cpv seu pé direito também na...

4
1 CPV UNESP2011 UNESP – 19/dezembro/2010 CPV seu pé direito também na Medicina FÍSICA 19. A montagem de um experimento utiliza uma pequena rampa AB para estudar colisões entre corpos. Na primeira etapa da experiência, a bolinha I é solta do ponto A, descrevendo a trajetória AB, escorregando sem sofrer atrito e com velocidade vertical nula no ponto B (figura 1). Com o auxílio de uma folha carbono, é possível marcar o ponto exato C onde a bolinha I tocou o chão e com isto, conhecer a distância horizontal por ela percorrida (do ponto B’ até o ponto C de queda no chão), finalizando a trajetória ABC. Na segunda etapa da experiência, a bolinha I é solta da mesma forma que na primeira etapa e colide com a bolinha II, idêntica e de mesma massa, em repouso no ponto B da rampa (figura 2). Admita que as bolinhas I e II chegam ao solo nos pontos C 1 e C 2 , percorrendo distâncias horizontais de mesmo valor (d 1 = d 2 ), conforme a figura 3. Sabendo que H = 1 m; h = 0,6 m e g = 10 m/s 2 , determine as velocidades horizontais da bolinha I ao chegar ao chão na primeira e na segunda etapa da experiência. Resolução: 1 a etapa (A → B) E m(A) = E m(B) Þ E p(A) = E C(B) + E p(B) Þ Þ m . g . H = mV B . 2 2 + m . g . h Þ Þ 10 . 1 = V B 2 2 + 10 . 0,6 Þ Þ V B = 8 m/s Þ V B = 2 2 m/s Durante a trajetória B → C (lançamento horizontal) a velocidade horizontal é constante Þ V C(x) = V B Þ Þ V C(x) = 2 2 m/s 2 a etapa (colisão) Q sistema = constante Þ m . V I = m . V I ' + m . V II ' Þ Þ V I = V I ' + V II ' Sendo as velocidades horizontais constantes, com base na figura 3 e sabendo-se que V I ' = V II ', pois d 1 = d 2 : V I = V I ' . cosθ + V II ' . cosθ Þ V I = 2 . V I ' . cosθ Þ Þ 2 2 = 2 . V I ' . cosθ Þ V I ' = 2 cos q m/s Obs.: Faltou informar que a figura 3 é uma vista superior do solo horizontal. Caso houvesse a informação de que a colisão foi perfeitamente elástica, seria possível determinar as velocidades horizontais das bolinhas na 2 a etapa, obtendo-se V I ' = V II ' = 2 m/s e θ = 45º

Upload: trinhthu

Post on 01-Nov-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

1CPV unesp2011

unesP – 19/dezembro/2010

CPV seu pé direito também na Medicina

Física

19. A montagem de um experimento utiliza uma pequena rampa AB para estudar colisões entre corpos. Na primeira etapa da experiência, a bolinha I é solta do ponto A, descrevendo a trajetória AB, escorregando sem sofrer atrito e com velocidade vertical nula no ponto B (figura 1).

Com o auxílio de uma folha carbono, é possível marcar o ponto exato C onde a bolinha I tocou o chão e com isto, conhecer a distância horizontal por ela percorrida (do ponto B’ até o ponto C de queda no chão), finalizando a trajetória ABC.

Na segunda etapa da experiência, a bolinha I é solta da mesma forma que na primeira etapa e colide com a bolinha II, idêntica e de mesma massa, em repouso no ponto B da rampa (figura 2).

Admita que as bolinhas I e II chegam ao solo nos pontos C1 e C2, percorrendo distâncias horizontais de mesmo valor (d1 = d2), conforme a figura 3.

Sabendo que H = 1 m; h = 0,6 m e g = 10 m/s2, determine as velocidades horizontais da bolinha I ao chegar ao chão na primeira e na segunda etapa da experiência.

Resolução:

1a etapa (A → B)

Em(A) = Em(B) Þ Ep(A) = EC(B) + Ep(B) Þ

Þ m . g . H = m VB. 2

2 + m . g . h Þ

Þ 10 . 1 = VB2

2 + 10 . 0,6 Þ

Þ VB = 8 m/s Þ VB = 2 2 m/s

Durante a trajetória B → C (lançamento horizontal) a velocidade horizontal é constante Þ VC(x) = VB Þ

Þ VC(x) = 2 2 m/s

2a etapa (colisão)

→Qsistema = constante Þ m .

→VI = m .

→VI' + m .

→VII' Þ

Þ →VI =

→VI' +

→VII'

Sendo as velocidades horizontais constantes, com base na figura 3 e sabendo-se que VI' = VII', pois d1 = d2:

VI = VI' . cosθ + VII' . cosθ Þ VI = 2 . VI' . cosθ Þ

Þ 2 2 = 2 . VI' . cosθ Þ VI' = 2

cosq m/s

Obs.: Faltou informar que a figura 3 é uma vista superior do solo horizontal. Caso houvesse a informação de que a colisão foi perfeitamente elástica, seria possível determinar as velocidades horizontais das bolinhas na 2a etapa, obtendo-se VI' = VII' = 2 m/s e θ = 45º

unesP – 19/12/2010 CPV seu pé direito também na Medicina

CPV unesp2011

2

20. Considere um objeto luminoso pontual, fixo no ponto P, inicialmente alinhado com o centro de um espelho plano E. O espelho gira, da posição E1 para a posição E2, em torno da aresta cujo eixo passa pelo ponto O, perpendicularmente ao plano da figura, com um deslocamento angular de 30º, como indicado

Copie no espaço específico para Resolução e Resposta, o ponto P, o espelho em E1 e em E2 e desenhe a imagem do ponto P quando o espelho está em E1 (P1’) e quando o espelho está em E2 (P2’). Considerando um raio de luz perpendicular a E1, emitido pelo objeto luminoso em P, determine os ângulos de reflexão desse raio quando o espelho está em E1 (α1’) e quando o espelho está em E2 (α2’).

Resolução:

A imagem produzida pelo espelho na posição E1 é simétrica ao objeto em relação ao espelho. Com isso, o ângulo de reflexão é de 0º (segunda lei da reflexão). Portanto α1' =0º.

Ao rotacionarmos o espelho para posição E2, verificamos que o desvio angular da imagem é o dobro do ângulo de rotação. Este desvio vale 2 . 30º = 60º. Através da soma dos ângulos internos do triângulo retângulo, concluímos que o ângulo de incidência na posição E2 é de 30º. Portanto, α2' =30º.

CPV seu pé direito também na Medicina unesP – 19/12/2010

CPV unesp2011

3

21. Um gerador eletromagnético é constituído por uma espira com seção reta e área S, que gira com velocidade angular ω no interior de um campo magnético uniforme de intensidade B. À medida que a espira gira, o fluxo magnético Φ que a atravessa varia segundo a expressão Φ(t) = B.S.cosωt onde t é o tempo, produzindo uma força eletromotriz nos terminais do gerador eletromagnético, cujo sentido inverte-se em função do giro da espira. Assim, a corrente no resistor R, cujo sentido inverte a cada meia volta, é denominada corrente alternada.

Considere a espira com seção reta de 10 cm2, girando à razão de 20 voltas por segundo, no interior de um campo magnético de intensidade igual a 2 x 10–5 T.

Trace o gráfico do fluxo magnético Φ(t) que atravessa a espira em função do tempo, durante um período (T) indicando os

valores do fluxo magnético nos instantes T T T4 2

34

, ,

Resolução:

ω = 2pT = 2π f = 2 . π . 20 = 40π rad/s

Conforme foi explicado no enunciado, o cálculo do fluxo magnético é dado por: Φ (t) = B . S . cos (ω t) Substituindo os valores fornecidos, temos: Φ (t) = 2 x 10–5 . 10 x 10–4 . cos (40 π . t)

\ Φ (t) = 2 x 10–8 . cos (40π . t)

Temos que, para t = T4

e t = 34T

, o valor do Φ vale zero pois:

cos 2

4πT

T.

= cos

p2 = 0

cos 2 3

4πT

T.

= cos

23p

= 0

Para t = T2 Þ cos

22

πT

T.

= cos π = –1; e o valor de Φ é mínimo

Para t = T Þ cos 2πT

T.

= cos 2π = +1; e o valor de Φ é máximo

Portanto, sabendo que a curva do gráfico é uma cossenoide, traçamos o gráfico:

T4

= 1,25 x 10–2 s

T2 = 2,5 x 10–2 s

34T

= 3,75 x 10–2 s

T = 5 x 10–2 s

Obs.: Na expressão do enunciado é necessária a colocação de parênteses: Φ (t) = B . S . cos (ω t)

Φ (Wb)

2 x 10–8

–2 x 10–8

0t (x10–2s)51,25 2,5 3,75

unesP – 19/12/2010 CPV seu pé direito também na Medicina

CPV unesp2011

4

comentário Do cPV

A prova foi de nível médio, cobrando os seguintes assuntos:

Princípio da Conservação da Energia, Colisão, Espelho Plano, Fluxo Magnético envolvendo conceitos de MHS.

Vale ressaltar que na questão 19, faltou informação detalhada sobre a figura 3 ou sobre a característica da colisão, o que possivelmente dificultou a interpretação do aluno.

Distribuição Das Questões

Mecânica: 34%Eletricidade: 33%Óptica: 33%