maikol anderson kockrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · dimensionamento de um...

71

Upload: others

Post on 14-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 2: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

MAIKOL ANDERSON KOCK

DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA

ARMAZENAMENTO DE SOJA

Trabalho de conclusão de curso de gradu-ação, apresentado à disciplina de Trabalhode Conclusão de Curso , do Curso de Enge-nharia Mecânica do Departamento Acadê-mico de Mecânica - DAMEC - da Universi-dade Tecnológica Federal do Paraná, comorequisito parcial para obtenção do título deBacharel em Engenharia Mecânica.

Orientador: Prof. Dr. Diego Rizzotto Ros-setto

PATO BRANCO

2018

Page 3: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

FOLHA DE APROVAÇÃO

DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARAARMAZENAMENTO DE SOJA

MAIKOL ANDERSON KOCK

Trabalho de Conclusão de Curso de Graduação apresentado no dia 20/06/2018 comorequisito parcial para a obtenção do Título de Engenheiro Mecânico, do curso de Enge-nharia Mecânica do Departamento Acadêmico de Mecânica (DAMEC) da UniversidadeTecnológica Federal do Paraná - Câmpus Pato Branco (UTFPR-PB). O candidato foiarguido pela Banca Examinadora composta pelos professores abaixo assinados. Apósdeliberação, a Banca Examinadora julgou o trabalho APROVADO.

Prof. Msc. Roberto Nunes da Costa(UTFPR)

Prof. Dr. Fábio Rodrigo Mandello Rodrigues(UTFPR)

Prof. Dr. Diego Rizzotto Rossetto(UTFPR)

Orientador

Prof. Dr. Paulo Cezar AdamczukResponsável pelo TCC do Curso de Eng. Mecânica

*A folha de aprovação assinada encontra-se na coordenação do curso de engenharia mecânica.

Page 4: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

RESUMO

KOCK, Maikol Anderson. Dimensionamento de um silo metálico com fundo plano

para o armazenamento de soja. 71 p. Trabalho de Conclusão de Curso (Bacharelado

em Engenharia Mecânica) - Universidade Tecnológica Federal do Paraná. Pato Branco,

2018.

Neste trabalho apresenta-se um conteúdo sobre silos metálicos, que são estruturas

construidas em aço e destinadas ao armazenamento de grãos. Consiste em um com-

pacto estudo sobre o comportamento dessas estruturas quando carregadas com as

ações de grãos, e com ações do vento. Seguindo com base em normas nacionais

e estrangeiras mais utilizadas pelos projetistas, um silo exemplo com fundo plano é

utilizado para dimensionamento.Este silo exemplo tem capacidade máxima de car-

regamento de 1490 toneladas de soja, e fica situado na região de Pato Branco-PR,

informação utilizada para ações do vento. Para essas combinações de ações, houve

um caso crítico, e para esse resultado, um cálculo de dimensionamento foi feito, os

esforços solicitantes de componentes como chapas e parafusos são encontrados para

o corpo do silo, e materiais são selecionados para atender esses esforços. Nos montan-

tes da estrutura utilizou-se um software de dimensionamento estrutural para cálculos,

denominado RFEM, versão liberada para estudantes.

Palavras-chave: Grãos; Dimensionamento; Silo metálico; RFEM.

Page 5: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

ABSTRACT

KOCK, Maikol Anderson. Modeling a flat-bottomed silo for storage of soybeans.

71 p. Course Completion Work (Bachelor of Mechanical Engineering) - Bachelor of

Mechanical Engineering. Pato Branco, 2018.

This work presents contente about metallic silos, which are structures constructed in

steel and destined to the storage of grains. It consists of a compact study on the behavior

of these structures when loaded with grain actions and with wind actions. Based on

national and foreign standards that are most used by designers, an model silo with

flat bottom is choosed for the modeling. This model silo has a maximum load capacity

of 1490 tons of soybean, and is located in the region of Pato Branco-PR, information

used to selec the correct wind actions. For these combinations of actions, there was a

critical case, and for that result, a sizing calculation was made, the requesting efforts of

components like plates and bolts are dimensioned for the silo body, and materials are

selected to meet those efforts. Structural dimensioning software, called RFEM, version

released for students was used in the framework amounts.

Keywords: Grains; Modeling; Metal silo; RFEM.

Page 6: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

LISTA DE ILUSTRAÇÕES

Figura 1 – Tensão em dois pontos do produto. . . . . . . . . . . . . . . . . . . . 18

Figura 2 – Determinação do ângulo de repouso. . . . . . . . . . . . . . . . . . 21

Figura 3 – Ensaio de cisalhamento de produto, Jenike Shear Cell. . . . . . . . 25

Figura 4 – Ensaio de cisalhamento de produto com a superfície confinante,

Jenike Shear Tester. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figura 5 – Gráficos que representam a dilatação da amostra. . . . . . . . . . . 27

Figura 6 – Tipos de tremonha mais utilizados. . . . . . . . . . . . . . . . . . . . 27

Figura 7 – Tipos de fluxo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figura 8 – Efeito da esbeltez no fluxo. . . . . . . . . . . . . . . . . . . . . . . . 30

Figura 9 – Determinação do fluxo. . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figura 10 – Dimensões de geometria do silo, excentricidade e notação de pressão

respectivamente. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figura 11 – Formas de seção transversal. . . . . . . . . . . . . . . . . . . . . . . 32

Figura 12 – Definição de z(m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figura 13 – Carga local enchimento. . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figura 14 – Carga local de descarregamento. . . . . . . . . . . . . . . . . . . . . 37

Figura 15 – Acidentes em silos ocorridos com o vento. . . . . . . . . . . . . . . . 41

Figura 16 – a) Ângulo de incidência do vento b) Cpe no corpo. . . . . . . . . . . . 42

Figura 17 – Esquemático das principais ações em um silo cilíndrico de fundo plano. 44

Figura 18 – Flambagem local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figura 19 – Geometria de ligações. . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figura 20 – Tipos de coberturas de silos. . . . . . . . . . . . . . . . . . . . . . . 52

Figura 21 – Representação em fluxograma da metodologia. . . . . . . . . . . . . 54

Figura 22 – Geometria do silo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figura 23 – Comparação de pressões, carregamento e descarregamento. . . . . 58

Figura 24 – Vista isómetrica do modelo. . . . . . . . . . . . . . . . . . . . . . . . 61

Figura 25 – Combinações. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figura 26 – Esquema das chapas utilizadas com 3 parafusos na direção de

solicitação. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figura 27 – Esquema das chapas utilizadas com 4 parafusos na direção de

solicitação. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figura 28 – Solicitação para cada chapa e suas resistências. . . . . . . . . . . . 67

Figura 29 – Dimensões do perfil . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figura 30 – Esforços internos da barra 4. . . . . . . . . . . . . . . . . . . . . . . 69

Figura 31 – Localização da barra crítica. . . . . . . . . . . . . . . . . . . . . . . . 69

Page 7: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

LISTA DE TABELAS

Tabela 1 – Efeito da compressibilidade no fluxo do material. . . . . . . . . . . . 20

Tabela 2 – Classificação de acordo com tamanho das partículas. . . . . . . . . 21

Tabela 3 – Fluxo dos produtos armazenáveis correlacionados com (φr). . . . . 22

Tabela 4 – Descrição das classes. . . . . . . . . . . . . . . . . . . . . . . . . . 33

Page 8: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

LISTA DE QUADROS

Quadro 1 – Valores médios para as propriedades. . . . . . . . . . . . . . . . . 39

Quadro 2 – Valores de propriedades dos sólidos a se considerar. . . . . . . . . 40

Quadro 3 – Distribuição das pressões externas em edificações cilíndricas de

seção circular. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Quadro 4 – Valores dos fatores de combinação Ψ0 e de redução Ψ1 e Ψ2 para

ações variáveis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Quadro 5 – Valores dos coeficientes de ponderação das ações. . . . . . . . . . 45

Quadro 6 – Valores de propriedades dos sólidos a se considerar. . . . . . . . . 56

Quadro 7 – Pressões de carregamento e descarregamento. . . . . . . . . . . . 57

Quadro 8 – Valores de carga localizada aplicada no anel 15. . . . . . . . . . . 59

Quadro 9 – Distribuição das pressões externas no silo. . . . . . . . . . . . . . . 60

Quadro 10 – Coeficientes de ponderação e fatores de combinação utilizados. . . 61

Quadro 11 – Dimensões e resistência da chapa por anel. . . . . . . . . . . . . . 67

Quadro 12 – Espessura de montante por anel, e relação de cálculo RFEM. . . . 70

Page 9: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

SUMÁRIO

1 INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 OBJETIVOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 Objetivo geral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.2 Objetivos específicos. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 REFERENCIAL TEÓRICO . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 HISTÓRICO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 CAPACIDADE DOS SILOS . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 CARACTERISTICAS FÍSICAS DOS MATERIAIS ENSILADOS . . . . 17

2.4 ESCOLHA DAS AMOSTRAS . . . . . . . . . . . . . . . . . . . . . . 17

2.5 ESTADO DE TENSÃO DO PRODUTO DENTRO DE UM SILO . . . . 18

2.6 FATORES QUE INFLUENCIAM NAS PROPRIEDADES FÍSICAS E

DE FLUXO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.1 Peso específico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.2 Compactação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.3 Compressibilidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.4 Tamanho das partículas . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.5 Ângulo de repouso . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.6 Degradação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.7 Corrosão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.8 Abrasão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 ENSAIO DE CISALHAMENTO DE JENIKE . . . . . . . . . . . . . . . 24

2.8 FLUXO EM SILOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8.1 Tipos de tremonha . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8.2 Tipos de fluxo em silos . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9 EUROCODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.10 CLASSIFICAÇÃO DOS SILOS . . . . . . . . . . . . . . . . . . . . . . 31

2.10.1 Classe estrutural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.11 PRESSÕES EM SILOS COM ESBELTEZ INTERMEDIÁRIA . . . . . 33

2.11.1 Pressões de carregamento . . . . . . . . . . . . . . . . . . . . . . . . 33

2.11.2 Pressões de descarregamento . . . . . . . . . . . . . . . . . . . . . . 35

2.11.3 Sobrecarga na pressão de enchimento . . . . . . . . . . . . . . . . . 36

2.11.4 Sobre carga na pressão de descarregamento . . . . . . . . . . . . . 37

2.12 PROPRIEDADES DOS PRODUTOS ARMAZENADOS SEGUNDO

BS EN 1991-4, 2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.13 AÇÃO DO VENTO EM SILOS . . . . . . . . . . . . . . . . . . . . . . 40

Page 10: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

2.13.1 Pressão causada pelo vento . . . . . . . . . . . . . . . . . . . . . . . 40

2.13.2 Coeficiente de pressão . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.14 AÇÕES EM SILOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.15 COMBINAÇÕES DE AÇÕES . . . . . . . . . . . . . . . . . . . . . . . 44

2.15.1 Combinações últimas normais . . . . . . . . . . . . . . . . . . . . . . 46

2.15.2 Combinações últimas especiais ou de contruções . . . . . . . . . . . 46

2.15.3 Combinações últimas excepcionais . . . . . . . . . . . . . . . . . . . 47

2.16 BARRAS SUBMETIDAS À FORÇA DE COMPRESSÃO E TRAÇÃO . 47

2.16.1 Flambagem local e o método das larguras efetivas . . . . . . . . . . 47

2.16.2 Flambagem global por flexão, por torção ou por flexo-torção . . . . . 49

2.16.3 Perfil monossimétrico . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.16.4 Barras submetidas à tração . . . . . . . . . . . . . . . . . . . . . . . 50

2.17 TELHADO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 METODOLOGIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 RESULTADOS E ANÁLISES . . . . . . . . . . . . . . . . . . . . . . 55

4.1 CARACTERÍSTICAS DO SILO . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Determinação das propriedades da soja . . . . . . . . . . . . . . . . 56

4.1.2 Pressões devido ao produto armazenado . . . . . . . . . . . . . . . . 57

4.1.3 Sobrecarga local de carrgamento e descarregamento. . . . . . . . . 58

4.1.4 Pressão do vento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 CARGAS E COMBINAÇÕES APLICADAS . . . . . . . . . . . . . . . 60

4.3 DIMENSIONAMENTO DO CORPO . . . . . . . . . . . . . . . . . . . 62

4.3.1 Chapas laterais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Exemplo de cálculo para o primeiro anel. . . . . . . . . . . . . . . . . 64

4.3.3 Parafusos de ligação . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.4 Rasgamentos entre furo ou entre furo e borda . . . . . . . . . . . . . 65

4.3.5 Pressão de contato (esmagamento) . . . . . . . . . . . . . . . . . . . 65

4.3.6 Força cortante no parafuso . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 RESISTÊNCIA DAS CHAPAS . . . . . . . . . . . . . . . . . . . . . . 66

4.5 MONTANTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 CONCLUSÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

REFERÊNCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Page 11: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

13

1 INTRODUÇÃO

Silo é um reservatório fechado utilizado para o armazenamento de materiais,

líquidos ou sólidos. Os silos destinados ao armazenamento de grãos são denominados

graneleiros, podem ser depositados de forma livre, ou ensacados, são empregados

afim de se manter as propriedades de grãos, mantendo assim o granel a temperaturas e

condições ideais que são determinadas para cada tipo de produto (CARNEIRO, 1948).

Com a utilização destas contruções confinantes, um produto pode ficar confinado

por um longo período de tempo sem que perca suas características iniciais, e seus

nutrientes. No brasil onde uma grande parcela do Produto interno bruto (PIB) é oriunda

diretamente, e indiretamente da agricultura, muitos fatores justificam investimentos e

estudos neste ramo.

Segundo a Companhia Nacional de Abastecimento (Conab) em uma pesquisa

realizada, estima que a produção de grãos 2016/2017 no Brasil será de 227,93 milhões

de toneladas, representando um crescimento de 24,3% em relação a safra 2015/2016,

quando a colheita totalizou 186,61 milhões de toneladas. Esse aumento nas safras

é motivada pelo aumento das exportações no Brasil, onde elas cresceram 24,4% no

primeiro trimestre de 2017, comparando a 2016 no mesmo período.

O Brasil está relacionado diretamente a exportações de grãos, e como o país esta

aumentando sua safra, maior atenção deve ser direcionada aos silos granelerios. De

acordo com a revista Folha de S.Paulo (2017), comprova que esse deficit já chega a

ser de 74 milhões de toneladas, sendo que esse é um fator estático, tornando esses

números na realidade ainda maiores. Essa situação contraria as orientações da FAO

– (Organização das Nações Unidas para Agricultura e Alimentação para segurança

alimentar) que preconiza ao país ter uma capacidade de armazenagem 20% superior a

safra do mesmo.

A estimativa de acordo com o crescimento da produção no país, somando ao

deficit estático leva ao cálculo que 115,32 milhões de toneladas serão produzidas

aproximadamente e não haverá local para armazenagem ideal desses. Já sabendo

que milhões de toneladas ficam a céu aberto em diversas regiões do país, e com essa

falta de armazenário apropriado ou a falta do mesmo, ocasionamos a perda de muitos

investimentos R$ que por outros olhos, nos mostram que são investimentos que não

são convertidos em sua totalidade, fatores relacionados são:

• Tecnologia de insumos disperdiçada;

• Má qualidade dos mesmos;

• Custos com frete no caso de epócas de safra, pois o custo é superior;

Page 12: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

14

• Impossibilidade de negociação, gerando custo inferior do produto.

1.1 OBJETIVOS

1.1.1 Objetivo geral

Com objetivo geral, o dimensionamento de um silo metálico para uma grande ca-

pacidade de armazenamento de grãos, seguindo como base as normas mais utilizadas

pelos projetistas.

1.1.2 Objetivos específicos.

• Dimensionar as pressões de produto no corpo de acordo com (BS EN 1991-4,

2006), sendo ele com uma capacidade maior de 1000 toneladas de soja;

• Desenhar e carregar o confinante com suas principais ações;

• Cálcular os esforços para os principais componentes;

• Detalhar os materiais a serem utilizados.

Page 13: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

15

2 REFERENCIAL TEÓRICO

2.1 HISTÓRICO

Os primeiros registros de construções destinadas a armazenamentos de grãos

foram entre 1870 e 1880 sendo que acreditava-se que a pressão de grãos se compor-

tava de maneira semelhante a pressão hidrostática, os primeiros projetos estruturados

eram equivalentes aos mesmos, em função da altura.

Experimentos de (ROBERTS, 1884 apud PALMA, 2005) em pequena escala

demonstraram que a pressão sofre acréscimo linear com a profundidade até um certo

ponto, a partir de tal a pressão deixa sua linearidade e se descobriu que seu peso é

transferido as paredes do silo por atrito, efetuando assim uma diminuição da parcela de

pressão atuante no fundo do reservátorio e causando uma pressão lateral no mesmo.

(JANSSEN, 1895) estabeleceu um equação para o cálculo da pressão em um

silo, considerando uma fatia infintesimal do produto ensilado utilizando o equilíbrio de

forças. Sua descoberta mudou o conceito utilizado por projetistas de silos, sendo de

extrema utilidade e utilizado até hoje por normas internacionais. Sua pesquisa serviu

como base para pesquisadores subsequentes.

Contudo em 1930 diversos silos produzidos utilizando a base de equações de

Janssen falharam e ocasionaram grandes perdas na época, isso ocorreu devido a

projetistas utilizarem materiais com um fator de segurança inferior, causando falhas

estruturais e levando a ruptura entre outros de componentes. Isso levou a pesquisadores

da época a focarem seus estudos no comportamento dos grãos e gerando dúvidas

sobre as teórias de Janssen.

(JENIKE, 1961) foi um deles, pode se dizer que ele mudou totalmente a idéia de

pressões e fluxos em silos verticais, inovou o projeto de Janssen. Até então pesqui-

sadores conheciam os efeitos de sobrepressão ocasionado em silos esbeltos, porém

não conseguiam explicar este fenômeno. Foi então que Jenike e seu aluno Jerry R.

Johanson apresentaram e definiram os dois principais tipos de fluxos e estabeleceram

propriedades físicas dos produtos armazenados, assim como projetaram equipamentos

para a obtenção destes parâmetros. Segundo Jenike os mecanismos de fluxo se com-

portam de maneiras diferentes de produtos armazenados sólidos e líquidos, os sólidos

transferem esforços em forma de cisalhamento as paredes do silo, por apresentarem

ângulo de atrito estático maior que zero, diferentemente dos líquidos.

Foi então em 1968 realizando estudos em protótipos reduzidos e também em silos

reais que chegaram a conclusão que a teoria de Janssen não levava em consideração

as pressões produzidas no fluxo de descarregamento, e que as mesmas geravam um

Page 14: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

16

esforço de até três vezes maior que que as condições de pressões iniciais. Então a

teoria de Janssen ficou definida para as condições estáticas apenas, ou seja, quando

não houvesse fluxo de material.

Atualmente existem três grupos de estudo segundo (AYUGA, 1995 apud PALMA,

2005) claramente diferenciados, os que estudam os comportamentos em silos de

modelos reais, em protótipos de escalas reduzidas, e uma outra vertente que estuda

os esforços estruturas com fluxo do produto estático e dinâmico através dos elementos

finitos.

2.2 CAPACIDADE DOS SILOS

Os tipos de armazenamento de grãos são variados dependendo de seu material

base, são fabricados em concreto, metálico ou madeira. Os mesmos envolvem diferen-

tes tipos de tecnologias e parâmetros em suas construções, o fator preponderante na

escolha de um armazém a granel é sua capacidade de armazenamento, custo e tempo

de estocagem, sem influenciar nas propriedades dos grãos (LAZZARI, 2015).

Capacidade dos silos comumentes .

• Silos de madeira - volumes pequenos, 60 à 80 toneladas;

• Silos de alvenaria - de 100 à 1,2 mil toneladas;

• Silos de concreto - 1 tonelada à 3 mil toneladas ou mais;

• Silos metálicos – Podem variar de 60 à 20 mil toneladas ou mais.

Lembrando que esses números mostram uma estimativa de como comumente são

utilizados os silos com estas características, silos podem ser fabricados com qualquer

volume, e a criatividade do ser humano é ilimitada.

O mais comumente utilizados são circulares e metálicos, apoiados diretamente

na base ou elevados, são feitos de chapas lisas ou corrugadas ambas galvanizadas

afim de se evitar a corrosão, são escolhidos por terem uma facilidade de montagem e

desmontagem maior em relação aos outros. São parafusados e com um custo menor

no caso de grandes capacidades, também possuem um maior controle de umidade e

melhores propriedades dos grãos estocados (LAZZARI, 2015).

Como o Brasil está com um deficit muito amplo e o custo é sempre um fator

chamativo, os silos metálicos são dominantes quando o assunto é armazenagem a

granel, um estudo mais detalhado sobre o dimensionamento de um silo metálico será

realizado neste trabalho.

Page 15: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

17

2.3 CARACTERISTICAS FÍSICAS DOS MATERIAIS ENSILADOS

(CALIL Jr; CHEUNG, 2007) A determinação das propriedades do material a ser

armazenado é o primeiro passo a se considerar em um projeto de fluxo e estrutural em

um silo, e deve ser realizada levando em consideração as condições mais severas que

podem vir a acontecer, a fim de sempre prever o pior a ser detalhado. Mundialmente, o

equipamento mais utilizado para essas determinações é o aparelho de cisalhamento

de translação conhecido internacionalmente por "Jenike Shear Cell".

Parâmetros levados em considerações:

• Peso específico (kN/m3) (γ)

• Granulometria (mm) (dmáx e dmin)

• Ângulo de repouso do produto (◦) (φr)

• Ângulo estático de atrito de interno (◦) (φi)

• Efetivo Ângulo de atrito interno (◦) (φe)

• Ângulo cinemático de atrito entre o produto e materiais da parede (◦) (φw)

• Função Fluxo instantânea (FF )

• Fator fluxo tremonha (ff )

2.4 ESCOLHA DAS AMOSTRAS

(CALIL Jr; CHEUNG, 2007) A escolha das amostras para ser realizado o teste

deve levar em consideração os extremos do produto a ser armazenado, as propriedades

do grão influenciam no fluxo de descarregamento e na pressão exercida internamente,

cada teste em diferentes amostras devem ser reproduzidos seguindo como base os

itens a seguir:

• Umidade máxima e mínima;

• Dimensões médias das partículas grandes e pequenas;

• Variação de tamanho da partícula com o tempo;

• Amostras frescas e armazenadas com o tempo máximo esperado dentro do silo;

Page 16: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

18

• Outras condições influentes na coesão e propriedades de fluxo.

Em projetos que se desconheça as propriedades ideias do material a ser armazenado,

deve ser consultado o projetista/construtor, também um especialista para resolver as

dificuldades encontradas, a escolha do material deve ser correta para a medição dos

parâmetros que influênciam no funcionamento ideal do silo, fluxo e armazenamento.

2.5 ESTADO DE TENSÃO DO PRODUTO DENTRO DE UM SILO

A transmissão de pressões criadas dentro de um silo depende do material do

produto, fluidos e sólidos transmitem pressões de formas diferentes. Em fluidos a pres-

são em qualquer ponto é igual em todas as direções, e os mesmos não apresentam

cisalhamento. Os materiais granulares são chamados de semi fluidos, eles não se

comportam como sólidos e nem como fluidos, são compressíveis de acordo com as

características do material a granel e outros fatores.

No ponto A como mostra a figura a seguir, as tensões principais exercidas no grão

são tangencias e normais. No ponto B onde o produto esta em contato com a parede

do silo, existe um ângulo de atrito com a parede φw onde uma força de atrito é exercida

no produto, diferenciando as pressões atuantes (CALIL Jr; CHEUNG, 2007).

Figura 1: Tensão em dois pontos do produto.

Fonte: (CHEUNG, 2007).

Page 17: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

19

2.6 FATORES QUE INFLUENCIAM NAS PROPRIEDADES FÍSICAS E DE FLUXO

Existem diversos fatores que influenciam na qualidade do armazenamento do

produto, na pressão e no fluxo de descarga (CALIL Jr; CHEUNG, 2007). Os principais

fatores abordados são:

• Peso específico;

• Compactação;

• Compressibilidade;

• Tamanho das partículas;

• Ângulo de repouso;

• Degradação;

• Corrosão;

• Abrasão.

2.6.1 Peso específico

(CALIL Jr; CHEUNG, 2007) O peso específico é afetado pelo nível de tensão

atuante no ponto, ele depende do grau de compactação do produto, se a compactação

do produto for alta através de impacto, teremos um peso específico em função desta

compressibilidade. O peso específico de trabalho é utilizado para as determinações de

taxas de enchimento e descarregamento em um silo (γw), cálculado em quilogramas

por metro cúbico.

• Peso específico aerado (kg/m3) (γa) : Determinação da capacidade do silo e da

tremonha;

• Peso específico compactado (kg/m3) (γc) : Determinação da taxa de carregamento.

γw =(γc − γa)2

γc

+ γa (1)

2.6.2 Compactação

Processo pelo qual a densidade do produto é aumentada através do impacto,

rolagem, vibração e pressão vertical. Muito importante pois possui influência direta no

fluxo e nas pressões em um silo (CALIL Jr; CHEUNG, 2007).

Page 18: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

20

2.6.3 Compressibilidade

A compressibilidade é uma medida da variação do volume do material armazenado

causado pelas mudanças de tensões atuantes. O coeficiente de compressibilidade

(consolidação) é definido como Cc :

Cc =γc − γa

γc= 1 −

γa

γc

(2)

O coeficiente fornece uma caracterização da qualidade do fluxo, alguns fatores

como granulometria, umidade, densidade, tempo confinado e resistência individual

dos grãos afetam neste coeficiente. A tabela 1 classifica o fluxo, relacionando com o

coeficiente obtido.

Tabela 1: Efeito da compressibilidade no fluxo do material.

Coeficiente de compressibilidade Classe do material sólido Fluxo

De 0,05 a 0,15 Granular de fluxo livre Excelente0,15 a 0,18 Fluxo livre, granular em pó Bom0,18 a 0,22 Fluido, granular em pó Razoável0,22 a 0,28 Pó com grande fluidez Apertado0,28 a 0,33 Fluido, Pó coesivo Difícil0,33 a 0,38 Pó coesivo Muito difícil

>0,38 Pó muito coesivo Extremamente difícil

Fonte: (LEITE, 2008) adaptado.

Produtos com o coeficiente de compressibildade baixa podem formar arcos coe-

sivos na hora do descarregamento, impedindo o fluxo do mesmo, somente com uma

pequena parcela de energia (ação), e ou agitação este arco é quebrado e inicia-se

o fluxo, este fenômeno denomina-se como ”hanging up” por (GAYLORD; GAYLORD,

1984).

2.6.4 Tamanho das partículas

Materiais granulares geralmente não são coesivos, e são de fluxo livre, materiais

pulverulentos apresentam as características de dificuldade no fluxo, por serem coesivos

sob pressão os mesmos se deformam e criam arcos na descarga. Fatores que con-

tribuem para a coesão é a presença de pó, umidade, tempo entre outros, os ensaios

granulométricos e de compressibilidade definem sobre a coesão do produto.

O procedimento da granulometria consiste em peneirar a amostra e o obter as

informações como Módulo de finura, uniformidade e diâmetro médio das partículas,

Page 19: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

21

segundo (CALIL Jr, 1984-1985 apud CHEUNG, 2007) o ensaio de granulometria pode

ser utilizado para a classificação do produto quanto a coesão e fluxo. A tabela 2

classifica o fluxo de acordo com o diâmetro.

Tabela 2: Classificação de acordo com tamanho das partículas.

Diâmetro das partículas (mm) Classificação

D > 0,42 Granulares0,42 < D < 0,149 Pulverulentos coesivos0,149 < D < 0,079 Pulverulentos coesivos finos

D < 0,079 Pulverulentos coesivos extra finos

Fonte: (CALIL Jr, 1984-1985 apud CHEUNG, 2007).

2.6.5 Ângulo de repouso

O ângulo de repouso do produto (φr) é o ângulo formado quando a partícula cai

verticalmente em queda livre até uma superfície horizontal, então forma-se uma espécie

de volume onde o material é empilhado sem cair, nesse ponto o material está a beira

do deslizamento. O ângulo entre a superficie do produto formada e a horizontal pode

variar de 0◦ até 90◦ como mostra a figura a seguir, e é chamado ângulo de repouso, o

mesmo pode inferir sobre o ângulo de atrito interno e o fluxo de material.

Figura 2: Determinação do ângulo de repouso.

Fonte: adaptado de (MESQUITA FILHO, 2015).

A rugosidade da superficie e a altura de queda livre são fatores influentes na

determinação do mesmo, e devem ser seguidas por procedimentos padrões (CALIL Jr;

Page 20: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

22

CHEUNG, 2007). A literatura recomenda que a superfície seja bastante rugosa e que a

altura de queda livre esteja entre φ partícula > H > 10 cm para verificações. Para a maior

parte dos sólidos de fluxo livre onde se tem pequenas faixas de φ partícula, o ângulo de

atrito interno é igual ao de repouso e pode ser utilizado para verificações preliminares,

A tabela 3 mostra o fluxo e tipo de produto correlacionando com o ângulo.

Tabela 3: Fluxo dos produtos armazenáveis correlacionados com (φr).

Ângulo de repouso (φr) Produto Fluxo

25 a 30 Produto granular Fluxo livre30 a 38 Produto granular Fluxo fácil38 a 45 Produto pulverulento Instabilidade no tipo de fluxo45 a 55 Pós coesivos Podem requerer equipamentos55 a 70 Pós muito coesivos Requerem equipamentos especiais

Fonte: (GAYLORD; GAYLORD, 1984 apud BATISTA, 2009) e adaptado.

2.6.6 Degradação

A degradação ocorre de diversas maneiras, as mais comumentes ocorrem no

carregamento (enchimento), embora no esvaziamento também ocorra degradação do

material, desta forma grãos mais frágeis podem se quebrar e reduzir o tamanho. O

resultado é devido ao impacto de queda livre do material, agitação ou atrito entre os

mesmos (MILANI, 1993).

Os grãos possuem uma camada fina protetora que podem vir a se romper com

impacto ou outros, assim fazendo com que o grão perca sua proteção natural, prejudi-

cando a qualidade do mesmo.

O controle de temperatura do grão é essencial para que o mesmo se mantenha

com suas propriedades até o fim de seu armazenamento dentro de um silo, sistemas

de termometria são utilizados para este controle. Outro fator que resulta em uma

degradação acentuada do produto é a umidade, que se não for controlada resulta em

um aparecimento de fungos e bactérias (CALIL Jr; CHEUNG, 2007).

Diversos fatores são importantes no estudo da degradação do material, alguns

parâmetros como o tempo de armazenamento, propriedades do produto e controle

de pragas são essenciais para prever a degradação de cada tipo de produto a ser

armazenado, pois cada material apresenta suas características.

Page 21: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

23

2.6.7 Corrosão

Certos produtos atacam quimicamente as superfícies confinantes com os quais

estão em contato, a corrosão na superfície altera as propriedades do material confinante

e pode ocasionar falhas não previstas se o cuidado necessário não for tomado.

O PH é um indicativo a ser verificado, PH’S entre 1 a 6 são ácidos, o valor

7 indica um produto neutro, e de 8 a 14 alcalinos, esses valores são verificados

inicialmente, porém vale ressaltar que devido a umidade residual existe a possibilidade

do desenvolvimento de fungos e bactérias, com potencial de geração de elementos

tóxicos e liberação de calor não prevista, em alguns casos específicos também em

produtos com PH neutro (CALIL Jr; CHEUNG, 2007).

Muitos dos ácidos são gerados com as variações de temperatura dentro de um

confinamento, principalmente na fermentação, isso ocorre de forma rápida quando

existe umidade, produzindo ácidos com alto potencial de corrosão até mesmo em

chapas zincadas.

Por estes e outros fatores que uma ventilação é necessária em um silo, para

manter-se um produto seco e o mais próximo possível de suas características ideias

em seu armazenamento, assim prolongando o tempo de confinamento em seu máximo

e mantendo os nutrientes do produto, também prolongando a vida útil do silo, e o tempo

de intervalo de manutencão do mesmo.

2.6.8 Abrasão

O desgaste abrasivo é um fator preocupante na vida útil de um silo metálico, como

o mesmo sempre trabalha com fluxos sendo de enchimento e esvaziamento, esses

provocam uma remoção de material na superfície da parede e também no fundo de

um silo ao decorrer do tempo, principalmente se o material a ser armazenado for um

material com alta dureza. A manutenção preventiva do silo é necessária para obter

informações ao transcorrer do tempo sobre as propriedades das superfícies.

(CALIL Jr; CHEUNG, 2007) A abrasão varia com a forma da partícula, dureza,

tamanho e densidade, estas são característica que definem um material sendo mais

abrasivo que outro em determinada superfície. A principal característica medida para

um desgaste abrasivo é a dureza do produto, um material mais duro que outro é capaz

de riscá-lo, ou seja, retirar material da superfície menos dura. Ferro e aço estão na

faixa de 4 a 8,5 na escala Mohs dependendo de sua fabricação e tratamento térmico.

Portanto sobre o produto a ser armazenado, é necessário conhecer as proprie-

dades citadas para precaver e utilizar os materiais ideias no conjunto do confinante e

Page 22: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

24

evitar desgastes abrasivos.

2.7 ENSAIO DE CISALHAMENTO DE JENIKE

Jenike, observando o avanço da mecânica dos sólidos em 1952, estudou a

aplicação de testes realizados na mecânica dos solos (aparelho triaxial, aparelho

de cisalhamento direto e aparelho de cisalhamento anelar) para a verificação das

propriedades do produto (MILANI, 1993)

Como os aparelhos utilizados por Jenike não apresentaram dados satisfatórios e

condizentes com as especificações e informações necessárias, Jenike desenvolveu

um método juntamento com um aparelho que foi denominado de "Jenike Shear Cell",

aproximadamente no ano de (1964).

(CALIL Jr; CHEUNG, 2007) O mesmo vem sendo utilizado e ainda consagrado

para a determinação das propriedades nos dias atuais. O aparelho é baseado no

ensaio de cisalhamento dos solos, porém com algumas modificações necessárias

para reproduzir ao máximo possível as condições do produto. Para verificar a con-

fiabilidade do ensaio de Jenike, um grupo de engenheiros químicos denominado

”Working Party on the Mechanics of Particulate Solids (1989)” realizou testes com o

aparelho Jenike Shear Cell e elaborou procedimentos padrões a serem seguidos, este

padrão foi denominado de ”Standart Shear Testing Technique for Particulate Solids

Using the Jenike Shear Cell (SST, 1989)”.

(CALIL Jr; CHEUNG, 2007) O teste de cisalhamento é dividido em duas partes,

uma preparação das forças a serem utilizadas é necessária para o efetivo teste, deve

se conhecer o lugar geométrico e de deslizamento do produto. A primeira fase é

realizada utilizando tensões superiores as reais para se descobrir o lugar geométrico e

deslizamento do material, obtém se então, o fluxo estável do mesmo.

Na segunda fase as tensões reais de cisalhamento são empregadas, utilizando

valores inferiores a primeira fase, determinando as tensões cisalhantes necessárias

para o deslizamento do produto, ou seja, as tensões onde o material está a ponto de

sair de seu equilíbrio.

É necessário ter posse destas informações antes de um dimensionamento de um

silo, elas determinam indicativos sobre o comportamento de fluxo do produto na hora

de um descarregamento.

O ensaio de cisalhamento direto entre produtos é mostrado na figura 3 , pode

ser adaptado inserindo-se outra base de ensaio, que é uma amostra com alto padrão

das caracteristicas do material a ser utilizado na parede do confinante ”Jenike Shear

Tester”. Ela vai representar o atrito que a parede exercerá sobre o grão, informando

Page 23: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

25

assim se o material a ser utilizado apresenta as condições ideias para o trabalho, como

mostra a figura 4. Informações necessárias também quanto as pressões exercidas na

parede do mesmo, pois as pressões são dependentes do atrito gerado entre o produto

e a parede do confinante, veja a figura 1 página 18.

Figura 3: Ensaio de cisalhamento de produto, Jenike Shear Cell.

Fonte: (NETO et al., 2013)

Figura 4: Ensaio de cisalhamento de produto com a superfície confinante, Jenike Shear Tester.

Fonte: (HAN, 2011).

2.8 FLUXO EM SILOS

Estudos nos mostram que as pressões na parede do silo dependem do fluxo do

produto, sem o conhecimento do escoamento do mesmo fica muito difícil a prevenção

dos picos de pressões. Sendo ele na região de transição do corpo do silo com a

Page 24: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

26

tremonha, e em silos de fundo plano na região do corpo do silo com o talude de produto

estacionário formado (CHEUNG, 2007).

Para um projeto seguro e econômico ele deve ser determinado, e para isto é ne-

cessário conhecer os principais parâmetros que influênciam no correto funcionamento

do fluxo, esses são descritos a seguir:

1. Tipo do silo;

2. Máximo e mínimo material a ser armazenado;

3. Tolerância de segregação;

4. Necessidade de mistura;

5. Duração de armazenamento;

6. Vazão de descarregamento;

7. Função Fluxo;

8. Fator fluxo.

O fluxo de um produto é consideravelmente afetado pela sua característica de

dilatância. São poucos os testes capaces de quantificar esta propriedade, mas sabem

que um produto quando armazenado alcança uma densidade muito elevada devido

ao peso do produto mais elevado. Para fluir portanto o armazenado deve possuir uma

grande dilatação, provavelmente fluirá em pequenos canais de fluxo. Quando após

o enchimento o produto permanece fofo, tendem a fluir com grandes dimensões de

canais, e podem alcançar condições de fluxo de massa fora dos contornos defenidos

pela teoria de (JENIKE, 1961).

Na figura 5 a densidade é função das tensões principais, quando as tensões são

constantes o produto mais facilmente sofre cisalhamento. Quando as tensões sofrem

um aumento como se pode notar na mesma, o produto sofre consolidação, ocorrendo

assim um aumento na densidade e uma dificuldade maior no fluxo, ocorrendo assim os

pequenos canais mencionados. Quando as tensões são baixas, o produto expande e a

densidade é pequena, e o fluxo pode prosseguir.

2.8.1 Tipos de tremonha

A indústria produz diversos tipos de tremonha, no dia a dia as mais utilizadas por

elas são tremonhas concêntricas do tipo cônica e piramidal. As tremonhas são dividas

em dois tipos:

Page 25: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

27

Figura 5: Gráficos que representam a dilatação da amostra.

Fonte: (CALIL Jr; CHEUNG, 2007)

1. Tremonha de fluxo plano;

2. Tremonha de fluxo axissimétrico.

Figura 6: Tipos de tremonha mais utilizados.

Fonte: (CHEUNG, 2007)

Na figura 6 podemos observar diversos tipos de tremonhas, sendo a primeira de fundo

plano, a qual é objetivo deste trabalho.

Muitas normas caracterizam o fundo plano com inclinação sendo abaixo de 20◦.

Na segunda temos uma tremonha cônica, uma das mais comuns, onde o corpo

do silo é cilíndrico e a tremonha é cônica para facilitar o fluxo de produto.

Além disso o diâmetro bc da tremonha cônica é normalmente maior que a largura

bp para a tremonha em cunha, sendo uma das desvantagens da tremonha em cunha o

Page 26: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

28

comprimento da tremonha ser igual a largura do silo, comprimento mínimo da abertura

para este caso é L = 3 bp. Devido a essa desvantagem a tremonha piramidal e de

transição vem sendo mais utilizadas (CALIL Jr; CHEUNG, 2007).

2.8.2 Tipos de fluxo em silos

Como já mencionado anteriormente é extremamente importante em um projeto

se caracterizar o tipo de fluxo que ocorrerá. Caracterizando o tipo de fluxo do produto

é possível se determinar a tremonha a ser utilizada e também sua inclinação, pois

dependendo do produto e com a tremonha errônea surgem zonas estacionárias de

produto na qual sem um agente externo impossibilita o esvaziamento completo do silo.

A inclinação da tremonha também é um fator importante, este é fundamental

para produtos onde existem muita compactação e consequentemente uma grande

dificuldade na descarga do mesmo (CALIL Jr, 1984-1985).

Existem dois tipos de fluxo em um silo, sendo eles:

1. FLUXO DE MASSA : É o fluxo que todo o projetista deseja para o seu silo, é o

fluxo de todo o produto, ou seja, durante a descarga todos os grãos armazenados

estão em movimento, sendo assim o não surgimento de zonas estacionárias e

ocorrendo o esvaziamento completo do silo se assim necessário.

2. FLUXO DE FUNIL : É denominado assim devido a formação de um canal de fluxo

centralizado para descargas concêntricas, formando uma espécie de funil dentro

do silo. Criando no contorno deste fluxo zonas estacionárias onde o produto

permance após a descarga, e posteriormente somente com alguma vibração

mecânica, ou uma rosca extratora e outros é possível retirar o armazenado.

Lembrando que os tipos de fluxos são necessários para a determininação das

distribuições de pressões nas paredes do confinante na descarga, onde em casos de

descargas excêntricas surgem carregamentos assimétricos no perímetro do silo, devido

as pequenas espessuras das paredes em silos metálicos isto é muito problemático.

A figura 7 representa os dois tipos de fluxos que ocorrem em um silo na hora de

descarga.

1. Fluxo de massa;

2. Fluxo de funil;

3. Todo o produto em movimento;

4. Produto em movimento;

Page 27: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

29

Figura 7: Tipos de fluxo.

Fonte: (BS EN 1991-4, 2006)

5. Canal de fluxo;

6. Zona estacionária;

7. Transição efetiva;

8. Transição da tremonha.

A figura 8 mostra os efeitos causados a um fluxo de produto devido a esbeltez

do silo, isso induz a diferentes interpretações no cálculo de pressões para silos com

diferentes alturas, e devem seguir a norma que vem sendo utilizada.

No caso de silos esbeltos de fundo plano surge-se uma transição efetiva, ela é

responsável por um pico de pressão extamente na transição, imitando a distribuição

de pressões de um silo com tremonha, a altura da zona estacionária para estes casos

pode ser determinada e em alguns casos um anel de reforço pode ser colocado (CALIL

Jr; CHEUNG, 2007).

O tipo de fluxo no silo pode ser determinado com os gráficos da figura 9, se

conhecendo o valor do ângulo β em graus da inclinação da tremonha com a vertical,

também o tipo da tremonha a ser utilizada, e o coeficiente de atrito das paredes µh.

Page 28: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 29: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

31

valores no geral, maiores a de outras normas, favorecendo a segurança.

As mesmas utilizam o modelo de (JANSSEN, 1895) estático, com fatores de

sobrepressão determinados por cada, para carregamento e descarregamento.

A EUROCODE classifica os silos de acordo com suas caracteristicas, as principais

e relevantes quanto ao trabalho são descritas a seguir. A mesma limita a norma para

as geometrias do mesmo, de acordo com a norma, as dimensões devem seguir as

seguintes limitações:

hb

dc< 10

• hb < 100 m

• dc < 60 m

• O diâmetro máximo do produzo a ser armazenado não deve ser mair que 0,03dc.

• A transição deve estar contida em um único plano horizontal.

2.10 CLASSIFICAÇÃO DOS SILOS

Quanto a classifição dos silos, seguindo a altura do corpo, e diâmetro, segundo a

norma são classificados como:

• Silos esbeltos, onde 2,0 ≤hc

dc(Atende as condições em 3.31 EUROCODE);

• Silos mediamentes esbeltos, onde 1,0 <hc

dc< 2,0 (Condições definidas em 3.3);

• Silos baixos, onde 0,4 ≤hc

dc≤ 1,0 (Condicões definidas em 3.3);

• e outros.

• 1 Superfície equivalente;

• 2 Dimensão interna;

• 3 Transição/tremonha;

• 4 Perfil de superfície para condições completas;

• 5 Linha de centro.

1 As condições definidas em 3.3, estabelecem regras que levam em consideração fatores como aexcentricidade quanto ao enchimento, dispositivos mecânicos e excentricidade de descarga. Paramaiores detalhes ver (BS EN 1991-4, 2006)

Page 30: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

32

Figura 10: Dimensões de geometria do silo, excentricidade e notação de pressão respectiva-mente.

Fonte: (BS EN 1991-4, 2006)

Figura 11: Formas de seção transversal.

Fonte: (BS EN 1991-4, 2006)

2.10.1 Classe estrutural

No dimensionamento de um silo, é necessária uma classificação quanto a classe

estrutural, de acordo com a complexidade, de acordo com a tabela 4.

Esta classificação tem por finalidade reduzir o risco para as diferentes estruturas,

de acordo com o seu armazenamento. Silos classificados como classe 1 possuem

simplificações de cálculos e ánalises por serem de menor complexidade em relação aos

demais, e algumas verificações são dispensadas da realização. Consequentemente

Page 31: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

33

silos classe 3 requerem um cálculo mais minucioso, por envolverem maiores riscos e

complexidade tanto quanto a geometria, como de cargas.

Tabela 4: Descrição das classes.

Classe Descrição

1 Silos com capacidade abaixo de 100 toneladas.

2 Nenhuma das outras classes.

3 Silos com capacidade acima de 10000 toneladas.silos com capacidade acima de 1000 toneladas, que possuem:

a) Excentricidade de descarregamento comec

dc> 0,25.

b) Silos baixos com excentricidade de carregamento maior queet

dc> 0,25.

Fonte: (BS EN 1991-4, 2006).

2.11 PRESSÕES EM SILOS COM ESBELTEZ INTERMEDIÁRIA

2.11.1 Pressões de carregamento

Para silos com o carregamentos simétricos, e dentro da classificação de esbeltez,

usa-se as fórmulas a seguir para a determinação de pressões quanto ao enchimento

(filling).

phf = ph0 × YR Pressão Horizontal kN/m2. (3)

pwf = µ × phf Pressão de atrito kN/m2. (4)

Page 32: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 33: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

35

Onde:

γ é o valor do peso específico

(

kN

m3

)

;

µ Coeficiente de atrito com a parede;

K Relação de pressão lateral;

z Altura relativa a superfície equivalente do sólido (m);

A Área (m2);

U Perímetro (m);

φr Ângulo de repouso do produto (◦).

2.11.2 Pressões de descarregamento

As pressões de descargas simétricas, são determinadas com:

phe = Ch × phf Pressão Horizontal kN/m2. (13)

pwe = Cw × pwf Pressão de atrito kN/m2. (14)

No qual:

Ch = 1, 0 + 0, 15Cs (15)

Cw = 1, 0 + 0, 1Cs (16)

Cs =hc

dc

− 1 (17)

Onde:

Ch e Cw Fatores de ajuste para descarga;

Cs Fator de ajuste para esbeltez.

O valor da força compressiva nzSk na parede, durante o descarregamento, sendo

por unidade de comprimento de perímetro a qualquer valor da altura z, é determinado

com:

nzSk =∫ z

0

pwe(z)dz = Cw × µ × ph0 × (z − zV ) (18)

Page 34: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 35: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 36: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

38

Cpe = 0, 42Cop[1 + 2E2](

1 − e−1,5[(hc

dc)−1]

)

(27)

E = 2[

e

dc

]

(28)

2.12 PROPRIEDADES DOS PRODUTOS ARMAZENADOS SEGUNDO BS EN 1991-

4, 2006

Quanto as características médias dos produtos armazenados, a norma reco-

menda sempre realizar testes com os produto a ser utilizado e ou utilizados para

armazenamento, com finalidade de maior precisão na obtenção das particularidades

do granel, os ensaios utilizados e um padrão são mencionados na seção 2.7, e maiores

detalhes para a obtenção destes, são verificados na norma (BS EN 1991-4, 2006).

A norma apresenta valores médios para diversos produtos que são utilizados

comumentemente em silos.

O grão de soja, é o produto de interesse deste trabalho, conhecer sobre suas

características médias nos fornece previamente os comportamentos que serão encon-

trados. As informações dos produtos a granel mais utilizados são listados no quadro.

Page 37: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

39

Quadro 1: Valores médios para as propriedades.

Produto

Peso

especifíco

γ

Ângulo

de repouso

φr

Ângulo

de atrito interno

φi

Relação

de pressões

laterais

K

Cop

γl γu φr φi aΦ Kin aK

Inferior Superior Médio Fator Médio Fator

(kNm3 ) (kN

m3 ) Graus ◦ Graus ◦

Areia 14,0 16,0 39 36 1,09 0,45 1,11 0,4

Cimento 13,0 16,0 36 30 1,22 0,54 1,20 0,5

Milho 7,0 8,0 35 31 1,14 0,53 1,14 0,9

Soja 7,0 8,0 29 25 1,16 0,63 1,11 0,5

Trigo 7,5 9,0 34 30 1,12 0,54 1,11 0,5

Farinha 6,5 7,0 45 42 1,06 0,36 1,11 0,6

Fonte: adaptado de (BS EN 1991-4, 2006, p. 99)

Para o dimensionamento de toda a estrutura, deve-se conhecer todas as informa-

ções necessárias sobre os produtos a serem armazenados.

A norma (BS EN 1991-4, 2006) representa claramente os valores característicos

do produto a serem utilizados, para se obter o máximo valor em cada caso no confinante,

o quadro a seguir demostram os valores característicos a serem adotados para o caso

da soja.

Page 38: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

40

Quadro 2: Valores de propriedades dos sólidos a se considerar.

PropósitoValor característico a adotar

Coeficiente de atrito

da parede µ

Razão de pressão

lateral K

Ângulo de atrito

interno φiPara a parede vertical

Máxima pressão normal

na parede verticalInferior Superior Inferior

Máxima força de atrito

na parede verticalSuperior Superior Inferior

Máxima carga vertical

no fundoInferior Inferior Superior

Fonte: adaptado de (BS EN 1991-4, 2006, p. 26)

2.13 AÇÃO DO VENTO EM SILOS

O vento é um fenômeno que varia em intensidade e direção aleatoriamente, e

ao encontrar uma estrutura que impede sua direção normal o mesmo intensifica este

fenômeno.

Os silos metálicos por serem uma casca metálica, e consideravelmente leves se

comparadas ao seu tamanho, sofrem deformações e colapsos se não bem dimensiona-

dos, especialmente quando os silos estão vazios, ou parcialmente carregados.

2.13.1 Pressão causada pelo vento

A norma brasileira (NBR 6123, 1988) considera que a força do vento depende da

diferença de pressão nas faces opostas das edificações (CALIL Jr; CHEUNG, 2007).

∆p = (Cpe − Cpi) × q (29)

Onde:

q = 0, 613 × V 2

K (30)

Vk = V0 × S1 × S2 × S3 (31)

∆p = ∆Cp × 0, 613 × V 2

k (32)

Page 39: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 40: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 41: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

43

Quadro 3: Distribuição das pressões externas em edificações cilíndricas de seção circular.

βCoeficiente de pressão externa Cpe

Superfície Rugosa

ou com saliênciasSuperfície lisa

0◦ +1,00 +1,00

10◦ +0,90 +0,90

20◦ +0,70 +0,70

30◦ +0,40 +0,35

40◦ +0,00 +0,00

50◦ -0,40 -0,50

60◦ -0,80 -1,05

70◦ -1,10 -1,25

80◦ -1,05 -1,30

90◦ -0,85 -1,20

100◦ -0,65 -0,85

120◦ -0,35 -0,40

140◦ -0,30 -0,25

160◦ -0,30 -0,25

180◦ -0,30 -0,25

Fonte: adaptado de (NBR 6123, 1988).

2.14 AÇÕES EM SILOS

Em um projeto adequado de um silo metálico, deve-se mensurar todas as cargas

que podem ocorrer durante toda a vida do mesmo, cargas como de carregamento,

armazenamento, descarregamento, vento, peso das estruturas, peso de equipamentos

e outros que o projetista deve prever acertadamente para cada região, e local onde o

silo vai ser construído. Assim, é necessário a determinação mais precisa possível de

todas as ações atuantes nas estruturas, para se minimizar os custos de construção.

Para isso existem normasomando como base normas para verificações.

As ações são os esforços provocados nas estruturas, essas são classificadas de

acordo com a frequência que a mesma atua, sendo:

• Ações permanentes - Ocorrem durante toda a vida constantemente, ou com

pequena variação em torno de uma média. Exemplo (Peso próprio da estrutura,

Elementos de fixação, Plataforma, Equipamentos e outros).

Page 42: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 43: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

45

Essas são consideradas com valores representativos, e multiplicados por respecti-

vos fatores de combinções, coeficientes de ponderação, e de combinação de utilização.

Conseguimos então reproduzir um valor de segurança real para a estrutura.De acordo com a etapa da construção e dos tipos de ações atuantes no silo e

em seus componentes, as combinações utilizadas seguem de acordo com a norma(NBR 14762, 2010). O quadro 4 e 5 a seguir mostram os valores a serem utilizados,para maiores informações verificar a norma referenciada.

Quadro 4: Valores dos fatores de combinação Ψ0 e de redução Ψ1 e Ψ2 para ações variáveis.

Ação Ψ0 Ψ1 Ψ2

Ação variável causada pelo uso e ocupaçãoLocais em que não há predominância de pesos e de equipamentos

que permanecem fixos por longos períodos de tempo,nem de elevadas concentrações de pessoas.

0,5 0,4 0,4

Locais em que há predominância de pesos e de equipamentosque permanecem fixos por longos períodos de tempo,

ou de elevadas concentrações de pessoas.0,7 0,6 0,4

Bibliotecas, arquivos, depósitos, oficinas e garagense sobrecargas em coberturas.

0,8 0,7 0,6

Vento

Pressão dinâmica do vento nas estruturas em geral. 0,6 0,3 0,0

Temperatura

Variações uniformes de temperatura em relação à média anual local . 0,6 0,3 0,0

Fonte: adaptado de (NBR 14762, 2010, p. 19)

Quadro 5: Valores dos coeficientes de ponderação das ações.

Combinação Tipo de AçãoEfeito

Desfavorável Favorável

Normal

Peso próprio de estruturas metálicas 1,25 1,00Peso próprio de estruturas pré-moldadas 1,30 1,00

Peso próprio de estruturas moldadas no local 1,35 1,00Elementos construtivos industrializados 1,35 1,00Elementos construtivos industrializados

com adições in loco1,40 1,00

Elementos construtivos no geral e equipamentos 1,50 1,00

Especialou de

construção

Peso próprio de estruturas metálicas 1,15 1,00Peso próprio de estruturas pré-moldadas 1,20 1,00

Peso próprio de estruturas moldadas no local 1,25 1,00Elementos construtivos industrializados 1,25 1,00Elementos construtivos industrializados

com adições in loco1,30 1,00

Elementos construtivos no gerale equipamentos

1,40 1,00

Fonte: adaptado de (NBR 14762, 2010, p. 18).

Page 44: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

46

2.15.1 Combinações últimas normais

As combinações últimas normais são os esforços previstos para a estrutura. Deve

ser considerada tantas quantas forem necessárias para as verificações de segurança

quanto a todos os estados-limites últimos aplicáveis.

Neste caso as combinações são divididas em dois grupos, ações variáveis prin-

cipais e secundárias, FQ1,k e FQj,k respectivamente. A ação variável secundária é

utilizada com um valor Ψ0j que possui um valor reduzido, considerando que a baixa

probabilidade das ações acontecerem simultaneamente. Para a ação permanente deve

ser feita duas verificações, uma considerando γgi favorável, e outra desfavorável (NBR

14762, 2010).

Fd =m∑

i=1

(γgi.FGi,k) + γq1.FQ1,k +n∑

j=2

(γqj.Ψ0j.FQj,k) (33)

onde

FGi,k representa os valores característicos das ações permanentes;

FQ1,k é o valor característico da ação variável considerada principal para a combina-

ção;

FQj,k representa os valores característicos das ações variáveis que podem atuar

concomitantemente com a ação variável principal.

2.15.2 Combinações últimas especiais ou de contruções

As combinações últimas especiais ou de contruções decorrem das atuações de

ações variáveis de natureza ou intensidade especial, cujos efeitos na estruturas são

maiores em intensidade, comparando com as combinações normais. Os carregamentos

especiais são considerados breves, com pouca duração relacionando-o com o tempo

de vida útil da estrutura. A cada carregamento especial corresponde a uma única

combinação última especial, na qual devem estar presentes as ações permanentes

e a ação variável especial principal, com seus valores característicos, e as demais

ações variáveis com probabilidade não desprezável de ocorrência simultânea, com

seus valores reduzidos de combinação (NBR 14762, 2010).

Aplica-se:

Fd =m∑

i=1

(γgi.FGi,k) + γq1.FQ1,k +n∑

j=2

(γqj.Ψ0j,ef .FQj,k) (34)

onde

FGi,k representa os valores característicos das ações permanentes;

Page 45: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

47

FQ1,k é o valor característico da ação variável especial;

FQj,k representa os valores característicos das ações variáveis que podem atuar con-

comitantemente com a ação variável especial;

Ψ0j,ef representa os fatores de combinação efetivos de cada uma das ações variáveis

que podem atuar concomitantemente com a ação variável especial FQ1.

2.15.3 Combinações últimas excepcionais

As combinações últimas excepcionais ocorrem com a atuação de ações raras que

podem vir a acontecer e provocar efeitos catastróficos.

Estas devem somente serem consideradas no projeto de estrutura de determina-

das construções, nas quais não possam ser desprezadas, além disso, na concepção

estrutural, não possam ser tomadas medidas que anulem ou atenuem a gravidade

das conseqüências dos seus efeitos. O carregamento excepcional possui duração

extremamente curta comparando com o tempo de vida do conjunto.

A cada carregamento excepcional corresponde uma única combinação última

excepcional de ações, na qual devem figurar as ações permanentes e a ação variável

excepcional, com seus valores característicos, e as demais ações variáveis com pro-

babilidade não desprezável de ocorrência simultânea, com seus valores reduzidos de

combinação (NBR 14762, 2010).

Fd =m∑

i=1

(γgi.FGi,k) + FQ,exc +n∑

j=2

(γqj.Ψ0j,ef .FQj,k) (35)

onde

FQ,exc é o valor da ação transitória excepcional.

2.16 BARRAS SUBMETIDAS À FORÇA DE COMPRESSÃO E TRAÇÃO

Por comodidade um breve resumo da norma (NBR 14762, 2010) é mencionada a

seguir. Para informações mais detalhadas sobre barras submetidas a compressão e

tração a norma referenciada deve ser verificada.

2.16.1 Flambagem local e o método das larguras efetivas

No dimensionamento de chapas dobrada a frio, é necessário verificar os elemen-

tos quanto a flambagem local. Os elementos planos que constituem o peril de chapa

Page 46: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 47: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

49

2.16.2 Flambagem global por flexão, por torção ou por flexo-torção

A força axial de compressão resistente de cálculo é calculada por:

Nc,Rd =χAeffy

γ→ γ = 1, 20 (40)

onde:

χ é o fator de redução da força axial de compressão resistente, associado à

flambagem global, calculado conforme indicado a seguir:

- para λ0 ≤ 1,5 : χ = 0,658λ2

0

- para λ0 > 1,5 : χ =0, 877

λ20

λ0 é o índice de esbeltez reduzido associado à flambagem global, sendo:

(

λ0 =Afy

Ne

)0,5

sendo:

Ne é a força axial de flambagem global elástica (kN);

A é a área bruta da seção transversal da barra (cm2);

Aef é a área efetiva da seção transversal da barra (cm2).

2.16.3 Perfil monossimétrico

A força normal de flambagem elástica de um perfil monossímetrico, cujo eixo x é

o eixo de simetria, é o menor valor obtido entre:

a) Força normal de flambagem elástica por flexão em relação ao eixo y:

Ney =π2EIy

(KyLy)2(41)

b) Força normal de flambagem elástica por flexão em relação ao eixo x:

Nex =π2EIx

(KxLx)2(42)

c) Força axial de flambagem global elástica por torça:

Nez =π2EIx

(KxLx)2(43)

Page 48: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

50

d) Força normal de flambagem elástica para flexo-torção:

Nexz =Nex + Nez

2[1 − (x0r0)2]

1 −

√1 −4NexNez[1 − (x0/r0)2]

(Nex + Nez)2

(44)

Onde:

Nex e Nez São as forças axiais de flambagem elástica (kN);

r0 e x0 Raio de giração polar da seção bruta em relação ao centro de torçao, e

distância do centro de torção ao centroide (cm).

2.16.4 Barras submetidas à tração

Dos componentes de um silo, as chapas laterais são aquelas que estão submetida

as maiores forças de tração, devido a grande pressão horizontal do produto.

Para o cálculo dessa força normal de tração, a norma (NBR 14762, 2010) foi

utilizada.

A força normal resistente de cálculo deve ser tomado como o menor valor entre

os Nt,Rd a seguir:

a) Para o escoamento da seção bruta.

Nt,Rd =

(

Afy

γ

)

→ γ = 1, 1 (45)

b) Para a ruptura da seção líquida na região de ligação.

Nt,Rd =

(

CtAnfu

γ

)

→ γ = 1, 65 (46)

sendo:

A Área bruta da seção transversal (mm2);

df Dimensão do furo na direção perpendicular a solicitação (mm);

nf Quantidade de furos contidos na linha de ruptura analisada;

s Espaçamento dos furos na direção de solicitação (mm);

g Espaçamento dos furos na direção perpendicular (mm);

t Espessura da parte concectada a ser analisada (mm);

An Área líquida da seção, na região de ligação (mm2).

Para chapas parafusadas, uma análise deve ser realizada para se determinar a

provável linha de ruptura, sendo a seção crítica aquela correspondente ao menor valor

de área líquida. A área líquida na seção de ruptura é calculada por:

An = 0, 9

(

A − nfdf t +

ts2

4g

)

(47)

Page 49: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 50: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 51: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

53

3 METODOLOGIA

O trabalho será realizado através das etapas a seguir, que são descritas:

a) Pesquisa bibliográfica;

b) Definição de modelo;

c) Desenho do modelo em software;

d) Carregamento das ações no modelo;

e) Dimensionamento dos principais componentes;

f) Análises e considerações finais.

Na pesquisa bibliográfica será estudado os principais assuntos correlacionados

ao projeto de um silo metálico, sendo sobre as propriedades dos materiais a serem

armazenados, as pressões por eles geradas. Os tipos mais comuns de silos, suas

tremonhas, e o tipo de fluxo para cada, também um estudo é feito sobre as pressões

de vento e suas influencias. O dimensionamento e detalhamento das principais peças

que fazem parte da estrutura.

A definicão do modelo serão adotadas como principais fatores a capacidade de

armazenamento, o fluxo de descarga dos grãos e as dimensões mais empregadas.

O desenho em um software foi escolhido o programa RFEM, devido a sua grande

confiabilidade, e também por utilizar normas brasileiras para seus cálculos.

Para o carregamento das ações do produto vai ser utilizada a norma EUROCODE

(BS EN 1991-4, 2006), para as verificações quanto ao carregamento e descarrega-

mento. Para o vento a norma nacional (NBR 6123, 1988).

O dimensionamento estrutural será realizado através do software RFEM, utilizando-

se método de elementos finitos. A partir desta, determina-se o pior carregamento

gerado na estrutura com as considerações adotadas e dimensiona-se os principais

componentes.

Page 52: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

54

Figura 21: Representação em fluxograma da metodologia.

Fonte: Autoria própria, 2018.

Page 53: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 54: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

56

• Inclinação do telhado = 30◦

• Área (A) = 113,096m2

• Perímetro (U) = 37,699m

• Número de anéis = 15

• Número de chapa por anel = 14

• Altura útil da chapa = 1000,00mm

• Largura útil da chapa = 2692,79mm

Para a determinação das pressões de carregamento e descarregamento, foi-se

utilizado a norma (BS EN 1991-4, 2006).

H

D=

15 + 3, 46

12= 1, 53 < 2 ∴ Silo com esbeltez intermediária (52)

4.1.1 Determinação das propriedades da soja

Para a determinação dos valores inferiores e superiores dos coeficientes, de atrito

com a parede (µ), razão de pressão lateral (K) e ângulo de atrito interno (φi), a norma

(BS EN 1991-4, 2006) disponibiliza um fator de conversão para a determinação de

alguns materiais (BS EN 1991-4, 2006, p. 36).

Para os materiais não existentes em norma, ou para cálculos precisos deve ser

realizado o teste de Jenike Shear Cell para tal.

Os valores encontrados, estão a seguir no Quadro, considerando-se uma parede

categoria D2 (Atrito moderado) para (µ) descrito em (BS EN 1991-4, 2006, p. 35).

Quadro 6: Valores de propriedades dos sólidos a se considerar.

PropósitoValor característico a adotar

Coeficiente de atrito

da parede µ

Razão de pressão

lateral K

Ângulo de atrito

interno φiPara a parede vertical

Máxima pressão normal

na parede vertical0,328 0,699 21,552

Máxima força de atrito

na parede vertical0,441 0,699 21,552

Máxima carga vertical

no fundo0,328 0,568 29,000

Fonte: Autoria própria, 2018.

Page 55: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

57

4.1.2 Pressões devido ao produto armazenado

sendo h0 = 1, 77m, onde se inicia o contato do produto com a parede, e as

pressões em silos intermediários.

Quadro 7: Pressões de carregamento e descarregamento.

z(m)Carregamento Descarregamento

Phf(z)kNm2 Pwf(z)kN

m2 Pvf(z)kNm2 Phe(z)kN

m2 Pwe(z)kNm2 Pve(z)kN

m2

1,00 0,00 0,00 0,00 0,00 0,00 0,00

2,00 2,32 1,02 15,97 2,45 1,06 15,97

3,00 11,30 4,98 23,20 11,98 5,18 23,20

4,00 18,58 8,19 29,56 19,69 8,52 29,56

5,00 24,57 10,83 35,19 26,04 11,26 35,19

6,00 29,57 13,04 40,22 31,33 13,56 40,22

7,00 33,79 14,90 44,75 35,80 15,49 44,75

8,00 37,38 16,48 48,85 39,62 17,14 48,85

9,00 40,48 17,85 52,59 42,89 18,56 52,59

10,00 43,16 19,03 56,01 45,74 19,79 56,01

11,00 45,51 20,07 59,16 48,23 20,87 59,16

12,00 47,57 20,98 62,07 50,41 21,81 62,07

13,00 49,40 21,78 64,77 52,35 22,65 64,77

14,00 51,03 22,50 67,28 54,07 23,39 67,28

15,00 52,48 23,14 69,62 55,61 24,06 69,62

16,00 53,78 23,72 71,80 56,99 24,66 71,80

16,77 54,70 24,12 73,40 57,97 25,08 73,40

Fonte: Autoria própria, 2018.

Page 56: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 57: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

59

Quadro 8: Valores de carga localizada aplicada no anel 15.

AnelCarregamento Descarregamento

ppf

(

kNm2

)

ppfi

(

kNm2

)

ppe

(

kNm2

)

ppei

(

kNm2

)

15 5,42 0,77 11,48 1,64

Fonte: Autoria própria, 2018.

4.1.4 Pressão do vento

Considerando que a construção é localizada na cidade de Pato Branco no Paraná,

Brasil. A velocidade básica do vento utilizada para cálculos é de 45ms

.

• Fator topográfico S1, considera-se um terreno plano S1=1,0.

• Para o fator S2, considera-se a rugosidade do terreno, como sendo categoria

III. E para as dimensões da edificação, como classe A, onde a maior dimensão

vertical e horizontal não excede 20m. S2=0,99.

• Fator S35. Edificações com baixo fator de ocupações (depósitos, silos, etc).

S3=0,95.

Vk = 45m

s× 1, 0 × 0, 99 × 0, 95 = 42, 323

m

s(58)

q = V 2

k × 0, 613 = 1, 098kN

m2(59)

∆p = (Cpe − Cpi) × 1, 098kN

m2(60)

O coeficiente de pressão interna considerado, foi Cpi = −0, 8. E para o coeficiente

de pressão externa Cpe, foi utilizado Superficíe rugosa ou com saliências como críterio,

definido assim devido aos montantes serem externos, verificar quadro 12, página 70.

Page 58: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

60

Quadro 9: Distribuição das pressões externas no silo.

β Cpe Cpi q

(

kN

m2

)

∆p

(

kN

m2

)

0◦ +1,00 -0,80 1,098 1,97

10◦ +0,90 -0,80 1,098 1,86

20◦ +0,70 -0,80 1,098 1,64

30◦ +0,40 -0,80 1,098 1,31

40◦ +0,00 -0,80 1,098 0,87

50◦ -0,40 -0,80 1,098 0,43

60◦ -0,80 -0,80 1,098 0,00

70◦ -1,10 -0,80 1,098 -0,32

80◦ -1,05 -0,80 1,098 -0,27

90◦ -0,85 -0,80 1,098 -0,05

100◦ -0,65 -0,80 1,098 0,16

120◦ -0,35 -0,80 1,098 0,49

140◦ -0,30 -0,80 1,098 0,54

160◦ -0,30 -0,80 1,098 0,54

180◦ -0,30 -0,80 1,098 0,54

Fonte: Autoria própria, 2018.

4.2 CARGAS E COMBINAÇÕES APLICADAS

Para as cargas aplicadas no modelo estrutural, utilizou-se o software RFEM 5.1,

versão 2017 para estudante. As cargas utilizadas:

• Peso próprio da estrutura do silo e equipamentos;

• Carregamento;

• Descarregamento;

• Sobrecarga localizada de carregamento;

• Sobrecarga localizada de descarregamento;

• Vento.

O peso próprio é calculado automaticamente pelo software utilizado, tornando

dispensável o cálculo manual. Para o peso de equipamentos foi adotada uma carga de

5kN/m2 no telhado do confinante.

Page 59: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 60: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 61: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 62: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

64

A força resistente de cálculo foi feita considerando-se o caso crítico entre:

Escoamento da seção bruta;

Ruptura da seção líquida;

Rasgamento entre furos, ou entre furo e borda;

Pressão de contato (esmagamento);

Força cortante no parafuso.

4.3.2 Exemplo de cálculo para o primeiro anel.

Escoamento da seção bruta:

Nt,Rd =

(

Afy

γ

)

=

(

(1080 × 0, 95) × 0, 345 × 103

1, 1

)

= 321, 791kN (61)

Para a ruptura da seção líquida:

Cálculando (Ct) e (An) respectivamente, considerando que a chapa da figura 26 contém

três parafusos na direção de solicitação. O menor de valor (An) determina a linha de

ruptura.

Ct = 0, 67 + 0, 83

(

d

g

)

= 0, 67 + 0, 83

(

9

106, 89

)

= 0, 74 (62)

An = 0, 9

(

A − nfdf t +

ts2

4g

)

= 0, 9([1080 × 0, 95] − 10 × 10 × 0, 95) = 837, 9mm2

(63)

Nt,Rd =

(

CtAnfu

γ

)

=

(

0, 74 × 837, 9 × 0, 430 × 103

1, 65

)

= 161, 56kN (64)

Nt,Rd = mín[321, 79; 161, 56]kN = 161, 56kN (65)

4.3.3 Parafusos de ligação

A distância livre entre bordas de parafusos não deve ser inferior a (2d), e a

distância da borda até a extremidade do furo, não deve ser inferior a (d), onde (d) é o

diâmetro nominal do parafuso (NBR 14762, 2010).

Page 63: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

65

4.3.4 Rasgamentos entre furo ou entre furo e borda

A força resistente de cálculo FRd é calculada por:

FRd =

(

tefu

γ

)

→ γ = 1, 45 (66)

FRd =

(

0, 95 × 35 × 0, 430 × 103

1, 45

)

= 9, 86kN Entre furos. (67)

FRd =

(

0, 95 × 48 × 0, 430 × 103

1, 45

)

= 13, 52kN Entre furo e borda. (68)

(69)

Nesta chapa figura 26 tem-se 20 parafusos com rasgamento entre furos, e 10

parafusos com rasgamento entre furo e borda, então:

FRd = 9, 86kN × 2 × 10 + 13, 52kN × 10 = 332, 43kN (70)

Nt,Rd = mín[321, 79; 161, 56; 332, 43]kN = 161, 56kN (71)

onde:

fu Resistência a ruptura do aço;

t Espessura do componente analisada;

e É a distância tomada na direção da solicitação, do centro do furo-padrão até a borda

do furo mais próximo, ou até a extremidade do elemento conectado.

4.3.5 Pressão de contato (esmagamento)

A força resistente de cálculo FRd é definida como:

FRd =

(

αedtfu

γ

)

→ γ = 1, 55 (72)

FRd =

(

1, 70385 × 9 × 0, 95 × 0, 430 × 103

1, 55

)

= 4, 04kN (73)

FRd = 30 × 4, 04kN = 121, 24kN (74)

Nt,Rd = mín[321, 79; 161, 56; 332, 43; 121, 24]kN = 121, 24kN (75)

onde:

d Diâmetro nominal do parafuso;

αe Fator limite, (0,183t + 1,53) com t em (mm) respeitando (t≤4,25mm).

Page 64: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

66

4.3.6 Força cortante no parafuso

A força Fv,Rd resistente de cálculo, por plano de corte, é definida por:

a) Quando o plano de corte passa pela rosca:

Fv,Rd =

(

0, 4Abfub

γ

)

→ γ = 1, 35 (76)

Fv,Rd =

(

0, 4 × 63, 617 × 0, 800 × 103

1, 35

)

= 15, 08kN (77)

Fv,Rd = 30 × 15, 08kN = 452, 38kN (78)

Nt,Rd = mín[321, 79; 161, 56; 332, 43; 121, 24; 452, 38]kN = 121, 24kN (79)

b) Quando o plano de corte não passa pela rosca:

Fv,Rd =

(

0, 5Abfub

γ

)

→ γ = 1, 35 (80)

sendo:

Ab Área bruta da seção transversal do parafuso;

fub Resistência a ruptura do parafuso.

4.4 RESISTÊNCIA DAS CHAPAS

O esforço solicitante em cada chapa é cálculado de acordo com o pior esforço

horizontal, sendo o de descarregamento, assim calcula-se o esforço para cada anel do

confinante.

A carga obtida é utilizada para se definir as espessuras de chapas e parafusos,

para que os mesmos atendam as solicitações (SCALABRIN, 2008). O esforço de tração

para cada chapa por anel é cálculado por:

Tch =PhehchD

2γq (81)

Sendo:

Phe Pressão horizontal de descarregamento (kN/m2);

hch Altura útil da chapa (m);

D Diâmetro do silo (m);

γq Fator de segurança (1,4).

Page 65: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 66: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 67: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho
Page 68: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

70

A seguir o quadro dos montantes utilizados por anel, com as dimensões do perfile a espessura para cada, também a relação de cálculo do software (DLUBAL RFEM, )para a norma (NBR 8800, 2008).

Quadro 12: Espessura de montante por anel, e relação de cálculo RFEM.

Anel Montante utilizado Relação de cálculo ≤1

1 300x85x25x2,00 0,10

2 300x85x25x2,00 0,20

3 300x85x25x2,00 0,29

4 300x85x25x2,00 0,40

5 300x85x25x2,00 0,51

6 300x85x25x2,65 0,46

7 300x85x25x2,65 0,54

8 300x85x25x2,65 0,62

9 300x85x25x3,75 0,50

10 300x85x25x3,75 0,57

11 300x85x25x4,75 0,50

12 300x85x25x4,75 0,53

13 300x85x25x6,30 0,48

14 300x85x25x6,30 0,59

15 300x85x25x6,30 0,98

Fonte: Autoria própria, 2018.

Page 69: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

71

5 CONCLUSÃO

Com este trabalho foi possível praticar os conceitos e habilidades adquiridas ao

longo de toda a graduação em engenharia mecânica. Também a de se conhecer mais

sobre um assunto novo, que é a de estruturas metálicas de armazenamento.

Quanto aos silos metálicos, silos com fundo planos possuem uma capacidade de

armazenamento muito superior quando comparado a silos com tremonha, pois não

possuem regiões de transicões, onde se existem picos de pressões.Como desvantagem,

o silo com fundo plano tem a dificuldade em eliminar todos os grãos quando se esta

descarregando, sendo necessário componentes mecânicos para a completa remoção.

Tratando dos montantes, para uma melhor eficiência de toda a estrutura, os

mesmos devem ser colocados externamente, pois dessa maneira eles diminuem as

pressões causadas pelo vento na superfície, também facilitam o fluxo dos grãos na

hora do descarregamento, como também não permite o acumulo dos grãos, por não se

ter contato.

A norma EUROCODE utilizada para as pressões do produto é a única que aborda

sobre enchimentos e descarregamentos não concêntricos, e é a mais utilizada pelos

projetistas. A teoria mais utilizada para as pressões de carregamento é a da Janssen.

Observa-se que embora o nosso país seja um dos grandes produtores de grãos,

a literatura sobre o tema é muito pequena, e não existem normas nacionais que tratam

desse assunto, forçando ao projetista que busque essas informações em literatura

estrangeira.

Page 70: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

72

REFERÊNCIAS

ANDRADE Jr, L. J. de. Análise Estrutural das Chapas Metálicas de Silos ede Reservatórios Cilíndricos. 160 p. Dissertação (Mestrado em Engenharia deEstruturas) — Escola de Engenharia de São Carlos da Universidade de São Paulo,São Carlos, 1998.

ASSOSIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6123: Forçasdevida ao vento em edificações. Rio de Janeiro - RJ, 1988. 66 p.

ASSOSIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 8681: Ações esegurança nas estruturas - procedimento. Rio de Janeiro - RJ, 2004. 15 p.

ASSOSIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 8800: Projeto deestruturas de aço e de estruturas mistas de aço e concreto de edifícios. Rio de Janeiro- RJ, 2008. 274 p.

ASSOSIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 14762:Dimensionamento de estruturas de aço constituídas por perfis formados a frio. Rio deJaneiro - RJ, 2010. 93 p.

AYUGA, F. Los empujes del material almacenado en silos. Informes de laConstruccíon, v. 46, p. 436, 1995.

BATISTA, C. D. S. Estudo teórico e experimental do fluxo de sólidos particuladosem silos verticais. 99 p. Tese (Doutorado em Engenharia de Processos) —Universidade Federal de Campina Grande, Campina Grande, 2009.

CALIL Jr, C. Determinação das propriedades físicas de materiais granulares epulverulentos para o projeto estrutural. Revista Brasileira de Armazenagem, v. 9/10,p. 3–6, 1984–1985.

CALIL Jr, C.; CHEUNG, A. B. Silos : Pressões, recomendações para o projeto eexemplos de cálculo. 1st. ed. São Carlos: Escola de Engenharia de São Carlos -USP, 2007. 240 p.

CARNEIRO, O. Silos e sua contrução. vol.5. São Paulo: Anais da Escola Superior deAgricultura Luiz de Queiroz, 1948. 41 p.

CHEUNG, A. B. Modelo estocástico de pressões de produtos armazenados paraa estimativa de confiabilidade estrutural de silos esbeltos. 333 p. Tese (Doutoradoem Engenharia de Estruturas) — Escola de Engenharia de São Carlos da Universidadede São Paulo, São Carlos, 2007.

DEUTSCHE NORM. DIN 1055-6: Actions on structures– part 6: Design loads forbuildings and loads in silo bins. Berlin, 2005. 111 p.

DLUBAL RFEM. RFEM. Disponível em: <https://www.dlubal.com>.

EUROPEAN COMMITTEE OF STANDARIZATION. EN 1991-4: Eurocode 1 : Actionson structures - part 4: Silos and tanks. Brussels, 2006. 109 p.

Page 71: MAIKOL ANDERSON KOCKrepositorio.roca.utfpr.edu.br/.../1/10335/...1_11.pdf · DIMENSIONAMENTO DE UM SILO METÁLICO COM FUNDO PLANO PARA ARMAZENAMENTO DE SOJA MAIKOL ANDERSON KOCK Trabalho

73

GAYLORD, E. H.; GAYLORD, C. N. Design of steel bins for storage of bulk solids.1st. ed. Ney Jersey: Pretince Hall, 1984. 359 p.

HAN, T. comparison of wall friction measurements by jenike shear tester and ring sheartester. KONA, v. 29, p. 7, 2011. Disponível em: <https://www.jstage.jst.go.jp/article/kona/29/0/29_2011014/_pdf>. Acesso em: 24 out. 2017.

JANSSEN, H. A. Versuche über getreidedruck in silozellen. Verein DeutscherIngenieure, v. 39, p. 1045–1049, 1895.

JENIKE, A. W. Gravity flow of bulk solids. Bulletin of the University of Utah: UtahEngineering Experiment Station, v. 52, p. 309, 1961.

LAZZARI, F. A. A escolha do silo ideal. Revista Grãos, Jan 2015. Disponível em:<http://www.revistacampoenegocios.com.br/a-escolha-do-silo-ideal/>.

LEITE, L. M. de O. Silos Metálicos. 194 p. Dissertação (Mestrado em EngenhariaCivil) — Faculdade de Engenharia Universidade do Porto, Porto, 2008.

MESQUITA FILHO, J. D. Características de qualidade dos fertilizantes e corretivos.2015. Disponível em: <http://slideplayer.com.br/slide/3380193/11/images/23/FLUIDEZ+%E2%80%93+%C3%82NGULO+DE+REPOUSO.jpg>. Acesso em: 20 out. 2017.

MILANI, A. P. Determinação das propriedades de produtos armazenados paraprojeto de pressões e fluxo em silos. 285 p. Tese (Doutorado em Engenharia deEstruturas) — Universidade de São Paulo, São Carlos, 1993.

NETO, J. P. L. et al. Critérios de fluxo de produtos pulverulentos para o projeto desilos verticais. Engenharia agrícola, v. 33, p. 10, 2013. Disponível em: <http://www.scielo.br/scielo.php?pid=S0100-69162013000300003&script=sci_abstract&tlng=pt>.Acesso em: 23 out. 2017.

PALMA, G. Pressões e fluxo em silos esbeltos (h/d>1,5). 121 p. Dissertação(Mestrado de Engenharia em Estruturas) — Escola de Engenharia da Universidade deSão Paulo, São Carlos, 2005.

ROBERTS, I. Pressure of stored grain. Engineering, v. 34, p. 399, 1884.

SCALABRIN, L. A. Dimensionamento de silos metálicos para armazenamento degrãos. 160 p. Dissertação (Mestrado em Engenharia) — Universidade Federal do RioGrande do Sul, Porto Alegre, 2008.

SILVA, E. lubas; SILVA, V. pignatta e. Dimensionamento de perfis formados a frioconforme NBR 14762 e NBR 6355. 1st. ed. Rio de Janeiro: Centro de Informações doIBS/CBCA, 2008. 122 p.