pee-5740 'tópicos de fabricação de microestruturas' -...

66
PEE-5740 "Tópicos de Fabricação de Microestruturas" Prof. Dr. Prof. Dr. Patrick Patrick B. B. Verdonck Verdonck

Upload: hoangtram

Post on 13-Dec-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

PEE-5740"Tópicos de Fabricação de Microestruturas"

Prof. Dr. Prof. Dr. Patrick Patrick B. B. VerdonckVerdonck

Programação Preliminar de aulas de PEE-57403o Período de 20043o Período de 2004(13/09) 1o aula: Introdução : Organização, conceitos básicos (13/09) 1o aula: Introdução : Organização, conceitos básicos –– Mario Gongora.Mario Gongora.(20/09) 2o aula: Química da corrosão úmida de silício :(20/09) 2o aula: Química da corrosão úmida de silício : MaluMalu + + Humber FurlanHumber Furlan(27/09) 3o aula: Materiais e processos utilizados na fabricação (27/09) 3o aula: Materiais e processos utilizados na fabricação de de microestruturas e demicroestruturas e de microsensoresmicrosensores, Conceitos de fabricação de microestruturas , Conceitos de fabricação de microestruturas em substratos e em superfície.em substratos e em superfície.(04/10) 4o aula: Materiais para fabricação de microestruturas em(04/10) 4o aula: Materiais para fabricação de microestruturas em superfícies : superfícies : Nilton Nilton MorimotoMorimoto(11/10) 5o aula: Técnicas de fabricação de microestruturas em su(11/10) 5o aula: Técnicas de fabricação de microestruturas em substratos, bstratos, (18/10) 6o aula: Técnicas de fabricação de microestruturas em su(18/10) 6o aula: Técnicas de fabricação de microestruturas em superfíciesperfícies(25/10) 7o aula: Simulação de microestruturas : (25/10) 7o aula: Simulação de microestruturas : Eliphas Eliphas W. SimõesW. Simões(08/11) 8o aula: Encapsulamento de microestruturas : Mario Gongo(08/11) 8o aula: Encapsulamento de microestruturas : Mario Gongora ra (22/11) 9o aula: Processo LIGA e outros processos avançados.(22/11) 9o aula: Processo LIGA e outros processos avançados.(29/11) 10o aula: Prova(29/11) 10o aula: Prova(06/12) 11o aula: Apresentação dos trabalhos(06/12) 11o aula: Apresentação dos trabalhos

Conceitos

Média= 0,2*(Nota de Trabalho)+0.2*(Nota Média= 0,2*(Nota de Trabalho)+0.2*(Nota de Listas)+0.6*(Nota de Prova)de Listas)+0.6*(Nota de Prova)

BIBLIOGRAFIA:1) M.1) M. MadouMadou,, FundamentalsFundamentals ofof MicrofabricationMicrofabrication, CRC, CRC PressPress (Boca(Boca RatonRaton -- NewNewYork) (1997)York) (1997)

2) J.N.2) J.N.Zemel andZemel and R.R.FurlanFurlan, Microfluidics, capítulo 12 do, Microfluidics, capítulo 12 do HandbookHandbook ofof Chemical Chemical and Biological Sensorsand Biological Sensors, editado por J.S., editado por J.S.SchulzSchulz, Inst. of, Inst. of Phys Publishing IncPhys Publishing Inc. . ((BristolBristol), (1996).), (1996).

3) Sensor3) Sensor technology and devicestechnology and devices, editado por, editado por Ljubisa RisticLjubisa Ristic,, Artech HouseArtech House(Boston), (1994). (Boston), (1994).

4)4) Semiconductor sensorsSemiconductor sensors, editado por S.M, editado por S.M SzeSze, J., J. WileyWiley ((NewNew York) (1994). York) (1994). 5)5) MicrosensorMicrosensor:: principles and applicationsprinciples and applications, editado por J.W., editado por J.W.GardnerGardner, J., J.WileyWiley((NewNew York) 1994. York) 1994.

6) M.6) M. ElwenspoekElwenspoek, H.V., H.V. JansenJansen "" Silicon MicromachiningSilicon Micromachining", Cambridge", CambridgeUniversity PressUniversity Press, (Cambridge) (1998), (Cambridge) (1998)

7) Y.X.Li, Plasma7) Y.X.Li, Plasma etchingetching forfor integrated siliconintegrated silicon sensorsensor appliationsappliations, Tese de , Tese de doutoramento, Delftdoutoramento, Delft UniversityUniversity,, The NetherlandsThe Netherlands, 1995. , 1995.

8)8) Micromachining and MicropackagingMicromachining and Micropackaging ofof TransducersTransducers, editado por C.D., editado por C.D. FungFung, , P.W.P.W. CheungCheung, W.H., W.H.KoKo,, andand D.G.Fleming,D.G.Fleming, Elsevier Science PublishersElsevier Science Publishers B.V., B.V., ((AmsterdamAmsterdam) (1985). ) (1985).

9) Artigos relacionados com a disciplina.9) Artigos relacionados com a disciplina.

MEMS evolved from the Microelectronics Revolution

IC Industry Timeline

1999

10 million transistors

1947

single transistor

1958

first IC

So what exactly is MEMS?

Micro-Electro-Mechanical Systems (MEMS) is the integration of mechanical elements, sensors, actuators, and electronics on a common substrate through the utilization of microfabricationtechnology or “microtechnology”.

Microtechnology Classifications

MEMS System

MEMS Design Flow

Technology Trends

The Opportunity of MEMS TechnologyThe Opportunity of MEMS Technology

General MEMS AdvantagesBatch fabricationBatch fabrication

Reduced costReduced cost

Reduced sizeReduced sizeIs everything better smaller?Is everything better smaller?

Reduced powerReduced powerHigh precisionHigh precisionNew capabilities?New capabilities?Improved performance?Improved performance?

MEMS ExamplesMEMS Examples

pressure sensorsaccelerometersflow sensorsinkjet printersdeformable mirror devicesgas sensorsmicromotorsmicrogearslab-on-a-chip systems

MEMS Applications in Automotive Industry

MEMS Applications in Biomedicine

MEMS Timeline1980

2030

1999

TI DMD

??

Bulk micromachinedpressure sensor

(1.3 million micro-mirrors)

The The MicroTechnologyMicroTechnology/MEMS Tool Set/MEMS Tool Set

Cleanroom plusmicrofab processes

+

Micromachining Processes

Standard Integrated Circuit (IC) ProcessesStandard Integrated Circuit (IC) ProcessesIdentical to those used in IC fabricationIdentical to those used in IC fabricationGenerally used for surface Generally used for surface micromachiningmicromachining

Surface Surface MicromachiningMicromachiningAdditive processesAdditive processes

Bulk Bulk MicromachiningMicromachiningSubractive Subractive ProcessProcess

Dividing line can become very blurryDividing line can become very blurry

Standard IC ProcessesStandard IC Processes

Source: Jaeger

Source: CWRU

Standard IC ProcessesStandard IC Processes

Source: JaegerPhotolithography

Standard IC ProcessesStandard IC Processes

1) Deposit/Grow Thin Films

• Sputtering• Evaporation• Thermal Oxidation• CVD• Spinning• Epitaxy

Standard IC ProcessesStandard IC Processes

2) Pattern Thin Films• Lithography• Etching Techniques (wet, dry, RIE)

Standard IC ProcessesStandard IC Processes

3) Introduce Dopants (to form electrically-active regions for diodes, transistors, etc.)

• Thermal Diffusion• Ion Implantation

MicromachiningMicromachining ProcessesProcesses

Bulk Micromachining

• wet vs dry• isotropic vs anisotropic• subtractive process

Bulk Micromachining

MicromachiningMicromachining ProcessesProcesses

Source: Madou

Bulk Micromachining

Source: MalufSource: Maluf

MicromachiningMicromachining ProcessesProcesses

• high density ICP plasma• high aspect ratio Si structures• cost: $500K

Deep Reactive Ion Etching (DRIE)

Source: LucasNova

Source: STS Source: AMMISource: STS

MicromachiningMicromachining ProcessesProcesses

Wafer-Level Bonding• glass-Si anodic bonding• Si-Si fusion bonding• eutectic bonding• low temp glass bonding

Source: Maluf Source: EV

MEMS ExamplesMEMS ExamplesPressure Sensor (conventional) Source: NovaSensor

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Pressure (PSI)

Out

put V

olta

ge (m

V)

Source: UofL

MicromachiningMicromachining ProcessesProcesses

Surface Micromachining• additive process• structural & sacrificial layers

Source: Sandia

MUMPS Process (Micromotor)

MicromachiningMicromachining ProcessesProcessesLIGA (lithographie, galvanoformung, abformtechnik)• uses x-ray lithography (PMMA), electrodeposition and molding to produce very high aspect ratio (>100) micro-structures up to 1000 um tall (1986)

Source: Madou Source: Kovacs

LIGA

MEMS ExamplesMEMS Examples

Micro-structures using LIGA

Source: UW

MicromachiningMicromachining ProcessesProcessesPoor Man’s LIGA• uses optical epoxy negative-resist (SU-8) developed by IBM to produce high aspect ratio micro-structures (1995)

UofL Micro-reaction wells: 150 um wide, 120 um tall, 50 um wall thickness

Source: Maluf

MEMS ExamplesMEMS Examples

Micromotors

Source: MIT and Berkeley

MEMS ExamplesMEMS Examples

Optical MEMS (MOEMS)

Source: NIST, Simon Fraser, UCLA, and MCNC

MEMS ExamplesMEMS Examples

Pressure Sensor (ultra-miniature)

Source: NovaSensor

MEMS ExamplesMEMS Examples

Lab-on-a-Chip Systems• separation• dilution• mixing and dispensing• analysis

Source: Caliper

MEMS ExamplesMEMS Examples

Micromachined Tips for FEDs and AFMs

Source: Micron (?) Source: IBM

MEMS ExamplesMEMS Examples

Neural Probes

Source: Mich (K. Wise)

MEMS ExamplesMEMS Examples

Neural Interface Chip

Source: Stanford

MEMS ExamplesMEMS Examples

Micro-Grippers

Source: Berkeley

MEMS ExamplesMEMS Examples

Micro-Tweezers

Source: MEMS Precision Instruments

MEMS ExamplesMEMS Examples

Optical MEMS (MOEMS)

Source: IMC (Sweden), Maluf and TI

MEMS ExamplesMEMS Examples

Accelerometers

Sources: Analog Devices, Lucas NovaSensor, and EG&G IC Sensors

MEMS ExamplesMEMS Examples

Channels, Nozzles, Flow Structures, and Load Cells

Source: EG&G IC Sensors

Relative tolerances: Si µ-machiningis not good precision machining

Scaling in MEMSLinearLinear extrapolationextrapolation ofof lengthlength comescomes easyeasyto usto usWeWe areare quicklyquickly at aat a loss though when loss though when considering the implications that shrinkingconsidering the implications that shrinkingofof length has on surface arealength has on surface area to volumeto volumeratiosratios (S/V)(S/V) and on the relative strengthand on the relative strength ofofexternalexternal forces (forces (actuator mechanismsactuator mechanisms))Some Some examplesexamples ofof effectseffects of S/V:of S/V:

Both very large and very small mamalsBoth very large and very small mamals (i.e.(i.e.animals with constant bodyanimals with constant body T)T) have difficulty have difficulty survivingsurviving :i.e.:i.e. therethere areare few nichesfew niches forfor the large the large animals and thereanimals and there isis too much heat losstoo much heat loss for for small small animalsanimals ((heat lossheat loss ~ L~ L22 and heat generation and heat generation ((through eatingthrough eating) is ~ L) is ~ L33))------insects avoid this insects avoid this problem by being cold bloodedproblem by being cold bloodedCapillary tubes Capillary tubes (L(L33 vsvs. L. L11):): weight scalesweight scales as Las L33

and surface tensionand surface tension as Las L

Scaling LawsNature seemsNature seems to favorto favor smallsmall e.g. e.g. InsectsInsects areare very well adaptedvery well adapted::AsAs the scalethe scale of of structures structures decreases sodecreases so doesdoes the importance the importance of of phenomena that vary with the phenomena that vary with the largest powerlargest power ofof thethe linear linear dimensiondimension

––Insects walk on waterInsects walk on water ((surface surface tension supports their masstension supports their mass m)m)Insects jumps very farInsects jumps very far (E~(E~mh and mh and musclemuscle forfor that workthat work is ~m is ~m soso h is ah is aconstantconstant))Faster cooling and heating Faster cooling and heating ((cold cold bloodedblooded))Small thermal stressesSmall thermal stresses ((Small Biot Small Biot numbernumber i.e.i.e. little thermal little thermal stress)stress)

Scaling Effects

Scaling LawsA A Matrix formalismMatrix formalism is is used used to to describe the scaling describe the scaling

lawslaws. . This nomenclatureThis nomenclature shows ashows a numbernumber ofof differentdifferentforceforce lawslaws in ain a single equationsingle equation. In . In this notationthis notation,, the sizethe sizeofof the systemthe system isis represented byrepresented by aa single scale variablesingle scale variable, , L, L, which represents thewhich represents the linearlinear scalescale ofof the systemthe system. .

The choiceThe choice of of L for aL for a systemsystem is a bitis a bit arbitraryarbitrary.. TheThe L L could be the separation between the platescould be the separation between the plates of a of a capacitor,capacitor, oror itit could be the lengthcould be the length ofof one edgeone edge ofof thethecapacitor. capacitor. Once chosenOnce chosen,, howeverhowever, it is, it is assumed that all assumed that all dimensionsdimensions ofof the system the system areare equally scaled downequally scaled down ininsizesize as L isas L is decreaseddecreased ((isometric scalingisometric scaling). ).

Force Scaling LawsForFor exampleexample,, nominallynominally L= 1; if L isL= 1; if L is then changedthen changed to 0.1,to 0.1, all the all the dimensionsdimensions ofof the systemthe system areare decreased bydecreased by aa factorfactor of ten. of ten. AA numbernumber ofof differentdifferent cases arecases are shownshown inin one equationone equation. .

ForFor exampleexample::shows four cases forshows four cases for thethe forceforce lawlaw..The topThe top forceforce law scaleslaw scales as L,as L, next scalesnext scales as Las L squared orsquared or LL22

the nextthe next as Las L33,, and the bottomand the bottom as Las L44. .

The scalingThe scaling ofof thethe timetime requiredrequired to moveto move an object using thesean object using theseforces is forces is givengiven as:as:

The top elementThe top element inin equationequation 2 is L 2 is L 1.51.5.. ThisThis isis how thehow the time time scales when the scales when the force force scalesscales as Las L11. . The second element The second element shows shows thatthat tt scalesscales as Las L11 when the when the force force scales scales as Las L22.. The The third and forth elementthird and forth element showshow how thehow the time time scales when thescales when theforce force scalesscales as Las L33 andand LL44 respectivelyrespectively..

Trimmer Force Scaling Vector

Scaling Effects

Scaling in Geometry

Surface to Volume Ratios

Scaling a 3D object

Densely Packed Spheres

Mechanical Resonance

Eletrostatics

Comb Drives

Electromagnetic Actuators

Micro Heat Transfer

Microfluidica

Chemistry Scaling