estudo de concreto com adicao de fibra

114
UNIVERSIDADE DA AMAZÔNIA CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE ENGENHARIA CIVIL Eduardo Sydney Dobbin Junior Luiz Felipe Serique Rocha ESTUDO DE CONCRETO COM ADIÇÃO DE FIBRA DE POLIPROPILENO PARA CONTROLE DA FISSURAÇÃO BELÉM 2011

Upload: lucas-moser

Post on 26-Oct-2015

59 views

Category:

Documents


1 download

TRANSCRIPT

UNIVERSIDADE DA AMAZÔNIA CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA

CURSO DE ENGENHARIA CIVIL

Eduardo Sydney Dobbin Junior

Luiz Felipe Serique Rocha

ESTUDO DE CONCRETO COM ADIÇÃO DE FIBRA DE POLIPROPILENO PARA CONTROLE DA FISSURAÇÃO

BELÉM 2011

EDUARDO SYDNEY DOBBIN JUNIOR LUIZ FELIPE SERIQUE ROCHA

ESTUDO DE CONCRETO COM ADIÇÃO DE FIBRA DE POLIPROPILENO PARA CONTROLE DE FISSURAÇÃO

Trabalho de Conclusão de Curso apresentado ao curso de Engenharia Civil do Centro de Ciências Exatas e Tecnologia da Universidade da Amazônia para obtenção do grau de bacharel em Engenharia Civil. Orientador: Prof. Msc. José Zacarias Rodrigues da Silva Júnior Co-Orientador: Prof. Msc. Clementino José dos Santos Filho

BELÉM 2011

EDUARDO SYDNEY DOBBIN JUNIOR LUIZ FELIPE SERIQUE ROCHA

ESTUDO DE CONCRETO COM ADIÇÃO DE FIBRA DE POLIPROPILENO PARA CONTROLE DE FISSURAÇÃO

Trabalho de Conclusão de Curso apresentado ao curso de Engenharia Civil do Centro de Ciências Exatas e Tecnologia da Universidade da Amazônia para obtenção do grau de bacharel em Engenharia Civil.

Banca Examinadora

___________________________________________ Prof. Msc. José Zacarias Rodrigues da Silva Júnior

Professor e Orientador – CCET UNAMA

___________________________________________ Prof. Msc. Clementino José dos Santos Filho

Professor - CCET UNAMA

___________________________________________ Prof. Msc. Paulo Márcio da Silva Aranha

Professor – CCET UNAMA / UFPA

Apresentado em: _____/_____/_____

Conceito: _______________________

Aos nossos pais e a busca incessante de conhecimento.

AGRADECIMENTOS

Aos pais e familiares de que forma direta e indireta nos conduziram a esta grande

vitória.

A empresa Safira Engenharia Ltda., que nos disponibilizou todo o aparato técnico e

material para a realização dos experimentos.

A Universidade da Amazônia - UNAMA, por ter nos cedido corpo técnico capacitado

para colher todos os resultados dos experimentos.

Ao nosso orientador Prof. Msc. José Zacarias Rodrigues da Silva Júnior, que nos

guiou de forma séria e responsável.

Aos nossos colegas de curso de Engenharia Civil, na compartilhação de

conhecimento.

A todos que acreditaram em nosso potencial e nos deu todo tipo de apoio e força na

obtenção de nossos objetivos.

“No que diz respeito ao desempenho, ao

compromisso, ao esforço, à dedicação, não

existe meio termo. Ou você faz uma coisa

bem-feita ou não faz.”

(Ayrton Senna)

RESUMO

As fibras são materiais que já vem sendo utilizados há muitos anos no ramo da

construção civil, porém, a falta de conhecimento no mercado ainda é abrangente. Em

específico, as fibras de polipropileno, possuem características singulares para o

combate a certas patologias que degradam as estruturas de concreto em geral. O

objetivo deste trabalho serve para expor as características e propriedades de

compósitos com adição de fibras de polipropileno. Buscando obter parâmetros para

utilização em dosagens de fibras nos concretos. Tais propriedades das fibras de

polipropileno ainda são desconhecidas por grande parte da sociedade e é um grande

avanço tecnológico que buscam garantir além de melhores compósitos, um aumento

considerável na segurança das estruturas de concreto. O trabalho em si constituiu

todo um processo que aborda temas como: tipos de fibras, métodos de dosagem,

fator de forma das fibras, metodologia de ensaios e experimentos práticos. Foram

escolhidos para a parte experimental da pesquisa, ensaios capazes de realizar uma

avaliação das características e propriedades que as fibras proporcionam nos

compósitos. Ensaio como compressão axial, tração indireta por compressão

diametral, carbonatação, ascensão capilar e tenacidade. Conforme observado nos

resultados, as fibras não proporcionam ganho de resistência mecânica em concretos,

porém, proporcionam condições de resistência a cargas mesmo após o aparecimento

das primeiras fissuras. Além de proporcionar ao compósito uma redução nos efeitos

de carbonatação e ascensão capilar devido a redução da porosidade do mesmo.

Sendo realizada uma leitura geral dos resultados obtidos a partir da realização dos

ensaios, foi escolhido como dosagem ideal o traço com adição de 0,7% de adição de

fibras por volume de concreto, a qual gerou dados aceitáveis em todos os

experimentos realizados e inclusive manteve a mistura fluída, coesa e com boa

trabalhabilidade. Foi possível observar o acréscimo das qualidades que as fibras

incorporam nos concretos, gerando um considerável fator de segurança, peças de

concreto com melhores acabamento e livres de indesejadas patologias como a

fissuração do concreto.

PALAVRAS-CHAVE: CONCRETO. FIBRAS. POLIPROPILENO. DOSAGEM.

ABSTRACT

The fibers are materials that have been used for many years in the business of

construction, however, the lack of knowledge in the market is still comprehensive. In

particular, the polypropylene fibers have characteristics unique to combat certain

diseases that degrade concrete structures in general. The objective of this study is to

describe the characteristics and properties of composites with the addition of

polypropylene fibers. Seeking to obtain parameters for use in strengths of fibers in

concrete. Such properties of polypropylene fibers are still unknown to much of society

and is a major technological breakthrough that seek to ensure better than composite,

a considerable increase in the safety of concrete structures. The work itself was a

process that addresses issues such as: fiber types, measurement methods, form

factor of the fibers, test methodology and experiments. Were chosen for the

experimental part of the research, tests able to perform an evaluation of the

characteristics and properties that provide the fibers in composites. Essay as axial

compression, indirect tensile diametrical compression, carbonation, capillary rise and

tenacity. As noted in the results, the fibers do not provide mechanical strength gain in

concrete, however, provide load bearing conditions even after the appearance of first

cracks. In addition to providing a reduction in the composite effects of carbonation and

capillary rise due to a reduction of the porosity of the same. Being held a general

reading of the results obtained from the tests, was chosen as the optimal dosage the

dash with the addition of 0.7% addition of fibers per volume of concrete, which

generated acceptable data in all experiments and even the mixture remained fluid,

cohesive and good workability. It was possible to observe the increase of the qualities

that embody the fibers in the concrete, creating a significant safety factor, pieces of

concrete with better finishing and free from unwanted diseases such as cracking of

concrete

KEYWORDS: CONCRETE. FIBER. POLYPROPYLENE. DOSING.

LISTA DE FIGURAS

Figura 1 - Classificação das Fibras Segundo a BISFA. .............................................. 17

Figura 2 - Fibra de Coco ............................................................................................. 17

Figura 3 - Fibra de Sisal ............................................................................................. 18

Figura 4 - Fibra de Celulose ....................................................................................... 18

Figura 5 - Fibra de Amianto ........................................................................................ 18

Figura 6 - Fibra de acetato (CA) ................................................................................. 19

Figura 7 - Fibras de polipropileno (PP) ....................................................................... 19

Figura 8 - Fibra de acrílico (PAN) ............................................................................... 19

Figura 9 - Fibra de vidro ............................................................................................. 20

Figura 10 - Fibra de metal .......................................................................................... 20

Figura 11 - Traço de concreto com fibras de PP ........................................................ 21

Figura 12 - Fibra de Polipropileno Monofibriladas ...................................................... 22

Figura 13 - Fibra de Polipropileno Fibriladas .............................................................. 22

Figura 14 - Aderência das fibras de PP. ..................................................................... 25

Figura 15 - Solicitação de esforço à tração no concreto. ............................................ 26

Figura 16 - Linha de tensões em concretos sem fibras. ............................................. 27

Figura 17 - Linha de tensões em concretos com fibras. ............................................. 28

Figura 18 - Aderência das fibras. ................................................................................ 29

Figura 19 - Corpo-de-prova com fibras de PP. ........................................................... 30

Figura 20 - Processo de Fissura por Assentamento Plástico. .................................... 33

Figura 21 - Exsudação em Concretos sem Fibras de PP. .......................................... 34

Figura 22 - Exsudação em Concretos com Fibras de PP. .......................................... 35

Figura 23 - Mecanismos das Fibras de Polipropileno no Controle da Exsudação. ..... 35

Figura 24 - Exemplo de Fissura por Retração Plástica. ............................................. 36

Figura 25 - Concreto com Fissuras por Retração. ...................................................... 37

Figura 26 - Concreto com Fibras de PP – Redução das Fissuras. ............................. 39

Figura 27 - Execução de Concreto Projetado Via Úmida. .......................................... 42

Figura 28 - Execução de Concreto Projetado Via Seco. ............................................ 42

Figura 29 - Acompanhamento de Concretagem com Concreto Projetado Via Úmida.

................................................................................................................................... 43

Figura 30 - Ângulo de Incidência de Concreto Projetado Via Úmida. ......................... 43

Figura 31 - Espaço Vazio Deixado pela Fibra. ........................................................... 47

Figura 32 - Canais Produzidos pelas Evaporação das Fibras Após 360ºC. ............... 48

Figura 33 - Aumento de Pressão em Concretos sem Fibras. ..................................... 48

Figura 34 - Ensaio em Peça sem Fibras. ................................................................... 49

Figura 35 - Ensaio em Peça com Fibras. ................................................................... 49

Figura 36 - Ensaio de Combate ao Calor – Corpo sem Fibras. .................................. 50

Figura 37 - Ensaio de Combate ao Calor – Corpo com Fibras. .................................. 50

Figura 38 - Prensa Utilizada em Ensaios de Compressão. ........................................ 51

Figura 39 - Detalhe de Molde de Corpo-de-prova. ..................................................... 52

Figura 40 - Ensaio de Compressão Axial Simples. ..................................................... 53

Figura 41 - Detalhes do Corpo-de-prova para Ensaio de Compressão Diametral. ..... 54

Figura 42 - Detalhe de Ensaio de Carbonatação. ....................................................... 56

Figura 43 - Ensaio de Tração na Flexão. ................................................................... 58

Figura 44 - Ensaio JSCE-SF4. ................................................................................... 59

Figura 45 - Ensaio do tipo EFNARC. .......................................................................... 59

Figura 46 - Moldagem de Corpos-de-prova para Ensaio de Tenacidade. .................. 61

Figura 47 - Corpos-de-prova Moldados para Ensaio de Tenacidade. ........................ 61

Figura 48 - Leitura de Ensaio de Carbonatação do Corpo-de-prova do Traço Normal.

................................................................................................................................... 74

Figura 49 - Leitura de Ensaio de Carbonatação do Corpo-de-prova do Traço com

Fibras. ........................................................................................................................ 75

Figura 50 - Pesagem do Corpo de Prova em Balança Digital. ................................... 76

Figura 51 - Corpo de Prova Imerso na Lâmina D’água. ............................................. 77

LISTA DE TABELAS

Tabela 1 - Propriedades de fator de forma FibroMac 6. ............................................. 23

Tabela 2 - Propriedades de fator de forma FibroMac 12. ........................................... 23

Tabela 3 - Propriedades de fator de forma FibroMac 24. ........................................... 23

Tabela 4 - Características Mecânicas das Fibras. ...................................................... 24

Tabela 5 - Consumo de Material em Concreto Projetado. .......................................... 44

Tabela 6 - Relação de Normas para Ensaio de Tenacidade. ..................................... 60

Tabela 7 - Lista de Materiais Utilizados. ..................................................................... 62

Tabela 8 - Volume de Concreto .................................................................................. 63

Tabela 9 - Peso das Fibras de PP .............................................................................. 64

Tabela 10 - Uso de Aditivo. ........................................................................................ 65

Tabela 11 - Resultados Gerais de Ensaio de Compressão Axial Simples. ................ 67

Tabela 12 - Resultados Gerais de Ensaio de Compressão Diametral Simples. ......... 70

Tabela 13 - Resultados Gerais de Ensaio de Flexão por Compressão Prismática

Simples. ...................................................................................................................... 72

Tabela 14 - Resultados Gerais de Ensaio de Carbonatação. ..................................... 74

Tabela 15 - Resultados Gerais de Ensaio de Ascensão Capilar. ............................... 75

LISTA DE GRÁFICOS

Gráfico 1 - Nível de volume crítico de fibras ............................................................... 31

Gráfico 2 - Deformação x Número de Horas. ............................................................. 40

Gráfico 3 - Temperatura x Degradação do Concreto. ................................................. 45

Gráfico 4 - Exemplificação do Efeito “Spalling”. .......................................................... 46

Gráfico 5 - Consumo de Fibras por Traço. ................................................................. 64

Gráfico 6 - Consumo de Aditivo .................................................................................. 66

Gráfico 7 - Valores Resultantes Gerais de Ensaio de Compressão Axial Simples. .... 67

Gráfico 8 - Resultantes do Ensaio de Compressão Axial Simples para 07 Dias. ....... 68

Gráfico 9 - Resultantes do Ensaio de Compressão Axial Simples para 28 Dias. ....... 68

Gráfico 10 - Valores Resultantes Gerais de Ensaio de Compressão Diametral

Simples. ...................................................................................................................... 70

Gráfico 11 - Resultantes do Ensaio de Compressão Diametral Simples para 07 Dias.

................................................................................................................................... 71

Gráfico 12 - Resultantes do Ensaio de Compressão Diametral Simples para 28 Dias.

................................................................................................................................... 71

Gráfico 13 - Resultantes de Compressão Prismática Simples para 28 Dias. ............. 73

Gráfico 14 - Resultados de Ensaio de Ascensão Capilar. .......................................... 76

SUMÁRIO

1 INTRODUÇÃO .................................................................................................................. 11

1.1 PROBLEMATIZAÇÃO ................................................................................... 13

1.2 OBJETIVO ..................................................................................................... 13

1.2.1 Objetivo Geral ................................................................................................................. 13

1.2.2 Objetivos Específicos .................................................................................................. 14

1.3 JUSTIFICATIVA ............................................................................................ 14

1.4 METODOLOGIA ............................................................................................ 14

2 CONCEITO DE FIBRA ................................................................................................... 16

2.1 TIPOS DE FIBRAS ........................................................................................ 16

2.2 INFLUÊNCIA DO FATOR DE FORMA .......................................................... 20

2.3 MECANISMOS DE TRANSFERÊNCIA ......................................................... 25

3 PROPRIEDADES DAS FIBRAS DE POLIPROPILENO ..................................... 32

3.1 USO DE FIBRAS DE POLIPROPILENO PARA CONTROLE E REDUÇÃO

DE EXSUDAÇÃO ....................................................................................................... 32

3.1.1 Fissuras de Assentamento Plástico ...................................................................... 32

3.1.2 Resistência ao Desgaste ............................................................................................ 33

3.1.3 A Exsudação e as Fibras de Polipropileno ........................................................ 34

3.2 CONTROLE DA RETRAÇÃO DO CONCRETO E ARGAMASSAS ............... 36

3.2.1 A Retração do Concreto ............................................................................................. 36

3.2.2 Atuação de Fibras de Polipropileno ao Combate a Retração .................... 38

3.3 UTILIZAÇÃO DE FIBRAS DE POLIPROPILENO PARA REDUÇÃO DA

REFLEXÃO DE CONCRETOS PROJETADOS ......................................................... 41

3.4 USO DAS FIBRAS PARA CONCRETOS RESISTENTES A FOGO ............. 44

4 METODOLOGIA DE ENSAIOS ................................................................................... 51

4.1 ENSAIO DE COMPRESSÃO AXIAL SIMPLES ............................................. 51

4.2 ENSAIO DE TRAÇÃO INDIRETA POR COMPRESSÃO DIAMETRAL ......... 53

4.3 CARBONATAÇÃO ........................................................................................ 55

4.4 ASCENSÃO CAPILAR .................................................................................. 56

4.5 TRAÇÃO NA FLEXÃO .................................................................................. 57

4.5.1 Tenacidade ....................................................................................................................... 58

5 MÉTODOS DE DOSAGEM ........................................................................................... 62

5.1 OBTENÇÃO DO VOLUME TOTAL DE CONCRETO .................................... 63

5.2 DOSAGEM DA FIBRA ................................................................................... 63

5.3 DOSAGEM DO ADITIVO .............................................................................. 65

6 EXPERIMENTOS ............................................................................................................. 67

6.1 COMPRESSÃO AXIAL SIMPLES ................................................................. 67

6.2 TRAÇÃO INDIRETA POR COMPRESSÃO DIAMETRAL ............................. 69

6.3 FLEXÃO POR COMPRESSÃO PRISMÁTICA SIMPLES .............................. 72

6.4 CARBONATAÇÃO ........................................................................................ 73

6.5 ASCENSÃO CAPILAR .................................................................................. 75

7 ANÁLISE DOS RESULTADOS ................................................................................... 78

7.1 COMPRESSÃO AXIAL SIMPLES ................................................................. 78

7.2 TRAÇÃO INDIRETA POR COMPRESSÃO DIAMETRAL ............................. 78

7.3 CARBONATAÇÃO ........................................................................................ 79

7.4 ASCENSÃO CAPILAR .................................................................................. 79

7.5 FLEXÃO POR COMPRESSÃO PRISMÁTICA SIMPLES .............................. 80

8 CONSIDERAÇÕES FINAIS .......................................................................................... 81

REFERÊNCIAS...........................................................................................................83

ANEXOS..................................................................................................................... 85

11

1 INTRODUÇÃO

A utilização de fibras nos compósitos é um método já utilizado há vários anos

e ainda pode ser amplamente explorado para agregar benefícios a estruturas de

concreto. Há, inclusive, relatos de seu uso no Egito, quando o povo utilizava palha

como argamassa. Como dito no livro sagrado, “[...] não continueis a fornecer palha ao

povo, como antes, para o fabrico de tijolos”. Na Antiga China, há indícios de seu uso

para a construção da mundialmente conhecida muralha da China. Seu estudo

científico sobre o comportamento destes deu-se apenas na década de 50 com a

entrada das fibras de aço e vidro. (TANESI; FIGUEIREDO, 1999).

Atualmente, vem sendo largamente utilizada para vários setores da construção

civil no intuito de gerar propriedades benéficas em termos de segurança aos

compósitos. Pode ser na fabricação de telhas, uso em pavimentações, painéis de

vedação vertical, dentre outros. Todos com o fim de procurar minimizar deficiências

dos compósitos convencionais que não conseguem o desempenho desejado.

Sua procura também se deve ao ser requerido em locais ou condições

adversas as quais também não se consegue o resultado esperado de compósitos

convencionais.

Compósitos, como já diz o nome, são materiais compostos basicamente por

duas fases: a matriz e as fibras. As fibras podem atuar como um reforço da matriz em

função das propriedades deste e das próprias fibras. (FIGUEIREDO, 2000). Tais

como concreto, composto por uma fase agregado e outra fase pasta, que é a matriz,

cujo comportamento consiste na combinação das propriedades dos materiais que o

constituem. (FIGUEIREDO, 2000).

Segundo Figueiredo (2000), é sabido que a qualidade dos componentes de

matrizes de cimento não é mais caracterizada apenas pela resistência que

apresentam , mas devem refletir outras propriedades que influenciam o desempenho

do material como um todo.

Vale ressaltar que existem outros tipos de fibras, sendo elas: orgânicas e

sintéticas. Dentro do grupo de orgânicas podemos ressaltar o sisal, a casca de coco

12

e a celulose. Das sintéticas também são empregadas as de nylon, poliéster,

polietileno e poliamida para os fins de reforço das matrizes cimentíceas.

As fibras de polipropileno, nylon e polietileno podem ser classificadas como

fibras de baixo modulo, que restringe sua aplicação ao controle de fissuração quando

as matrizes possuem baixo modo de elasticidade, como é o caso de retração plástica

em argamassas. (FIGUEIREDO, 2000). Para Tanesi e Figueiredo (1999), o reforço

de fibras de polipropileno tem entre as suas funções a de controlar as fissurações

causadas por mudanças de volume em matrizes de concreto, problema muito

habitual em países de clima quente.

Existem dois tipos básicos de fibras de polipropileno: monofilamentos e

fibriladas. As fibras chamadas de monofilamento consistem em fios cortados em

comprimento padrão. Já as fibriladas apresentam-se como uma malha de finos

filamentos de seção retangular. A estrutura em malha das fibras de polipropileno

fibrilado promove um aumento de adesão entre a fibra e a matriz, devido a um efeito

de intertravamento. O uso das fibras de polipropileno disperso aletoriamente na

massa de concreto estabiliza a abertura das fissuras nas primeiras horas. (TANESI;

FIGUEIREDO, 1999)

Na cura do concreto, ocorre um processo químico exotérmico, no qual existe o

deslocamento de água para fora de sua superfície, provando a secagem da

superfície, ocasionando o calor de hidratação, sendo o mesmo responsável pelo

aparecimento de fissuras no concreto ainda recente. A grande área em questão para

evaporação facilita este surgimento das fissuras. Processo conhecido também como

retração do concreto.

Para Tanesi e Figueiredo (1999), a sedimentação pode ser outra importante

formação de fissuras, pois leva à abertura de canais de água e por conseqüência o

surgimento de tensões de tração na superfície do concreto.

Estas fissuras têm maior probabilidade de surgir logo nas primeiras horas,

visto que a resistência do compósito ainda é baixa, comprometendo desta maneira

toda a peça não somente quanto à sua estética, mas também em relação a sua

resistência às mais variadas cargas.

13

Vale ressaltar que o uso das fibras de polipropileno é recomendado para

trabalhar as fissuras de retração e não para compensar no ganho de resistência à

compressão da peça. Tendo que ter em vista também que sua dosagem só é

beneficiada com concentrações de no máximo 1% de volume. (TANESI;

FIGUEIREDO, 1999.).

Em contrapartida à utilização das fibras, está na grande limitação de não haver

um método reconhecido de dosagem para controle de fissurações. E também, ainda

não possuem métodos mundialmente reconhecidos de ensaio de controle. Sua

dosagem ainda é realizada de maneira empírica, com consumo de 0,9kg/m³ (0,1% de

volume) (TANESI; FIGUEIREDO, 1999.).

1.1 PROBLEMATIZAÇÃO

Com o início do uso de fibras para o combate a fissuração, ainda são poucas

as informações concretas sobre tal assunto. A busca pelo método de dosagem dos

compósitos para a obtenção da diminuição de tal problema continua altamente

empírica e somente por métodos de tentativas de acordo com o determinado tipo de

construção, não havendo uma metodologia empregada para tais dosagens.

Este trabalho procura fazer um consenso entre o consumo empírico já utilizado

com ensaios laboratoriais para a obtenção de uma metodologia aceitável, para as

mais variadas construções que procuram obter resultados ao combate a fissuração

por retração.

1.2 OBJETIVO

1.2.1 Objetivo Geral

O objetivo consiste em apresentar uma proposta voltada ao método prático do

uso de fibras sintéticas de polipropileno em concretos, tendo a busca de uma

dosagem para ser possível chegar a um índice desejável da melhor percentagem de

adição visando o controle de fissuração dos compósitos.

14

1.2.2 Objetivos Específicos

Tendo em vista o conhecimento teórico, este trabalho irá comprovar a

obtenção de uma metodologia aplicada ao uso das fibras de polipropileno, através

das análises dos ensaios realizados.

1.3 JUSTIFICATIVA

Devido o pouco conhecimento sobre o assunto, e ainda não existir métodos de

ensaio aceitos para o controle da dosagem de fibras de polipropileno, na mesma

tampouco para avaliar a fissuração por retração e pelo fato de não haver um método

aceitável de dosagem é ideal a procura por meios tanto literários quanto práticos para

saciar estas deficiências.

1.4 METODOLOGIA

Para realização deste trabalho foi necessária, inicialmente, a realização de

pesquisa específica em artigos acadêmicos sobre concretos com uso de fibras, com

foco nas fibras de polipropileno. As dosagens do concreto seguiram os padrões

adotados para os métodos de dosagem convencional.

O método utilizado nesta pesquisa foi com base em um processo

experimental, sendo realizada no laboratório de experimentos da Universidade da

Amazônia (UNAMA) a confecção de corpos de prova para obtenção de resultados

comparativos entre concreto convencional e concreto com adição de fibras de

polipropileno, ambos com o mesmo traço. Esta última parte, sendo realizada de

forma dedutiva, com várias porcentagens de acréscimo de volume das fibras, indo de

0,1% até 1%. Para a melhor comparação dos resultados encontrados.

Para os ensaios de resistência mecânica, foram realizados experimentos com

relação à compressão axial simples e à tração na compressão diametral, foram

utilizados um total de 40 corpos-de-prova cilíndricos, de dimensões 10x20cm. Sendo

destes, 4 com concreto convencional sem fibras, 4 com adição de 0,3% de fibras de

polipropileno, 4 com adição de 0,5% de fibras de polipropileno, 4 com adição de 0,7%

de fibras de polipropileno e 4 com adição de 0,9% de fibras de polipropileno para o

15

ensaio a compressão diametral, e para o ensaio â compressão axial simples, 4 com

concreto convencional e 4 com adição de 0,3% de fibras de polipropileno, 4 com

adição de 0,5% de fibras de polipropileno, 4 com adição de 0,7% de fibras de

polipropileno e 4 com adição de 0,9% de fibras de polipropileno.

Foram confeccionados, também, 10 corpos de prova prismáticos, sendo 2 com

concreto convencional e 2 corpos-de-prova para cada dosagem com adição de fibras,

todos moldados para o ensaio de resistência à tração na flexão.

Para o ensaio da tenacidade foi confeccionado um corpo-de-prova para cada

tipo de dosagem, em forma de paralelepípedo.

Para se analisar as propriedades químicas, foi confeccionado um corpo-de-

prova de cada dosagem, sendo um para o ensaio de carbonatação e um para o

ensaio de ascensão capilar.

Todo os ensaios foram realizados com os corpos de provas nas idades de 7 e

28 dias de cura. Sendo que para o ensaio de carbonatação foi-se estimado um prazo

de 90 dias para cura. Após a execução de todos os ensaios, para conclusão, os

resultados obtidos foram computados para a obtenção dos resultados.

16

2 CONCEITO DE FIBRA

A fibra é um material fino, fibrilado e alongado. Na natureza, as fibras podem

ser encontradas inclusive nos seres vivos, pois são elas que fazem o sustento dos

tecidos. Elas podem ser aproveitadas para diversas finalidades, dependendo da sua

origem e composição. Podem ser encontradas fibras naturais, artificiais e sintéticas.

As naturais são as fibras encontradas prontas na natureza, as artificiais são

produzidas pelo homem através das materiais da natureza e as sintéticas são

também produzidas pelo homem, porém, oriundas de produtos químicos.

Segundo o site Wikipedia (s.a), As fibras de polipropileno fazem parte da

classe das fibras sintéticas, sendo produzida pelo homem, através de material

petroquímico reciclado. É mais conhecida pela sua sigla PP (Polipropileno).

A produção das fibras de polipropileno acabou por ter sido desenvolvida e ter

o seu processo patenteado pela empresa de produtos petrolíferos Shell. Seu método

foi o de produzir fibras fibriladas picotadas, como também concretos contendo tais

fibras. (FIGUEIREDO; TANESI, 1999).

As fibras de polipropileno são classificadas como fibras de baixo módulo,

trabalhando em matrizes cimentíceas reforçando o compósito sobre todas as suas

propriedades com base, sendo elas a tensão de tração, flexão e tenacidade da

matriz.

2.1 TIPOS DE FIBRAS

As fibras estão presentes em todo nosso ambiente. Seja no meio natural ou

artificial. Diz-se artificial para as substâncias e compostos que o homem consegue

processar e obter um novo tipo de material. No campo das fibras naturais, o seu

encontro se dá na própria natureza, conforme classificação apresentada na Figura 1,

abaixo:

17

Figura 1 - Classificação das Fibras Segundo a BISFA.

Fonte: Manual Técnico Maccaferri (s.a.)

As fibras em geral podem ser classificadas como naturais, metálicas ou

sintéticas, podendo ou não ter alguma intervenção química para melhoria de suas

propriedades. O uso desse material em termos de propriedades construtivas se dá há

vários séculos, na sua utilização para criação de casas e outros tipos de construção.

Dentro do ramo das fibras naturais, existem as vegetais de madeira ou bambu,

como também sementes, fibras de frutas e fibras de folhas. São exemplos as fibras

de sisal, eucalipto, juta, coco, banana e etc. Ver Figuras 2 e 3, abaixo:

Figura 2 - Fibra de Coco

Fonte: Manuel Lourenço (s.a).

18

Figura 3 - Fibra de Sisal

Fonte: Hipergesso (s.a).

Ainda no campo das naturais encontram-se as fibras de amianto e celulose,

que são matérias-primas para obtenção de materiais de revestimento na construção

civil. (Ver Figuras 4 e 5).

Figura 4 - Fibra de Celulose

Fonte: Hotfrog (s.a).

Figura 5 - Fibra de Amianto

Fonte: Brasil Escola (s.a).

As fibras naturais possuem uma gama de vantagens em comparação as fibras

sintéticas, como conservação de energia, são encontrada em grande abundância,

possuem baixo custo, não são prejudiciais à saúde, possuem baixa densidade, são

biodegradáveis e têm a possibilidade de incremento na economia agrícola.

Em contrapartida, para o seu uso em matrizes cimentícias elas possuem baixa

durabilidade e também, no seu preparo em compostos para reforço da matriz, seu

estado natural enfraquece a adesão na matriz do composto.

19

No grupo das fibras orgânicas, existem as fibras de transformação de

polímeros naturais. Esse processo é realizado por intermédio do homem. São

exemplos: Fibras de acetato (CA), alginato (ALG) e triacetato (CTA). Conforme visto

na Figura 6.

Figura 6 - Fibra de acetato (CA)

Fonte: Allbiz (s.a).

No campo dos polímeros sintéticos, também gerados por intermédio do

homem, se contemplam as seguintes fibras: Polipropileno (PP), poliestireno (PES),

acrílico (PAN), aramida (AR), dentre outras. Conforme alguns exemplos vistos nas

Figuras 7 e 8.

Figura 7 - Fibras de polipropileno (PP)

Fonte: Fitesa – Apostila Técnica nº 001 (2001).

Figura 8 - Fibra de acrílico (PAN)

Fonte: Fitesa – Apostila Técnica nº 001 (2001).

20

As fibras artificiais também podem ser divididas entre as fibras inorgânicas,

como as fibras de carbono (CF), cerâmica (CEF), vidro (GF) e metal (MTF). Vistos

alguns exemplos nas Figuras 9 e 10.

Figura 9 - Fibra de vidro

Fonte: Fitesa – Apostila Técnica nº 001 (2001).

Figura 10 - Fibra de metal

Fonte: Fitesa – Apostila Técnica nº 001 (2001).

Neste grupo das fibras artificiais, as fibras metálicas são definidas como

elementos descontínuos produzidos com uma alta variabilidade de formatos,

dimensões e mesmo tipos de aço. As fibras de aço são consideradas fibras de alto

módulo, pois podem atuar como reforço estrutural no concreto.

2.2 INFLUÊNCIA DO FATOR DE FORMA

Segundo o Manual Técnico Maccaferri (s.a.), o fator de forma se dá pela

relação entre o comprimento e o diâmetro da fibra. Nesta relação, quanto mais

elevado for o seu fator de forma, menor será o seu diâmetro, ou seja, a fibra será

mais esbelta.

21

Segundo Figueiredo (2000, p.6):

[...] quanto maior for o fator de forma, maior será também a influência da fibra na perda de fluidez do material. Isso ocorre pelo fator de se ter uma elevada área específica que demanda uma grande quantidade de água de molhagem aumentando o atrito interno do concreto e reduzindo a sua mobilidade.

Este fato é comprovado na prática, conforme Figura 11, tendo conhecimento

que, com o aumento do teor de fibras adicionado em relação ao volume do

compósito, se dificulta a trabalhabilidade do material, como também a

homogeneidade do composto. Desta forma, tendo em vista que quanto mais próximo

se trabalha do limite de adição de fibras no compósito (1% em relação ao volume de

concreto), mais difícil se torna a sua mobilidade.

Figura 11 - Traço de concreto com fibras de PP

Fonte: Arquivo pessoal.

Ainda segundo Figueiredo (2000, p.6):

[...] no caso de concretos plásticos, existe outro fator que pode gerar dificuldades de aplicação e consequentemente prejuízos a trabalhabilidade do material que é a baixa massa específica da fibra, que produz uma tendência à segregação do material que tende a “boiar” no concreto, concentrando-se na parte superior, caso a mistura conte com elevada relação água/materiais secos por exemplo.

Este fato se resume pela relação água / cimento (A/C) estar elevada. Com

base neste alto teor, as fibras que possuem baixa massa específica, acabam por não

conseguir realizar uma mistura totalmente homogênea. Causando a segregação e,

posteriormente, o prejuízo com o material final que não terá as propriedades

desejadas. Isto muito se deve também, a falta de normas para dosagem das fibras,

tornando o processo de controle mais difícil.

22

Segundo o fator de forma, as fibras de polipropileno são divididas em

monofibriladas e fibriladas. As fibras monofibriladas possuem grande fator de forma,

podendo ser visto na Figura 12, ou seja, sua relação entre o diâmetro da fibra e seu

comprimento é alta. Novos tipos de fibra, como alternativa estão sendo produzidos,

como é o caso das fibras fibriladas. (FIGUEIREDO 2000).

Figura 12 - Fibra de Polipropileno Monofibriladas

Fonte: Fitesa – Apostila Técnica nº 001 (2001).

As fibriladas, vistas na Figura 13, possuem telas que se abrem no decorrer da

mistura com o compósito, atenuando o impacto da adição de fibra. Desta forma, para

um mesmo volume de fibras, em relação das monofibriladas para as fibriladas, há um

ganho de na capacidade de reforço, pois elas estarão agindo intertravadas no

concreto. (FIGUEIREDO 2000).

Figura 13 - Fibra de Polipropileno Fibriladas

Fonte: Fitesa – Apostila Técnica nº 001 (2001).

Segue abaixo, exemplos dos fatores de forma das fibras de polipropileno da

fabricante Maccaferri, utilizadas no estudo, de acordo com as Tabelas 1, 2 e 3.

23

Tabela 1 - Propriedades de fator de forma FibroMac 6.

Propriedades Físicas – Fibras de Polipropileno (Ex. FibroMac® 6 – Maccaferri

Diâmetro µm 18

Seção - Circular

Comprimento Mm 6

Alongamento % 80

Matéria-prima - Polipropileno

Peso Específico g/cm³ 0,91

Fonte: Manual Técnico Maccaferri (S.A.)

Tabela 2 - Propriedades de fator de forma FibroMac 12.

Propriedades Físicas – Fibras de Polipropileno (Ex. FibroMac® 12 – Maccaferri

Diâmetro µm 18

Seção - Circular

Comprimento Mm 12

Alongamento % 80

Matéria-prima - Polipropileno

Peso Específico g/cm³ 0,91

Fonte: Manual Técnico Maccaferri (S.A.)

Tabela 3 - Propriedades de fator de forma FibroMac 24.

Propriedades Físicas – Fibras de Polipropileno (Ex. FibroMac® 24 – Maccaferri

Diâmetro µm 18

Seção - Circular

Comprimento Mm 24

Alongamento % 80

Matéria-prima - Polipropileno

Peso Específico g/cm³ 0,91

Fonte: Manual Técnico Maccaferri (S.A.)

Levando em consideração os aspectos tecnológicos, segue abaixo na Tabela

4, valores de resistência mecânica e módulos de elasticidade para os mais diversos

tipos de fibra.

24

Tabela 4 - Características Mecânicas das Fibras.

FIBRAS DIÂMET

RO (µm)

DENSIDA

DE

(10³kg/m³)

MÓDULO

ESLASTICIDA

DE (KN/mm²)

RESISTÊN

CIA A

TRAÇÃO

(KN/mm²)

ALONGAMEN

TO NA

RUPTURA

(%)

Aço 5 –

500 7.84 200 0.5 – 2 0.5 – 3.5

Vidro 9 – 15 2.60 70 – 80 2 – 4 2 – 3.5

Amianto 0.02 –

0.04 3.00 180 3.30 2 – 3

Polipropil

eno

20 –

200 0,90 5 – 7

0.5 –

0.75 8

Nylon - 1.10 4 0.90 13 – 15

Polietilen

o - 0.95 0.30 0.0007 10

Carbono 9 1.90 230 2.60 1

Kevlar 10 1.45 65 – 133 3.60 2.1 – 4

Acrílico 18 1.18 14 – 19.5 0.4 – 1 3

Celulose - 1.2 10 0.3 – 0.5 -

Sisal 10 –

50 1 – 50 - 0.8 3.0

Fibra de

madeira - 1.5 71 0.90 -

Fonte: Manual Técnico Maccaferri (S.A.)

O comprimento das fibras tem uma relação direta com o desempenho do

compósito, quanto menor for a sua dimensão de comprimento, maior será a

possibilidade de elas serem arrancadas. Para uma análise completa, há a

necessidade de se verificar também o seu diâmetro, pois depende dele também a

capacidade da fibra desenvolver resistência as cargas nelas solicitadas. Fato

ilustrado na Figura 14.

25

Figura 14 - Aderência das fibras de PP.

Fonte: RODRIGUES; MONTARDO (2002)

Segundo Rodrigues e Montardo (2002, p. 6):

[...] a relação l/d é proporcional ao quociente entre a resistência à tração da fibra e a resistência de aderência fibra/matriz, na ruptura. Em grande parte, a tecnologia dos materiais compósitos depende desta simples equação: se a fibra tem uma alta resistência à tração, por exemplo, como o aço, então ou a resistência de aderência necessária deverá ser alta para impedir o arrancamento antes que a resistência à tração seja totalmente mobilizada ou fibras de alta relação l/d deverão ser utilizadas.

A Figura 14 mostrou uma disposição idealizada da fibra em relação à fissura.

A orientação da fibra relativa ao plano de ruptura do concreto ou uma simples fissura,

influencia na sua capacidade de transmitir cargas.

2.3 MECANISMOS DE TRANSFERÊNCIA

Figueiredo (2000) discorre sobre as variações e propriedades do concreto,

tendo como abordagem principal as limitações do compósito comparando seu

comportamento de frágil ruptura e pouca deformação com outros elementos como o

aço. Como se é esperado, o concreto não apresenta um bom desempenho de

resistência à tração quando comparado com sua resistência à compressão. Este

propósito está associado diretamente ao comportamento das fissuras no interior da

matriz. No momento da solicitação do concreto às forças de tração, fissuras já

presentes ou novas formações de fissuras prejudicam seu desempenho.

26

Ilustrando este raciocínio, o modelo da Figura 15 exemplifica o comportamento

destes materiais tipicamente frágeis ao tipo de solicitação que transfere tensão

através do contato quando se esta comprimindo. Já no momento em que o conjunto

é colocado a uma força de tração, ele não oferece resistência à separação.

Figura 15 - Solicitação de esforço à tração no concreto.

Fonte: FIGUEIREDO (2000)

È possível associar a dificuldade da resistência à tração do concreto com a

mesma dificuldade do mesmo interromper a propagação das fissuras quando

solicitado a este tipo de esforço. (FIGUEIREDO, 2000).

O concreto é susceptível à concentração de tensão no surgimento de uma

fissura e propagação da mesma, como pode ser visto na Figura 16. A fissura

representa um escudo a esta propagação da tensão. Após este desvio das forças,

uma concentração irá ocorrer no lado da extremidade da fissura. Caso esta tensão

supere a resistência da matriz do compósito, irá ocorrer um rompimento abrupto do

material. No caso de solicitação do tipo cíclica, pode-se compreender o rompimento

abrupto como sendo a cada ciclo da tensão o aparecimento de novas micro-fissuras,

que vão se acumulando até ocorrer o rompimento do material. Obtendo isto como

exemplo, podemos associar ao concreto sem fibras que, após o aparecimento das

27

fissuras, não há mais possibilidade de haver capacidade de resistência do material.

(FIGUEIREDO, 2000).

Figura 16 - Linha de tensões em concretos sem fibras.

Fonte: FIGUEIREDO (2000)

Uma contribuição das fibras está relacionada ao seu efeito na ponte de

transferência de tensões. O aparecimento das fissuras ocorre no momento em que o

concreto chega ao seu ponto de ruptura, a tensão aplicada na matriz se transfere

para as fibras, desta maneira interceptando a propagação da fissura, controlando a

abertura da mesma. Este fenômeno se denomina ponte de transferência de tensões,

vistos na Figura 17. Esta relação só será mantida se for possível manter o nível de

carregamento no corpo de prova constante ou até mesmo diminuir. Este fato é difícil

de garantir, pois o corpo de prova pode apresentar vazios que podem interferir nos

resultados. (TANESI; FIGUEIREDO, 1999).

28

Figura 17 - Linha de tensões em concretos com fibras.

Fonte: FIGUEIREDO (2000)

Segundo Tanesi e Figueiredo (1999, p.13): “[...] a transferência de tensão para

uma região não fissurada promoverá nela um incremento de tensão, que quando

atingir a tensão de ruptura da matriz resultará no aparecimento de mais fissuras.”.

Desta forma, um compósito que é reforçado com fibras, possuirá mais fissuras

com relação a uma matriz sem fibras, porém, com um controle da abertura das

fissuras, tornando-as menores. A tensão de ruptura aplicada ao concreto não poderá

passar da tensão suportada pela fibra, tão quanto à aderência da relação fibra/matriz

para não ocorrer consequências, como o escorregamento e possível arrancamento

da fibra da matriz. O efeito de escorregamento e arrancamento geram gasto de

energia, promovendo o aumento da tenacidade dos compósitos reforçados com fibras

em geral, como pode ser visto na Figura 18. (TANESI; FIGUEIREDO, 1999).

29

Figura 18 - Aderência das fibras.

Fonte: Manual Técnico Maccaferri (s.a.)

Acreditava-se que, no acréscimo das fibras em elemento de concreto próximas

uma das outras, poderiam criar uma barreira contra a propagação das fissuras,

dando ao concreto um aumento da resistência a tração. Após experimentos utilizados

para tal comprovação, foi comprovado que mesmo com a incorporação das fibras de

diferentes tamanhos e formas ao concreto ou argamassas convencionais, não há um

aumento de resistência comparado às misturas correspondentes de concreto sem

fibras, embora pesquisas posteriores comprovem a considerável melhora no

comportamento pós-fissuração nos concretos com fibras. O concreto com fibras

torna-se muito tenaz, ou seja, deformável e mais resistente a impactos. (MEHTA;

MONTEIRO, 1994).

Este efeito de transferência de tensões gera um aumento da deformação até o

aparecimento da primeira fissura como também uma alta deformação até seu

colapso, como visto abaixo na Figura 19. O compósito resiste ao carregamento e

continua a se deformar, inclusive após o aparecimento das fissuras iniciais, como

também as conseqüências de descolamento e arrancamento das fibras da matriz.

(TANESI; FIGUEIREDO, 1999).

30

Figura 19 - Corpo-de-prova com fibras de PP.

Fonte: Arquivo pessoal.

Segundo Mehta e Monteiro (1994), é conhecido que na adição de fibras em

concretos simples ocorre a perda de trabalhabilidade do material. Dependendo do

tipo da fibra adicionada, a perda da trabalhabilidade será proporcional a

concentração do volume de fibras no concreto.

Um fator importante em concretos com adição de fibras é o fator de seu

volume de fibras em relação ao volume de concreto conforme gráfico abaixo (ver

Gráfico 1). O volume crítico em um compósito se dá ao teor de fibras necessárias

para manter a mesma capacidade portante a partir da ruptura da matriz. Sendo o

volume de fibras abaixo do volume crítico, há a ocorrência necessária de uma perda

de carga que o material tem capacidade de suportar. Quando o volume está acima

do crítico, o compósito consegue suportar níveis crescentes de carregamento,

mesmo após o surgimento da primeira fissura. (FIGUEIREDO, 2000).

31

Gráfico 1 - Nível de volume crítico de fibras

Fonte: FIGUEIREDO (2000)

Os níveis de fibras ficando acima do da curva de volume crítico, apesar de

suportar inicialmente maiores níveis de carregamentos, perde grande capacidade na

trabalhabilidade do material ainda no estado fresco. Desta forma, gerando uma

grande dificuldade para a moldagem de estruturas e controle de integridade física da

peça.

32

3 PROPRIEDADES DAS FIBRAS DE POLIPROPILENO

3.1 USO DE FIBRAS DE POLIPROPILENO PARA CONTROLE E REDUÇÃO DE

EXSUDAÇÃO

O fenômeno da exsudação é um problema que se tem decorrência nos

concretos logo nas suas primeiras idades. Porém este efeito pode acarretar em

danos também em longo prazo. (FITESA – BOLETIM TÉCNICO Nº 3, 2002).

Exsudação se define como a separação da parte de água do compósito, a

qual aflora para a superfície do mesmo. A partir deste efeito, é gerado um aumento

direto na relação a/c na superfície do concreto, prejudicando a área.

A utilização das fibras de polipropileno possui capacidades que vão além de

aumento da tenacidade em compósitos, tornando o grau de exsudação menor

nesses materiais. Há vários fatores que provocam este processo, sendo que os

mesmos, sempre estão diretamente ligados aos teores de finos do concreto, que são

formados pelos agregados finos e o cimento, e aos grandes teores de água, mesmo

combinados com aditivos. (FITESA – BOLETIM TÉCNICO Nº 3, 2002).

Fatores que são comumente encontrados em serviços diversos que provocam

o aumento da exsudação são: a vibração e acabamento excessivo do concreto.

Estes processos combinados acarretam na aceleração do processo e normalmente

não são bem controlados por estarem ligados à trabalhabilidade do material.

3.1.1 Fissuras de Assentamento Plástico

As principais patologias encontradas em processos de exsudação não

controlados são as fissuras de assentamento plástico. Este fenômeno ocorre durante

o processo da concretagem das estruturas. Durante o lançamento do concreto, o

espaço entre a ferragem e o concreto fica preenchido por água. Posteriormente, esta

água tende a percolar para a superfície, onde se forma uma lâmina de água. (FITESA

– BOLETIM TÉCNICO Nº 3, 2002).

Em situações onde a exsudação é elevada, ocorre uma grande mudança no

volume de concreto, fazendo com que o recobrimento da armadura diminua,

33

acarretando na retração por assentamento plástico, conforme Figura 20.

Posteriormente, são geradas tensões internas de tração no concreto, fazendo ocorrer

fissuras.

Figura 20 - Processo de Fissura por Assentamento Plástico.

Fonte: Fitesa – Boletim Técnico nº 3 (2002)

As fissuras que surgem por parte deste processo de retração plástica são

independentes dos fatores externos, como o sol, que permitem a evaporação e

secagem da superfície do concreto.

Deve-se levar em consideração também que, dependendo do nível de

abatimento do concreto, ou seja, quanto mais ele for adensado, e se

proporcionalmente quanto maior for a bitola de armadura, mais vulnerável está o

concreto para o aparecimento destas fissuras por retração plástica.

3.1.2 Resistência ao Desgaste

O concreto possui uma grande resistência ao desgaste, que é co-relacionada

à sua resistência à compressão. Existem também outros fatores que influenciam

nesta resistência, e umas delas são as alterações que ocorrem no concreto em

estado fresco. Devido ao efeito da exsudação, que causa a saída gradativa de água

do concreto, este efeito corrobora diretamente em alterações nos níveis da relação

a/c (relação água cimento) do compósito. A resistência mecânica, como a resistência

compressão ou ao desgaste, é totalmente dependente desta relação. A partir do

momento em que a água que exsuda forma uma película em cima da superfície,

forma-se uma camada porosa, sendo a mesma com baixa resistência mecânica,

34

fazendo com que o compósito apresente desgaste com mais facilidade. (FITESA –

BOLETIM TÉCNICO Nº 3, 2002).

Este efeito pode atenuar-se devido, a re-incorporação desta água da

superfície por meio de desempeno do concreto excessivo e/ou fora de hora. Desta

mesma forma, a superfície também poderá apresentar desgaste com mais rapidez e

também surgimento de erosão e pó, como é comum de se ver em pisos de

estacionamentos e calçadas.

3.1.3 A Exsudação e as Fibras de Polipropileno

Após o surgimento das fibras de polipropileno, se tornou possível um ataque

contra estas patologias. As fibras possibilitam a diminuição do aparecimento de

fissuras causadas por assentamento plástico, como também, aumentam a resistência

dos compósitos a abrasão pelo controle de exsudação. As fibras de polipropileno no

interior do compósito tendem a impedir a saída da água, servindo como barreiras,

revelando sua capacidade de retenção.

O polipropileno é um material hidrofóbico, ou seja, não absorve água. Como

sua adição no concreto se deve à inúmeros filamentos, estes se comportam como

verdadeiras barreias, impedindo com que a água exsude, conforme visto no exemplo

nas Figuras 21 e 22. Desta forma, por um maior período de tempo, a água

permanece no concreto, gerando melhores condições de hidratação do mesmo e

diminuindo as patologias geradas pela exsudação elevada. (FITESA – BOLETIM

TÉCNICO Nº 3, 2002).

Figura 21 - Exsudação em Concretos sem Fibras de PP.

Fonte: Manual Técnico da Maccaferri (s.a).

35

Figura 22 - Exsudação em Concretos com Fibras de PP.

Fonte: Manual Técnico da Maccaferri (s.a).

As fibras de polipropileno do tipo multifilamento, por possuírem pequeno

diâmetro e baixa densidade, apresentam elevada área superficial. Estas fibras, como

as demais, não absorvem água, mas realizam um processo de adsorção, que faz

com que as moléculas de água sejam mantidas perto delas, conforme figura abaixo

(Ver Figura 23). Também realizando a diminuição do processo de exsudação,

tornando-a controlada.

Figura 23 - Mecanismos das Fibras de Polipropileno no Controle da Exsudação.

Fonte: Fitesa – Boletim Técnico nº 3 (2002).

Muitos ensaios realizados atualmente que procuram a medição da exsudação,

não conseguem ser bem sucedidos na avaliação da influência das fibras de

polipropileno no combate a este fenômeno. Porém, vários estudos internacionais,

utilizando a princípio o túnel de vento, estão sendo bem sucedidos e comprovando

esta exponencial melhora do concreto ao combate a exsudação com o uso das

fibras. As qualidades das fibras de polipropileno contra este fenômeno da exsudação

podem ser visualizadas de forma bem clara ao se observar concretagens de pisos e

lajes de concreto.

36

3.2 CONTROLE DA RETRAÇÃO DO CONCRETO E ARGAMASSAS

No momento da adição das fibras de polipropileno em concreto para pisos, há

uma facilidade na percepção de uma grande qualidade, o aumento da coesão da

mistura no estado fresco. A base desta qualidade propõe a diminuição, ao máximo,

do aparecimento de fissuras que geralmente ocorrem no estado plástico do

compósito e nas suas primeiras horas de endurecimento. (FITESA – BOLETIM

TÉCNICO Nº 2, 2002).

3.2.1 A Retração do Concreto

Várias ações climáticas, principalmente por motivos térmicos, irão influenciar

diretamente no volume do concreto logo após o seu lançamento e, posteriormente,

durante toda a sua vida. Esta variação é intensificada principalmente nos primeiros

meses da estrutura.

Uma destas variações mais conhecidas se dá com retração hidráulica. Este

fenômeno pode acontecer em duas fases distintas do concreto, uma é quando o

concreto já está endurecido ou em processo de endurecimento. E a outra se

denomina de retração inicial ou plástica, sendo esta fase a mais propícia para o

aparecimento de fissuras, devido à perda de água. A Figura 24 mostra uma fissura

típica de retração plástica. (FITESA – BOLETIM TÉCNICO Nº 2, 2002).

Figura 24 - Exemplo de Fissura por Retração Plástica.

Fonte: Fitesa – Boletim Técnico nº 2 (2002).

37

A retração plástica é subdividida em quatro fases distintas, sendo que cada

uma age de acordo com a fase específica do concreto, podendo ser logo após o

lançamento, tão quanto após tempos depois da concretagem.

A primeira fase é o assentamento plástico, ocorre quando a água do concreto

não foi evaporada. As partículas sólidas estão envolvidas com água, assim, depois

que estas partículas se assentam, existe uma tendência da água percolar até a

superfície do concreto, este fenômeno, como já foi referido anteriormente, é chamado

de exsudação.

A segunda fase chama-se de retração plástica primária, é a fissura comum,

acontece quando a água começa a evaporar pelas ações do tempo como: sol, calor e

vento. Uma situação importante é quando a taxa de evaporação é maior que a taxa

de exsudação, neste estágio o concreto começa a contrair. Este tipo de retração

ocorre antes e durante a pega, devido às pressões que acontecem nos poros

capilares do concreto, conforme Figura 25.

Figura 25 - Concreto com Fissuras por Retração.

Fonte: Manual Técnico da Maccaferri (s.a).

A terceira fase chama-se de retração autógena, é a retração que ocorre sem

troca de massa com o meio ambiente, ou seja, sem que exista perda de água. Esta

retração se dá quando a hidratação do concreto de desenvolve e os produtos

38

envolvem os agregados, mantendo todos unidos. Assim, os níveis de capilaridade, o

assentamento plástico e a retração plástica primária decrescem. Tal fenômeno ocorre

quase que totalmente após a pega do concreto. Atualmente leva-se muito em

consideração este estágio, tendo em vista que a relação água/cimento apresenta

níveis muito baixos.

Quando o concreto começa a endurecer e assim ganhar resistência a retração

plástica tende a desaparecer. Sendo esta a quarta e última fase, denominada de

retração plástica secundária.

Por conhecimento de que em concretos já endurecidos ou em processo de

endurecimento já há o ganho substancial de resistência mecânica, as fissuras

tornam-se cada vez mais raras para aparecimento. Tendo assim, somente as três

primeiras fases de retração como sendo mais comuns.

Era imaginado que as fissuras por retração plástica eram meramente

estéticas, sem apresentar riscos à estrutura, por motivo de não apresentar grandes

patologias muito aparentes, como fissuras de grandes profundidades ao qual

preocupam as condições do concreto. Isto se levando em consideração este fator

quando a retração hidráulica baixas. (FITESA – BOLETIM TÉCNICO Nº 2, 2002).

Atualmente, através dos estudos em pisos de concreto, pode-se observar que

com o advento do uso de fibras neste tipo de estrutura, houve uma grande redução

na espessura para o mesmo. Desta forma, acarretando no aumento de tensões no

concreto. Porventura disto, é observado um aumento do aparecimento de fissuras,

cuja explicação vem das fissuras plásticas.

3.2.2 Atuação de Fibras de Polipropileno ao Combate a Retração

O emprego das fibras de polipropileno para a resolução de problemas na

retração plástica já vem sendo bastante praticado. Mesmo que seu mecanismo de

acontecimento não seja ainda totalmente conhecido.

Conforme observado por Padron e Zollo (1990), concretos reforçados com

fibras de polipropileno, em condições bastante solicitadas e severas, a variação das

fissuras em relação ao concreto simples foi entre 18% e 23%. Sua variação de

39

retração aconteceu em torno de 52% a 100%, também em relação ao concreto

simples. Fato que se mostrou interessante, tendo a amostra que continha fibras de

polipropileno apresentou o mesmo padrão de retração, porém, uma quantidade

menor de fissuras, como pode ser visto na Figura 26. (FITESA – BOLETIM TÉCNICO

Nº 2, 2002).

Figura 26 - Concreto com Fibras de PP – Redução das Fissuras.

Fonte: Manual Técnico da Maccaferri (s.a).

Este comportamento estudado se deve ao principal mecanismo de atuação

das fibras. Tendo conhecimento do funcionamento do concreto simples, que logo

após ser feito seu lançamento, ainda é fluído, porém com o passar de certo tempo ele

perde sua fluidez junto com sua capacidade de deformação.

O momento de aparecimento das fissuras ocorre na etapa da evaporação da

água de exsudação, provocando no concreto um processo de retração. Quando o

mesmo não consegue mais suportar a deformação provocada, as fissuras aparecem.

Conforme demonstrado nesta pesquisa, as fibras de polipropileno de baixo

módulo, ao adicionado no concreto, torna o mesmo mais maleável nas primeiras

idades. Esta propriedade da fibra é transmitida ao concreto, que passa a trabalhar de

forma eficaz a deformação por retração. Desta forma, as fissuras são controladas e,

40

em alguns casos, até totalmente contidas, fato demonstrado no Gráfico 2. (FITESA –

BOLETIM TÉCNICO Nº 2, 2002).

Gráfico 2 - Deformação x Número de Horas.

Fonte: Fitesa – Boletim Técnico nº 2 (2002).

Para obter total sucesso é necessário alcançar a máxima eficiência das fibras

utilizadas. As fibras de polipropileno estão correlacionadas a fatores como: relação

l/d, comprimento, módulo de elasticidade, dosagem e também dependendo de

propriedades do próprio concreto, como as características da matriz. Concretos com

fibras de menor relação cimento / areia se adaptam melhor à adição de fibras. Desta

forma, o concreto apresentará um maior potencial de redução de fissuras que outros

concretos com adição de fibras iguais. (FITESA – BOLETIM TÉCNICO Nº 2, 2002).

Em estudos realizados por diversos pesquisadores da área científica, em

fibras tanto de aço quanto sintéticas, no intuído do combate a retração, pôde-se

chegar a várias conclusões, dentre elas três são principais:

a) A adição de fibras em concreto, mesmo que em baixo teor, garante reduções

substanciais no aparecimento de fissuras.

41

b) No caso das fibras longas, as que apresentam menor módulo de elasticidade

se desempenham melhor.

c) Em fibras sintéticas, como as de polipropileno, não ocorre a redução do

aparecimento de fibras, mas sim o seu controle de dimensão.

Com base neste conhecimento, é comprovado não poder ser generalizada a

dosagem de fibras em concretos. Para uma melhor eficácia com produto final, é

indispensável o artifício de análises experimentais para se chegar ao denominador

comum que resulta no melhor resultado.

3.3 UTILIZAÇÃO DE FIBRAS DE POLIPROPILENO PARA REDUÇÃO DA

REFLEXÃO DE CONCRETOS PROJETADOS

O concreto projetado é muito utilizado na estabilização de taludes, paredes de

túneis, canais e galerias. Uma das grandes vantagens é a rapidez do lançamento e a

pouca mão-de-obra envolvida no processo. Existem dois meios de ser realizar o

lançamento: via seca e via úmida. (MANUAL TÉCNICO MACCAFERRI, s.a).

Na via seca, o concreto é transportado até o bico de lançamento – concreto

seco ou com pouca umidade – e, chegando lá, é o operador o responsável pela

adição de água, dependendo do mesmo a qualidade do concreto. Vale ainda lembrar

que o concreto projetado através deste meio é muito mais prejudicial, porque ocorre

muito mais desperdício de material. (FITESA – BOLETIM TÉCNICO Nº 5, 2003).

Outro processo é o lançamento via úmida, sendo muito simples. Trata-se de

lançar o concreto pronto, pré-misturado, passando até o bico de projeção, que

posteriormente será lançado até a parede a ser revestida. No bico de projeção é

aplicado ar comprimido em alta pressão, depois sendo jateado em alta velocidade até

a superfície desejada.

Com a adição da fibra de polipropileno, existe uma redução à reflexão do

concreto projetado, ou seja, há uma redução do desperdício de material. Quando a

fibra é acrescida ao concreto, o mesmo se torna mais coeso e denso, assim, a taxa

de perda depois que o concreto sofre impacto na parede, é consideravelmente

reduzida. O processo de lançamento de concreto tanto via úmida quanto via seca

42

pode ser acompanhada nas Figuras 27, 28 e 29, abaixo: (FITESA – BOLETIM

TÉCNICO Nº 5, 2003).

Figura 27 - Execução de Concreto Projetado Via Úmida.

Fonte: Manual Técnico da Maccaferri (s.a).

Figura 28 - Execução de Concreto Projetado Via Seco.

Fonte: Manual Técnico da Maccaferri (S.A.).

43

Figura 29 - Acompanhamento de Concretagem com Concreto Projetado Via Úmida.

Fonte: Manual Técnico da Maccaferri (S.A).

Um cuidado fundamental com este tipo de prática é sempre observar se o

mangote está em um ângulo de incidência perpendicular à superfície de aplicação,

como visto na Figura 30.

Figura 30 - Ângulo de Incidência de Concreto Projetado Via Úmida.

Fonte: Manual Técnico da Maccaferri (S.A.).

Tornando o concreto muito mais viável, pois depois que sofre a reflexão, este

material que não sofreu a incorporação será “perdido”, impossibilitando a reutilização

na projeção. Tudo isso se dá pelo fato de que as fibras de pequeno diâmetro elevam

a coesão do concreto por terem uma grande área especifica, formando um

44

entrelaçamento de agregados finos e graúdos, tornando o concreto, um material

bastante estável. (MANUAL TÉCNICO MACCAFERRI, s.a.).

A tabela a seguir (Ver Tabela 5) mostra como a fibra trabalha de forma

significativa no concreto. Foi adicionado a este concreto 1kg/m³ de fibra de

polipropileno, deixando claro que o índice de reflexão decresceu consideravelmente

em relação ao concreto sem fibra. Considerando o concreto projetado via úmida.

Tabela 5 - Consumo de Material em Concreto Projetado.

Fonte: Fitesa – Boletim Técnico nº 5 (2003)

Esta propriedade da fibra de polipropileno trás uma grande vantagem

econômica para execução de grandes obras de túneis e demais estruturas que

necessitam deste tipo de concreto.

3.4 USO DAS FIBRAS PARA CONCRETOS RESISTENTES A FOGO

Tornar estruturas resistentes a incêndios são de grande relevância, tanto para

projetistas quando para grandes entidades da engenharia. O motivo está no alto risco

decorrente de um incêndio em grandes estruturas, como no caso de túneis, onde os

danos além dos materiais existem o risco da perda de vidas humanas. (MANUAL

TÉCNICO MACCAFERRI, s.a.)

Estruturas como as de túneis, por serem confinadas, em caso de incêndio as

chamas entram em contato rapidamente e diretamente com o concreto. Com este

contato direto, o concreto é colocado diante de altas temperaturas e sofre uma rápida

deterioração.

A forma como a estrutura irá se comportar, em caso de incêndio, depende

diretamente do tipo de fogo que está ocorrendo. Os valores de temperatura têm uma

alta variabilidade para cada tipo de incêndio. Pela alta temperatura, o concreto sofre

consequências em suas características mecânicas e físicas. Esta degradação ocorre

em etapas, relativamente ao aumento de temperatura do incêndio. O Gráfico 3,

45

abaixo, demonstra o efeito de degradação conforme a intensidade do fogo. (FITESA

– BOLETIM TÉCNICO Nº 6, 2004).

Gráfico 3 - Temperatura x Degradação do Concreto.

Fonte: Manual Maccaferri (s.a).

Em virtude do aumento da temperatura, ocorre no concreto um efeito de

aumento intensivo da poro-pressão, gerando lascamentos explosivos de sua

superfície. Este efeito se dá devido o aumento da temperatura na superfície do

concreto, fazendo com que parcelas de vapor de água que se encontram nesta

região movam-se em direção ao núcleo do concreto, desta maneira acarretando em

um aumento de pressão interna na matriz. Em sua certa hora, a pressão fica

tamanha que supera a própria resistência do concreto, produzindo o efeito do

lascamento explosivo. Este fenômeno também é nomeado como “spalling” ou

lascamento explosivo. (MANUAL TÉCNICO MACCAFERRI, s.a)

No Gráfico 4, pode-se notar a exemplificação do fenômeno, sendo

representados todos os carregamentos causados pelo aumento da pressão interna

até o momento do efeito “spalling”.

46

Gráfico 4 - Exemplificação do Efeito “Spalling”.

Fonte: Fitesa – Boletim Técnico nº 6 (2004)

O maior objetivo na proteção passiva ao fogo é a eficácia na defesa de vidas

humanas. Para isto se concretizar, algumas características chave do concreto devem

ser preservadas, tendo como principais as características mecânicas:

a) Conservação da capacidade portante;

b) Não emissão de gases inflamáveis na superfície exposta;

c) Isolamento térmico da matriz do concreto;

d) Não dissipação das chamas e gases tóxicos.

Desta forma os elementos estruturais poderão permanecer estáveis durante o

processo de evacuação do local durante um incêndio por um determinado período de

tempo.

47

Em pesquisas recentes realizadas pela Maccaferri, foi notada a capacidade no

uso das fibras de polipropileno (PP), de monofilamento e diâmetros inferiores a

32mm, na matriz de concreto na redução de efeito do fenômeno “spalling”. Esta

adição possui uma relação direta na concentração de fibras ao concreto à melhoria

do fenômeno. Quanto mais fibras adicionadas, melhor será o resultado na redução

do fenômeno. (MANUAL TÉCNICO MACCAFERRI, s.a.)

As fibras são uma solução simples na redução do fenômeno. Incrementadas

na mistura do concreto, em caso de exposições a fogo, à uma temperatura de 160ºC,

as fibras começam a se fundir, reduzindo grande parte de sua massa. Após a

temperatura alcançar 360ºC, as fibras evaporam totalmente, deixando espaços

vazios na matriz de concreto, conforme visto na Figura 31. (FITESA – BOLETIM

TÉCNICO Nº 6, 2004).

Figura 31 - Espaço Vazio Deixado pela Fibra.

Fonte: Manual Técnico Maccaferri (s.a).

Estes vazios deixados pelas fibras trabalham como canais, que percorrem

todo o concreto, indo de sua matriz até a superfície, como pode ser visto nas Figuras

32 e 33:

48

Figura 32 - Canais Produzidos pelas Evaporação das Fibras Após 360ºC.

Fonte: Manual Técnico Maccaferri (s.a).

Figura 33 - Aumento de Pressão em Concretos sem Fibras.

Fonte: Manual Técnico Maccaferri (s.a).

Devido à geração destes canais gerados, a percolação do vapor até a

superfície se torna mais rápido, e a poro-pressão gerada na matriz do concreto, caso

49

ainda exista, é menor que a resistência do concreto, evitando assim os lascamentos

explosivos do compósito. (FITESA – BOLETIM TÉCNICO Nº 6, 2004)

Seguem, abaixo, exemplos de ensaios de resistência ao calor, realizados com

e sem a adição de fibras de polipropileno (Ver Figuras 34 e 35).

Figura 34 - Ensaio em Peça sem Fibras.

Fonte: Manual Técnico Maccaferri (s.a).

Figura 35 - Ensaio em Peça com Fibras.

Fonte: Manual Técnico Maccaferri (S.A).

As fibras de polipropileno se destacam nesta propriedade terminal devido a

sua associação à faixa de temperatura em que o combate ao efeito “spalling” ocorre.

Com o surgimento dos vazios permeáveis ao longo de todo o concreto, caminho por

onde percola o vapor de água, ocorre numa faixa de temperatura específica onde a

50

maior parte da água está contida dentro da estrutura do concreto. Sendo o aumento

desta permeabilidade ocorrendo dentro dessa faixa de temperatura, o lascamento

explosivo consegue ser evitado, como pode ser verificado nas Figuras 36 e 37.

(MANUAL TÉCNICO MACCAFERRI, s.a.).

Figura 36 - Ensaio de Combate ao Calor – Corpo sem Fibras.

Fonte: Manual Técnico Maccaferri (s.a).

Figura 37 - Ensaio de Combate ao Calor – Corpo com Fibras.

Fonte: Manual Técnico Maccaferri (s.a).

Desta forma, as fibras de polipropileno conseguem ser as mais adequadas

para o combate a altas temperaturas, tendo a finalidade no controle da pressão

gerada no interior do concreto, ao invés de fibras que possuem outras características

de estabilidade térmica. (MANUAL TÉCNICO MACCAFERRI, s.a.).

51

4 METODOLOGIA DE ENSAIOS

4.1 ENSAIO DE COMPRESSÃO AXIAL SIMPLES

O ensaio de compressão axial simples é o mais comumente utilizado para se

aferir a resistência mecânica a compressão em concretos. Para uma correta

execução deste ensaio, deve-se atentar para os seguintes parâmetros:

a) O maquinário para a realização do ensaio pode ser de qualquer tipo, porém,

deve ter capacidade suficiente para possibilitar carga contínua e sem choques

no corpo de prova.

b) A máquina utilizada deve portar de dois pratos de aço, com espessura

suficiente para evitar deformações do corpo de prova durante o ensaio (Ver

Figura 38). Em prensar verticais, o prato superior deve se assentar em rótula

esférica e o outro em um bloco rígido e plano. Um dos pratos deve conter

referências para facilitar a centralização do corpo-de-prova.

c) Deve-se possuir um tanque ou recipiente capazes de serem destinados à

imersão dos corpos de prova à temperatura ambiente durante o tempo de cura

do concreto.

Figura 38 - Prensa Utilizada em Ensaios de Compressão.

Fonte: Arquivo Pessoal

52

Para este trabalho, aplicamos o teste somente para duas etapas: 7 dias e 28

dias. Assim, tornando o ensaio menos abrangente, mas com um espaço amostral

maior. O ensaio é feito a partir da moldagem de corpos-de-prova (CP) cilíndricos,

com dimensões: diâmetro de 150 mm e 300 mm de altura, conforme Figura 39:

Figura 39 - Detalhe de Molde de Corpo-de-prova.

Fonte: NBR – 5738 (1994).

Os cilindros são comprimidos verticalmente até ocorrer à primeira fissura,

sabendo-se a sua resistência à compressão, como mostra a Figura 40, a seguir.

(NBR – 5738, 1994).

53

Figura 40 - Ensaio de Compressão Axial Simples.

Fonte: Arquivo Pessoal

Para a realização do ensaio foram moldados, para cada tipo de traço utilizado

na pesquisa, 04 corpos de prova. Estes foram divididos para análise entre 7 e 28 dias

de cura. O ensaio de compressão axial simples deve ser realizado de acordo com a

sua norma vigente - NBR – 5739 (1994).

4.2 ENSAIO DE TRAÇÃO INDIRETA POR COMPRESSÃO DIAMETRAL

Por existirem grandes dificuldades práticas de realizar este ensaio, foi

desenvolvida uma alternativa para realizá-lo com mais facilidade e agilidade, sendo

chamado de compressão diametral ou “ensaio brasileiro”. (MANUAL TÉCNICO

MACCAFERRI, s.a.).

Segundo Macaferri (s.a, p. 30): “[...] a ruptura é ocorre quando é alcançada a

máxima resistência à tração na direção ortogonal a força aplicada. A partir da carga

máxima, obtém-se a resistência à tração indireto do concreto reforçado com fibras.”.

Neste ensaio usa-se corpos de prova de mesma dimensão assim como

citados no tópico anterior e também rompidos nas mesmas circunstancias de idade, e

a fibra de polipropileno atua de forma muito intensa. A fibra atua na matriz de

54

concreto de forma intertravada, evitando que a fissura se propague e, até mesmo,

controlando seu tamanho. Vale ressaltar que, com a adição de PP, a deformação fica

acentuada, ou seja, a matriz de concreto resiste de forma eficiente até mesmo depois

da primeira fissura aparecer e também consegue resistir esforços crescentes de

carregamento.

O corpo de prova deve ser colocado deitado entre os pratos da máquina de

ensaio, e o seu contato deve acontecer ao longo de seu eixo por intermédio de

taliscas de madeira padronizadas (Ver Figura 41). A força é aplicada até o momento

de ruptura do concreto. (Pinheiro, et. al, 2010).

Figura 41 - Detalhes do Corpo-de-prova para Ensaio de Compressão Diametral.

Fonte: Pinheiro, Muzardo, Santos, Catoia e Catoia (2010).

Para a realização do ensaio, foram moldados corpos-de-prova semelhantes

aos utilizados em ensaios de compressão axial simples, de forma cilíndrica com o a

altura CP sendo o dobro de seu diâmetro. De forma que seja a dimensão mais

comum de 150mm de diâmetro por 300mm de altura.

Nesta pesquisa, foi necessária a moldagem de 04 corpos de prova para cada

tipo de traço utilizado. Sendo a sua análise realizada com 02 amostragens para cada

tempo estimado de cura a ser rompido. O ensaio de compressão diametral deve ser

realizado de acordo com a sua norma vigente - NBR – 7222 (1994).

55

4.3 CARBONATAÇÃO

O fenômeno da carbonatação é bem conhecido e bastante estudado, devido

sua ocorrência esta presente em todas as estruturas de concreto armado. Este

ensaio tem grande influência no meio acadêmico e comercial, porque é por ele que

podemos quantificar a carbonatação no concreto e saber se o mesmo irá apresentar

algumas patologias futuras, como fissura no concreto, destacamento do recobrimento

do aço, redução de seção do aço, entre outros.

Nesses ambientes, o concreto está exposto à grande quantidade de gás

carbônico (CO2). Este composto penetra no concreto, através de seus poros e se

associa com a umidade presente na matriz, formando assim outra substância: o ácido

carbônico (H2CO3). (TOKUDOME, 2009). Para este mesmo autor:

Este ácido reage com alguns componentes da pasta de cimento hidratada e resulta em água e carbonato de cálcio (CaCO3). O composto que reage rapidamente com (H2CO3) e o hidróxido de cálcio (Ca(OH)2). O carbonato de cálcio não deteriora o concreto, porém durante a sua formação consome os álcalis da pasta (ex: Ca(OH)2 e C-S-H) e reduz o pH. (TOKUDOME, 2009, p. 1)

Geralmente o concreto possui pH entre 12,6 e 13,5. Depois deste processo de

carbonatação o seu pH abaixa e permanece em torno de 8,5. A carbonatação inicia-

se na superfície da matriz, composta por duas zonas uma com pH básico e outra

neutra. Este processo viaja até o interior do concreto e encontra a armadura,

ocorrendo a despassivação e tornando o aço vulnerável. Após a eliminação da

camada protetora, a carbonatação irá ocorrer com a presença de três fatores:

umidade, agente agressor (CO2) ou fuligem e oxigênio.

Para a execução do ensaio de carbonatação, é necessário o uso de solução

de Fenolftaleína, a qual reage com a camada superficial do concreto a ser analisada,

colorindo a parte de concreto em um tom roxo (Ver Figura 42). Em caso de reação

com o ácido carbônico gerado pelas reações no concreto, a cor roxa deixa de se

destacar. É neste momento de reação que se faz a aferição do grau de carbonatação

da peça.

56

Figura 42 - Detalhe de Ensaio de Carbonatação.

Fonte: Arquivo pessoal

Deve-se medir, com o auxílio de um paquímetro, partindo da face do concreto

até onde a mancha roxa deixa de se destacar na superfície do corpo-de-prova. O

resultado desta medição é tido como o valor de carbonatação que o concreto sofreu

durante o período estudado.

Para esta pesquisa, foi utilizada a moldagem de um corpo de prova cilíndrico,

de dimensões iguais as do ensaio de compressão axial simples e compressão

diametral, medindo em seu diâmetro 150mm x 300mm em sua altura, com um

período de 90 dias de cura, tempo determinado para possibilitar que as reações

ocorressem no concreto.

4.4 ASCENSÃO CAPILAR

O ensaio de ascensão capilar define a quantidade e forma dos poros do

concreto, ou seja, dos buracos que implicam na penetração da água, provocando

lixiviação dos sais do concreto.

A execução deste ensaio se baseia em realizar a medição da absorção de

água em corpos-de-prova de concreto com tempo de cura de vinte e oito dias de

idade. A sua metodologia de ensaio, baseia-se em manter o corpo-de-prova que irá

57

ser analisado na câmara úmida até o dia anterior ao seu ensaio. O mesmo deverá ser

colocado na estufa durante o período de 24 horas. Após este período, o corpo-de-

prova deverá ser posto a temperatura ambiente para, posteriormente, poder ser

pesado em balança eletrônica e feita a imersão em um recipiente com uma lâmina

d’água de 01 centímetro de altura. Após este processo, o corpo-de-prova é,

novamente, pesado na balança eletrônica para ser verificada a quantidade de água

que foi absorvida pelo concreto.

A ascensão capilar é realizada com um período de curta no concreto de 28

dias e serve para a verificação da evolução da hidratação do cimento e,

consequentemente, a redução dos poros. Para a presente pesquisa, foi-se moldado

um corpo de prova para cada tipo de traço analisado, ambos de mesma dimensão

dos utilizados nos ensaios anteriores.

A ascensão capilar é definida pela seguinte fórmula matemática:

AC = P / 187,5 (g/cm²), onde:

P = Quantidade de água absorvida, em gramas.

AC = Índice de ascensão capilar, em g/cm²

O ensaio de ascensão capilar deve ser realizado de acordo com a sua norma

vigente - NBR – 9778 (1987).

4.5 TRAÇÃO NA FLEXÃO

Para Pinheiro e seus colaboradores (2010), na realização de um ensaio a

tração na flexão, o corpo de prova é moldado com uma seção prismática, de medidas

padrões de 15x15x50cm. Na máquina de ensaio, ele é submetido à flexão, com

carregamentos em suas duas seções simétricas, até o seu momento de ruptura (Ver

Figura 43).

58

Figura 43 - Ensaio de Tração na Flexão.

Fonte: Pinheiro e seus colaboradores (2010).

Para este ensaio, foram moldados 02 corpos-de-prova prismáticos para cada

traço utilizado, com dimensões padrões, sendo rompidos com 28 dias de cura. O

ensaio de tração na flexão deve ser realizado de acordo com a sua norma vigente -

NBR – 12142 (1991).

4.5.1 Tenacidade

Segundo o Boletim Técnico 19, da ANAPRE (2009), o ensaio de tenacidade

serve para medir o comportamento de pós-fissuração em concretos, ou seja, permitir

que o concreto continue a receber carga mesmo sofrendo deformações. No Brasil, o

método de determinação mais empregado para tal ensaio é o utilizado pela Japan

Society of Civil Engineers - JSCE-SF4 (1984). É um ensaio realizado por meio de

corpos-de-prova prismáticos carregados por quatro cutelos, como pode ser visto na

Figura 44, abaixo:

59

Figura 44 - Ensaio JSCE-SF4.

Fonte: Manual Técnico Maccaferri (s.a).

O ensaio de flexão também permite o controle da tenacidade, desde que seja

realizado com a deformação controlada. Conforme visto na Figura 44, acima, a

prensa para o ensaio deve dispor de controle eletrônico de deslocamento por meio

de um transdutor do tipo LVDT. (BOLETIM TÉCNICO 19 ANAPRE, 2009).

Outra forma de controle da tenacidade está no ensaio de flexão sobre placa

(Ver Figura 45), podendo ser chamando também de puncionamento. Foi elaborado

pelo Serviço Nacional Ferrovias Francesas – SNCF, em 1989. A diferença primordial

deste ensaio para o anterior se deve à aplicação de uma carga concentrada no

centro de uma placa, sendo assim através da pré-flexão, ocorre a determinação da

energia absorvida. (MANUAL TÉCNICO MACCAFERRI, s.a).

Figura 45 - Ensaio do tipo EFNARC.

Fonte: Manual Técnico Maccaferri (s.a.)

60

No Brasil, não há norma sobre o assunto. De acordo com outros métodos para

a realização do controle de tenacidade, pode-se observar na Tabela 6 abaixo,

normas mundiais utilizadas para a realização do ensaio. (BOLETIM TÉCNICO 19

ANAPRE, 2009).

Tabela 6 - Relação de Normas para Ensaio de Tenacidade.

Fonte: Figueiredo, 2000.

Nas figuras abaixo (Ver Figuras 46 e 47), nota-se as placas de concreto

moldadas com base na norma da Experts for Specialized Constrution and Concrete

Systems - EFNARC para a realização dos ensaios.

61

Figura 46 - Moldagem de Corpos-de-prova para Ensaio de Tenacidade.

Fonte: Arquivo Pessoal

Figura 47 - Corpos-de-prova Moldados para Ensaio de Tenacidade.

Fonte: Arquivo Pessoal

Para o ensaio de tenacidade, foram moldados placas de concreto, com

dimensões de 60x60x10cm com base na norma da EFNARC, sendo confeccionados

dois corpos-de-prova para cada traço de concreto analisado.

62

5 MÉTODOS DE DOSAGEM

Neste capítulo exploraremos o processo experimental do trabalho, sendo o

mesmo responsável por quantificar todos os materiais necessários para a confecção

do traço ideal. Vale ressaltar que todos os materiais utilizados no ensaio experimental

foram adquiridos na região metropolitana de Belém, através de representantes da

fábrica da Maccaferri, buscando sempre um traço comum utilizado em obras.

Segundo a Associação Brasileira de Cimento Portland – ABCP (s.a.), “[...]

dosagem nada mais é, do que o proporcionamento adequado e mais econômico de

matérias: cimento, água, agregados, adições e aditivos.”. Os materiais utilizados no

concreto têm cada um sua particularidade, sendo assim, cada um influencia na

dosagem. Por exemplo, o maior consumo de cimento acarreta em: maior

plasticidade, maior coesão, menor segregação, menor exsudação e maior calor de

hidratação. (ABCP, s.a.).

O traço padrão adotado para este trabalho foi: 1; 2,17; 2,44, a/c 0,35; sendo 1

kg de cimento, 2,17 de areia, 2,44 de seixo e relação água/cimento de 0,35 ml.

Houve também o acréscimo de aditivo superplastificante, sendo a dosagem do

mesmo variável, de 0 a 2% em relação ao peso do cimento em quilos (Kg). Os

materiais utilizados neste estudo foram os seguintes, como mostra a Tabela 7:

Tabela 7 - Lista de Materiais Utilizados.

COMPONENTE TIPO MARCA ESPECIFICAÇÃO

Cimento

Agregado Miúdo

Agregado Graúdo

Aditivo

Portland

Areia

Seixo rolado

Superplastificante

Nassau

-

-

BASF

Z – 32

Granulometria média

Granulometria média

Glenium 51

Fonte: Arquivo pessoal.

Foram adotados para os experimentos cinco traços tendo a variação do traço

padrão a partir da adição das fibras de polipropileno. As fibras foram adicionadas

devido à percentagem do volume de concreto, conforme segue:

63

5.1 OBTENÇÃO DO VOLUME TOTAL DE CONCRETO

No procedimento de dosagem das fibras de polipropileno, sua adição no

concreto é realizada através de sua dosagem com base da percentagem desejada de

fibras em relação ao volume total de concreto.

Para a obtenção do volume de concreto, devem-se quantificar os

componentes do concreto de acordo com sua unidade de consumo e fazer a relação

com base no seu peso específico, obtendo assim, a relação da fórmula .

O peso de cada material é diretamente relacionado ao traço padrão adotado.

Sendo o traço 1; 2,17; 2,44, a/c 0,35, os materiais são quantificados de acordo com a

multiplicação de cada índice pelo valor do peso do cimento. Após a obtenção destes

valores, torna-se possível o prosseguimento da dosagem de fibras de polipropileno

(PP) a serem adicionadas ao concreto, conforme demonstrado na Tabela 8.

Tabela 8 - Volume de Concreto

MATERIAL PESO (KG) PESO ESPECÍFICO

(KG/CM²) VOLUME

(L)

Cimento Areia

Seixo

Àgua

50 108,5

122

17,5

1.4 1.6

1.5

1

35,71 67,81

81,33

17,5

Volume total de concreto 202,35

Fonte: Arquivo pessoal.

O peso de cada material é divido por seu peso específico, obtendo-se assim o

volume, em litros (L), de cada material. A soma de todos os resultados desta razão

de cada material é o volume total de concreto.

5.2 DOSAGEM DA FIBRA

Para a obtenção de dosagem da fibra a partir do volume de concreto, utiliza-se

em relação direta, a multiplicação do volume total de concreto pela percentagem

desejada de fibras, juntamente com o peso específico da fibra utilizada. Resultando,

64

desta maneira, no peso desejado para dosagem de fibras a serem adicionadas no

concreto.

Este procedimento repete-se de acordo com a percentagem utilizada para

qualquer traço desejado, conforme apresentado na Tabela 9 e no Gráfico 5, a seguir:

Tabela 9 - Peso das Fibras de PP

VOLUME CONCRETO (L)

PERCENTUAL DE DOSAGEM

(%)

PESO ESPECÍFICO DA FIBRA (G/CM³)

PESO PARA DOSAGEM (KG)

202,35

202,35

202,35

202,35

0,3

0,5

0,7

0,9

0,91

0,91

0,91

0,91

0,5524

0,9207

1,2890

1,6573

Fonte: Arquivo pessoal.

Gráfico 5 - Consumo de Fibras por Traço.

Fonte: Arquivo pessoal.

Vale ressaltar a importância do volume crítico de fibras de polipropileno a ser

dosada para concretos, que não pode ser superior a 1%. Uma dosagem superior ao

volume crítico, além de apenas gerar desperdício de material por não conseguir

aumentar suas propriedades, pode causar uma grande perda da trabalhabilidade do

compósito, devido o volume de fibras ser bastante elevado, fato este que pode ser

65

comprovado no gráfico acima, que demonstra o aumento do volume das fibras em

relação ao percentual da dosagem escolhido.

5.3 DOSAGEM DO ADITIVO

Aditivos são materiais adicionados a concretos simples para obter

propriedades específicas de acordo com cada tipo, como controle de tempo de pega,

redução do calor de hidratação, teor de plasticidade e etc.

Para concretos ricos em fibras, os aditivos plastificantes são indispensáveis,

pois este aditivo, tendo efeitos benéficos com a possibilidade da redução de água,

consegue adequar a plasticidade do compósito. Isto tem grande utilidade, tendo em

vista que as fibras mesmo não absorvendo a água, geram um processo de adsorção,

o qual torna o concreto bastante seco, dificultando sua trabalhabilidade.

A relação de aditivo necessário a ser adicionado varia de traço para traço, a

sua relação se dá em virtude da relação direta da percentagem de aditivo a ser

adicionada pelo peso do cimento, em quilos. A superdosagem de aditivo na mistura

não é benéfica, pelo contrário, se torna um grande mal para o concreto. No caso dos

plastificantes, sua superdosagem pode segregar os agregados, aumentar efeitos de

exsudação e entre outros.

Os aditivos, em geral, são explorados por fabricantes especializados. Em seus

catálogos, os mesmos dão informações pormenorizadas sobre o emprego e dosagem

destes produtos. A dosagem, dependendo do tipo do material e aditivo, varia de 0,2%

a 2%. Segue abaixo, na Tabela 10, a forma da dosagem utilizada na parte

experimental.

Tabela 10 - Uso de Aditivo.

COMPONENTE TRAÇO PESO

CIMENTO (KG)

PERCENTAGEM DO ADITIVO (%)

VOLUME (ML)

Glenium 51 Glenium 51 Glenium 51 Glenium 51 Glenium 51

Padrão 0,3% PP 0,5% PP 0,7% PP 0,9% PP

50 50 50 50 50

0,4 0,5 0,8 1,4 2

200 300 400 700 1000

Fonte: Arquivo pessoal.

66

No Gráfico 6, abaixo, pode-se notar o gradativo aumento da dosagem de

aditivo de acordo com o aumento da percentagem de fibras no concreto.

Gráfico 6 - Consumo de Aditivo

Fonte: Arquivo pessoal.

Este fato se dá pela busca da trabalhabilidade do material, visto que quanto

mais se chega no nível crítico de fibras, maior a concentração, tendo assim um maior

fenômeno de adsorção, tornando o material cada vez mais difícil de se trabalhar.

67

6 EXPERIMENTOS

6.1 COMPRESSÃO AXIAL SIMPLES

O experimento se deu com a confecção de quatro corpos de prova para cada

traço a ser analisado. Foram arbitradas duas idades para o seu rompimento, sete (7)

dias e vinte e oito (28) dias. Para cada idade, foram dispostos dois corpos-de-prova

para análise. Para cada idade analisada foi escolhido, para efeito de resultado, o

maior valor resultante entre os dois corpos de prova, para, desta forma, extrair

possíveis erros provenientes de moldagem. Os resultados seguem na Tabela 11,

abaixo:

Tabela 11 - Resultados Gerais de Ensaio de Compressão Axial Simples.

TRAÇO 7 DIAS (MPA) 28 DIAS (MPA)

NORMAL 14,97 18,21

0,3% PP 18,62 18,46

0,5% PP 21,91 14,11

0,7% PP 13,79 16,47

0,9% PP 15,97 18,72

Fonte: Arquivo Pessoal

De acordo com o Gráfico 7, pode ser observado a variabilidade como

ocorreram os resultados.

Gráfico 7 - Valores Resultantes Gerais de Ensaio de Compressão Axial Simples.

0

5

10

15

20

25

Normal 0.30% 0.50% 0.70% 0.90%

7 dias (Mpa)

28 dias (Mpa)

Fonte: Arquivo Pessoal

68

Nos Gráficos 8 e 9 abaixo, estão demonstrados os resultados registrados pela

máquina de compressão após a realização do ensaio.

Gráfico 8 - Resultantes do Ensaio de Compressão Axial Simples para 07 Dias.

Fonte: Arquivo Pessoal

Gráfico 9 - Resultantes do Ensaio de Compressão Axial Simples para 28 Dias.

69

Fonte: Arquivo Pessoal

Os gráficos confeccionados para a leitura dos resultados procuram mostrar a

evolução que o concreto sofreu de acordo com os diferentes traços analisados.

6.2 TRAÇÃO INDIRETA POR COMPRESSÃO DIAMETRAL

O experimento se sucedeu com a confecção de quatro corpos de prova para

cada traço a ser analisado. Foram arbitradas duas idades para o seu rompimento,

sete (07) dias e vinte e oito (28) dias. Para cada idade, foram dispostos dois corpos-

de-prova para análise. Para cada idade analisada, foi escolhido, para efeito de

resultado, o maior valor resultante entre os dois corpos de prova, para, desta forma,

extrair possíveis erros provenientes de moldagem. Os resultados seguem na Tabela

12, abaixo:

70

Tabela 12 - Resultados Gerais de Ensaio de Compressão Diametral Simples.

TRAÇO 7 DIAS (MPA) 28 DIAS (MPA)

NORMAL 2,74 2,38

0,3% PP 2,60 2,43

0,5% PP 2,12 2,58

0,7% PP 2,26 2,05

0,9% PP 2,58 2,28

Fonte: Arquivo Pessoal

De acordo com o Gráfico 10, pode ser observada a variabilidade como

ocorreram os resultados.

Gráfico 10 - Valores Resultantes Gerais de Ensaio de Compressão Diametral Simples.

0

0.5

1

1.5

2

2.5

3

Normal 0.30% 0.50% 0.70% 0.90%

7 dias (Mpa)

28 dias (Mpa)

Fonte: Arquivo Pessoal

Nos Gráficos 11 e 12 abaixo, estão demonstrados os resultados registrados

pela máquina de ensaio.

71

Gráfico 11 - Resultantes do Ensaio de Compressão Diametral Simples para 07 Dias.

Fonte: Arquivo Pessoal

Gráfico 12 - Resultantes do Ensaio de Compressão Diametral Simples para 28 Dias.

Fonte: Arquivo Pessoal

72

Os gráficos confeccionados para a leitura dos resultados procuram mostrar a

evolução que o concreto sofreu de acordo com os diferentes traços analisados.

6.3 FLEXÃO POR COMPRESSÃO PRISMÁTICA SIMPLES

O experimento se deu com a confecção de dois corpos-de-prova para cada

traço a ser analisado. Foi arbitrada somente uma idade para o seu rompimento, que

foi de vinte e oito (28) dias. Para tal idade, foi disposto de dois corpos-de-prova para

análise. Para a idade analisada, foi escolhido, para efeito de resultado, o maior valor

resultante entre os dois corpos de prova para, desta forma, extrair possíveis erros

provenientes de moldagem. Os resultados seguem na Tabela 13, abaixo:

Tabela 13 - Resultados Gerais de Ensaio de Flexão por Compressão Prismática Simples.

TRAÇO 28 DIAS (KGF)

NORMAL 2532

0,3% PP 2452

0,5% PP 2433

0,7% PP 2551

0,9% PP 2456

Fonte: Arquivo Pessoal

No Gráfico 13, abaixo, está demonstrado o resultado registrado pela máquina

de ensaio.

73

Gráfico 13 - Resultantes de Compressão Prismática Simples para 28 Dias.

Fonte: Arquivo Pessoal

Os gráficos confeccionados para a leitura dos resultados procuram mostrar a

evolução que o concreto sofreu de acordo com os diferentes traços analisados.

6.4 CARBONATAÇÃO

Para efeito de análise de resultado do ensaio de carbonatação, foi moldado

um corpo-de-prova para cada traço analisado. Para tal procedimento, foi arbitrado um

período de noventa (90) dias para execução do ensaio, para que fosse possível

constatar fatores relevantes para leitura dos resultados. Os resultados seguem na

Tabela 14, abaixo:

74

Tabela 14 - Resultados Gerais de Ensaio de Carbonatação.

TRAÇO 90 DIAS (MM)

NORMAL 0,57

0,3% PP 0

0,5% PP 0

0,7% PP 0

0,9% PP 0,17

Fonte: Arquivo Pessoal

Nas Figuras 48 e 49, abaixo, pode ser observado o método executivo de

ensaio de carbonatação e sua forma de leitura dos resultados.

Figura 48 - Leitura de Ensaio de Carbonatação do Corpo-de-prova do Traço Normal.

Fonte: Arquivo Pessoal

75

Figura 49 - Leitura de Ensaio de Carbonatação do Corpo-de-prova do Traço com Fibras.

Fonte: Arquivo Pessoal

A carbonatação é um ensaio criterioso a ser executado e deve se atentar para

a limpeza do corpo-de-prova, como também da qualidade da mistura de fenolftaleína

que deve estar dentro de sua validade e estocada em local adequado para ser

possível a correta obtenção dos resultados.

6.5 ASCENSÃO CAPILAR

Para efeito da análise de resultado do ensaio de ascensão capilar, foi moldado

um corpo-de-prova para cada traço analisado. Para tal procedimento, foi arbitrado um

período de vinte e oito (28) dias para execução do ensaio. Os resultados seguem na

Tabela 15, abaixo:

Tabela 15 - Resultados Gerais de Ensaio de Ascensão Capilar.

TRAÇO PESO SECO(G) PESO ÚMIDO (G) DIFERENÇA (G) AC (G/CM²)

NORMAL 3454,22 3454,92 0,7 0,0037

0,3% PP 3397,17 3397,70 0,53 0,0028

0,5% PP 3498,91 3499,31 0,40 0,0021

0,7% PP 3407,20 3407,51 0,31 0,0016

0,9% PP 3543,43 3544,05 0,62 0,0033

Fonte: Arquivo Pessoal

76

No gráfico abaixo (Ver gráfico 14), pode ser observado de forma clara os

resultados de ensaio de ascensão capilar.

Gráfico 14 - Resultados de Ensaio de Ascensão Capilar.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

Normal 0.30% 0.50% 0.70% 0.90%

28 dias (AC)

28 dias (AC)

Fonte: Arquivo Pessoal

O método executivo de ensaio pode ser observado nas Figuras 50 e 51,

abaixo.

Figura 50 - Pesagem do Corpo de Prova em Balança Digital.

Fonte: Arquivo Pessoal

77

Figura 51 - Corpo de Prova Imerso na Lâmina D’água.

Fonte: Arquivo Pessoal

O ensaio de ascensão capilar é um dos mais simples execução, porém,

fornece dados importantes que podem definir o futuro da qualidade do concreto

examinado.

78

7 ANÁLISE DOS RESULTADOS

7.1 COMPRESSÃO AXIAL SIMPLES

Como já mencionado no trabalho, a fibra de polipropileno é considerada de

baixo módulo, ou seja, não é estrutural. Desta forma, não gera ganho de resistência

mecânica ao concreto. O observado nos resultados dos experimentos demonstra, a

primeira vista, um ganho crescente na resistência à compressão de acordo com o

aumento da dosagem das fibras. Este fato não é verdadeiro, sendo a razão para tal a

possibilidade de ter ocorrido falhas durante o processo de moldagem dos corpos de

prova.

Os traços decorreram diretamente de um traço padrão e não ocorreram

alterações na sua dosagem, apenas a adição das fibras. Os gráficos apresentam

picos de resistência distintos entre os traços, os quais não devem ser relacionados

com a adição das fibras de polipropileno. Para uma leitura correta, as fibras de

polipropileno demonstraram-se inertes em relação a resistência mecânica de

compressão axial simples.

7.2 TRAÇÃO INDIRETA POR COMPRESSÃO DIAMETRAL

De acordo com a obtenção dos resultados, as fibras demonstraram-se

eficazes em proporcionar aos concretos, mesmo após o aparecimento das primeiras

fissuras e ruptura de sua estrutura, uma capacidade de resistir ao carregamento se

deformando e mantendo a sua capacidade portante.

Tal feito é essencial para um acréscimo de segurança em estruturas de

concreto como pontes, túneis e estruturas em geral. Possibilitando um ganho de

tempo até o colapso geral do concreto, fazendo com que a estrutura possa ter uma

alta deformabilidade.

No contexto da resistência mecânica, as fibras, mais uma vez, demonstraram-

se inertes, não havendo acréscimo em sua resistência, mesmo dentre as diferentes

dosagens utilizadas neste trabalho.

79

7.3 CARBONATAÇÃO

As fibras de polipropileno, em virtude de sua propriedade na diminuição da

capilaridade do compósito e de proporcionar uma maior aderência e enlaçamento

dos agregados com o cimento, possibilita uma redução considerável na porosidade

do concreto. Devido esta redução, o concreto passa a possuir uma vida útil

prolongada e um aumento de sua resistência ao efeito da carbonatação.

Como observado nos resultados dos ensaios, foi comprovada a redução da

carbonatação dentro do período analisado, de acordo com o acréscimo das fibras de

polipropileno ao concreto.

Na dosagem do traço de concreto com a adição de 0,90% de fibras de

polipropileno, devido sua alta dosagem, próxima do volume crítico, a fibra prejudicou

na trabalhabilidade do compósito. Portanto, impossibilitando na sua perfeita

moldagem, tornando-o mais poroso. Desta forma, para este traço, foi observado um

pequeno aumento no efeito da carbonatação durante o período proposto em relação

aos demais traços com fibras utilizados.

7.4 ASCENSÃO CAPILAR

A ascensão capilar é vinculada diretamente ao grau de porosidade do

concreto. Devido às fibras de polipropileno serem eficazes na diminuição da

porosidade, de acordo com os resultados do ensaio, ficou comprovado a diminuição

da absorção de água nos concretos conforme a dosagem das fibras de forma

crescente e com base na sua dosagem.

De acordo com os experimentos, quanto maior a dosagem da fibra, a

ascensão capilar tendeu a diminuir. Porém, à medida que se aproxima da dosagem

crítica, ocorre um aumento da porosidade do compósito, devido a dificuldade na

trabalhabilidade de moldagem, acarretando uma absorção maior de água, havendo,

desta forma, um aumento na ascensão capilar do compósito. Fato que é comprovado

nos resultados do ensaio.

80

7.5 FLEXÃO POR COMPRESSÃO PRISMÁTICA SIMPLES

Com a obtenção dos resultados do ensaio, foi possível observar o ganho do

concreto na sua capacidade portante mesmo após o surgimento das primeiras

fissuras. Com a adição das fibras, de acordo com o acréscimo de sua dosagem,

houve o acréscimo de deformabilidade da estrutura por um maior período de tempo.

Este feito possibilita um acréscimo considerável na segurança de estruturas. Visto a

importância no ganho de tempo em estruturas que entram em colapso. O concreto,

mesmo após passar do ponto de ruptura, continua a resistir às cargas solicitadas.

81

8 CONSIDERAÇÕES FINAIS

O uso das fibras sintéticas em concretos, em especial as de polipropileno, já

deixou de ser uma grande novidade no meio acadêmico e comercial. Porém, o

desconhecimento geral sobre suas propriedades e características ainda é muito

elevado. Com a elaboração desta pesquisa, esperamos ter conseguido aumentar o

campo de conhecimento sobre o assunto e gerar interesse para futuros estudos no

ramo.

A busca pelo método de dosagem ideal para as fibras de polipropileno são de

certa forma totalmente empíricas. Pela razão de diversos pesquisadores utilizarem

uma linha diferente de pesquisa, o entendimento geral sobre o assunto fica

impossibilitado de ocorrer. Porém, com os frutos desta pesquisa, foi possível chegar

a um denominador comum para futuras dosagens aceitáveis em peças de concreto

conforme nossas perspectivas levantadas.

Tendo uma visão geral dos resultados obtidos com os ensaios, foi possível

constatar a plenitude de uma dosagem em especial, a qual gerou dados aceitáveis

em todos os ensaios executados e ainda conseguiu a mistura do compósito

totalmente coeso e fluído, com boa trabalhabilidade. A dosagem em questão é a de

0,70% de fibras em relação ao volume de concreto.

Tendo em vista a proposta de esta pesquisa ser voltada para o método prático,

foi procurada para execução dos experimentos uma condição mais próxima da real

possível, ou seja, em obra de acordo com o contexto atual do mercado de nossa

região.

Em virtude do mesmo, não houve condições de acontecer o controle de

umidade dos agregados, influenciando desta forma em uma alteração indesejada na

relação água/cimento. Diretamente ligada a esta relação, com o acréscimo de água

na mistura do compósito, ocorre a diminuição de sua resistência mecânica. Fato que

foi comprovado em todos os resultados dos ensaios com relação à resistência

mecânica do concreto.

Infelizmente a realização do experimento de tenacidade por meio de placas de

concreto não foi possível de ser executado, visto que o equipamento técnico para a

82

realização do mesmo não é encontrado na entidade local e nas demais instituições

do país ainda está em fase de testes. Sendo o procedimento uma novidade no setor

da engenharia civil brasileira, as opções para ensaios são poucas. Feito que tornaria

nossa pesquisa inédita no assunto, por abordar uma característica marcante e

importante das fibras de polipropileno.

O mérito desta pesquisa procurou levantar todas as características e

propriedades positivas das fibras de polipropileno, porém, segue como nossa

sugestão para frutos de futuras pesquisas, o seguimento desde mesmo raciocínio

envolvendo demais fibras que são fartas na natureza e ainda continuam

desconhecidas pelo mundo acadêmico como material a ser utilizado na construção

civil.

83

REFERÊNCIAS

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5739: Concreto - Ensaio de compressão de corpos-de-prova cilíndricos. Rio de Janeiro, 1994. ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12142: Concreto - Determinação da resistência à tração na flexão em corpos-de-prova prismáticos. Rio de Janeiro, 1991. ALLBIZ. Acetato de celulose. Disponível em: <http://www.br.all.biz/g4072/>, Acesso em: 23 set 2011. BRASIL ESCOLA. O Amianto usado em caixas d’águas é cancerígeno? Disponível em: <http://www.brasilescola.com/curiosidades/o-amianto-usado-caixas-dagua-cancerigeno.html>, Acesso em: 17 out 2011. CURTI, Rubens. Propriedades e Dosagem do Concreto. Associação Brasileira de Cimento Portland – ABPC. Disponível em: <http://www.abcp.org.br/comunidades/recife/download/pm_minicursos/11_curso_intensivo/Dosagem.pdf>, Acesso em: 10 out 2011. FIGUEIREDO, A. D. Concreto com Fibras de Aço. Boletim Técnico. Escola Politécnica da Universidade de São Paulo, 2000. FITESA. As Fibras de Polipropileno e a Retração Plástica do Concreto. Boletim Técnico nº 2, 2002. Disponível em: <www.fitesa.com.br>, Acesso em: 13 mar 2011. FITESA. As Influencias das Fibras de Polipropileno na Exsudação do Concreto. Boletim Técnico nº 3, 2002. Disponível em: <www.fitesa.com.br>, Acesso em: 13 mar 2011. FITESA. Uso de Fibras de Polipropileno para Reduzir a Reflexão de Concretos Projetados. Boletim Técnico nº 5, 2003. Disponível em: <www.fitesa.com.br>, Acesso em: 14 mar 2011. FITESA. Uso de Fibras na Construção Civil. Apostila Técnica nº 001, 2001. Disponível em: <www.fitesa.com.br>, Acesso em: 15 mar 2011. FITESA. Efeito “Anti-Spalling” das Fibras de Polipropileno. Boletim Técnico nº 6, 2004. Disponível em: <www.fitesa.com.br>, Acesso em: 15 mar 2011. HIPERGESSO. Fibra de sisal. Disponível em: <http://hypergesso.wordpress.com/produtos-2/fibra-de-sisal/>, Acesso em: 10 set 2011.

HOTFROG. Fibra de celulose. Disponível em: <

http://www.hotfrog.com.br/Empresas/Celulose-Ambiental/Fibra-de-Celulose-285457>, Acesso em: 20 ago 2011.

84

LOURENÇO, Manuel. Nossas orquídeas. Disponível em: <

http://orquidea.base33.net/duvidas/98-plantio-de-orquideas>, Acesso em: 15 ago 2011. MACCAFERRI. Manual Técnico. Fibras como elemento estrutural para reforço de concreto. Disponível em: < http://www.maccaferri.com.br>. Acesso em: 15 ago 2011. MEHTA, P. K. e MONTEIRO, P. J. M. Concreto: Estrutura, propriedades e materiais. São Paulo: PINI, 1994. PADRON, Isabel; ZOLLO, Ronald F. Effect of synthetic fibers on volume stability and cracking of Portland Cement Concrete and Mortar. Journal of Materials. American Concrete Institute: 1990. PINHEIRO, Libânio M.; MUZARDO, Cassiane D.; SANTOS, Sandro P.; CATOIA, Thiago; CATOIA, Bruna. Estruturas de Concreto. USP – EESC – Departamento de Engenharia de Estruturas, 2010. QUINTA, Marcelo Toledo. BOLETIM TÉCNICO 19º ANAPRE. Ensaio de Tenacidade para Concretos Reforçados com Fibra, 2009. TANESI, J.; FIGUEIREDO, A. D. Fissuração por retração em concretos reforçados com fibras de polipropileno (CRFP). Boletim Técnico. Escola Politécnica da Universidade de São Paulo, 1999. WIKIPEDIA. Fibra Têxtil. Disponível em: <http://pt.wikipedia.org/wiki/Fibra_t%C3%AAxtil>, Acesso em 17 Ago 2011.

85

ANEXOS

86

ANEXO 1 – Gráfico de ensaio laboratorial – Compressão Axial Simples 7 dias - Traço normal

Fonte: Arquivo Pessoal

87

ANEXO 2 – Gráfico de ensaio laboratorial – Compressão axial simples 28 dias - Traço normal

Fonte: Arquivo Pessoal

88

ANEXO 3 – Gráfico de ensaio laboratorial – Compressão diametral 7 dias - Traço normal

Fonte: Arquivo Pessoal

89

ANEXO 4 – Gráfico de ensaio laboratorial – Compressão diametral 28 dias - Traço normal

Fonte: Arquivo Pessoal

90

ANEXO 5 – Gráfico de ensaio laboratorial – Compressão prismática 28 dias - Traço normal

Fonte: Arquivo Pessoal

91

ANEXO 6 – Gráfico de ensaio laboratorial – Compressão axial simples 7 dias - Traço 0,3% PP

Fonte: Arquivo Pessoal

92

ANEXO 7 – Gráfico de ensaio laboratorial – Compressão axial simples 28 dias - Traço 0,3% PP

Fonte: Arquivo Pessoal

93

ANEXO 8 – Gráfico de ensaio laboratorial – Compressão diametral 7 dias - Traço 0,3% PP

Fonte: Arquivo Pessoal

94

ANEXO 9 – Gráfico de ensaio laboratorial – Compressão diametral 28 dias - Traço 0,3% PP

Fonte: Arquivo Pessoal

95

ANEXO 10 – Gráfico de ensaio laboratorial – Compressão prismática 28 dias - Traço 0,3% PP

Fonte: Arquivo Pessoal

96

ANEXO 11 – Gráfico de ensaio laboratorial – Compressão axial simples 7 dias - Traço 0,5% PP

Fonte: Arquivo Pessoal

97

ANEXO 12 – Gráfico de ensaio laboratorial – Compressão axial simples 28 dias - Traço 0,5% PP

Fonte: Arquivo Pessoal

98

ANEXO 13 – Gráfico de ensaio laboratorial – Compressão diametral 7 dias - Traço 0,5% PP

Fonte: Arquivo Pessoal

99

ANEXO 14 – Gráfico de ensaio laboratorial – Compressão diametral 28 dias - Traço 0,5% PP

Fonte: Arquivo Pessoal

100

ANEXO 15 – Gráfico de ensaio laboratorial – Compressão prismática 28 dias - Traço 0,5% PP

Fonte: Arquivo Pessoal

101

ANEXO 16 – Gráfico de ensaio laboratorial – Compressão axial simples 7 dias - Traço 0,7% PP

Fonte: Arquivo Pessoal

102

ANEXO 17 – Gráfico de ensaio laboratorial – Compressão axial simples 28 dias - Traço 0,7% PP

Fonte: Arquivo Pessoal

103

ANEXO 18 – Gráfico de ensaio laboratorial – Compressão diametral 7 dias - Traço 0,7% PP

Fonte: Arquivo Pessoal

104

ANEXO 19 – Gráfico de ensaio laboratorial – Compressão diametral 28 dias - Traço 0,7% PP

Fonte: Arquivo Pessoal

105

ANEXO 20 – Gráfico de ensaio laboratorial – Compressão prismática 28 dias - Traço 0,7% PP

Fonte: Arquivo Pessoal

106

ANEXO 21 – Gráfico de ensaio laboratorial – Compressão axial simples 7 dias - Traço 0,9% PP

Fonte: Arquivo Pessoal

107

ANEXO 22 – Gráfico de ensaio laboratorial – Compressão axial simples 28 dias - Traço 0,9% PP

Fonte: Arquivo Pessoal

108

ANEXO 23 – Gráfico de ensaio laboratorial – Compressão diametral 7 dias - Traço 0,9% PP

Fonte: Arquivo Pessoal

109

ANEXO 24 – Gráfico de ensaio laboratorial – Compressão diametral 28 dias - Traço 0,9% PP

Fonte: Arquivo Pessoal

110

ANEXO 25 – Gráfico de ensaio laboratorial – Compressão prismática 28 dias - Traço 0,9% PP

Fonte: Arquivo Pessoal