energia nuclear

77
ESCOLA SECUNDÁRIA DE VENDAS NOVAS CURSOS EFA Dupla Certificação : Contabilidade STC 7 – Saberes Fundamentais DR3 e DR4

Upload: palhoto

Post on 21-Jan-2015

7.107 views

Category:

Education


1 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Energia Nuclear

ESCOLA SECUNDÁRIA DE VENDAS NOVASCURSOS EFA

Dupla Certificação : Contabilidade

STC 7 – Saberes Fundamentais

DR3 e DR4

Page 2: Energia Nuclear

Descoberta e HistóriaHenri Becquerel (1852-1908)

Casal Curie

A Radioactividade não é um fenómeno recente

A sua descoberta é atribuída a Henri Becquerel em 1896

Um Sal de Urânio e Potássio emitia radiação invisível que escurecia uma

placa fotográfica

Descoberta dos Raios X por Roentgen em 1895

Nobel da Física 1903 – Becquerel e Pierre e Marie Curie

Page 3: Energia Nuclear

Descoberta e História

Transparência de metais desde que as placas sejam finas.

À medida que a espessura aumenta todos os materiais se tornam menos transparentes

Possibilidade de ver a sombra dos ossos sobre a sombra mais ténue dos contornos das mãos

Conclusões das experiências realizadas por Roentgen:

Wilhelm Konrad Roentgen (1845-

1923)

Page 4: Energia Nuclear

Características Gerais do Núcleo

Representação do núcleo

O núcleo atómico é composto de dois tipos

de partículas chamadas nucleões que são os:

Protões - carga eléctrica positiva

Neutrões - sem carga eléctrica

Z - número atómico Z é igual ao número de protões do núcleo

N - número de neutrões do núcleo

A - número de massa é igual ao número de nucleões: A = N + Z

Cada espécie nuclear com um dado Z e A é chamado de nuclídeo

Protões

Neutrões

A única excepção é o núcleo do H que só tem um protão

X - símbolo do elemento químicoXAZ

Page 5: Energia Nuclear

• Isótopos: núcleos associados ao mesmo elemento da tabela periódica (mesmo Z)

Exemplo: Hidrogénio (Z=1), temos isótopos com N=0 (A=1), N=1 (deutério) (A=2) e N=2 (trítio) (A=3)

Hidrogénio Deutério Trítio

Page 6: Energia Nuclear

O que é a radioactividade?

Exemplo: O Urânio possui, inicialmente, 92 protões. Contudo através de decaimentos sucessivos, diminui este número até terminar em chumbo (82 protões), libertando radioactividade para o ambiente.

O fenómeno radioactivo consiste na transformação de um núcleo atómico noutro

Neste processo há libertação de partículas ou de radiação electromagnética

Page 7: Energia Nuclear

Origem da Radioactividade“A Radioactividade é um processo natural reproduzido pelo Homem.”

Origem Natural

Terrestre Cósmica

Origem Artificial

Antrópica

Page 8: Energia Nuclear

Tipos de Radioactividade

Existem três tipos de partículas/radiação emitidos aquando do decaimento do núcleo:

– Radiação alfa– Radiação beta– Radiação gama

Tipo O que é?Penetração

na peleAlcance

no arBarrado

por

Alfa

Partícula composta de dois

protões e dois neutrões.

0.0033 cmAlguns

centímetrosFolha de

papel

BetaElectrões com

alta energia0,5 cm

Dezenas de centímetros

Folha de alumínio (mm de espessura)

Gama

Radiação electromagnética (fotões) de alta

energia

9,91 cm * Ilimitado

Paredes de concreto

(espessura superior a 1

m)

* Para raios gama não se pode definir um “penetração” pois eles penetram indefinidamente. Este valor indica o espaço necessário para atenuar metade da radiação.

Page 9: Energia Nuclear

Radiação Alfa

Radiação Alfa:

É constituída por dois neutrões e dois protões (núcleo de hélio);

Tem, portanto, carga positiva;

É bastante ionizante;

Tem baixa velocidade comparada com a da luz (cerca de 20 00 km/s);

Ocorre vulgarmente em núcleos pesados.

Page 10: Energia Nuclear

Radiação Beta

Radiação Beta: - é constituída por electrões resultantes da transformação de neutrões em protões ou de protões em neutrões;

Partícula Beta Negativa

Partícula Beta Positiva

É capaz de penetrar um centímetro nos tecidos;

Tem alta velocidade, aproximadamente 270 000 km/s.

Page 11: Energia Nuclear

Radiação Gama

Radiação Gama:

Ondas electromagnéticas;

Tipo de radiação mais perigosa: pode chegar a alterar o código genético;

Extremamente penetrantes;

Velocidade da luz (cerca de 300 000 km/s);

Page 12: Energia Nuclear

Alfa, Beta e Gama têm poderes de penetração diferentes

papel metal concreto

Page 13: Energia Nuclear

Perigos

Ionização das moléculas reações químicas anormais

destruição das células

Os efeitos da radioactividade podem manifestar-se tanto a nível somático como a nível genético.

Page 14: Energia Nuclear

Perigos

Órgãos que podem ser afectados:

• Cérebro• Olhos• Boca• Estômago• Intestino• Ovários• Testículos• Medula Óssea• Vasos Sanguíneos • Fetos

Page 15: Energia Nuclear

Desastre de Chernobyl

Em 26 de Abril de 1986 - explosão num reactor da central de ChernobylLibertou-se nuvem radioactivaONU - quatro mil mortos; Greenpeace - cerca de cem mil; Os sobreviventes enfrentam graves doenças, (a mais frequente é o cancro da tiróide)

Page 16: Energia Nuclear

Aplicações

Hoje em dia, a radioactividade tem inúmeras aplicações:

Radioterapia;

Arqueologia; Transmutação;

Energia Nuclear;

Bomba atómica.

Page 17: Energia Nuclear

Radioterapia

Especialidade médica que se ocupa do tratamento oncológico utilizando radiação – rádio.

Teleterapia: utiliza uma fonte externa de radiação com isótopos radioactivos ou aceleradores lineares. Branquiterapia: tratamento através de isótopos radioactivos inseridos dentro do corpo do paciente onde será liberada a radiação ionizante.

Page 18: Energia Nuclear

Arqueologia

Calculo da idade de objectos através do período de meia vida

TransmutaçõesConversão de um elemento químico em outro, geralmente através da incidência de partículas alfa.

Exemplos: carbono em azoto; cobre em níquel; árgon em potássio; chumbo em ouro.

Page 19: Energia Nuclear

Energia NuclearDecorre da desintegração

provocada de átomos de urânio e plutónio

Bomba Atómica

Arma mais mortífera que o homem já conheceu está estritamente ligada à radioactividade

Page 20: Energia Nuclear

Necessidades Energéticas

• Para suprir as necessidades energéticas da UE é necessária, actualmente, 50% de importação. Se nada for feito nos próximos 20-30 anos este valor subirá para 70%.

• Em cada década há um aumento de 50% da demanda energética nos países da OCDE.

• Em 2002, 34% da electricidade na EU foi produzida pela energia nuclear.

Page 21: Energia Nuclear

Vantagens• Fonte mais concentrada de geração de energia. Ex:. 1 Kg de urânio produz tanta energia como 3000 toneladas de carvão.

• Não emite: •gases de efeito estufa (dióxido de carbono, metano, hidrofluorcarbonos). •gases que provocam chuva ácida (dióxido de enxofre e dióxido de azoto). •metais carcinogénicos, teratogénicos ou mutagénicos (As, Pb, Cd, Hg). •gases que provocam “smogg” nas cidades ou destruição da camada de

ozono. •cinzas ou poeiras.

Page 22: Energia Nuclear

22

Mercado Português de produção de energia

Situação futura do mercado de energia em Portugal

Tendo em consideração o meio envolvente deste mercado e as diversas pressões a que está sujeito, as principais soluções a médio prazo serão as seguintes:

Pressões Soluções

• Pressão para a redução de emissões de CO2

• Protocolo de Quioto

Energias Renováveis

• Aumento dos preços dos combustíveis fósseis

• Perda de competitividade da economia Portuguesa

Energia Nuclear

Gestão da Procura

• Aumento do consumo de energia (Industrial e Doméstico)

Page 23: Energia Nuclear

Energia nuclear como solução realista A aposta nas energias renováveis é uma realidade e tem sido um dos alvos prioritários no desenvolvimento

do sector energético Português. No entanto, este tipo de energias, como a energia eólica, fotovoltaica e de ondas, ainda apresentam alguns problemas de custo, quer ao nível de investimento quer ao nível tarifário. Também apresentam restrições de disponibilidade, uma vez que não são mobilizáveis quando necessário.

No que respeita à gestão da procura, existe a necessidade de desenhar soluções que permitam o incremento da eficiência energética. No entanto, o sucesso das medidas a adoptar, e que passam pela consciencialização de todos os consumidores, irá estar dependente do incremento do consumo.

Desta forma, a energia nuclear aparece como a alternativa mais credível que permite, simultaneamente a obtenção de um conjunto alargado de vantagens e a resolução de vários problemas com que o País se vê confrontado. As principais características da energia nuclear são as seguintes:

Sem Emissões de CO2Energia Barata Elevada Segurança

Uma central nuclear não emite CO2 para a atmosfera cumprindo totalmente o protocolo de Quioto.

A energia nuclear é, em média, 28% mais barata que o carvão, 24% que o gás natural e 53% que a energia eólica.

A taxa actual de acidentes deste tipo de energia é de 5,500 anos de operação comercial por acidente.

Page 24: Energia Nuclear

Impacto económico da energia nuclear A implementação de uma central nuclear em Portugal irá permitir a obtenção de um conjunto alargado de

vantagens e sinergias, fulcrais para o desenvolvimento da economia Portuguesa:

Vantagens da Implementação de uma Central Nuclear

Inversão da posição de “Importador de Energia” para “Exportador de Energia”

Aumento da Competitividade de Portugal

Redução do Deficit da Balança Comercial

Diminuição das Assimetrias do Custo de Energia face à média da UE

Cumprimento do Protocolo de Quioto

Page 25: Energia Nuclear

Impacto económico / Impacto na Balança Comercial

O impacto económico da nossa elevada dependência do exterior em matéria energética pode-se analisar em termos do impacto na balança comercial e na competitividade das empresas.

Essa dependência deve-se ao facto de Portugal não ter recursos endógenos de energia primária, ou tendo-os como no caso do urânio, não os estar a utilizar.

As necessidades do desenvolvimento económico exercem uma grande pressão sobre a disponibilidade de combustíveis líquidos para a mobilidade, e de abastecimento eléctrico para as utilizações industriais, domésticas e dos serviços.

Portugal importa praticamente 300 000 b/d de petróleo, o que perfaz 109 mil milhões de barris por ano.

Cada aumento de 10 USD no preço do barril de crude equivale a um agravamento da nossa balança comercial de 1 000 milhões de dólares por ano.

O preço de petróleo funciona como preço director das outras formas de energia, arrastando os respectivos preços.

Assim, Portugal também importa 5,5 Mton. de carvão por ano que registou um aumento de 40 USD/ton. o que conduz a um agravamento de 400 milhões de dólares por ano, e 126 000 TJ de gás natural, cujo aumento recente de 1 euro/GJ conduziu a um agravamento de 160 milhões de dólares por ano.

Page 26: Energia Nuclear

Custo e disponibilidade das renováveis e co-geração – Contribuem mas não são a solução

Fonte: REN

Os custos da geração renovável é muito mais elevado e a sua disponibilidade muito menor que a convencional.

Para alem do custo mais elevado e da menor disponibilidade a sua intermitência força a uma maior importação quando não existe recurso disponível.

Page 27: Energia Nuclear

27

0100200300400500600700800900

10001100

gra

mas/

kW

h

Fontes: life-cycle assessment of electricity generation systems and applications for climate change policy analysis, Meier, 2002, published on website Nuclear Energy Institute; own data; IEA

CCGT como Back up

Variação devido ao tipo de carvão (lenhite/hulha) e de tecnologia (baixa/alta-eficiência)

Ciclo de vida da produção de CO2 nas várias fileiras de energia

Page 28: Energia Nuclear

Os resíduos da indústria electronuclear são os únicos que se encontram completamente confinados e selados, sendo em termos de volume extraordinariamente mais reduzidos que os dos seus concorrentes fósseis. Assim para produzir 1MW (e) durante um ano temos necessidade d

Enquanto as outras energias convencionais lançam para a atmosfera milhões de toneladas de poluentes a energia nuclear produz quantidades incomparávelmente menores que ficam confinadas e monitorizadas para as quais existem vários tipos de solução.

- 2.500 ton. de carvão produzindo 5.000 ton. de CO2, SO2, cinzas e metais pesados libertados para a atmosfera

- 1.500 ton. de fuelóleo produzindo 4.800 ton. de CO2, SO2 e outros

- 700 ton. de gás natural produzindo 2.400 ton. de CO2

- 25 Kg de urânio enriquecido produzindo 23 Kg de resíduos (apenas 1Kg de resíduos de alta actividade)

Page 29: Energia Nuclear

A questão dos resíduos nucleares Os resíduos da indústria electronuclear são os únicos que se encontram completamente

confinados e selados, sendo em termos de volume extraordinariamente mais reduzidos que os dos seus concorrentes fósseis. Assim para produzir 1MW (e) durante um ano temos necessidade de

Enquanto as outras energias convencionais lançam para a atmosfera milhões de toneladas de poluentes a energia nuclear produz quantidades incomparavelmente menores que ficam confinadas e monitorizadas para as quais existem vários tipos de solução

- 2.500 ton. de carvão produzindo 5.000 ton. de CO2, SO2, cinzas e metais pesados libertados para a atmosfera

- 1.500 ton. de fuelóleo produzindo 4.800 ton. de CO2, SO2 e outros

- 700 ton. de gás natural produzindo 2.400 ton. de CO2

- 25 Kg de urânio enriquecido produzindo 23 Kg de resíduos (apenas 1Kg de resíduos de alta actividade)

Page 30: Energia Nuclear

Houve apenas dois acidentes de grandes proporções na história da produção civil de energia nuclear - Three Mile Island e Chernobyl. O primeiro foi contido dentro do reactor sem perda de vidas humanas . No segundo, não existia confinamento exterior, como existe nas centrais ocidentais.

Estes dois acidentes, devido a causas humanas, ocorreram em 11 000 anos-reactor cumulativos de operação comercial em 32 países ao longo de 50 anos.

Nenhuma outra forma de energia pode reclamar tal nível de segurança.

A tecnologia moderna utilizada nos reactores em operação de 2ª geração não permite que se repita um acidente do tipo de Chernobyl. Os reactores de 3ª^geração foram desenhados para aumentar por um factor de 10 a sua segurança intrínseca.

A questão da segurança nuclear

Page 31: Energia Nuclear

Centrais próximas da fronteira e próximas de Madrid

Central nuclear

Page 32: Energia Nuclear

Energia nuclear – uma opção realista e inevitável

O nuclear é a melhor opção energética para Portugal e hoje a fonte de energia mais barata mesmo sem considerar as penalizações de Quioto.

Permite reduzir substancialmente o deficit comercial (cada 10 dólares de aumento no barril de crude equivale a mais de mil milhões de dólares de agravamento do deficit comercial por ano).

Permite ao País ser mais competitivo, criar mais valor, e em simultâneo cumprir com os nossos compromissos de Quioto.

Permite encarar realisticamente a exportação de electricidade para Espanha e outros países da UE:

Existe um núcleo de investidores privados que está disposto a investir neste projecto, o que demonstra a confiança técnica e económica que nele depositam.

Page 33: Energia Nuclear

Quercus: Nuclear, não obrigado!

ECONOMIA DA ENERGIA

Page 34: Energia Nuclear

Principais razões pelas quais se considera inviável, num quadro de desenvolvimento sustentável do país e a bem da nossa economia, a opção pela energia nuclear.

Page 35: Energia Nuclear

1. Portugal tem uma enorme oportunidade na conservação de energia e eficiência energética.

Page 36: Energia Nuclear

As previsões de aumento em 350% do consumo de electricidade entre 1990 e 2020 são um erro tremendo em relação àquilo que está a ser desenvolvido em diversos países Europeus, onde a intensidade energética (energia consumida por produto interno bruto) tem vindo a diminuir e o consumo per capita estabilizou.

Existem várias centrais térmicas, nomeadamente um eventual caso de uma central nuclear, que não se justificam pelo enorme potencial da eficiência energética e conservação de energia, nomeadamente nos sectores residencial e serviços.

Page 37: Energia Nuclear

O consumo de electricidade em Portugal tem vindo a aumentar na ordem dos 6% ao ano, não sendo já argumento o nosso baixo grau de desenvolvimento.

Temos estado a crescer mal e com muitos desperdícios.

A correcção deste caminho permite perfeitamente melhorar a qualidade de vida com menor consumo de energia e menor poluição, desde a electricidade à dependência do petróleo em sectores como os transportes.

Um kWh poupado, de acordo com a Entidade Reguladora do Sector Energético, é dez vezes mais barato que um kWh a ser produzido, inclusive por energias renováveis.

Page 38: Energia Nuclear

2. Potencial de implementação das energias renováveis em Portugal é enorme.

Page 39: Energia Nuclear

As energias renováveis têm um enorme potencial em termos de expansão no nosso país, em particular a energia eólica, biomassa e solar, sendo que a hídrica já apresenta níveis de exploração bastante consideráveis.

Quer pela produção directa de electricidade, quer pela produção de calor, Portugal apresenta condições climáticas e de uso do território que permitem a sua afirmação em termos tecnológicos e em consonância com metas estabelecidas na União Europeia que, para 2010, e para Portugal, será de 39% de energias renováveis na produção de electricidade, mas com percentagens crescentes para os anos seguintes.

Page 40: Energia Nuclear

3. A energia nuclear serve para produzir electricidade e esta representa apenas cerca de 20% do consumo de energia final do país

Page 41: Energia Nuclear

A dependência de Portugal face aos combustíveis fósseis, nomeadamente em relação ao petróleo, está directamente relacionada com outros usos da energia em sectores como os transportes e a indústria.

A instalação de uma central nuclear não resolve assim os problemas energéticos estruturais de Portugal, que passam muito mais por medidas integradas associadas ao ordenamento do território e às actividades produtivas do país.

Page 42: Energia Nuclear

4. A energia nuclear é muito mais cara

Page 43: Energia Nuclear

A produção de energia nuclear é das mais dispendiosas, contrariamente ao que é habitualmente referido

O contemplar dos custos de construção e de desmantelamento face ao período de vida da central, faz com que apenas o solar fotovoltaico apresente valores mais elevados, valores estes que no entanto tendem a reduzir-se por efeitos de economia de escala face à sua cada vez maior expressão.

Page 44: Energia Nuclear

Fonte de Energia / Custos por kilowatt-hora

Eficiência energética 0-5 cêntimos

Hidroeléctrica 2-8 cêntimos

Carvão 5-6 cêntimos

Vento 5-8 cêntimos

Petróleo 6-8 cêntimos

Solar térmica 9 cêntimos

Nuclear 10-12 cêntimos

Solar fotovoltaico 15-20 cêntimos

Page 45: Energia Nuclear

5. A falácia da produção limpa em termos de emissões de gases de efeito de estufa

Page 46: Energia Nuclear

Contrariamente ao que se anuncia, a produção de energia através de centrais nucleares não é isenta em termos de emissões de gases de efeito de estufa responsáveis pelas alterações climáticas

A sua construção é uma importante fonte de emissões, mas principalmente a exploração do urânio e também o transporte dos resíduos para processamento ou armazenagem, acabam por contribuir significativamente.

Os níveis calculados de emissão em termos de ciclo de vida colocam uma central nuclear numa situação pior que uma central a gás natural.

Page 47: Energia Nuclear

6. Segurança de abastecimento comprometida – potencialidade de descentralização oferecida pelas energias renováveis é contrariada por uma central nuclear

Page 48: Energia Nuclear

A segurança de abastecimento é um dos aspectos mais relevantes no sentido de evitar problemas como os blackouts que sucederam na costa Oeste dos Estados Unidos em 2000/2001 ou no Brasil, ou ameaças externas como o bloqueio e o fornecimento de determinados tipos de combustível (como sucedeu recentemente nos problemas entre a Rússia e a Ucrânia).

Neste quadro, tem sido defendida uma cada vez maior descentralização da produção que, no limite, será baseada em energias renováveis associadas às próprias residências e serviços, até porque desta forma existem menos perdas no transporte.

Page 49: Energia Nuclear

Neste sentido, uma forma de produção centralizada com uma enorme potência instalada contradiz objectivos de longo prazo que têm vindo a ser reforçados à escala europeia e num quadro de maior sustentabilidade da gestão da produção e consumo de electricidade

Page 50: Energia Nuclear

7. A energia nuclear só é viável à custa de enormes subsídios governamentais – Portugal apoia muito mais investigação no nuclear que na conservação de energia e renováveis

Page 51: Energia Nuclear

A produção de energia nuclear continua a beneficiar de fortes subsídios públicos ao abrigo do Tratado Euratom

Ao longo dos últimos 30 anos, a tecnologia nuclear foi brindada com cerca de 60 biliões de euros para investigação, um valor muito superior ao atribuído a qualquer outra fonte de energia.

Por outro lado, a industria nuclear continua a reclamar subsídios para a gestão dos resíduos radioactivos produzidos pelas centrais

Portugal também não faz os investimentos certos em investigação e desenvolvimento na área de energia: o nuclear recebe 110 vezes mais do que a conservação de energia e 7 vezes mais do que as renováveis.

Page 52: Energia Nuclear

De acordo com a Agência Internacional de Energia, Portugal destinou, em 2004, 2,2 milhões de euros para investigação na fusão nuclear enquanto que apenas dedicou 0,32 milhões de euros para energias renováveis e 0,02 milhões para a conservação de energia e apenas no sector industrial.

Em causa está a fraquíssima prioridade dada à conservação de energia e eficiência energética e também às energias renováveis.

Page 53: Energia Nuclear

8. Portugal ficará dependente de tecnologia importada e cara; é mais uma dependência, neste caso perigosa, de outros países

Page 54: Energia Nuclear

Não existe experiência em Portugal de construção ou manutenção de centrais nucleares, uma vez que essa nunca foi uma opção, mesmo quando outros países enveredaram por essa forma de produzir energia.

Neste contexto, as mais importantes valias económicas do projecto serão para os países e empresas dos mesmos que têm experiência nestas tecnologias e não para Portugal.

Ter uma central nuclear com tecnologia importada é um risco demasiado elevado a correr.

Page 55: Energia Nuclear

Na Europa estão apenas em construção duas centrais: a central de Olkiluoto-3 na Finlândia, cujas condições de financiamento passam por um subsidio indirecto pela taxa de juro muito abaixo do mercado, providenciada por instituições francesas e alemãs e que não se deverá vir a repetir, nomeadamente face às novas directrizes de transparência no financiamento do mercado energético na União Europeia, e a central de Cernavoda na Roménia, cuja construção se iniciou ainda no regime comunista, foi suspensa e recomeçada alguns anos depois.

O cenário oficial da União Europeia em termos energéticos (modelo PRIMES) de Novembro de 2005 apresenta uma redução da produção de electricidade por centrais nucleares 0,8% ao ano entre 2010 e 2030.

Page 56: Energia Nuclear

10. Longevidade dos resíduos e herança para as gerações futuras

Page 57: Energia Nuclear

A longevidade dos resíduos nucleares estima-se em dezenas a centenas de milhares de anos.

Será justo delegar nas gerações futuras a resolução de um problema que, nos cerca de cinquenta anos de existência da indústria nuclear, ainda não conheceu qualquer evolução no sentido de poderem ser tratados sem impactos para as gerações presentes e futuras?

O responsável pelo depósito de resíduos nucleares dos Estados Unidos referiu que, para o projecto previsto para a Montanha de Yuccan, não se consegue ainda afirmar um prazo de conclusão nem um custo final que, no entanto, deverá ser muito elevado.

Page 58: Energia Nuclear

Esta questão é ainda mais premente quando se prevê que as reservas de urânio não durem mais do que algumas décadas, o que implica que as gerações futuras teriam que encontrar outra solução para a produção da sua energia (resolvendo um problema que os governos actuais não tiveram a coragem e empenho para resolver), ficando com o ónus de lidar com os resíduos que nós produzimos por muitos milhares de anos.

Page 59: Energia Nuclear

11. Riscos associados ao transporte e armazenamento dos resíduos nucleares

Page 60: Energia Nuclear

Uma vez que o reprocessamento dos resíduos nucleares, componente que pode ter maior ou menor peso dependendo do tipo de central, não ocorreria em Portugal, o seu transporte poderia acarretar riscos acrescidos para as populações e o ambiente por onde passasse, bem como nos locais onde fosse armazenado.

Page 61: Energia Nuclear

12. Tempo de construção previsto

Page 62: Energia Nuclear

A construção de uma central nuclear em Portugal levaria cerca de 10 a 15 anos até que pudesse estar operacional em termos de fornecimento de energia eléctrica.

Portugal terá que tomar as medidas certas no sentido de acertar o passo com as reduções de emissões de gases com efeito de estufa previstas, sob pena de condenarmos o país à estagnação ou retrocesso económico e social, pelo que esta solução em nada contribui para a resolução do problema.

Page 63: Energia Nuclear

13. Custo de desmantelamento das centrais e suas consequências ainda não estão suficientemente avaliados

Page 64: Energia Nuclear

O custo do processo de desmantelamento é geralmente estimado por baixo em relação à realidade.

Estamos porém a falar de valores de muitas dezenas de milhões de euros.

No âmbito do processo de desmantelamento, muitos dos elementos de uma central nuclear têm obrigatoriamente que ser tratados como resíduos nucleares, o que implica custos elevadíssimos de desmantelamento.

A experiência nesta matéria é também ainda relativamente reduzida a nível mundial e como já se mencionou, em países com uma forte indústria nuclear como os Estados Unidos, o problema ainda está longe de ter resolução.

Page 65: Energia Nuclear

14. Secretismo e estímulo ao militarismo

Page 66: Energia Nuclear

As centrais nucleares tendem a ser encaradas como casos especiais, mesmo em países democráticos, sendo difícil ter acesso a informação concreta sempre que há algum problema.

Para além disso, com a produção do plutónio que resulta do processamento dos resíduos decorrentes da produção de energia, estimula-se a produção de mais armas nucleares com fins militares, alimentando a indústria da guerra a nível mundial.

Existem vários documentos que comprovam que, por exemplo no Reino Unido, o ataque a centrais nucleares por parte de células terroristas foi considerado.

Page 67: Energia Nuclear

A instalação de uma central em território português iria aumentar o risco de Portugal poder ser vítima de um atentado que poderia ter consequências desastrosas em termos ambientais, sociais e económicos.

Os custos com a segurança em qualquer central são avassaladores e tendem a aumentar.

Page 68: Energia Nuclear

15. Dificuldade em encontrar uma localização

Page 69: Energia Nuclear

Considerando as suas necessidades específicas, nomeadamente ao nível da disponibilidade de uma fonte de água abundante e factores de segurança como a necessidade de evitar zonas de maior actividade sísmica, e tendo em conta a exiguidade do território português, a definição e aceitação da localização de uma central nuclear será uma tarefa muito difícil.

Page 70: Energia Nuclear

Energia Nuclear: energia limpa?

Page 71: Energia Nuclear

Durante o nosso passado recente, a energia nuclear foi olhada das mais diversas formas

De início parecia tratar-se de uma energia limpa, sem riscos e que parecia conduzir à resolução de todos os problemas energéticos globais, resolvendo definitivamente a dependência dos combustíveis fósseis.

Contudo, o evoluir da situação demonstrou o contrário, mostrou que na realidade, mesmo sob as rigorosas formas de controlo, ela nunca era desprovida de riscos.

Page 72: Energia Nuclear

A prová-lo temos por exemplo os casos de Sellafield, Three Mile Island, Chernobyl, assim como o problema dos lixos nucleares e das armas nucleares.

Os riscos para o meio ambiente foram, sem duvida uma das maiores preocupações dos instaladores desde a entrada em funcionamento dos programas iniciais.

De acordo com os critérios técnico-científicos, as medidas de segurança para o funcionamento de uma central nuclear e a eventual evacuação são suficientes.

Naturalmente, para o qual ninguém pode encontrar um remédio infalível são os acidentes, sempre possíveis, motivo de grande preocupação para os adversários da energia nuclear, atribuídos sobretudo a falhas humanas.

Page 73: Energia Nuclear

Que acontece se um reactor chega a ficar realmente fora de controlo?

Os defensores da energia nuclear argumentam que a possibilidade de uma tal situação é muito baixa.

Os opositores argumentam dizendo que os resíduos radioactivos contaminarão durante décadas a zona que rodeia o reactor, pondo em perigo toda a vida aí existente.

Page 74: Energia Nuclear

Que segurança oferece o armazenamento definitivo?

Existem ensaios que demonstram que a inclusão em vidro mediante a fusão ou num material com as características das rochas, isola os resíduos radioactivo do meio ambiente durante muito tempo, estanque ao ar e à água.

Mas segundo afirma a fonte contrária, acontecimentos imprevisíveis podem libertar, apesar de tudo, os elementos nocivos e consigo a radiação mortífera.

Page 75: Energia Nuclear

Conclui-se então que a energia nuclear não é uma tecnologia sustentável nem amiga do ambiente, como as grandes potências nucleares (EUA por exemplo) querem provar.

Substituir um problema por outro, como propuseram os EUA em Haia, é algo extremamente injusto e irresponsável para com as gerações futuras.

Por mais que as condições de segurança nas centrais aumentem, a insegurança e o medo entre as populações permanecerá para sempre, pois não nos podemos esquecer que as máquinas são construídas pelo Homem, e este não é infalível.

Page 76: Energia Nuclear
Page 77: Energia Nuclear