mecanismos solucionario

Upload: sebastian-l-millan

Post on 06-Jul-2018

257 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Mecanismos Solucionario

    1/16

    Problem 11-02

    The joists of a floor in a warehouse are to be selected using square timber beams made of oak. If each

     beam is to be designed to carry 1.5 kN/m over a simply supported span of 7.5 m, determine thedimension a of its square cross section to the nearest multiples of 5mm. The allowable bending stress

    is σ  allow = 32 MPa and the allowable shear stress is τ  allow = 0.875 MPa.

    Given:   σallow 32MPa:= L 7.5m:=

    τallow 0.875MPa:= w 1.5kN

    m:=

    Solution:

    Support Reactions : By symmetry, R L=R R =R 

    ΣF  y=0; 2R w L⋅− 0= R 0.5w L⋅:=

     Maximum Moment and Shear:

    Vmax R := Vmax 5.63 kN=

    Mmax R 0.5L( )⋅ w 0.5L( )⋅ 0.25L( )⋅−:= Mmax 10.55 kN m⋅=

    Section Property : Ia4

    12= Qmax 0.5a a⋅( ) 0.25⋅ a=

     Bending Stress: cmax 0.5a=

    a

    36Mmax

    σallow

    :=σmax

    M cmax⋅

    I=   σallow

    12Mmax 0.5a( )⋅

    a4

    =

    a 125.52 mm= (Use  130mm) Ans

    Shear Stress : Ia4

    12:= Qmax 0.5a a⋅( ) 0.25⋅ a:=

    τmax

    Vmax Qmax⋅

    I a⋅:= τmax 0.536 MPa=

    < τallow =0.875 MPa (O.K.!)

    x 0 0.01 L⋅, L..:= V x( ) R w x⋅−( )1

    kN⋅:= M x( ) R x⋅ w x⋅ 0.5x( )⋅−[ ]

    1

    kN m⋅:=

    0 2 4 6

    Distance (m)

       S   h  e  a  r   (   k   N   )

    V x( )

    x0 2 4 6

    5

    10

    Distance m)

       M  o  m  e  n   t   (   k   N  -  m   )

    M x( )

    x

  • 8/18/2019 Mecanismos Solucionario

    2/16

    Problem 11-12

    Determine the minimum width of the beam to the nearest multiples of 5mm that will safely support the

    loading of P = 40 kN. The allowable bending stress is σ allow = 168 MPa, and the allowable shear stress

    is τ allow = 105 MPa.

    Given:   σallow 168MPa:= L1 2m:=

    τallow 105MPa:= L2 2m:=

    P 40kN:= h 150mm:=

    Solution: L L1 L2+:=

    Support Reactions : Given

    +   ΣF  y=0; A B+ P− 0= (1)

     ΣΜ   B=0; A L1⋅ P L⋅− 0= (2)

    Solving Eqs. (1) and (2): Guess A 1kN:= B 1kN:=

    A

    B

    ⎛ ⎝ 

     ⎞ ⎠

    Find A B,( ):=A

    B

    ⎛ ⎝ 

     ⎞ ⎠

    80

    40−

    ⎛ ⎝ 

     ⎞ ⎠

    kN=

     Maximum Moment and Shear:

    Vmax P:= Vmax 40kN=

    Mmax P L1⋅:= Mmax 80kN m⋅=

    Section Property : I b h

    3⋅

    12=

    SxI

    0.5h= Sx

     b h2

    6=

    Qmax 0.5h b⋅( ) 0.25⋅ h=

     Bending Stress: Assume bending controls the design.

    Sreq'd 

    Mmax

    σallow=

     b h2

    6

    Mmax

    σallow=  b

    6Mmax

    h2( )σallow

    :=

     b 126.98 mm= (Use  130mm) Ans

    Check Shear : I b h

    3⋅

    12

    := Qmax

    0.5h b⋅( ) 0.25⋅ h:=

    τmax

    Vmax Qmax⋅

    I b⋅:= τmax 3.150 MPa=

    < τallow =105 MPa (O.K.!)

  • 8/18/2019 Mecanismos Solucionario

    3/16

    x1 0 0.01 L1⋅, L1..:= x2 L1 1.01 L1⋅, L..:=

    V1 x1( ) P−( )1

    kN⋅:= V2 x2( ) P− A+( )

    1

    kN⋅:=

    M1 x1

    ( )P− x1⋅

    ( )

    1

    kN m⋅

    ⋅:=

    M2 x2( ) P− x2⋅ A x2 L1−( )⋅+1

    kN m⋅⋅:=

    0 2 450

    0

    50

    Distance (m)

       S   h  e  a  r   (   k   N   )

    V1 x1( )

    V2 x2( )

    x1 x2,0 2 4

    100

    50

    0

    Distane (m)

       M  o  m  e

      n   t   (   k   N  -  m   )

    M1 x1( )

    M2

    x2( )

    x1 x2,

  • 8/18/2019 Mecanismos Solucionario

    4/16

    Problem 11-21

    The steel beam has an allowable bending stress σ  allow = 140 MPa and an allowable shear stress of 

    τ  allow = 90 MPa. Determine the maximum load that can safely be supported.

    Given:   σallow

    140MPa:= a 2m:=

    τallow 90MPa:=

     bf  120mm:= d f  20mm:=

    tw 20mm:= d w 150mm:=

    Solution: L 2a:=

    Section Property : h d f  d w+:=

    yc

    Σ yi Ai⋅( )⋅Σ Ai( )⋅

    =

    yc bf d f ⋅( ) 0.5d f ( )⋅ tw d w⋅( ) 0.5d w d f +( )⋅+

     bf  d f ⋅( ) tw d w⋅( )+:= yc 57.22 mm=

    I1

    12 bf ⋅ d f 

    3⋅  bf  d f ⋅( ) 0.5d f  yc−( )

    2⋅+

    1

    12tw⋅ d w

    3⋅ tw d w⋅( ) 0.5d w d f + yc−( )

    2⋅+⎡

    ⎣⎤⎦

    +:=

    I 15338333.33mm4

    =

    Qmax h yc−( ) tw⋅ 0.5 h yc−( )⋅⋅:= Qmax 127188.27mm3

    =

    Support Reactions : By symmetry, R R = - P

    +   ΣF  y=0; R c P− P− 0=

    R c 2P=

     Maximum Load : Assume failure due to bending moment.

    Mmax P a⋅= cmax h yc−:=

    σallow

    Mmax cmax⋅

    I=   σallow

    P a⋅ h yc−( )⋅I

    = PI  σallow( )a h yc−( )⋅

    :=

    P 9.52 kN= Ans

    Check Shear : Vmax P:= R c 2P:=

    τmax

    Vmax Qmax⋅

    I tw⋅:= τmax 3.947 MPa=

    < τallow =90 MPa (O.K.!)

  • 8/18/2019 Mecanismos Solucionario

    5/16

    x1 0 0.01 a⋅, a..:= x2 a 1.01 a⋅, L..:=

    V1 x1( ) P−( )1

    kN⋅:= V2 x2( ) P− R c+( )

    1

    kN⋅:=

    M1 x1

    ( )P− x1⋅

    ( )

    1

    kN m⋅

    ⋅:=

    M2 x2( ) P− x2⋅ R c x2 a−( )⋅+1

    kN m⋅⋅:=

    0 2 4

    10

    0

    10

    Distance (m)

       S   h  e  a  r   (   k   N   )

    V1 x1( )

    V2 x2( )

    x1 x2,0 2 4

    20

    10

    0

    Distane (m)

       M  o  m  e

      n   t   (   k   N  -  m   )

    M1 x1( )

    M2

    x2( )

    x1 x2,

  • 8/18/2019 Mecanismos Solucionario

    6/16

    Problem 11-39

    Solve Prob. 11-38 using the maximum-distortion-energy theory of failure with σ allow = 180 MPa.

    Given:   a 300mm:=   r 50mm:= σallow   180MPa:=

    PB   5kN:=   PC   5kN:=

    Solution:   L 3a:=

    Support Reactions :

     In x-z plane :   ΣF  z=0;   Az   DZ+   PB−   0= (1)

     ΣΜ   D=0;   Az   3a( )⋅   PB   2a( )⋅−   0= (2)

    Solving Eqs. (1) and (2):

    Az2

    3PB:=   Az   3.3333 kN=

    Dz   PB   Az−:=   Dz   1.6667 kN=

     In x-y plane :   ΣF  y=0;   Ay   Dy+( )   PC−   0= (3)

    ΣΜ   D=0;   PC−   a⋅   Ay   3a( )⋅+   0= (4)

    Solving Eqs. (3) and (4):

    Ay1

    3PC:=   Ay   1.6667 kN=

    Dy   PC   Ay−:=   Dy   3.3333 kN=

    Torsion occurs in segment BC  : TBC   PB( ) r ⋅:=   TBC   0.250 kN m⋅=

    Critical Section : Located just to the left of gear C  and just to the right of gear B, where

    My   Dz a⋅:=   Mz   Dy a⋅:=   M My2

    Mz2

    +:=   M 1.118 kN m⋅=

    T TBC:=   T 0.250 kN m⋅=

     Maximum Distortion Energy Theory  : Applying Eq. 9-5:

    σ1   0.5  σx'   σy'+( )   0.5  σx'   σy'+( ) 2

    τx'y'2

    ++=

    σ2   0.5  σx'   σy'+( )   0.5   σx'   σy'+( )⋅  2

    τx'y'2

    +−=

    where   σy'

      0:=

    σx'M c⋅

    I=

    M c⋅

    π

    4c4

    =

    4M c⋅

    π  c4

    ⋅=

    τx'y'T c⋅

    J=

    T c⋅

    π

    2c4

    =

    2T c⋅

    π  c4

    ⋅=

  • 8/18/2019 Mecanismos Solucionario

    7/16

    Let   a' 0.5σx'=   and    b' 0.5σx'( )2

    τx'y'2

    +=

    Then   σ12

    a' b'+( )2

    =   σ22

    a 'b'−( )2

    =

    σ1

     σ2

    ⋅  a' b'

    +( ) a' b'

    −( )

    ⋅=  a'

    2

     b'

    2−=

    σ12

    σ1 σ2⋅− σ22

    +   a' b'+( )2

    a'2

     b'2

    −( )−   a' b'−( )2+=   a'2 3b'2+=

    Hence   σ12

    σ1 σ2⋅− σ22

    + σallow2

    =

    0.5σx'( )2

    3 0.5σx'( )2

    τx'y'2

    +2

    + σallow2

    =

    σx'2

    3τx'y'2

    + σallow2

    =

    4M c⋅

    π   c4

    ⎛ 

    ⎝ 

     ⎞

     ⎠

    2

    3

    2T c⋅

    π  c4

    ⎛ 

    ⎝ 

     ⎞

     ⎠

    2

    + σallow2

    =

    c

    6

    16M2

    12T2

    +

    π2

    σallow2

    ⋅:=

    c 20.05 mm=

    d o   2c:=   d o   40.09 mm= Use   d o   41mm= Ans

  • 8/18/2019 Mecanismos Solucionario

    8/16

    x1   0 0.01 a⋅,   a..:=   x2   a 1.01 a⋅,   2a..:=   x3   2a 1.01 2a( )⋅,   3a..:=

    My1 x1( )Az   x1( )⋅kN m⋅

    :=   My2 x2( )   Az   x2( )⋅   PB   x2   a−( )⋅−  1

    kN m⋅⋅:=

    My3 x3( )   Az   x3( )⋅   PB   x3   a−( )⋅−  1

    kN m⋅

    ⋅:=

    0 0.2 0.4 0.6 0.80

    0.5

    1

    Distance (m)

       M  o  m  e  n   t   (   k   N  -  m   )

    My1 x1( )

    My2 x2( )

    My3 x3( )

    x1   x2,   x3,

    Mz1 x1( )Ay−   x1( )⋅kN m⋅

    :=   Mz2 x2( )Ay−   x2( )⋅kN m⋅

    :=   Mz3 x3( )   Ay−   x3( )⋅   PC   x3   2a−( )⋅+  1

    kN m⋅⋅:=

    0 0.2 0.4 0.6 0.8

    1

    0.5

    0

    Distance (m)

       M

      o  m  e  n   t   (   k   N  -  m   )

    Mz1 x1( )

    Mz2 x2( )

    Mz3 x3( )

    x1  x2,   x3,

    Mx1 x1( )   0:=   Mx2 x2( )r −   PB⋅

    kN m⋅:=   Mx3 x3( )   0:=

    0 0.2 0.4 0.6 0.80.5

    0

    Distance (m)

       M  o  m  e  n   t   (   k

       N  -  m   )

    Mx1 x1( )

    Mx2 x2( )Mx3 x3( )

    x1  x2,   x3,

  • 8/18/2019 Mecanismos Solucionario

    9/16

    L2 1.5m:=

    Given:P1 1250N

    :=P2 750N

    :=r 150mm

    :=

    L1 0.3m:= L3 0.6m:=

    τallow 84MPa:=

    Solution: L L1 L2+ L3+:=

    Support Reactions : Ps P1 P2+:=

    Ans

     In y-z plane :ΣF  z=0; Az BZ+ P1− P2− 0= (1)

     ΣΜ   B=0; Az L⋅ P1 P2+( ) L2 L3+( )⋅− 0= (2)

    Solving Eqs. (1) and (2):

    Az1

    LP1 P2+( ) L2 L3+( )⋅:= Az 1750 N=

    Bz P1 P2+ Az−:= Bz 250 N=

     In x-y plane :   ΣF  x=0; Ax Bx+ P1− P2− 0= (3)

    ΣΜ   B=0; Ax L⋅ P1 P2+( ) L3( )⋅− 0= (4)

    Solving Eqs. (3) and (4):

    Ax1

    LP1 P2+( ) L3( )⋅:= Ax 500 N=

    Bx P1 P2+ Ax−:= Bx 1500 N=

    Torsion occurs in segment DC  : T P1 P2−( ) r ⋅:= T 75 N m⋅=

    Critical Section : Located just to the left of point C.

    Mx Bx L3⋅:= Mz Bz L3⋅:= M Mx2

    Mz2

    +:= M 912.41 N m⋅=

     Maximum Shear Stress Theory :

    c

    32

    π τallow⋅M

    2T

    2+⋅:= c 19.07 mm=

    d o 2c:= d o 38.15 mm= Use d o 39mm=

    Problem 11-42

    The pulleys attached to the shaft are loaded as shown. If the bearings at A and B exert only horizontal

    and vertical forces on the shaft, determine the required diameter of the shaft to the nearest mm. using

    the maximum-shear-stress theory of failure. τ allow = 84 MPa.

  • 8/18/2019 Mecanismos Solucionario

    10/16

    y1 0 0.01 L1⋅, L1..:= y2 L1 1.01 L1⋅, L1 L2+..:= y3 L1 L2+( ) 1.01 L1 L2+( )⋅, L..:=

    Mz1 y1( ) Az y1⋅( )1

     N m⋅⋅:=

    Mz2 y2( ) Az y2⋅ Ps y2 L1−( )⋅−1

     N m⋅⋅:=

    Mz3 y3( ) Az y3⋅ Ps y3 L1−( )⋅−1

     N m⋅

    ⋅:=

    0 1 20

    500

    Distance (m)

       M  z   (   N  -  m   ) Mz1 y1( )

    Mz2 y2( )

    Mz3 y3( )

    y1 y2, y3,

    Mx1 y1( )Ax y1⋅

     N m⋅:= Mx2 y2( )

    Ax y2⋅

     N m⋅:= Mx3 y3( ) Ax y3⋅ Ps y3 L1− L2−( )⋅−

    1

     N m⋅⋅:=

    0 1 20

    500

    1000

    Distance (m)

       M  x   (   N  -  m   ) Mx1 y1( )

    Mx2 y2( )

    Mx3 y3( )

    y1 y2, y3,

    My1 y1( ) 0:= My2 y2( )T

     N m⋅:= My3 y3( ) 0:=

    0 1 2

    0

    50

    100

    Distance (m)

       M  y   (   N

      -  m   ) My1 y1( )

    My2 y2( )My3 y3( )

    y1 y2, y3,

  • 8/18/2019 Mecanismos Solucionario

    11/16

    Problem 11-45

    The shaft is supported on journal bearings that do not offer resistance to axial load. If the allowable

    shear stress for the shaft is τ allow = 35 MPa, determine to the nearest millimeter the smallest diameter of 

    the shaft that will support the loading. Use the maximum-shear-stress theory of failure.

    Given: La 250mm:= L b 500mm:= τallow 35MPa:=

    r D 150mm:= r C 100mm:= θ 30deg:=

    PD 0.20kN:= PC 0.35kN:=

    ∆PD 0.10kN:= ∆PC 0.15kN:=

    Solution: L La L b+ La+:=

    Support Reactions :

     In y-z plane :   ΣF  z=0; Az BZ+ PC sin  θ( )⋅− PD sin  θ( )⋅− 0= (1)

     ΣΜ   A=0; Bz L( )⋅ PC sin  θ( )⋅ L La−( )⋅− PD sin  θ( )⋅ La⋅− 0= (2)

    Solving Eqs. (1) and (2):

    Bz PCL La−

    L⋅ PD

    LaL

    ⋅+⎛ ⎝ 

     ⎞ ⎠

    sin  θ( ):= Bz 0.15625 kN=

    Az PC PD+( ) sin  θ( )⋅ Bz−:= Az 0.11875 kN=

     In x-y plane :   ΣF  x=0; Ax Bx+ PC cos   θ( )⋅− PD cos   θ( )⋅+ 0= (3)

    ΣΜ   A=0; PC cos   θ( )⋅ L La−( )⋅ PD cos   θ( )⋅ La⋅− Bx L⋅− 0= (4)

    Solving Eqs. (3) and (4):

    Bx PC

    L La−

    L⋅ PD

    La

    L⋅−

    ⎛ 

    ⎝ 

     ⎞

     ⎠cos   θ( ):= Bx 0.18403 kN=

    Ax PC PD−( ) cos   θ( )⋅ Bx−:= Ax 0.05413− kN=

    Torsion occurs in segment CD : TCD   ∆PC( ) r C⋅:= TCD 0.015 kN m⋅=

    Critical Section  : Located just to the left of gear C, where.

    Mx Bz La⋅:= Mz Bx La⋅:= M Mx2

    Mz2

    +:= M 0.060354 kN m⋅=

    T TCD:= T 0.015 kN m⋅=

     Maximum Shear Stress Theory :

    c

    3

    2π τallow⋅

    M2 T2+⋅:= c 10.42 mm=

    d o 2c:= d o 20.84 mm= Use d o 21mm= Ans

  • 8/18/2019 Mecanismos Solucionario

    12/16

    y1 0 0.01 La⋅, La..:= y2 La 1.01 La⋅, La L b+( )..:= y3 La L b+( ) 1.01 La L b+( )⋅, L..:=

    Mx1 y1( )Az y1( )⋅kN m⋅

    := Mx2 y2( ) Az y2⋅ PD sin  θ( )⋅ y2 La−( )⋅−1

    kN m⋅:=

    Mx3 y3( ) Az y3⋅ PD sin  θ( )⋅ y3 La−( )⋅− PC sin  θ( )⋅ y3 La− L b−( )⋅−1

    kN m⋅⋅:=

    0 0.2 0.4 0.6 0.80

    0.02

    0.04

    Distance (m)

       M  o  m  e  n   t   (   k   N  -  m

       )Mx1 y1( )Mx2 y2( )

    Mx3 y3( )

    y1 y2, y3,

    Mz1 y1( )Ax y1( )⋅kN m⋅

    := Mz2 y2( ) Ax y2⋅ PD cos   θ( )⋅ y2 La−( )⋅+1

    kN m⋅:=

    Mz3 y3( ) Ax y3⋅ PD cos   θ( )⋅ y3 La−( )⋅+ PC cos   θ( )⋅ y3 La− L b−( )⋅−1

    kN m⋅⋅:=

    0 0.2 0.4 0.6 0.8

    0

    0.05

    Distance (m)

       M  o  m  e  n   t   (

       k   N  -  m   )

    Mz1 y1( )

    Mz2 y2( )Mz3 y3( )

    y1 y2, y3,

    My1 y1( ) 0:= My2 y2( )

    T

    kN m⋅:= My3 y3( ) 0:=

    0 0.2 0.4 0.6 0.8

    0

    0.02

    Distance (m)

       M  o  m  e  n   t   (   k   N  -  m   )

    My1 y1( )

    My2 y2( )

    My3 y3( )

    y1 y2, y3,

  • 8/18/2019 Mecanismos Solucionario

    13/16

    Problem 12-03

    Determine the equation of the elastic curve for the beam using the x coordinate that is valid for

    Specify the slope at A and the beam's maximum deflection. EI is constant.2/0  L x  

  • 8/18/2019 Mecanismos Solucionario

    14/16

    Problem 12-16

    A torque wrench is used to tighten the nut on a bolt. If the dial indicates that a torque of 90 N·m is

    applied when the bolt is fully tightened, determine the force P acting at the handle and the distance s theneedle moves along the scale. Assume only the portion AB of the beam distorts. The cross section is

    square having dimensions of 12 mm by 12 mm. E  = 200 GPa.

    Given:  b 12mm:= h 12mm:= L 0.45m:=

    E 200GPa:= δ 75mm:= R 0.3m:=

    Tz 90N m⋅:=

    Solution:

     Equations of Equilibrium : 

    ΣF  y=0; Ay P− 0= (1)

    ΣΜ   B=0; Tz P L⋅− 0= (2)

    Solving Eqs. (1) and (2): PTz

    L:= Ay P:= Ay 200N=

    P 200 N= Ans

     Moment Function : M x( ) Ay x⋅ Tz−=

    Section Property : I b h

    3⋅

    12:=

    Slope and Elastic Curve :

    E I⋅d 

    2v⋅

    dx2

    ⋅ M x( )=

    E I⋅d 

    2v

    dx2

    ⋅ Ay x⋅ Tz−=

    E I⋅dv

    dx⋅

    Ay x2

    2Tz x⋅− C1+= (1)

    E I⋅ v⋅Ay x

    3⋅

    6

    Tz x2

    2− C1 x⋅+ C2+= (2)

     Boundary Conditions : Due to symmetry, dv/dx=0 at x=0, and v=0 at x=0.

    From Eq. (1): 0 0 0− C1+= C1 0:=

    From Eq. (2): 0 0 0− 0+ C2+= C2 0:=

    The Elastic Curve : Substitute the values of C1 and C2 into Eq. (2),

    E I⋅ v⋅Ay x

    3⋅

    6

    Tz x2

    2−= v

    x2

    6E I⋅Ay x 3Tz−( )⋅= (3)

    At x=R, v=-s. From Eq. (3),

    sR 

    2−

    6E I⋅Ay R 3Tz−( )⋅:= s 9.11 mm= Ans

  • 8/18/2019 Mecanismos Solucionario

    15/16

    Problem 12-17

    The shaft is supported at A by a journal bearing that exerts only vertical reactions on the shaft and at B

     by a thrust bearing that exerts horizontal and vertical reactions on the shaft. Draw the bending-momentdiagram for the shaft and then, from this diagram, sketch the deflection or elastic curve for the shaft's

    centerline. Determine the equations of the elastic curve using the coordinates  x1 and x2 . EI is constant.

    Given: h 60mm:= L1 150mm:=

    P 5kN:= L2 400mm:=

    Solution: L L1 L2+:=

    Support Reactions:

    +

     ΣF  y=0; A B+ 0=   (1)

    ΣΜ   B=0; P h⋅ A L2⋅+ 0=   (2)

    Solving Eqs. (1) and (2): AP− h⋅

    L2:= A 0.75− kN=

    B A−:= B 0.75 kN=

     Moment Function : M1 x1( ) P h⋅:=

    M2 x2( ) B x2⋅:=

    Section Property : EI kN m2

    ⋅:=

    Slope and Elastic Curve :

    EId 

    2v1⋅

    dx12

    ⋅ M1 x1( )= EId 

    2v2⋅

    dx22

    ⋅ M2 x2( )=

    EI

    d 2v1

    dx12

    ⋅ P h⋅= EI

    d 2

    v2

    dx22

    ⋅ B x2⋅=

    EIdv1

    dx1⋅ P h⋅( ) x1⋅ C1+=   (1) EI

    dv2

    dx2⋅

    B

    2x2

    2⋅ C3+=   (3)

    EI v1⋅P h⋅ x1

    2⋅

    2C1 x1⋅+ C2+=   (2) EI v2⋅

    B x23

    6C3 x2⋅+ C4+=   (4)

     Boundary Conditions :

    v1=0 at x1=0.15m, From Eq. (2): 0P h⋅ 0.15m( )

    2⋅

    2

    C1 0.15m( )⋅+ C2+=   (5)

    v2=0 at x2=0, From Eq. (4): 0 0 0+ C4+= C4 0:=   Ans

    v2=0 at x2=0.4m, From Eq. (4): 0B 0.4m( )

    3⋅

    6C3 0.4m( )⋅+ C4+=

    C3B

    6− 0.4m( )

    2⋅:= C3 0.02− kN m

    2⋅=   Ans

  • 8/18/2019 Mecanismos Solucionario

    16/16

    Continuity Condition:

    dv1/dx1= - dv2/dx2 at A (x1=0.15m and x2=0.4m)

    From Eqs. (1) and (3), P h⋅ 0.15m( )⋅ C1+B

    20.4m( )

    2⋅ C3+=

    C1

    B

    2 0.4m( )

    2⋅

    C3+

    P h⋅

    0.15m( )⋅−:=

    C1 0.005−

    kN m

    2⋅=   Ans

    From Eq. (5):C2

    P h⋅ 0.15m( )2

    2− C1 0.15m( )⋅−:= C2 0.00263− kN m

    3⋅=   Ans

    The Elastic Curve : Substitute the values of C1 and C2 into Eq. (2), and C3 and C4 into Eq. (4),

    v11

    EI

    P h⋅

    2x1

    2⋅ C1 x1⋅+ C2+

    ⎛ ⎝ 

     ⎞ ⎠

    =   Ans

    v21

    EI

    B

    6x2

    3⋅ C3 x2⋅+ C4+

    ⎛ ⎝ 

     ⎞ ⎠

    =   Ans

     BMD :

    x'1 0 0.01 L1⋅, L1..:= x'2 L1 1.01 L1⋅, L..:=

    M'1 x'1( )P h⋅

    kN m⋅:= M'2 x'2( ) P h⋅ A x'2 L1−( )⋅+

    1

    kN m⋅⋅:=

    0 0.2 0.40

    0.2

    0.4

    Distane (m)

       M  o  m  e

      n   t   (   k   N  -  m   )

    M'1 x'1( )

    M'2

    x'2( )

    x'1 x'2,