para implementa o do - cgee · 6 bioeletricidade no brasil (aneel, mai/2016) depois da...

20
Modern Bioenergy: some topics on the Brazilian and global perspective L A Horta Nogueira, UNIFEI/Unicamp O potencial da biomassa celulósica para o desenvolvimento da bioeconomia Contribuição da bioenergia e dos bioprodutos para implementação do Acordo de Paris sobre o clima Seminário Franco-Brasileiro

Upload: lytruc

Post on 16-Dec-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Modern Bioenergy: some topics on the

Brazilian and global perspective L A Horta Nogueira, UNIFEI/Unicamp

O potencial da biomassa celulósica para o desenvolvimento da bioeconomia

Contribuição da

bioenergia e dos bioprodutos

para implementação do

Acordo de Paris sobre o clima

Seminário Franco-Brasileiro

Terça-feira, 25 de outubro de 2016

09h00-10h30 Mesa redonda sobre a produção de biomassa celulósica e

suas implicações sociais e ambientais

Palestrantes:

- Sr. Xavier Arnauld de Sartre, Geógrafo, Unidade mista de pesquisas (UMR)

Passages, Centro nacional de pesquisa científica (CNRS), França

- Sr. Jaime Finguerut, Gerente de desenvolvimento estratégico do Centro de

Tecnologia Canavieira (CTC), Brasil

- Sr. Christophe Poser, Pesquisador do Centro de cooperação internacional em

pesquisa agronômica para o desenvolvimento (CIRAD), Membro da Unidade de

pesquisa Aïda, Coordenador do Projeto Sypecar, França

- Sr. Sizuo Matsuoka, Diretor da Vignis Plantando Energia, Brasil

Moderador : Sra. Mylène Testut-Neves, Conselheira agrícola regional,

Embaixada da França

10h30-12h00 Mesa redonda sobre a conversão de biomassa celulósica em

energia e produtos e as implicações para o clima e o

desenvolvimento sustentável

Palestrantes:

- Sr. Manoel Teixeira Souza Júnior, Chefe-geral, Empresa brasileira de pesquisa

agropecuária - Embrapa Agroenergia

- Sr. Robert Wojcieszak, Encarregado de pesquisa, Unidade de catálise et química

do sólido (UCCS/CNRS) do CNRS

- Sr. Isaias de Carvalho Macedo, Universidade de Campinas

- Sra. Carole Jouve, Professora no Laboratório de engenharia dos sistemas

biológicos e dos processos, (LISBP/INSA/CNRS/INRA), célula energia do CNRS

- Sr. Luiz A. Horta Nogueira, Universidade de Itajubá, Consultor do CGEE

Moderador : Sr. Olivier Fudym, Diretor do CNRS no Rio

Slide 2

Today, there is a sound base of data assessing the current and future requirements of arable land to sustainably produce food, feed and biomass for energy, to assure that, from a global perspective, land is not a real concern.

Modern bioenergy: land use impact

Global land availability (SCOPE, 2015)

Slide 3

The analysis of this issue is often hampered by ideological assumptions.

After all, what is food security?

Food security depends on food availability and conditions to access,

process and use properly. Detailed studies of price changes and its causes

indicate that it is effectively reduced the impact of biofuels sustainable

production on the availability and cost of food.

From World Agriculture: Towards 2015-2030, FAO, 2004

Biofuels and food security

Slide 4

Obesity is currently a more serious problem than hunger in most countries.

Effectively there is no shortage of food, there is lack of access to food resources, due to limited resources of social groups in poverty. The growing food waste indicates the untapped surplus production.

The Lancet, Volume 378, Issue 9793, Pages 804 - 814, 27 August 2011

The global obesity pandemic: shaped by global

drivers and local environments

Prof. Boyd A Swinburn MD a , Gary Sacks PhD a, Kevin D Hall PhD c, Prof Klim McPherson PhD d,

Prof Diane T Finegood PhD e, Marjory L Moodie DrPH b, Prof Steven L Gortmaker PhD.

Summary

The simultaneous increases in obesity in almost all countries seem to be driven

mainly by changes in the global food system, which is producing more processed,

affordable, and effectively marketed food than ever before. This passive

overconsumption of energy leading to obesity is a predictable outcome of market

economies predicated on consumption-based growth. The global food system

drivers interact with local environmental factors to create a wide variation in

obesity prevalence between populat ions…

There is no lack of fuel, there are people

not able to access food

Slide 5

To achieve climate mitigation scenarios, bioenergy and specially liquid biofuels, have a crucial role relative to other potential renewable energy sources (IPCC, 2012).

Modern bioenergy: GHG mitigation

Estimated global renewable primary energy supply

by source by 2030 and 2050 (IPCC, 2012)

6

Bioeletricidade no Brasil

(ANEEL, Mai/2016)

Depois da hidroenergia, a bioenergia é o recurso renovável mais importante para a geração de eletricidade no Brasil, com 13.425 MW de capacidade instalada, aprox. 9% do total.

Categoria BiocombustívelNúmerodeusinas

Potência(MW)

Agroindústria BagaçodeCanadeAçúcar 393 10.674,7

Biogás- Agroindústria 2 1,7

CapimElefante 3 65,7

CascadeArroz 12 45,3Biocombustíveis Óleosvegetais 2 4,3Recursosflorestais CarvãoVegetal 8 54,1

GásdeAltoFornoa C.Vegetal 10 114,3

Lenha 1 11,5

LicorNegro 17 1.978,1

ResíduosFlorestais 51 389,5Resíduosanimais Biogás- RA 10 1,9Resíduosurbanos Biogás- RU 14 83,7

7

Central termoelétrica a resíduos de madeira, Piratini RS

Generación eléctrica con bioenergía en Brasil

• Potência instalada: 10 MW

• Geração anual: 71 GWh

• Consumo anual de combustível: 142 mil toneladas de resíduos de madeira

• Investimento: R$ 22 milhões

• Projeto da KOBLITZ, em operação desde 2002

Exemplos de UTE’s a lenha

> Título da apresentação - Data - Referências22 22AREVA KOBLITZ

PIRATINI ENERGIA S/A

Turbina a vapor de condensação

10.000 kW - Resíduos de madeira

8 (Bioenergy International, 2011)

Thermal capacity: 75 MW

Biomass consumption: 60 ton/h

Biomass storage: 10.000 ton

Steam output: 170 t/h

Steam temperature: 520°C

Steam pressure: 119 bar

Steam turbine:

Electric capacity: max. 48.000 kW

Exemplos de UTE’s a lenha

Planta de cogeração em uma planta de celulose, Facture, França

9

Exemplos de UTE’s a lenha Central termelétrica DRAX (Inglaterra), 6 x 660 MW a carvão.

Operou com biomassa em co-firing, posteriormente converteu 4

unidades para biomassa (pellets de biomassa lenhosa importado dos

EUA) e informou que pretende deixar de queimar carvão em 3 anos.

Existem avaliações positivas do impacto na geração de empregos,

renda e impostos, além dos evidentes benefícios ambientais.

Slide 10

The global market for liquid biofuels is related to the energy demand in transport, which depends basically on population, motorization, income levels and vehicular technology available. The global fleet is expanding fast.

Biofuels demand prospects

Projections of global fleet

and motorization for

regulated (Tollway) and

non regulated (Freeway)

scenarios

(based on WEC, 2011)

Slide 11

Even with better technology and expanding biofuels use in the forthcoming years, the total fuel demand will grow and consequently increase the GHG emissions.

Some projections:

Global Transport Scenarios 2050 (World Energy Council, 2011)

Total fuel demand in transport will increase by 30% to 82% above the 2010 levels. The GHG emissions in this sector will increase between 16% and 79%.

-Biofuels could reach 5% of this demand.

Energy Outlook 2035 (BP, 2015)

In 2030 the transport sector will consume 30% more than in 2010.

-Biofuels could cover about 4% of this demand, about 4,77 EJ/year.

Global demand for biofuels: current trends

Slide 12

To reduce the build up of GHG and considering all available options, biofuels should contribute more.

Renewable Energy Sources and Climate Change Mitigation (IPCC, 2011)

To mitigate GHG and limit the average global temperature increase to 2°C, the liquid biofuels should be 11% of energy demand for transport in 2030, about 12 EJ/year.

Estimated global liquid biofuels

demand in 2030

(IRENA, 2014)

Several studies indicated the need of increase the biofuels beyond the current trend.

Global demand for biofuels: needed supply

Slide 13

Thus, the sustainable liquid biofuels must contribute more to energy demand for transport.

Main concerns:

Is there enough potential for producing bioenergy?

“The upper bound of the technical potential of biomass for energy may be as large as 500 EJ/year by 2050” (SRREN/IPCC, 2011).

How to develop this potential?

“A substantial fraction of the technical potential will require sophisticated land and water management, large worldwide plant productivity increases, land optimization and other measures. Realizing this potential will be a major challenge, but it could make a substantial contribution to the world’s primary energy supply in 2050” (SRREN/IPCC, 2011).

Global Market for Biofuels: how to develop

Slide 14

In recent years, the ethanol production has stagnated due to a retraction of demand caused by gasoline tax reduction and low pricing policies. It is expected that the ethanol production and use will recovery, although there are concerns on increase of external dependence of gasoline in the near future, a burden to national trade balance and to the Brazilian economy.

Prospects for ethanol market in Brazil

Perspectives for light vehicles

fuels market in Brazil

(MME, 2015)

Slide 15

Higher energy yield allowed by of energy cane and straw collection and better conversion of 1G associated to 2G processes, converting sugar and lignocellulosic raw material in ethanol, increase the biofuel production per hectare and improve the GHG mitigation effect of ethanol.

Global impacts of innovative bioethanol from

sugarcane: GHG mitigation and land use

Global scenarios to 2030

Parameter'' 2030'BAU' 2030'Needed'

Mitigation'factor''

(t#CO2eq/m3#ethanol)#1,53# 1,65#

Ethanol'productivity##

(liter#ethanol/ha)#7,260# 8,660#

Mitigation and ethanol productivity

parameters, average in Brazilian

mills

Slide 16

The introduction of innovation in the sugarcane ethanol agroindustry, could cover 11% of energy demand in the world transport sector, and avoid approx. 1.4% of global anthropogenic GHG emissions estimated for 2010 and 9.5% of global transport GHG emissions estimated for the same year (IPCC et al, 2014).

This scenario can be considered technically feasible under the standpoint of final utilization since in Brazil biofuels have been supplying more than 50% of transport energy consumption for many years, with good results.

Global impacts of innovative bioethanol from

sugarcane: GHG mitigation and land use

Slide 17

The land to be planted with sugarcane, about 47 million ha in the Needed scenario, means 1.6% of land available for rainfed agriculture, estimated to be 1,400 million ha of ‘prime and good’ land and a further 1,500 million ha of marginal land that is ‘spare and usable’, mostly in Latin America and Africa (FAO, 2012).

Global impacts of innovative bioethanol from

sugarcane: GHG mitigation and land use

Globalarableland(approx.13billionha,about9%ofworldlandarea)

Landavailableforrainfeedcrops(approx.2.9billionha)

Sugarcanearea,Neededscenario,11%globalenergytransportin2030(47millionha)

FC cars are coming… will they use ethanol?

Nissan Mirai

19

Slide 20

Final remarks

An enormous amount of sugarcane straw is still left on field after harvesting and bagasse is burned mostly in low efficiency boilers. Admitting to collect 50% of straw and obtain a 20% surplus bagasse from mills, about 95 kg of lignocellulosic material per sugarcane ton could be diverted for ethanol 2G production; assuming a yield of 217 liters of ethanol/ton cellulose (current technology), the current global production of sugarcane, circa 2 billion ton, would produce more than 41 million m3 ethanol. Just using “residues”, without planting any additional ha.

To accelerate the maturation and deployment of innovation in sugarcane energy agroindustry the government role is crucial.