eng k49 materiais de origem vegetal aplicados na construção celularfibres 151.pdf · materiais...

62
Celular Fibres ENG K49 Materiais de origem vegetal aplicados na construção Ricardo Fernandes Carvalho

Upload: vodiep

Post on 10-Nov-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • Celular Fibres

    ENG K49 Materiais de origem vegetal aplicados na construo

    Ricardo Fernandes Carvalho

  • Materiais Fitogneos

    Materiais fitogneos (de origem vegetal) Lignocelulsicos - conhecidos por fitomassa, porque eles so produzidos atravs da fotossntese;

    "biobased", baseado em tecidos biolgicos. As fontes incluem: madeiras, resduos (agrcolas e agroindustrial), fibras vegetais, plantas aquticas, gramneas e outras substncias vegetais.

    2

  • As fibras naturais so substncias compostas principalmente por celulose, hemiceluloses (polioses) e lignina. As fibrilas de celulose so unidas naturalmente por uma macromolcula natural fenlica, a lignina, a qual est comumente presente nas paredes celulares das fibras vegetais, da o nome lignocelulsicos, com exceo para o lnter do algodo, que no contm lignina.

    Materiais Fitogneos3

  • Por serem fontes renovveis de recursos naturais,vm sendo convertidas atravs de processos deextrao, fermentao e pirlise em produtosqumicos, como insumos industriais e energiadesde a antigidade.

    Vrios estudos e pesquisas vm sendodesenvolvidos com os materiais lignocelulsicos,visando o aproveitamento de culturas e resduosvegetais para a obteno de combustveis,fertilizantes ou matria-prima para as indstrias.

    Materiais Fitogneos4

  • Os materiais lignocelulsicos so constitudos principalmente de clulas esclerenquimtica chamadas de fibras, de clulas parenquimticas chamadas de medula (material no fibroso) e de clulas epidrmicas. Os materiais lignocelulsicos provenientes de fibras vegetais so classificadas de acordo com sua origem nas plantas:

    Materiais Fitogneos5

  • Materiais Lignocelulsicos

    Fibras de tecido vivo (floema) dos caules, ou das partes internas das cascas, em feixes, tambm chamadas fibras moles para uso txtil;

    Fibras de folhas, que correm no sentido do comprimento das folhas de monocotiledneas, tambm referidas como fibras duras;

    Fibras de cabelos de sementes, principalmente algodo; constituindo as principais fontes de fibras vegetais.

    6

  • Existem cerca de 250.000 espcies de plantas superiores, mas menos de 0,1% so comercialmente importantes como fontes de fibras.

    O estudo de materiais lignocelulsicos tem atrado grande interesse na indstria de polmeros, devido a sua utilizao como material de reforo em matrizes polimricas no desenvolvimento de novos materiais ou compsitos.

    Materiais Lignocelulsicos7

  • Celulose, as hemiceluloses (polioses), a lignina

    extrativos orgnicos e inorgnicos Substncias de baixa massa molar chamados comumente (sais minerais - cinzas).

    Variaes da proporo depende: diferenas genticas dentre as espcies, Tecidos especializados dentro das plantas e condies de crescimento e

    Condies climticas e do solo.

    Principais componentes8

  • Componentes dos Materiais Lignocelulsicos

    Extrativos

    Substncias Orgnicas

    Cinzas

    Substncias Inorgnicas

    Substncias de baixa massa molar

    Lignina

    Celulose Polioses

    Polissacardeos

    Substncias Macromoleculares

    Materiais Lignocelulsicos

    Principais componentes9

  • Polssacardeos: celulose e hemiceluloses

    Compostos aromticos: lignina

    Compostos inorgnicos: sais extrativos: leos essncias, resinas (gomas), cinzas

    Taninos, acares, etc.

    Principais componentes10

  • 11

    Celullarwall

    Carbo-hydrate

    CellulosesHemi-

    celluloses

    LigninAsh and

    extractives

  • Cellulose

    Molecules are randomly oriented and have a tendency to form intra and intermolecular hydrogen bonds. The molecular chains pack in layers that are held together by weak

    van der Waals forces. H2O interactions

    X-ray diffraction experiments indicate that crystalline cellulose

    Type of cellulose Crystalline and noncrystalline Accessible and nonaccessible

    12

  • Cellulose

    Cellulose I or native cellulose has a space group symmetry where a = 16.34 and b = 15.72

    Cellulose II is obtained by mercerization and regeneration of native cellulose

    Cellulose III is formed by treatment of cellulose I with liquid ammonia at about 80C followed by evaporation of the ammonia.

    Cellulose IV is formed by heating cellulose III in glycerol at 260C

    13

  • Principais componentes14

  • Composio qumica aproximada de bagao integral, fibras e medula de vrias regies geogrficas (%)

    Origem Tipo -Celulose Lignina Polioses Cinzas

    EUA integral 36,8 21,3 29,4 2,9 (Louisana) fibra 38,7 20,7 30,0 2,0

    medula 32,3 21,3 29,9 4,6 integral 34,9 22,3 31,8 2,3

    Filipinas fibra 41,2 21,8 31,2 1,2 medula 34,9 22,5 33,2 2,6 integral 30,1 18,1 29,6 3,9

    Porto Rico fibra 40,2 19,8 31,6 1,2 medula 32,6 18,8 31,9 3,2

    frica do Sul integral --- 22,1 24,1 1,6 integral 36,5 - 38,8 27,6 - 28,4 19,4 - 21,6 1,3 - 2,0

    Hava fibra 41,9 - 43,3 25,8 - 27,3 20,0 - 22,0 0,6 - 0,8 medula 33,1 - 36,4 27,6- 28,8 19,3 - 21,5 1,8 - 2,4 integral 38,3 20,7 25,2 2,6

    Cuba fibra 40,4 19,5 25,1 1,4 medula --- 21,7 26,0 5,5

    Brasil integral --- 20,3 27,8 1,6 (So Paulo) fibra --- 20,8 26,7 0,8

    medula --- 20,2 28,5 3,0

    15

  • De acordo com a parte do vegetal de onde se originam as fibras vegetais comumente comercializadas podem ser agrupadas da seguinte maneira: 1) Sementes: algodo e pina (kapok). 2) Lber (floema): juta, linho, cnhamo, rami, papoula

    de So-Francisco (Kenaf), crotalria e guaxima (malva).

    3) Folha: sisal, abac, henequem, rfia, piaava e curau.

    4) Fruto: babau (pericarpo) , coco (pericarpo) e bucha.

    5) Caule: bamb, palhas de cereais, bagao de cana.

    Materiais Lignocelulsicos16

  • Indstria Automotiva 46.000 t/ano (23 kg/carro)

    Construo Civil Indstria Moveleira Indstria Eletro/Eletrnica Indstria de Embalagens Indstria Farmacutica e Veterinria

    Materiais Lignocelulsicos17

  • 0

    10000

    20000

    30000

    40000

    50000

    60000

    70000

    80000

    1986 1988 1990 1992 1994 1996 1998 2000 2002 2004Anos

    To

    n

    Consumo de Fibras Lignocelulsicasna Indstria Automobilstica Alem18

  • 0

    20000

    40000

    60000

    80000

    100000

    120000

    140000

    1980 1985 1990 1995 2000 2005 2010Anos

    To

    n Europa

    Total

    Consumo Total de Fibras Lignocelulsicaspela Indstria Automotiva Europia19

  • Fibras Naturais Cultivada Mundialmente (%)

    6414

    10

    8 2 2 JutaLinhoKenafSisalRamiHempCoco

    Produo Proporcional20

  • A01 EichhornAnsell21

  • 2900000

    630000

    470000

    38000098000 72000

    Juta

    Linho

    Kenaf

    Sisal

    Rami

    Hemp

    Coco

    Fibras cultivadas no Mundo com usos Automobilsticos (%)22

  • A00 Vincentshort technical note - Applied Composite Materials 7: 269271, 2000.

    A UNIFIED NOMENCLATURE FOR PLANT FIBRES FOR INDUSTRIAL USE

    The major cell type is sclerenchyma which has very thick lignified cell walls and is often associated with conducting tissue

    Cell Wall Structure Fibres Celullose: cellulose is produced from rosette-shaped enzymes as microfibrils 5 nm in diameter. the small microfibrils to is fused into larger microfibrils about 20 nm in diameter.

    Hemicellulose is a polysaccharide somewhat less perfectly crystalline than cellulose

    23

  • A00 Vincentshort technical note - Applied Composite Materials 7: 269271, 2000.

    A UNIFIED NOMENCLATURE FOR PLANT FIBRES FOR INDUSTRIAL USE

    Fibre Bundles Tissue: sclerenchyma textile fibre the use of special words such as technical, elementary or primary for fibre bundles should be avoided as confusing

    Non-Structural Fibres Fibres found in association with fruit and seeds are not assembled into bundles, are very long and thin and have the cellulose microfibrils wound around the fibre rather than parallel to the longitudinal axis cotton.

    24

  • Cells in Wood

    Cell Walls the middle lamella, and

    the primary cell wall of the adjacent cell: largely random orientation of cellulose microfibrils.

    S1 layer: 50 to 70 S2 layer: 5 to 30 S3 layer: >to 70 Pits: cell walls are

    modified to allow communication and transport between the cells in the living plant.

    25

  • A08 Beakou26

    A vegetal fiber extracted

    from the Rhectophyllum

    camerunense

  • Chemical composition of the cell wall of scots pine27

  • GEOMETRY

    28

  • MSc10 Oliveira, AMRiclS

    Dimenses da fibro-clula (de) largura (di) dimetro do lmen (L) comprimento

    29

  • MSc10 Oliveira, AMRiclS

    IRK, ndice Rukel para

    qualificao de fibras para a produo de papel

    Coeficiente de enfeltramento Coeficiente de forma

    30

  • MSc10 Oliveira, AMRiclS

    Coeficiente de flexibilidade e propriedades da fibra tcnica

    31

  • Optical Microscope32

  • SEM

    33

  • Scanning Electron Microscopy (SEM)34

  • tHitachi SU-70 Schottky (SEM)35

  • A09 Satyanarayanacr

    oss

    -se

    ctio

    ns

    of

    fib

    ers

    (aa

    nd

    b)

    ba

    na

    na

    ;(c

    an

    dd

    )

    ba

    ga

    sse

    ;m

    ag

    nif

    ica

    tio

    nb

    ars

    wit

    hsc

    ale

    inm

    are

    giv

    en

    on

    the

    ph

    oto

    gra

    ph

    s

    36

  • A12 Davies

    The secondary cell walls of plant fibres (the S2 layer) are composed of highly crystalline cellulose fibrils spirally wound in a matrix of amorphous hemi cellulose and lignin.

    The fibres are roughly circular and exhibit a large lumen, with a wall thickness around 2 m.

    The small outer diameter of these fibres - 510m.

    37

  • A09 Elenga

    SEM micrograph of the bottom layer of raffia textilis fiber. Note the honeycomb-like pattern

    38

  • A08 Beakou

    This thicknessof metal as wellas theapplication of asuitable voltageof the electronbeam arenecessary toprevent thefibers frombeing damagedunder the actionof thebombardmentof electronsduringobservation.

    Scanning electron microscopy of the RC fiber. (a) Cross-section of the fiber (x212). (b) Individual fiber cell (x312). (c) Reinforcement of the cell wall inside the lumen (x1850). (d) Longitudinal section showing microfibrils(x1150).

    39

  • A07 SatyanarayanaKG

    Scanning electron micrographics of longitudinal sections of curauas fibers.

    40

  • A07 SatyanarayanaKG

    Scanning electron micrographics of fracture of curauas fibers

    41

  • A14 Raj

    The specimens were coated with platinum layer to avoidelectron beam charging effects during examination

    The surface morphology was examined in the longitudinal direction

    42

  • A09 DePaoli

    Scanning electron microscope (JEOL JSM6360LV) at an acceleration voltage of 25 kV.

    The samples were coated with gold

    43

  • File Equipam. Kv Magf DW Probe Detec Obs

    A12 Davies 8 x300 -x500

    26

    A09 Satyanarayana

    15 x500 -x18000

    A09 ElengaA08 Beakou T220 Jeol 520 Fine layer of gold of

    70 nm thickness is deposited

    A07 SatyanarayanaKG

    Philips Model XL-30 scanning electronmicroscope (SEM)

    20 100x -x500

    11,5-13,1

    5.0 SE

    A14 Raj HITACHI ModelS3000H

    3 100x -x500

    16 29 SE

    A09 DePaoli JEOL JSM6360LV 25 x750 The samples were coated with gold

    A08 Silva Shimadzu SSX-550 20 x240-x500 17 5.3 SE

    44

  • TEM

    45

  • Schematic of a transmission electron

    microscope (TEM).46

  • A08 Beakou

    Transmission electron microscopy of the RC fiber. (a) Consecutive layers (x16,400). (b) Layer stacking (x16,400). (c) Warty sub-layer (x7660). Reinforcement by a small cell (x10,900).

    A) and B) represents the consecutive layers of the cell wall and their stratification for mechanical modelling. It is noted that only the S1, S2 and S3 sub-layers of the secondary wall have thicknesses

    The primary layer P being very thin is not distinguishable from the lignin-rich middle lamella M

    C) presence of a warty sub-layer inside the S3 sub-layer.

    D) a smaller triangular elementary fiber is locally inserted during growth to rigidify the fiber.

    47

  • CHEMICAL CONTENT

    48

  • Analytical Procedures

    Contend of Protocol Sampling Procedure, Extraction, Sample Preparation, Apparatus, Reagents and Materials, Procedures, Report, Precision, Additional Information

    Procedures Ash Content (ASTM D-1102-84) Preparation of Holocellulose (Chlorite Holocellulose) Preparation of Alpha-Cellulose (Determination of Hemicelluloses)

    Preparation of Klason Lignin Determination of Methoxyl Groups Determination of Acetyl by Gas Liquid Chromatography

    49

  • Analytical Procedures

    Information should accompany each chemical analysis: Source of the wood

    Geographic location Part of the tree sampled Date sample was taken

    Sampling Different anatomical parts Degree of biological deterioration, if any Sample size Drying method applied

    Analytical procedure used Calculations and reporting technique

    50

  • FIBERS PROPERTIES

    51

  • Materials Properties

    Density Thermal Electrical and Magnetic

    Optical

    Chemical Atomic

    Radiological

    Manufacturing Environmental Mechanical

    Acoustical

    52

  • DENSITY

    53

  • =M.V-1

    Density or specific weight. The dimensionless quantity

    Relative density or specific gravity The ratio of the density of the material to that of a standard material, usually water at 25oC.

    54

  • Experimental, =M.V-1

    Homogeneous materials

    The mass is measured with a balance The volume may be measured

    Directly (from the geometry of the object) or By displacement of a fluid (graduated cylinder). Or, by the mass of a fluid displaced.

    Archimedes

    55

  • Density of liquid water at 1 atm pressure56

    Temp Density H2O

    (oC) (g/cm3)

    -30 984

    -20 994

    -10 998

    0 1.000

    4 1.000

    10 1.000

    15 999

    20 998

    22 998

    25 997

    30 996

    40 992,2

    60 983,2

    80 971,8

    100 958,4

  • Experimental, =M.V-1

    Heterogeneous materials Non-compact materials

    Bulk density is the mass divided by bulk volume. Voids fraction: Air, even gaseous, or water. Dimension and access of voids.

    H2O, He2, Mg.

    57

  • Gas pycnometry

    A gas pycnometer is also sometimes referred to as a helium pycnometer

    Measure the volume of solids, porous or non-porous, monolithic, powdered, granular or in some way comminuted,

    Employing method of gas displacement and the volume : pressure relationship known as Boyle's Law.

    Helium therefore is most often prescribed as the measurement gas, Small size, it is also inert and the most

    ideal gas. Alternatives: Dry air, N2 e CO2

    58

  • Gas pycnometry

    Vs is the sample volume, Vc is the volume of the empty sample chamber, known from a prior calibration step,

    Vr is the volume of the reference volume, again known from a prior calibration step,

    P1 is the first pressure, in the sample chamber only

    P2 is the second (lower) pressure after expansion of the gas into the combined volumes of sample chamber and reference chamber.

    59

    He P1

    Vr

    HeP2

    Vc

  • DOI: 10.1021/ja060474j

    He pycnometry was used to estimate the actual space in the material accessible to the He gas. Measurements were run on an AccuPyc 1330 gas pycnometer (Micromeritics)

    give an average of three independent measurements Each sample was measured several times (10 runs in each determination) to achieve stable results

    The total porosity of the materials studied (P(He), %) was calculated as the space fraction in a sample accessible to the helium gas

    60

  • A13 Zauer

    Pycnometry according to DIN 66137-2 (2004)

    PI, Initial pressure PF, Final pressure VS, volume of sample chamber

    VR, volume of reference chamber

    61

  • Protocol

    Gas pycnometer must be calibrated using certified calibration spheres in accordance with the exact bulk volume of the sample for accurate measurements.

    The sample should be dried to remove moisture. In air or vacuum (depending on sample) Put on diseccator

    Equipment preparation Warm up at least 30 minutes Several cycles of pressurization depressurization are necessary The blank measurement (volume of the empty cell) takes about 1 minute

    Weigh the mass of the empty cell using the analytical balance (accuracy 0.1 [mg]) and carefully write down the result WC [g]

    With the spatula add a sufficient amount of powder into the cell (1-5 g) Carefully write down the result WT [g] The mass of the powder is calculated WP=WT-WC

    Put the cell with the powder in the instrument, and close it Start analisys Once the measurement is finished and saved, remove the powder from

    the cell, wash it with water and ethanol and dry at 60 [C]

    62