matematica_aplicada

72
1 MATEMÁTICA NÚMEROS INTEIROS, RACIONAIS E REAIS 1.1. CONJUNTO DOS NÚMEROS NATURAIS (N) No dia-a-dia, utilizamo-nos de conceitos matemáticos sem mesmo perceber. Sempre que podemos contar as unidades de um conjunto de coisas, por exemplo, quando contamos o dinheiro que temos na carteira, ou o número de gols que o centroavante de nosso time marcou no último campeonato, ou ainda o número de votos que o Presidente Lula recebeu nas últimas eleições, obtemos como resposta um resultado que denomina-se número natural. Portanto, qualquer número que seja resultado ou conseqüência de uma contagem de unidades é denominado de número natural e é representado por N. N = {0, 1, 2, 3, 4, 5,...} Um subconjunto importante de N é o conjunto N*: N* = {1, 2, 3, 4, 5,...} Como podemos ver, o zero foi excluído do conjunto N. Podemos visualizar o conjunto dos números naturais ordenados sobre uma reta, como mostrado abaixo:

Upload: samara-gomes

Post on 08-Aug-2015

78 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: matematica_aplicada

1

MATEMÁTICA

NÚMEROS INTEIROS, RACIONAIS E REAIS

1.1. CONJUNTO DOS NÚMEROS NATURAIS (N) No dia-a-dia, utilizamo-nos de conceitos matemáticos sem mesmo perceber. Sempre que podemos contar as unidades de um conjunto de coisas, por exemplo, quando contamos o dinheiro que temos na carteira, ou o número de gols que o centroavante de nosso time marcou no último campeonato, ou ainda o número de votos que o Presidente Lula recebeu nas últimas eleições, obtemos como resposta um resultado que denomina-se número natural.

Portanto, qualquer número que seja resultado ou conseqüência de uma contagem de unidades é denominado de número natural e é representado por N.

N = {0, 1, 2, 3, 4, 5,...}

Um subconjunto importante de N é o conjunto N*:

N* = {1, 2, 3, 4, 5,...}

Como podemos ver, o zero foi excluído do conjunto N.

Podemos visualizar o conjunto dos números naturais ordenados sobre uma reta, como mostrado abaixo:

Page 2: matematica_aplicada

2

Dentro do conjunto dos números naturais podemos afirmar que todas as operações envolvendo adição (+) e multiplicação (x) SEMPRE dará como resultado outro número natural.

Já não podemos dizer o mesmo quanto às operações inversas da adição – a subtração ( — ), e da multiplicação – a divisão ( ÷ ), pois nem sempre podemos representar a diferença entre dois números naturais por outro número natural, o mesmo acontecendo com a divisão. Por exemplo, a diferença 5 – 8 ou a divisão 7 ÷ 5.

Por este motivo, foi criado um novo conjunto numérico, chamado de números inteiros e indicado por Z, para se expressar o resultado de algumas subtrações.

1.2. CONJUNTO DOS NÚMEROS INTEIROS (Z) No nosso exemplo anterior vimos que dentro do conjunto dos números naturais a diferença 5 – 8 não podia ser representada por um número natural. Já no conjunto dos números inteiros esta diferença pode ser expressada, pois o resultado ( -3 ) é um número inteiro.

Z= {..., -3, -2, -1, 0, 1, 2,...} 3,...}

O conjunto N é subconjunto de Z, ou seja, está contido em Z.

Outros subconjuntos de Z:

Z* = Z- {0}

Z+ = conjunto dos inteiros não negativos = {0,1,2,3,4,5,...}

Z_ = conjunto dos inteiros não positivos = {0,-1,-2,-3,-4,-5,...}

Observe que Z+= N.

Podemos considerar os números inteiros ordenados sobre uma reta, conforme mostra o gráfico abaixo:

Da mesma maneira que foi criado o conjunto dos números inteiros para que pudéssemos expressar o resultado de algumas subtrações ou diferenças numéricas, o mesmo ocorreu quanto à impossibilidade de expressar o resultado de uma divisão de dois números inteiros. Assim, foi criado o conjunto dos números racionais, que é indicado por Q.

Page 3: matematica_aplicada

3

1.3. CONJUNTO DOS NÚMEROS RACIONAIS (Q) Os números racionais são todos aqueles que podem ser colocados na forma de fração (com o numerador e denominador pertencentes ao conjunto dos números inteiros). Ou seja, o conjunto dos números racionais é a união do conjunto dos números inteiros com as frações positivas e negativas.

Demonstrando:

a) os números inteiros -6; 0; -9; 4 são números racionais, pois podem ser escritos como: -6 0 -9

b) uma decimal exata finita como 0,6 ou 4,8 também é considerada uma número racional, pois pode ser escrita em forma de fração: 3 24 respectivamente: 5 5 Assim, podemos escrever:

0}Q {x | x a

b

Onde podemos ler:

“O conjunto dos números racionais ( Q ) é composto por todo e qualquer número (x) tal que (|) este número (x) seja resultado de uma divisão de um número inteiro (a Є Z), numerador (a), por outro número inteiro (a Є Z), denominador (b), desde que o denominador (b) seja diferente de zero.”

É interessante considerar a representação decimal de um número racional, que se obtém dividindo a

por b. a

b

2 4 7 3 5 9 por exemplo são números racionais.

Page 4: matematica_aplicada

4

Exemplos referentes às decimais exatas ou finitas:

1 = 0,5 5 = 1,25 75 = 3,75 2 4 20 Exemplos referentes às decimais periódicas ou infinitas:

1 = 333,....

3

Toda decimal exata ou periódica pode ser representada na forma de número racional. 1.4. CONJUNTO DOS NÚMEROS IRRACIONAIS (Q’)

Os números irracionais são decimais infinitas não periódicas, ou seja, os números que não podem ser escritos na forma de fração (divisão de dois inteiros). Como exemplo de números irracionais, temos a raiz quadrada de 2 e a raiz quadrada de 3:

,14142135 ...

3 = 1

7320

50,8

Um número irracional bastante conhecido é o número π=3,1415926535... (Pi)

1.5. CONJUNTO DOS NÚMEROS REAIS ® Chama-se número real todo número racional ou irracional e representa-se por R

R= Q ∪ {irracionais} = {x|x é racional ou x é irracional}

ATENÇÃO:

Page 5: matematica_aplicada

5

As relações entre os conjuntos numéricos apresentados podem ser resumidas pelo diagrama a seguir:

Portanto, os números naturais, inteiros, racionais e irracionais são todos números REAIS. Como subconjuntos importantes de R temos:

R* = IR - {0}

R+ = conjunto dos números reais não negativos

R_ = conjunto dos números reais não positivos

Obs: entre dois números inteiros existem infinitos números reais. Por exemplo:

Entre os números 0 e 1 existem infinitos números reais:

0,01 ; 0,003 ; 0,0009 ; 0,12 ; 0,35 ; 0,81 ; 0,99 ; 0,999 ; 0,9999 ...

Entre os números 8 e 9 existem infinitos números reais:

8,01 ; 8,02 ; 8,05 ; 8,1 ; 8,2 ; 8,5 ; 8,99 ; 8,999 ; 8,9999 ...

1.6. NÚMEROS FRACIONÁRIOS O símbolo a significa a ÷ b, sendo a e b números naturais e b diferente de zero.

b

Chamamos:

a a = numerador b b = denominador Se a é múltiplo de b, então

b é um número natural.

Veja um exemplo:

A fração 6 é igual a 6 ÷ 3. Neste caso, 6 é o numerador e 3 é o denominador.

3 Efetuando a divisão de 6 por 3, obtemos o quociente 2.

Assim, 6 é um número natural e 6 é múltiplo de 3.

Page 6: matematica_aplicada

6

Durante muito tempo, os números naturais foram os únicos conhecidos e usados pelos homens. Depois começaram a surgir questões que não poderiam ser resolvidas com números naturais. Então surgiu o conceito de número fracionário.

O significado de uma fração

Uma fração envolve a seguinte idéia: dividir algo em partes iguais. Dentre essas partes, consideramos uma ou algumas, conforme nosso interesse.

Potenciação no Conjunto dos Números Inteiros - Z

Podemos expressar o produto de quatro fatores iguais a 2. 2.2.2.2. por meio de uma potência de base 2 e expoente 4: 2.2.2.2 = 24

Temos, dois elevado à Quarta ou dois à Quarta. Do mesmo modo, podemos representar um produto de quatro fatores iguais a –2. (-2). (-2). (-2). (-2) por meio de uma potência de base –2 e expoente 4: (-2). (-2). (-2). (-2) = (-2)4

Para todos os números a e n,. com n > 1, a potência an é o produto de n fatores

iguais a a. .

Se n = 1, a1 = a , sen = 0 , a0 = 1

Exemplo: Se a = -8 e b = 3, calcule o valor da expressão algébrica ab.

Exercícios:

01 – Calcule cada potência abaixo. a) (-3)2 = d) (-8)2 =

b) (–5)3 = e) (-1)5 =

c) (+10)4 = f) (-1)4 =

02 – Escreva cada expressão na forma de potência. a) (-6) . (-6) . (-6) = b) (+7) . (+7) . (+7) . (+7) = c) (-9) . (-9) . (-9) = d) (-1) . (-1) . (-1) . (-1) . (-1) . (-1) . (-1) e) 4.4.4.4.4 =

Propriedade da Potenciação

Veja como simplificamos o produto (-5)3.(-5)4:

(-5)3.(-5)4 = (-5).(-5).(-5).(-5).(-5).(-5).(-5) = (-5)7 = (-5)3+4

Se a é um número inteiro e m e n são números naturais, am. an = a m+n

Page 7: matematica_aplicada

7

O quociente de duas potências também pode ser expresso de um modo mais simples. Por exemplo,

2

5

2

2= (-2)5 (-2)2 =

2.2

2.2.2.2.2 = (-2)3

Se b é um número inteiro diferente de 0 e m e n são números naturais, como m n,

n

m

b

b = bm bn = b m-n

Se c é um elemento do conjunto dos números inteiros C1 = C e C0 = 1

Para elevar uma potência a um novo expoente, basta conservar a base e multiplicar os expoentes. Veja:

232 = (-2)3 (-2)3 =(-2)3+3 = (-2)6 = (-2)3.2

Se d é um número inteiro e m e n são números naturais, (dm)n = d m.n

Exercícios

1 – Verifique o máximo que puder: a) (- a)5 .(- a)3 = b) (-10)100 .(-10)105.(-10)0 =

c) 5

54

=

d) 4

4

8

8=

e) 7

38

3

3=

f) 52

510

3

33=

2 - Sabendo que a = -4 e b = 2, qual é o valor da expressão algébrica. OBS: 1º. Todo número elevado ao expoente zero é igual a 1. 2º. Todo número negativo elevado ao expoente par é positivo. 3º. Todo número negativo elevado ao expoente ímpar é negativo.

Propriedade da Potenciação dos números Racionais (Q)

Para todo número racional b e para todos os números naturais m e n, temos:

bm. bn = b m+n ;

53232

2

1

2

1

2

1

2

1

Page 8: matematica_aplicada

8

(bm)n = b m-n ;

84.24

2

2

1

2

1

2

1

Se b é um número racional diferente de 0 e m n;

n

m

b

b= b m-n :

325

2

5

2

1

2

1

2

1

2

1

Uma Quarta propriedade é muito útil para simples cálculos com potências:

125

273

33

5

3

5.5.5

333

5

3

5

3

5

3

5

3

Para todos os números racionais b e c, com c 0, e para todo o número natural n:

n

nn

c

b

c

b

Exercícios

1 – Calcule cada potência

a)

2

2

1

b)

3

3

4

c)

1

12

7

d)

0

100

37=

e)

2

10

3

2 - Simplifique as expressões numéricas.

Page 9: matematica_aplicada

9

a)

21

2

3

2

1

b) 1

30

23

2

21

17

c)

123

3

2

2

3

2

1

3 - Simplifique usando as propriedades de potenciação

a)

62

2

1

2

1

b) 6

15

3

1

3

1

c) 3

85

3

2

3

2

3

2

d)

5

4

1

e) 6

4,0 =

Expoente Inteiro Negativo

Qualquer número elevado ao número inteiro negativo para podermos efetuar tal potência devemos:

8

13

33

3

2

1

2

12

4

92

222

2

3

2

3

3

2

Expoente Racional Fracionário

2

3

3 22 5

2

5 2 33

Page 10: matematica_aplicada

10

Lembrando que a multiplicação de raízes pode ser expressa:

baa.b

3

2

3

2

32323 22 .bababa

e o quociente:

baba

5

2

5

2

52525 22 bababa

Base 10

Sem dúvida como estamos nos relacionando com Eletrotécnica e Eletrônica é importante que saibamos trabalhar com a base dez , não esquecendo que são válidas as propriedades da potenciação.

Exercícios

Resolva

a) (-10)3 = b) (+100)2.(1000)1. (+10)2 =

c) 2732

3237

101010

101010

d) 23

5

10

10

e) 3235

2523

1010

1010

Resumo de Potenciação

1) am .an = a m+n

2) n

m

a

a= a m-n

3) a n

m

= n ma

4) a0 = 1 5) a1 = a

6) 2a

12

2 1

aa

Page 11: matematica_aplicada

11

Leitura de uma Fração

As frações recebem nomes especiais quando os denominadores são 2, 3, 4, 5, 6, 7, 8, 9 e também

quando os denominadores são 10, 100, 1000, ...

Frações equivalentes

Frações equivalentes são frações que representam a mesma parte do todo.

Exemplo: são equivalentes

Para encontrar frações equivalentes devemos multiplicar o numerador e o denominador por um mesmo número natural, diferente de zero.

Simplificação de frações

Uma fração equivalente a , com termos menores, é . A fração foi obtida

dividindo-se ambos os termos da fração pelo fator comum 3. Dizemos que a

fração é uma fração simplificada de .

A fração não pode ser simplificada, por isso é chamada de fração irredutível.

A fração não pode ser simplificada porque 3 e 4 não possuem nenhum fator comum.

Números fracionários

Seria possível substituir a letra X por um número natural que torne a sentença abaixo verdadeira?

3 * X = 1

Substituindo X, temos:

X por 0 temos: 3 * 0 = 0

Page 12: matematica_aplicada

12

X por 1 temos: 3 * 1 = 3. Portanto, substituindo X por qualquer número natural jamais encontraremos o produto 1. Para resolver esse problema temos que criar novos números. Assim, surgem os números fracionários.

“Toda fração equivalente representa o mesmo número fracionário.”

Portanto, uma fração (b diferente de zero) e todas frações equivalentes a ela representam o mesmo

número fracionário.

Resolvendo agora o problema inicial, concluímos que X

3 = 1

, pois 3 *

3 = 1.

2. SISTEMA LEGAL DE MEDIDAS 2.1. MEDIDA E UNIDADE DE MEDIDA Medir uma grandeza significa compará-la com outra grandeza de mesma espécie, que doravante denominaremos de unidade ou padrão, e verificar quantas vezes esta grandeza cabe na grandeza a ser medida.

Metro Linear

Os povos antigos utilizaram durante muito tempo partes de seu corpo para medir comprimento, o que gerou muita confusão devido a pés e mãos serem de tamanhos diferentes.

Para resolver esta confusão, cientistas franceses, no final do século XVIII, estabeleceram o metro como unidade fundamental (padrão) para medir o comprimento.

2.2. AS UNIDADES DE MEDIDA DE COMPRIMENTO Como unidade padrão para medida de comprimento ficou estabelecido o

metro, cujo símbolo ficou sendo o m.

Quando desejamos medir grandes extensões ou distâncias, fica difícil utilizar o metro como unidade. Temos, portanto, que utilizar os múltiplos do metro, que são:

decâmetro = dam equivalente a 10 m hectômetro = hm equivalente a 100 m quilômetro = km equivalente a 1000 m Já, para medirmos pequenas extensões ou distâncias, nos utilizamos dos submúltiplos do metro:

decímetro = dm equivalente a 0,1 m centímetro = cm equivalente a 0,01 m milímetro = mm equivalente a 0,001 m

Page 13: matematica_aplicada

13

2.3. MUDANÇA DE UNIDADE

Conversão para unidade menor: desloca-se a vírgula para direita, tantas casas decimais

quantos forem os espaços que separam as duas unidades na escala. Exemplo: Transformar: a) 3,5 hm m Neste caso, devemos deslocar a vírgula 2 casas à direita, achando 350 m

b) 62,18 m dm Agora, deslocamos a vírgula uma casa à direita, encontrando 621,8 m

Conversão para unidade maior: desloca-se a vírgula para a esquerda, tantas casas decimais quantos forem os espaços que separam as duas unidades na escala.

Exemplo: Transformar

a) 84,4 dm m

Fazendo uso da regra, deslocamos a vírgula uma casa à esquerda, e encontramos 8,44 m

b) 341,75 mm dm

Neste exemplo, devemos deslocar a vírgula 2 casas à esquerda, encontrando 3,4175 dm

2.4. POLÍGONOS, PERÍMETROS E ÁREAS Perímetro nada mais é que a soma das medidas de todos os lados de um polígono de n lados, e é representado pela letra P.

Page 14: matematica_aplicada

14

Page 15: matematica_aplicada

15

2.5. MEDIDAS DE SUPERFÍCIE Medir uma superfície é simplesmente compará-la com uma superfície tomada com unidade padrão.

A unidade fundamental para medir superfícies é o metro quadrado (m2

). Esta medida de superfície também é denominada ÁREA da superfície.

Page 16: matematica_aplicada

16

O metro quadrado é a área de um quadrado de lado 1 m.

1m2 = 1m x 1m

Mudança de Unidade - Qualquer unidade é sempre 100 vezes maior que a unidade imediatamente inferior ou 100 vezes menor que a unidade imediatamente superior.

Como os múltiplos e submúltiplos do metro quadrado variam de 100 em 100, a conversão de unidade é feita deslocando-se a vírgula de 2 em 2 casas, para a direita ou para a esquerda.

Unidades Agrárias - Quando queremos medir grandes extensões de terra, utilizamos as unidades agrárias que são: are, hectare e centiare.

2.6. ÁREAS DAS PRINCIPAIS FIGURAS PLANAS

Page 17: matematica_aplicada

17

Page 18: matematica_aplicada

18

2.7. VOLUMES DE SÓLIDOS

Para medirmos o Volume de um corpo utilizamo-nos do metro cúbico (m3

) como unidade fundamental, que corresponde ao volume de um cubo de 1 m de aresta (lado).

Cada unidade é 1000 vezes maior que a unidade imediatamente inferior ou 1000 vezes menor que a unidade imediatamente superior.

Mudança de Unidade - A conversão de unidade é feita deslocando-se a vírgula de 3 em 3 casas decimais para a direita ou para a esquerda.

Page 19: matematica_aplicada

19

Page 20: matematica_aplicada

20

Page 21: matematica_aplicada

21

2.8. MEDIDAS DE CAPACIDADE

Para medirmos o volume de um recipiente que contém líquidos ou gases, usamos como unidade fundamental o litro. O litro é o volume de um cubo de 1 dm de aresta.

Símbolo= l 1 l = 1 dm 3 1 dm x 1 dm x 1 dm

Unidades de Capacidade

quilolitro hectolitro decalitro litro decilitro centilitro mililitro

kl hl dal l dl cl ml

1.000 l 100 l 10 l 1 l 0,1 l 0,01 l 0,001 l

Conforme observamos no quadro acima, cada unidade de capacidade é 10 vezes maior que a

unidade imediatamente inferior e 10 vezes menor que a unidade imediatamente superior. Mudança de Unidade

Na conversão de uma unidade em outra inferior, devemos deslocar a vírgula para a direita de uma em uma casa decimal.

Exemplo: 4,71 l - 471 l e 0,008 dal - 0,08 hl

Na conversão de uma unidade em outra superior, devemos deslocar a vírgula para a esquerda de

uma em uma casa decimal.

Exemplo: 4,36 cl - 0,0436 l e 1,5 l - 0,015 hl 2.9. MEDIDA DE MASSA

A unidade fundamental de massa é o quilograma (kg) que corresponde a massa aproximada de

1dm3

de água destilada a uma temperatura de 4º C.

Não devemos confundir PESO e MASSA.

PESO - é a força com que a Terra atrai os corpos para o seu centro.

MASSA - é a quantidade de matéria que um corpo possui.

Page 22: matematica_aplicada

22

Mudança de Unidade

Na mudança de unidade de medidas de massa observamos que cada unidade é

10 vezes maior que a imediatamente inferior ou 10 vezes menor que imediatamente superior.

Exemplos: 1,57 hg - 157 g e 41,3 mg - 4,13 cg 75 dg - 0,75 dag e 5,5414 dag - 554,14dg Outras Medidas de Massa

Relações Importantes

Então podemos estabelecer uma correspondência entre as unidades de volume, capacidade e massa conforme pode ser mostrado na tabela abaixo:

Page 23: matematica_aplicada

23

2.10. MEDIDAS DE TEMPO

Por não pertencerem ao sistema métrico decimal, daremos uma rápida pincelada nas medidas de tempo. A unidade legal para a medida de tempo é o segundo. Os seus múltiplos são apresentados como segue:

Unidade Múltiplos

Nome Segundo Minuto Hora dia

Símbolo s min h d

valor 1 s 60 s 6 0 min = 3600 s 24 h = 1440 min = 86.400s

As medidas de tempo inferiores ao segundo não têm designação própria, sendo utilizados os

submúltiplos decimais. Assim dizemos: décimos de segundo, centésimos de segundo, ou

milésimos de segundo. Utilizam-se também as unidades de tempo estabelecidas pelas convenções usuais do calendário civil

e da Astronomia, como, por exemplo, 1 mês, o ano, o século, etc. Para efetuar a mudança de uma

unidade para outra, devemos multiplicá-la (ou dividi-la) pelo valor desta unidade. 3. RAZÕES E PROPORÇÕES

3.1. RAZÃO ENTRE DUAS GRANDEZAS Para entendermos o significado da razão entre dois números ou grandezas, analisaremos algumas situações do dia-a-dia.

1º caso: Marlene receberá visitas para uma festa no final de semana e resolveu

preparar um batida de frutas. A receita diz que devem ser colocadas 9 frutas em

cada receita, sendo 6 laranjas e 3 maças. Comparemos os números envolvidos nesta

situação. Sabemos que:

9, 6 e 3 são os números envolvidos nesta hipotética situação;

para cada 6 laranjas, devemos colocar 3 maças. Escrevemos assim: 6

ou 6 : 3

3

6

é a razão entre os números 6 e 3, nesta ordem.

3

Como 6 é o dobro de 3, para fazer o mesmo tipo de batida de frutas, a quantidade de laranjas deve ser sempre igual ao dobro da quantidade de maças.

Page 24: matematica_aplicada

24

“Se a e b são dois números e b é diferente de zero, dizemos que

a: b é a razão entre a e b, nessa ordem”

ou a b

2º caso: Para ir à escola, Lucas gasta 30 minutos indo à pé. Já, Matheus utiliza-se de

sua moto e faz o mesmo percurso em 10 minutos. Qual a razão entre os tempos gastos

por Matheus e Lucas para chegarem até a escola, sabendo-se que o espaço percorrido é

o mesmo ?

tempo gasto por Matheus .................. 10 minutos

tempo gasto por Lucas ...................... 30 minutos 10 = 30 1 ou 1 : 3 a razão entre os tempos gastos por Lucas e 1 Matheus significa que para cada minuto gasto por Matheus, e Lucas gasta três vezes mais tempo para percorrer o mesmo percurso. “A razão entre grandezas de mesma natureza é a razão entre os números que expressam as medidas destas grandezas.”

Atenção: Quando comparamos grandezas de mesma natureza, as medidas devem estar expressas na mesma unidade.

Observações:

1) A razão entre dois números racionais pode ser apresentada de três formas. Exemplo: Razão entre 1 e 4: 1:4 ou ou 0,25.

2) A razão entre dois números racionais pode ser expressa com sinal negativo, desde que seus termos tenham sinais contrários. Exemplo:

A razão entre –1 e 8 é .

Termos de uma razão

Observe a razão:

(lê-se “a está para b” ou “a para b”).

Page 25: matematica_aplicada

25

Na razão a:b ou , o número a é denominado antecedente e o número b é denominado conseqüente. Veja o exemplo:

3 : 5 =

Leitura da razão: 3 está para 5 ou 3 para 5.

Razões inversas

Considere as razões.

Observe que o produto dessas duas razões é igual a 1, ou seja, Nesse caso, podemos

afirmar que são razões inversas.

Duas razões são inversas entre si quando o produto delas é igual a 1.

Exemplo:

são razões inversas, pois .

Podemos verificar que nas razões inversas o antecedente de uma é o

consequente da outra, e vice-versa.

Observações:

1) Uma razão de antecedente zero não possui inversa. 2) Para determinar a razão inversa de uma razão dada, devemos permutar (trocar) os seus termos.

Exemplo: O inverso de .

Page 26: matematica_aplicada

26

Razões equivalentes

Dada uma razão entre dois números, obtemos uma razão equivalente da seguinte maneira:

Multiplicando-se ou dividindo-se os termos de uma razão por um mesmo número racional (diferente de zero), obtemos uma razão equivalente.

Exemplos:

são razões equivalentes.

são razões equivalentes.

Razão entre grandezas da mesma espécie

O conceito é o seguinte:

Denomina-se razão entre grandezas de mesma espécie o quociente entre os números que expressam as medidas dessas grandezas numa mesma unidade.

Exemplos:

1) Calcular a razão entre a altura de dois vasos de flores, sabendo que o primeiro possui uma altura h1= 1,20m e o segundo possui uma altura h2=

1,50m. A razão entre as alturas h1 e h2 é dada por:

2) Num certo intervalo de tempo, um carro percorre 2 km enquanto Alexandre caminha 50 metros. Qual é a razão entre os espaços percorridos pelo carro e por Alexandre, durante este intervalo de tempo?

Page 27: matematica_aplicada

27

Quando temos unidades de medida diferentes, devemos transforma-las para a mesma base. Neste caso, transformaremos a distância percorrida pelo carro em metros. ( 2 km = 2.000 m )

2000 = 40

50 1 significa que o carro percorre 40 m enquanto Alexandre percorre 1 m.

Razões entre grandezas de espécies diferentes

O conceito é o seguinte:

Para determinar a razão entre duas grandezas de espécies diferentes, determina-se o quociente entre as medidas dessas grandezas.

Exemplos:

1) Consumo médio: Marlene foi de Rio Preto a Uberlândia (298 Km) no seu carro, realizar uma visita à sua mãe. Foram gastos nesse percurso 26 litros de combustível. Qual a razão entre a distância e o combustível consumido? O que significa essa razão?

Solução:

Razão = 298

26 ,11 46 km / l ,11 46 km / l (lê-se “11,46 quilômetros por litro”).

Essa razão significa que a cada litro consumido foram percorridos em média

11,46 km.

2) Velocidade média: Na mesma viagem Rio Preto/Uberlândia, Marlene fez o percurso (298Km) em 4 horas. Qual a razão entre a medida dessas grandezas? O que significa essa razão?

Solução:

Razão =

298

74 5,

4

km / h

Razão = 74,5 km/h (lê-se “74,5 quilômetros por hora”).

Essa razão significa que a cada hora foram percorridos em média 74,5 km.

Page 28: matematica_aplicada

28

3) Densidade demográfica:

A cidade de São José do Rio Preto no último censo teve uma população avaliada em 367.512

habitantes. Sua área é de 434,10 km2. Determine a razão entre o número de habitantes e a área da cidade. O que significa essa razão?

Page 29: matematica_aplicada

29

Solução:

Razão =

Page 30: matematica_aplicada

30

367 512. 434 10, 846 hab / km

2

Razão = 846 hab/km2 (lê-se “846 habitantes por quilômetro quadrado”)

Essa razão significa que em cada quilômetro quadrado existem em média 846

habitantes.

4) Densidade absoluta ou massa específica:

Um cubo de concreto de 10 cm de aresta tem massa igual a 17,8 kg. Determine a razão entre a massa e o volume desse corpo. O que significa essa razão?

Solução:

Volume = 10 cm . 10 cm . 10 cm = 1.000cm3

Massa = 17,8 kg = 17.800

Razão =17800 = 17 8, g/ cm3

1000

Razão = 17,8 g/cm3 (lê-se “17,8 gramas por centímetro cúbico”).

Essa razão significa que 1000 cm3 de concreto pesa 17,8g.

Page 31: matematica_aplicada

31

3.2. CONCEITO DE PROPORÇÃO 1º Caso: Uma escola tem 800 alunos e freqüentemente realiza pesquisas com o intuito de saber o índice de satisfação de seus alunos. A última pesquisa realizada teve por objetivo saber qual o esporte preferido de seus alunos. Os números levantados foram os seguintes:

De posse dos dados, podemos analisa-los utilizando alguns quocientes:

1. total de alunos que praticam natação ................... 160

total de alunos da escola .................................... 800 1160

5800

Constatamos, portanto, que de cada 5 alunos matriculados na escola, 1 pratica natação.

2. total de alunos que praticam Basquete ................. 40

total de alunos que jogam futebol de salão ............ 240 140

6240

O número de alunos que pratica futebol de salão é 6 vezes maior que o número de alunos que pratica basquete.

2º Caso: Gabriel e Inês resolvem pintar a parede da sala de sua casa. Eles sabem que

para conseguir uma tonalidade rosa, devem misturar 2 litros de vermelho e 3 de branco.

Mas esta receita só dá certo para pequenas dimensões a serem pintadas. Como a

parede é muito grande, Inês está em dúvida se pode misturar 10 litros de vermelho

com 15 litros de branco. E aí ? O que fazer para resolver este problema ? E você o que acha ? Basta misturar as tintas para ver o que acontece ?

Page 32: matematica_aplicada

32

O problema é que se der errado o prejuízo será dobrado: o tempo gasto e o custo da tinta.

Para resolver esta questão vamos usar razões para ter uma maior probabilidade de

acerto. 2 receita diz = 2 vermelhos com 3 brancos - a mistura é de 2

3

Inês quer ... 10 vermelhos com 15 brancos - a mistura é de 10

As razões 2 e 10

são iguais 15

3 15

A igualdade 2 = 10 é uma proporção entre os números 2, 3, 10 e 15, nessa ordem. 3 15

Lê-se: 2 está para 3 assim como 10 está para 15

Assim:

Proporção é uma igualdade entre duas razões.

Uma Proporção envolve quatro números no mínimo: a, b, c e d. Nesta ordem, temos a proporção a : b = c : d, sendo b e d ≠ zero

Elementos de uma proporção

Dados quatro números racionais a, b, c, d, não-nulos, nessa ordem, dizemos que eles formam uma proporção quando a razão do 1º para o 2º for igual à razão do 3º para o 4º. Assim:

ou a :b = c :d

(lê-se “a está para b assim como c está para d”)

Os números a, b, c e d são os termos da proporção, sendo:

b e c os meios da proporção. a e d os extremos da proporção.

Page 33: matematica_aplicada

33

Exemplo:

Dada a proporção , temos:

Leitura: 3 está para 4 assim como 27 está para 36.

Meios: 4 e 27 Extremos: 3 e 36

Propriedade fundamental das proporções

Observe as seguintes proporções:

De modo geral, temos que:

a c b d ⇔ a . d

b . c

Nasce daí a propriedade fundamental das proporções:

Em toda proporção, o produto dos meios é igual ao produto dos extremos.

Aplicações da propriedade fundamental

Determinação do termo desconhecido de uma proporção

Exemplos:

Determine o valor de x na proporção:

Page 34: matematica_aplicada

34

x 21

3 9

Solução: Fazendo uso da Propriedade Fundamental das Proporções, temos que: 9 . x = 3 . 21 (aplicando a propriedade fundamental)

9 . x = 63

63

9

x = 7

Logo, o valor de x é 7.

Determine o valor de x na proporção:

7x 1

53x 2

Solução:

5 . (x-1) = 7 . (3x+2) (aplicando a propriedade fundamental)

5x - 5 = 21x + 14 5x - 21x = 14 + 5 -16x = 19 x 19

16 Quarta proporcional

Dados três números racionais a, b e c, não-nulos, denomina-se quarta proporcional desses números um número x tal que:

Exemplo:

Page 35: matematica_aplicada

35

Determine a quarta proporcional dos números 7, 3 e 21.

Solução: Indicamos por x a quarta proporcional e armamos a proporção:

Page 36: matematica_aplicada

36

7 21

3 x (aplicando a propriedade fundamental) 7 . x = 3 . 21

7 . x = 63

63

7

x = 9

Logo, a quarta proporcional é 9.

4. REGRA DE TRÊS 4.1. REGRA DE TRÊS SIMPLES

Regra de três simples é um processo prático para resolver problemas que envolvam quatro valores dos quais conhecemos três deles. Devemos, portanto, determinar um valor a partir dos três já conhecidos.

A Regra de três simples é utilizada para resolver problemas que envolvem proporcionalidade entre duas grandezas.

Passos utilizados numa regra de três simples

Construir uma tabela, agrupando as grandezas da mesma espécie em colunas e mantendo na mesma linha as grandezas de espécies diferentes em correspondência.

Identificar se as grandezas são diretamente ou inversamente proporcionais.

Montar a proporção e resolver a equação. Exemplos:

1. Em 3 minutos uma torneira despeja 6 litros de água numa caixa d´água. Se a

caixa ficou cheia em 6 horas, qual será a capacidade desta caixa d´água ? Tempo Capacidade da Caixa

3 minutos 6 litros

6 h = 6 * 60 minutos 360 minutos

X litros

Page 37: matematica_aplicada

37

Resolvendo, temos:

3 . x = 6 . 360 3 x = 2160 litros x = 2.160/3 x = 720 litros b) Um motociclista viaja de S.J.do Rio Preto até Mirassol, à velocidade de 80km/h, fazendo o percurso em 10 minutos. Se a velocidade da moto fosse de 100km/h, em quantos minutos seria feito o mesmo percurso?

Page 38: matematica_aplicada

38

Velocidade (Km/h) Tempo (minutos)

80 10 min 100 X min

Observe que as grandezas são inversamente proporcionais, aumentando a velocidade o tempo diminui na razão inversa.

Resolução:

X/10 = 80/100 x = 10*80/100 x = 800/100 x = 8 minutos

Observe que o exercício foi montado respeitando os sentidos das setas.

4.2. REGRA DE TRÊS COMPOSTA

Algumas situações envolvem mais de duas grandezas. A análise e a resolução de problemas desta natureza podem envolver uma regra de três composta.

Exemplo:

a) 20 pintores trabalhando 6 horas por dia, pintam um edifício em 4 dias. Quantos dias serão necessários para que 6 pintores, trabalhando 8 horas por dia, pintem o mesmo edifício?

1. Para facilitar a resolução, vamos separar as grandezas e números envolvidos:

Quantidade de pintores: 20, 6

Horas por dia : 6, 8 Número de dias: 4 , x

2. supondo que o número de horas por dia não varie:

Pintores Horas p/ dia Nº de dias

20 6 4

6 8 x

Grandezas inversamente proporcionais

* Menos pintores, mais dias para pintar

3. Supondo que a quantidade de pintores não varie:

Pintores Horas p/ dia Nº de dias

20 6 4

6 8 x

Page 39: matematica_aplicada

39

Grandezas inversamente proporcionais

Nesta situação, o tempo (dias) é inversamente proporcional à quantidade de pintores e ao tempo de trabalho por dia, portanto o produto 20 . 6 . 4 é igual ao produto 6 . 8 . x

20 . 6 . 4 = 6 . 8 . x 480 = 48 . x x = 480 / 48 x = 10 Serão necessários 10 dias para pintar o edifício. Como foi visto, existe um método prático para se montar o esquema e resolver o problema. O

Método Prático consiste em:

escrever em uma coluna as variáveis do mesmo tipo, ou seja, aquelas expressas na mesma unidade de medida.

Identificar aquelas que variam num mesmo sentido (grandezas diretamente proporcionais) e

aquelas que variam em sentidos opostos

(grandezas inversamente proporcionais), marcando-as com setas no mesmo sentido ou sentidos

opostos, conforme o caso.

A incógnita x será obtida da forma sugerida no esquema abaixo, dada como exemplo de caráter

geral. Imaginemos as grandezas A, B, C e D, que assumem os valores literais mostrados a seguir.

Suponhamos, por exemplo, que a grandeza A seja diretamente proporcional à grandeza B,

inversamente proporcional à grandeza C e inversamente proporcional à grandeza D. Após termos

executado este procedimento, montamos o esquema mostrado abaixo:

Neste caso, o valor da incógnita x será dado por:

x a .

.p c

. d

b r s

a . p . c . d

b . r . s

Page 40: matematica_aplicada

40

Observem que para as grandezas diretamente proporcionais, multiplicamos x pelos

valores invertidos e para as grandezas inversamente proporcionais, multiplicamos pelos valores

como aparecem no esquema. Exemplo:

STA CASA – SP – Sabe-se que 4 máquinas, operando 4 horas por dia, durante 4 dias, produzem 4 toneladas de certo produto. Quantas toneladas do mesmo produto seriam produzidas por 6 máquinas daquele tipo, operando 6 horas por dia, durante 6 dias?

a) 8 b) 15 c) 10,5 d) 13,5

Solução:

Observe que a produção em toneladas é diretamente proporcional ao número de máquinas, ao

número de dias e ao número de horas/dia. Portanto:

Portanto, seriam produzidas 13,5 toneladas do produto, sendo D a alternativa correta.

Exercícios resolvidos e propostos

1. Vinte e cinco costureiras, trabalhando oito horas por dia, durante 10 dias, fizeram 800 calças. Vinte costureiras trabalhando nove horas por dia durante dezoito dias, produzirão quantas calças iguais às já produzidas?

SOLUÇÃO:

Nº Costureiras dias Horas/dia calças

25 10 8 800

20 18 9 x

Observe que o número de calças é diretamente proporcional ao número de costureiras, ao número

de dias e ao número de horas/dia.

Page 41: matematica_aplicada

41

Portanto:

x 800. 9

.18

. 20

1 296.

Resposta: 1296 calças

258 10

2. Em uma escola, vinte e cinco estudantes resolvem 150 exercícios de matemática em doze

dias, estudando 10 horas por dia. Quantas horas por dia, deverão estudar 30 estudantes,

para resolverem 180 exercícios em 15 dias? Solução:

Estudantes dias Horas/dia Exercícios

25 12 10 150

30 15 x 180

Page 42: matematica_aplicada

42

Observe que:

Aumentando o número de horas/dia, aumenta o número de exercícios, diminui o número de dias necessários e diminui o número de estudantes necessárias.

Portanto:

X = 10 * 180 * 12 * 25 / 150 * 15 * 30 x = 540000/67500

Resposta: 8 h

3. Certo trabalho é executado por 15 operários, em 12 dias de 10 horas. Se três operários forem demitidos do serviço, quantos dias de 8 horas deverão trabalhar os demais, para realizar o dobro do trabalho anterior?

Solução:

Aumentando o número de dias, diminui o número de horas/dia necessários e diminui o número de operários necessários. Podemos também dizer que para realizar o dobro do trabalho, o número de dias deve.aumentar.

Portanto, podemos montar o seguinte esquema:

Operários dias Horas/dia Trabalho

15 12 10 T

12 x 8 2 T Logo,

x 12 . 15

. 10

. 2T

37 5,

Page 43: matematica_aplicada

43

T12 8

Resposta: 37,5 dias

Agora resolva estes dois:

1 - Em uma residência, no mês de fevereiro de um ano não bissexto, ficaram acesas, em média, 16 lâmpadas elétricas durante 5 horas por dia e houve uma despesa de R$ 14,00. Qual foi a despesa em março, quando 20 lâmpadas iguais às anteriores ficaram acesas durante 4 horas por dia, supondo-se que a tarifa de energia não teve aumento?

Resposta : R$15,50

2 - Um livro está impresso em 285 páginas de 34 linhas cada uma com 56 letras em cada linha. Quantas páginas seriam necessárias para reimprimir esse livro com 38 linhas por página, cada uma com 60 letras?

Resposta: 238 páginas

5. PORCENTAGENS

Toda fração de denominador 100, representa uma porcentagem, como diz o próprio nome, por cem.

Exemplo:

12 100

12 %,

5

100

5 %,

36 100

36 %

Page 44: matematica_aplicada

44

Observe que o símbolo % que aparece nos exemplos acima significa por cento.

Se repararmos em nossa volta, vamos perceber que este símbolo % aparece com muita freqüência em jornais, revistas, televisão e anúncios de liquidação, etc.

Exemplos:

A cesta básica teve um reajuste de 6,2 % no último bimestre;

Os rendimentos da caderneta de poupança que vencem hoje, são de 3,1 %;

A taxa de desemprego no Brasil cresceu 19% neste ano.

Desconto de 25% nas compras à vista.

Devemos lembrar que a porcentagem também pode ser representada na forma de números decimais. Vejam os exemplos:

12 = 0 12, 81= 0 81, 100 100

Trabalhando com Porcentagem

Vamos fazer alguns cálculos envolvendo porcentagens.

Exemplos:

1. Uma geladeira custa 800 reais. Pagando à vista você ganha um desconto de 10%. Quanto pagarei se comprar esta geladeira à vista?

10 %

10 100 (primeiro representamos na forma de fração decimal)

10% de 100 10% x 100

10 8000 100 100 x 800 80 800 – 80 = 720

Logo, pagarei 720 reais.

Page 45: matematica_aplicada

45

2. Pedro usou 32% de um rolo de mangueira de 100m. Determine quantos metros de mangueira Pedro usou.

32% = 32

32 % de 100 ⇒ 32

100 x 100 ⇒ 3200 = 32

100

Logo, Pedro gastou 32 m de mangueira.

3. Comprei uma mercadoria por 2000 reais. Por quanto devo vende-la, se quero obter um lucro de 25% sobre o preço de custo.

25% = 25

100

25 % de 2000 ⇒ 25 10 x 2000 ⇒ 50000 100 = 500

O preço de venda é o preço de custo somado com o lucro.

Então, 2000 + 500 = 2500 reais.

Logo, devo vender a mercadoria por 2500 reais.

4. Comprei um objeto por 20 000 reais e o vendi por 25 000 reais. Quantos por cento

eu obtive de lucro? Lucro: 25 000 – 20 000 = 5 000 ( preço de venda menos o preço de custo) 5000 20000 = 444 = 0 25 25 100 = 25 %

Page 46: matematica_aplicada

46

(resultado da divisão do lucro pelo preço de custo)

5. O preço de uma casa sofreu um aumento de 20%, passando a ser vendida por 35 000 reais. Qual era o preço desta casa antes deste aumento?

Porcentagem Preço

120 35 000

100 x 120 x 100 x 35000 ⇒120 x 3500000 = ,29166 67 Logo, o preço anterior era R$ 29.166,67

6. FUNÇÕES E GRÁFICOS

6.1. FUNÇÕES

A idéia de função sempre está associada a uma relação de dependência entre dois conjuntos. Para chegar à definição de uma função, vamos lembrar alguns conceitos importantes.

Produto Cartesiano: A x B

A x B = { (a, b)/a ∈ A e b ∈ B }

Exemplo:

Sejam os conjuntos A = { -1, 0, 1 } e B = { 0, 1, 4 }.

A x B = { (-1,0); (-1,1); (-1,4); (0,0); (0,1); (0,4); (1,0); (1,1); (1,4) } Multiplicamos cada termo do conjunto A por cada termo do conjunto B.

Relação

Uma relação R é qualquer subconjunto de A x B

Page 47: matematica_aplicada

47

Exemplo:

Determine os pares das relações:

a) R1 = { (x,y) ∈ A x B | y = x + 1 }

R1

A B

-1 0

0 1

1 4 R1 = {(-1,0);(0,1)}

b) R2 = {(x,y) ∈ A x B y = x

R2

A B

-1 0

0 1

1 4 R2 = {(-1,1); (0,0); (1,1)}

Observe que na Relação R2 todos os elementos do primeiro conjunto se corresponderam com algum

elemento do segundo conjunto, e uma só vez. A este tipo de Relação chamamos de função de A em B

Então:

Diz-se que f é uma função (ou aplicação) de A em B ( f: A B) se, e somente se, para todo elemento x ∈ A, existir um único elemento y ∈ B, tal que (x,y) ∈ f.

TODOS os elementos de A devem enviar flecha a algum elemento de B;

CADA elemento de A deve mandar uma única flecha para algum elemento de B.

Domínio D(f) : é o conjunto da partida das flechas (A)

Contradomínio CD(f): é o conjunto da chegada das flechas (B)

Imagem Im(f) : é um subconjunto do contradomínio e é formada pelos elementos

do CD(f), que são, de fato, imagens de elementos do domínio .y = f(x)

Page 48: matematica_aplicada

48

Tipos Fundamentais de Funções

Função Injetora: Uma função f definida de A em B é injetora quando cada

elemento de B (que é imagem), é imagem de um único elemento de A Função Bijetora: Uma função f definida de A em B, quando injetora e sobrejetora ao mesmo tempo, recebe o nome de função bijetora.

Exemplo:

É sobrejetora Im(f) = B

É injetora cada elemento da imagem em B tem um único correspondente

em A

Função Inversa: Seja f uma função bijetora definida de A em B, com x ∈ A e y ∈

R, sendo (x,y) ∈ f. Chamaremos de função inversa de f, e indicaremos por f-1, o

conjunto dos pares ordenados (y,x) ∈ f-1 com y ∈ B e x ∈ A Exemplo:

.f é definida de R em R, sendo y = 2 x.

Para determinarmos f-1, basta trocarmos x por y e y por x

Observe:

Y = 2 x x = 2 y

Isolando y em função de x resulta: y = x/2

Exemplo:

Achar a função inversa de y = 2x

Solução:

a) troquemos x por y e y por x: teremos x = 2 y b) expressemos o novo y em função do novo x; teremos, então, y = x/2 e finalmente, f-1(x) = x/2

Paridade das funções

1. Função par A função y = f(x) é PAR, quando x ∈ D(f), f(-x) = f(x) , ou seja, para todo elemento do seu domínio, f(x) = f (-x). Portanto , numa função par, elementos simétricos possuem a mesma imagem. Uma

Page 49: matematica_aplicada

49

conseqüência desse fato é que os gráficos cartesianos das funções pares são curvas simétricas em relação ao eixo dos y ou eixo das ordenadas.

Exemplo:

z = x4 + 2 é uma função par, pois f(x) = f(-x), para todo x. Por exemplo, f(2) = 24 + 2 = 18 e f(- 2) = (-

2)4 + 2 = 18

O gráfico abaixo, é de uma função par.

2. Função ímpar A função y = f(x) é ímpar , quando x ∈ D(f) , f (- x) = - f (x) , ou seja, para todo elemento do seu domínio, f (-x) = - f (x). Portanto, numa função ímpar, elementos simétricos possuem imagens simétricas. Uma conseqüência desse fato é que os gráficos cartesianos das funções ímpares, são curvas simétricas em relação ao ponto (0,0), origem do sistema de eixos cartesianos.

Exemplo:

y = x3 é uma função ímpar pois para todo x, teremos f(-x) = - f(x).

Por exemplo, f(- 3) = (- 3)3 = - 278e - f( x) = - ( 33 ) = - 27.

O gráfico abaixo é de uma função ímpar:

Page 50: matematica_aplicada

50

Observação: se uma função y = f(x) não é par nem ímpar, dizemos que ela não possui paridade.

Exemplo:

O gráfico abaixo, representa uma função que não possui paridade, pois a curva não é simétrica em relação ao eixo dos x e também não é simétrica em relação à origem.

FUNÇÃO DE 1º GRAU

Definição

Chama-se função polinomial do 1º grau, ou função afim, qualquer função f de R em R dada pela expressão f(x) = ax + b, onde a e b são números reais dados e a ≠ 0.

Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante.

Page 51: matematica_aplicada

51

Veja alguns exemplos de funções polinomiais do 1º grau:

f(x) = 6z - 4, onde a = 6 e b = - 4 f(x) = -3y + 2, onde a = -3 e b = 2 f(x) = 8x, onde a = 8 e b = 0 6.2. GRÁFICOS Sistema Cartesiano Ortogonal

O Sistema Cartesiano ortogonal é composto por dois eixos perpendiculares com origem comum e uma unidade de medida.

No eixo horizontal, chamado eixo das abscissas, representamos os primeiros elementos do par ordenado de números reais.

No eixo vertical, chamado de eixo das ordenadas, são representados os segundos elementos do par ordenado de números reais.

Observações:

a todo par ordenado de números reais corresponde um só ponto do plano, e a cada ponto corresponde um só par ordenado de números reais;

O gráfico de uma função polinomial do 1º grau, y = ax + b, com a ≠ 0, é uma reta oblíqua aos eixos Ox e Oy.

Exemplo:

Vamos construir o gráfico da função y = 4x + 2:

Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua:

Quando x = 0, temos y = 4 · 0 + 2 = 2; portanto, um ponto é (0, 2). Quando y = 0, temos 0 = 4x +2; portanto, x = ½ e outro ponto é (1/2,0).

Marcamos os pontos (0, 2) e (1/2,0) no plano cartesiano e ligamos os dois com uma reta.

Já vimos que o gráfico da função afim y = ax + b é uma reta.

coeficiente de x, a, é chamado coeficiente angular da reta e, como veremos adiante, a está ligado à inclinação da reta em relação ao eixo Ox. O termo constante, b, é chamado coeficiente linear da reta. Para x = 0, temos y = a · 0 + b = b. Assim, o coeficiente linear é a ordenada do ponto em que a reta corta o eixo Oy.

Análise de Gráficos

O comportamento de uma função pode ser obtido através de um gráfico, onde

Page 52: matematica_aplicada

52

podemos tirar informações acerca de: crescimento, decrescimento, domínio, imagem,

valores máximos e mínimos, se é função positiva ou negativa, etc.

f ( x) 3x

1

e o seu gráfico, podemos analisar o seu

Dada uma função 55

comportamento da seguinte maneira:

Zero da Função: graficamente, encontramos o zero da função no ponto de encontro da reta com o eixo dos x: f(x) = 0 3x/5 + 1/5 = 0 x =-1/3

Domínio: projetando o gráfico sobre o eixo dos x: D = [-2,3]

Imagem: projetando o gráfico sobre o eixo dos y: Im = [-1,2]

Podemos observar que para:

-2 < 3 temos f ( -2) < f (3) dizemos que a função é crescente.

Sinais:

X ∈ [ –2, –1/3 [ f (x) < 0

X ∈ ] –1/3, 3 ] f (x) > 0 Valor Mínimo: –1 é o menor valor assumido por y = f (x) Ymin = – 1 Valor Máximo: 2 é o maior valor assumido por y = f (x) Ymáx = – 2

Como reconhecer se um gráfico representa ou não uma Função

Quando quisermos saber se um gráfico de uma relação representa ou não uma função, aplicamos a seguinte técnica:

Traçamos qualquer reta paralela ao eixo dos y; qualquer que seja a reta traçada, se o gráfico da relação for interceptado em um único ponto, e somente em um ponto, então o gráfico representa uma função. Caso contrário não representa uma função.

Gráfico de Função Crescente

Tomando por base a função y = 2 x, definida de R em R. Se formos atribuindo valores para x, iremos obtendo valores correspondentes para y e representado-os no plano cartesiano, ficamos com:

Page 53: matematica_aplicada

53

Y

9 y = 2x

8

7 6

5 4 3

2

X 1

-4 -3 -2 0 1 2 3 4

-1 -2 -3 -4 Observe que à medida que os valores de x aumentam, os valores de y também aumentam; neste caso podemos afirmar que a função é crescente. Função Constante

Chamamos de Função Constante toda função definida de R em R e representada por

f (x) = c ( c = constante )

Exemplos: f (x) = 5; f (x) = - 5; f (x) = ¾ Seu gráfico é uma reta paralela ao eixo dos x, passando pelo par ordenado

(ponto) (0,c). Neste caso, teremos o Domínio D = R, o Contradomínio CD = R e a Imagem Im = {c}

(0,c) y = c

x

Função Identidade

É a função de R em R definida por : f (x) = x

É dita função identidade quando seu gráfico é uma reta que contém as bissetrizes do 1º e 3º quadrantes. Ou seja, os valores de x serão sempre iguais aos valores de y.

D = R; CD = R; Im = R

y

Page 54: matematica_aplicada

54

Função Afim

É toda função f de R em R definida por f (x) = ax + b, sendo a; b ∈ R e a ≠ 0

Observações:

Quando b = 0 a função é denominada de função linear;

D = R;

Im = R;

Seu gráfico é uma reta do plano cartesiano. Função Quadrática

É toda a função f de R em R definida por f (x) = ax2

+ bx + c, e tendo que

a; b; c ∈ R e a ≠ 0.

Exemplos: f (x) = 3 x2

+ 5 x - 7; f (x) = x4

+ 4; f (x) = x2

gráfico de uma função quadrática é uma PARÁBOLA que terá sua concavidade voltada para

cima se a > 0 ou voltada para baixo se a < 0. Exemplos:

f (x) = x2

– 6x + 8 (a = 1 > 0

f (x) = -x2

+ 6x – 8 (a = -1 < 0 ) 7. SEQÜÊNCIAS NÚMERICAS Alguns acontecimentos repetem-se periodicamente em nosso cotidiano. Eles possuem estreita relação com a matemática, no que se refere à sucessão de percepções diversas, tais como o passar do tempo, a rotina diária de trabalho e até mesmo os fatos menos perceptíveis como a nossa respiração, o batimento de nosso coração e assim sucessivamente.

Assim, a seqüência (ocorrência periódica) de fatos em nosso cotidiano nos conduz, principalmente à idéia de ordem. Seja, por exemplo, a seqüência de números, a seguir:

1 2 3 4 5 6 7 8 9 .... Esta sucessão de números compõe o conjunto dos números Inteiros. Este exemplo mostra-nos que:

Seqüência ou sucessão é qualquer conjunto onde seus elementos estão dispostos

numa certa ordem.

Page 55: matematica_aplicada

55

Seqüências Numéricas

É todo o conjunto de números, que estão dispostos ordenadamente, de uma maneira que possamos indicar quais são os elementos desse conjunto.

Exemplo: A seqüência de Fibonacci

Nesta seqüência, cada elemento é formado pela soma dos dois elementos anteriores, ou seja: 1, 2, 3, 5, 8, 13, 21, .........

Representação de uma seqüência

Representamos a seqüência numérica colocando os termos entre parênteses e separando-os por virgulas.

Exemplo:

(a1, a2, a3, ......., an, .... ) onde n ∈ N*

Estas seqüências poderão ser:

Finitas – quando o último termo é conhecido. Ex: (2, 8, 14).

Infinitas – quando o último termo não é conhecido. Ex : (3, 13, 23, ...)

Leis de Formação

Existem seqüências numéricas em que os elementos ou termos estão dispostos de tal forma que não é possível relacioná-los com uma das leis de formação.

Um dos exemplos mais recorrentes desta situação é a seqüência dos números primos: (2, 3, 5, 7, ...)

Para a continuação dos nossos estudo de seqüências vamos supor sempre a possibilidade de relacionarmos as seqüências com uma lei de formação. Podemos destacar dois tipos de leis de formação de uma seqüência.

1º. Fórmula do Termo Geral

Permite calcular um termo de ordem n em qualquer seqüência.

Exemplo:

Dado an = 1 – 1/(n+1) para n ∈ N*, pede-se calcular o produto dos 99

primeiros termos da seqüência.

Solução:

Temos que: an = n / (n+1), calculando os termos, a seguir:

Page 56: matematica_aplicada

56

Quando n = 1, então a1 = ½

n = 2 , a2 = 2/3

n = 3 , a3 = ¾

... ...

n = 98, a98 = 98/99

n = 99 a99 = 99/100

Efetuando o produto dos termos da seqüência, temos que:

½ . 2/3. ¾. 4/5. ..... . 98/99. 99/100 =

Como o denominador de um termo é igual ao numerador do termo seguinte, fazendo as simplificações, temos que:

1 2 .

.3 4

. ... . 51 .

52 11

. 2

. 3

. 4

. ... . 51

. 52

. .... 98

. 99

2 4 5 52 53 99 100 Então, o produto dos 99 primeiros termos desta seqüência é igual a 0,01.

2º. Lei de recorrência

Neste caso, é necessário recorrer a outros termos conhecidos

(geralmente o primeiro) para se obter qualquer outro elemento da seqüência,

através de uma fórmula que forneça esta relação. Exemplo.

Dado an+1= an (2n-1 + 1). Se a3= 3, calcule a5.

Temos a3 = 3, logo

n = 4 a3+1 = a3 (23-1 + 1)

a4 = a3 (22+ 1)

a4 = a3.5 a4 = 15

Page 57: matematica_aplicada

57

Como queremos a5, temos então:

a4+1 = a4 (24-1 + 1)

a5 = a4(23 + 1) a5 = 15.9 a5 = 135

Seqüência como função

Seja a sucessão de números pares (2, 4, 6, 8, 10, ....)

Essa seqüência de números pares é formada de acordo com uma regra ou lei de correspondência, na qual é possível estabelecer uma expressão f(n) que contenha a variável n e tal que para cada numeral natural {1, 2, 3, 4, 5, .....} atribuído a n se tenha a relação:

an = f(n)

Neste caso, dizemos que f(n) é o termo geral da seqüência

A lei de formação do conjunto de números pares é dada através do termo geral

an = 2n ou por f(n) = 2n Neste caso, podemos dizer que:

Seqüência é uma função cujo domínio é o conjunto dos naturais diferente de zero {1, 2,

3, ....} e cujas imagens formam o conjunto dos números reais, ou seja F : N* R

Séries

São expressões numéricas que resultam quando substituímos as vírgulas por sinais de adição entre os termos sucessivos de uma seqüência.

Exemplo:

A seqüência dos números triangulares 1, 3, 6, 10,..... pode ser decomposta assim:

a1 = 1

a2 = 1 + 2 = 3

a3 = 1 + 2 + 3 = 6

a4 = 1 + 2 + 3 + 4 = 10 ..........

Page 58: matematica_aplicada

58

Assim, para encontrarmos o enésimo número triangular, devemos somar os termos de uma seqüência finita, de 1 até o número desejado, ou seja:

an = 1 + 2 + 3 + 4 + 5 + 6 + ....... + n

Exemplo.

Determinar o décimo primeiro número triangular

a11 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 = 64

Desta forma, podemos dizer que dada uma única seqüência numérica (a1, a2, a3, a4, a5,... , an)

formamos a seqüência de somas (S1, S2, S3, S4, ....., Sn)

Podemos, então, observar que :

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3

............................ Sn =a1 + a2 + a3 ..... + an

Fica, portanto, caracterizado o que chamamos de Série

As séries também podem ser finitas (quando se conhece o último termo da série) ou infinitas (quando não se conhece o último termo).

A representação de uma série é dada pelo símbolo ∑ (somatório)

Para a série finita temos a representação

Exemplo prático de série

E, para a série infinita é usada a representação

Page 59: matematica_aplicada

59

Uma pessoa A, chega às 14 horas para um encontro com uma pessoa B. Como

B não chegou, ainda, A resolveu esperar um tempo t1 = ½ hora, e após, t2 =

½ t1, e após, t3 = ½ t2, e assim sucessivamente. Se B não veio quanto tempo

A esperou até ir embora?

Pelos dados temos a seguinte seqüência infinita:

(30min, 15min, 7,5min, 3,75min, .........)

Para obter o valor da soma desta seqüência, basta calcular o valor da série, ou seja:

Sn = 30 + 15 + 7,5 + 3,75 + ........

Observamos que:

S1 = 30min S2 = 30 + 15 = 45min S3 = 30 + 15 + 7,5 = 52,5min S4 = 30 + 15 + 7,5 + 3,75 = 56,25min ................................... S8 = 59,765625min

Podemos constatar que, conforme o número de termos vai aumentando, o valor de cada termo acrescentado vai diminuindo, aproximando-se cada vez mais de 60 minutos. Dizemos, neste caso, que a seqüência converge para 60 minutos.

Logo, a pessoa terá que esperar 60 minutos até ir embora.

Exercícios resolvidos

1) A partir das seqüências

a) 12 = 1

22 = 1+2+1

32 = 1+2+3+2+1

..................

b) 12 = 1

112 = 121

1112

...................

Page 60: matematica_aplicada

60

Calcule o valor de A A= (55555 x 55555) / 1+2+3+4+5+4+3+2+1 - 1000 Solução:

Ora, pela seqüência b, temos que:

1+2+3+4+5+4+3+2+1 = 52

e, pela seqüência a, temos que:

111112 = 123454321

Então, aplicando estes resultados na expressão A, temos que :

a= (52 x 123454321 ) / 52 – 10000

Logo, A=123453321

2) Uma seqüência numérica é definida por: a1 = 1

an = an-1 + (-1)n para n >= 2

Determine a soma dos 6 primeiros termos. Solução:

Pelos dados temos que:

a2 = 1 + (-1)2 = 2 a3 = 2 + (-1)3 = 1 a4 = 1 + (-1)4 = 2 a5= 2 + (-1)5 = 1 a6 = 1 + (-1)6 = 2

Logo S6 = 1+2+1+2+1+2 = 9

3) Qual é a soma da série: n = 1 ==> a1 = -1 n = 2 ==> a2 = 1 n = 3 ==> a3 = -1

Então, se n é par a soma é zero e se n é impar a soma é igual a –1

Page 61: matematica_aplicada

61

8. JUROS SIMPLES E COMPOSTOS 8.1. JUROS SIMPLES

Conceito: é aquele pago unicamente sobre o capital inicial ou principal

J = C x i x n

Onde:

J = juros

C = capital inicial

i = taxa unitária de juros

n = número de períodos que o capital ficou aplicado Observações:

a taxa i e o número de períodos n devem referir-se à mesma unidade de tempo, isto é, se a taxa for anual, o tempo deverá ser expresso em anos; se for mensal, o tempo deverá ser expresso em meses, e assim sucessivamente;

em todas as fórmulas matemáticas utiliza-se a taxa de juros na forma unitária (taxa percentual ou centesimal, dividida por 100)

Juro Comercial - para operações envolvendo valores elevados e períodos pequenos (1

dia ou alguns dias) pode haver diferença na escolha do tipo de juros a ser utilizado. O

juro Comercial considera o ano comercial com 360 dias e o mês comercial com 30 dias.

Juro Exato -no cálculo do juro exato, utiliza-se o ano civil, com 365 dias (ou 366 dias se

o ano for bissexto) e os meses com o número real de dias.

sempre que nada for especificado, considera-se a taxa de juros sob o conceito comercial

Taxa Nominal - é a taxa usada na linguagem normal, expressa nos contratos ou informada nos exercícios; a taxa nominal é uma taxa de juros simples e se refere a um determinado período de capitalização.

Taxa Proporcional duas taxas são denominadas proporcionais quando existe entre elas a mesma relação verificada para os períodos de tempo a que se referem.

i1 = t1

i2 t2

Taxa Equivalente - duas taxas são equivalentes se fizerem com que um mesmo capital

produza o mesmo montante no fim do mesmo prazo de aplicação.

Page 62: matematica_aplicada

62

no regime de juros simples, duas taxas equivalentes também são proporcionais; CAPITAL, TAXA E PRAZO MÉDIOS

em alguns casos podemos ter situações em que diversos capitais são aplicados, em

épocas diferentes, a uma mesma taxa de juros, desejando-se determinar os

rendimentos produzidos ao fim de um certo período. Em outras situações, podemos ter

o mesmo capital aplicado a diferentes taxas de juros, ou ainda, diversos capitais

aplicados a diversas taxas por períodos distintos de tempo. Capital Médio (juros de diversos Capitais) é o mesmo valor de diversos capitais

aplicados a taxas diferentes por prazos diferentes que produzem a MESMA

QUANTIA DE JUROS. Cmd = C1 i1 n1 + C2 i2 n2 + C3 i3 n3 + ... + Cn in nn

i1 n1 + i2 n2 + i3 n3 + ... + in nn

Taxa Média - é a taxa à qual a soma de diversos capitais deve ser aplicada, durante um certo período de tempo, para produzir juros iguais à soma dos juros que seriam produzidos por diversos capitais.

Taxamd = C1 i1 n1 + C2 i2 n2 + C3 i3 n3 + ... + Cn in nn

C1 n1 + C2 n2+ C3 n3 + ... + Cn nn

Prazo Médio - é o período de tempo que a soma de diversos capitais deve ser aplicado, a uma certa taxa de juros, para produzir juros iguais aos que seriam obtidos pelos diversos capitais.

Prazomd = C1 i1 n1 + C2 i2 n2 + C3 i3 n3 + ... + Cn in nn

C1 i1 + C2 i2+ C3 i3 + ... + Cn in

Montante - é o CAPITAL acrescido dos seus JUROS.

M = C ( 1 + i x n )

a fórmula requer que a taxa i seja expressa na forma unitária;

Page 63: matematica_aplicada

63

a taxa de juros i e o período de aplicação n devem estar expressos na mesma unidade de tempo;

Desconto Simples - quando um título de crédito (letra de cambio, promissória,

duplicata) ou uma aplicação financeira é resgatada antes de seu vencimento, o título

sofre um ABATIMENTO, que é chamado de Desconto. Valor Nominal: valor que corresponde ao seu valor no dia do seu vencimento. Antes

do vencimento, o título pode ser resgatado por um valor menor que o nominal, valor este

denominado de valor Atual ou valor de Resgate. Desconto Comercial - também conhecido como Desconto Bancário ou “por fora”, é quando o desconto é calculado sobre o VALOR NOMINAL de um título.

- pode ser entendido como sendo o juro simples calculado sobre o valor nominal do título;

Dc = N x i x n

Onde:

Dc = Desconto Comercial

N = Valor Nominal

i = Taxa de juros

n = Período considerado

Ex.: Uma promissória de valor nominal de $ 500 foi resgatada 4 meses antes de seu vencimento, à taxa de

8 % a.a.. Qual o valor do Desconto ?

N = $ 500

i = 8 % a.a. = 0.08 Dc = N . i . n

n = 4 meses = 4/12 Dc = 500 . 0.08 . 4/12

Dc = ?

Dc = $ 13,33

Valor Atual - o Valor Atual (ou presente) de um título é aquele efetivamente pago (recebido) por este título, na data de seu resgate, ou seja, o valor atual de um título é igual ao valor nominal menos o desconto. O Valor Atual é obtido pela diferença entre seu valor nominal e o desconto comercial aplicado.

Vc = N - Dc

Page 64: matematica_aplicada

64

Ex.: Um título de crédito no valor de $ 2000, com vencimento para 65 dias, é

descontado à taxa de 130 % a.a. de desconto simples comercial. Determine o valor de

resgate (valor atual) do título. N = $ 2000 Dc = N . i . n = $ 2000 . 1.30 . 65/360

n = 65 dias = 65/360 Dc = $ 469,44

i = 130 a.a. = 1.30

Dc = ? Vc = N – Dc = $ 2000 - $ 469,44

Vc = ? Vc = $ 1.530,56 Desconto Racional o desconto racional ou “por dentro” corresponde ao juro simples calculado sobre o valor atual (ou presente) do título. Note-se que no caso do desconto comercial, o desconto correspondia aos juros simples calculado sobre o valor nominal do título.

Dr = N x i x n

( 1 + i x n )

Ex.: Qual o desconto racional de um título com valor de face de $

270, quitado 2 meses antes de seu vencimento a 3 % a.m. ? N = $ 270

Dr = N . i . n / (1 + i . n) n = 2 meses Dr = $ 270 . 0.03 . 2 / (1 + 0.03 . 2) i = 3 a.m. = 0.03 a.m. Dr = $ 16,20 / 1.06 Dr = ? Dr = $ 15,28

Valor Atual Racional - é determinado pela diferença entre o valor nominal N e o

desconto racional Dr Vr = N - Dr

EQUIVALÊNCIA DE CAPITAIS

Capitais Diferidos quando 2 ou mais capitais (ou títulos de crédito, certificados de empréstimos,etc), forem exigíveis em datas diferentes, estes capitais são denominados DIFERIDOS.

Page 65: matematica_aplicada

65

Capitais Equivalentes por sua vez, 2 ou mais capitais diferidos serão EQUIVALENTES, em uma certa data se, nesta data, seus valores atuais forem iguais.

Equivalência de Capitais p/ Desconto Comercial

Chamando-se de Vc o valor atual do desconto comercial de um título num instante

n’ e de V’c o de outro título no instante n’, o valor atual destes títulos pode ser expresso

como segue: Vc = N ( 1 – i.n ) e V’c = N’ ( 1 – i . n’ ) Para que os títulos sejam equivalentes, Vc deve ser igual a V’c, então: onde:

N’ = N ( 1 – i x n)

1 – i x n’

N’ = Capital Equivalente

N = Valor Nominal

n = período inicial

n’ = período subseqüente

i = taxa de juros Ex.: Uma promissória de valor nominal $ 2000, vencível em 2 meses, vai ser substituída

por outra, com vencimento para 5 meses. Sabendo-se que estes títulos podem ser

descontados à taxa de 2 % a.m., qual o valor de face da nova promissória ?

$ 2.000 N’ N’ = ?

N = $ 2.000 0 1 2 3 4 5

n’ = 5 meses n = 2 meses

I = 2 % a.m. = 0,02 a.m.

N’ = N (1 – i . n) / 1 – i . n’ = 2.000 (1 – 0.02 . 2) / (1 – 0.02 . 5)

N’ = $ 2.133

Page 66: matematica_aplicada

66

Equivalência de Capitais p/ Desconto Racional

Para se estabelecer a equivalência de capitais diferidos em se tratando de desconto

racional, basta lembrar que os valores atuais racionais dos respectivos capitais devem

ser iguais numa certa data.

Chamando-se de Vr o valor atual do desconto comercial de um título na data n’ e

de N o valor nominal deste título na data n, e de V’r o valor racional atual de outro título

na data n’, e de N’ o valor nominal do outro título na data n’, temos: Vr = N / ( 1 + i.n ) e V’r = N’ / ( 1 + i . n’ ) logo:

Para que se estabeleça a equivalência de capitais devemos ter Vr = V’r,

N’ = N ( 1 + i x n’ )

1 + i x n

onde:

N’ = Capital Equivalente

N = Valor Nominal

n = período inicial

n’ = período subseqüente

i = taxa de juros Ex.: qual o valor do capital disponível em 120 dias, equivalente a $ 600, disponível em 75 dias, ‘a taxa de 80 % a.a. de desconto racional simples

? N $ 600 N’ = ?

] ] ] ]

0 75 120

Vr 75 Vr 120 Vr 75 = ? Vr 120 = ? n = 75 dias

n’ = 120 dias i = 80 % a.a. = 0.80 a.a. = 0.80/360 a.d.

Page 67: matematica_aplicada

67

Como Vr 75 = Vr 120, temos N’ = 600 . ( 1 + 0.80/360 . 120) / (1 +

0.80/360 . 75)

N’ = $ 651,28

8.2. JUROS COMPOSTOS Conceito: No regime de Juros Compostos, no fim de cada período de tempo a que se refere a taxa de juros considerada, os juros devidos ao capital inicial são incorporados a este capital. Diz-se que os juros são capitalizados, passando este montante, capital mais juros, a render novos juros no período seguinte.

Juros Compostos - são aqueles em que a taxa de juros incide sempre sobre o capital

inicial, acrescidos dos juros acumulados até o período anterior Cálculo do Montante - vamos supor o cálculo do montante de um capital de $ 1.000,

aplicado à taxa de 10 % a.m., durante 4 meses.

CAPITAL

( C )

Juros ( J )

Montante ( M )

1º Mês 1.000 100 1.100

2º Mês 1.100 110 1.210

3º Mês 1.210 121 1.331

4º Mês 1.331 133 1.464

Pode-se constatar que a cada novo período de incidência de juros, a expressão (1 + i) é elevada à potência correspondente.

Onde:

S = P ( 1 + i ) n

S = Soma dos Montantes

P = Principal ou Capital Inicial i = taxa de juros

n = nº de períodos considerados

a taxa de juros i e o período de aplicação n devem estar expressos na mesma unidade de tempo;

Page 68: matematica_aplicada

68

Ex.: Um investidor quer aplicar a quantia de $ 800 por 3 meses, a uma taxa de 8 %

a.m., para retirar no final deste período. Quanto irá retirar ? S = ?

0 i = 8 % a.m. $ 800 n = 3 Dados: Pede-se: S = ? P = $ 800

n = 3 meses i = 8 % a.m. = 0.08 a.m. 3

(1.08)

n

S = P (1 + i )

= 800 x (1 + 0.08)

3

= 800 x

S = $ 800 x 1.08 x 1.08 x 1.08

S = $ 1.007,79

Valor Atual Considere-se que se deseja determinar a quantia P que deve ser investida à taxa de juros i para que se tenha o montante S, após n períodos, ou seja, calcular o VALOR ATUAL de S.

- Basta aplicarmos a fórmula do Montante, ou Soma dos

Montantes, para encontrarmos o valor atual

P = S / ( 1 + i ) n

Onde:

S = Soma dos Montantes

P = Principal ( VALOR ATUAL )

i = taxa de juros

n = nº de períodos considerados Interpolação Linear é utilizada para o cálculo do valor de ( 1 + i )n , quando o valor de n ou de i não constam da tabela financeira disponível para resolver o problema.

a interpolação é muito utilizada quando se trabalha com taxas de juros “quebradas” ou períodos de

tempo “quebrados”. Ex.: taxa de juros de 3.7 % a.m. ou 5 meses e 10 dias

Como a tabela não fornece o valor da expressão ( 1 + i ) n

para números “quebrados”, devemos

Page 69: matematica_aplicada

69

procurar os valores mais próximos, para menos e para mais, e executarmos uma regra de três, deste

modo: Ex.: Temos que calcular o montante de um principal de $ 1.000 a uma taxa de juros de 3.7 % a.m.,

após 10 meses, a juros compostos.

A tabela não fornece o fator ( 1 + i ) n

correspondente a 3.7 %, mas seu valor aproximado pode ser

calculado por interpolação linear de valores fornecidos na tabela.

Procuramos, então, as taxas mais próximas de 3.7 %, que são 3 % e 4 %. Na linha correspondente a

10 períodos (n), obtêm-se os fatores correspondentes a ( 1 + i ) n

que são, respectivamente,

1.343916 e 1.480244. Procedemos, então, a uma regra de três para encontrarmos o fator referente

a 3.7 %:

para um acréscimo de 1 % ( 4% - 3% ) temos um acréscimo de 0.136328

(1.480244 – 1.343916);

para 0.7 % de acréscimo na taxa, o fator ( 1 + i ) n

terá um acréscimo de x. Portanto:

1 % --------------- 0.136328

0.7 % ------------- x x = 0.09543

- Somando-se o valor encontrado (0.09543) ao do fator ( 1 + i ) n

correspondente à taxa de 3 % (1.343916), teremos o fator (1.439346) correspondente à taxa de 3.7 %.

- Voltando à solução do problema, temos:

S = 1.000 x 1.439346 S = $ 1.439,34

8.3. TAXAS DE JUROS TAXAS PROPORCIONAIS

Na formação do montante, os juros podem ser capitalizados mensalmente, trimestralmente, semestralmente e assim por diante, sendo que, via de regra, quando se refere a período de capitalização, a taxa de juros é anual. Assim, pode-se falar em:

juros de 30 % a.a., capitalizados semestralmente;

juros de 20 % a.a., capitalizados trimestralmente;

juros de 12 % a.a., capitalizados mensalmente;

Quando a taxa for anual, capitalizada em períodos menores, o cálculo de ( 1 + i ) n

é feito com a

Page 70: matematica_aplicada

70

TAXA PROPORCIONAL. Dessa forma: Para 30 % a.a., capitalizados semestralmente, a taxa semestral proporcional é 15% a.s.

1 ano = 2 semestres 30 % a.a. = 2 x 15 % a.s.

Para 20 % a.a., capitalizadas trimestralmente, a taxa trimestral proporcional é 5 % a.t.

1 ano = 4 trimestres 20 % a.a. = 4 x 5 % a.t.

Para 12 % a.a., capitalizados mensalmente, a taxa mensal proporcional é 1 % a.m.

1 ano = 12 meses 12 % a.a. = 12 x 1 %

a.m. Ex.: Qual o montante do capital equivalente a $ 1.000, no fim de 3 anos, com juros de 16 %, capitalizados trimestralmente ?

Dados: P = 1.000

i = 16 % a.a. = 4 % a.t. = 0.04 a.t. n = 3 anos = 12 trimestres

S = P . ( 1 + i ) n

S = 1.000 . ( 1 + 0.04 ) 12

S = 1.000 x (1.601032) S = $ 1.601,03

TAXAS EQUIVALENTES

São taxas diferentes entre si, expressas em períodos de tempo diferentes, mas que

levam um capital a um mesmo resultado final ao término de um determinado período de

tempo. Duas taxas são EQUIVALENTES quando, referindo-se a períodos de tempo diferentes,

fazem com que o capital produza o mesmo montante, num mesmo intervalo de

tempo. Temos, então:

C = ( 1 + ie ) n

, onde: ie = taxa de juros equivalente

Ck = ( 1 + ik ) nk

, onde: ik = taxa de juros aplicada

- Como queremos saber a taxa de juros equivalente (ik), para um mesmo capital, temos:

C = Ck ( 1 + ie ) n

= ( 1 + ik ) nk

Então: ie = ( 1 + ik ) k

- 1

Page 71: matematica_aplicada

71

- Esta fórmula é utilizada para, dada uma taxa menor (ex.: dia, mês, trimestre), obter a taxa maior equivalente (ex.: semestre, ano).

Ex.: Qual a taxa anual equivalente a 10 % a.m. ?

ik = 10 % a.m. = 0.1 a.m. ie = ?

k = 1 ano = 12 meses

ie = ( 1 + ik ) k

– 1 = (1 + 0.1) 12

- 1 = 2.138428

ie = 2.138428 ou transformando para taxa percentual

ie = 213,84 %

TAXAS NOMINAL e EFETIVA (ou REAL)

No regime de juros simples, as taxas são sempre EFETIVAS. Para melhor compreensão dos conceitos de Taxa Nominal e Taxa Efetiva, no sistema de juros compostos, vamos considerar os seguintes enunciados:

1. Qual o montante de um capital de $ 1.000, colocado no regime de juros compostos à taxa de 10 % a.a., com capitalização anual, durante 2 anos ?

Solução: Tal enunciado contém uma redundância, pois em se tratando de uma taxa

anual de juros compostos, está implícito que a capitalização (adição de juros ao

Capital), é feita ao fim de cada ano, ou seja, é anual. Elaborado visando o aspecto

didático, este enunciado objetivou enfatizar que a taxa efetivamente considerada é a de

10 % a.a., ou seja, que a taxa de 10 % é uma TAXA EFETIVA. 2. Qual o montante de um capital de $ 1.000, colocado no regime de juros compostos, à

taxa de 10 % a.a., com capitalização semestral, durante 2 anos ?

Solução: Este segundo enunciado também apresenta uma incoerência, pois sendo uma

taxa anual, os juros só são formados ao fim de cada ano e, portanto, decorridos

apenas 1 semestre, não se terão formados ainda nenhum juros e, por conseguinte, não

poderá haver capitalização semestral.

Portanto, na prática costuma-se associar o conceito de TAXA NOMINAL ao de

TAXA PROPORCIONAL Assim, se a taxa de juros por período de capitalização for i e se houver

N períodos de capitalização, então a TAXA NOMINAL iN será:

IN = N x i

Page 72: matematica_aplicada

72

O conceito de TAXA EFETIVA está associado ao de taxa equivalente. Assim, a taxa efetiva ie pode

ser determinada por equivalência, isto é, o principal P, aplicado a uma taxa ie, durante um ano, deve

produzir o mesmo montante quando aplicado à taxa i durante n períodos.

i = ( 1 + ie) 1/n

- 1

Ex.: Vamos supor $ 100 aplicados a 4 % a.m., capitalizados mensalmente, pelo prazo de 1 ano. Qual a taxa nominal e a taxa efetiva.

a) Taxa Nominal

IN = N x i 12 x 0.04 = 0.48 IN = 48 % a.a. Taxa

Nominal

b) Taxa Efetiva

P = $ 100 S = P (1 + i) n

S = ?

i = 4 % a.m. = 0.04 a.m. S = 100 x ( 1 + 0.04) 12

n = 12 meses S = 100 x 1.60103

S = $ 160,10

Logo, J = 160,10 – 100 J = $ 60,10, que foi produzido por $ 100;

então:

ie = 60,10 % a.a.

A taxa equivalente também poderia ser determinada pela fórmula:

i = ( 1 + ie) 1/n

- 1

ie = ( 1 + i)n

- 1 = (1 + 0.04)12

– 1 = 1.60103 – 1 =

0.60103 ie = 0.6010 transformando-se para a forma percentual, temos:

ie = 60,10 % a.a.