

Fine, P.V.A., García-Villacorta, R., Pitman, N.C.A., Mesones, I., Kembel, S.W., 2010. A 998

Floristic Study of the White-Sand Forests of Peru. Ann Missouri Bot Gard 97, 283-305. 999 Frasier, C.L., Albert, V.A., Struwe, L., 2008. Amazonian lowland, white sand areas as ancestral 1000

regions for South American biodiversity: Biogeographic and phylogenetic patterns in 1001 Potalia (Angiospermae: Gentianaceae). Org Divers Evol 8, 44-57. 1002

Funk, D.J., Omland, K.E., 2003. Species-level paraphyly and polyphyly: Frequency, causes, 1003 and consequences, with insights from animal mitochondrial DNA. Ann Rev Ecol Evol 1004

Syst 34, 397-423. 1005 Gatesy, J., Springer, M.S., 2014. Phylogenetic analysis at deep timescales: unreliable gene 1006

trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Mol 1007 Phylogenet Evol 80, 231-266. 1008

Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., 1009

Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., 1010

Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., 1011 Regev, A., 2011. Full-length transcriptome assembly from RNA-Seq data without a 1012 reference genome. Nature Biotechnol 29, 644-652. 1013

Griscom, L., Greenway, J.C., 1941. Birds of Lower Amazonia. Bull Mus Comp Zool 88, 83-1014 344. 1015

Haffer, J., 1974. Avian speciation in Tropical South America. Nuttall Ornithological Club, 1016

Harvard University, Cambridge. 1017 Harvey, M.G., Smith, B.T., Glenn, T.C., Faircloth, B.C., Brumfield, R.T., 2016. Sequence 1018

Capture versus Restriction Site Associated DNA Sequencing for Shallow Systematics. 1019 Syst Biol 65, 910-924. 1020

Harvey, M.G., Aleixo, A., Ribas, C., Brumfield, R.T., 2017. Habitat association predicts genetic 1021

diversity and population divergence in Amazonian birds. American Naturalist Early 1022 View. 1023

Hill, G.E., 2017. The mitonuclear compatibility species concept. Auk 134, 393-409. 1024 Hoorn, C., 1993. Marine incursions and the influence of Andean tectonics on the Miocene 1025

depositional history of northwestern Amazonia: results of a palynostratigraphic study. 1026 Palaeogeogr Palaeoclimatol Palaeoecol 105, 267-309. 1027

Hulsey, C.D., Bell, K.L., García-de-León, F.J., Nice, C.C., Meyer, A., 2016. Do relaxed 1028 selection and habitat temperature facilitate biased mitogenomic introgression in a 1029 narrowly endemic fish? Ecol Evol 6, 3684-3698. 1030

Katoh, K., Standley, D.M., 2013. MAFFT Multiple Sequence Alignment Software Version 7: 1031 Improvements in Performance and Usability. Mol Biol Evol 30, 772-780. 1032

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., 1033 Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., Drummond, 1034 A., 2012. Geneious Basic: An integrated and extendable desktop software platform for 1035 the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. 1036

Knowles, L.L., 2009. Statistical Phylogeography. Ann Rev Ecol Evol Syst 40, 593-612. 1037

Page 42: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

31

Kubatko, L.S., Degnan, J.H., 2007. Inconsistency of phylogenetic estimates from concatenated 1038

data under coalescence. Syst Biol 56, 17-24. 1039 Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T., Calcott, B., 2017. PartitionFinder 2: 1040

New methods for selecting partitioned models of evolution for molecular and 1041 morphological phylogenetic analyses. Mol Biol Evol 34, 772-773. 1042

Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nature 1043

Methods 9, 357-359. 1044 Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L., 2009. Ultrafast and memory-efficient 1045

alignment of short DNA sequences to the human genome. Genome Biol 10, R25. 1046 Laranjeiras, T.O., Naka, L.N., Bechtold, C.L., Costa, T.V.V., Andretti, C.B., Cerqueira, M.C., 1047

Torres, M.d.F., Rodrigues, G.L., Santos, M.P.D., Vargas, C.F., Pacheco, A.M.F., Sardelli, 1048

C.H., Mazar-Barnett, J., Cohn-Haft, M., 2014. The avifauna of Viruá National Park, 1049 Roraima, reveals megadiversity in northern Amazonia. Rev Bras Ornitol 22, 138-171. 1050

Latrubesse, E.M., 2002. Evidence of Quaternary palaeohydrological changes in middle 1051 Amazonia: The Aripuanã-Roosevelt and Jiparaná "fans". Z Geomorph N F 129, 61-72. 1052

Latrubesse, E.M., Franzinelli, E., 2002. The Holocene alluvial plain of the middle Amazon 1053 River, Brazil. Geomorphology 44, 241-257. 1054

Levey, D.J., Stiles, F.G., 1992. Evolutionary precursors of long-distance migration: resource 1055 availability and movement patterns in Neotropical landbirds. Am Nat 140, 447-476. 1056

Llopart, A., Herrig, D., Brud, E., Stecklein, Z., 2014. Sequential adaptive introgression of the 1057 mitochondrial genome in Drosophila yakuba and Drosophila santomea. Mol Ecol 23, 1058 1124-1136. 1059

Manthey, J.D., Campillo, L.C., Burns, K.J., Moyle, R.G., 2016. Comparison of Target-Capture 1060

and Restriction-Site Associated DNA Sequencing for Phylogenomics: A Test in 1061 Cardinalid Tanagers (Aves, Genus: Piranga). Syst Biol 65, 640-650. 1062

Matos, M.V., Borges, S.H., d'Horta, F.M., Cornelius, C., Latrubesse, E., Cohn-Haft, M., Ribas, 1063

C.C., 2016. Comparative Phylogeography of two bird species, Tachyphonus phoenicius 1064 (Thraupidae) and Polytmus theresiae (Trochilidae), specialized in Amazonian White-1065 sand vegetation. Biotropica 48, 110-120. 1066

Mayle, F.E., Beerling, D.J., Gosling, W.D., Bush, M.B., 2004. Responses of Amazonian 1067 ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial 1068

maximum. Philos Trans R Soc Lond B Biol Sci 359, 499-514. 1069 McCormack, J.E., Hird, S.M., Zellmer, A.J., Carstens, B.C., Brumfield, R.T., 2013. 1070

Applications of next-generation sequencing to phylogeography and phylogenetics. 1071

Molecular phylogenetics and evolution 66, 526-538. 1072 McGuire, J.A., Witt, C.C., Remsen, J.V., Jr., Corl, A., Rabosky, D.L., Altshuler, D.L., Dudley, 1073

R., 2014. Molecular phylogenetics and the diversification of hummingbirds. Curr Biol 1074 24, 910-916. 1075

McKay, B.D., Zink, R.M., 2010. The causes of mitochondrial DNA gene tree paraphyly in 1076 birds. Mol Phylogenet Evol 54, 647-650. 1077

Metzker, M.L., 2010. Sequencing technologies - the next generation. Nat Rev Genet 11, 31-46. 1078 Moyle, R.G., Oliveros, C.H., Andersen, M.J., Hosner, P.A., Benz, B.W., Manthey, J.D., 1079

Travers, S.L., Brown, R.M., Faircloth, B.C., 2016. Tectonic collision and uplift of 1080

Wallacea triggered the global songbird radiation. Nature Commun 7, 12709. 1081 Nascimento, N.R., Bueno, G.T., Fritsch, E., Herbillon, A.J., Allard, T., Melfi, A.J., Astolfo, R., 1082

Boucher, H., Li, Y., 2004. Podzolization as a deferralitization process: a study of an 1083 Acrisol-Podzol sequence derived from Palaeozoic sandstones in the northern upper 1084 Amazon Basin. Eur J Soil Sci 55, 523-538. 1085

Page 43: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

32

Nogueira, A.C.R., Silveira, R., Guimarães, J.T.F., 2013. Neogene–Quaternary sedimentary and 1086

paleovegetation history of the eastern Solimões Basin, central Amazon region. J South 1087 Am Earth Sci 46, 89-99. 1088

Ogilvie, H.A., Bouckaert, R.R., Drummond, A.J., 2017. StarBEAST2 brings faster species tree 1089 inference and accurate estimates of substitution rates. Mol Biol Evol 34, 2101-2114. 1090

Orr, H.A., 1996. Dobzhansky, Bateson, and the genetics of speciation. Genetics 144, 1331-1091

1335. 1092 Parker, T.A., Remsen, J.V., 1987. Fifty-two Amazonian bird species new to Bolivia. Bull Brit 1093

Orn Cl 107, 94-107. 1094 Peters, J.L., 1948. Check-list of birds of the world. Harvard University Press, Cambridge, UK. 1095 Pomara, L.Y., Ruokolainen, K., Tuomisto, H., Young, K.R., 2012. Avian composition co-varies 1096

with floristic composition and soil nutrient concentration in Amazonian upland forests. 1097 Biotropica 44, 545-553. 1098

Prance, G.T., Schubart, H.O.R., 1978. Notes on the vegetation of Amazonia I. A preliminary 1099 note on the origin of the open white sand campinas of the lower Rio Negro. Brittonia 30, 1100 60-63. 1101

Prum, R.O., Berv, J.S., Dornburg, A., Field, D.J., Townsend, J.P., Lemmon, E.M., Lemmon, 1102

A.R., 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation 1103 DNA sequencing. Nature 526, 569-573. 1104

Rambaut, A., Suchard, M.A., Xie, D., Drummond, A.J., 2014. Tracer v1.6. 1105 http://beast.bio.ed.ac.uk/Tracer 1106

Rheindt, F.E., Christidis, L., Norman, J.A., 2008. Habitat shifts in the evolutionary history of a 1107

Neotropical flycatcher lineage from forest and open landscapes. BMC Evol Biol 8. 1108

Rheindt, F.E., Edwards, S.V., 2011. Genetic Introgression: An Integral but neglected 1109 component of speciation in birds. Auk 128, 620-632. 1110

Ribas, C.C., Aleixo, A., Nogueira, A.C., Miyaki, C.Y., Cracraft, J., 2012. A 1111

palaeobiogeographic model for biotic diversification within Amazonia over the past three 1112 million years. Proc Biol Sci 279, 681-689. 1113

Roddaz, M., Baby, P., Brusset, S., Hermoza, W., Maria Darrozes, J., 2005. Forebulge dynamics 1114

and environmental control in Western Amazonia: The case study of the Arch of Iquitos 1115 (Peru). Tectonophysics 399, 87-108. 1116

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., 1117 Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MrBayes 3.2: efficient Bayesian 1118 phylogenetic inference and model choice across a large model space. Syst Biol 61, 539-1119

542. 1120 Rossetti, D.F., Bertani, T.C., Zani, H., Cremon, E.H., Hayakawa, E.H., 2012. Late Quaternary 1121

sedimentary dynamics in Western Amazonia: Implications for the origin of open 1122 vegetation/forest contrasts. Geomorphology 177-178, 74-92. 1123

Sambrook, J., Russel, D.W., 2001. Molecular Cloning: A laboratory manual. Cold Spring 1124 Harbor Laboratory Press, Cold Spring Harbor, New York. 1125

Sauer, D., Sponagel, H., Sommer, M., Giani, L., Jahn, R., Stahr, K., 2007. Podzol: Soil of the 1126 year 2007. A review on its genesis, occurrence, and functions. J Plant Nutr Soil Sci 170, 1127 581-597. 1128

Shipham, A., Schmidt, D.J., Joseph, L., Hughes, J.M., 2015. Phylogenetic analysis of the 1129 Australian rosella parrots (Platycercus) reveals discordance among molecules and 1130

plumage. Mol Phylogenet Evol 91, 150-159. 1131 Shipham, A., Schmidt, D.J., Joseph, L., Hughes, J.M., 2017. A genomic approach reinforces a 1132

hypothesis of mitochondrial capture in eastern Australian rosellas. Auk 134, 181-192. 1133 Sloan, D.B., Havird, J.C., Sharbrough, J., 2017. The on-again, off-again relationship between 1134

mitochondrial genomes and species boundaries. Mol Ecol 26, 2212-2236 1135

Page 44: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

33

Smith, B.T., Harvey, M.G., Faircloth, B.C., Glenn, T.C., Brumfield, R.T., 2014. Target capture 1136

and massively parallel sequencing of ultraconserved elements for comparative studies at 1137 shallow evolutionary time scales. Syst Biol 63, 83-95. 1138

Sorenson, M.D., Ast, J.C., Dimcheff, D.E., Yuri, T., Mindell, D.P., 1999. Primers for a PCR-1139 based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol 1140 Phylogenet Evol 12, 105-114. 1141

Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of 1142 large phylogenies. Bioinformatics 30, 1312-1313. 1143

Stotz, D.F., Fitzpatrick, J.W., Parker, T.A., Moskovitz, D.K., 1996. Neotropical birds: Ecology 1144 and conservation. University of Chicago Press, Chicago, IL. 1145

Tobias, J.A., 2017. Jacamars (Galbulidae). In: del Hoyo, J., Elliot, A., Sargatal, J. (Eds.), 1146

Handbook of the birds of the world. Lynx Ediciones, Barcelona. (retrieved from 1147 http://www.hbw.com/node/52281 on 15 August 2017) 1148

Toews, D.P., Brelsford, A., 2012. The biogeography of mitochondrial and nuclear discordance 1149 in animals. Mol Ecol 21, 3907-3930. 1150

Vicentini, A., 2016. The Evolutionary History of Pagamea (Rubiaceae), a White-sand 1151 Specialist Lineage in Tropical South America. Biotropica 48, 58-69. 1152

Vriesendorp, C., Pitman, N.C., Rojas Moscoso, J.I., Pawlak, B.A., Chavéz, L.R., Méndez, L.C., 1153 Collantes, M.V., Rimachi, E.P.F., 2006. Perú: Matsés. Rapid biological inventories report 1154

16. The Field Museum, Chicago. 1155 Wang, N., Kimball, R.T., Braun, E.L., Liang, B., Zhang, Z., 2017. Ancestral range 1156

reconstruction of Galliformes: the effects of topology and taxon sampling. J Biogeogr 44, 1157

122-135. 1158

Weir, J.T., Schluter, D., 2008. Calibrating the avian molecular clock. Mol Ecol 17, 2321-2328. 1159 Weisrock, D.W., Smith, S.D., Chan, L.M., Biebouw, K., Kappeler, P.M., Yoder, A.D., 2012. 1160

Concatenation and concordance in the reconstruction of mouse lemur phylogeny: an 1161

empirical demonstration of the effect of allele sampling in phylogenetics. Mol Biol Evol 1162 29, 1615-1630. 1163

Whitney, B.M., Alonso, J.A., 1998. A new Herpsilochmus antwren (Aves: Thamnophilidae) 1164

from Northern Amazonian Peru and adjacent Ecuador: The role of edaphic heterogeneity 1165 of terra firme forest. Auk 115, 559-576. 1166

Whitney, B.M., Alonso, J.A., 2005. A new species of Gnatcatcher from white-sand forests of 1167 northern Amazonian Peru with revision of the Polioptila guianensis complex. Wilson 1168 Bull 117, 113-127. 1169

Witt, C.C., 2004. Rates of molecular evolution and their application to Neotropical Avian 1170 Biogeography. Department of Biological Sciences. Louisiana State University, p. 132 p. 1171

Zink, R.M., Barrowclough, G.F., 2008. Mitochondrial DNA under siege in avian 1172 phylogeography. Mol Ecol 17, 2107-2121. 1173

1174

Author contibutions 1175 M.F. and A.M.F. developed the sampling plan, extracted DNA and sequenced all samples. M.F. 1176 performed all analysis. A.A.P., A.A., U.O., J.M.B., J.C. and C.C.R. were involved in intellectual merit, 1177 funding, and writing. All authors participated in writing the manuscript. 1178 Supporting information 1179 Additional supporting information may be found in the online version of this article. 1180 Table S1 Supplementary details of individuals. 1181 1182

Page 45: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

34

Table 1 - Samples used for UCE sequencing, their voucher numbers, general locality, number of clean reads 1183 after Illumiprocessor, number of contigs assembled by Trinity, and total UCE loci recovered from Trinity. 1184 1185

Species Museum voucher Locality Clean reads Trinity contigs UCE loci

G. chalcothorax LSUMZ B2803 N of Napo River, Iquitos, Peru 1,524,126 6,537 2,230

G. leucogastra INPA A4182 145 Km WWS of Apuí, AM, Brazil 2,540,148 12,163 2,269

G. leucogastra INPA A4672 Right bank of Jatapú River, AM, Brazil 2,209,895 9,491 2,263

G. leucogastra LSUMZ B35619 Arapiuns River, PA, Brazil 4,394,658 10,853 2,246

G. leucogastra LSUMZ B9608 Nicolás Suarez, Pando, Bolívia 1,677,988 5,074 1,928

G. leucogastra MPEG 59360 Novo Airão, AM, Brazil 2,372,950 6,026 1,957

G. leucogastra MPEG 75618 Right bank of Tapajós River, PA, Brazil 1,346,149 6,117 2,263

G. leucogastra MPEG 73685 Novo Aripuanã, AM, Brazil 1,466,240 6,896 2,227

G. albirostris INPA A064 Amazonas, Brazil 2,809,416 16,718 2,256

1186 Table 2 – Summary of each method, including number of loci, total length, mean length size of each loci, 1187 minimum and maximum length, number of Parsimony Informative sites. 1188 1189

Method Complete Exons Species Tree†

Number of loci 2271 47 124

Total lenght (bp) 1,233,287 47,580 80,085

Mean lenght size (bp) 543.06 849.64 645.85

Min - Max lenght (bp) 118 – 1,305 182 - 3093 347 – 3093

Number of PI sites (mean) 2003 (0.88) 190 (3.39) 744 (6)

†without the mtDNA 1190 1191 Table 3 – Possible causes of conflict in mitochondrial and nuclear DNA histories. 1192 1193

Inferred process Reference

Incomplete lineage sorting Funk and Omland, 2003; McKay and Zink, 2010;

Zink and Barrowclough, 2008

Incomplete sampling Shipham et al., 2015, 2017

Improper taxonomy McKay and Zink, 2010

Adaptive introgression Bock et al., 2014; Dobler et al., 2014

Demography or Sex-biased traits Bonnet et al., 2017; Daly-Engel et al., 2012;

Rheindt and Edwards, 2011; Sloan et al., 2017

1194

Page 46: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

35

Figure 1 - Map of sequenced individuals, phylogenetic Bayesian tree recovered, and haplotype networks. The 1195 colors in the tree, map and networks are correspondent, and the tree and networks are based on two mtDNA genes 1196 (2009 bp, cytb and ND2). Posterior probabilities obtained at each node are indicated on the tree, red circles 1197 represent pp=1. The brown labeled points are G. chalcothorax, all other lineages are G. leucogastra. Terminal 1198 names in red are samples used in the UCE analysis. 1199 1200

1201 1202

Page 47: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

36

Figure 2 – Chronogram recovered by BEAST using all mtDNA coding genes with a calibration derived from the 1203 mutational rate of the cytb gene (Weir and Schluter 2008). Posterior probabilities obtained at each node are 1204 indicated in the tree, red circles represents pp>98, associated confidence interval (95% HPD) for diversification 1205 time (blue bar), and the median time of divergence. Colors are correspondent with Figure 1. 1206 1207

1208 1209

Page 48: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

37

Figure 3 - Comparison between the concatenated UCE RAxML tree (left) and the StarBEAST2 species tree (right). 1210 Bootstrap support for the RAxML tree, and the posterior probability for the StarBEAST species tree, is show near 1211 the nodes. Colors are correspondent with Figure 1. 1212 1213

1214 1215 1216

1217

Page 49: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

38

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

Capítulo 2 1228

1229

1230

Ferreira, M.; Aleixo, A.; Bates, J. M.; Cracraft, J.; 1231

Ribas, C. C. Phylogenomics of trogons (Aves: 1232

Trogonidae) shed light on the Quaternary 1233

biogeography of tropical forests and the connections 1234

between Asia, North and South America. Manuscrito 1235

formatado para Molecular Biology and Evolution 1236

1237

Page 50: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

39

1238

1239

Manuscript submission to Molecular Biology and Evolution 1240

Contribution type: Article 1241

1242

Phylogenomics of trogons (Aves: Trogonidae) shed light on the Quaternary 1243

biogeography of tropical forests and the connections between Asia, North 1244

and South America 1245

1246

Ferreira, Mateus1*; Aleixo, Alexandre2; Bates, John M.3; Cracraft, Joel4; Ribas, Camila C.5 1247 1248 1 Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, INPA, 1249

Manaus, AM, Brazil 1250 2 Coordenação de Zoologia, MPEG, Belém, PA, Brazil 1251 3 Department of Ornithology, FMNH, Chicago, IL, USA 1252 4 Department of Ornithology, AMNH, New York, NY, USA 1253 5 Coordenação de Biodiversidade, INPA, Manaus, AM, Brazil 1254 *Corresponding author 1255 1256

Correspondence: Mateus Ferreira, Coordenação de Biodiversidade, Instituto Nacional de 1257 Pesquisas da Amazônia, CEP 69080-971, Manaus-AM, Brazil 1258

E-mail: [email protected] 1259 1260

1261

Abstract 1262

The pantropical distribution of trogons always drew attention of biogeographers, with 1263

species distributed all over the forests regions of subtropical and tropical Africa, Asia and 1264

America, several studies tried to reconstruct the phylogenetic relationships without, however, 1265

being able to achieve conclusive results. For the first time, all genera and almost all currently 1266

recognized species, 43 out of 45, were sampled and sequenced for thousands of ultraconserved 1267

elements (UCE) to reconstruct the family phylogenetic hypothesis. We analysed the 1268

concatenated dataset using different treatments for missing data with RAxML and ExaBayes, 1269

we also estimated a species tree using SVDquartets. We also estimated a fossil calibrated time 1270

tree for trogons diversification sampling 177 individuals of the Core Landbirds for RAG1 and 1271

RAG2 genes. Our results were congruent among all methods with high nodal support, 1272

disagreement between treatments (Species Tree x concatenated) were observed only at the basal 1273

Page 51: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

40

nodes. In general, our results support the monophyly of the different biogeographical regions, 1274

with Apaloderma species being sister to the Asian (Harpactes and Apalharpactes) and the 1275

Neotropical trogons (Euptilotis, Pharomachrus, Priotelus, and Trogon). Trogonidae initial 1276

diversifications occurred around 20 Ma, and continued till the Pleistocene, where most of the 1277

Neotropical species appeared. Based on these results, we proposed how the climate changes 1278

since the Late Oligocene influenced forest distributions and how the establishment of land 1279

bridges between continents helped shape the family diversification. 1280

1281

Introduction 1282

The Trogonidae have some of the most colourful and exquisite plumages among birds. 1283

Representatives of this family, usually known as trogons or quetzals, can be found in forested 1284

tropical and subtropical regions of Africa, Asia and America (Collar 2017). The monophyly of 1285

the family was never questioned due to the morphological homogeneity among species 1286

(Livezey and Zusi 2007; Collar 2017), the most iconic feature that differentiate trogons and 1287

quetzals from other birds is the heterodactyl foot, in which digits 1 and 2 are directed backwards 1288

and the basal half of digits 3 and 4 are fused and directed forward (Maurer and Raikow 1981; 1289

Mayr 2009). However, it is precisely this unique feature that makes trogons so difficult to relate 1290

with extant birds. Despite several attempts to reconstruct the relationship between trogons and 1291

other birds, most of the morphological (Cracraft 1981; Maurer and Raikow 1981; Mayr 2003; 1292

Livezey and Zusi 2007) and the first molecular analyses (Monteros 2000; Hackett, et al. 2008; 1293

McCormack, et al. 2013) were unable to recover conclusive results about their phylogenetic 1294

relationships. Only recently, employing genomic representations, trogons were shown to be a 1295

sister group to a clade containing mousebirds (Coliiformes), cuckoo rollers (Leptosomiformes) 1296

and other Core Landbirds (Jarvis, et al. 2014; Prum, et al. 2015). 1297

Page 52: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

41

Although the relationship with other birds is partially resolved, the relationships within 1298

the family are still pending conclusive results. Historically, the genera and species within each 1299

biogeographic region were considered monophyletic. The highest diversity is found in the 1300

Neotropical region, with four genera, Euptilotis, Pharomachrus, Priotelus and Trogon, and ~30 1301

species ranging from southwestern USA to northern Argentina. The Indo-Malaysian region 1302

comprises 2 genera, Apalharpactes and Harpactes, and 12 species, ranging from southern India, 1303

Southeast Asia, Philippines, the Malay Peninsula, Borneo, Philippines, Sumatra and Java, while 1304

the African region includes only one genus, Apaloderma and tree species. Although trogons are 1305

currently found only in tropical and subtropical regions, fossil records indicate that they had a 1306

wider distribution in the past. Two fossils from Europe, Primotrogon wintersteini (Mayr 1999) 1307

from the Middle Oligocene, and ?P. pumilio (Mayr 2005), from the Middle Eocene, are credited 1308

to be sister group to all other extant species (Mayr 2009). Whereas Septentrogon madseni 1309

(Kristoffersen 2002), from the transitional Paleocene-Eocene Fur Formation in north-western 1310

Denmark shares morphological characteristics that put him inside the Trogonidae. The presence 1311

of these fossils in Europe suggests a widespread lineage occurring in regions that are currently 1312

unsuitable for them. The similarity between fossils and extant trogons also indicates that this 1313

lineage suffered little morphological changes through time. This apparent conservatism of 1314

morphological characteristics also makes the inferences of phylogenetic relationships among 1315

extant species difficult. 1316

The first molecular phylogenetic hypothesis for trogons was based on two mitochondrial 1317

genes and included 20 out of the ca. 45 species (Monteros 1998). This study supported the 1318

hypothesis of monophyly of the biogeographic regions, recovering the Neotropical genera sister 1319

to the Asian, with the African clade sister to these two (Monteros 1998). Following studies that 1320

increased the number of genes and/or samples, however, couldn’t recover the monophyly of the 1321

Neotropical genera, nor the relationship among the different regions (Johansson and Ericson 1322

Page 53: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

42

2005; Moyle 2005; DaCosta and Klicka 2008; Hosner, et al. 2010). The most recent paper 1323

(Hosner, et al. 2010), and the first one to sample the genus Apalharpactes, recognized six clades 1324

(Apaloderma, Apalharpactes, Harpactes, Pharomachrus/Euptilotis, Priotelus, and Trogon) 1325

with uncertain relationships among them, but showing evidences of Apalharpactes being more 1326

closely related with the African Apaloderma, than to the other Asian genus, Harpactes, 1327

implying a very complex biogeographical pattern, with two independent colonizations of Asia. 1328

A similar pattern suggested for the Neotropical genera, which group three distinct clades 1329

(Hosner, et al. 2010). 1330

This uncertainty regarding phylogenetic relationships so far was probably related to the 1331

scarcity of signal due to a low number of loci employed in previous studies. Genomic analyses 1332

using a reduced representation of the genome can increase phylogenetic information and avoid 1333

confounding the histories of single genes with the species relationships (Degnan and Rosenberg 1334

2009; Knowles 2009). Also, since the correct interpretation of biotic evolution can shed light 1335

on the landscape evolution (Baker, et al. 2014), a robust and well supported phylogenetic 1336

hypothesis is of extreme importance for defining hypothesis in biogeography (Donoghue and 1337

Moore 2003; Lexer, et al. 2013). In this sense, a prominent approach to study systematics using 1338

genomic markers is the use of probes for Ultraconserved Elements (UCE)(Faircloth, et al. 2012; 1339

McCormack, et al. 2012; McCormack and Faircloth 2013; McCormack, et al. 2013; Faircloth, 1340

et al. 2015). These probes, have been employed to reconstruct deep (Faircloth, et al. 2015; 1341

Moyle, et al. 2016; Branstetter, et al. 2017; Esselstyn, et al. 2017) and shallow (Bryson, et al. 1342

2016; Manthey, et al. 2016) phylogenetic relationships, even where high incomplete lineage 1343

sorting is expected, such as in cases of rapid evolutionary radiation (Meiklejohn, et al. 2016). 1344

Therefore, trogons represent a great study model on how genomic representation may 1345

elucidate uncertain phylogenetic relationships, and to understand how the landscape evolution 1346

shaped the family diversification, due to its pantropical geographic distribution and preference 1347

Page 54: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

43

for forested habitats. Here, we aim (1) to generate and unprecedent and robust analyses of 1348

phylogenetic relationships within the Trogonidae family, using nearly complete sampling of all 1349

recognized speces and a genomic representation of more than 2,000 UCE loci, (2) to investigate 1350

the monophyly of main biogeographical regions, and (3) to reconstruct a calibrated tree to infer 1351

the timing of diversification, and how it was influenced by the global events on geography and 1352

climate. 1353

1354

Results 1355

UCE sequencing 1356

The reference sequences we extracted from the Apaloderma vittatum genome (Gilbert, 1357

Jarvis, Li, Consortium, et al. 2014) included 2,228 loci. The mean number of sequences for 1358

each individual was 2,080,592, and a mean number of UCE loci was 2,222, with only one toe 1359

pad sample (AMNH 322898) recovering less than 2000 loci (Table 1). The complete matrix 1360

contained 1421 loci, with mean locus length of 510.27 base pairs, and a total of 37,880 1361

parsimony informative (PI) sites, mean of 26.6 per locus (Table 2). The incomplete matrices 1362

with 95% and 75% completeness have 2,210 and 2,217 loci, with mean locus length of 499.77 1363

and 495.95 base pairs, and 55,060 and 57,259 PI sites, with mean of 24.91 and 25.83 sites per 1364

locus (Table 2). 1365

Phylogenetic inference 1366

The tree topologies were congruent among all methods and with high node support, apart 1367

from the SVDq analyses, in which the basal nodes presented low support. The concatenated 1368

RAxML and ExaBayes phylogenies recovered the Asian trogons sister to the Neotropical, and 1369

these two sisters to the African clade with high support (Fig. 1). All the ExaBayes analyses, 1370

including the complete and the two incomplete datasets, recovered the same topology with all 1371

nodes with the maximum posterior probability (Fig. 1). Although the topologies recovered by 1372

Page 55: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

44

RAxML trees were congruent with ExaBayes, some of the basal nodes received low support. 1373

The same was observed with SVDq. 1374

Within the Asian group, Apalharpactes was sister to Harpactes, but with low support in 1375

the RAxML (Table 3) analyses. Within Harpactes we recovered three groups: (1) the distinct 1376

H. oreskios; (2) the two small-bodied species H. duvaucelli and H. orrhophaeus; and (3) the 1377

large-bodied species, containing the other species, with clearly defined and high support 1378

supported relationships (Fig. 1). The Neotropical clade was recovered with high nodal support 1379

(Table 3), showing the quetzals, Euptilotis and Pharomachrus, as sister to Priotelus and Trogon 1380

(Fig. 1). Pharomachrus moccino, the only Central America species, is sister to all other 1381

Pharomachrus species. The two Andean species, P. antisianus and P. auriceps, are not closely 1382

related (Fig. 1). Within Trogon, the most diverse genus in the family, we recovered 5 clades, 1383

all of which include species at both sides of the Andes (Fig. 1). 1384

Time-calibrated tree 1385

The concatenated matrix of RAG1 and RAG2 sequences includes 4757 base pairs for 177 1386

representatives of the Core Land birds (Claramunt and Cracraft 2015; Prum, et al. 2015) 1387

(Supplementary Table 1). Phylogenetic analysis of this matrix recovered a well-supported tree. 1388

Trogonidae diversification started in the Early Miocene, the first of four divergence events are 1389

close to each other, around 20 Ma (Fig. 2). While the Asian species originated during the Late 1390

Miocene/ Early Pliocene, most Neotropical species originated during the Late 1391

Pliocene/Pleistocene (Fig. 2). 1392

1393

Discussion 1394

Phylogenomic contribution to the reconstruction of Trogonidae diversification 1395

Recovering basal relationships in the Trogonidae phylogeny has proven to be challenging, 1396

and previous studies have failed to resolve the relationships among genera (Monteros 1998; 1397

Page 56: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

45

Mayr 2003; Johansson and Ericson 2005; Moyle 2005), either because of incomplete taxon 1398

sampling or inadequate number of markers. Monteros (1998) using only two mtDNA genes 1399

recovered a tree topology similar to the one we recovered, in which taxa from different 1400

biogeographical regions were monophyletic. However, the relationships among genera were 1401

not well supported, and Apalharpactes was not sampled. Johansson and Ericson (2005), and 1402

then Moyle (2005), increased the sampling and added a few nuclear introns, yet there were few 1403

improvements in phylogenetic resolution. Moyle (2005) recovered a paraphyletic Neotropical 1404

group, with the quetzals being sister to all other genera, and the Asian and African group sister 1405

to each other embedded within Trogon and Priotelus. Johansson and Ericson (2005) based on 1406

a combined analysis of mtDNA and three nuclear introns recovered a topology similar to ours, 1407

however, node support for the Neotropical group, and the node grouping Asia and the 1408

Neotropics, received low to moderate support. Hosner, et al. (2010) were the first to include an 1409

Apalharpactes sample, but their results were also inconclusive, as relationships among genera 1410

were poorly supported and biogeographical groups, except for Africa, were not monophyletic. 1411

Our phylogenetic results were the first to recover with moderate to high support the 1412

relationship of almost all currently recognized species, as our analyses recovered most of the 1413

nodes with high statistical support (Fig. 1). The nodes that did not receive full support at the 1414

base of the tree (Table 3) are connected by short internodes, probably as a result of an ancient 1415

rapid radiation (Whitfield and Lockhart 2007). Recurrent issues arising from rapid radiations 1416

usually include incomplete lineage sorting (ILS), represented by conflict among gene trees due 1417

to successive events of speciation in short periods of time, which can be accentuated by large 1418

population sizes (Oliver 2013; Suh, et al. 2015). ILS probably was also the main cause of low 1419

support in previous studies that employed few genetic markers, as they could have conflicting 1420

histories (Knowles 2009; Oliver 2013) and probably lacked strong phylogenetic signal to 1421

recover the deep phylogenetic relationships (Salichos and Rokas 2013). Evidence of gene tree 1422

Page 57: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

46

incongruence was strongly observed in the whole-genome analysis of bird diversification, 1423

where there was no single gene tree that fully corroborated the combined topology (Jarvis, et 1424

al. 2014). However, counterintuitive, increasing the number of markers does not necessarily 1425

means an improvement in poorly supported nodes. Instead, expanding the number of markers 1426

increases the probability of discordance among them (Oliver 2013), and thus, notably in events 1427

of rapid radiation, some divergences are expected not to behave as a fully bifurcating tree, but 1428

more like a network (Bapteste, et al. 2013; Suh, et al. 2015) because most genes will have 1429

discordant histories due to ILS (Degnan and Rosenberg 2006). Therefore, concatenation may 1430

be the best approach when the number of possible sites supporting a relationship is concentrated 1431

in a few loci diluted in a high number of loci affected by ISL (Gatesy and Springer, 2014; 1432

Springer and Gatesy, 2016). Nonetheless, based on our results, after the first events of 1433

diversification, most of nodes were recovered with high statistical support for all analysis, 1434

including the Neotropical node, which means that, even though we probably do not have enough 1435

confidence to allege the correct order of events that trogons went through their initial 1436

diversification, we may still infer some hypothesis based on current distribution and ecology. 1437

Diversification and biogeography of Trogons 1438

Trogons are still-hunting predators feeding on insects or small vertebrates, but most of 1439

Asian and Neotropical species also feed on fruits, with quetzals being mostly frugivores. They 1440

inhabit the midstory and canopy of tropical and subtropical forest, with some species occurring 1441

in forested patches of open habitats (e.g. Trogon curucui). Most species are territorialists, with 1442

small territories, and lack the capacity to fly over long distances, usually flying from perch to 1443

perch in short sallies (Collar 2017). The morphological conservatism of fossils compared to 1444

extant species suggests that trogons have not underwent large ecological shifts (Mayr 1999, 1445

2003; Mayr 2005), hence their historical distribution probably was affected by the distribution 1446

of suitable habitats through time. Although nowadays there is no continuous patch of suitable 1447

Page 58: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

47

habitats, i.e. forested habitat, between Africa, Asia and America, during the Early Miocene, due 1448

to a warmer climate, most of the dry land was covered by forest habitats, such as the broad-leaf 1449

deciduous (Mixed Mesophytic) forest that covered most of the Northern Hemisphere (Baskin 1450

and Baskin 2016), and forests dominated by deciduous conifers that extended even over the 1451

Article Circle (Jahren 2007; Jahren and Sternberg 2008). 1452

The abundance of forests during the Tertiary is due to both warmer temperatures and 1453

twice the current amount of CO2 concentrations (Zachos, et al. 2001). However, after the 1454

Eocene Climatic Optimum (52 to 50 Ma), in which global mean temperatures were 8-10°C 1455

higher, the world temperature started to cool down with two climatic aberrations, where the 1456

amount of ice in polar regions increased drastically. The first one, known as Oi-1, happened 1457

just above the limits between Eocene and Oligocene (34 Ma) (Zachos, et al. 2001), this 1458

glaciation event caused rapid expansions of Antarctic continental ice-sheets and global 1459

temperatures remained low until a warming trend at the end of Oligocene (Zachos, et al. 2001). 1460

This warm phase that followed extended from the Late Oligocene until middle Miocene (~15 1461

Ma) with the Mid-Miocene Climatic Optimum (17 to 15 Ma) and it was followed by a gradual 1462

cooling, with the culmination in the Glacial cycles throughout the Plio/Pleistocene (Zachos, et 1463

al. 2001). The second aberration, Mi-1, happened during this warm period at the end of the 1464

Oligocene (~23 Ma), and was followed by a series of glaciation events (Zachos, et al. 2001), 1465

period well within the confidence interval for the initial diversification events we recovered in 1466

our time calibrated phylogeny. Both aberrations probably influenced the distribution and rates 1467

of diversification in some groups that have similar distributions as trogons, such as ferns 1468

(Bauret, et al. 2017; Hennequin, et al. 2017), and flowering plants (Li, et al. 2017). Interestingly, 1469

other groups of birds that have similar distributions present different patterns of diversification 1470

than trogons; woodpeckers (Aves: Picidae) and kingfishers (Aves: Alcedinidae) apparently 1471

have dispersed to the New World from the Old World more than once, however these events 1472

Page 59: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

48

seem to be younger than those we recovered for trogons, around 15 to 5 Ma for woodpeckers 1473

(Shakya, et al. 2017), and 10 to 5 Ma for kingfishers (Andersen, et al. 2017). This pattern 1474

suggests that dispersal between Asia and America was possible during a long period of time, 1475

probably experiencing cycles of connection and disconnection due to climatic variations 1476

(Zachos, et al. 2001). Therefore, our temporal framework supports an ancestral lineage 1477

distributed over the Palearctic region (Claramunt and Cracraft 2015), with dispersal to Asia, 1478

Africa and America during a short period of time, causing the poorly supported nodes we 1479

observed in our analysis. 1480

Africa and Asia diversification 1481

Even though African and Asian linages are as old as the Neotropical, only 6% and 31% 1482

of species diversity are found in these areas, respectively. Although contentious, there are 1483

probably many reason for the uneven diversity among areas. Monteros (1998) suggests that 1484

competitive exclusion might play a role in this pattern, as African and Asian trogons need to 1485

compete with other groups of frugivores birds, such as mousebirds (Colliformes), hornbills 1486

(Bucerotidae), barbets (Megalaimidae and Lybiidae), turacos (Musophagidae), and several 1487

families of passerines (Irenidae, Pycnonotidae, etc). While the Neotropical trogons are, along 1488

cotingas (Cotingidae) and toucans (Ramphastidae), one of the most important family for seed 1489

dispersal in this region (Collar, et al. 2017). 1490

Inside Africa, except for Apaloderma narina which has six recognized subspecies, the 1491

other two, A. vittatum and A. aequatoriale are monotypic (Collar 2017). However, no 1492

phylogeographic study was conducted to evaluate genetic structure within these species, with 1493

recent studies using other organism as models showing shallow genetic structure probably 1494

originated by aridification of the continent as a response of Plio/Pleistocene climatic 1495

fluctuations (Bowie, et al. 2004; Bowie, et al. 2006; Voelker, et al. 2010). The diversification 1496

event we recovered between A. vittatum and A. narina happened around 7.4 Ma (Fig. 2) and 1497

Page 60: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

49

precedes the beginning of the most drastic climatic fluctuations of the Pliocene, making any 1498

assumption of what may have caused this very hard, in particular considering that Africa has 1499

been geomorphologically stable for the last 40 Ma (Potts and Behrensmeyer 1992). Also, A. 1500

vittatum inhabits the montane forests, while A. narina and A. aequatoriale, inhabits the 1501

lowlands, and although we could not sample A. aequatoriale, previous work recovered it as 1502

sister species to A. narina (Hosner, et al. 2010). Suggesting that other mechanisms may be 1503

responsible for Apaloderma species diversification (Moritz, et al. 2000). 1504

In contrast with previous studies (Hosner, et al. 2010), our analyses recovered the 1505

monophyly of Asian trogons. Although the bootstrap support was moderate for this node in the 1506

likelihood analysis, it was recovered with high statistical support in the Bayesian analysis 1507

(Table 3). This suggest that after the initial diversification of the family, at least two Paleartic 1508

lineages (Claramunt and Cracraft 2015) colonized the Sundaland, the continental shelf that 1509

extended from SE Asia and comprises the Malay Peninsula, and the islands of Borneo, Java, 1510

and Sumatra. The time of diversification we found for Apalharpactes and Harpactes is 1511

consistent with the Hymalayan uplift acceleration, derived from India-Asia continental collision 1512

(Hall 2012; Hu, et al. 2017), and with the intermittent glaciations that followed the Mi-1 1513

glaciation at the Oligocene-Miocene boundary (Zachos, et al. 2001). These two events 1514

combined may have shaped Asian trogons diversification, however, making assumptions about 1515

Haparctes diversification involves a very complex history, and it is difficult based on extant 1516

species distribution to make any assumption about possible biogeographic barriers. Current 1517

geography of SE Asia and the Sunda islands can be misleading, the Sunda shelf was once 1518

exposed and covered by forest (Hall 2012; Bruyn, et al. 2014), and sea-level fluctuations were 1519

responsible for islands “formation” and connectivity, especially during the climatic fluctuations 1520

of the Pleistocene (Woodruff 2010). This mechanism is suggested as a possible explanation for 1521

Southeast Asia bird diversification (Lim, Rahman, et al. 2010; Lim, Zou, et al. 2010; Lim, et 1522

Page 61: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

50

al. 2017). However, most of the Harpactes diversification events precede the Pleistocene, and 1523

occurred between the Mid-Miocene Climatic Optimum (17-15 Ma) (Zachos, et al. 2001) and 1524

the Early Pliocene, much older than the diversification events of the Neotropical clade, for 1525

example. The only phylogeographic study conducted so far, with the Philippine Trogon 1526

(Harpactes ardens), demonstrated geographical structure among different island matching 1527

subspecies distribution (Hosner, et al. 2014), whereas H. kasumba, H. diardii and H. 1528

erythrocephalus showed little to no genetic variation in the mtDNA for the few samples used 1529

(Hosner, et al. 2010). Therefore, further studies, with broad sampling are necessary to 1530

understand how the Pleistocene climate, and sea level fluctuation, influenced population 1531

structure, which in turn may shed some light on the initial diversification of this genus. 1532

Neotropical diversification 1533

For the first time, Neotropical trogons were recovered as a monophyletic group with high 1534

statistical support (Monteros 1998; Johansson and Ericson 2005; Moyle 2005; Hosner, et al. 1535

2010). Although most of extant diversity is currently found in Central and South America, 1536

trogons arrived first in the Americas through the Beringia Bridge, northwest North America, 1537

and colonized the whole west coast, during a period when there were vast forests covering 1538

North America (Baskin and Baskin 2016). Therefore, tracing back the events related with the 1539

initial divergences would require extensive palaeontological investigation. The overall trend we 1540

observe in this clade diversification is that Central American lineages occupied South America 1541

through the Panamanian Isthmus, and most of divergence events postdate the Mid-Miocene 1542

Climatic Optimum (17-15 Ma), which marks the beginning of the cooling trend that escalated 1543

to the Plio-Pleistocene glaciations. Also during this period, there was extensive orogenic 1544

activity in Mexico, including the uplift of Sierra Madre Occidental (34 – 15 Ma) (Ferrari, et al. 1545

2007) and the formation of the Trans-Mexican Volcanic Belt (35 – 2.5 Ma) (Ferrari, et al. 2000). 1546

Both events triggered climatic changes, which in turn influenced the establishment of major 1547

Page 62: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

51

biomes in Mexico (Ferrari, et al. 1999), that have been shown to have influenced diversification 1548

in Amazillia hummingbirds (Ornelas, et al. 2014), and some plants (Lavin, et al. 2004; Becerra 1549

2005; Arakaki, et al. 2011). 1550

Another major event that shaped Neotropical trogons diversification was the 1551

establishment of the connection between North and South America, through the uplift of the 1552

Isthmus of Panama. The Great American Biotic Interchange allowed inter-continental exchange 1553

of biotas that were previously isolated in both continents and is of great importance for shaping 1554

bird assemblages and diversification (Weir, et al. 2009; Smith and Klicka 2010). Early studies 1555

suggested that the connection was only fully established at 3 Ma (Haug and Tiedeman 1998; 1556

Coates and Stallard 2013; Odea, et al. 2016), however, even though contentious in the literature 1557

(Farris, et al. 2011; Montes, et al. 2012; Bacon, et al. 2013; Bacon, et al. 2015a, b; Hoorn and 1558

Flantua 2015; Lessios 2015; Montes, et al. 2015; Odea, et al. 2016), this date was broadly used 1559

as a calibration point in phylogenetic studies attempting to integrate and synthesize patterns of 1560

dispersion across the Isthmus (review in Bacon, et al. (2015a)). Our results suggest that trogon 1561

dispersion across the Isthmus started as early as 6.5 Ma, with the split of Pharomachrus 1562

moccino from the other Pharomachrus species, and happened at least six additional times 1563

within Trogon diversification, all of them after 4 Ma. These results are also supported by a 1564

former study using only one mitochondrial marker for Trogon (DaCosta and Klicka 2008). 1565

Finally, the most notorious accomplishment of Neotropical trogons was to colonize the 1566

Greater Antilles. The genus Priotelus, which includes species endemic to the islands of Cuba, 1567

P. temnurus, and Hispaniola, P. roseigaster, split from Trogon around 17 Ma (Fig. 2). Trogons 1568

are well known for being weak fliers, so the chances of the ancestor of Priotelus to have 1569

dispersed through the ocean to colonize not just one, but two Caribbean islands are low. One 1570

possible explanation is the land bridge that once connected Central America to South America, 1571

known as GAARlandia (Greater Antilles + Aves Ridge) land bridge (Iturralde-Vinent 1994, 1572

Page 63: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

52

2006). Although this land connection is credited to be much older (35 – 33 Ma) (Alonso, et al. 1573

2011; Rícan, et al. 2013; Nieto-Blázquez, et al. 2017) than the split of Priotelus and Trogon, 1574

during the Middle-Late Miocene, the emerged islands that were part of the land bridge were 1575

still connected by shallow seas (Iturralde-Vinent 2006), and sea levels fluctuations may have 1576

facilitated the dispersal to these islands. Fabre, et al. (2014) studying Caribbean rodents found 1577

a similar age (16.5 Ma) for the subfamily of rodents that occupy the Greater Antilles. However, 1578

the sister group is from South America, and the authors suggested that the ancestor of this group 1579

colonized the Caribbean Islands via rafting. Our results imply in a more complex scenario for 1580

the Greater Antilles colonization, and further studies are required to evaluate this late 1581

connection. 1582

1583

Conclusion 1584

In this study we recovered the phylogenetic relationships among almost Trogonidae taxa 1585

using a genomic approach. Coupled with our fossil calibrated time tree, we were able to propose 1586

a model of diversification that related not only how the climate change since the Late Oligocene, 1587

but also the connections between continents, shaped the family diversification. The monophyly 1588

of the different biogeographical regions was recovered, and even though some nodes at the base 1589

of the tree received low support, the pattern of rapid radiation is clear at the initial stages of 1590

trogons diversification. Also, even though trogons are currently restricted to subtropical and 1591

tropical regions, they were widespread lineages in the past, and their diversification was 1592

influenced by forest distribution through time. Our results also identified some interestingly 1593

new questions to be pursued: Are Neotropical trogons species really younger than African and 1594

Asian, or is it just a sampling artifact? What was the influence of past sea level fluctuations in 1595

the diversification of Harpactes? Is competition preveting diversification in Apaloderma? 1596

1597

Page 64: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

53

Materials and Methods 1598

Taxon sampling and DNA extraction 1599

We sampled 48 individuals comprising all genera and currently recognized species of the 1600

Trogonidae family, except for the African Bare-cheeked Trogon (Apaloderma aequatoriale), 1601

and the narrow endemic Javan Trogon (Apalharpactes reinwardtii) (Collar 2017; Gill, et al. 1602

2018; Remsen, et al. 2018). All samples are represented by voucher specimens deposited in 1603

ornithological collections at the American Museum of Natural History (AMNH), Academy of 1604

Natural Sciences of Drexel University (ANSP), Field Museum of Natural History (FMNH), 1605

Instituto Nacional de Pesquisas da Amazônia (INPA), Kansas University (KU), Laboratório de 1606

Genética e Evolução Molecular de Aves - USP (LGEMA), Louisiana Museum of Natural 1607

History (LSUMZ), Museu Paraense Emílio Goeldi (MPEG), Smithsonian Institution National 1608

Museum of Natural History (USNM) and Burke Museum (UWBM) (Appendix S1). 1609

DNA from fresh tissue was extracted with the DNeasy kit (Qiagen Inc.), following the 1610

manufacture’s protocol. For taxa lacking fresh tissues we cut toepad clips from museum 1611

specimens with a sterile surgical blade and processed in a dedicated room for ancient DNA 1612

(aDNA Lab, AMNH). Toepads were rinsed with 100% ethanol, and ultra-pure water prior to 1613

digestion to remove any inhibitor that could cause problems in downstream procedures. We 1614

then extracted DNA with the DNeasy kit (Qiagen Inc.), replacing the regular silica columns 1615

with the QIAquick columns, to ensure maximum DNA yield. All extracts were sent to Rapid 1616

Genomics (Gainsville, FL) for library prep and target-capture sequence 2321 loci of 1617

Ultraconserved Elements (UCE) plus 98 conserved exons from 46 genes that were previously 1618

employed in phylogenetic analyses (Hackett, et al. 2008; Kimball, et al. 2009; Harvey, et al. 1619

2017). 1620

UCE and exons assembly 1621

Page 65: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

54

The raw sequence data were processed with the Phyluce script pack (Faircloth 2016). We 1622

employed illumiprocessor (Faircloth 2013) and Trimmomatic (Bolger, et al. 2014) to remove 1623

adapter contamination and low-quality reads. To assemble a reference genome, we mapped the 1624

UCE and exons probes back to the Apaloderma vittatum genome (Gilbert, Jarvis, Li, 1625

Consortium, et al. 2014) using the script phyluce_probe_run_multiple_lastzs_sqlite, and then, 1626

phyluce_probe_slice_sequence_from_genomes to extract the probe region plus 500 base pairs 1627

from each flanking region. Apaloderma exonic regions were identified based on the Gallus 1628

gallus genes, and annotations of CDS and exons were copied to the reference sequences inside 1629

Geneious version R10.2.3 (Kearse, et al. 2012). With these sequences as a reference we mapped 1630

back the clean reads of each individual employing Bowtie2 (Langmead and Salzberg 2012) 1631

plugin 7.2.1 inside Geneious. The consensus sequences were called with the highest quality 1632

threshold and a depth of at least 4 reads. Each locus was aligned with MAFFT (Katoh and 1633

Standley 2013) under default parameters. 1634

Phylogenetic relationships and species tree analysis 1635

Since the intergeneric relationship among trogons are still mostly unresolved (Monteros 1636

1998; Johansson and Ericson 2005; Moyle 2005; Hosner, et al. 2010), we first performed a 1637

maximum likelihood analyses in RAxML v8.2 (Stamatakis 2014), and a Bayesian Inference 1638

analyses in ExaBayes v.1.4 (Aberer, et al. 2014), using the concatenated matrix with three 1639

treatments for missing data: a complete matrix, where no missing data was allowed, and two 1640

where the missing data was allowed, a 95% and 75% completeness matrix, in which each locus 1641

should have at least 95% or 75%, respectively, of all individuals in the matrix. As outgroups 1642

we selected one mousebird (Colius striatus, (Gilbert, Jarvis, et al. 2014b)), and a roller 1643

(Leptosomus discolor, (Gilbert, Jarvis, et al. 2014a)), suggested by recent studies as the closest 1644

relatives to the Trogonidae family (Jarvis, et al. 2014; Prum, et al. 2015). We also estimated a 1645

species tree using the SVDquartets (Chifman and Kubatko 2014) implemented in PAUP* 1646

Page 66: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

55

v4a(build157) (Swofford 2002), that samples quartets of individuals for each gene tree and infer 1647

an unrooted phylogeny, performing a species tree using a coalescent approach. We 1648

exhaustively sampled all quartets and performed a 100 bootstrap to quantify the support for 1649

each node. 1650

Dating analysis 1651

To date the Trogonidae phylogeny we employed the slow evolving recombination-1652

activating genes (RAG-1 and RAG-2) and a dense sampling for the Core Landbirds group 1653

(Telluraves), with the same calibration points used by Claramunt and Cracraft (2015). The 1654

concatenated matrix was partitioned by codon and the best partition and substitution model 1655

schemes were selected by PartitionFinder2 (Lanfear, et al. 2017). 1656

1657

Acknowledgements 1658

The authors thankfully acknowledge all the curators and curatorial assistants of the 1659

American Museum of Natural History, New York, USA (AMNH), Academy Academy of 1660

Natural Science of Drexel University, Philadelphia, USA (ANSP); Field Museum of Natural 1661

History, Chicago, USA (FMNH); Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil 1662

(INPA); Kansas University (KU), Laboratório de Genética e Evolução Molecular de Aves – 1663

USP (LGEMA), Lousiana State University Museum of Natural Science, Baton Rouge, USA 1664

(LSUMZ); and Museu Paraense Emílio Goeldi, Belém, Brazil (MPEG), Smithsonian Institution 1665

National Museum of Natural History (USNM), for borrowing tissue samples under their care. 1666

We are also grateful for all collectors involved in the fieldwork that make this paper possible. 1667

We thank L. Moraes for early input on this paper. MF acknowledge CAPES for his PhD 1668

fellowship, and CAPES PDSE fellowship (# 88881.133440/2016-01) and the support from the 1669

AMNH Frank M. Chapman Memorial Fund. The authors also thanks the grant Dimensions US-1670

Biota-São Paulo: Assembly and evolution of the Amazon biota and its environment: an 1671

Page 67: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

56

integrated approach, co-funded by the US National Science Fundation (NSF DEB 1241056) to 1672

J.C. and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP grant 1673

#2012/50260-6) to Lucia Lohmann. AA and CCR are supported by CNPq research productivity 1674

fellowships. The authors acknowledge the National Laboratory for Scientific Computing 1675

(LNCC/MCTI, Brazil) for providing HPC resources of the SDumont supercomputer, which 1676

have contributed to the research results reported within this paper. 1677

1678

References 1679

1680

Aberer AJ, Kobert K, Stamatakis A. 2014. ExaBayes: massively parallel bayesian tree inference 1681 for the whole-genome era. Mol Biol Evol 31:2553-2556. 1682

Alonso R, Crawford AJ, Bermingham E. 2011. Molecular phylogeny of an endemic radiation 1683 of Cuban toads (Bufonidae: Peltophryne) based on mitochondrial and nuclear genes. J 1684 Biogeogr 39:434-451. 1685

Andersen MJ, McCullough JM, Mauck WM, Smith BT, Moyle RG. 2017. A phylogeny of 1686

kingfishers reveals an Indomalayan origin and elevated rates of diversificatio on oceanic 1687 islands. J Biogeogr early view. 1688

Arakaki M, Christin P-A, Nyffeler R, Lendel A, Eggli U, Ogbum RM, Spriggs E, Moore MJ, 1689

Edwards EJ. 2011. Contemporaneous and recent radiations of the world's major succulent 1690 plant lineages. PNAS 108:8379-8384. 1691

Bacon CD, Mora A, Wagner WL, Jaramillo CA. 2013. Testing geological models of evolution 1692 of the Isthmus of Panama in a phylogenetic framework. Botanical Journal of the Linnean 1693

Society 171:287-300. 1694 Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A. 2015a. Biological 1695

evidence supports an early and complex emergence of the Isthmus of Panama. PNAS 1696

112:6110-6115. 1697 Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A. 2015b. Reply to 1698

Lessios and Marko et al.: Early and progressive migration across the Isthmus of Panama 1699 is robust to missing data and biases: Fig. 1. PNAS 112:E5767-E5768. 1700

Baker PA, Fritz SC, Dick CW, Eckert AJ, Horton BK, Manzoni S, Ribas CC, Garzione CN, 1701 Battisti DS. 2014. The emerging field of geogenomics: Constraining geological problems 1702 with genetic data. Earth-Sci Rev 135:38-47. 1703

Bapteste E, Iersel Lv, Janke A, Kelchner S, Kelk S, McInerney JO, Morrison DA, Nakhleh L, 1704 Steel M, Stougie L, et al. 2013. Networks: expanding evolutionary thinking. Trends Genet 1705

29:439-441. 1706 Baskin JM, Baskin CC. 2016. Origins and relationships of the Mixed Mesophytic Forest of 1707

Oregon–Idaho, China, and Kentucky: Review and Synthesis. Ann MO Bot Gard 101:525-1708

552. 1709 Bauret L, Gaudeul M, Sundue MA, Parris BS, Ranker TA, Rakotondrainibe F, Hennequin S, 1710

Ranaivo J, Selosse M-A, Rouhan G. 2017. Madagascar sheds new light on the molecular 1711

Page 68: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

57

systematics and biogeography of grammitid ferns: New unexpected lineages and 1712

numerous long-distance dispersal events. Mol Phylogenet Evol 111:1-17. 1713 Becerra JX. 2005. Timing the origin and expansion of the Mexican tropical dry forest. PNAS 1714

102:10919-10923. 1715 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence 1716

data. Bioinformatics 30:2114-2120. 1717

Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, 1718 Drummond AJ. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. 1719 PLoS Comput Biol 10:e1003537. 1720

Bowie RC, Fjeldså J, Hackett SJ, Crowe TM. 2004. Molecular evolution in space and through 1721 time: mtDNA phylogeography of the Olive Sunbird (Nectarinia olivacea/obscura) 1722

throughout continental Africa. Mol Phylogenet Evol 33:56-74. 1723 Bowie RCK, Fjeldså J, Hackett SJ, Bates JM, Crowe TM. 2006. Coalescent mdels reveal the 1724

relative roles of ancestral polymorphism, vicariance, and dispersal in shaping 1725 phylogeographical structure of an African montane forest robin. Mol Phylogenet Evol 1726 38:171-188. 1727

Branstetter MG, Longino JT, Ward PS, Faircloth BC. 2017. Enriching the ant tree of life: 1728

enhanced UCE bait set for genome-scale phylogenetics of ants and other Hymenoptera. 1729 Methods in Ecology and Evolution. 1730

Bruyn M, Stelbrink B, Morley RJ, Hall R, Carvalho GR, Cannon CH, Bergh Gvd, Meijaard E, 1731 Metcalfe I, Boitani L, et al. 2014. Borneo and Indochina are major evolutionary hotspots 1732 for Southeast Asian biodiversity. Syst Biol 63:879-901. 1733

Bryson RW, Jr., Faircloth BC, Tsai WLE, McCormack J, Klicka J. 2016. Target enrichment of 1734

thousands of ultraconserved elements sheds new light on early relationships within New 1735 World sparrows (Aves: Passarelidae). Auk 133:451-458. 1736

Chifman J, Kubatko LS. 2014. Quartet inference from SNP data under the coalescent model. 1737

Bioinformatics 30:3317-3324. 1738 Claramunt S, Cracraft J. 2015. A new time tree reveals Earth history's imprint on the evolution 1739

of modern birds. Sci Adv 1:e1501005. 1740

Coates AG, Stallard RF. 2013. How old is the Isthmus of Panama? Bull Mar Sci 89:801-813. 1741 Collar N. 2017. Trogons (Trogonidae). Barcelona: Lynx Ediciones. 1742

Cracraft J. 1981. Toward a phylogenetic classification of the recent birds of the world (Class 1743 Aves). Auk 98:681-714. 1744

DaCosta JM, Klicka J. 2008. The Great American Interchange in birds: a phylogenetic 1745

perspective with the genus Trogon. Mol Ecol 17:1328-1343. 1746 Degnan JH, Rosenberg NA. 2006. Discordance of species trees with their most likely gene 1747

trees. PLoS Genet 2:e68. 1748 Degnan JH, Rosenberg NA. 2009. Gene tree discordance, phylogenetic inference and the 1749

multispecies coalescent. Trends Ecol Evol 24:332-340. 1750 Handbook of the birds of the world [Internet]. Barcelona: Lynx Ediciones; 2017 [cited 2017 1751

12/19]. Available from: http://www.hbw.com/ 1752 Donoghue PC, Moore BR. 2003. Toward an integrative historical biogeography. Integr Comp 1753

Biol 43:261-270. 1754

Esselstyn JA, Oliveros CH, Swanson MT, Faircloth BC. 2017. Investigating difficult nodes in 1755 the placental mammal tree with expanded taxon sampling and thousands of 1756

Ultraconserved Elements. Syst Biol early view. 1757 Fabre P-H, Vilstrup JT, Raghavan M, Sarkissian CD, Willerslev E, Douzery EJP, Orlando L. 1758

2014. Rodents of the Caribbean: origin and diversification of hutias unravelled by next-1759 generation museomics. Biol Lett 10:201440266. 1760

Page 69: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

58

Faircloth BC. 2013. illumiprocessor: a trimmomatic wrapper for parallel adapater and quality 1761

trimming. doi: 10.6079/J9ILL 1762 Faircloth BC. 2016. PHYLUCE is a software package for the analysis of conserved genomic 1763

loci. Bioinformatics 32:786-788. 1764 Faircloth BC, Branstetter MG, White ND, Brady SG. 2015. Target enrichment of 1765

ultraconserved elements from arthropods provides a genomic perspective on relationships 1766

among Hymenoptera. Mol Ecol Resour 15:489-501. 1767 Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. 2012. 1768

Ultraconserved elements anchor thousands of genetic markers spanning multiple 1769 evolutionary timescales. Syst Biol 61:717-726. 1770

Farris DW, Jaramillo C, Bayona G, Restrepo-Moreno SA, Montes C, Cardona A, Mora A, 1771

Speakman RJ, Glascock MD, Valencia V. 2011. Fracturing of the Panamanian Isthmus 1772 during initial collision with South America. Geology 39:1007-1010. 1773

Ferrari L, Conticelli S, Vaggelli G, Petrone CM, Manetti P. 2000. Late Miocene volcanism and 1774 intra-arc tectonics during the early development of the Trans-Mexican Volcanic Belt. 1775 Tectonophysics 318:161-185. 1776

Ferrari L, Lopez-Martínez M, Aguirre-Díaz G, Carrasco-Núñez G. 1999. Space-time patterns 1777

of Cenozoic arc volcanism in central Mexico: From the Sierra Madre Occidental to the 1778 Mexican Volcanic Belt. Geology 27:303-306. 1779

Ferrari L, Valencia-Moreno M, Bryan S. 2007. Magmatism and tectonics of the Sierra Madre 1780 Occidental and its relation with the evolution of the western margin of North America. 1781 Geol Soc Am Spec Pap 422:1-39. 1782

Gatesy J, Springer MS. 2014. Phylogenetic analysis at deep timescales: unreliable gene trees, 1783

bypassed hidden support, and the coalescence/concatalescence conundrum. Mol 1784 Phylogenet Evol 80:231-266. 1785

Gilbert M, Jarvis ED, Li B, Consortium TAG, Wang J, Zhang G. 2014. Genomic data of the 1786

Bar-tailed trogon (Apaloderma vittatum) GigaScience Database. 1787 Gilbert MP, Jarvis ED, Li B, Li C, Consortium TAG, Wang J, Zhang G. 2014a. Genomic data 1788

of the Cucko roller (Leptosomus discolor). GigaScience Database. 1789

Gilbert MP, Jarvis ED, Li B, Li C, Consortium TAG, Wang J, Zhang G. 2014b. Genomic data 1790 of the Speckled mousebird (Colius striatus). GigaScience Database. 1791

Gill F, Donsker D. 2018. IOC World Bird List (v8.1). doi: 10.14344/IOC.ML.8.1 1792 Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Chojnowski JL, Cox WA, 1793

Han KL, Harshman J, et al. 2008. A phylogenomic study of birds reveals their 1794

evolutionary history. Science 320:1763-1768. 1795 Hall R. 2012. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian 1796

Ocean. Tectonophysics 570-571:1-41. 1797 Harvey MG, Aleixo A, Ribas C, Brumfield RT. 2017. Habitat association predicts genetic 1798

diversity and population divergence in Amazonian birds. Am Nat Early View. 1799 Haug GH, Tiedeman R. 1998. Effect of the formation of the Isthmus of Panama on Atlantic 1800

Ocean thermohaline circulation. Nature 393:673-676. 1801 Hennequin S, Rouhan G, Salino A, Duan Y-F, Lepeigneux M-C, Guillou M, Ansell S, Almeida 1802

TE, Zhang L-B, Schneider H. 2017. Global phylogeny and biogeography of the fern genus 1803

Ctenitis (Dryopteridaceae), with a focus on the Indian Ocean region. Mol Phylogenet 1804 Evol 112:277-289. 1805

Hoorn C, Flantua S. 2015. An early start for the Panama land bridge. Science 348:186-187. 1806 Hosner PA, Sánchez-González LA, Peterson AT, Moyle RG. 2014. Climate-driven 1807

diversification and Pleistocene Refugia in Philippine birds: Evidence from 1808 phylogeographic structure and palaeoenvironmental niche modeling. Evolution 68:2658-1809

2674. 1810

Page 70: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

59

Hosner PA, Sheldon FH, Lim HC, Moyle RG. 2010. Phylogeny and biogeography of the Asian 1811

trogons (Aves: Trogoniformes) inferred from nuclear and mitochondrial DNA sequences. 1812 Mol Phylogenet Evol 57:1219-1225. 1813

Hu X, Wang J, An W, Garzanti E, Li J. 2017. Constraining the timing of the India-Asia 1814 continental collision by the sedimentary record. Sci China Earth Sci 60:603. 1815

Iturralde-Vinent MA. 1994. Cuba geology: a new plate-tectonic synthesis. J Petrol Geol 17:39-1816

70. 1817 Iturralde-Vinent MA. 2006. Meso-Cenozoic Caribbean paleogeography: implications for the 1818

historical biogeography of the region. Int Geol Rev 48:791-827. 1819 Jahren AH. 2007. The Artic Forest of the Middle Eocene. Annu Rev Earth Planet Sci 35:509-1820

540. 1821

Jahren AH, Sternberg LSL. 2008. Annual patterns within tree rings of the Artict middle Eocene 1822 (ca. 45 Ma): Isotopic signatures of precipitation, relative humidity, and deciduousness. 1823

Geology 36:99-102. 1824 Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SY, Faircloth BC, Nabholz B, 1825

Howard JT, et al. 2014. Whole-genome analyses resolve early branches in the tree of life 1826 of modern birds. Science 346:1320-1331. 1827

Johansson US, Ericson PGP. 2005. A re-evaluation of basal phylogenetic relationships within 1828 trogons (Aves: Trogonidae) based on nuclear DNA sequences. J Zool Syst Evol Res 1829

43:166-173. 1830 Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version 7: 1831

Improvements in Performance and Usability. Mol Biol Evol 30:772-780. 1832

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, 1833

Markowitz S, Duran C, et al. 2012. Geneious Basic: An integrated and extendable desktop 1834 software platform for the organization and analysis of sequence data. Bioinformatics 1835 28:1647-1649. 1836

Kimball RT, Braun EL, Barker FK, Bowie RC, Braun MJ, Chojnowski JL, Hackett SJ, Han 1837 KL, Harshman J, Heimer-Torres V, et al. 2009. A well-tested set of primers to amplify 1838 regions spread across the avian genome. Mol Phylogenet Evol 50:654-660. 1839

Knowles LL. 2009. Statistical Phylogeography. Annu Rev Ecol Evol Syst 40:593-612. 1840 Kristoffersen AV. 2002. An early Paleogene trogon (Aves: Trogoniformes) from the Fur 1841

Formation, Denmark. J Vert Paleontol 22:661-666. 1842 Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017. PartitionFinder 2: New 1843

methods for selecting partitioned models of evolution for molecular and morphological 1844

phylogenetic analyses. Mol Biol Evol 34:772-773. 1845 Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 1846

9:357-359. 1847 Lavin M, Schrire BP, Lewis GP, Pennington RT, Delgado-Salinas A, Thulin M, Hughes CE, 1848

Matos AB, Wojciechowski MF. 2004. Metacommunity process rather than continental 1849 tectonic history better explains geographically structured phylogenies in legumes. Phil 1850 Trans R Soc B 359:1509-1522. 1851

Lessios HA. 2015. Appearance of an early closure of the Isthmus of Panama is the product of 1852 biased inclusion of data in the metaanalysis. PNAS 112:E5765. 1853

Lexer C, Mangili S, Bossolini E, Forest F, Stölting KN, Pearman PB, Zimmermann NE, 1854 Salamin N, Carine M. 2013. ‘Next generation’ biogeography: towards understanding the 1855

drivers of species diversification and persistence. J Biogeogr 40:1013-1022. 1856 Li M, Ohi-Toma T, Gao Y-D, Xu B, Zhu Z-M, Ju W-B, Gao X-F. 2017. Molecular 1857

phylogenetics and historical biogeography of Sorbus senso stricto (Rosaceae). Mol 1858 Phylogenet Evol 111:76-86. 1859

Page 71: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

60

Lim HC, Gawin DF, Shakya SB, Harvey MG, Rahman MA, Sheldon FH. 2017. Sundaland's 1860

east-west rain forest population structure: variable manifestation in four polytypic bird 1861 species examined using RAD-Seq and plumage analyses. J Biogeogr 44:2259-2271. 1862

Lim HC, Rahman MA, Lim SLH, Moyle RG, Sheldon F. 2010. Revisiting Wallace's haunt: 1863 Coalescent simulations and comparative niche modeling reveal historical mechanisms 1864 that promoted avian population divergence in the Malay Archipelago. Evolution 65:321-1865

334. 1866 Lim HC, Zou F, Taylor SS, Marks BD, Moyle RG, Voelker G, Sheldon F. 2010. Phylogeny of 1867

magpie-robins and shamas (Aves: Turdidae: Copsychus and Trichixos): implications for 1868 island biogeography in Southeast Asia. J Biogeogr 37:1894-1906. 1869

Livezey BC, Zusi RL. 2007. Higher-order phylogeny of modern birds (Theropoda, Aves: 1870

Neornithes) based on comparative anatomy. II. Analysis and discussion. Zoological 1871 Journal of the Linnean Society 149:1-95. 1872

Manthey JD, Campillo LC, Burns KJ, Moyle RG. 2016. Comparison of Target-Capture and 1873 Restriction-Site Associated DNA Sequencing for Phylogenomics: A Test in Cardinalid 1874 Tanagers (Aves, Genus: Piranga). Syst Biol 65:640-650. 1875

Maurer DR, Raikow RJ. 1981. Appendicular myology, phylogeny and classificaiton of the 1876

avian order Coraciiformes (inluding Trogoniformes). Ann Carnegie Mus 50:417-434. 1877 Mayr G. 1999. A new trogon from the Middle Oligocene of Céreste, France. Auk 116:427-434. 1878

Mayr G. 2005. New trogons from the early Tertiary of Germany. Ibis 147:512-518. 1879 Mayr G. 2003. On the phylogenetic relationships of trogons (Aves, Trogonidae). Journal of 1880

Avian Biology 34:81-88. 1881

Mayr G. 2009. Paleogene Fossil Birds. Germany: Springer. 1882

McCormack JE, Faircloth BC. 2013. Next-generation phylogenetics takes root. Mol Ecol 1883 22:19-21. 1884

McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfield RT, Glenn TC. 2012. 1885

Ultraconserved elements are novel phylogenomic markers that resolve placental mammal 1886 phylogeny when combined with species-tree analysis. Genome Res 22:746-754. 1887

McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, Brumfield RT. 2013. A 1888

phylogeny of birds based on over 1,500 loci collected by target enrichment and high-1889 throughput sequencing. PLoS One 8:e54848. 1890

Meiklejohn KA, Faircloth BC, Glenn TC, Kimball RT, Braun EL. 2016. Analysis of a rapid 1891 evolutionary radiation using Ultraconserved Elements: Evidence for a bias in some 1892 multispecies coalescent methods. Syst Biol 65:612-627. 1893

Metzker ML. 2010. Sequencing technologies - the next generation. Nature Reviews Genetics 1894 11:31-46. 1895

Monteros AE. 2000. Higher-level phylogeny of Trogoniformes. Mol Phylogenet Evol 14:20-1896 34. 1897

Monteros AE. 1998. Phylogenetic relationships among the Trogons. Auk 115:937-954. 1898 Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V, Ayala C, Perez-Angel LC, 1899

Rodriguez-Parra LA, Ramirez V, et al. 2015. Middle Miocene closure of the Central 1900 American Seaway. Science 348:226-229. 1901

Montes C, Cardona A, McFadden R, Moron SE, Silva CA, Restrepo-Moreno S, Ramirez DA, 1902

Hoyos N, Wilson J, Farris D, et al. 2012. Evidence for middle Eocene and younger land 1903 emergence in central Panama: Implications for Isthmus closure. Geol Soc Am Bull 1904

124:780-799. 1905 Moritz C, Patton JL, Schneider CJ, Smith TB. 2000. Diversification of rainforest fauna: An 1906

integrated molecular approach. Annu Rev Ecol Syst 31:533-563. 1907 Moyle RG. 2005. Phylogeny and biogeographical history of Trogoniformes, a pantropical bird 1908

order. Biol J Linn Soc 84:725-738. 1909

Page 72: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

61

Moyle RG, Oliveros CH, Andersen MJ, Hosner PA, Benz BW, Manthey JD, Travers SL, Brown 1910

RM, Faircloth BC. 2016. Tectonic collision and uplift of Wallacea triggered the global 1911 songbird radiation. Nat Commun 7:12709. 1912

Nieto-Blázquez M, Antonelli A, Roncal J. 2017. Historical biogeography of endemic seed plant 1913 genera in the Caribbean: Did GAARlandia play a role? Ecol Evol Early View. 1914

Odea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL, Collins LS, de 1915

Queiroz A, Farris DW, Norris RD, et al. 2016. Formation of the Isthmus of Panama. Sci 1916 Adv 2:e1600883-e1600883. 1917

Oliver J. 2013. Microevolutionary processes generate phylogenomic discordance at ancient 1918 divergences. Evolution 67:1823-1830. 1919

Ornelas JF, González C, de los Monteros AE, Rodríguez-Gómez F, García-Feria LM, Riddle 1920

B. 2014. In and out of Mesoamerica: temporal divergence of Amazilia hummingbirds pre-1921 dates the orthodox account of the completion of the Isthmus of Panama. Journal of 1922

Biogeography 41:168-181. 1923 Potts R, Behrensmeyer AK. 1992. Late Cenozoic terrestrial ecosystems. In: Beherensmeyer 1924

AK, Damuth JD, DiMichele WA, Potts R, Sues HD, WIng SL, editors. Terrestrial 1925 ecosystems through time. Evolutionary paleoecology of terrestrial plants and animals. 1926

Chicago: University of Chicago Press. 1927 Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR. 2015. A 1928

comprehensive phylogeny of birds (Aves) using targeted next-generation DNA 1929 sequencing. Nature 526:569-573. 1930

Tracer v1.6 [Internet]. 2014. Available from: http://beast.bio.ed.ac.uk/Tracer 1931

Remsen JV, Jr., Areta JI, Cadena CD, Claramunt S, Jaramillo C, Pacheco JF, Pérez-Emen J, 1932

Robbins MB, Stiles FG, Stotz DF, et al. 2018. A classification of the bird species of South 1933 America. American Ornithologists' Union. 1934 http://www.museum.lsu.edu/~Remsen/SACCBaseline.htm 1935

Rícan O, Piálek L, Zardoya R, Doadrio I, Zrzavý J. 2013. Biogeography of the Mesoamerican 1936 Cichlidae (Teleostei: Heroini): colonization through the GAARlandia land bridge and 1937 early diversification. J Biogeogr 40:579-593. 1938

Salichos L, Rokas A. 2013. Inferring ancient divergences requires genes with strong 1939 phylogenetic signals. Nature 497:327-331. 1940

Shakya SB, Fuchs J, Pons JM, Sheldon F. 2017. Tapping the woodpecker tree for evolutionary 1941 insight. Mol Phylogenet Evol in press. 1942

Smith BT, Klicka J. 2010. The profound influence of the Late Pliocene Panamanian uplift on 1943

the exchange, diversification, and distribution of New World birds. Ecography. 1944 Springer MS, Gatesy J. 2015. The gene tree delusion. Mol Phylogenet Evol 94:1-33. 1945 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of 1946

large phylogenies. Bioinformatics 30:1312-1313. 1947

Suh A, Smeds L, Ellegren H. 2015. The Dynamics of Incomplete Lineage Sorting across the 1948 Ancient Adaptive Radiation of Neoavian Birds. PLoS Biol 13:e1002224. 1949

Swofford R. 2002. PAUP*. Phylogenetic analysis using parsimony (* and other methods). 1950 Version 4. Version 4. Sunderland, Massachusetts: Sinauer Associates. 1951

Voelker G, Outlaw RK, Bowie RCK. 2010. Pliocene forest dynamics as a primary driver of 1952

African bird speciation. Global Ecol Biogeogr 19:111-121. 1953 Weir JT, Bermingham E, Schluter D. 2009. The Great American Biotic Interchange in birds. 1954

PNAS 106:21737-21742. 1955 Weir JT, Schluter D. 2008. Calibrating the avian molecular clock. Mol Ecol 17:2321-2328. 1956 Whitfield JB, Lockhart PJ. 2007. Deciphering ancient rapid radiations. Trends Ecol Evol 1957

22:258-265. 1958

Page 73: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

62

Woodruff DS. 2010. Biogeography and conservation in Southeast Asia: how 2.7 million years 1959

of repeated environmental fluctuations affect today's patterns and the future of the 1960 remaining refugial-phase biodiversity. Biodivers Conserv 19:919-941. 1961

Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trens, rhytms, and aberrations in 1962 global climate 65 Ma to present. Science 27:686-693. 1963

1964

1965

Page 74: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

63

Table 1 – Samples used in this study, the museum voucher numbers, locality and geographical coordinates 1966 (when available), number of UCE reads, and loci recovered for each sample. 1967

Species Museum voucher Locality Clean

reads

UCE

loci

Apaloderma vittatum SRP028834 Tanzania: Udzungwa Mts. - 2,228*

Apaloderma narina AMNH DOT-12430 Liberia: Lofa, Ziggida (08°02'15.5"N 9°31'49.5"W) 3,607,056 2,228

Apalharpactes mackloti LSUMZ B-49104 Indonesia: Sumatra 1,664,511 2,220

Apalharpactes mackloti AMNH 633881 Indonesia: Sumatra, Bandar-Baroe (03°15'57.6''N 98°30'49.9''E) 2,758,684 2,080

Harpactes ardens USNM 607340 Philippines: Barrio Via, Sitio Hot Springs, Baggao Mun. (17°50'N,

122°01'E) 1,193,041 2,208

Harpactes diardii AMNH DOT-563 Malaysia: Sabah, Klias Forest Reserve (05°19’34’’N

115°40’25’’E) 3,601,173 2,226

Harpactes oreskios ANSP 16308 Malaysia: Sabah, Mendolong (04°54'27.6"N 115°47'04.5"E) 5,208,017 2,228

Harpactes orrhophaeus AMNH DOT-15159 Malaysia: Sabah, Mt. Lucia (04°27’37.8’’N 117°55’20.4’’E) 4,250,801 2,228

Harpactes duvaucelli LSUMZ B-38592 Malaysia: Sabah, Imbak Valley, ca 60 km S Telupid (5°06’N

117°01’51’’E) 887,312 2,222

Harpactes fasciatus AMNH 778649 India: Dangs, Bhawandagad 5,386,424 2,218

Harpactes erythrocephalus AMNH DOT-12240 Vietnam: Quang Nam, Ngoc Linh Range (15°11’00’’N

108°02’00’’E) 2,126,329 2,224

Harpactes wardii AMNH 307761 Myanmar: Laukkaing 5,151,969 2,198

Harpactes whiteheadi LSUMZ B-52627 Malaysia: Sabah, Tambuman, Mt. Trus Madi (05°35’09’’N

116°29’26’’E) 11,299,280 2,228

Harpactes kasumba AMNH DOT-15326 Malaysia: Sabah, Ulu Tungud Forest Reserve, Melian Range

(05°50’48’’N 117°10’57’’E) 4,264,359 2,228

Euptilotis neoxenus AMNH DOT-11080 USA: Arizona, Ramsey Canyon Preserve (31°26'50.2"N

110°18'25.8"W) 1,955,116 2,186

Pharomachrus pavoninus INPA A-1993 Brazil: Amazonas, Parque Nacional do Jaú (01°49’50’’S

61°35’45’’W) 2,080,592 2,215

Pharomachrus auriceps

hargitti AMNH 175988 Ecuador: Baeza, Arriba (0°27’54’’S 77°53’44.9’’W) 6,034,956 2,210

Pharomachrus auriceps

auriceps FMNH 473723 Peru: Rodriguez de Mendoza (06°S 77°W) 2,620,376 2,221

Pharomachrus fulgidus AMNH 322895 Venezuela: Near village of Junquito on Colonia Tovar Rd

(10°27’23’’N 67°04’31’’W) 4,665,318 1,864

Pharomachrus moccino AMNH 326512 Honduras: Mt Pucca, Gracias (14°34’43’’N 88°38’30’’W) 5,630,314 2,215

Pharomachrus antisianus ANSP 19429 Ecuador: Napo, 12 km NNE El Chaco; Mirador 5,651,764 2,228

Priotelus temnurus ANSP 20257 Cuba 1,644,934 2,220

Priotelus roseigaster KU 8098 Dominican Republic: Parque Nacional Sierra Baoruco, Pueblo

Viejo (18°12’N 71°32’W) 1,431,709 2,221

Trogon clathratus USNM 613996 Panama: Bocas del Toro, Los Planes (08°35’43’’N 82°14’16’’W) 3,200,785 2,158

Trogon mesurus ANSP 19305 Ecuador: Esmeraldas, 20 km ENE Muisne (0°38’51’’N

79°59’59’’W) 7,341,190 2,142

Trogon massena KU 2073 Mexico: Campeche, Silvituc (18°13’48’’N 90°12’W) 1,689,867 2,224

Trogon comptus LSUMZ B-11829 Ecuador: Esmeraldas, El Placer (0°52’N 78°33’W) 2,072,859 2,228

Trogon melanurus INPA A-1955 Brazil: Amazonas, Parque Nacional do Jaú (01°49’50’’S

61°35’45’’W) 2,451,461 2,225

Trogon viridis INPA A-5240 Brazil: Pará, Aveiro, left bank Tapajós River (03°42.3’S

55°35.5’W) 1,893,902 2,226

Trogon chionurus LSUMZ B-28571 Panama: Colón, Achiote Road (09°13’32’’N 80°0’56’’W) 1,879,103 2,225

Trogon melanocephalus USNM 646857 El Salvador: La Paz, Aeropuerto Internacional El Salvador

(13°25’57’’N 89°03’50’’W) 1,521,530 2,224

Trogon citreolus UWBM 101087 Mexico: Michoacán, Lazaro Cardenas, La Mira (18°05.71’N

102°23.71’W) 1,311,613 2,224

Trogon bardii LSUMZ B-71992 Costa Rica: Osa, Los Charces (08°40’19’’N 83°30’19’’W) 2,036,944 2,226

Trogon violaceus MPEG CN437 Brazil: Pará, Alenquer, ESEC Grão-Pará (0°09’S 55°11’W) 1,251,316 2,222

Trogon caligatus LSUMZ B-66270 Peru: Tumbes, El caucho Biological Station (3°49’25’’S

80°15’37’’W) 4,878,667 2,150

Trogon ramonianus INPA A-5449 Brazil: Pará, Santarém, Rio Arapiuns (3°19’S 55°20’W) 2,665,900 2,228

Trogon curucui INPA A-5286 Brazil: Pará, Aveiro, left bank Tapajós River (3°42.3’S

55°35.5’W) 1,157,694 2,221

Trogon aurantius LGEMA 15782 Brazil: Minas Gerais, RPPN Serra do Caraça (20°07’01’’S

43°29’16’’W) 1,162,924 2,213

Trogon surrucura MPEG SC015 Brazil: Santa Catarina, Blumenau, Vila Itoupava (26°39’59’’S

49°05’41’’W) 2,005,634 2,224

Trogon rufus tenellus LSUMZ B-26564 Panama: Colón, Gamboa (9°09’25’’N 79°45’36’’W) 4,118,529 2,228

Trogon rufus amazonicus INPA A-5284 Brazil: Pará, Aveiro, left bank Tapajós River (3°42.3’S

55°35.5’W) 3,892,857 2,228

Trogon rufus chrysochlorus LGEMA 9557 Brazil: São Paulo, Ubatuba (23°23’24’’S 45°05’24’’W) 1,161,086 2,225

Page 75: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

64

Trogon elegans FMNH 434014 El Salvador: Sonsonate: Izalco, Canton Las Laja (13°45’35’’N

89°40’21’’W) 475,853 2,201

Trogon mexicanus FMNH 343220 Mexico: Jalisco, Puerto los Mazos, Sierra de Manantlan

(19°28’09’’N 103°56’51’’W) 1,322,925 2,222

Trogon aurantiiventris LSUMZ B-41625 Panama: Bocas del Toro, Chiriqui (8°47’29’’N 82°12’35’’W) 6,441,454 2,228

Trogon collaris puella FMNH 394272 Mexico: Oaxaca, San Gabriel Mixtepec, Sierra de Miahuatlan

(16°09’56’’N 97°01’29’’W) 292,340 2,114

Trogon collaris collaris MPEG CN450 Brazil: Pará, Alenquer, ESEC Grão-Pará (0°09’S 55°11’W) 1,361,638 2,221

Trogon personatus LSUMZ B-48503 Guyana: Potaro-Siparuni, Kopinang Mountain (4°57’54’’N

59°54’49’’W) 1,826,664 2,228

1968 Table 2 – Summary information of each method, including number of loci, total length of the concatenated 1969 alignment, mean length size per locus, minimum and maximum length, and the total number of the Parsimony 1970 Informative (PI) sites. 1971

Complete 75% 95%

Number of loci 1421 2110 2217

Total lenght 725090 1054512 1099526

Mean length size 510.27 499.77 495.95

Min-max length 259-1145 162-1145 162-1145

Number of PI sites 37,880 55,060 57,259

1972 Table 3 – Node support for recalcitrant nodes in the Trogonidae phylogeny. 1973

RAxML ExaBayes SVDq

75% 95% complete 75% 95% complete 95%

Asian + Neotropical 70 62 84 1.0 1.0 1.0 -

Apalharpactes + Harpactes 60 46 52 1.0 1.0 1.0 -

Neotropical 100 100 100 1.0 1.0 1.0 100

1974

1975

Page 76: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

65

Figure 1 – Phylogeny of Trogonidae inferred with ExaBayes summarizing the results from other analyses. The 1976 circle at each node represent the statistical support for the RAxML analyses and the species tree reconstruction 1977 inferred by SVDq. Green lines represent distribution shifts from Central America to South America. Trogon 1978 species were group in five species groups highlighted with grey boxes: “rufus”, “collaris”, “melanurus”, “viridis”, 1979 and “violaceus”. 1980 1981

1982

1983

Page 77: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

66

Figure 2 – Time-calibrated phylogeny of Trogonidae inferred from the concatenated dataset of RAG1 and RAG2 1984 genes using BEAST. This tree represents part of the tree calibrated using (Claramunt and Cracraft 2015) 1985 calibrations, complete taxon data in Supplementary Table 1. The basal nodes were constrained to match the UCE 1986 topology, all other nodes have a red circle, if the posterior probability is 1.0, or the posterior is written next to the 1987 node. Timings of major splits are shown next to each node. Blue bars represent the 95% HPD estimates of node 1988 height. Green lines represent distribution shifts from Central America to South America. The top-right figure 1989 represents the whole tree with calibration points as red circles. 1990 1991

1992

1993

Page 78: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

67

Supplementary Table S1 – Table containing taxonomic information on all specimens employed in the RAG time 1994 tree. The RAG1 and RAG2 column refers to GenBank accession numbers for these two genes. Taxonomy follows 1995 del Hoyo, et al. (2017). 1996 1997

Order Family Species RAG1 RAG2

Passeriformes Thraupidae Thraupis cyanocephala AY057035 AY443236

Passeriformes Emberizidae Emberiza schoeniclus AY056992 AY443143

Passeriformes Passeridae Passer montanus AF143738 AY443198

Passeriformes Prunellidae Prunella collaris AY057024 AY443213

Passeriformes Dicaeidae Dicaeum aeneum AY443282 AY443139

Passeriformes Regulidae Regulus calendula AY057028 AY443220

Passeriformes Irenidae Irena cyanogaster AY056999 AY443158

Passeriformes Nectariniidae Nectarinia olivacea AY057009 AY443180

Passeriformes Turdidae Catharus ustulatus AY443265 AY443114

Passeriformes Cinclidae Cinclus cinclus AY056985 AY443119

Passeriformes Mimidae Mimus patagonicus AY057005 AY443173

Passeriformes Sturnidae Sturnus vulgaris AY057032 AY443232

Passeriformes Troglodytidae Troglodytes aedon AY057038 AY443241

Passeriformes Certhiidae Certhia familiaris AY056983 AY443115

Passeriformes Sittidae Sitta carolinensis AY443332 AY443227

Passeriformes Sylviidae Sylvia nanna AY057033 AY443233

Passeriformes Pycnonotidae Pycnonotus barbatus AY057027 AY443219

Passeriformes Hirundinidae Hirundo rustica AY443290 AY443154

Passeriformes Aegithalidae Aegithalos iouschensis AY056976 AY443103

Passeriformes Locustellidae Megalurus palustris AY319988 AY799840

Passeriformes Remizidae Remiz pendulinus AY443328 AY443222

Passeriformes Promeropidae Promerops cafer AY443323 AY443212

Passeriformes Monarchidae Monarcha axillaris AY057006 AY443176

Passeriformes Laniidae Lanius excubitor AY443293 AY443160

Passeriformes Artamidae Artamus leucorhynchus AY056980 AY443109

Passeriformes Artamidae Artamus cyanopterus AY443262 AY443108

Passeriformes Artamidae Cracticus quoyi AY443278 AY443135

Passeriformes Vangidae Vanga curvirostris AY057040 AY443244

Passeriformes Platysteiridae Batis mixta AY443263 AY443110

Passeriformes Vireonidae Vireo philadelphia AY057041 AY443245

Passeriformes Melanocharitidae Melanocharis nigra AY057002 AY443167

Passeriformes Melanocharitidae Melanocharis vesteri AY443299 AY443168

Passeriformes Orthonychidae Orthonyx teminckii AY057012 AY443309

Passeriformes Climacteridae Climacteris erythrops AY443268 AY443121

Passeriformes Menuridae Menura novaehollandiae AY057004 AY443171

Passeriformes Furnariidae Furnarius rufus AY056995 AY443149

Passeriformes Rhinocryptidae Scytalopus magellanicus AY443331 AY443226

Passeriformes Thamonophilidae Terenura sharpei JX213518 JX213481

Passeriformes Pipridae Piprites chloris FJ501717 FJ501897

Passeriformes Pipridae Piprites pileata JF970177 KC157559

Passeriformes Pipridae Lepidothrix coronata FJ501655 FJ501835

Passeriformes Pipridae Antilophia galeata FJ501600 FJ501780

Passeriformes Oxyrunchidae Oxyruncus cristatus FJ501689 FJ501878

Passeriformes Cotingidae Cotinga cayana FJ501623 FJ501803

Page 79: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

68

Passeriformes Cotingidae Laniisoma elegans FJ501651 FJ501831

Passeriformes Cotingidae Phoenicircus nigricollis FJ501705 FJ501885

Passeriformes Tyrannidae Tyrannus tyrannus AF143739 AY443243

Passeriformes Sapayoidae Sapaoya aenigma DQ320606 DQ320573

Passeriformes Dendrocolaptidae Dendrocolaptes certhia FJ461166 FJ460982

Passeriformes Pittidae Pitta sordida AY443219 AY443206

Passeriformes Acanthisittidae Acanthisitta chloris AY056975 AY443102

Psittaciformes Psittacidae Psittacus erithacus EF517674 EF517687

Psittaciformes Psittacidae Alisterus scapularis KT954426 EF517677

Psittaciformes Psittacidae Melopsittacus undulatus XM_005150647.1 XM_005150646.1

Psittaciformes Psittacidae Micropsitta brujinii EF517673 EF517681

Psittaciformes Psittacidae Amazona aestiva LMAW01003202 LMAW01003202

Psittaciformes Psittacidae Myopsitta monachus DQ143328 -

Psittaciformes Psittacidae Agapornis personata EF517672 EF517679

Psittaciformes Cacatuidae Calyptorhynchus funereus KT954425 EF517680

Psittaciformes Strigopidae Nestor notabilis XM_010020228.1 XM_010020229.1

Falconiformes Falconidae Falco peregrinus AY461399 KT954538

Falconiformes Falconidae Falco cherrug XM_005441067.1 XM_005441068.2

Falconiformes Falconidae Daptrius ater AY461397 KT954537

Falconiformes Falconidae Micrastur gilvicollis AY461403 KT954536

Cariamiformes Cariamidae Cariama cristata XM_009699718.1 XM_009699720.1

Piciformes Ramphastidae Pteroglossus aracari KT954416 KT954525

Piciformes Capitonidae Capito niger KT954414 KT954523

Piciformes Semnornidae Semnornis frantzii KT954415 KT954524

Piciformes Lybiidae Trachyphonus erythrocephalus KT954413 KT954522

Piciformes Lybiidae Lybius hirsutus KT954412 KT954521

Piciformes Megalaimidae Megalaima oorti KT954411 KT954520

Piciformes Picidae Melanerpes carolinus KT954418 KT954527

Piciformes Picidae Picoides pubescens XM_009905561.1 XM_009905562.1

Piciformes Picidae Picumnus cirratus AF295195 -

Piciformes Indicatoridae Indicator variegatus KT954417 KT954526

Piciformes Bucconidae Bucco capensis MPEG_ARA018

Piciformes Bucconidae Nystalus maculatus MPEG_MARJ045

Piciformes Bucconidae Nonnula rubecula INPA_A4705

Piciformes Bucconidae Monasa atra INPA_A8299

Piciformes Bucconidae Chelidoptera tenebrosa MPEG_JTW1160

Piciformes Bucconidae Hapaloptila castanea LSU_12059

Piciformes Bucconidae Micromonacha lanceolata LSU_4489

Piciformes Bucconidae Cyphos macrodactylus MPEG_AMA354

Piciformes Bucconidae Notharchus tectus LSU_28765

Piciformes Bucconidae Hypnellus bicinctus FMNH_339641

Piciformes Bucconidae Nystactes tamatia MPEG_JRT134

Piciformes Bucconidae Notharchus ordii LSU_25460

Piciformes Bucconidae Notharchus hyperrhynchus MPEG_GAPTO296

Piciformes Bucconidae Malacoptila fulvogularis FMNH_321031

Piciformes Bucconidae Malacoptila rufa LSU_103572

Piciformes Galbulidae Jacamalcyon tridactyla MPEG_800

Piciformes Galbulidae Brachygalba lugubris MPEG_293

Piciformes Galbulidae Jacamerops aureus MPEG_JAP375

Page 80: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

69

Piciformes Galbulidae Galbacyrhynchus purusianus INPA_A1429

Piciformes Galbulidae Galbula dea INPA_A2288

Piciformes Galbulidae Galbula leucogastra MPEG_AMZ190

Piciformes Galbulidae Galbula ruficauda MPEG_MARJ109

Piciformes Galbulidae Galbula cyanescens MPEG_PUC159

Piciformes Galbulidae Galbula albirostris MPEG_JAP616

Piciformes Galbulidae Galbula cyanicollis MPEG_FLJA056

Coraciformes Alcedinidae Chloroceryle americana KT954422 KT954533

Coraciformes Alcedinidae Halcyon malimbica DQ111819 KT954532

Coraciformes Alcedinidae Alcedo leucogaster DQ111794 KT954531

Coraciformes Momotidae Momotus momota KT954421 KT954530

Coraciformes Todidae Todus angustirostris KT954420 KT954529

Coraciformes Coraciidae Coracias caudata AF143737 AY443126

Coraciformes Brachypteracidae Brachypteracias leptosomus KT954423 KT954534

Coraciformes Meropidae Merops pusillus KT954419 KT954528

Coraciformes Meropidae Merops nubicus XM_008938323.1 XM_008938322.1

Bucerotiformes Upupidae Upupa epops KT954409 KT954517

Bucerotiformes Phoeniculidae Phoeniculus purpureus KT954408 KT954516

Bucerotiformes Bucerotidae Buceros rhinoceros XM_010145185.1 XM_010145184.1

Bucerotiformes Bucerotidae Buceros bicornis KT954407 KT954515

Bucerotiformes Bucerotidae Tockus camurus KT954406 KT954514

Leptosomatiformes Leptosomidae Leptosomus discolor XM_009958543.1 XM_009958545.1

Colliformes Coliidae Colius colius KT954404 KT954512

Colliformes Coliidae Colius striatus XM_010201405.1 XM_010209029.1

Strigiformes Strigidae Strix occidentalis DQ482641 KT954508

Strigiformes Strigidae Ninox novaeseelandiae KT954400 KT954507

Strigiformes Tytonidae Tyto alba XM_009975325.1 XM_009975324.1

Strigiformes Tytonidae Phodilus badius KT954402 KT954510

Accipitrifromes Accipitridae Buteo jamaicensis EF078718 KT954506

Accipitrifromes Accipitridae Elanus caeruleus EF078724 KT954505

Accipitrifromes Pandionidae Pandion haliaetus EF078706 KT954504

Accipitrifromes Sagittaridae Sagittarius serpentarius KT954399 KT954503

Accipitrifromes Cathartidae Cathartes aura EF078766 KT954502

Accipitrifromes Accipitridae Aquila chrysateos XM_011594630.1 XM_011594629.1

Accipitrifromes Accipitridae Haliaeetus albicilla XM_009928640.1 XM_009928639.1

Accipitrifromes Accipitridae Haliaeetus leucocephalus XM_010586008.1 XM_010586006.1

Trogoniformes Trogonidae Apaloderma vittatum XM_009874816.1 XM_009869619.1

Trogoniformes Trogonidae Apaloderma narina AMNH_DOT12430

Trogoniformes Trogonidae Apalharpactes mackloti LSU_49104

Trogoniformes Trogonidae Apalharpactes mackloti AMNH_633881

Trogoniformes Trogonidae Harpactes ardens AY625239 -

Trogoniformes Trogonidae Harpactes ardens USNM_607340

Trogoniformes Trogonidae Harpactes diardii AMNH_DOT563

Trogoniformes Trogonidae Harpactes oreskios AY625238 -

Trogoniformes Trogonidae Harpactes oreskios ANSP_16308

Trogoniformes Trogonidae Harpactes orrhopheus AY625241 -

Trogoniformes Trogonidae Harpactes orrhopheus AMNH_DOT15159

Trogoniformes Trogonidae Harpactes duvaucelli LSU_38592

Trogoniformes Trogonidae Harpactes fasciatus AMNH_778649

Page 81: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

70

Trogoniformes Trogonidae Harpactes erythrocephalus AMNH_DOT12240

Trogoniformes Trogonidae Harpactes wardii AMNH_307761

Trogoniformes Trogonidae Harpactes whiteheadii LSU_52627

Trogoniformes Trogonidae Harpactes kasumba AMNH_DOT15326

Trogoniformes Trogonidae Euptilotis neoxenus AMNH_DOT11080

Trogoniformes Trogonidae Pharomachrus pavoninus LSU_4986

Trogoniformes Trogonidae Pharomachrus auriceps hargitti AMNH_175988

Trogoniformes Trogonidae Pharomachrus auriceps auriceps FMNH_473723

Trogoniformes Trogonidae Pharomachrus fulgidus AMNH_322895

Trogoniformes Trogonidae Pharomachrus moccino AMNH_326512

Trogoniformes Trogonidae Pharomachrus antisianus ANSP_19429

Trogoniformes Trogonidae Priotelus temnurus ANSP_20257

Trogoniformes Trogonidae Priotelus roseigaster KU_8098

Trogoniformes Trogonidae Trogon clathratus USNM_613996

Trogoniformes Trogonidae Trogon mesurus ANSP_19305

Trogoniformes Trogonidae Trogon massena KU_2073

Trogoniformes Trogonidae Trogon comptus LSU_11829

Trogoniformes Trogonidae Trogon melanurus INPA_A1995

Trogoniformes Trogonidae Trogon viridis INPA_A5240

Trogoniformes Trogonidae Trogon chionurus LSU_28571

Trogoniformes Trogonidae Trogon melanocephalus USNM_646857

Trogoniformes Trogonidae Trogon citreolus UWBM_101087

Trogoniformes Trogonidae Trogon bardii LSU_71992

Trogoniformes Trogonidae Trogon violaceus MPEG_CN437

Trogoniformes Trogonidae Trogon caligatus LSU_66270

Trogoniformes Trogonidae Trogon ramonianus INPA_A5449

Trogoniformes Trogonidae Trogon curucui INPA_A5286

Trogoniformes Trogonidae Trogon aurantius LGEMA_15782

Trogoniformes Trogonidae Trogon surrucura MPEG_SC015

Trogoniformes Trogonidae Trogon elegans FMNH_434014

Trogoniformes Trogonidae Trogon rufus amazonicus INPA_A5284

Trogoniformes Trogonidae Trogon rufus tenellus LSU_26564

Trogoniformes Trogonidae Trogon rufus chrysochlorus LGEMA_9557

Trogoniformes Trogonidae Trogon mexicanus FMNH_343220

Trogoniformes Trogonidae Trogon aurantiiventris LSU_41625

Trogoniformes Trogonidae Trogon collaris puella FMNH_394272

Trogoniformes Trogonidae Trogon collaris collaris MPEG_CN450

Trogoniformes Trogonidae Trogon personatus LSU_48503

1998

1999

2000

2001

Page 82: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

71

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

Capítulo 3 2012

2013

2014

Ferreira, M.; Aleixo, A.; Bates, J. M.; Cracraft, J.; 2015

Ribas, C. C. Phylogeography and phylogenomics of 2016

jacamars (Aves: Galbulidae) and puffbirds (Aves: 2017

Bucconidae) reveal underestimation of species 2018

diversity and recurrent biogeographic patterns in the 2019

Neotropics. Manuscrito formatado para Zoological 2020

Journal of Linnean Society 2021

2022

Page 83: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

72

2023

2024 Manuscript submission to Zoological Journal of Linnean Society 2025 Contribution type: Article 2026 2027

Phylogeography and phylogenomics of jacamars (Aves: Galbulidae) and 2028

puffbirds (Aves: Bucconidae) reveal underestimation of species diversity 2029

and recurrent biogeographic patterns in the Neotropics 2030

2031 Ferreira, Mateus1*; Aleixo, Alexandre2; Bates, John M.3; Cracraft, Joel4; Ribas, Camila C.5 2032

2033 1 Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, INPA, 2034 Manaus, AM, Brazil 2035 2 Coordenação de Zoologia, MPEG, Belém, PA, Brazil 2036 3 Department of Ornithology, FMNH, Chicago, IL, USA 2037 4 Department of Ornithology, AMNH, New York, NY, USA 2038 5 Coordenação de Biodiversidade, INPA, Manaus, AM, Brazil 2039 *Corresponding author 2040 2041

Correspondence: Mateus Ferreira, Coordenação de Biodiversidade, Instituto Nacional de 2042 Pesquisas da Amazônia, CEP 69080-971, Manaus-AM, Brazil 2043

E-mail: [email protected] 2044

2045

Short running title: Galbuliformes phylogenomic 2046 2047 2048 2049

Abstract 2050

Galbulidae (jacamars) and Bucconidae (puffbirds) are sister families endemic to the 2051

Neotropical region. Together they comprise 57 species and more than a 100 described 2052

subspecies. Both families have their highest diversity in Amazonia. Within Galbulidae, most 2053

species have restricted and parapatric / allopatric distributions in relation to other closely related 2054

species, while within Buccondiae, species are widespread and polytypic. In this study, we 2055

obtained DNA sequence data for over 400 samples, and used previous published results, of all 2056

widespread species to uncover phylogeographic patterns. Then, based on these results, we 2057

selected and sequenced thousands of Ultraconserved Elements to reconstruct the phylogenetic 2058

relationships among these phylogeographic groups and propose the first phylogenetic 2059

hypothesis for these two families with dense taxon sampling. Our phylogeographic results 2060

recovered phylogeographic breaks in almost all studied groups, most of them associated with 2061

the main tributaries of the Amazon River, and many corresponding to already described 2062

subspecies. We then reconstructed phylogenetic relationships based on over 2,000 UCE loci 2063

using a concatenated approach in a Bayesian Inference framework. Overall, most nodes had 2064

Page 84: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

73

high support, and the relationships among genera, species and instraspecific diversity were 2065

discussed. We propose the recognition of all subspecies that received support from the 2066

phylogeographic and phylogenomic approaches as distinct species. We found evidence of 2067

paraphyly of several species and proposed taxonomic changes to deal with that. Also, we 2068

propose a new genus of puffbirds, Cryptobucco gen. nov., to accommodate the paraphyly of 2069

Notharchus species. 2070

2071

Introduction 2072

Species usually are the basic unit of any study in evolutionary biology. Considering they 2073

should represent the lowest and only non-arbitrary rank above individuals, species are the basic 2074

operational unit for comparing any intrinsic evolutionary aspect, such as physiology, behaviour, 2075

morphology, etc. However, we still lack a broad and comprehensive concept for species 2076

recognition (Cellinese, Baum & Mishler, 2012; de Queiroz, 2007; de Queiroz, 2012). In birds, 2077

taxonomy has been historically influenced by the Biological Species Concept (Mayr, 1942; 2078

Mayr, 1976), based on reproductive isolation as the main criterion for species delimitation. 2079

Therefore, since this concept was adopted several distinct allopatric populations were lumped 2080

as subspecies due to morphological similarities pending further investigation to prove the 2081

absence of gene flow (Peters, 1945; Peters, 1948). This implies that allopatric and parapatric 2082

populations, even if diagnosably distinct, should only be recognized as full species if there is 2083

evidence of reproductive isolation (Gill, 2014). 2084

In the Neotropical region, and especially in Amazonia, one of the main issues that 2085

obscures the recognition of diversity patterns is the fact that most widespread species are in fact 2086

complexes of taxa, usually diagnosable and geographically structured, that are lumped under 2087

the same species name due to their morphological similarities and physical isolation. Many of 2088

these polytypic species, when thoroughly sampled, prove to include distinct lineages, 2089

sometimes not even closely related to each other (Bravo, Chesser & Brumfield, 2012; Bravo, 2090

Remsen, Whitney & Brumfield, 2012; Fernandes, Wink, Sardelli & Aleixo, 2014; Isler, Bravo 2091

& Brumfield, 2013; Lopes, Chaves, Aquino, Silveira & Santos, 2017; Lutz, Weckstein, Patane, 2092

Bates & Aleixo, 2013; Ribas, Aleixo, Nogueira, Miyaki & Cracraft, 2012; Ribas, Aleixo, 2093

Gubili, d'Horta, Brumfield & Cracraft, 2018; Tobias, Bates, Hackett & Seddon, 2008). The 2094

recognition of these hidden lineages is critical for appropriate hypothesis formulation in 2095

macroevolution and biogeography (Donoghue & Moore, 2003; Lexer, Mangili, Bossolini, 2096

Forest, Stölting, Pearman, Zimmermann, Salamin & Carine, 2013). For example, Amazonian 2097

Page 85: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

74

areas of endemism were recognized based on congruent distribution patterns of bird species 2098

(Borges & Da Silva, 2012; Cracraft, 1985), and have been used as a basis to formulate 2099

hypothesis of biotic diversification in Amazonia (Haffer, 1969; Haffer, 1974; Haffer, 1997). 2100

Considering that any biogeographic study should be based on a taxonomy that correctly 2101

recognizes the evolutionary units included in the studied groups, for the present study we 2102

densely sampled all recognized taxa within two sister families of birds restricted to the 2103

Neotropical region. Galbulidae and Bucconidae form a clade, sometimes recognized in its own 2104

order Galbuliformes, that diverged from all the other Piciformes during the early Eocene and 2105

diverged from each other in the Late Eocene (Prum, Berv, Dornburg, Field, Townsend, 2106

Lemmon & Lemmon, 2015). Although the ancestor was from the Afrotropical region the two 2107

families’ entire diversification happened inside the Neotropical region (Claramunt & Cracraft, 2108

2015). Hence, making these two families excellent models to understand how landscape 2109

evolution of the Neotropical region influenced diversification. However, there are no 2110

phylogenetic hypotheses about relationships within these two families, and the few 2111

phylogeographic studies conducted so far with Bucconidae species showed that the diversity is 2112

highly underestimated by current species limits (Almeida, 2013; Duarte, 2015; Ferreira, Aleixo, 2113

Ribas & Santos, 2017; Soares, 2016). Although Galbulidae species were never subjected to 2114

phylogeographic studies, with 19 species distributed in 5 genera, jacamar distributions were 2115

used as models by Haffer (1974), together with other families, when he proposed his theory for 2116

Amazonian diversification (Haffer, 1974). Haffer recognized eight zoogeographic groups, five 2117

were composed of species complexes, and two were widespread polytypic species. Bucconidae, 2118

in turn, are composed of 38 species distributed in 12 genera. However, half of those species 2119

consist of polytypic groups lumped as subspecies due to morphological similarities. Groups 2120

such as the White-fronted Nunbird, Monasa morphoeus, and the Rusty-breasted Nunlet, 2121

Nonnnula rubecula, are composed of several subspecies, which in fact still underestimate the 2122

phylogeographic structure recovered for them (Soares, 2016). On the other hand, Malacoptila 2123

species are widespread species for which only a few subspecies were described, however, 2124

phylogeographic patterns indicated a great underestimation of taxonomic diversity. For 2125

example, for a single species, the Rufous-necked Puffbird (M. rufa), that only includes two 2126

subspecies described, ten distinct genetic lineages were recovered (Ferreira et al., 2017). Due 2127

to these first results, the present study focused on sampling all named taxa described for these 2128

two families, and sampling all widespread species throughout their distribution to uncover 2129

phylogeographic patterns. Based on these results, we selected samples representing all 2130

Page 86: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

75

phylogeographic groups and sequenced thousands of Ultraconserved Elements (UCE) 2131

(Faircloth, McCormack, Crawford, Harvey, Brumfield & Glenn, 2012; McCormack & 2132

Faircloth, 2013; McCormack, Harvey, Faircloth, Crawford, Glenn & Brumfield, 2013) to 2133

recover their phylogenetic relationships. Our aims are (1) to characterize the phylogeographic 2134

patterns and population structure within widespread species, recognizing the cryptic diversity 2135

within them, when present; (2) propose a densely sampled phylogenetic hypothesis for these 2136

two families; and (3) discuss patterns of diversification in the entire clade. 2137

2138

Material and Methods 2139

Sampling and DNA isolation 2140

We sampled 436 individuals from almost all named taxa currently recognized within 2141

Galbuliformes (Gill & Donsker, 2018; Peters, 1948; Piacentini, Aleixo, Agne, Mauricio, 2142

Pacheco, Bravo, Brito, Naka, Olmos, Posso, Silveira, Betini, Carrano, Franz, Lees, Lima, Pioli, 2143

Schunck, do Amaral, Bencke, Cohn-Haft, Figueiredo, Straube & Cesari, 2015; Rassmussen & 2144

Collar, 2002; Remsen, Areta, Cadena, Claramunt, Jaramillo, Pacheco, Pérez-Emen, Robbins, 2145

Stiles, Stotz & Zimmer, 2018 Tobias, 2017), and when available, we used published sequences 2146

to select samples for UCE sequencing. All samples are represented by voucher specimens 2147

deposited at the ornithological collections of the American Museum of Natural History 2148

(AMNH), Academy of Natural Sciences of Drexel University (ANSP), Field Museum of 2149

Natural History (FMNH), Instituto Nacional de Pesquisas da Amazônia (INPA), Kansas 2150

University (KU), Laboratório de Genética e Evolução Molecular de Aves - USP (LGEMA), 2151

Louisiana Museum of Natural History (LSUMZ), Museu Paraense Emílio Goeldi (MPEG), 2152

Smithsonian Institution National Museum of Natural History (USNM) and Burke Museum 2153

(UWBM) (Table S1). 2154

DNA from fresh tissue was extracted with the DNeasy kit (Qiagen Inc.), following the 2155

manufacturer’s protocol. For taxa lacking fresh tissues we sampled toe pad clips from museum 2156

specimens at the American Museum of Natural History (AMNH). Toe pads were cut from 2157

specimens with a sterile surgical blade and processed in a dedicated room for ancient DNA 2158

(aDNA Lab, AMNH). They were rinsed with 100% ethanol, and twice with ultra-pure water 2159

prior to digestion to remove any inhibitor that could cause problems in downstream procedures. 2160

We then extracted DNA with the DNeasy kit (Qiagen Inc.), replacing the regular silica columns 2161

with the QIAquick (Qiagen Inc.) columns, to ensure maximum DNA yield. 2162

2163

Page 87: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

76

Phylogeographic structure and UCE sampling 2164

Widespread species that lacked previous studies were sampled throughout their 2165

distributions to uncover phylogeographic structure. We amplified one mitochondrial gene 2166

(NADH subunit 2 – ND2) following conventional PCR protocols and sequenced both strands 2167

with BigDye® Terminator v3.1 in an ABI 3130/3130XL automated capillary sequencer 2168

(Applied Biosystems®) following manufacturer’s protocols. The sequences were edited on 2169

Geneious version 10.2.3 (Kearse, Moir, Wilson, Stones-Havas, Cheung, Sturrock, Buxton, 2170

Cooper, Markowitz, Duran, Thierer, Ashton, Meintjes & Drummond, 2012) and aligned with 2171

MAFFT (Katoh & Standley, 2013) under default parameters. We analysed each species 2172

complex independently. Within Galbulidae we analysed five species complexes: 1) 2173

Brachygalba and Jacamaralcyon; 2) Jacamerops; 3) Galbula dea; 4) Galbula cyanicollis, G. 2174

chalcocephala, and G. albirostris; and 5) G. ruficauda, G. pastazae, G. cyanescens, G. 2175

tombacea, and G. galbula. We used a previous study to select samples for G. leucogastra and 2176

G. chalcothorax (Ferreira et al., submitted). For Bucconidae, we gathered data in this study for 2177

five polytypic species or species complexes: 1) Bucco capensis; 2) Cyphos macrodatylus; 3) 2178

Notharchus tectus; 4) Notharchus ordii, N. hyperrhynchus, N. macrorhynchus, N. swainsoni, 2179

and N. pectorales; and 5) Chelidoptera tenebrosa. Sample selection for the genera Monasa, 2180

Nonnula, Malacoptila, and Nystalus was based on previous studies (Almeida, 2013; Duarte, 2181

2015; Ferreira et al., 2017; Soares, 2016). The best evolutionary model for each matrix was 2182

selected by jModelTest 2.1.10 (Darriba, Taboada, Doallo & Posada, 2012). We performed a 2183

Bayesian inference analysis (BI) implemented in MrBayes 3.2.6 (Ronquist, Teslenko, van der 2184

Mark, Ayres, Darling, Hohna, Larget, Liu, Suchard & Huelsenbeck, 2012) with four parallel 2185

simultaneous runs consisting of a total of 4x107 generations, sampling trees every 1000 2186

generations. ESS values, stationarity, and convergence among runs were checked in Tracer 1.6 2187

(Rambaut, Suchard, Xie & Drummond, 2014). Based on these results we selected our samples 2188

for UCE sequencing. All extracts were sent to Rapid Genomics (Gainsville, FL) for library prep 2189

and target-capture sequencing of 2321 loci of Ultraconserved Elements (UCE) (Faircloth et al., 2190

2012; McCormack et al., 2013). 2191

UCE assembly 2192

The raw sequence data were processed with the Phyluce script pack (Faircloth, 2016). 2193

We employed illumiprocessor (Faircloth, 2013) and Trimmomatic (Bolger, Lohse & Usadel, 2194

2014) to remove adapter contamination and low-quality reads. We assembled our targeted 2195

regions using a reference genome for each family. For Bucconidae, we used the Collared 2196

Page 88: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

77

puffbird (Bucco capensis), and for Galbulidae, the Paradise jacamar (Galbula dea) genomes. 2197

We mapped the UCE probes back to each genome using the script 2198

phyluce_probe_run_multiple_lastzs_sqlite, and then, phyluce_probe_slice_sequence_from_g-2199

enomes to extract the probe region plus 500 base pairs from each flanking region (Faircloth, 2200

2016). With these sequences as a reference we mapped back the clean reads of each individual 2201

employing Bowtie2 (Langmead & Salzberg, 2012) plugin 7.2.1 inside Geneious version 10.2.3 2202

(Kearse et al., 2012). The consensus sequences were called with the highest quality threshold 2203

and a depth of at least 4 reads. Each locus was aligned with MAFFT (Katoh & Standley, 2013) 2204

under default parameters. 2205

Phylogenetic relationship 2206

Even though the sister relationship between Galbulidae and Bucconidae is well 2207

established (Hackett et al., 2008; Livezey & Zusi, 2007; Prum et al., 2015), we used the 2208

Rhinoceros hornbill (Buceros rhinoceros, Bucerotidae)(Gilbert, Jarvis, Li, Li, Avian Genome 2209

Consortium, Wang & Zhang, 2014b), the Northern Carmine bee-eater (Merops nubicus, 2210

Meropidae)(Gilbert, Jarvis, Li, Li, Avian Genome Consortium, Wang & Zhang, 2014c), and 2211

the Downy woodpecker (Picoides pubescens, Picidae)(Gilbert, Jarvis, Li, Li, Avian Genome 2212

Consortium, Wang & Zhang, 2014a) as outgroups. To recover the phylogenetic relationships, 2213

we performed a Bayesian Inference analysis in ExaBayes v1.4 (Aberer, Kobert & Stamatakis, 2214

2014) employing the concatenated matrix of all UCE loci with 75% completeness, where only 2215

loci that had at least 75% of all individuals were selected. Four parallel chains consisting of 2216

4x107 generations were performed. 2217

2218

Results 2219

Phylogeographic results 2220

With a few exceptions, we obtained the whole ND2 sequence for all samples. 2221

Phylogenetic trees and maps of samples and lineages’ distributions can be found in the 2222

Supplementary Material (Figures S1-S10). Overall, most species complexes contained 2223

phylogeographic structure in the mtDNA that matches known areas of endemism for birds. The 2224

only two widespread species that apparently lacked phylogeographic structure were Cyphos 2225

macrodactylus and Chelidoptera tenebrosa. The phylogeographic breaks were more 2226

conspicuous in birds with stronger association with terra-firme forests [Fig. S2-S4, S6, 2227

Malacoptila spp. (Ferreira et al., 2017), Monasa morphoeus and Nonnula rubecula (Soares, 2228

2016)]. However, species associated with other habitats, such as várzeas, open habitats (i.e. 2229

Page 89: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

78

non-forested) or white-sand environments also showed structure [Fig. S1, S5, S8-S9, also 2230

Galbula leucogastra/chalcothorax, Nystactes (Almeida, 2013), Nystalus spp. (Duarte, 2015), 2231

and Nonnula ruficapilla (Soares, 2016)]. Nonetheless, some lineages are represented by a single 2232

individual and additional samples should be collected and analysed to make further 2233

assumptions. It is also worth to note that some species were paraphyletic in the mtDNA. The 2234

most remarkable are the complex Brachygalba lugubris, B. albogularis (Fig. S1), G. albirostris, 2235

G. cyanicolis, and G. chalcocephala (Fig. S4), G. ruficauda, G. cyanescens (Fig. S5); 2236

Notharchus tectus, N. subtectus (Fig. S8); N. hypperhynchus, N. swainsoni, N. macrorhynchus 2237

(Fig. S9). 2238

UCE sequencing 2239

The reference sequences we assembled from the Collared puffbird (Bucco capensis) and 2240

the Paradise jacamar (Galbula dea) genomes included 2226 and 2279 sequences, respectively. 2241

The mean number of sequences was 2,240,885 reads; and a mean number of 2191 UCE loci per 2242

sample (Table S1). The matrix for Galbulidae contained 2165 loci, while for Bucconidae, the 2243

matrix had 2158 loci. 2244

Phylogenetic results 2245

In general, the ExaBayes tree is well supported, with most of the nodes with lower support 2246

found near the tips (Fig. 2, 3). Galbulidae consisted of two clades, the first comprises 2247

Jacamaralcyon and Brachygalba, and the other, Jacamerops, Galbacyrhynchus, and Galbula 2248

(Fig. 1). Within Bucconidae, some genera were paraphyletic. Bucco, that previously included 2249

four species (Gill & Donsker, 2018; Peters, 1948; Piacentini et al., 2015; Remsen et al., 2018), 2250

comprises three distinct genera as previously suggested by morphological characters 2251

(Rassmussen & Collar, 2018): B. capensis Linneus, 1766 is the family and genus type and more 2252

closely related to Nystalus; Cyphos macrodactylus von Spix, 1824, is sister to the clade that 2253

comprises Notharchus, Hypnelus, and Nystactes; and finally, Nystactes tamatia (J. F. Gemelin, 2254

1788), and N. noanamae (Hellmayer, 1909), more closely related with Hypnelus species (Fig. 2255

3). Notharchus was also paraphyletic, with Hypnelus and Nystactes embedded within it. N. 2256

tectus and N. subtectus were sister to Hypnelus, Nystactes, and the remaining Notharchus 2257

species (Fig. 1, 3). 2258

The relationships within genera in the UCE trees (Fig. 2, 3) mostly agreed with the 2259

mtDNA phylogeographic structure. Most notably is the paraphyly of Brachygalba lugubris in 2260

relation to B. albogularis (Fig. 2), and the polyphyletic status of Galbula ruficauda, in which 2261

the lineages from Central America (G. melanogenia), and northern South America (G. pallens, 2262

Page 90: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

79

G. ruficauda), including G. pastazae, are sister group to the clade comprising the species group 2263

of G. albicollis (albicollis, chalcocephala, cyanicollis) and G. galbula (galbula, pastazae, 2264

cyanescens, rufoviridis). Also, in contrast with the mtDNA, the two samples of G. cyanescens 2265

are sister to G. heterogyna and G. rufoviridis from the Brazilian Shield, instead of being 2266

embedded between them (Fig. S5). For puffbirds, the UCE tree also recovered the paraphyly of 2267

N. tectus subspecies (Fig. 3), and for the hyperrhynchus group (Fig. S9), we recovered N. 2268

macrorhynchus sister to N. swainsoni and N. hyperrhynchus, rendering the Amazonian group 2269

paraphyletic. 2270

2271

Discussion 2272

Phylogenetic results 2273

Our dense sampling coupled with the use of UCE loci provided good insights about 2274

genera and species relationships. We sampled all species, and almost all subspecies, for the two 2275

families, and characterized the spatial distribution of mtDNA lineages for all widespread 2276

species. Predominantly, our results indicate a severe disparity between currently recognized 2277

species and the potential number of independent evolutionary units within these clades. 2278

Avian taxonomy has historically been greatly influenced by the Biological Species 2279

Concept (BSC), which assumes that reproductive isolation is required for recognition of species 2280

status (de Queiroz, 2005). This condition, can be easily detected in sympatric taxa, however, 2281

for parapatric and allopatric populations, natural observations are very hard to detect. 2282

Consequently, many morphologically distinct taxa have been lumped into species complexes, 2283

pending further analysis to prove them different. Thus, the null hypothesis for species 2284

recognition has been of peer-reviewed publications proving that essential reproductive isolation 2285

is true among allopatric populations. It implies that we should be looking for reasons that 2286

differentiate allopatric populations, either through genetic evidence or some other characteristic 2287

that would lead to reproductive isolation, rather than assuming that they already are 2288

reproductive isolated, because they are not in contact, and looking for evidence proving the 2289

contrary (Gill, 2014). Albeit avian taxonomy and systematics is probably the best known among 2290

vertebrates, there are still many taxa to be described (Barrowclough, Cracraft, Klicka & Zink, 2291

2016), and although species concept, or criteria, are amid one of the most controversial topics 2292

in biology (Aleixo, 2007; Dayrat, Cantino, Clarke & de Queiroz, 2008; de Queiroz, 2012), the 2293

appropriate understanding of a lineage’s evolutionary history is essential to several fields, 2294

including conservation and biogeography (Avendaño, Arbeláez-Cortés & Cadena, 2017; Ribas, 2295

Page 91: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

80

Gaban-Lima, Miyaki & Cracraft, 2005; Tobias, Bates, Hackett & Seddon, 2008), especially in 2296

the emergent field of geogenomics (Baker, Fritz, Dick, Eckert, Horton, Manzoni, Ribas, 2297

Garzione & Battisti, 2014). Therefore, we are confident our results provide great insight about 2298

Galbulidae and Bucconidae systematics and will enable future biogeography studies to uncover 2299

how the landscape evolution of South America shaped this group’s diversity. 2300

Galbulidae systematics 2301

Galbulidae currently recognized diversity includes 19 species distributed in 5 genera 2302

(Tobias, 2017). Our results, however, show that this diversity is severely underestimated. In 2303

addition to the fact that most widespread species have genetic lineages structured 2304

geographically, we also found evidence that, at least four species are para- (Brachygalba spp.) 2305

or polyphyletic (Galbula ruficauda complex). Conceding that we recognize all subspecies that 2306

were monophyletic in our analyses and elevate them to species status, the species diversity of 2307

Galbulidae practically doubles, from 19 to 37 species, including at least six new taxa that need 2308

to be formally described. Biogeographically, there is also some noteworthy patterns that arouse 2309

from the mtDNA data. All widespread species presented some degree of genetic structure in 2310

the known areas of endemism in Amazonia (Borges & Da Silva, 2012; Cracraft, 1985). Most 2311

of the larger Amazonian tributaries, including rivers such as the Negro, Madeira, Solimões, and 2312

Amazonas delimit lineages in opposite margins, however, if they were responsible for causing 2313

these divergences still need to be investigated. 2314

According to our phylogenetic hypothesis for Galbulidae, there are now eight main 2315

groups of species: 2316

1. Brachygalba and Jacamaralcyon 2317

Brachygalba and Jacamaralcyon species were recovered as sisters to all other jacamars. 2318

The monotypic Jacamaralcyon species, Jacaramaralcyon trydactyla (Viellot, 1817), is 2319

endemic to the Atlantic Forest, inhabiting semi-deciduous or gallery forest. This species was 2320

recovered as sister to all other Brachygalba species (Fig. 1), which prefer forest edges and open 2321

habitats throughout the Amazon basin and north South America. B. goeringii Sclatter, PL & 2322

Salvin, 1869 and B. salmoni Sclatter, PL & Salvin, 1879 represent two distinct lineages within 2323

Brachygalba radiation (Fig. 2), with very distinct plumages and restricted distributions in 2324

northern South America. B. goeringii was recovered as sister to all other Brachygalba species, 2325

and B. salmoni, as sister group to the species group of B. lugubris (naumburgae, obscuriceps, 2326

lugubris, and melanosterna) and B. albogularis (von Spix, 1824), from the Amazon basin (Fig. 2327

2). Because B. albogularis was embedded within B. lugubris lineages, we recommend that the 2328

Page 92: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

81

current subspecies of B. lugubris should now be elevated to species status. This way, we resolve 2329

the paraphyly of B. lugubris, and fully recognize all its diversity. Further studies are necessary 2330

to completely understand B. obscuriceps Zimmer, JT & Phelps, 1947 and B. naumburgae 2331

Chapman, 1931 distributions, especially regarding the relationship between B. lugubris, and B. 2332

l. fulviventris Sclater, PL, 1891 and B. l. caquetae Chapman, 1917. 2333

2. Jacamerops 2334

Jacamerops individuals are so distinct from the other jacamars that were once considered 2335

to belong to a separate subfamily Jacameropinae. Although this treatment is no longer followed, 2336

Jacamerops are by far the bulkiest jacamars, inhabiting the midstory and canopy of continuous 2337

forest in the Amazon basin. Among the four subspecies recognized, J. a. ridgway Todd, 1943 2338

formed a well supported clade in both analyses. (Fig. 2, S2), while J. a. aureus (Statius Müller, 2339

PL, 1776) was monophyletic in the mtDNA analysis (Fig. S2) but paraphyletic in the UCE 2340

analysis, with the two individuals from the Guiana Shield as sister to all other J. aureus 2341

individuals (Fig. 2). Since the type from J. a. aureus is British Guiana (Peters, 1948), we 2342

consider that only this group should be recognized as J. aureus, while the second lineage should 2343

receive a new name (Fig. 2). An interesting biogeographic pattern that arouse from Jacamerops 2344

data was the sister relationship between J. penardi Bangs & Barbour, 1922, from Central 2345

America, and J. isidori Deville 1849, from the Madeira-Solimões interfluve. A similar pattern 2346

was found in the Hylophylax species complex (Fernandes et al., 2014). Finally, J. ridgwayi 2347

Todd, 1943 requires further study to fully evaluate all diversity present in this group, our results 2348

suggest the presence of at least 4 mtDNA lineages, each separated by the main rivers of the 2349

Brazilia Shield. 2350

3. Galbalcyrhynchus 2351

Galbacyrhynchus species are endemic to floodplain forests from Western Amazon. 2352

Galbalcyrhynchus purusianus Goeldi, 1904 was considered conspecific with G. leucotis Des 2353

Murs, 1845, and they were actually considered male and female forms of the same species. 2354

Nonetheless, the parapatric distribution and the apparently lack of intermediate forms (Haffer, 2355

1974) render these two taxa the status of distinct species (Fig. 2). 2356

4. Galbula dea complex 2357

Previously allocated in the genus Urogalba, Galbula dea individuals are the most 2358

morphologically distinct among Galbula species. Our results recovered six distinct mtDNA 2359

lineages (Fig. S3) that matches with the UCE results (Fig. 2), in which four already have 2360

associated names. G. dea (Linnaeus, 1758) from the Guiana Shield; G. brunneiceps (Todd, 2361

Page 93: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

82

1943) from the Negro-Solimões interfluve; G. phainopepla (Todd, 1943) from the Solimões-2362

Madeira interfluve; and G. amazonum (Sclater, PL, 1855). The last lineage, from the Madeira-2363

Tapajós interfluve was considered to be part of G. d. brunneiceps (Peters, 1948), however, since 2364

the type locality from G. brunneiceps is Manacapurú, Rio Solimões, Brazil, we suggest that a 2365

new name should be given to this lineage. 2366

5. G. leucogastra/chalcothorax 2367

This complex includes the only jacamars that inhabit white-sand environments (Adeney, 2368

Christensen, Vicentini & Cohn-Haft, 2016) in the Amazon basin. Although highly structured 2369

throughout its distribution (Ferreira et al., submitted) this group lacks morphological 2370

distinctiveness among genetic lineages, thus further systematic and taxonomic work is required 2371

before the proposition of any change in nomenclature. 2372

6. Galbula albirostris, G. chalcocephala, and G. cyanicollis 2373

These tree species were formerly considered conspecifics in G. albirostris Latham, 1790 2374

(Peters, 1948), later Haffer (1974) recognized G. cyanicollis Cassin, 1851, based on the lack of 2375

interbreeding between these two forms. Our results support the recognition of all three species, 2376

with G. albirostris restricted to the Guiana Shield, east of Negro River; G. chalcocephala 2377

Deville, 1849 in between the west bank of lower Negro river, west of Branco River, and north 2378

of Solimões all the way down to the west bank of the upper Ucayali River (Harvey, Seeholzer, 2379

Cáceres A, Winger, Tello, Camacho, Aponte Justiniano, Judy, Ramírez, Terrill, Brown, León, 2380

Bravo, Combe, Custodio, Zumaeta, Tello, Bravo, Savit, Ruiz, Mauck & Barden, 2014); and at 2381

last, G. cyanicollis, along the south bank of Amazon River. This group of species, in contrast 2382

with other jacamars, only inhabits the interior of forests, mainly in terra-firme habitats. Not 2383

surprisingly, the mtDNA showed lineages separated by the main Amazonian tributaries (Fig. 2384

S4). However, some lineages presented some interesting biogeographic patterns, such as the 2385

distinct lineage at the lower portion of Madeira-Tapajós interfluve, that is also found in other 2386

groups of birds, such as Rhegmatorhina berlespchi (Ribas et al., 2018), Malacoptila rufa 2387

(Ferreira et al., 2017), and Glyphorhynchus spirurus (Fernandes, Gonzalez, Wink & Aleixo, 2388

2013). Another pattern, that has not been reported before for birds, is the distinct lineage 2389

between the Purus and Tapajós Rivers (Fig. S4). This is the first evidence of a lineage of and 2390

understory terra-firme bird that has n structure related to the Madeira River. 2391

7. G. melanogenia, G. pastazae, G. pallens, and G. ruficauda. 2392

Although G. melanogenia Sclater, PL, 1852, was first described as a full species, it was 2393

later lumped together with G. rufoviridis Cabanis, 1851 in G. ruficauda Cuvier, 1816 due to 2394

Page 94: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

83

morphological similarity (Peters, 1948). Our results, however, recovered this group as sister to 2395

the clade containing G. cyanicolis and G. galbula complex (Fig. 2). Also, G. pastazae 2396

Taczanowski and Berlepsch, 1885, probably the only jacamar to live in high altitudes, is 2397

embedded between G. melanogenia and G. ruficauda (Fig. S5, 2). Therefore, our 2398

recommendation is that G. melanogenia, from Central America and the Pacific coast of 2399

Colombia and Ecuador, along with G. pallens Bangs, 1898 and G. ruficauda Cuvier, 1816 2400

should be recognized as species. Further studies are required to check the validity of G. r. 2401

brevirostris Cory, 1913. 2402

8. Galbula galbula, G. tombacea, G. cyanescens and G. rufoviridis 2403

This group is often regarded as G. galbula (Linnaeus, 1766) species group due to 2404

morphological and ecology similarity. Usually associated with forest edges and floodplains 2405

forest, while G. albirostris species group, its sister clade (Fig. 2), is usually associated with the 2406

interior of terra-firme forests. Despite been associated with floodplain forests, and therefore, 2407

not “bounded” by rivers, there are no previous reports of hybridization among these taxa. We 2408

found, however, that the individual INPA A019 is phenotypically G. tombacea (checked by 2409

M.F.), however, the mtDNA clustered with G. cyanescens Deville, 1849 (Fig. S5). This is the 2410

only reported case of hybrids among this group, the other individual that could be a hybrid - G. 2411

cyanescens, voucher MPEG MAD305 - is phenotypically G. cyanescens (checked by Fátima 2412

Lima), even though the individual was collected in the right bank of Madeira River, supposedly 2413

the limit between distributions of G. cyanescens and G. heterogyna Todd, 1932. Another 2414

important pattern that we can observe in this group is the apparently discordance between the 2415

mtDNA and UCE trees (Fig. S5, 3). Our mtDNA tree recovered G. cyanescens as one lineage 2416

embedded within lineages of G. rufoviridis and G. heterogyna. It also recovered G. rufoviridis 2417

as paraphyletic (Fig. S5). The UCE tree instead, recovered G. cyanescens as sister to G. 2418

heterogyna and G. rufoviridis (Fig. 2). In addition, all samples we sequenced for G. rufoviridis 2419

were recovered as monophyletic and sister to G. heterogyna. Thus, this might be an evidence 2420

of mtDNA capture (Sloan, Havird & Sharbrough, 2017), in which probably G. cyanescens 2421

captured the mtDNA lineage of G. heterogyna. However, further studies are required to 2422

understand the direction and timing of this event. 2423

Bucconidae systematics 2424

Our results showed that, similar to the situation with Galbulidae, Bucconidae diversity is 2425

underestimated. In addition, we found evidence of genera paraphyly. Phylogeographic patterns 2426

recovered for widespread puffbird species varied from little to no genetic structure, as in 2427

Page 95: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

84

Chelidoptera and Cyphos, to highly structured, as in Malacoptila (Ferreira et al., 2017), 2428

Nonnula rubecula and N. ruficapilla, and Monasa morphoeus (Soares, 2016). Historically, 2429

apart from the morphologically explicit genera Hapaloptila, Chelidoptera, Malacoptila, 2430

Micromonacha, Monasa, and Nonnula, all other species were lumped in Bucco Brisson, and 2431

later split in Notharchus and Hypnelus. Currently, although some authors recognize different 2432

genera for former Bucco species (i.e. Cyphos, and Nystactes) (Rassmussen & Collar, 2018), 2433

many others still keep several species within the genus Bucco (Gill & Donsker, 2018; Piacentini 2434

et al., 2015; Remsen et al., 2018). Our results however recovered Bucco as polyphyletic, and 2435

thus, we favor the recognition of Cyphos Spix, 1824 (which has priority over Argicus Cabanis 2436

& Heine, 1863) and Nystactes Gloger 1827. Also, we recovered Notharchus specie as 2437

paraphyletic, with the species group of N. tectus (Boddaert, 1783) as sister to the clade 2438

containing Hypnelus, Nystactes and the other species of Notharchus. One way to resolve this 2439

paraphyly would be to include Hypnelus and Nystactes in the genus Notharchus, however, both 2440

Nystactes and Hypnelus species are morphologically distinct from any of Notharchus species. 2441

Therefore, since the type species of Notharchus is N. hyperrhynchus Sclater, PL, 1856, we 2442

propose a new generic name for this group: 2443

Cryptobucco, gen. nov. Ferreira, Aleixo, Bates, Cracraft & Ribas 2444

Type species: Bucco tectus Boddaert, 1783 2445

Included taxa: Cryptobucco tectus (Boddaert, 1783), comb. nov.; Cryptobucco picatus 2446

(Sclater, PL, 1856), comb. nov.; Cryptobucco subtectus (Sclater, PL, 1860), comb. nov. 2447

Etymology: The genus name Cryptobucco alludes to the fact that this group, first 2448

described as Bucco and then placed in Notharchus, represents a hidden diversity inside 2449

Bucconidae that was until now concealed due to morphological similarity among species of 2450

Notharchus and the new genus. The name is of masculine gender. 2451

1. Bucco capensis and Nystalus 2452

Bucco capensis Linnaeus, 1766 and Nystalus species were recovered as sister to all other 2453

puffbirds. The sister relationship we recovered between B. capensis and Nystalus is validated 2454

by the bill-tip morphology that was previously used to separate former Bucco species in the 2455

genera Cyphos and Nystactes (Rassmussen & Collar, 2018). Our results for B. capensis samples 2456

recovered three clades in the UCE tree (Fig. 3) in contrast to the four clades found in the mtDNA 2457

analysis (Fig. S7). Our UCE analysis also favor the recognition of B. dugandi Gilliard, 1949 2458

and suggest the presence of a new taxon yet undescribed. Nystalus relationships found here 2459

were similar to a previous study that used only one mtDNA marker (Duarte, 2015), which 2460

Page 96: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

85

recovered N. maculatus (Gmelin, JF, 1788) and N. striatipectus (Sclater, PL, 1854) as sister to 2461

all remaining species, and N. chacuru (Vieillot, 1816) as sister to N. radiatus (Sclater, PL, 1854) 2462

and the N. striolatus species complex: N. obamai Whitney et al., 2013; N. striolatus (Pelzeln, 2463

1856), and N. torridus Bond & Meyer de Schauensee, 1940. 2464

2. Chelidoptera 2465

The Swallow-winged puffbird, Chelidoptera tenebrosa Pallas, 1782, is by far the most 2466

distinct puffbird, aberrant both in morphology and in ecology. With swallow-like morphology, 2467

they are highly specialized in aerial activity, and its flying proficiency is probably the cause for 2468

the lack of genetic structure we found in the mtDNA (Fig. S10). However, we were unable to 2469

sample UCE from the two toe pad samples, from the subspecies C. t. pallida Cory, 1913, from 2470

Northwest Venezuela; and C. t. brasiliensis Sclater, PL, 1862, from the east coast in Brazil. 2471

3. Monasa and Nonnula 2472

Monasa and Nonnula were the focus of a recent phylogeographic study (Soares, 2016). 2473

Species from both genera presented high levels of genetic structure in the mtDNA, and we 2474

sampled one individual per mtDNA lineage that were uncovered previously. We recovered 2475

Monasa as sister to Chelidoptera, and these two sisters to Nonnula (Fig. 1). Relationships inside 2476

each genus (Fig. 3) were also congruent to Soares (2016). In addition to this previous study, we 2477

were able to sample three toe pads representing three subspecies of M. morphoeus (Hahn & 2478

Küster, 1823): M. m. morphoeus (Hahn & Küster, 1823) from the east coast of Brazil; M. m. 2479

pallescens Cassin, 1860; and M. m. grandior Sclater, PL & Salvin, 1868, both from Central 2480

America. However, their phylogenetic relationship with other subspecies of M. morphoeus was 2481

uncertain (Fig. S11) and further studies are required to fully understand if the phylogeographic 2482

structure found in the mtDNA matches the UCE. For Nonnula, our results support the paraphyly 2483

of N. ruficapilla (Tschudi, 1844), with N. amaurocephala Chapman, 1921 is embedded within 2484

it. Both genera are being studied using broader sampling of individuals and molecular markers. 2485

4. Malacoptila 2486

Malacoptila UCE topology was congruent with the concatenated dataset topology from 2487

Ferreira et al. (2017), placing M. fulvogularis Sclater, PL, 1854 as sister to all other species. 2488

This result changes the previous biogeographic interpretations, and a more detailed study 2489

focusing on this genus is necessary, to fully understand the relationship of Malacoptila species, 2490

including the position of M. mystacalis (Lafresnaye, 1850), that in the concatenated UCE tree 2491

was recovered as sister to all other species (Fig. 3). Since, M. mystacalis UCE contigs were 2492

shorter due to DNA degradation common in toe pad samples (McCormack, Tsai & Faircloth, 2493

Page 97: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

86

2016), we assembled a small subset of Malacoptila samples to minimize the effects of missing 2494

data, and yet, M. mystacalis was again, recovered as sister to all other species of Malacoptila 2495

(Fig. S12). Further sampling of this narrow endemic species is required to confirm if this pattern 2496

is true, or an artefact of toe pad sequencing error. 2497

5. Hapaloptila 2498

The monotypic Hapaloptila castanea (Verreaux, J, 1866) was recovered as sister group 2499

to Micromonacha, Cyphos, Cryptobucco, Hypnelus, Nystactes, and Notharchus (Fig. 1, 3). 2500

Very distinct in morphology, this species is specialized in cloud forests, usually above 1,500 2501

m, and even though it can be found in both sides of the Andes, no subspecies was ever described. 2502

The two specimens we samples are from opposite sides of Andes, however a more focused 2503

work on this species is required to understand the relationships among these apparently disjunct 2504

populations. 2505

6. Micromonacha 2506

Micromonacha lanceolata (Deville, 1849) occurs in the middle and upper stories of 2507

forests in both sides of the Andes, usually below 1,500 m. With populations also found in 2508

Panama and Costa Rica. Although no subspecies is currently recognized (Rassmussen & Collar, 2509

2018), populations from Central America were historically recognized in a distinct subspecies 2510

M. l. austinsmithi Dwight and Griscom, 1942. Our results recovered the sample from Panama 2511

as sister to the other two samples from Peru and Brazil, however, we refrain from making any 2512

nomenclatural change pending better sampling of this group to fully understand its diversity. 2513

7.Cyphos 2514

Cyphos macrodactylus Spix, 1824 can only be found east of the Andes, mostly near water 2515

inside terra-firme and varzea forests in Western Amazon. Our phylogeographic sampling 2516

showed almost no genetic structure, only the westernmost sample showed some difference. If 2517

this is, in fact, a phylogeographic structure, or just an artifact in sampling, still needs to be 2518

investigated. The described subspecies C. m. caurensis (Cherrie, 1916) from the Caura River 2519

region, Venezuela, is currently considered undifferentiated from the nominal form (Rassmussen 2520

& Collar, 2018), and probably does not correspond to this phylogeographic break, additional 2521

sampling is required for further assumptions. 2522

8. Cryptobucco 2523

The three species included in the newly described genus Cryptobucco, were first 2524

described as full species, and later lumped and considered conspecific as C. tectus (Boddaert, 2525

1783) (Peters, 1948). Recently, C. subtectus regained its status as full species (Rassmussen & 2526

Page 98: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

87

Collar, 2018), but C. tectus and C. picatus are still considered subspecies (Gill & Donsker, 2527

2018; Remsen et al., 2018). Our results recovered C. picatus as sister to a clade containing C. 2528

tectus and C. subtectus, both in the mtDNA and the UCE tree. Biogeographically, implying that 2529

the two forms found in the Amazon, C. picatus and C. tectus, are not sister. Therefore, we 2530

propose the recognition of these taxa as full species and a more extensive work should be carried 2531

out to understand the limits of distribution of both Amazonian species, and if there is any 2532

contact, what are the implications of it. 2533

9. Hypnelus and Nystactes 2534

The sister relationship of Hypnelus and Nystactes is supported by the autapomorphic bifid 2535

bill tip in both genera, that is also present in Notharchus, although less pronounced in the later 2536

(Rassmussen & Collar, 2018). Hypnelus species are restricted to northern South America, with 2537

H. ruficollis (Wagler, 1829) having three subspecies, and H. bicinctus (Gould, 1837), two. Their 2538

specific status has been questioned based on hybridization in part of their distribution (Donegan, 2539

Quevedo, Verhelst, Cortés-Herrera, Ellery & Salaman, 2015), however without a thorough 2540

genetic and geographic sampling, this decision remains questionable. Nystactes noanamae 2541

(Hellmayr, 1909) and the species group of N. tamatia (Gmelin, JF, 1788), form the sister group 2542

of Hypnelus (Fig. 1, 3). Nystactes noanamae, is a restricted-range species, present only in a 2543

small portion of northwest Colombia, and currently considered Near-threatened by IUCN 2544

(Rassmussen & Collar, 2018). Its sister species, N. tamatia, is associated with the flooded 2545

forests in Amazonia, rarely found far from the water, even when in terra firme. Previous 2546

phylogeographic study found six genetic lineages for N. tamatia, one lineage was composed by 2547

only one sample though (Almeida, 2013). Nevertheless, our results corroborate the 2548

relationships previously found, and further studies are being conducted to understand the 2549

relationships and distribution of each lineage (Almeida, 2013). 2550

10. Notharchus 2551

Notharchus species can be grouped into three distinct groups based on distribution and 2552

morphology. Notharchus ordii (Cassin, 1851), as sister to all other species, is restricted to 2553

Amazonia, and unusually uncommon in collections. Its habitat preference and current 2554

distribution is virtually unknown. The sampling we gathered for the mtDNA sequencing 2555

actually represents all tissue samples available, and the apparent phylogeographic structure we 2556

found (Fig. S9) may only represent an artifact of sampling. Notharchus pectorales (Gray, GR, 2557

1846) is restricted to Northwest Colombia and East Panama. The last groups of species, is the 2558

group centered in N. macrorhynchus (Gmelin, JF, 1788). The ND2 analyses recovered a 2559

Page 99: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

88

polytomy between the N. swainsoni (Gray, GR, 1846) N. macrorhynchus, and several lineages 2560

of N. hyperrhynchus, including one lineage from Central America (Fig. S9). Our UCE tree, in 2561

contrast, recovered N. macrorhynchus sister to N. swainsoni and N. hyperrhynchus. This result 2562

corroborates the recognition of N. hyperrhynchus and N. swainsoni as full species and renders 2563

the two Amazonian groups as non-sister lineages. Although the two subspecies of N. 2564

hyperrhynchus seem to be paraphyletic in the UCE topology, the geographical relationship 2565

seem to be reasonable, and a reappraisal of this subspecies distribution is desirable in further 2566

studies. 2567

2568

Conclusion 2569

The results presented here corroborate most of the diversity historically described in these 2570

two families, but also hidden patterns that need further investigation. With our thorough 2571

sampling of practically all widespread species and species complexes we were able to recover 2572

the phylogeographic patterns for the entire diversification of jacamars and puffbirds. This study 2573

is the first one to present a phylogenetic hypothesis for this two families employing a genomic 2574

dataset. Based on this tree we resolved some relationships that were obscured by morphological 2575

similarities among taxa, such as the recognition of the different species previously lumped into 2576

Galbula ruficauda, and even described a new puffbird genus to allocate the paraphyletic 2577

Notharchus species. Overall, the results presented here are another instance reinforcing the fact 2578

that Neotropical bird diversity still is underestimated, and that we still need exploratory research 2579

to fully comprehend diversity patterns, especially in the super complex Amazonian Basin, 2580

which will be of extreme importance for future biogeographical interpretations and better 2581

conservation planning. 2582

2583

Acknowledgements 2584

The authors thankfully acknowledge all the curators and curatorial assistants of the 2585

American Museum of Natural History, New York, USA (AMNH), Academy Academy of 2586

Natural Science of Drexel University, Philadelphia, USA (ANSP); Field Museum of Natural 2587

History, Chicago, USA (FMNH); Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil 2588

(INPA); Kansas University (KU), Laboratório de Genética e Evolução Molecular de Aves – 2589

USP (LGEMA), Lousiana State University Museum of Natural Science, Baton Rouge, USA 2590

(LSUMZ); and Museu Paraense Emílio Goeldi, Belém, Brazil (MPEG), Smithsonian Institution 2591

National Museum of Natural History (USNM), for borrowing tissue samples under their care. 2592

Page 100: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

89

We are also grateful for all collectors involved in the fieldwork that make this paper possible. 2593

To J. McKay for helping with some laboratory procedures at the AMNH. MF acknowledge 2594

CAPES for his PhD fellowship, and CAPES PDSE fellowship (# 88881.133440/2016-01) and 2595

the support from the AMNH Frank M. Chapman Memorial Fund. The authors also thank the 2596

grant Dimensions US-Biota-São Paulo: Assembly and evolution of the Amazon biota and its 2597

environment: an integrated approach, co-funded by the US National Science Fundation (NSF 2598

DEB 1241056) to J.C. and the Fundação de Amparo à Pesquisa do Estado de São Paulo 2599

(FAPESP grant #2012/50260-6) to Lucia Lohmann; PEER-USAID Cycle 5 to CCR. AA and 2600

CCR are supported by CNPq research productivity fellowships (#310880/2012-2 and 2601

#308927/2016-8, respectively). The authors acknowledge the National Laboratory for 2602

Scientific Computing (LNCC/MCTI, Brazil) for providing HPC resources of the SDumont 2603

supercomputer, which have contributed to the research results reported within this paper. 2604

2605

2606

References 2607

Aberer AJ, Kobert K, Stamatakis A. 2014. ExaBayes: massively parallel bayesian tree 2608 inference for the whole-genome era. Mol Biol Evol 31: 2553-2556. 2609

Adeney JM, Christensen NL, Vicentini A, Cohn-Haft M. 2016. White-sand Ecosystems in 2610 Amazonia. Biotropica 48: 7-23. 2611

Aleixo A. 2007. Conceitos de espécie e o eterno conflito entre continuidade e operacionalidade: 2612 uma proposta de normatização de critérios para o reconhecimento de espécies pelo 2613 Comite Brasileiro de Registros Ornitológicos. Rev Bras Ornitol 15: 297-310. 2614

Almeida B. 2013. Filogeografia de Bucco tamatia (Aves: Bucconidae): uma linhagem 2615

associada a florestas alagadas na Amazônia. Mestrado em Zoologia, UFPA. 2616 Avendaño JE, Arbeláez-Cortés E, Cadena CD. 2017. On the importance of geographic and 2617

taxonomic sampling in phylogeography: A reevaluation of diversification and species 2618

limits in a Neotropical thrush (Aves, Turdidae). Mol Phylogenet Evol 87-97. 2619

Baker PA, Fritz SC, Dick CW, Eckert AJ, Horton BK, Manzoni S, Ribas CC, Garzione 2620 CN, Battisti DS. 2014. The emerging field of geogenomics: Constraining geological 2621 problems with genetic data. Earth-Sci Rev 135: 38-47. 2622

Barrowclough GF, Cracraft J, Klicka J, Zink RM. 2016. How Many Kinds of Birds Are 2623 There and Why Does It Matter? PLoS One 11: e0166307. 2624

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence 2625 data. Bioinformatics 30: 2114-2120. 2626

Borges SH, Da Silva JMC. 2012. A New Area of Endemism for Amazonian Birds in the Rio 2627

Negro Basin. The Wilson J Ornithol 124: 15-23. 2628 Bravo GA, Chesser RT, Brumfield RT. 2012. Isleria, a new genus of antwren (Aves: 2629

Passeriformes: Thamnophilidae). Zootaxa 3195: 61-67. 2630 Bravo GA, Remsen JV, Jr., Whitney BM, Brumfield RT. 2012. DNA sequence data reveal 2631

a subfamily-level divergence within Thamnophilidae (Aves: Passeriformes). Mol 2632 Phylogenet Evol 65: 287-293. 2633

Page 101: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

90

Cellinese N, Baum DA, Mishler BD. 2012. Species and phylogenetic nomenclature. Syst Biol 2634

61: 885-891. 2635 Cherrie GK. 1916. Two new birds from Venezuela. Bull Am Mus Nat Hist 35: 389. 2636 Claramunt S, Cracraft J. 2015. A new time tree reveals Earth history's imprint on the 2637

evolution of modern birds. Sci Adv 1: e1501005. 2638 Cracraft J. 1985. Historical biogeography and patterns of differentiation within the South 2639

American Avifauna: Areas of Endemism. Ornithol Monogr 36: 49-84. 2640 Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new 2641

heuristics and parallel computing. Nat Methods 9: 772. 2642 Dayrat B, Cantino PD, Clarke JA, de Queiroz K. 2008. Species Names in the PhyloCode: 2643

the approach adopted by the International Society for Phylogenetic Nomenclature. Syst 2644

Biol 57: 507-514. 2645 de Queiroz K. 2005. Ernst Mayr and the modern concept of species. Proc Natl Acad Sci U S A 2646

102 Suppl 1: 6600-6607. 2647 de Queiroz K. 2007. Species concepts and species delimitation. Syst Biol 56: 879-886. 2648 de Queiroz K. 2012. Biological nomenclature from Linnaeus to the PhyloCode. In: Bell CJ, 2649

ed. The herpetological legacy of Linnaeus: A celebration of the Linnaean Tercentenary: 2650

Bibliotheca Herpetologica 9. 135-145. 2651 Donegan T, Quevedo A, Verhelst JC, Cortés-Herrera O, Ellery T, Salaman P. 2015. 2652

Revision of the status of bird species occurring or reported in Colombia 2015, with 2653 discussion of BirdLife International's new taxonomy. Conservacion Colombiana 23. 2654

Donoghue PC, Moore BR. 2003. Toward an integrative historical biogeography. Integr Comp 2655

Biol 43: 261-270. 2656

Duarte SR. 2015. Filogenia molecular do gênero Nystalus (Bucconidae, Aves): enfoque na 2657 estruturação populacional em N. maculatus e N. chacuru. Mestrado em Biologia 2658 Animal, UNB. 2659

Faircloth BC. 2013. illumiprocessor: a trimmomatic wrapper for parallel adapater and quality 2660 trimming. http://dx.doi.org/10.6079/J9ILL. 2661

Faircloth BC. 2016. PHYLUCE is a software package for the analysis of conserved genomic 2662

loci. Bioinformatics 32: 786-788. 2663 Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. 2664

2012. Ultraconserved elements anchor thousands of genetic markers spanning multiple 2665 evolutionary timescales. Syst Biol 61: 717-726. 2666

Fernandes AM, Cohn-Haft M, Hrbek T, Farias IP. 2014. Rivers acting as barriers for bird 2667

dispersal in the Amazon. Rev Bras Ornitol 22: 363-373. 2668 Fernandes AM, Gonzalez J, Wink M, Aleixo A. 2013. Multilocus phylogeography of the 2669

Wedge-billed Woodcreeper Glyphorynchus spirurus (Aves, Furnariidae) in lowland 2670 Amazonia: widespread cryptic diversity and paraphyly reveal a complex diversification 2671

pattern. Mol Phylogenet Evol 66: 270-282. 2672 Fernandes AM, Wink M, Sardelli CH, Aleixo A. 2014. Multiple speciation across the Andes 2673

and throughout Amazonia: the case of the spot-backed antbird species complex 2674 (Hylophylax naevius/Hylophylax naevioides). J Biogeogr: 41: 1094-1104 2675

Ferreira M, Aleixo A, Ribas CC, Santos MPD. 2017. Biogeography of the Neotropical genus 2676

Malacoptila (Aves: Bucconidae): the influence of the Andean orogeny, Amazonian 2677 drainage evolution and palaeoclimate. Journal of Biogeography 44: 748-759. 2678

Gilbert MP, Jarvis ED, Li B, Li C, Avian Genome C, Wang J, Zhang G. 2014a. Genomic 2679 data of the Downy Woodpecker (Picoides pubescens). GigaScience Database. 2680

Gilbert MP, Jarvis ED, Li B, Li C, Avian Genome C, Wang J, Zhang G. 2014b. Genomic 2681 data of the Javan rhinoceros hornbill (Buceros rhinoceros silvestris). GigaScience 2682

Database. 2683

Page 102: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

91

Gilbert MP, Jarvis ED, Li B, Li C, Avian Genome C, wang J, Zhang J. 2014c. Genomic 2684

data of the Northern Carmine bee-eater (Merops nubicus). GigaScience Database. 2685 Gill F, Donsker D. 2018. IOC World Bird List (v8.1). doi: 10.14344/IOC.ML.8.1 2686 Gill FB. 2014. Species taxonomy of birds: Which null hypothesis? Auk 131: 150-161. 2687 Haffer J. 1969. Speciation in amazonian forest birds. Science 165: 131-137. 2688 Haffer J. 1974. Avian speciation in Tropical South America. Nuttall Ornithological Club: 2689

Harvard University, Cambridge. 2690 Haffer J. 1997. Alternative models of vertebrate speciation in Amazonia: an overview. 2691

Biodivers Conserv 6: 451-476. 2692 Harvey MG, Seeholzer GF, Cáceres A D, Winger BM, Tello JG, Camacho FH, Aponte 2693

Justiniano MA, Judy CD, Ramírez SF, Terrill RS, Brown CE, León LAA, Bravo 2694

G, Combe M, Custodio O, Zumaeta AQ, Tello AU, Bravo WAG, Savit AZ, Ruiz 2695 FWP, Mauck WM, Barden O. 2014. The avian biogeography of an Amazonian 2696

headwater: the Upper Ucayali River, Peru. Wilson J Ornithol 126: 179-191. 2697 Isler ML, Bravo GA, Brumfield RT. 2013. Taxonomic revision of Myrmeciza (Aves: 2698

Passeriformes: Thamnophilidae) into 12 genera based on phylogenetic, morphological, 2699 behavioral, and ecological data. Zootaxa 3717: 469. 2700

Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version 7: 2701 Improvements in Performance and Usability. Mol Biol Evol 30: 772-780. 2702

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper 2703 A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. 2704 Geneious Basic: An integrated and extendable desktop software platform for the 2705

organization and analysis of sequence data. Bioinformatics 28: 1647-1649. 2706

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 2707 357-359. 2708

Lexer C, Mangili S, Bossolini E, Forest F, Stölting KN, Pearman PB, Zimmermann NE, 2709

Salamin N, Carine M. 2013. ‘Next generation’ biogeography: towards understanding 2710 the drivers of species diversification and persistence. J Biogeogr 40: 1013-1022. 2711

Livezey BC, Zusi RL. 2007. Higher-order phylogeny of modern birds (Theropoda, Aves: 2712

Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool J Linn 2713 Soc 149: 1-95. 2714

Lopes LE, Chaves AV, Aquino MM, Silveira LF, Santos FR. 2017. The striking polyphyly 2715 of Suiriri: Convergent evolution and social mimicry in two cryptic Neotropical birds. J 2716 Zool Syst Evol Res Early view. 2717

Lutz HL, Weckstein JD, Patane JS, Bates JM, Aleixo A. 2013. Biogeography and spatio-2718 temporal diversification of Selenidera and Andigena Toucans (Aves: Ramphastidae). 2719 Mol Phylogenet Evol 69: 873-883. 2720

Mayr E. 1942. Systematics and the Origin of Species. Columbia Univ. Press: New York. 2721

Mayr E. 1976. Species concept and definitions Topics in the Phylosophy of Biology. 2722 Netherlands: Springer. 353-371. 2723

McCormack JE, Faircloth BC. 2013. Next-generation phylogenetics takes root. Mol Ecol 22: 2724 19-21. 2725

McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, Brumfield RT. 2726

2013. A phylogeny of birds based on over 1,500 loci collected by target enrichment and 2727 high-throughput sequencing. PLoS One 8: e54848. 2728

McCormack JE, Tsai WLE, Faircloth BC. 2016. Sequence capture of ultraconserved 2729 elements from bird museum specimens. Mol Ecol Resour 16: 1189-1203. 2730

Peters JL. 1945. Check-list of birds of the world. Harvard University Press: Cambrigde. 2731 Peters JL. 1948. Check-list of birds of the world. Harvard University Press: Cambridge, UK. 2732

Page 103: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

92

Piacentini VD, Aleixo A, Agne CE, Mauricio GN, Pacheco JF, Bravo GA, Brito GRR, 2733

Naka LN, Olmos F, Posso S, Silveira LF, Betini GS, Carrano E, Franz I, Lees AC, 2734 Lima LM, Pioli D, Schunck F, do Amaral FR, Bencke GA, Cohn-Haft M, 2735 Figueiredo LFA, Straube FC, Cesari E. 2015. Annotated checklist of the birds of 2736 Brazil by the Brazilian Ornithological Records Committee. Revista Brasileira de 2737 Ornitologia 23: 91-298. 2738

Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR. 2739 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA 2740 sequencing. Nature 526: 569-573. 2741

Rambaut A, Suchard MA, Xie D, Drummond AJ. 2014. Tracer v1.6. Availabe at: 2742 http://tree.bio.ed.ac.uk/software/tracer/ 2743

Rassmussen P, Collar N. 2002. Family Bucconidae (Puffbirds). In: del Hoyo J, Elliot A and 2744 Sargatal J, eds. Handbook of the birds of the world: Lynx Edicions. 2745

Rassmussen P, Collar N. 2018. Puffbirds (Bucconidae). In: del Hoyo J, Elliot A, Sargatal J, 2746 Christie DA and Juana E, eds. Handbook of the birds of the world Alive. Barcelona: 2747 Lynx Ediciones. 2748

Remsen JV, Jr., Areta JI, Cadena CD, Claramunt S, Jaramillo C, Pacheco JF, Pérez-2749

Emen J, Robbins MB, Stiles FG, Stotz DF, Zimmer KJ. 2018. A classification of the 2750 bird species of South America. American Ornithologists' Union. 2751

http://www.museum.lsu.edu/~Remsen/SACCBaseline.htm 2752 Ribas CC, Aleixo A, Gubili C, d'Horta FM, Brumfield RT, Cracraft J. 2018. Biogeography 2753

and diversification of Rhegmatorhina (Aves: Thamnophilidae): Implications for the 2754

evolution of Amazonian landscapes during the Quaternary. J Biogeogr Early View. 2755

https://doi.org/10.1111/jbi.13169 2756 Ribas CC, Aleixo A, Nogueira AC, Miyaki CY, Cracraft J. 2012. A palaeobiogeographic 2757

model for biotic diversification within Amazonia over the past three million years. Proc 2758

Biol Sci 279: 681-689. 2759 Ribas CC, Gaban-Lima R, Miyaki CY, Cracraft J. 2005. Historical biogeography and 2760

diversification within the Neotropical parrot genus Pionopsitta (Aves: Psittacidae). J 2761

Biogeogr 32: 1409-1427. 2762 Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu 2763

L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic 2764 inference and model choice across a large model space. Syst Biol 61: 539-542. 2765

Sloan DB, Havird JC, Sharbrough J. 2017. The on-again, off-again relationship between 2766

mitochondrial genomes and species boundaries. Mol Ecol 26: 2212-2236. 2767 Soares LMS. 2016. Sistemática molecular e diversificação dos gêneros Nonnula e Monasa 2768

(Aves: Bucconidae). Doutorado em Zoologia, UFPA. 2769 Tobias JA. 2017. Jacamars (Galbulidae). In: del Hoyo J, Elliot A and Sargatal J, eds. Handbook 2770

of the birds of the world. Barcelona: Lynx Ediciones. 2771 Tobias JA, Bates JM, Hackett SJ, Seddon N. 2008. Comment on "The latitudinal gradient in 2772

recent speciation and extinction rates of birds and mammals". Science 319: 901; author 2773 reply 901. 2774

2775

2776

2777

Page 104: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

93

Figure 1 – Phylogeny of the Galbulidae and Bucconidae families inferred with ExaBayes. All nodes in this tree 2778 receive the maximum posterior probability. The two genomes used as reference sequence were included in this 2779 analysis. 2780 2781

2782

2783 2784

Page 105: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

94

Figure 2 – Phylogeny of the Galbulidae inferred by ExaBayes with the 75% completeness matrix. Node support 2785 is indicated near it, if no support is indicated posterior probability is 1.0. 2786 2787

2788

2789

2790

Page 106: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

95

Figure 3 – Phylogeny of the Bucconidae inferred by ExaBayes with the 75% completeness matrix. Node support 2791 is indicated near it, if no support is indicated posterior probability is 1.0. 2792 2793

2794

2795

Page 107: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

96

Figure S1 – Phylogenetic relationship and map with sample distribution of Brachygalba and Jacamaralcyon 2796 species. Phylogenetic tree was recovered by MrBayes using the mtDNA gene ND2 (1041bp). Red circles mean 2797 posterior probabilities of 1.0, values that differs are indicated near the node. Samples highlighted in red were the 2798 samples selected for UCE analysis. The maps contain sample localities and approximate lineage distribution. 2799 Colours are correspondent between the tree and the map. 2800 2801

2802

2803

2804

Page 108: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

97

Figure S2 – Phylogenetic relationship and map with sample distribution of Jacamerops aureus complex. 2805 Phylogenetic tree was recovered by MrBayes using the mtDNA gene ND2 (1041bp). Red circles mean posterior 2806 probabilities of 1.0, values that differs are indicated near the node. Samples highlighted in red were the samples 2807 selected for UCE analysis. The maps contain sample localities and approximate lineage distribution. Colours are 2808 correspondent between the tree and the map. 2809 2810

2811

2812

2813

Page 109: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

98

Figure S3 – Phylogenetic relationship and map with sample distribution of Galbula dea complex. Phylogenetic 2814 tree was recovered by MrBayes using the mtDNA gene ND2 (1041bp). Red circles mean posterior probabilities 2815 of 1.0, values that differs are indicated near the node. Samples highlighted in red were the samples selected for 2816 UCE analysis. The maps contain sample localities and approximate lineage distribution. Colours are 2817 correspondent between the tree and the map. 2818 2819

2820

2821

Page 110: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

99

Figure S4 – Phylogenetic relationship and map with sample distribution of the species complex of G. albirostris, 2822 G. chalcocephala and G. albirostris. Phylogenetic tree was recovered by MrBayes using the mtDNA gene ND2 2823 (1041bp). Red circles mean posterior probabilities of 1.0, values that differs are indicated near the node. Samples 2824 highlighted in red were the samples selected for UCE analysis. The maps contain sample localities and 2825 approximate lineage distribution. Colours are correspondent between the tree and the map. 2826 2827

2828

2829

2830

Page 111: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

100

Figure S5 – Phylogenetic relationship and map with sample distribution of the species complex of G. galbula, G. 2831 tombacea, G. cyanescens, G. pastazae, and G. ruficauda. Phylogenetic tree was recovered by MrBayes using the 2832 mtDNA gene ND2 (1041bp). Red circles mean posterior probabilities of 1.0, values that differs are indicated 2833 near the node. Samples highlighted in red were the samples selected for UCE analysis. The maps contain sample 2834 localities and approximate lineage distribution. Colours are correspondent between the tree and the map. 2835 2836

2837

2838

2839

Page 112: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

101

Figure S6 – Phylogenetic relationship and map with sample distribution of the species Bucco capensis. 2840 Phylogenetic tree was recovered by MrBayes using the mtDNA gene ND2 (1041bp). Red circles mean posterior 2841 probabilities of 1.0, values that differs are indicated near the node. Samples highlighted in red were the samples 2842 selected for UCE analysis. The maps contain sample localities and approximate lineage distribution. Colours are 2843 correspondent between the tree and the map. 2844 2845

2846

2847

2848

Page 113: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

102

Figure S7 – Phylogenetic relationship and map with sample distribution of the species Cyphos macrodactylus. 2849 Phylogenetic tree was recovered by MrBayes using the mtDNA gene ND2 (1041bp). Red circles mean posterior 2850 probabilities of 1.0, values that differs are indicated near the node. Samples highlighted in red were the samples 2851 selected for UCE analysis. The maps contain sample localities and approximate lineage distribution. Colours are 2852 correspondent between the tree and the map. 2853 2854

2855

2856

2857

Page 114: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

103

Figure S8 – Phylogenetic relationship and map with sample distribution of the species complex of Notharchus 2858 tectus, N. subtectus, and N. picatus. Phylogenetic tree was recovered by MrBayes using the mtDNA gene ND2 2859 (1041bp). Red circles mean posterior probabilities of 1.0, values that differs are indicated near the node. Samples 2860 highlighted in red were the samples selected for UCE analysis. The maps contain sample localities and 2861 approximate lineage distribution. Colours are correspondent between the tree and the map. 2862 2863

2864

2865

2866

2867

Page 115: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

104

Figure S9 – Phylogenetic relationship and map with sample distribution of the species complex of Notharchus 2868 ordii, N. pectorales, N. swainsoni, N. macrorhynchus, and N. hyperrhynchus. Phylogenetic tree was recovered by 2869 MrBayes using the mtDNA gene ND2 (1041bp). Red circles mean posterior probabilities of 1.0, values that 2870 differs are indicated near the node. Samples highlighted in red were the samples selected for UCE analysis. The 2871 maps contain sample localities and approximate lineage distribution. Colours are correspondent between the tree 2872 and the map. 2873 2874

2875

2876

2877

2878

Page 116: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

105

Figure S10 – Phylogenetic relationship and map with sample distribution of the species Chelidoptera tenebrosa. 2879 Phylogenetic tree was recovered by MrBayes using the mtDNA gene ND2 (1041bp). Red circles mean posterior 2880 probabilities of 1.0, values that differs are indicated near the node. Samples highlighted in red were the samples 2881 selected for UCE analysis. The maps contain sample localities and approximate lineage distribution. Colours are 2882 correspondent between the tree and the map. 2883 2884

2885 2886

2887

2888

2889

Page 117: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

106

Figure S11 – Phylogenetic tree recovered for Monasa using a subset of samples to check for M. mystacalis 2890 phylogenetic affinity. The same tree topology was recovered by RAxML and ExaBayes, the RAxML bootstrap 2891 support were low overall. 2892 2893

2894 2895

Figure S12 – Phylogenetic tree recovered for Malacoptila using a subset of samples to check for M. mystacalis 2896 phylogenetic affinity. The same tree topology was recovered by RAxML and ExaBayes with high support, with 2897 only node receiving bootstrap support different from 100. 2898 2899

2900

2901

2902

2903

2904

Page 118: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

107

Síntese Geral 2905

Neste trabalho coletamos dados que nos ajudaram a compreender a relação filogenética 2906

de três famílias de aves do Neotrópico. A utilização de dados de sequenciamento genômico e a 2907

inclusão de amostras representando quase todas as linhagens basais em cada família permitiu 2908

realizar inferências sobre a importância de uma amostragem ampla, tanto num sentido de 2909

amostras, quanto marcadores. No primeiro capítulo pudemos observar o impacto do conflito 2910

entre marcadores moleculares com diferentes padrões de herança, e quais as implicações 2911

biológicas deste conflito. Além disso, através da análise combinada da história dos dois 2912

marcadores foi possível propor um modelo de evolução das áreas de vegetação aberta 2913

relacionadas aos solos de areia branca dentro da bacia Amazônia. No segundo capítulo, 2914

recuperamos a relação filogenética da família Trogonidae utilizando quase todas as espécies 2915

descritas com base em uma matriz com mais de 2.000 marcadores moleculares. Com base 2916

nesses resultados traçamos um modelo de como a evolução do clima desde o final do Oligoceno 2917

e as conexões entre os continentes influenciaram a história de diversificação do grupo. Por fim, 2918

no terceiro capítulo, analisamos a diversidade intraespecífica de duas famílias endêmicas do 2919

Neotrópico e reconstruímos a primeira hipótese de relação filogenética para Galbulidae e 2920

Bucconidae utilizando dados genômicos. Neste capítulo pudemos observar como a percepção 2921

da diversidade nesses grupos é subestimada e influenciada pela taxonomia vigente, e que a 2922

amostragem densa ao longo da distribuição de espécies amplamente distribuídas pode revelar 2923

táxons e padrões ainda desconhecidos. 2924

De modo geral, este trabalho reforça a complexidade dos padrões de diversidade da biota 2925

Neotropical, e que ainda se faz necessário estudos para desvendar esses padrões, em especial 2926

na Amazônia. Além disso, fica claro que a diversidade real da região ainda está mascarada pela 2927

taxonomia vigente e revisões sistemáticas e taxonômicas são necessárias. Só através do 2928

reconhecimento dessa diversidade escondida é que será possível, não só traçar hipóteses sobre 2929

os processos que deram origem a tamanha diversidade, mas também traçar planos de 2930

conservação que reconheçam a história evolutiva de cada um desses grupos. 2931

2932

Page 119: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

108

Referências Bibliográficas 2933

2934

ALEIXO, A. Conceitos de espécie e o eterno conflito entre continuidade e operacionalidade: uma 2935 proposta de normatização de critérios para o reconhecimento de espécies pelo Comite Brasileiro 2936 de Registros Ornitológicos. Revista Brasileira de Ornitologia, v. 15, n. 2, p. 297-310, 2007. 2937

2938 ______. Conceitos de espécie e suas implicações para a conservação. Megadiversidade, v. 5, n. 1-2, p. 2939

87-95, 2009. 2940 2941 ÁVILA-PIRES, T. C. S. Lizards of Brazilian Amazon (Reptilia: Squamata). Zool Verh Natuur Mus, 2942

v. 299, p. 1-637, 1995. 2943 2944 AVISE, J. C. Phylogeography: retrospect and prospect. J Biogeogr, v. 36, n. 1, p. 3-15, 2009. 2945 2946 AVISE, J. C. et al. Intraspecific phylogeography: The mitochondrial DNA bridge between population 2947

genetics and systematics. Annu Rev Ecol Syst, v. 18, p. 489-522, 1987. 2948 2949 BAKER, P. A. et al. The emerging field of geogenomics: Constraining geological problems with genetic 2950

data. Earth-Sci Rev, v. 135, p. 38-47, 2014. 2951 2952 BARROWCLOUGH, G. F. et al. How Many Kinds of Birds Are There and Why Does It Matter? Plos 2953

One, v. 11, n. 11, p. e0166307, 2016. 2954 2955 BATES, J. M. et al. Diversification in the Neotropics: Phylogenetic patterns and historical processes. 2956

Ornitologia Neotropical, v. 19, n. (Suppl.), p. 427-432, 2008. 2957 2958 BATES, J. M.; HAFFER, J.; GRISMER, E. Avian mitochondrial DNA sequence divergence across a 2959

headwater stream of the Rio Tapajós, a major Amazonian river. Journal of Ornithology, v. 2960 145, n. 3, p. 199-205, 2004. 2961

2962 BOUBLI, J. P. et al. Spatial and temporal patterns of diversification on the Amazon: A test of the 2963

riverine hypothesis for all diurnal primates of Rio Negro and Rio Branco in Brazil. Mol 2964 Phylogenet Evol, v. 82 Pt B, p. 400-12, 2015. 2965

2966 BOUBLI, J. P. et al. How many Pygmy Marmoset (Cebuella Gray, 1870) species are there? A 2967

taxonomic re-appraisal based on new molecular evidence. Mol Phylogenet Evol, v. 120, p. 170-2968 82, 2017. 2969

2970 BROMHAM, L. et al. Bayesian molecular dating: opening up the black box. Biol Rev v. Early view, 2971

2017. doi: 10.1111/brv.12390 2972 2973 BROMHAM, L.; PENNY, D. The modern molecular clock. Nat Rev Genet, v. 4, n. 3, p. 216-24, Mar 2974

2003. 2975 2976 BROWN, K. S.; SHEPPARD, P. M.; TURNER, J. R. G. Quaternary refugia in tropical America: 2977

evidence from race formation in Heliconius butterflies. Proc R Soc Lond B, v. 187, p. 369-378, 2978 1974. 2979

2980 BRYSON, R. W., JR. et al. Target enrichment of thousands of ultraconserved elements sheds new light 2981

on early relationships within New World sparrows (Aves: Passarelidae). Auk, v. 133, n. 3, p. 2982 451-458, 2016. 2983

2984

Page 120: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

109

BUSH, M. B. Amazonian speciation: A necessarily complex model. Journal of Biogeography, v. 21, 2985 p. 5-17, 1995. 2986

2987 BUSH, M. B.; OLIVEIRA, P. E. D. The rise and fall of the Refugial Hypothesis of Amazonian 2988

speciation: a paleoecological perspective. Biota Neotrop, v. 6, n. 1, 2006. 2989 2990 BYRNE, H. et al. Phylogenetic relationships of the New World titi monkeys (Callicebus): first appraisal 2991

of taxonomy based on molecular evidence. Front Zool, v. 13, n. 1, 2016. 2992 2993 CARNEIRO, J. C. et al. Phylogeny of the Titi monkeys of the Callicebus moloch group (Pitheciidae, 2994

Primates). Am J Primatol, v. 78, p. 904-913, 2016. 2995 2996 CELLINESE, N.; BAUM, D. A.; MISHLER, B. D. Species and phylogenetic nomenclature. Syst Biol, 2997

v. 61, n. 5, p. 885-891, 2012. 2998 2999 CHENG, H. et al. Climate change patterns in Amazonia and biodiversity. Nat Commun, v. 4, p. 1411, 3000

2013. 3001 3002 COATES, A. G.; STALLARD, R. F. How old is the Isthmus of Panama? Bull Mar Sci, v. 89, n. 4, p. 3003

801-813, 2013. 3004 3005 COLINVAUX, P. A.; DE OLIVEIRA, P. E.; BUSH, M. B. Amazonian and neotropical plant 3006

communities on glacial time-scales: The failure of the aridity and refuge hypothesis. 3007 Quaternary Science Reviews, v. 19, p. 141-169, 2000. 3008

3009 COLLAR, N. Trogons (Trogonidae). In: DEL HOYO, J.;ELLIOT, A., et al (Ed.). Handbook of the 3010 birds of the world Alive. Barcelona: Lynx Ediciones, 2018. 3011

3012 COLOMBO, A. F.; JOLY, C. A. Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, 3013

and a biodiversity hotspot, is highly threatene by climate change. Braz J Biol, v. 70, p. 697-708, 3014 2010. 3015

3016 CRACRAFT, J. Toward a phylogenetic classification of the recent birds of the world (Class Aves). Auk, 3017

v. 98, n. 4, p. 681-714, 1981. 3018 3019 ______. Historical biogeography and patterns of differentiation within the South American Avifauna: 3020

Areas of Endemism. Ornitholigical Monographs, v. 36, p. 49-84, 1985. 3021 3022 CRAWFORD, N. G. et al. A phylogenomic analysis of turtles. Molecular Phylogenetics and 3023

Evolution, v. 83, p. 250-257, 2015. 3024 3025 D’HORTA, F. M. et al. Phylogeny and comparative phylogeography of Sclerurus (Aves: Furnariidae) 3026

reveal constant and cryptic diversification in an old radiation of rain forest understorey 3027 specialists. Journal of Biogeography, v. 40, n. 1, p. 37-49, 2013. 3028

3029 DACOSTA, J. M.; KLICKA, J. The Great American Interchange in birds: a phylogenetic perspective 3030

with the genus Trogon. Mol Ecol, v. 17, n. 5, p. 1328-43, Mar 2008. 3031 3032 DAVEY, J. W. et al. Genome-wide genetic marker discovery and genotyping using next-generation 3033

sequencing. Nat Rev Genet, v. 12, n. 7, p. 499-510, 2011 3034 3035 DE QUEIROZ, K. Ernst Mayr and the modern concept of species. Proc Natl Acad Sci U S A, v. 102 3036

Suppl 1, p. 6600-7, 3 2005. 3037 3038

Page 121: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

110

______. Branches in the lines of descent: Charles Darwin and the evolution of the species concept. Biol 3039 J Linn Soc, v. 103, p. 19-35, 2011. 3040

3041 ______. Biological nomenclature from Linnaeus to the PhyloCode. In: BELL, C. J. (Ed.). The 3042

herpetological legacy of Linnaeus: A celebration of the Linnaean Tercentenary: Bibliotheca 3043 Herpetologica 9, 2012. p.135-145. 3044

3045 DEGNAN, J. H.; ROSENBERG, N. A. Discordance of species trees with their most likely gene trees. 3046

PLoS Genet, v. 2, n. 5, p. e68, 2006. 3047 3048 DEGNAN, J. H.; ROSENBERG, N. A. Gene tree discordance, phylogenetic inference and the 3049

multispecies coalescent. Trends Ecol Evol, v. 24, n. 6, p. 332-340, 2009. 3050 3051 DONOGHUE, M. J. A critique of the Biological Species Concept and recommendations for a 3052

phylogenetic alternative. The Bryologist, v. 88, n. 3, p. 172-181, 1985. 3053 3054 DONOGHUE, P. C.; MOORE, B. R. Toward an integrative historical biogeography. Integr Comp Biol, 3055

v. 43, p. 261-270, 2003. 3056 3057 DUARTE, S. R. Filogenia molecular do gênero Nystalus (Bucconidae, Aves): enfoque na 3058

estruturação populacional em N. maculatus e N. chacuru. 2015. (Mestrado em Biologia 3059 Animal). Instituto de Biologia, UNB, Brasília. 3060

3061 EHLERS, T. A.; POULSEN, C. J. Influence of Andean uplift on climate and paleoaltimetry estimates. 3062

Earth Planet Sci Lett, v. 281, p. 238-248, 2009. 3063 3064 FAIRCLOTH, B. C. et al. Target enrichment of ultraconserved elements from arthropods provides a 3065

genomic perspective on relationships among Hymenoptera. Mol Ecol Resour, v. 15, n. 3, p. 3066 489-501, 2015. 3067

3068 FAIRCLOTH, B. C. et al. Ultraconserved elements anchor thousands of genetic markers spanning 3069

multiple evolutionary timescales. Syst Biol, v. 61, n. 5, p. 717-26, Oct 2012. 3070 3071 FERNANDES, A. M. et al. Multilocus phylogeography of the Wedge-billed Woodcreeper 3072

Glyphorynchus spirurus (Aves, Furnariidae) in lowland Amazonia: widespread cryptic diversity 3073 and paraphyly reveal a complex diversification pattern. Mol Phylogenet Evol, v. 66, n. 1, p. 3074 270-82, 2013. 3075

3076 FERNANDES, A. M. et al. Multiple speciation across the Andes and throughout Amazonia: the case 3077

of the spot-backed antbird species complex (Hylophylax naevius/Hylophylax naevioides). 3078 Journal of Biogeography, p. n/a-n/a, 2014. ISSN 03050270. 3079

3080 FERREIRA, M. et al. Biogeography of the Neotropical genus Malacoptila (Aves: Bucconidae): the 3081

influence of the Andean orogeny, Amazonian drainage evolution and palaeoclimate. Journal of 3082 Biogeography, v. 44, n. 4, p. 748-759, 2017. 3083

3084 GARZIONE, C. N. et al. Rise of the Andes. Science, v. 320, n. 5881, p. 1304-7, Jun 6 2008. 3085 3086 GILL, F.; DONSKER, D. IOC World Bird List (v8.1). 2018. 3087 3088 GILL, F. B. Hybrization in birds. Journal of Ornithology, v. 115, n. 2, p. 281-283, 1998. 3089 3090 GRANT, P. R.; GRANT, B. R. Hybridization of bird species. Science, v. 256, n. 5054, p. 193-197, 3091

1992. 3092

Page 122: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

111

3093 GROVER, C. E.; SALMON, A.; WENDEL, J. F. Targeted sequence capture as a powerful tool for 3094

evolutionary analysis. Am J Bot, v. 99, n. 2, p. 312-319, 2012. 3095 3096 HACKETT, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science, v. 3097

320, n. 5884, p. 1763-8, 2008. 3098 3099 HAFFER, J. Speciation in amazonian forest birds. Science, v. 165, n. 3889, p. 131-7, 1969. 3100 3101 ______. Avian zoogeography in the Neotropical lowlands. Ornitholigical Monographs, v. 36, p. 113-3102

146, 1985. 3103 3104 ______. Alternative models of vertebrate speciation in Amazonia: an overview. Biodivers Conserv, v. 3105

6, p. 451-476, 1997. 3106 3107 HARRISON, R. G.; LARSON, E. L. Hybridization, introgression, and the nature of species boundaries. 3108

J Hered, v. 105 Suppl 1, p. 795-809, 2014. 3109 3110 HARTLEY, A. Andean uplift and climate change. Journal of the Geological Society, London, v. 160, 3111

p. 7-10, 2003. 3112 3113 HAUG, G. H.; TIEDEMAN, R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean 3114

thermohaline circulation. Nature, v. 393, p. 673-676, 1998. 3115 3116 HOLT, B. G. et al. An update of Wallace's zoogeographic regions of the world. Science, v. 339, n. 3117

6115, p. 74-8, 2013. 3118 3119 HOORN, C. Marine incursions and the influence of Andean tectonics on the Miocene depositional 3120

history of northwestern Amazonia: results of a palynostratigraphic study. Palaeogeography, 3121 Palaeoclimatology, Palaeoecology, v. 105, n. 3-4, p. 267-309, 1993. 3122

3123 HOORN, C. et al. The Amazon at sea: Onset and stages of the Amazon River from a marine record, 3124

with special reference to Neogene plant turnover in the drainage basin. Global Plant Change, 3125 2017. 3126

3127 HOORN, C.; WESSELINGH, F. P. Amazonia: Landscape and species evolution: A look into past. 3128

Oxford: Wiley-Blackwell Publishing Ltd., 2010. 3129 3130 HOORN, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and 3131

biodiversity. Science, v. 330, n. 6006, p. 927-31, 2010. 3132 3133 HOPKINS, M. J. G. Modelling the known and unkown plant biodiversity of the Amazon Basin. J 3134

Biogeogr, v. 34, p. 1400-1411, 2007. 3135 3136 HORTON, B. K. Tectonic regimes of the Central and Southern Andes: Responses to variations in plate 3137

coupling during subduction. Tectonics, v. Early View, 2018. doi: 10.1002/2017TC004624 3138 3139 HOSNER, P. A. et al. Phylogeny and biogeography of the Asian trogons (Aves: Trogoniformes) 3140

inferred from nuclear and mitochondrial DNA sequences. Mol Phylogenet Evol, v. 57, n. 3, p. 3141 1219-25, 2010. 3142

3143 HRBEK, T. et al. A new species of river dolphin from Brazil or: how little do we know our biodiversity. 3144

PLoS One, v. 9, n. 1, p. e83623, 2014. 3145 3146

Page 123: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

112

INSEL, N.; POULSEN, C. J.; EHLERS, T. A. Influence of the Andes Mountains on South American 3147 moisture transport, convection, and precipitation. Clim Dyn, v. 35, n. 7-8, p. 1477-1492, 2009. 3148

3149 ISAAC, N. J. B.; MALLET, J.; MACE, G. M. Taxonomic inflation: its influence on macroecology and 3150

conservation. Trends Ecol Evol, v. 19, n. 9, p. 464-469, 2004. 3151 3152 JARVIS, E. D. et al. Phylogenomic analyses data of the avian phylogenomics project. Gigascience, v. 3153

4, p. 4, 2015. 3154 3155 JETZ, W. et al. The global diversity of birds in space and time. Nature, v. 491, n. 7424, p. 444-8, 2012. 3156 3157 JOHANSSON, U. S.; ERICSON, P. G. P. A re-evaluation of basal phylogenetic relationships within 3158

trogons (Aves: Trogonidae) based on nuclear DNA sequences. J Zool Syst Evol Res, v. 43, n. 3159 2, p. 166-173, 2005. 3160

3161 JOSEPH, L. et al. Where and when does a ring start and end? Testing the ring-species hypothesis in a 3162

species complex of Australian parrots. Proc Biol Sci, v. 275, n. 1650, p. 2431-40, 2008. 3163 3164 KIER, G. et al. Global patterns of plant diversity and floristic knowledge. J Biogeogr, v. 32, p. 1107-3165

1116, 2005. 3166 3167 KNOWLES, L. L. Statistical Phylogeography. Annu Rev Ecol Evol Syst, v. 40, n. 1, p. 593-612, 2009. 3168 3169 KRISTOFFERSEN, A. V. An early Paleogene trogon (Aves: Trogoniformes) from the Fur Formation, 3170

Denmark. J Vert Paleontol, v. 22, n. 3, p. 661-666, 2002. 3171 3172 LATRUBESSE, E. M. et al. The Late Miocene paleogeography of the Amazon Basin and the evolution 3173

of the Amazon River system. Earth-Sci Rev, v. 99, n. 3-4, p. 99-124, 2010. 3174 3175 LEITE, R. N.; ROGERS, D. S. Revisiting Amazonian phylogeography: insights into diversification 3176

hypotheses and novel perspectives. Organisms Diversity & Evolution, 2013. 3177 3178 LEMMON, A. R.; EMME, S. A.; LEMMON, E. M. Anchored hybrid enrichment for massively high-3179

throughput phylogenomics. Syst Biol, v. 61, n. 5, p. 727-44, Oct 2012. 3180 3181 LEMMON, E. M.; LEMMON, A. R. High-Throughput Genomic Data in Systematics and 3182

Phylogenetics. Annu Rev Ecol Evol Syst, v. 44, n. 1, p. 99-121, 2013. 3183 3184 LESSIOS, H. A. Appearance of an early closure of the Isthmus of Panama is the product of biased 3185

inclusion of data in the metaanalysis. PNAS, v. 112, n. 43, p. E5765, 2015. 3186 3187 LIMA, M. G. M. et al. Capuchin monkey biogeography: understanding Sapajus Pleistocene range 3188

expansion and the current sympatry between Cebus and Sapajus. Journal of Biogeography, v. 3189 44, n. 4, p. 810-820, 2017. 3190

3191 LIVEZEY, B. C.; ZUSI, R. L. Phylogeny of Neornithes. Bull Carnegie Mus Nat Hist, v. 37, p. 1-544, 3192

2006. 3193 3194 ______. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative 3195

anatomy. II. Analysis and discussion. Zoological Journal of the Linnean Society, v. 149, p. 1-3196 95, 2007. 3197

3198

Page 124: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

113

MANTHEY, J. D. et al. Comparison of Target-Capture and Restriction-Site Associated DNA 3199 Sequencing for Phylogenomics: A Test in Cardinalid Tanagers (Aves, Genus: Piranga). Syst 3200 Biol, v. 65, n. 4, p. 640-50, 2016. 3201

3202 MAURER, D. R.; RAIKOW, R. J. Appendicular myology, phylogeny and classificaiton of the avian 3203

order Coraciiformes (inluding Trogoniformes). Ann Carnegie Mus, v. 50, p. 417-434, 1981. 3204 3205 MAYR, E. Systematics and the Origin of Species. New York: Columbia Univ. Press, 1942. 3206 3207 ______. Species concept and definitions. In: (Ed.). Topics in the Phylosophy of Biology. Netherlands: 3208

Springer, 1976. p.353-371. 3209 3210 MAYR, G. A new trogon from the Middle Oligocene of Céreste, France. Auk, v. 116, n. 2, p. 427-434, 3211

1999. 3212 3213 ______. On the phylogenetic relationships of trogons (Aves, Trogonidae). Journal of Avian Biology, 3214

v. 34, p. 81-88, 2003. 3215 3216 MAYR, G. New trogons from the early Tertiary of Germany. Ibis, v. 147, p. 512-518, 2005. 3217 3218 MCCORMACK, J. E. et al. Ultraconserved elements are novel phylogenomic markers that resolve 3219

placental mammal phylogeny when combined with species-tree analysis. Genome Res, v. 22, 3220 n. 4, p. 746-54, 2012. 3221

3222 MEIKLEJOHN, K. A. et al. Analysis of a rapid evolutionary radiation using Ultraconserved Elements: 3223

Evidence for a bias in some multispecies coalescent methods. Systematic Biology, v. 65, n. 4, 3224 p. 612-627, 2016. 3225

3226 METZKER, M. L. Sequencing technologies - the next generation. Nature Reviews Genetics, v. 11, p. 3227

31-46, 2010. 3228 3229 MITTERMEIER, R. A. et al. Wilderness and biodiversity conservation. Proc Natl Acad Sci U S A, v. 3230

100, n. 18, p. 10309-13, 2003. 3231 3232 MONTEROS, A. E. Phylogenetic relationships among the Trogons. Auk, v. 115, n. 4, p. 937-954, 1998. 3233 3234 MONTEROS, A. E. Higher-level phylogeny of Trogoniformes. Mol Phylogenet Evol, v. 14, n. 1, p. 3235

20-34, 2000. 3236 3237 MOYLE, R. G. Phylogeny and biogeographical history of Trogoniformes, a pantropical bird order. Biol 3238

J Linn Soc, v. 84, p. 725-738, 2005. 3239 3240 MYERS, N. et al. Biodiversity hotspots for conservation priorities. Nature, v. 403, n. 6772, p. 853-8, 3241

2000. 3242 3243 NOGUEIRA, A. C. R.; SILVEIRA, R.; GUIMARÃES, J. T. F. Neogene–Quaternary sedimentary and 3244

paleovegetation history of the eastern Solimões Basin, central Amazon region. Journal of South 3245 American Earth Sciences, v. 46, p. 89-99, 2013. 3246

3247 NORES, M. An alternative hypothesis for the origin of Amazonian bird diversity. Journal of 3248

Biogeography, v. 26, n. 3, p. 475-485, 1999. 3249 3250 ______. The implications of Tertiary and Quaternary sea level rise events for avian distribution patterns 3251

in the lowlands of northern South America. Global Ecol Biogeogr, v. 13, p. 149-161, 2004. 3252

Page 125: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

114

3253 ODEA, A. et al. Formation of the Isthmus of Panama. Science Advances, v. 2, n. 8, p. e1600883, 2016. 3254 3255 OLIVEIRA, U.; VASCONCELOS, M. F.; SANTOS, A. J. Biogeography of Amazon birds: rivers limit 3256

species composition, but not areas of endemism. Scientific Reports, v. 7, p. 2992, 2017. 3257 3258 OLIVER, J. Microevolutionary processes generate phylogenomic discordance at ancient divergences. 3259

Evolution, v. 67, n. 6, p. 1823-1830, 2013. 3260 3261 ORNELAS, J. F.; GONZALEZ, C.; ESPINOSA DE LOS MONTEROS, A. Uncorrelated evolution 3262

between vocal and plumage coloration traits in the trogons: a comparative study. J Evol Biol, v. 3263 22, n. 3, p. 471-84 3264

3265 3266 POLO, E. M. Influência da formação do curso atual do rio Negro na origem da diversificação 3267

regional em alguns grupos de aves. 2015. (Mestrado em Genética). GCBEv, INPA, Manaus, 3268 AM. 3269

3270 PRUM, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA 3271

sequencing. Nature, v. 526, n. 7574, p. 569-73, 2015. 3272 3273 RAMSEN, J. V., JR. et al. A classification of the bird species of South America. American 3274

Ornithologists' Union. 2018. 3275 3276 RIBAS, C. C. et al. Biogeography and diversification of Rhegmatorhina (Aves: Thamnophilidae): 3277

Implications for the evolution of Amazonian landscapes during the Quaternary. J Biogeogr, v. 3278 Early View, 2018. doi: 10.1111/jbi.13169 3279

3280 RIBAS, C. C. et al. A palaeobiogeographic model for biotic diversification within Amazonia over the 3281

past three million years. Proc Biol Sci, v. 279, n. 1729, p. 681-9, 2012. 3282 3283 ROSSETTI, D. F. et al. Mid-Late Pleistocene OSL chronology in western Amazonia and implications 3284

for the transcontinental Amazon pathway. Sedimentary Geology, v. 330, p. 1-15, 2015. 3285 3286 SANTORELLI JR., S.; MAGNUSSON, W. E.; DEUS, C. P. Most species are not limited by an 3287

Amazonian river postulated to be a border between endemism areas. Sci Rep, v. 8, p. 2294, 3288 2018. 3289

3290 SHEPHARD, G. E. et al. Miocene drainage reversal of the Amazon River driven by plate–mantle 3291

interaction. Nature Geoscience, v. 3, n. 12, p. 870-875, 2010. 3292 3293 SIMPSON, G. G. Splendid isolation: the curious history of South American Mammals. Yale 3294

University Press, 1980. 3295 3296 SMITH, B. T. et al. The drivers of tropical speciation. Nature, v. 515, n. 7527, p. 406-9, 2014. 3297 3298 SOARES, L. M. S. Sistemática molecular e diversificação dos gêneros Nonnula e Monasa (Aves: 3299

Bucconidae). 2016. (Doutorado em Zoologia). Museu Paraense Emílio Goeldi, UFPA, Belém, 3300 PA. 3301

3302 THOM, G.; ALEIXO, A. Cryptic speciation in the white-shouldered antshrike (Thamnophilus aethiops, 3303

Aves - Thamnophilidae): the tale of a transcontinental radiation across rivers in lowland 3304 Amazonia and the northeastern Atlantic Forest. Mol Phylogenet Evol, v. 82 Pt A, p. 95-110, 3305 2015 3306

Page 126: Programa de Pós-Graduação em Genética, Conservação e …w2.files.scire.net.br/atrio/inpa-gcbev_upl/THESIS/136/... · 2018-03-20 · 108 allowed the Great American Biotic Interchange

115

3307 TOBIAS, J. A. Jacamars (Galbulidae). Handbook of the birds of the world, Barcelona, 2017. Acesso 3308

em: 26 February 2018. 3309 3310 VANZOLINI, P. E.; WILLIANS, E. E. South american anoles: the geographic differentiation and 3311

evolution of the anolis Chrysolepis species group (Sauria, Iguanidae). Arquivos de Zoologia, 3312 v. 19, n. 3-4, p. 125-298, 1970. 3313

3314 WALLACE, A. R. On the monkeys of the Amazon. Alfred Russel Wallace Writings, v. 3, 1852. 3315

Disponível em: < http://digitalcommons.wku.edu/dlps_fac_arw/3 >. 3316 3317 WANG, X. et al. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. 3318

Nature, v. 541, n. 7636, p. 204-207, 2017. 3319 3320 WEIR, J. T. et al. Hybridization in headwater regions, and the role of rivers as drivers of speciation in 3321

Amazonian birds. Evolution, v. 69, n. 7, p. 1823-34, 2015 3322 3323 WILLIS, S. C. One species or four? Yes!...and, no. Or, arbitrary assignment of lineages to species 3324

obscures the diversification processes of Neotropical fishes. Plos One, v. 12, n. 2, p. e0172349, 3325 2017. 3326

3327