neurotransmissão e contração muscular · para o terminal pós-sináptico através de canais do...

67
Profa. Dra. Eliane Comoli Depto de Fisiologia da FMRP-USP Neurotransmissão e Contração Muscular

Upload: lediep

Post on 10-Nov-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Profa. Dra. Eliane ComoliDepto de Fisiologia da FMRP-USP

Neurotransmissão e Contração Muscular

ROTEIRO DE NEUROTRANSMISSÃO

1. Definição de sinapse a. sinápse elétricab. sinápse química

2. Princípios da Transmissão Sináptica Químicaa. neurotransmissores e mecanismo de ação; receptores ionotrópicos e metabotrópicos b. síntese e armazenamentoc. liberação de neurotransmissoresd. receptores e proteínas efetorase. reciclagem

3. Princípios da Integração Sinápticaa. potenciais inibitórios pós-sinápticosb. potenciais excitatório pós-sinápticosc. somatização temporal e espacial

Sinápses

Sinápse é o termo que designa o local de comunicação entre

neurônios.

O neurônio pré-sinápticogeralmente transporta a

informação para o neurônio pós-sináptico (célula

alvo).

O processo de transferência de informação na sinápse é

chamado transmissão sináptica

Sinápse

a. axodendríticab. axoaxônica

c. dendrodendríticad. axossomática

Sinápse pode ser do tipo:

Elétrica Química

Sinápse Elétrica

é mediada por fluxo de corrente iônica direta do terminal pré-sináptico para o terminal pós-sináptico através de canais do tipo gap-junctions ou

junções comunicantes (diâmetro de 2nm), que conectam os citoplasmas dessas células permitindo continuidade entre as duas células.

Sinápse Elétrica

.

A corrente flui através dos canais, deposita carga positiva no lado interno da membrana pós-sináptica, despolarizando-a.

Se a despolarização atinge o limiar, canais dependentes de voltagem pós-sinápticos abrem-se e geram um potencial de ação.

A sinápse elétrica é transmissão direta e instantânea, portanto mais rápida.

Os neurônios podem disparar sincronicamente.

A sinápse elétrica é evolutivamente mais antiga. Em invertebrados é encontrada em neurôniossensoriais e motores em circuitos neurais mediando resposta de fuga.

Sinápse Química

Os terminais pré e pós-sinápticos são separados por

um espaço de 10-20nm, chamado fenda sináptica.

No terminal pré-sináptico encontram-se organelas esféricas de diâmetro de

50nm chamadas vesículas sinápticas.

As vesículas sinápticas armazenam

neurotransmissores (substâncias químicas usadas

na comunicação entre os terminais).

Na membrana do terminal pré-sináptico existem os sítios

de liberação de neurotransmissores, região

chamada zona ativa.

No terminal pós-sináptico, uma camada espessa proteica

é chamada densidade pós-sináptica.

A densidade pós-sináptica contém receptores de

neurotransmissores que convertem os sinais químicos

em potenciais graduados.

Sinápse Química

a) mecanismo de síntese de neurotransmissores e empacotamento nas vesículas; b) mecanismo de liberação desse neurotransmissor em resposta a um potencial pré-sináptico; c) mecanismo que cause resposta no terminal pós-sináptico; d) mecanismo de remoção dos neurotransmissores na fenda sináptica.

Princípios da Neurotransmissão Química

Remoção do Neurotransmissor

O neurotransmissor deve ser removido da fenda sináptica, através de:

a) difusão do neurotransmissor para o meio extracelular;

b) recaptação de aminoácidos e aminas nos terminais pré-sinápticos;

c) degradação enzimática na própria fenda. ex: acetilcolina degradada pela

acetilcolinesterase.

Evita dessensibilização dos receptores pós-sinápticos devido ao fechamento dos

canais iônicos após longo período da presença do neurotransmissor na fenda.

Pot. de ação no terminal Entrada de Ca+2 causa a Abertura de canais receptorespré-sináptico abre fusão de vesículas e Na+ entra na célula pós-sinápticacanais de Ca+2 liberação de neurotransmissor a vesícula se recicladependentes de voltagem por exocitose

Transmissão Sináptica

Sinápse Químicahttps://www.youtube.com/watch?v=Ibzfwtdtong

A vesícula libera seu conteúdo na fenda sináptica mediante influxo de Ca+2 que ocorre em cada potencial de ação. O Ca+2 é responsável pela mobilização da maquinaria proteica envolvida com a liberação do neurotransmissor na fenda sináptica; envolve: a) a mobilização das vesículas; b) arraste e direcionamento para as zonas ativas do terminal; c) ancoramento na zona ativa e preparo para liberação; d) liberação do neurotransmissor.

Neurotransmissores

Moléculas pequenas:a) aminoácidos: glutamato , aspartato, glicina e GABA); b) aminas: acetilcolina, dopamina, epinefrina, histamina, noradrenalina e serotonina.

Moléculas grandes peptídicasarmazenadas em grânulos secretores:colecistoquinina, endorfinas, encefalinas, neuropeptídeo Y, somatostatina, substância P, hormônio liberador de tireotrofina e peptídeo intestinal vasoativo.

Neurotransmissores

Um neurotransmissor deve seguir quatro critérios:

a) ser sintetizados por neurônios;

b) estarem presentes no terminal pré-sináptico e serem liberados em quantidades suficientes para exercer uma ação definida no neurônio pós-sináptico ou órgão efetor;

c) quando administrado exogenamente deve mimetizar a ação endógena;

d) mecanismo de remoção da fenda.

Neurotransmissores

Um terminal pode apresentar mais de um tipo de neurotransmissor.

Transmissões mais rápidas no SNC são mediadas por aminoácidos.

Aminoácidos e aminas são sintetizados no citosol e transportados pelas vesículas sinápticas até o terminal axonal onde ficam concentrados.

Grânulos que contém peptídeos ativos sintetizados no retículo e clivados no aparelho de Golgi, são transportados até o terminal axonal onde sofrem modificações.

Tipos de Receptoreshttps://neuroscience5e.sinauer.com/animations05.03.html

Ionotrópico Metabotrópico

O glutamato é o principal transmissor excitatório no

cérebro e na medula espinhal.

Há vários tipos de receptores glutamatérgicos que podem ser receptores ionotrópicos ou

metabotrópicos.

Mecanismo de Ação do Glutamato

Receptores Ionotrópicos

Receptores Metabotrópicos

Receptores ionotrópicos (GABAA) Receptores Metabotrópicos (GABAB)

Mecanismo de Ação do GABA: O GABA é o principal transmissor inibitório no cérebro e medula espinhal.

Os receptores GABAA são ionotrópicos e formam poros de Cl-. Geram aumento da permeabilidade ao Cl- , consequente influxo de Cl- e hiperpolarização.

Os receptores GABAB são metabotrópicos e através de cascata envolvendo 2os mensageiros ativam canais de K+, gerando aumento da permabilidade ao K+ e conseqüente efluxo de K+ resultando em hiperpolarização.

Cl-

K+

Mecanismo de Ação da Acetilcolina

Mecanismo de remoção da Acetilcolina da fenda sináptica:

Ação da Acetilcolinesterase

Mecanismo de remoção da Acetilcolina da fenda sináptica:

Ação da Acetilcolinesterase

Mecanismo de Ação da Noradrenalina

Sinápse e Integração Neuralhttps://www.youtube.com/watch?v=Ibzfwtdtong

Princípios da Integração Sináptica

O neurônio pós-sináptico integra o complexo de sinais químicos que resultam em inúmeros potenciais excitatórios pós-sinápticos (PEPS) e potenciais inibitórios pós-sinápticos (PIPS).

despolarização

hiperpolarização

Potencial Excitatório

Pós-sináptico (PEPS)

Potencial Inibitório Pós-

sináptico (PIPS)

Os potenciais pós-sinápticos são integrados, sendo que o efeito somatório ao ultrapassar um valor limiar pode gerar uma reposta de saída, o potencial de ação.

Somação

Somação Temporal e Espacial

Três neurônios excitam o neurônios pós-sináptico.

Seus potenciais graduados excitatórios (PEPS), separadamente, estão todos abaixo do limiar.

Os PEPS chegam juntos na zona de estímulo e somados geram um sinal supralimiar.

O sinal supralimiar desencadeia um potencial de ação.

Somação Espacial

Somação Espacial

Dois neurônios excitam o neurônios pós-sináptico e um neurônio inibe.

O dois PEPS são diminuídos pela somação com o PIPS.

Ao cehagarem na zona de estímulo geram um sinal sublimiar.

Nenhum potencial de ação é gerado.

Somação de Potenciais pós-sinápticoshttps://neuroscience5e.sinauer.com/animations05.02.html

Inibição Pré-sináptica

Ausência de reposta

Resposta

Resposta

Célula Alvo

Neurônio Inibitório

Na inibição pré-sináptica um neurônio modulatório realiza sinápse em um colateral do neurônio pré-sináptico.

Um dos alvos do neurônio pré-sináptico pode ser seletivamente inibido.

Inibição Pós-sináptica

Célula Alvo

Ausência de reposta

Ausência de resposta

Ausência de resposta

Neurônio Inibitório

Neurônio Excitatório

Na inibição pós-sináptica todos os alvos da célula pós-sináptica serão igualmente inibidos.

Contração Muscular

Profa. Dra. Eliane Comoli

Depto de Fisiologia da FMRP-USP

ROTEIRO DE CONTRAÇÃO MUSCULAR

1. Músculo Esquelético:

a. proteínas do músculo esquelétrico ou estriado: filamentos de actina e

miosina; troponima, tropomiosina.

b. placa motora e acoplamento excitação-contração

c. papel da acetilcolina dos neurônios motores somáticos

2. Contração Muscular:

a. mecanismo de contração muscular

b. suprimento adequado de ATP

c. velocidade de contração e resistência à fadiga.

d. força de contração muscular e unidade motora

3. Mecanismo do Movimento

a. contrações isométricas

b. contrações isotônicas

Fibra Muscular

A fibra muscular é uma célula longa e cilíndrica com vários núcleos. É

composta por miofibrilas.As miofibrilas são constituídas de

miofilamentos de proteínas contráteis e elásticas.

Histologia do Tecido Muscular Esquelético

Histologia do Tecido Muscular Esquelético

A fibra muscular apresenta retículo sarcoplasmático bastante desenvolvido. O retículo sarcoplasmático é conectados com uma rede de túneis (túbulo T) do sarcolema. É um grande reservatório de Ca+2. As mitocondrias provêem muito do ATP necessário para a contração muscular.

Junção Neuromuscular é a sinápse formada pelo axônio motor e a fibra muscular esquelética.O neurotransmissor liberado na placa motora é a acetilcolina e provoca a despolarização da fibra muscular.

O acoplamento excitação-contraçãoAcetilcolina gera potencial de ação na fibra muscular

O acoplamento excitação-contraçãoAbertura dos canais de Cálcio

Filamento de Miosina Filamento de Actina

Filamentos da Fibra Muscular

A miosina é formada por filamentos grossos compostos por moléculas com uma cauda longa e duas cabeças globulares.Na cabeça globular encontram-se sítios de ligação para ATP (domínio motor) e sítio de fixação à molécula de actina.

A actina é formada por filamentos finos compostos por moléculas globulares em forma de filamentos enrolados onde situam-se moléculas regulatórias. Cada actina tem um sítio de ligação de miosina.

A troponina exerce efeito inibitório sobre a tropomiosina para que essa mantenha escondidos os sítios de ligação da miosina na molécula de actina.

Proteínas Regulatórias Associadas aos filamentos de actina: troponina e tropomiosina

O Ca+2 inicia a contração unindo-se à troponina, pois desloca a

tropomiosina e expôe os sítios de ligação de miosina na actina.

Quando o Ca+2 do citosol diminui ele desliga-se da troponina e a

tropomiosina retorna a sua posição cobrindo os sítios de ligação da miosina na molécula de actina.

Sítios de ligação de ATP e da Actinana cabeça de Miosina

A ligação da cabeça de miosina em seu sítio na molécula de actina forma um ângulo de 90, e ativa a ATPase que hidrolisa o ATP da cabeça de miosina e gera o movimento de deslizamento.

Eventos na Junção Neuromuscular

https://www.youtube.com/watch?v=CLS84OoHJnQ

Acoplamento Excitação-Contração

https://www.youtube.com/watch?v=IOkn1ldFO60

Pontes cruzadas e contração muscular

https://www.youtube.com/watch?v=sIH8uOg8ddw

Um único potencial de ação em uma fibra muscular evoca uma única contração muscular.

A contração de um músculo varia de fibra para fibra:a) na velocidade com que elas desenvolvem a tensão, b) tensão máxima que alcançam;c) e duração da contração

A velocidade máxima ocorre quando não há carga sobre o músculo.

Quando a carga excede a habilidade do músculo mover-se, a velocidade de encurtamento torna-se zero e a contração é isométrica (tensão sem encurtamento).

Relação entre carga e Contração Muscular

Tipos de Contração Muscular

Isométrica Isotônica

Contração Isotônica: o músculo encurta durante a contração e sua tensão permance constante.

Característica da Contração do Músculo como um todo.

Contração Isométrica: o músculo não se encurta durante a contração havendo registro da força (tensão) gerada pela contração.

Característica da Contração do Músculo como um todo.

Músculo em repouso Contração Isométrica Contração Isotônicamúsculo não encurtado maior encurtamento do sarcômerosarcômero encurtado encurtamento do músculogeração de forçaestiramento de elementos elásticos

Contração Isométrica e Isotônica

A contração simples não representa a força máxima que a fibra muscular pode desenvolver.

A força gerada pela contração de uma fibra muscular simples pode ser aumentada pelo incremento da velocidade (frequência) com que os potenciais de ação estimulam a fibra muscular.

Esse processo é conhecido como somação.

A força de contração aumenta com a Somação das Contrações Musculares

Se os estímulos repetidos estão separados por longos intervalos de tempo a fibra muscular tem

tempo de relaxar completamente entre os dois.

Se os estímulos repetidos estão separados por intervalos curtos de tempo a fibra muscular não

terá relaxado resultando em contração mais forte.

Abalos únicos

Somação

A força de contração aumenta com a Somação das Contrações Musculares

Somação que leva à tetania incompleta

Somação que leva à tetania completa

Se os potenciais de ação continuam em alta frequência o relaxamento entre as contrações diminui até que as fibras alcancem um estado de contração máxima (tetania incompleta).

Se a taxa de estímulo é alta suficiente para que a fibra muscular não tenha tempo de relaxar (tetania completa).

Contração Isométrica produzida por estímulos múltiplos

Somação e Tetania

https://www.youtube.com/watch?v=_IGbNiN3I-I

A fadiga muscular é a condição em que um músculo não é mais capaz de gerar ou sustentar a produção de potência esperada.

É influenciada por:a. intensidade e duração da atividade contrátil;b. se está usando metabolismo aeróbico ou anaeróbico;c. composição do músculo;d. nível de condicionamento físico do indivíduo.

Fadiga Muscular

Vários fatores tem sido propostos como fundamentais na fadiga.

a. mudanças na composição iônica da fibra muscular após numerosas contrações;b. depleção dos nutrientes musculares;c. raramente diminuição da produção do neurotransmissor;

Fadiga Central: inclui sentimentos subjetivos de cansaço e um desejo de cessar a atividade. Essa fadiga parece preceder à fadiga fisiológica.

Fadiga Muscular

A Contração do Músculo depende dos tipos e do número de

Unidades Motoras.

Unidade Motora constitui-se de 1 neurônio motor e o conjunto de fibras musculares por ele inervadas.O número de fibras inervadas por um neurônio é variável, mas são do mesmo tipo.

Aumento gradual na tensão muscular são mediados por recrutamento ordenado de diferentes tipos de unidades motoras como pelo aumento na freqüência de disparo dos motoneurônios.