obtenÇÃo de Água para fins de anÁlises atravÉs … · desmineralização. este processo remove...

18
OBTENÇÃO DE ÁGUA PARA FINS DE ANÁLISES ATRAVÉS DE UM SISTEMA COMPOSTO POR MEMBRANAS ELETRODIALÍTICAS E RESINAS TROCADORAS DE ÍONS José Izaquiel Santos da Silva 1 [email protected] Edilailsa Januário de Melo 2 [email protected] Kepler Borges França 3 [email protected] 1 Discente do curso de Engenharia Química - UFCG 2 Discente do curso de Engenharia Química - UFCG 3 Professor da Unidade Acadêmica de Engenharia Química - UFCG RESUMO A eletrodiálise é uma operação unitária na qual a separação parcial dos componentes de uma solução iônica é induzida por uma corrente elétrica em função da quantidade de íons dissolvidos no meio. O seu princípio baseia-se numa série de membranas catiônicas e aniônicas arranjadas alternadamente entre dois eletrodos. Cada membrana é separada, uma da outra, por espaçadores formando compartimentos individuais. Quando uma solução iônica é bombeada através desses compartimentos sob efeito de uma diferença de potencial entre os eletrodos, os cátions migrarão para o cátodo, atravessando a membrana catiônica e em seguida serão retidos pela membrana aniônica. Por outro lado, os ânions tomam o caminho oposto em direção ao ânodo, após atravessar a membrana aniônica, ficarão retidos pela membrana catiônica. O resultado final será um aumento da concentração de íons em compartimentos alternados e uma redução na concentração dos íons nos compartimentos restantes, resultando na formação de duas correntes: uma diluída e outra concentrada. A purificação de água através de resinas de troca iônica é chamada de desmineralização. Esse processo remove praticamente todos os íons presentes em uma água, através de resinas catiônicas e aniônicas. As resinas possuem a capacidade de trocar cátions e ânions dissolvidos na água de alimentação por íons H + e ânions OH - encontrados nas resinas. Quando a troca ocorre, os íons H + e OH - são liberados na água que se encontra em contato com a resina e reagem entre si como forma de neutralizar a água purificada formando, a cada instante, uma nova molécula de água. O objetivo desse trabalho foi produzir água de baixa condutividade elétrica para fins de análises laboratoriais, onde o mesmo foi desenvolvido no Laboratório de Referência em Dessalinização (LABDES) da Universidade Federal de Campina Grande (UFCG). Os resultados mostraram que o reator teve um bom desempenho. A condutividade elétrica do concentrado permaneceu sempre maior do que a do produto em todos os casos estudados. Verificou-se que a densidade de corrente procurou manter-se constante ou tendia ao aumento do seu valor. Verificou-se que o pH do produto tendeu a ficar constante. Palavras-Chave: membranas, resinas, água, dessalinização.

Upload: lamkhanh

Post on 15-Nov-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

OBTENÇÃO DE ÁGUA PARA FINS DE ANÁLISES ATRAVÉS DE UM SISTEMA COMPOSTO POR MEMBRANAS ELETRODIALÍTICAS E RESINAS TROCADORAS

DE ÍONS

José Izaquiel Santos da Silva1 [email protected] Edilailsa Januário de Melo2 [email protected] Kepler Borges França3 [email protected]

1 Discente do curso de Engenharia Química - UFCG 2 Discente do curso de Engenharia Química - UFCG 3 Professor da Unidade Acadêmica de Engenharia Química - UFCG

RESUMO A eletrodiálise é uma operação unitária na qual a separação parcial dos componentes de uma solução iônica é induzida por uma corrente elétrica em função da quantidade de íons dissolvidos no meio. O seu princípio baseia-se numa série de membranas catiônicas e aniônicas arranjadas alternadamente entre dois eletrodos. Cada membrana é separada, uma da outra, por espaçadores formando compartimentos individuais. Quando uma solução iônica é bombeada através desses compartimentos sob efeito de uma diferença de potencial entre os eletrodos, os cátions migrarão para o cátodo, atravessando a membrana catiônica e em seguida serão retidos pela membrana aniônica. Por outro lado, os ânions tomam o caminho oposto em direção ao ânodo, após atravessar a membrana aniônica, ficarão retidos pela membrana catiônica. O resultado final será um aumento da concentração de íons em compartimentos alternados e uma redução na concentração dos íons nos compartimentos restantes, resultando na formação de duas correntes: uma diluída e outra concentrada. A purificação de água através de resinas de troca iônica é chamada de desmineralização. Esse processo remove praticamente todos os íons presentes em uma água, através de resinas catiônicas e aniônicas. As resinas possuem a capacidade de trocar cátions e ânions dissolvidos na água de alimentação por íons H+ e ânions OH- encontrados nas resinas. Quando a troca ocorre, os íons H+ e OH- são liberados na água que se encontra em contato com a resina e reagem entre si como forma de neutralizar a água purificada formando, a cada instante, uma nova molécula de água. O objetivo desse trabalho foi produzir água de baixa condutividade elétrica para fins de análises laboratoriais, onde o mesmo foi desenvolvido no Laboratório de Referência em Dessalinização (LABDES) da Universidade Federal de Campina Grande (UFCG). Os resultados mostraram que o reator teve um bom desempenho. A condutividade elétrica do concentrado permaneceu sempre maior do que a do produto em todos os casos estudados. Verificou-se que a densidade de corrente procurou manter-se constante ou tendia ao aumento do seu valor. Verificou-se que o pH do produto tendeu a ficar constante. Palavras-Chave: membranas, resinas, água, dessalinização.

2

GETTING WATER FOR ANALYSIS BY A SYSTEM COMPOSED OF MEMBRANES ELECTRODIALYSIS AND ION EXCHANGE RESINS

ABSTRACT The electrodialysis is a unit operation in which the partial separation of the components of an ionic solution is driven by an electric current depending on the amount of dissolved ions in the middle. Its principle is based on a series of cationic and anionic membranes alternately arranged between two electrodes. Each membrane is separate from one another by spacers forming individual compartments. When an ionic solution is pumped through these compartments under the influence of a potential difference between electrodes, the cations migrate to the cathode across the cation membrane and then be retained by the anion membrane. Furthermore, the anions take the opposite path toward the anode, after crossing the membrane anion, will be retained by the cationic membrane. The end result will be an increased concentration of ions in alternating compartments and a reduction in the concentration of ions in other compartments, resulting in the formation of two streams: one dilute and one concentrate. Water purification through ion exchange resins is called demineralization. This process removes virtually all ions present in a water through cationic and anionic resins. The resins have the ability to exchange cations and anions dissolved in water supply by H + and OH-anions found in the resins. When the exchange occurs, the H + and OH-are released into the water that is in contact with the resin and react with each other as a way to neutralize the purified water to form, at every moment, a new water molecule. The aim of this work was to produce water of low electrical conductivity for laboratory analysis, where it was developed in the Reference Laboratory for Desalination (LABDES), Federal University of Campina Grande (UFCG). The results showed that the reactor had a good performance. The electrical conductivity of the concentrate was always greater than the product in all cases studied. It was found that the current density sought to remain constant or tended to increase in value. It was found that the pH of the product tended to be constant. Keywords: membranes, resins, water, desalination. INTRODUÇÃO

A eletrodiálise é um processo de separação eletroquímica no qual,

membranas semipermeáveis e uma diferença de potencial são usadas para

separar espécies iônicas de uma solução aquosa. Presentemente, este

processo é amplamente utilizado para dessalinizar águas salobras.

Estimuladas pelo desenvolvimento de novas membranas com melhor

seletividade, baixa resistência elétrica, e melhores propriedades térmicas,

químicas e mecânicas, outras aplicações da eletrodiálise tem obtido um amplo

campo de interesse mundial (Escudier, Cottereau, & Moutounet, 1989).

3

Trata-se de uma tecnologia de separação que, em geral, não envolve

mudança de fase, o que significa uma economia no consumo de energia,

principalmente se comparado aos processos tradicionais. A dessalinização de

águas através da eletrodiálise ocorre devido a uma diferença de potencial

elétrico nas superfícies de membranas bipolares. Esse tipo de membrana

promove eletricamente a difusão acelerada de cátions e ânions através das

superfícies das membranas gerando durante o processo, dois efluentes: um

com elevada concentração de sais (água concentrada) e outro com uma baixa

concentração de sais (água diluída ou dessalinizada).

A purificação de água através de resinas de troca iônica é chamada de

desmineralização. Este processo remove praticamente todos os íons presentes

em uma água, através de resinas catiônicas e aniônicas (Filho, 1983). A

aplicação de resinas tem se difundido bastante devido a sua gama de

aplicabilidade. As resinas são bastante utilizadas em indústrias, na purificação

de águas para a alimentação de caldeiras, obtenção de água pura para

química fina, extração de materiais orgânicos, extração de colóides,

dessalinização de águas, extração de metais pesados (Pohl, 2006).

O desenvolvimento tecnológico da qualidade das resinas catiônicas e

aniônicas com relação à seletividade e sua capacidade de troca têm sido

estudados e cada vez mais difundidos (Applebaum, 1969). A extração de sais

por resinas de troca iônica é uma tecnologia que não envolve mudança de

fase, o que significa uma economia no consumo de energia, principalmente

comparada aos processos tradicionais (Silva, 2004), toda a água que alimenta

o sistema é convertida em água purificada, eliminando a possibilidade de

produção de um subproduto não desejado e seu processo de recuperação é

simples e barato.

O princípio da eletrodiálise baseia-se numa série de membranas

catiônicas e aniônicas arranjadas alternadamente entre dois eletrodos, como é

mostrado na Figura 01. Cada membrana é separada, uma da outra, por

espaçadores formando compartimentos individuais. Quando uma solução

iônica é bombeada através desses compartimentos sob efeito de uma

diferença de potencial entre os eletrodos, os cátions migrarão para o cátodo,

atravessando a membrana catiônica e em seguida serão retidos pela

membrana aniônica. Por outro lado, os ânions tomam o caminho oposto em

4

direção ao ânodo, após atravessar a membrana aniônica, ficarão retidos pela

membrana catiônica. O resultado final será um aumento da concentração de

íons em compartimentos alternados e uma redução na concentração dos íons

nos compartimentos restantes, resultando na formação de duas correntes: uma

diluída e outra concentrada (Strathmann, 1992).

Figura 01: Sistema eletrodialítico convencional (C = membrana catiônica e A = membrana aniônica).

As membranas seletivas são as partes mais sensíveis do sistema

eletrodialítico e requerem cuidados especiais.

As membranas seletivas aos cátions têm a sua matriz geralmente feita

de poliestireno de cadeia cruzada que é sulfonada com grupos sulfônicos

presos ao polímero. As membranas aniônicas são de poliestireno de cadeia

cruzada contendo grupos de amônia quaternária presos ao polímero.

As membranas bipolares têm se destacado recentemente como uma

eficiente ferramenta para produção de ácidos e bases a partir de seus

correspondentes sais, devido à capacidade de promover eletricamente uma

acelerada dissociação da molécula da água (Strathmann, 1992). O processo

que já é bastante difundido é economicamente viável e tem um grande número

de interessantes aplicações técnicas (Liu, Chlanda & Nagasubramanian, 1977).

Até o momento, entretanto, o uso de membranas bipolares em larga escala

técnica tem sido até certo ponto limitado pela disponibilidade de membranas

eficientes.

A principal estrutura de uma membrana bipolar e sua função é ilustrada

na Figura 02. Esta figura mostra uma membrana catiônica e uma membrana

aniônica dispostas em paralelo entre dois eletrodos, semelhante à eletrodiálise

5

convencional. Se uma solução de cloreto de sódio é colocada entre estas

membranas e uma diferença de potencial é aplicada, todas as espécies iônicas

serão removidas da solução. Quando não houver íons sódio e cloro na solução

o transporte de cargas elétricas através das membranas é realizado

exclusivamente pelos prótons e, íons hidroxila, os quais estão dispostos na

água pura numa concentração de 10-7 mol/l, devido ao equilíbrio de

dissociação da água. A condutividade da água deionizada é muito baixa e para

reduzir a alta resistência elétrica das camadas entre as duas membranas de

troca iônica é necessário aproximar uma da outra, formando a membrana

bipolar como ilustrado na Figura 02.

Figura 02: Princípio da membrana bipolar (mtc – membrana de troca catiônica, mta – membrana de

troca aniônica) (Krol, 1997).

Os íons prótons e hidroxilas migram em direções opostas para fora da

membrana bipolar sob a influência de um campo elétrico aplicado. Íons prótons

e hidroxilas, removidos da interfase, são regenerados de acordo com o

equilíbrio de dissociação da água. Água removida da interface é reabastecida

pela difusão da água da solução externa através das camadas carregadas se

encontram. A característica importante da membrana bipolar é que a

dissociação da água ocorre muito mais rápida do que o esperado pelo

equilíbrio ordinário de dissociação da água (Krol, 1997). Se a dissociação da

água for contínua, uma solução alcalina é formada do lado da membrana

6

aniônica e uma solução ácida é formada do lado da membrana catiônica, na

membrana bipolar.

As membranas bipolares podem ser preparadas pela simples

justaposição das convencionais membranas catiônica e aniônica, dispostas

uma atrás da outra (Leitz, 1972). A diferença de potencial total depende da

densidade de corrente aplicada, da resistência das duas membranas e da

resistência da solução entre elas. Devido à resistividade da água destilada ser

muito alta, a distância entre as membranas de polaridades opostas deve

aproximar-se de zero. As membranas bipolares, freqüentemente, não

apresentam uma estabilidade química satisfatória para altos valores de pH e

algumas vezes a capacidade de dissociação da molécula da água decresce

(Strathmann, 1992).

Existem dois tipos de membranas bipolares produzidas atualmente: a

membrana bipolar simples e a de múltiplas camadas.

As membranas bipolares simples são preparadas mediante a aplicação

de uma cobertura seletiva a cátions numa membrana aniônica previamente

preparada (Bauer, Gerner & Strathmann, 1988).

As membranas bipolares com múltiplas camadas são fabricadas

através da junção das membranas catiônicas e aniônicas. Uma camada

especial na interface conduz a uma perfeita membrana bipolar (Leitz, 1972).

A distribuição da corrente elétrica sobre a área ativa das células

eletrodialíticas é realizada pelos eletrodos colocados nas extremidades do

reator. A área efetiva da membrana está relacionada com a área disponível do

eletrodo, ou seja, ambas devem possuir a mesma área. Normalmente os

eletrodos são de metal liso ou flocos de carbono. Entre cada eletrodo e a

primeira membrana bipolar ocorre a formação de um compartimento, que se

denomina como compartimento eletródico ou de lavagem. Onde, durante o

processo da eletrodiálise, uma solução de ácido nítrico passa através de um

processo contínuo, com o objetivo de carrear os íons que possam atravessar

as membranas e os gases formados (Howe, 1974).

A corrente elétrica que flui externamente é devido ao fluxo de elétrons

nos fios condutores, enquanto que, no interior do reator a corrente é eletrolítica,

ou seja, devido à migração dos íons na solução. Essa transferência de elétrons

7

do circuito externo para os íons na solução é realizada através das reações

que ocorrem nos eletrodos (Davis, 1988).

As reações anódicas causam a dissolução ou oxidação do eletrodo,

reduzindo a sua eficiência e destruindo sua estrutura rapidamente. O uso de

metais resistentes às condições oxidativas como a platina, evitam o desgaste

do eletrodo. Como a platina possui um alto custo, outros tipos de materiais

podem ser usados, como o titânio ou o tântalo com uma camada de platina

sobre a superfície do metal.

As membranas são separadas umas das outras por espaçadores. A

distância entre as membranas e a espessura da célula precisa ser tão pequena

quanto possível, para minimizar os efeitos da resistência elétrica (Strathmann,

1992). A maioria dos reatores industriais apresenta uma distância entre as

membranas na faixa de 0,5 a 2,0 mm (Mintz, 1963).

Segundo Howe (1974), há dois modelos de espaçadores por onde a

solução pode fluir pela superfície da membrana:

O de fluxo linear ou “flow sheet”

O de fluxo tortuoso

Nos espaçadores de fluxo tortuoso a solução percorre pela membrana

na forma de labirinto. A solução toma várias curvas de 180o entre a entrada e a

saída, localizadas em pontos opostos ou no centro. Estes espaçadores

possuem tiras cruzadas nos canais de fluxo que promovem a turbulência.

Nos espaçadores de fluxo linear uma rede plástica ou tela promove a

turbulência. A solução flui em uma linha reta relativa a partir da entrada até a

saída, que estão localizadas em lados opostos (Applegate, 1984).

O reator eletrodialítico em estudo possui espaçadores de fluxo linear

entre as membranas eletrodialíticas.

A densidade de corrente J (A/cm2) provocada pelo movimento das

espécies químicas no interior do reator durante a eletrodiálise é igual à soma

das parcelas correspondentes a todas as espécies iônicas presentes, e pode

ser fornecida através da Equação (1):

eAIJ = (1)

Onde: I = corrente lida durante a dessalinização em Ampéres.

8

Ae = área efetiva da membrana em cm2.

A resistência de um par de células é devido basicamente à resistência

da solução salina e à resistência das membranas. A resistência da membrana

é uma função da natureza dos íons envolvidos, da concentração média desses

íons na solução próximos da membrana, bem como da temperatura do sistema

(Winger, 1955).

A resistência elétrica da membrana bipolar por sua vez seria a soma

das resistências das camadas de cargas opostas (aniônica e catiônica) e a

resistência da interface entre as membranas (Mani, 1988).

De uma forma geral, a resistência total de um sistema eletrodialítico

pode ser determinada pela lei de Ohm, onde o potencial de um sistema elétrico

é igual ao produto da corrente e da resistência do sistema (Meller, 1984), como

a Equação (2):

IVR t = (2)

Onde: Rt = resistência total do sistema em ohm.

V = potencial elétrico aplicado aos eletrodos em volts.

I = corrente lida em ampéres.

Um trocador iônico é constituído por um material poroso inerte, natural e

sintético, praticamente insolúvel em água e em solventes orgânicos, que

apresenta cargas elétricas em sua estrutura, contrabalanceadas por íons de

carga oposta (Almeida, 1999). A troca de íons entre a resina e a solução

externa é relativamente rápida, onde o volume de equilíbrio tem sido medido e

utilizado para avaliar a capacidade e a afinidade de troca com íons (Tamura,

2004). Mas é preciso observar que a capacidade de troca da resina depende

das condições de operação do sistema, da qualidade da água que entrará em

contato com a resina e com a qualidade da água desejada.

Os grupos funcionais iônicos que irão ser substituídos posteriormente

pelos íons a serem retirados do efluente são geralmente introduzidos por

reação da matriz polimérica com um composto químico que contenha o grupo

9

desejado. A capacidade de troca é determinada pelo número de grupos

funcionais por unidade de massa da resina. O desempenho e economia da

troca iônica estão relacionados com a capacidade da resina para captar íons e

com a quantidade de regenerante requerida. A Foto 01, logo a seguir, mostra

uma quantidade de uma resina do tipo gel pronta para ser utilizada.

Foto 01. Resina de troca iônica tipo gel convencional.

Foto retirada do site: http://www.power-technology.com/contractors/environmental/graver2/graver25.html

acessado em 14/04/2006

O processo de troca iônica é simples, os grupos funcionais encontrados

na resina são transferidos para a água enquanto os íons dissolvidos na mesma

ficam retidos nas superfícies da resina. A Figura 03 mostra uma diagramação

simples desse processo durante a purificação da água.

Figura 03. Processo de troca iônica em uma resina catiônica e em uma resina aniônica.

10

Para fins de “amolecimento” (softening) da água, algumas resinas de

troca iônica funcionam apenas para retirarem a dureza da água com relação às

concentrações de cálcio e magnésio trocando-os por íons sódio [Applebaum

1969 & Wikipedia, 2006]. Esses tipos de resina foram as primeiras a serem

comercializadas para fins industriais e domésticos.

MATERIAIS E MÉTODOS

Para o Sistema de Eletrodiálise:

Policloreto de Vinila (PVC) de 1(um) cm de espessura; Teflon de 1 mm

de espessura; Placas de Titânio de 1 mm de espessura; Parafusos de Cobre

de 3/8 polegada; Membranas eletrodialíticas do tipo K-101 (catiônicas) e A-201

(aniônicas) da ASAHI CHEMICAL CO., Japão. ; Válvulas de passagem DECA

½ polegada; Tubos e conexões em PVC de ½ polegada; Tubos plásticos;

Recipientes de plásticos com capacidade de 10, 20 e 50 litros; Recipientes

plásticos com cerca de 40 ml para amostragens; Vidrarias para análise físico-

química.

Para a Coluna de Resina Mista:

Tubulações de Policloreto de Vinila (PVC) de (1/2) cm de espessura de 8

cm de diâmetro; Válvulas de passagem DECA ½ polegada; Tubos e conexões

em PVC de ½ polegada; Tubos plásticos; mangueiras de plásticos de ¼ de

polegada; Recipientes plásticos com cerca de 40 ml para amostragens;

vidrarias para analise físico-química.

INSTRUMENTAÇÃO

Para o Sistema de Eletrodiálise:

Fonte retificadora modelo 6545A (0-120V/ 0-1,5ª) da Agilent;

Condutivímetro modelo 600 da Analyser; Cronômetro; Rotâmetros; pHmetro

digital PG1000 da GEHAKA; Bombas centrífugas 1/20 HP modelo 1.5

Sulplastic; Bomba de imersão 1/200 HP modelo Better – 650.

11

Para a Coluna de Resina Mista:

Bomba de água ½ HP da DANCOR; Condutivímetro modelo 600 da

Analyser; Cronômetro; Rotâmetros; pHmetro digital PG1000 da GEHAKA.

Produtos químicos

Ácido Nítrico da CHEMCO

Água dessalinizada

Água deionizada

Cloreto de Sódio (NaCl) P.A da MERCK

METODOLOGIA

Sistema Eletrodialítico

O sistema eletrodialítico é constituído pelo reator eletrodialítico, fonte de

alimentação elétrica, sistema hidráulico e equipamentos de medidas e registros

de dados, de acordo com a Figura 04. Para esta etapa do projeto, trabalhamos

apenas com membranas monopolar.

Figura 04. Sistema eletrodialítico.

O Sistema eletrodialítico é composto das seguintes unidades:

Fonte elétrica, R-reator eletrodialítico, TA-tanque de alimentação (NaCl),

TL – tanque de lavagem, TP – tanque do produto, TC – tanque do concentrado,

Rt – rotâmetros, A – amperímetro, V – voltímetro.

O reator eletrodialítico é o principal componente deste sistema, contendo

um total de dez membranas, sendo cinco catiônicas e cinco aniônicas. As

membranas são dispostas alternadamente entre dois eletrodos do reator na

seguinte ordem: catiônica e aniônica. Entre cada membrana são colocados os

12

espaçadores de PVC e o teflon, que conduzem o fluxo liquido por entre as

membranas eletrodialíticas, proporcionando uma área de troca iônica de 330

cm2. Entre as membranas ocorre a entrada da solução de cloreto de sódio,

NaCl, impulsionada por bombas centrifugas dos tanques de entrada.

Durante a eletrodiálise, formam-se os seguintes compartimentos: água

dessalinizada ou diluída e o concentrado.

Os eletrodos utilizados para o cátodo e o ânodo são feitos com placas

de titânio com um milímetro de espessura, revestidos por uma camada de

cinco milímetros de platina. O conjunto formado por eletrodos, membranas e

espaçadores é pressionado entre placas de PVC de 10 mm de espessura, por

parafusos de cobre.

Entre cada eletrodo e a membrana vizinha existe um compartimento

denominado de compartimento eletródico, com a finalidade de receber um fluxo

continuo de uma solução de ácido nítrico (pH = 3), com o objetivo de lavar as

paredes dos eletrodos, evitando a formação de incrustações e para aumentar a

densidade de corrente nos mesmos e também carrear gases hidrogênio e cloro

formados no cátodo e ânodo, respectivamente.

O reator em estudo apresenta, inicialmente, duas entradas e duas

saídas, onde uma delas é dirigida para o produto diluído ou água dessalinizada

e a outra para a solução salina de NaCl.

Coluna de Resina de Troca Iônica

Após o processo de dessalinização por eletrodiálise, a água

dessalinizada produzida passou por um “polimento” em uma coluna de resina

mista de troca iônica, obtendo-se uma água com elevada pureza para

aplicações em procedimentos analíticos laboratoriais. O Concentrado

produzido no processo de eletrodiálise foi reaproveitado em um sistema de

reciclo do concentrado para a alimentação do eletrolizador.

A Figura 05 ilustra uma visão geral de como ocorre o processo de

dessalinização das soluções de NaCl e o “polimento” na água produzida.

13

Figura 05. Sistema híbrido de dessalinização de águas.

Procedimento Experimental

Foram realizadas várias bateladas com várias concentrações. Neste

trabalho enfatizamos os resultados referentes à bateladas com a solução de

concentração 2000 mg/L. A qual foi realizada sob um efeito de um potencial

elétrico de 12 volts à temperatura ambiente. Ao final de cada batelada, o reator

eletrodialítico foi lavado com água deionizada

As amostras foram submetidas à passagem pela coluna de resinas de

troca iônica para, assim, fosse obtida água com condutividade elétrica baixa,

de valores próximos de zero.

RESULTADOS E DISCUSSÕES

Efeito da condutividade elétrica

O gráfico 01 representa o comportamento da condutividade elétrica do

efluente do produto e do concentrado em função do tempo, com o reator

trabalhando em bateladas realizadas com uma de NaCl de 2000 mg/L.

Pode-se observar que a condutividade elétrica do concentrado é sempre

maior do que a condutividade elétrica do produto em todos os casos

Bomba centrífuga

Taque de alimentação (Água dessalinizada). pelo processo de eletrodiálise)

Coluna de resina mista

Válvula

Suporte dacolunaTubulação

Sentido do fluxode alimentação

Taque de Água deionizadaConcentrado

Sistema de eletrodiálise

Água dessalinizada

Alimentação

14

estudados. Em função do potencial elétrico aplicado ocorre o transporte iônico

para os compartimentos do produto e concentrado.

Gráfico 01 – Condutividade elétrica em função do tempo, para a batelada realizada

com uma solução de NaCl a 2000 mg/L e V = 12 V.

Efeito da densidade de corrente

A densidade de corrente é um parâmetro que representa o potencial do

transporte iônico no interior do reator, o qual pode decrescer ou crescer em

função do caminho hidrodinâmico oferecido pelos compartimentos, pela

diferença de potencial aplicada e também pela concentração das espécies

iônicas presentes [Strathmann, 1992]. O gráfico 02 representa o

comportamento da densidade de corrente em função do tempo.

0 2 0 4 0 6 0 8 0 1 0 00

1234

5678

91 01 1

1 21 31 41 5

J (

10

-4 A

/cm

2)

T e m p o ( m i n )

Gráfico 02 - Densidade de corrente elétrica em função do tempo, para a batelada

realizada com uma solução de NaCl a 200 mg/L e V = 12 V.

À medida que o transporte iônico ocorre entre as membranas

eletrodialíticas, a densidade de corrente tende a aumentar.

100

120

140

160

180

200

0 50 100

K (µS)

t (min)

Concentrado

Produto

15

Considerações sobre o efeito do pH

O gráfico 03 é referente ao potencial hidrogeniônico em função do tempo

para a corrente do concentrado e o produto.

Com o aumento da concentração de NaCl, ou seja, da solução de

alimentação, o pH para a corrente do produto e do concentrado sofre

pequenas variações. Observa-se que o valor do pH tende a aumentar para o

produto e diminuir para o concentrado.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 00

2

4

6

8

1 0

pH

T e m p o ( m i n )

c o n c e n t r a d o p r o d u t o

Gráfico 03 – Potencial hidrogeniônico em função do tempo, para a batelada realizada

com uma solução de NaCl a 2000 mg/L e V = 12 V.

Considerações sobre as resinas A solução, depois de submetida às resinas, passou a possuir pH

constante em torno de 7. Bem como, apresentou condutividade baixíssima,

com valores abaixo de 0,3mS.

CONCLUSÕES Concluise, portanto, que a variação da condutividade elétrica do produto

e do concentrado depende da concentração inicial da solução. A densidade de

corrente para o caso estudado tem seu valor aumentado em função da

concentração. A variação do pH do produto e do concentrado depende da

concentração da solução de alimentação, da velocidade da solução no interior

do reator e conseqüentemente do potencial aplicado durante o processo.

16

REFERÊNCIAS BIBLIOGRÁFICAS

1. ALMEIDA, ALEX M. DE, A Resina de Troca Iônica Como Extrator Multielementar em Análise de Solos Para Fins de Fertilidade. 1999.

Dissertação (Mestrado no Instituto de Química, Departamento de

Química Analítica), Universidade Estadual de Campinas, São Paulo.

122p.

2. APPLEGATE, L., Electrodialysis , Chemical Engineering, 21 (12), 77-88,

junho,1984.

3. APPLEBAUM, SAMUEL B., Demineralization By Íon Exchange In

Water Treatmente Ande Chemical Processing Of Other Liquids, Ed.

Academi Press, New York and London. p. 1-5. Second printing 1969.

4. BAUER, B., GERNER, F. J. & STRATHMANN, H., Development of

bipolar membranes, Desalination, v 68, p 279-292, 1988.

5. COTEC, 6a Conferência sobre Tecnologia de Equipamentos, Tratamento

de Efluentes e Destinação dos Resíduos de Ensaios por Líquidos

Penetrantes.

http://www.aaende.org.ar/sitio/biblioteca/material/PDF/COTE166.PDF,

Acessado em 14/04/2006.

6. DAVIS, T. A., Electrodialysis, Handbook of Industrial Membrane

Technology, In Mark C. Porter (ed.), ch. 8, p 482-510, 1988.

7. ESCUDIER, J. L., COTTEREAU, P. & MOUTOUNET, M., Electrodialysis

Applications in the Treatment of Grape Musts, Bull. O.I.V., v 62, p 695-

696, 1989.

8. FILHO, D. F. DOS SANTOS, Tecnologia de Tratamento de Água, Ed.

Livraria NOBEL, 2ª. Edição, 1983. Pág. 60.

17

9. HOWE, E. D., Fundamentals of water desalination , Environmental

Science and Technology Series, New York, Marcel Dek Ker, 1974.

10. Krol, J. J., Monopola and bipolar ion exchange membranes – Mass

transport limitations, Ph.D. thesis, University of Twente (1997).

11. LACEY, R.E. Handbook of separation technics for chemical engineers ,

New York, Mc Graw-Hill Book Company, 1979.

12. LEITZ, F. B., Apparatus for electrodialysis of electrolytes employing

bilaminar ion-exchange membranes, U. S. patent 3, 654, 125, 1972.

13. LIU, K. J., CHLANDA, F. P. &. NAGASUBRAMANIAN, K., Use of bipolar

membranes for generation of acid and base – An engineering and

economic analysis, Journal of Membrane Science, v 2, n 2, p 109, 1977.

14. MANI, K. N. Electrodialysis Water Splitting Technology. Journal of

Membrane Science, 1991. 58:117-138.

15. MANI, K. N., CHLANDA, F. P. & BYSZEWSKI, C. H., AQUATECH

membrane technology for recovery of acid/acid values from salt streams,

Desalination, v 68, p 149-166, 1988.

16. MELLER, F. H., Electrodialysis (ED) & electrodialysis reversal (EDR)

technology, Ionics Incorporated, March, 1984.

17. MINTZ, M. S., Electrodialysis principles of process design, Industrial and

Engineering Chemistry, v 55, n 18, p 18-28, 1963.

18. POHL, PAWEL, Application of Ion-Exchange Resins to The Fractionation of Metals in Water, Trends in Analytical Chemistry,

Vol. 25, No. 1, 2006.

18

19. SILVA, S. K., Aumento da Vida Útil de Sistemas de Dessalinização no Campo: Análise, Manutenção e Monitoração Remota, 2004.

Dissertação (CTHidro – CNPq ), Graduação em Engenharia Química –

Centro de Ciências e Tecnologoa, Universidade Federal da Paraíba,

Campina Grande. 60p. Pág. 4-5.

20. STRATHMANN, H. Electrodialysis and Related Processes. In: Workshop

CEE- Brazil on Membrane Separation Processes. Rio de Janeiro, 1992.

p. 334-437.

21. TAMURA, H., Theorization on ion-exchange equilibria: activity of species in 2-D phases, Journal of Colloid and Interface Science, 279

(2004) 1–22

22. WINGER, G. W.; BODAMER, R. K.; PRIZER, C. J. & HARMON,

G.W. “ Eletrodialysis of water using a multiple membrane cells”,

Industrial and Engineering Chemistry , 47 (1), 1955.