buffer diferencial para pads de circuitos integrados...

75
BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS COM PROCESSO DE FABRICAC ¸ ˜ AO DE 180 nm Jo˜ ao V´ ıtor Ferreira Duarte Projeto de Gradua¸c˜ ao apresentado ao Curso de Engenharia Eletrˆ onicaedeComputa¸c˜ao da Escola Polit´ ecnica, Universidade Federal do Rio de Janeiro, como parte dos requisitos necess´ arios ` aobten¸c˜ ao do t´ ıtulo de Enge- nheiro. Orientador: Fernando Antˆ onio Pinto Bar´ uqui Rio de Janeiro Setembro de 2018

Upload: others

Post on 29-Sep-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS

INTEGRADOS COM PROCESSO DE FABRICACAO DE 180 nm

Joao Vıtor Ferreira Duarte

Projeto de Graduacao apresentado ao Curso

de Engenharia Eletronica e de Computacao

da Escola Politecnica, Universidade Federal

do Rio de Janeiro, como parte dos requisitos

necessarios a obtencao do tıtulo de Enge-

nheiro.

Orientador: Fernando Antonio Pinto

Baruqui

Rio de Janeiro

Setembro de 2018

Page 2: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS

INTEGRADOS C01vI PROCESSO DE FABRICA~AO DE 180 nm

Joao Vitor Ferreira Duarte

PROJETO DE GRADUAQAO SUBlVIETIDO AO CORPO DOCENTE DO CURSO

DE ENGENHARIA ELETRONICA E DE COivfPUTAQAO DA ESCOLA PO­

LITECNICA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO

PAR'TE DOS REQUISITOS NECESSARIOS PARA A OBTENQAO DO GRAU

DE ENGENHElRO ELETRONICO EDE C01\1IPUTAQAO

Au tor:

Orientador:

ito Baruqui, D. Sc.

Examinador:

Prof. Carlos Fernando Teoclosio Soares , D. Sc.

Examinador:

Rio de Janeiro

Setembro de 2018

11

Page 3: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Declarac;ao de Autoria e de Direitos

Eu; Joa,o Vitor .Ferreira Duarte CPF 122.326.837-37, autor da monografia

buff er d'iferencial para pads de C'ircuitos integrados com processo de fabrica~:do de

180 nm, subsc:revo para os clevidos fins : as seguintes informa<;oes:

1. 0 autor declara que o trabalho apresentado na disc:iplina de Projeto de Gra­

duatjao da Escola Politecnica da UFRJ e de sua autoria, sendo original em forma e

conte1J.do.

2. Excetuam-se do item 1. eventuais transcric;oes de texto, figuras, tabelas, conceitos

e icleias, que iclentifiquem claramente a fonte original, explicitando as autorizac;oes

obtidas dos respec:tivos proprietArios, quando nec:essarias.

3. 0 a.utor pennite que a UFRJ, por um prazo indeterminaclo, efetue em qualquer

m1dia de divulgac;a.o, a publica<;iio do trabalho academico em sua totalidade, ou em

parte. Essa autorizac;ao nao envolve onus de qualquer natureza a UFRJ , OU aos seus

representantes.

4. 0 autor pode, excepcionalmente, enc:aminhar a Comissiio de Projeto de Gra­

dua<;ii.o, a na.o divulga<;iio do material, por um prazo maximo de 01 (um) ano,

improrrogavel, a c:ontar da data de defesa, desde que o pedido seja justificado, e

solicitado antecipadamente, por escrito, a Congregac;iio da Escola Politecnica.

5. 0 autor declara, aincla, ter a capacidade juddica para a pratica do presente ato;

assim como ter conhecimento do teor da presente Declarac;iio, estando ciente das

sarn;oes e punic;oes legais, no que tm1ge a c6pia parcial, ou total, de obra intelec:tual;

o que se configura como violac;ao do direito autoral previsto no C6digo Penal Bra­

sileiro no art.184 e art.299, bem como na Lei 9.610.

6. 0 autor e o mico responsavel pelo c:onte1do apresentado nos tra.balhos academicos

publicados, nao cabendo a UFRJ, a.os sens representantes, OU ao(s) orientador(es),

qualquer responsabiliza<;ao/ indeniza<;a.o nesse sentido.

7. Por ser verdade, firmo a presente declarac;ao.

lll

Page 4: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Escola Politecnica - Departamento de Eletronica e de Computacao

Centro de Tecnologia, bloco H, sala H-217, Cidade Universitaria

Rio de Janeiro - RJ CEP 21949-900

Este exemplar e de propriedade da Universidade Federal do Rio de Janeiro, que

podera incluı-lo em base de dados, armazenar em computador, microfilmar ou adotar

qualquer forma de arquivamento.

E permitida a mencao, reproducao parcial ou integral e a transmissao entre bibli-

otecas deste trabalho, sem modificacao de seu texto, em qualquer meio que esteja

ou venha a ser fixado, para pesquisa academica, comentarios e citacoes, desde que

sem finalidade comercial e que seja feita a referencia bibliografica completa.

Os conceitos expressos neste trabalho sao de responsabilidade do(s) autor(es).

iv

Page 5: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

AGRADECIMENTO

Agradeco primeiramente ao meu orientador, Prof. Baruqui, por ter me ajudado

tanto ao longo deste trabalho e ao Prof. Pietro Maris por ter me proposto este

projeto.

Agradeco ao laboratorio de processamento analogico e digital de sinais (PADS)

por ter fornecido a infraestrutura - licencas de software e computadores para as

simulacoes - para realizacao deste trabalho.

Agradeco tambem a Andrey Takashi Ishikiriyama por ajudar com a revisao do

texto em ingles.

v

Page 6: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

RESUMO

Este trabalho propoe uma topologia de buffer diferencial para sistemas embar-

cados, que e capaz de operar em grandes variacoes de temperatura (de -40 C a

175 C), podendo ser utilizado para interfacear sinais internos do chip atraves de

pads do circuito integrado, levando em conta os efeitos de capacitancia parasita. O

projeto consiste em realizar o design do esquematico, desenho de layout e simulacoes

pos-layout, utilizando um processo de fabricacao de 180 nm da X-Fab.

Palavras-Chave: buffer, microeletronica, temperatura, sistemas embarcados

vi

Page 7: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

ABSTRACT

This work proposes a differential buffer topology for embedded systems, that is

capable of sustaining a high temperature variation (from -40 C to 175 C), being

able to interface internal signals from the chip through the pads of the integrated

circuit, taking into account the effects of parasitic capacitance. The project consists

in designing the schematic, drawing the layout and making post-layout simulation,

using a 180 nm process from X-Fab.

Key-words: buffer, microelectronics, temperature, embedded systems

vii

Page 8: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

SIGLAS

AC - Alternating Current

ADAS - Advanced Driving Assistance Systems

AM - Amplitude Modulation

CAD - Computer Assisted Design

CMOS - Complementary Metal Oxide Semiconductor

CMRR - Commom-Mode Rejection Rate

DC - Direct Current

DDA - Differential Difference Amplifier

FDA - Fully Differential Amplifier

GEEPS - Laboratoire de Genie Electrique et Electronique de Paris

LP - Low Pass

NMOS - N-channel Metal Oxide Semiconductor

OTA - Operational Transconductance Amplifier

PADS - Laboratorio de Processamento Analogico e Digital de Sinais

PMOS - P-channel Metal Oxide Semiconductor

SNR - Signal to Noise Ratio

THD - Total Harmonic Distortion

viii

Page 9: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Contents

1 Introduction 1

1.1 Theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Project’s Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Introduction to Differential Buffers 5

2.1 Advantages of the Fully Differential Design . . . . . . . . . . . . . . . 8

2.1.1 Noise immunity . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Even-Order Harmonics cancellation . . . . . . . . . . . . . . . 9

2.1.3 Higher peak-to-peak Output . . . . . . . . . . . . . . . . . . . 9

3 Buffer Topology 10

3.1 Base Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Differential Unbalanced Pair . . . . . . . . . . . . . . . . . . . 11

3.1.2 Common-Mode Feedback Circuit . . . . . . . . . . . . . . . . 13

3.1.3 Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Temperature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Adapting to Our Specifications . . . . . . . . . . . . . . . . . . . . . 14

3.4 Final Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Schematic Design 16

4.1 Basic Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Schematic Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ix

Page 10: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

4.2.1 Unbalanced Differential Amplifier . . . . . . . . . . . . . . . . 17

4.2.2 Common-Mode Feedback Block . . . . . . . . . . . . . . . . . 18

4.2.3 Current Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.4 Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Schematic Simulation Results 21

5.1 Test Bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.1 Gain x Vid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.2 AC Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.3 Transient Analysis . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Monte Carlo Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.1 THD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.2 Gain and Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.3 Input-Referred Noise . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.4 Common-Mode Output Voltage . . . . . . . . . . . . . . . . . 32

6 Layout 36

6.1 Common-Mode Feedback Block . . . . . . . . . . . . . . . . . . . . . 36

6.1.1 Current Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.2 Differential Pairs . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.3 Output Transistors . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Differential Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2.1 Current Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2.2 Differential Amplifiers . . . . . . . . . . . . . . . . . . . . . . 41

6.2.3 Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 Final Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Post-layout simulation 43

7.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1.1 Gain x Vid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1.2 AC Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1.3 Transient Analysis . . . . . . . . . . . . . . . . . . . . . . . . 46

7.1.4 THD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

x

Page 11: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

7.1.5 Gain and Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.1.6 Input-Referred Noise . . . . . . . . . . . . . . . . . . . . . . . 51

7.1.7 Common-Mode Output Voltage . . . . . . . . . . . . . . . . . 52

8 Conclusion 55

8.1 Analysis of the results . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 58

xi

Page 12: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

List of Figures

2.1 Differential Difference Amplifier Component . . . . . . . . . . . . . . . . 6

2.2 Differential Difference Amplifier With Feedback Loop . . . . . . . . . . . 7

2.3 Fully Differential Buffer With Noise at Inputs . . . . . . . . . . . . . . . 8

3.1 Original Buffer Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Schematic of Unbalance Differential Pair . . . . . . . . . . . . . . . . . . 11

3.3 Graph of gm in the Unbalanced Pair . . . . . . . . . . . . . . . . . . . . 12

3.4 Buffer Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Common Mode Feedback Block Schematic . . . . . . . . . . . . . . . . . 15

4.1 Flowchart of the Design Workflow . . . . . . . . . . . . . . . . . . . . . 16

5.1 Test Bench Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Schematic Results - DC Sweep . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Schematic Results - Derivative of DC sweeped output . . . . . . . . . . . 23

5.4 Schematic Results - AC Sweep Analisys . . . . . . . . . . . . . . . . . . 24

5.5 Schematic Results - Transient Analysis . . . . . . . . . . . . . . . . . . . 25

5.6 Schematic Results - Transient Analysis with stability test . . . . . . . . . 26

5.7 Schematic Results - THD parametric sweep . . . . . . . . . . . . . . . . 27

5.8 Schematic Results - Monte Carlo THD @ 27 C . . . . . . . . . . . . . . 28

5.9 Schematic Results - Monte Carlo THD at Maximun and Minimin Temper-

atures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.10 Schematic Results - Monte Carlo Gain @ 27 C . . . . . . . . . . . . . . 29

5.11 Schematic Results - Monte Carlo Gain at Maximun and Minimin Temper-

atures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.12 Schematic Results - Monte Carlo Phase @ 27 C . . . . . . . . . . . . . . 30

xii

Page 13: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

5.13 Schematic Results - Monte Carlo Phase at Maximun and Minimin Tem-

peratures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.14 Schematic Results - Monte Carlo Input-Referred Noise @ 27 C . . . . . . 32

5.15 Schematic Results - Monte Carlo Input-Referred Noise at Maximun and

Minimin Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.16 Schematic Results - Monte Carlo Common-Mode Output Voltage @ 27 C 33

5.17 Schematic Results - Monte Carlo Common-Mode Output Voltage at Max-

imun and Minimin Temperatures . . . . . . . . . . . . . . . . . . . . . . 34

5.18 Schematic Results - Monte Carlo Output Disparity @ 27 C . . . . . . . . 35

5.19 Schematic Results - Monte Carlo Output Disparity at Maximun and Min-

imin Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 Layout - Common-Mode Feedback Circuit Layout . . . . . . . . . . . . . 37

6.2 Layout - Interdigitated Transistors Pattern . . . . . . . . . . . . . . . . 38

6.3 Layout - Common Centroid Pattern with 16 transistors . . . . . . . . . . 39

6.4 Layout - Buffer Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.5 Layout - Common Centroid Pattern with 10 transistors . . . . . . . . . . 40

6.6 Layout - Common Centroid Pattern with two centroids . . . . . . . . . . 41

6.7 Layout - Final Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.1 Post-Layout Results - DC Sweep . . . . . . . . . . . . . . . . . . . . . . 44

7.2 Post-Layout Results - Derivative of DC sweeped output . . . . . . . . . . 44

7.3 Post-Layout Results - AC Sweep Analisys . . . . . . . . . . . . . . . . . 45

7.4 Post-Layout Results - Transient Analysis with stability test . . . . . . . . 46

7.5 Post-Layout Results - THD parametric sweep . . . . . . . . . . . . . . . 47

7.6 Post-Layout Results - Monte Carlo THD @ 27 C . . . . . . . . . . . . . 48

7.7 Post-Layout Results - Monte Carlo THD at Maximun and Minimin Tem-

peratures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.8 Post-Layout Results - Monte Carlo Gain @ 27 C . . . . . . . . . . . . . 49

7.9 Post-Layout Results - Monte Carlo Gain at Maximun and Minimin Tem-

peratures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.10 Post-Layout Results - Monte Carlo Phase @ 27 C . . . . . . . . . . . . 50

xiii

Page 14: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

7.11 Post-Layout Results - Monte Carlo Phase at Maximun and Minimin Tem-

peratures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.12 Post-Layout Results - Monte Carlo Input-Referred Noise @ 27 C . . . . . 51

7.13 Post-Layout Results - Monte Carlo Input-Referred Noise at Maximun and

Minimin Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.14 Post-Layout Results - Monte Carlo Common-Mode Output Voltage @ 27 C 53

7.15 Post-Layout Results - Monte Carlo Common-Mode Output Voltage at

Maximun and Minimin Temperatures . . . . . . . . . . . . . . . . . . . 53

7.16 Post-Layout Results - Monte Carlo Output Disparity @ 27 C . . . . . . . 54

7.17 Post-Layout Results - Monte Carlo Output Disparity at Maximun and

Minimin Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.1 Gain vs Differential Input in Different Temperatures . . . . . . . . . . . 55

xiv

Page 15: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

List of Tables

4.1 Transistor Sizes - Differential Amplifier . . . . . . . . . . . . . . . . . 18

4.2 Transistor sizes - Common-Mode Rejector . . . . . . . . . . . . . . . 18

4.3 Transistor Sizes - Common-mode output/input mirrors . . . . . . . . 18

4.4 Transistor Sizes - Bias Current Mirrors . . . . . . . . . . . . . . . . . 19

4.5 Transistor Sizes - Parameters of the output stage . . . . . . . . . . . 19

5.1 Schematic Results - AC Sweep Results . . . . . . . . . . . . . . . . . 24

5.2 Schematic Results - THD results from Monte Carlo Simulation . . . . 27

5.3 Schematic Results - Gain and Phase results from Monte Carlo Simu-

lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Schematic Results - Input-Referred Noise . . . . . . . . . . . . . . . . . 31

5.5 Schematic Results - Common-Mode Output Voltage . . . . . . . . . . . . 33

5.6 Schematic Results - Output Disparity . . . . . . . . . . . . . . . . . . . 34

7.1 Post-Layout Results - AC Sweep Results . . . . . . . . . . . . . . . . 45

7.2 Schematic Results - THD results from Monte Carlo Simulation . . . . 47

7.3 Post-Layout Results - Gain and Phase results from Monte Carlo Sim-

ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.4 Post-Layout Results - Input-Referred Noise . . . . . . . . . . . . . . . . 51

7.5 Post-Layout Results - Common-Mode Output Voltage . . . . . . . . . . . 52

7.6 Post-Layout Results - Output Disparity . . . . . . . . . . . . . . . . . . 53

8.1 Summary of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xv

Page 16: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Chapter 1

Introduction

1.1 Theme

This work is the final project for the undergraduate course of electronics and com-

puter engineering at Universidade Federal do Rio de Janeiro (UFRJ). It is mainly

related to the embedded electronics field, specially, the analog microelectronics de-

sign.

The main theme of this work is to study and develop a differential integrated

buffer, that was based on the topology suggested in the previous work[1].

The aim of this work is to adapt the circuit proposed in [1], to make the buffer

capable of operating the interface between the internal circuits of the chip and the

output pads – being able to isolate the signal and drive the parasitic capacitance

of it –, and them to solve the problem of instrumentation with high temperature

ranges, by proposing an architecture that holds its characteristics, such as linearity,

gain and output voltage swing, under a wide temperature range.

1.2 Project’s Scope

The purpose of this work is to develop a basic building block for analog micro-

electronics design. Starting from a known topology that was initially proposed as

an AM demodulator manufactured in a 0.35 µm process and adapt it to operate

1

Page 17: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

with a different process, the XH018 from X-Fab, that is a 0.18 µm process aimed to

embedded electronics devices.

This project can be used in more complex systems for different applications, and it

is restricted to the schematic definition as well as layout and post-layout simulations.

Implementation in silicon will be left for the future and we will not address it in this

phase of the project.

The work was developed in partnership with PADS - UFRJ and GEEPS - Uni-

versite Paris-Saclay.

1.3 Justification

With the growth of ADAS (Advanced Driving Assistance Systems) and autonomous

driving, the demand for reliable integrated designs is also driven up, as those sys-

tems have tight validation requirements and need an excellent reliability to be used

in real world scenarios as well as a high energy efficiency; this project intend to fulfill

this need by designing a reliable low power fully differential buffer.

The main purpose of this buffer is to interface internal signals from the integrated

circuit to an external environment, e.g. for sampling the output of a pressure sen-

sor. Although the design was made thinking in automotive electronics, and it is

also possible to use this same design in generic embedded electronics for different

applications, where the system is operating in high temperature ranges and needs

high linearity.

1.4 Objectives

The objective is to make the buffer reliable in a wide range of temperature, in

this work we chose the corner cases for this technology from -40 C to 175 C. It

means that it should keep most of its characteristics and operate as a buffer at this

temperature range.

2

Page 18: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

The two main performance parameters that we used to design this circuit were

the gain and the output voltage swing. The output voltage swing is defined as the

maximum voltage range (peak-to-peak) that the buffer delivers at the output while

keeping the total harmonic distortion in an acceptable level.

The major goal was to deliver a high output swing, being at least 1 VPP , while

using a supply voltage of 1.8 V, under the temperature variation that we are working

with. We also aimed to have this buffer operating with a 3 MHz frequency, so the

cut-off frequency was placed at least 1 decade higher, to have a gain closer to 1.

As secondary objectives, we tried to minimize the distortion, the thermal noise

and the area, but in principle there were no strict restrictions to those parameters.

1.5 Methodology

We designed this circuit following a common workflow in microelectronics, which

will be further detailed in Chapter 4. It basically starts from the requirements and

goes to the schematic design, and after its validation, we can start drawing the

layout using CAD tools. When we are satisfied with the layout we can move on to

the last phase, that is the layout validation and adjust it to meet the requirements

if necessary.

Starting from the requirements, the schematic was designed using the design equa-

tions that are further detailed in Chapter 3. From this basic design, we have adopted

a more empirical methodology, by using the provided software design tools. It was

possible to make a more interactive design by making small changes and checking

its results. This opened the possibility for exploring different ideas throughout the

process.

We have used the same methodology for the layout design. After the whole circuit

was finished, we could make small adjustments until the requirements were fulfilled.

In order to validate both, schematic and layout, we used simulation tools.

3

Page 19: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

1.6 Description

In Chapter 2, there will be a more theoretical introduction to differential buffers,

as well as the problem with the common mode and how we designed the buffer to

deal with it in a vast temperature range.

Following to the Chapter 3, we will present the architecture of the buffer that

inspired this study and how we adapted it in our specifications.

At Chapter 4, the methodology of the project will be more detailed, as well as the

final results of the schematic design. In Chapter 5, we will have more details about

the tests’ methodology and also the results of the schematic validation.

Chapter 6 will present the layout and the techniques used for reducing some effects

as temperature gradients and device mismatching, and the results of post-layout

simulations will be shown in Chapter 7.

In our last chapter, the conclusions and the discussion about the future work that

can be done from this study will be presented.

4

Page 20: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Chapter 2

Introduction to Differential

Buffers

This chapter will give a brief introduction on how differential buffers work and

some of the theory behind it. The basic differential buffer can be built based on

a fully differential operational transconductance amplifier (OTA). Most of CMOS

integrated circuits make use of this type of amplifiers, because of their simple con-

struction and their many applications (as comparators, oscillators, peak detectors,

etc). This type of amplifier is often proposed in literature, because of its perfor-

mance with respect to linearity, output swing and supply voltage. In addition, the

differential characteristic gives it a low sensitivity to some interferences, such as

external noise and even-order harmonics [2].

The buffer is a Differential Difference Amplifier (DDA)[3] and the basic idea is

that those amplifiers have two differential inputs and one differential output, as

shown in Figure 2.1, differently from the classic operational amplifier, that has two

single inputs, the inverting and non-inverting inputs, and one output.

Let Vin be the voltage difference between the positive and negative non-inverting

inputs, and V′in the equivalent for the inverting outputs. The output Vout will be

defined as:

Vout = AOL(Vin − V′

in) (2.1)

5

Page 21: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Figure 2.1: Differential difference amplifier component.

In (2.1), AOL is the Open Loop Gain. For an ideal operational amplifier, this

value of AOL tends to infinity. In the real world, those amplifiers have a AOL value

high enough to saturate the output voltage to either Vdd or Vss. In order to achieve

stability, it is necessary to add a feedback network. The Figure 2.2 shows an amplifier

with a negative feedback loop.

In this configuration, we apply a portion of the output voltage in the inverting

input, defined as βVout, with 0 < β ≤ 1 . This creates a negative feedback loop. In

this configuration the gain will be:

Vout = AOL(Vin − βVout) (2.2)

Vout(1 + βAOL) = VinAOL (2.3)

So the total gain for the negative feedback loop is:

AV =VoutVin

=AOL

1 + βAOL

(2.4)

If we use β = 1, it means a feedback loop of a short circuit between the output

and the inverting input, and considering the ideal value AOL to be infinity, the gain

in this case is:

6

Page 22: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Figure 2.2: Differential difference amplifier schematic with a feedback loop

represented by the β block.

AV = limAOL→∞

AOL

1 + AOL

= 1 (2.5)

This is the ideal buffer, but note that the gain will be in the order of 250 in more

realistic scenarios. In this case we have AV = 250251

= 0.996. This result is close

enough to 1 for most applications.

One drawback of using a fully differential architecture is that we have what it is

called “Common mode voltage” or Vcm. The common mode voltage is defined as:

Vcm =Vo+ + Vo−

2(2.6)

This voltage appears at the output as a DC source in series with an AC output

that represents the AC gain.

7

Page 23: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

This topology has some advantages as: increased immunity to external noise;

increased output voltage swing; application in low voltage systems; reduced even-

order harmonics and others[4].

2.1 Advantages of the Fully Differential Design

2.1.1 Noise immunity

In a differential signal, external noise will affect both inputs of the system in the

same way. In Figure 2.3, we have a schematic of the buffer with two distinct input

sources (Vi+ and Vi−), as well as the noise source, modeled here as a DC source in

series with output voltage Vn(t).

The output voltage Vo will be defined as:

Vod = Vo+ − Vo− = (Vi+ + Vn)− (Vi− + Vn) = Vi+ − Vi− (2.7)

So this type of noise will not appear at the output of the system

Figure 2.3: Fully differential buffer with a noise source affecting both inputs.

8

Page 24: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

2.1.2 Even-Order Harmonics cancellation

In realistic scenarios, due to intrinsic non-linearities of the systems, the input

will suffer some distortions, that will generate higher order harmonics in the output

signal.

Considering a perfectly matched differential buffer, meaning that both outputs

will have the same distortion and a sinusoidal differential input, using a generic

power expansion of the output we have:

Vo+ = k1Vin + k2V2in + k3V

3in + . . . (2.8)

Vo− = k1(−Vin) + k2(−Vin)2 + k3(−Vin)3 + . . . (2.9)

Where k1,2,3,... are arbitrary constants. The differential output will be:

Vod = Vo+ − Vo− = k1Vin + k3(−Vin)3 + . . . (2.10)

So, all the even-order harmonics will cancel out. This results in an overall decrease

of the Total Harmonic Distortion (THD)

2.1.3 Higher peak-to-peak Output

As the differential output is based in the difference between two voltages, we can

achieve a higher peak-to-peak ratio by using the difference between them.

9

Page 25: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Chapter 3

Buffer Topology

3.1 Base Architecture

The chosen topology of the buffer was based in [1] and it is shown at Figure 3.1;

This architecture can be segmented in four different blocks: two amplifiers using

a differential unbalanced pair; an output stage with folded-cascode output and the

common mode feedback loop.

Figure 3.1: Base buffer designed, as presented in [1].

To achieve the unity gain, the amplifiers were arranged to produce an internal

current feedback, creating a buffer. The following sections will detail each of those

10

Page 26: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

three basic building blocks.

3.1.1 Differential Unbalanced Pair

In this topology, two identical asymmetric pairs are arranged as shown in Figure

3.2. Each differential amplifier have transistors with different aspect ratios, and

this asymmetry shifts the transconductance curve away from the center point. An

illustration of those curves is shown in Figure 3.3.

Figure 3.2: Schematic of unbalance differential pair using NMOS.

As those pairs are arranged in parallel, the resulting curve of those two amplifiers

is the sum of curves. The idea here is to use those two pairs to achieve a better

dynamic range with a higher linearity. Note that both curves shown in Figure 3.3

are symmetric in relation to a center point. By summing both of them, the result

will be a curve with higher dynamic range.

Defining gma(vd) = dia1/dvd and gmb(vd) = dib1/dvd, by the symmetry, we have

that gma(vd) = gmb(−vd). To force the equiripple condition, we need three maxi-

mums. This forces us to use gm0 = 2gm′0. The project equations can be obtained

by the following equations[1].

11

Page 27: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Figure 3.3: Graph of gm of the unbalanced pair.

gmd(−Vdmax) = gm0

gmd(−Vdmin) = gm0

gm0 = 2gm′0

(3.1)

IB = 1.05133× gm0Vdmax

βa = 14.3675× αgm0/Vdmax

βb = 1.51977× αgm0/Vdmax

(3.2)

Where α is a transistor parameter, βa and βb is the β parameter of each of the

transistors in the unbalanced pair, that can be used to determine the W/L ratio,

and gm0 is the transconductance of the transistor.

The maximum distortion in this cases occurs at 0.41 × Vdmax and it is equal to

2.34%.

12

Page 28: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

3.1.2 Common-Mode Feedback Circuit

The common-mode feedback circuit works by sampling the common mode voltage

at the output and comparing it to a reference voltage. Then it will output a current

proportional to the error between those voltages and inject this current in the output

of both differential pairs in the buffer.

The basic idea is, when the common mode voltage in the output is higher than the

reference, we reduce the bias current in the differential pair, bringing the common

mode voltage down. If this voltage is higher than the reference, the circuit does the

opposite increasing the current. This creates a control loop that stabilizes when the

common mode voltage at the output is equal to the reference voltage.

3.1.3 Output Stage

The original article used a folded-cascode configuration, this gives us a better

stability and higher impedance, but it has a slightly worse output swing range than

a common source output.

In order to make this topology to work properly, a high open loop gain is necessary,

and the output stage was designed for sustaining a high gain with the desired peak-

to-peak output voltage. We opted to use a common source output instead of the

folded-cascode.

3.2 Temperature Analysis

The chosen topology helps us to mitigate temperature effects, as we use an internal

feedback loop with two symmetrical amplifiers. Given the output impedance Zo and

the transconductance gain gm, the output voltage of the buffer is given by:

Vo = Vo+ − Vo− = Zo × gm(Vin+ − Vin−)− Zo × gm(V0+ − Vo−) (3.3)

Assuming the output voltage Vo, the output impedance Zo and the transconduc-

tance gm as functions of the temperature, our output voltage will be:

13

Page 29: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Vo(T ) = Zo(T )gm(T )Vin − Zo(T )gm(T )Vo(T ) (3.4)

Vo(T ) + Zo(T )gm(T )Vo(T ) = Zo(T )gm(T )Vin (3.5)

Vo(T )

Vin=

Zo(T )gm(T )

1 + Zo(T )gm(T )(3.6)

If we can ensure that Zo(T )gm(T ) >> 1, our gain will be:

Vo(T )

Vin= 1 (3.7)

So, in this case, the gain of the buffer will not depend on the temperature, as long

as the product Zo(T )gm(T ) is much grater than 1.

3.3 Adapting to Our Specifications

One major difference that we made while adapting this architecture was to ex-

periment with PMOS, instead of the original NMOS architecture. This choice was

made in order to mitigate body effects, because we can connect the bulk directly to

the drain.

The other major change was to remove the cascode current mirrors and it drasti-

cally changed the output stage. Because of using a lower voltage, 1.8 V instead of

the original 3.5 V, the cascode mirror could not keep in the saturation state for the

1.2 VPP input, so we had to adapt to a single current mirror in order to compensate

for this problem.

The changes in the output stage were made to achieve the higher peak-to-peak

voltage in the output, as well as having a greater gain. The architecture of a Miller

operational amplifier was used to achieve this performance. As we have a higher

gain, the effects of temperature variation will be decreased, as shown in the previous

section.

14

Page 30: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

For the common-mode feedback circuit, we have used the same topology of a pair

of two transistors with different W/L ratios, so the common mode can have a higher

sensitivity range.

3.4 Final Design

To make the layout simpler, we separated the circuit in two blocks, one with both

input and feedback OTA’s and the output stage and other with only the Common-

Mode Feedback stage. Those final schematics can be seen in figures 3.4 and 3.5.

Figure 3.4: Buffer Schematic.

Figure 3.5: Common-mode feedback block schematic.

15

Page 31: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Chapter 4

Schematic Design

This chapter will explain the methodology used in this work and will show the

final schematic design.

4.1 Basic Workflow

Figure 4.1 describes the workflow that was used. Starting from the initial speci-

fications, we started to design the circuit from there. We first started to design the

circuit at the schematic level. At each iteration, we went back to the layout design

to validate the design, by using the test suite that will be more detailed in Chapter

5. We could either validate it or go back and make changes in the layout, as shown

in the flowchart.

Figure 4.1: Flowchart describing the interactive workflow used throughout

this project.

16

Page 32: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

In order to simplify the design, the buffer was divided into smaller blocks, which

could be designed and tested independently from each other. We first made an ideal

common-mode feedback block, so we could design the rest of the buffer. When we

were satisfied with the buffer, the common-mode feedback block was swapped from

a transistor implementation and them it could be designed independently from the

rest. The final validation step was made with buffer as a whole. This final validation

also included more sophisticated simulations, such as Monte Carlo analysis.

The layout design followed the same procedure. But in this case we started from

the common-mode feedback block, as it is a smaller block that could be tested

separately and them we went to drawing the rest of the buffer. At the end, it was

easier to make small adjustments to fix eventual problems with the layout.

In the end, we ran the same test bench for comparing how the performance was

degraded from the schematic design, were the software takes into account the tran-

sistor model, and the post-layout simulations, were parasitic resistors and capacitors

from the layout are also taken into account.

4.2 Schematic Design

This section will break-up the schematic into smaller blocks and showcase the

chosen sizes for each transistor.

4.2.1 Unbalanced Differential Amplifier

We start the project by the desired cut-off frequency, by using a generic approxi-

mation for the transfer function of the buffer, we have:

H1(s) =Vod(s)

Vid(s)≈ 1

s C0

gm0+ 1

(4.1)

In this approximation, the buffer acts as a low-pass filter with the cut-off frequency

being ω0 = gm0/C0. For our case we used C0 = 15 pF and ω0 = 50 MHz ×2π, which

leads to gm0 = 4.7× 10−3 S.

17

Page 33: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

By using (3.2) and (3.1), and the parameters that are described in the Appendix

A, we can calculate the desired beta, thus the W/L ratio of the transistors.

The final values to our OTA are shown in Table 4.1.

Table 4.1: Transistor sizes in the differential amplifier.

Transistors Unity Width (W) Length (L) Fingers Multiplicy Total W/L

M8, M10, M12, M14 4 µm 1 µm 4 4 64

M9, M11, M13, M15 2 µm 2 µm 1 2 8

4.2.2 Common-Mode Feedback Block

As this block uses the same topology shown before (two differential unbalanced

pairs), we can use the same equations, but reducing the size and multiplicity, as we

don’t need a high cut-off frequency in this block. The common-mode voltage can

be considered as DC or low frequency.

Table 4.2: Transistor sizes of the common-mode sensor’s unbalanced amplifier.

Transistor Unity Width (W) Length (L) Fingers Multiplicy Total W/L

M24, M26, M28, M30 1 µm 0.5 µm 4 4 16

M25, M27, M29, M31 1 µm 0.5 µm 1 2 4

The output of this stage is transited to the main stage as a current injection using

the PMOS mirror. Those transistors were dimensioned to work as a current mirror

and match the bias current on each net. As the differential pair operates with a

higher current, it has a bigger size.

Table 4.3: Sizes of the transistors used in the common-mode output/input.

Transistor Unity Width (W) Gate Length (L) Fingers Multiplicy Total W/L

M32, M33 2 µm 1 µm 1 4 8

M18, M19 2 µm 1 µm 4 4 32

18

Page 34: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

4.2.3 Current Mirrors

We started from a basic unity transistor size, that was L = 1 µm and W = 8 µm.

Them, they were dimensioned to match the desired current in each net. This mirror

was intended to work with a current Ibias = 120 µA. This value was chosen to achieve

the desired gm0 value. In the table below we show the number of fingers.

Table 4.4: Sizes of the transistors used for the current mirrors.

Transistor Fingers Multiplicity Ratio to Base Current

M1 1 8 1 120 µA

M2, M3, M4, M5 4 2 1 120 µA

M20, M21, M22, M23 1 2 1/4 30 µA

M6, M7 16 5 10 1.2 mA

The number of fingers and multiplicity were mainly chosen thinking in the layout

and it was designed to make easier to adopt topologies like common-centroid an of

interdigitated layout.

4.2.4 Output Stage

The transistors in this stage were designed to stay in the saturation region, while

holding an 1.2 VPP output. The pole split compensation was determined by simu-

lation. The select parameters for the transistors (M16 and M17) and the pole split

are:

Table 4.5: Parameters of the output stage.

Parameter Value

L 0.5 µm

W 165 µm

R 100 Ω

C 1.2 pF

19

Page 35: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

The total width was spliced in 3 transistors with 5 fingers, where each unity

transistor had W = 11 µm

20

Page 36: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Chapter 5

Schematic Simulation Results

In this chapter we will present the methodologies that were used for the simula-

tions we performed as well as the test bench used to generate this results. Then

we will present the results from the simulations using the schematic. This means

that those results will take into account the behavior of the transistors used in this

process, but neglecting some parasitic effects from the layout.

5.1 Test Bench

The test bench is shown at Figure 5.1. We used an ideal 1.8 V DC voltage source

Vdd for the power supply and an ideal 120 µA DC current source to bias the current

mirrors.

We are using 15 pF capacitor to simulate the parasitic capacitance of each pad, one

at each output. For the input we use a single AC ideal voltage source coupled with

a DC ideal voltage source, then we use a built in component in Cadence Virtuoso to

generate a differential voltage with a DC common mode. We used a DC source in

series with a pulse generator as the reference voltage (Vref ), this voltage pulse was

used in some tests for stability analysis of the common mode feedback compensation.

21

Page 37: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Figure 5.1: Test Bench schematic.

5.2 Simulation Results

5.2.1 Gain x Vid

In this test, we made a DC sweep at the differential input voltage and measured

the differential output, while keeping the common mode voltage constant and equal

to 700 mV. The temperature was also kept at nominal value (27 C).

The result can be seen at Figure 5.2. In Figure 5.3 we have the derivative of this

differential output. Here we can see a high linearity and high dynamic range.

At 600 mV we got a slope of 0.997 for a 1.2 VPP output. If we use a lower range,

at 1 VPP , the slope becomes 0.999, being closer to the ideal buffer.

5.2.2 AC Analysis

In this simulation, the input signal was swept to determine the circuit response

in the frequency domain, keeping the input differential voltage constant at 1.2 VPP .

The buffer can be seen as a low-pass filter. As we can see in Figure 5.4, the cut-off

frequency is 60 MHz. After this point, we have a slope factor of about −35 dB/dec.

This means that we can approximate this buffer to a second-order LP filter. This

22

Page 38: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Vin diff Vout diff

V (

mV

)

-1000

-900.0

-800.0

-700.0

-600.0

-500.0

-400.0

-300.0

-200.0

-100.0

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000Name Vis

Vdc (m)-900.0 -700.0 -500.0 -300.0 -100.0 100.0 300.0 500.0 700.0 900.0

Vin diff:Vout diff Wed Apr 4 19:02:19 20181

Figure 5.2: Output differential voltage of a DC sweep simulation.

gm

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1.0

1.02Name Vis

Vdc (m)-900.0 -700.0 -500.0 -300.0 -100.0 100.0 300.0 500.0 700.0 900.0

gm Wed Apr 4 19:02:19 20182

Figure 5.3: Derivative of the output differential voltage in a DC sweep simu-

lation.

23

Page 39: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

M1: 59.11679MHz -3.0dB

phase gain (dB)

V (

deg)

-340.0

-320.0

-300.0

-280.0

-260.0

-240.0

-220.0

-200.0

-180.0

-160.0

-140.0

-120.0

-100.0

-80.0

-60.0

-40.0

-20.0

0.0

20.0

(dB

)

-65.0

-60.0

-55.0

-50.0

-45.0

-40.0

-35.0

-30.0

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

5.0Name Vis

freq (Hz)10

-210

-110

010

110

210

310

410

510

610

710

810

910

10

phase:gain (dB) Wed Apr 4 19:08:05 20181

Figure 5.4: Output of an AC sweep in the buffer.

approximation will be used furthermore in the noise analysis.

In this simulation we can also validate that the pole split compensator is able to

greatly reduce the overshoot.

One small drawback is that the phase is not equal to 0 degrees after 1 MHz. For

the proposed application, we use a frequency of 3 MHz, the following results use

this frequency, one decade higher and one decade lower:

Frequency Gain Phase

300 kHz 1.8 mdB -0.4

3 MHz 0.5 mdB -3.9

30 MHz -57.6 mdB -42.8

Table 5.1: Results of three points in the AC sweep analysis.

24

Page 40: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

5.2.3 Transient Analysis

Figure 5.5 shows the results of the transient analysis with an sinusoidal input

signal with frequency of 4 MHz, amplitude of 1.2 VPP and common mode voltage of

0.7 V.

Vin diff Vout diff gain

V (

mV

)

-700.0

-600.0

-500.0

-400.0

-300.0

-200.0

-100.0

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

(T

)

-5.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0Name Vis

time (us)0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Vin diff:Vout diff:gain Wed Apr 4 19:12:32 20181

Figure 5.5: Results of the transient analysis.

We can use this simulation to test the stability of the common mode compensation

module. For this test we injected a pulse of 1 V with width of 1 ms, and no instability

was observed, as seen in Figure 5.6.

25

Page 41: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

/Vinp /Vinn /vcm /Vout+ /Vout- /I58/net070 /net031

V (

V)

0.3

0.38

0.46

0.54

0.62

0.7

0.78

0.86

0.94

1.02

1.1Name Vis

time (ms)0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10

Transient Response Wed Apr 4 19:19:59 20182

Figure 5.6: Results from the stability test in the transient analysis.

5.3 Monte Carlo Analysis

This section shows the results from a Monte Carlo Analysis with 200 points and

3 temperatures: The nominal temperature (27 C), as well as the highest (175 C)

and the lowest (-40 C) supported temperatures for this process.

5.3.1 THD

THD (Total Harmonic Distortion), according to the following equation

THD =

√V 22 + V 2

3 + V 24 + . . .

V1× 100% (5.1)

Where V1 is the amplitude of the fundamental component and Vn is the amplitude

of the nth harmonic. In our case, as our topology greatly reduces the even harmonics,

26

Page 42: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

we will only have the effects of the odd harmonics.

For our tests we used the function thd in Cadence. We first made a parametric

analysis of the THD with a 4MHz signal and a varying differential input voltage.

The result is shown at Figure 5.7. We can see that the optimal level is around 600

mV.

thd

(m

)

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

550.0

600.0

650.0

700.0

750.0

800.0Name Vis

Vac (m)380.0 420.0 460.0 500.0 540.0 580.0 620.0 660.0 700.0 740.0 780.0 800.0

thd Tue Sep 11 10:56:39 20181

Figure 5.7: Parametric sweep of the THD (in percentage), from 400 mV to

800 mV

The results of the Monte Carlo simulation are shown in Table 5.2. The correspon-

dent histograms are shown in Figures 5.8, 5.9a and 5.9b

Temperature Mean σ

-40 C 0.18% 0.09%

27 C 0.08% 0.03%

175 C 0.06% 0.03%

Table 5.2: Results from the 3 differents corners in the Monte Carlo Simulation for

the THD

27

Page 43: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

81.0023m

μ

46.5297m

115.475m

σ

12.0570m

-2σ

149.948m

-22.4156m

-3σ

184.420m

thd

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0

32.0

34.0

36.0

38.0

40.0

42.0

44.0

46.0

48.0

Values (m)-30.0 -10.0 10.0 30.0 50.0 70.0 90.0 110.0 130.0 150.0 170.0 190.0 210.0 220.0

Number = 200Mean = 81.0023mStd Dev = 34.4727m

thd 1

Figure 5.8: Histogram of the Monte Carlo simulation of the THD at typical

temperature.

180.861m

μ

92.3245m

269.398m

σ

3.78794m

-2σ

357.934m

-84.7487m

-3σ

446.471m

thd_t min

No.

of S

ampl

es

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

Values (m)-100.0 -50.0 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0 550.0 600.0 650.0 700.0

Number = 200Mean = 180.861mStd Dev = 88.5366m

thd_t min 1

(a) Minimum Temperature (-40 C)

66.1887m

μ

35.8926m

96.4847m

σ

5.59658m

-2σ

126.781m

-24.6995m

-3σ

157.077m

thd_t max

No.

of S

ampl

es

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

Values (m)-30.0 -10.0 10.0 30.0 50.0 70.0 90.0 110.0 130.0 150.0 170.0 180.0

Number = 200Mean = 66.1887mStd Dev = 30.2960m

thd_t max 1

(b) Maximum Temperature (175 C)

Figure 5.9: Histogram of the Monte Carlo simulation of the THD at minimum (left) and

maximum (right) temperatures.

5.3.2 Gain and Phase

Running the same simulation for the gain and phase, at the 3 MHz output with

amplitude 1.2 VPP . The results are shown in Table 5.3, and the histograms are

28

Page 44: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

present in Figures 5.10, 5.11a, 5.11b, 5.12, 5.13a and 5.13b.

TemperatureMean

(Gain)

σ

(Gain)Mean (Phase) σ (Phase)

-40 C 1.001 0.007 -4.8 0.1

27 C 1.001 0.006 -5.5 0.1

175 C 1.002 0.005 -6.7 0.2

Table 5.3: Results from the 3 differents corners in the Monte Carlo Simulation for

the gain and phase

1.00096

μ

994.617m

1.00730

σ

988.277m

-2σ

1.01364

981.937m

-3σ

1.01998

gain

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0

32.0

34.0

36.0

38.0

40.0

42.0

44.0

46.0

48.0

50.0

Values0.976 0.98 0.984 0.988 0.992 0.996 1.0 1.004 1.008 1.012 1.016 1.02 1.024 1.026

Number = 200Mean = 1.00096Std Dev = 6.34013m

gain 1

Figure 5.10: Histogram of the Monte Carlo simulation of the Gain at typical

temperature.

29

Page 45: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

1.00073

μ

993.448m

1.00801

σ

986.166m

-2σ

1.01530

978.884m

-3σ

1.02258

gain_t min

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0

32.0

34.0

36.0

38.0

40.0

42.0

44.0

46.0

48.0

50.0

Values0.97 0.975 0.98 0.985 0.99 0.995 1.0 1.005 1.01 1.015 1.02 1.025 1.03

Number = 200Mean = 1.00073Std Dev = 7.28234m

gain_t min 1

(a) Minimum Temperature (-40 C)

1.00180

μ

996.587m

1.00702

σ

991.371m

-2σ

1.01223

986.156m

-3σ

1.01745

gain_t max

No.

of S

ampl

es

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

Values0.982 0.986 0.99 0.994 0.998 1.002 1.006 1.01 1.014 1.018 1.022 1.024

Number = 200Mean = 1.00180Std Dev = 5.21573m

gain_t max 1

(b) Maximum Temperature (175 C)

Figure 5.11: Histogram of the Monte Carlo simulation of the Gain at minimum (left) and

maximum (right) temperatures.

-5.50886

μ

-5.62258

-5.39514

σ

-5.73630

-2σ

-5.28142

-5.85002

-3σ

-5.16770

phase

No.

of S

ampl

es

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

Values-5.95 -5.9 -5.85 -5.8 -5.75 -5.7 -5.65 -5.6 -5.55 -5.5 -5.45 -5.4 -5.35 -5.3 -5.25 -5.2 -5.15 -5.1 -5.05 -5.0

Number = 200Mean = -5.50886Std Dev = 113.719m

phase 1

Figure 5.12: Histogram of the Monte Carlo simulation of the phase at typical

temperature.

30

Page 46: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

-4.85388

μ

-4.95668

-4.75109

σ

-5.05947

-2σ

-4.64829

-5.16226

-3σ

-4.54550

phase_t min

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0

32.0

34.0

36.0

38.0

Values-5.2 -5.15 -5.1 -5.05 -5.0 -4.95 -4.9 -4.85 -4.8 -4.75 -4.7 -4.65 -4.6 -4.55 -4.5

Number = 200Mean = -4.85388Std Dev = 102.794m

phase_t min 1

(a) Minimum Temperature (-40 C)

-6.70070

μ

-6.90465

-6.49675

σ

-7.10859

-2σ

-6.29281

-7.31254

-3σ

-6.08886

phase_t max

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0

32.0

34.0

36.0

38.0

40.0

42.0

44.0

46.0

48.0

Values-7.4 -7.3 -7.2 -7.1 -7.0 -6.9 -6.8 -6.7 -6.6 -6.5 -6.4 -6.3 -6.2 -6.1 -6.0 -5.9 -5.8

Number = 200Mean = -6.70070Std Dev = 203.946m

phase_t max 1

(b) Maximum Temperature (175 C)

Figure 5.13: Histogram of the Monte Carlo simulation of the phase at minimum (left)

and maximum (right) temperatures.

5.3.3 Input-Referred Noise

Following the results of our AC analysis, there is approximately a −35 dB per

decade slope after the cut-off frequency. With this result, we can approximate our

buffer to a second order low pass filter.

Considering a ω3dB frequency of 60 MHz, the effective noise bandwidth can be

calculated according to the formula described in [5]:

ωnoise = ω3dB × 1.11 = 60 MHz× 1.11 = 66.6 MHz (5.2)

To reduce effects of low frequency flicker noise, we started our window from 10 kHz

to 66.6 MHz. The results are shown in Table 5.4.

Temperature Mean σ

-40 C 324.8 µV 5.4 µV

27 C 375.9 µV 6.8 µV

175 C 458.0 µV 9.0 µV

Table 5.4: Input-Referred Noise for three different temperatures.

31

Page 47: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

The histograms are shown in Figures 5.14, 5.15a and 5.15b.

375.952u

μ

369.114u

382.791u

σ

362.275u

-2σ

389.629u

355.437u

-3σ

396.468u

Band noise

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

Values (u)350.0 355.0 360.0 365.0 370.0 375.0 380.0 385.0 390.0 395.0 400.0 405.0

Number = 100Mean = 375.952uStd Dev = 6.83848u

Band noise 1

Figure 5.14: Histogram of the Monte Carlo simulation of the Input-Referred

Noise at typical temperature.

324.817u

μ

319.433u

330.202u

σ

314.048u

-2σ

335.586u

308.664u

-3σ

340.971u

Band noise_t min

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0

Values (u)304.0 308.0 312.0 316.0 320.0 324.0 328.0 332.0 336.0 340.0 344.0 348.0 350.0

Number = 100Mean = 324.817uStd Dev = 5.38451u

Band noise_t min 1

(a) Minimum Temperature (-40 C)

457.967u

μ

448.991u

466.943u

σ

440.015u

-2σ

475.919u

431.039u

-3σ

484.895u

Band noise_t max

No.

of S

ampl

es

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Values (u)425.0 430.0 435.0 440.0 445.0 450.0 455.0 460.0 465.0 470.0 475.0 480.0 485.0 490.0 495.0

Number = 100Mean = 457.967uStd Dev = 8.97604u

Band noise_t max 1

(b) Maximum Temperature (175 C)

Figure 5.15: Histogram of the Monte Carlo simulation of the Input-Referred Noise at

minimum (left) and maximum (right) temperatures.

5.3.4 Common-Mode Output Voltage

For evaluating the effectives of the common-mode feedback circuit, we tested the

output common-mode voltage, defined as VCM = (Vo+ + Vo−)/2. For this test we

kept the input’s differential voltage as 0 V while keeping both common-mode input

32

Page 48: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

and common-mode reference voltages at 700 mV. The results are shown in Table

5.5 and the histograms in Figures 5.16, 5.17a and 5.17b.

We can see that in all cases the common-mode feedback circuit works for com-

pensating the common-mode voltage.

Temperature Mean σ

-40 C 698.2 mV 4.8 mV

27 C 697.9 mV 4.7 mV

175 C 696.1 mV 4.6 mV

Table 5.5: Common-Mode Output Voltage for three different temperatures.

697.837m

μ

693.110m

702.563m

σ

688.384m

-2σ

707.289m

683.658m

-3σ

712.015m

Common Mode

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10

12

14

16

18

20

22

24

Values (m)678.0 680.0 682.0 684.0 686.0 688.0 690.0 692.0 694.0 696.0 698.0 700.0 702.0 704.0 706.0 708.0 710.0 712.0 714.0 716.0

Number = 100Mean = 697.837mStd Dev = 4.72622m

Common Mode 1

Figure 5.16: Histogram of the Monte Carlo simulation of the Common-Mode

Output Voltage at typical temperature.

In the same test, we also evaluated the output disparity, defined as:

Vdisp = |Vo+ − Vo−| (5.3)

33

Page 49: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

698.251m

μ

693.435m

703.067m

σ

688.619m

-2σ

707.883m

683.803m

-3σ

712.699m

Common Mode_t min

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10

12

14

16

18

20

22

24

25

Values (m)678.0 682.0 686.0 690.0 694.0 698.0 702.0 706.0 710.0 714.0 718.0

Number = 100Mean = 698.251mStd Dev = 4.81593m

Common Mode_t min 1

(a) Minimum Temperature (-40 C)

696.068m

μ

691.436m

700.700m

σ

686.805m

-2σ

705.331m

682.173m

-3σ

709.963m

Common Mode_t max

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

Values (m)678.0 680.0 682.0 684.0 686.0 688.0 690.0 692.0 694.0 696.0 698.0 700.0 702.0 704.0 706.0 708.0 710.0 712.0 714.0

Number = 100Mean = 696.068mStd Dev = 4.63156m

Common Mode_t max 1

(b) Maximum Temperature (175 C)

Figure 5.17: Histogram of the Monte Carlo simulation of the Common-Mode Output

Voltage at minimum (left) and maximum (right) temperatures.

While keeping the same test conditions as before, with no differential voltage at

the input. In this case, both outputs should have the same voltage. This test is a

measure of how close the buffer is from the ideal scenario.

The results are shown in Table 5.6 and the histograms in Figures 5.18, 5.19a and

5.19b

Temperature Mean σ

-40 C 2.9 mV 2.2 mV

27 C 2.8 mV 2.2 mV

175 C 2.7 mV 2.1 mV

Table 5.6: Output Disparity for three different temperatures.

34

Page 50: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

2.84626m

μ

634.860u

5.05766m

σ

-1.57654m

-2σ

7.26906m

-3.78794m

-3σ

9.48046m

output disparity N

o. o

f Sam

ples

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10

11

12

13

14

15

16

17

18

19

20

21

22

Values (m)-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10 11 12

Number = 100Mean = 2.84626mStd Dev = 2.21140m

output disparity 1

Figure 5.18: Histogram of the Monte Carlo simulation of the Output Dispar-

ity at typical temperature.

2.94827m

μ

659.648u

5.23689m

σ

-1.62897m

-2σ

7.52552m

-3.91760m

-3σ

9.81414m

output disparity_t min

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10

12

14

16

18

20

22

24

Values (m)-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10 11 12

Number = 100Mean = 2.94827mStd Dev = 2.28862m

output disparity_t min 1

(a) Minimum Temperature (-40 C)

2.71838m

μ

621.438u

4.81533m

σ

-1.47551m

-2σ

6.91227m

-3.57245m

-3σ

9.00921m

output disparity_t max

No.

of S

ampl

es

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Values (m)-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10 11 12

Number = 100Mean = 2.71838mStd Dev = 2.09694m

output disparity_t max 1

(b) Maximum Temperature (175 C)

Figure 5.19: Histogram of the Monte Carlo simulation of the Output Disparity at mini-

mum (left) and maximum (right) temperatures.

35

Page 51: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Chapter 6

Layout

In the previous chapter, there were shown results from simulations using the

schematic. As those results were satisfactory for the proposed application, we went

to the next phase in the design flow, that is the layout.

In this chapter we will present the layout and the techniques used throughout

the design. As the layout is split in two main blocks, we will focus on each one

separately

The layout followed basically the same work-flow The circuit was split into two

blocks as was done with the schematic. By first the layout of the Common-Mode

Feedback was made and the parasitics were extracted, so we could validate its be-

havior independently of the rest of the circuit.

6.1 Common-Mode Feedback Block

The final layout for this block is shown in Figure 6.1. The basic building blocks of

the common-mode feedback circuit are the current mirrors for bias, the differential

pairs and the output stage. Each block will be detailed in the next topics.

36

Page 52: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Figure 6.1: Final layout of the common-mode feedback circuit.

37

Page 53: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

6.1.1 Current Mirrors

The current mirrors were arranged in an interdigitated manner, as shown in Figure

6.2. This arrangement can reduce some effects as process and temperature gradients.

A common-centroid between the four transistors would have a greater reduction of

the temperature gradient effects, but would also increase layout complexity, even in

the expense of more area to make the connections.

Figure 6.2: Pattern used for the current mirror, using interdigitated transis-

tors.

This block was surround by a guard ring in order to reduce latch up effects.

6.1.2 Differential Pairs

The differential pairs were arranged in a common centroid pattern, as shown

in Figure 6.3. To reduce latch-up effects, each transistor was surrounded by an

individual guard ring.

This pattern can greatly reduce the effects of temperature gradients, in the two

dimensional plane. The same pattern was used for both amplifiers.

6.1.3 Output Transistors

As can be seen in Figure 3.5, the transistor M33 is used as a dummy in order to

balance the structure and M32 is the actual output, they weren’t put in any special

pattern. The choice was made mainly for reducing the overall area of the block.

38

Page 54: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Figure 6.3: Common Centroid Pattern with 16 transistors.

6.2 Differential Amplifier

The final layout is shown at Figure 6.4. The same applies here, this block is

basically composed by current mirrors, the unbalanced differential amplifiers and an

output stage. It also has the RC pair for the pole split compensation and current

mirrors to couple the the common mode rejection circuit.

6.2.1 Current Mirrors

For the current mirrors that are used to bias the Differential Amplifiers, the same

layout as shown in Figure 6.2 was used. For the output stage we used a common

centroid pattern as shown in Figure 6.5.

As the output stage have a higher current, we need to use bigger transistors. For

keeping the same unit size, those two transistors were split in 5. The used pattern

was chosen for using a better pairing between the two mirrors, in order to reduce

the disparity in the output.

39

Page 55: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Figure 6.4: Layout of the buffer part of the circuit.

Figure 6.5: Common centroid pattern with 10 transistors used in the current

mirrors for the output stage.

40

Page 56: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Figure 6.6: Common centroid pattern with two centroids and 4 transistors

(each one divided in four).

6.2.2 Differential Amplifiers

Those two amplifiers were designed with a slightly different common centroid

patter. The pattern shown in Figure 6.3 has proven to be harder to route with

bigger transistors. As those amplifiers operate in current mode, the tracks had to

be thicker.

By changing the pattern to the one shown in Figure 6.6, the routing could be done

more efficiently. The downside is that this pattern has a slightly worse matching

between the transistors and probably will have a worse immunity to temperature

gradients that the one used previously.

6.2.3 Output Stage

For the output stage, the six transistors were placed in an interdigitated manner,

similar to the one use in the current mirrors. The chosen pattern was ABABAB.

Again, this pattern was used to improve the matching between the transistors with

low compromise with the area.

41

Page 57: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

6.3 Final Layout

The final layout with both blocks plugged together is shown at Figure 6.7. The

total area of this block is 138.24 µm x 104.295 µm. Note that this layout does not

have a guard ring around it.

Figure 6.7: Final layout of the buffer with descriptions of each block.

The external connections were placed in the sides of the die (east-west). The

layout has two ”holes” inside it, this unused area can still be used for placing some

capacitors for power supply decoupling.

42

Page 58: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Chapter 7

Post-layout simulation

After finishing the layout, we generated the extracted view, that takes into ac-

count resistive and capacitive parasitic effects of the layout. It’s important to use

this view because we can check how the layout has degraded the performance and

characteristics of the system with respect to the schematic view.

With this view, we could apply the same test bench, with the same test condi-

tions to this view and compare how the buffer behaves considering the resistive and

capacitive parasitic effects.

By using the extracted view, the obtained results are closer to the real world

application, so this step is mandatory if we want to proceed with this project.

7.1 Simulation Results

For all those simulations, we used the same test bench that was presented in

Chapter 5, as well as the same test conditions. This section will focus on showing

the results as the methodology was already previously explained.

7.1.1 Gain x Vid

The gain curve is shown in Figure 7.1 and its derivative in Figure 7.2. The results

were roughly the same as the schematic simulation. The slope with 1 VPP is 0.999

and with 1.2 VPP is 0.9967. This difference compared to to the schematic results is

43

Page 59: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

negligible.

Vin diff Vout diff

V (

mV

)

-1000

-900.0

-800.0

-700.0

-600.0

-500.0

-400.0

-300.0

-200.0

-100.0

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000Name Vis

Vdc (m)-900.0 -700.0 -500.0 -300.0 -100.0 100.0 300.0 500.0 700.0 900.0

Vin diff:Vout diff Sat Aug 11 23:57:30 20181

Figure 7.1: Output differential voltage of a DC sweep simulation using the

extracted view.

gm

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1.0

1.02Name Vis

Vdc (m)-900.0 -700.0 -500.0 -300.0 -100.0 100.0 300.0 500.0 700.0 900.0

gm Sat Aug 11 23:57:30 20182

Figure 7.2: Derivative of the output differential voltage in a DC sweep

simulation using the extracted view.

44

Page 60: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

7.1.2 AC Analysis

The results of the AC sweep simulation with the extracted view from the layout

are shown in Figure 7.3.

M2: 60.57189MHz -3.0dB phase gain (dB)

V (

deg)

-360.0

-340.0

-320.0

-300.0

-280.0

-260.0

-240.0

-220.0

-200.0

-180.0

-160.0

-140.0

-120.0

-100.0

-80.0

-60.0

-40.0

-20.0

0.0

20.0

(dB

)

-65.0

-60.0

-55.0

-50.0

-45.0

-40.0

-35.0

-30.0

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

5.0Name Vis

freq (Hz)10

-210

-110

010

110

210

310

410

510

610

710

810

910

10

phase:gain (dB) Sun Aug 12 00:19:20 20181

Figure 7.3: Output of an AC sweep in the buffer using the extracted view.

For comparison, the same three points that were shown in Chapter 5 are shown in

Table 7.1. The results are nearly the same as before. This shows that the parasitic

capacitances of the layout had little to no effect in the frequency response of the

buffer.

Frequency Gain Phase

300 kHz -1.3 mdB -0.4

3 MHz -1.7 mdB -3.9

30 MHz -307 mdB -42.1

Table 7.1: Results of three points in the AC sweep analysis using the extracted view.

45

Page 61: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

7.1.3 Transient Analysis

We repeated the stability experiment that was described in Chapter 5. The results

are shown in Figure 7.4. We can see that the circuit did not lost its stability and

the common-mode feedback circuit can still sustain perturbations.

/Vinp /Vinn /Vout+ /Vout- /Vref

V (

V)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

1.05

1.1Name Vis

time (ms)0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10

Transient Response Sun Aug 12 00:32:47 20182

Figure 7.4: Results from the stability test in the transient analysis using

extracted view.

7.1.4 THD

Figure 7.5 shows the result of the same parametric sweep test that was done

in Chapter 5. This test has not shown a significant difference compared to the

schematic simulation.

The results of the THD simulation are shown in Table 7.2. We also had a unim-

portant difference with respect to the schematic results.

46

Page 62: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

thd

(m

)

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

550.0

600.0

650.0

700.0

750.0

800.0Name Vis

Vac (m)380.0 400.0 420.0 440.0 460.0 480.0 500.0 520.0 540.0 560.0 580.0 600.0 620.0 640.0 660.0 680.0 700.0 720.0 740.0 760.0 780.0 800.0

thd Tue Sep 11 11:40:19 20181

Figure 7.5: Parametric sweep of the THD (in percentage), from 400 mV to

800 mV

Temperature Mean σ

-40 C 0.15% 0.07%

27 C 0.08% 0.04%

175 C 0.07% 0.03%

Table 7.2: Results from the 3 differents corners in the Monte Carlo Simulation for

the THD

7.1.5 Gain and Phase

The results from the Monte Carlo simulation with gain and phase are shown in

Table 7.3. From this results we can see that the difference between the schematic

view and the extracted view is negligible.

TemperatureMean

(Gain)

σ

(Gain)Mean (Phase) σ (Phase)

-40 C 0.999 0.007 -4.6 0.1

27 C 0.999 0.006 -5.3 0.2

175 C 1.000 0.005 -6.5 0.2

Table 7.3: Results from the 3 different corners in the Monte Carlo Simulation for

the gain and phase using the post layout extracted view.

47

Page 63: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

78.4976m

μ

42.4214m

114.574m

σ

6.34515m

-2σ

150.650m

-29.7311m

-3σ

186.726m

thd

No.

of S

ampl

es

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10

11

12

13

14

15

16

17

18

19

Values (m)-30.0 -10.0 10.0 30.0 50.0 70.0 90.0 110.0 130.0 150.0 170.0 190.0 210.0 220.0

Number = 100Mean = 78.4976mStd Dev = 36.0762m

thd 1

Figure 7.6: Histogram of the Monte Carlo simulation of the THD at typical

temperature using the extracted view.

145.617m

μ

74.3621m

216.872m

σ

3.10723m

-2σ

288.127m

-68.1476m

-3σ

359.382m

thd_t min

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10

12

14

16

18

20

22

24

Values (m)-100.0 -50.0 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0

Number = 100Mean = 145.617mStd Dev = 71.2549m

thd_t min 1

(a) Minimum Temperature (-40 C)

66.8981m

μ

37.0952m

96.7011m

σ

7.29219m

-2σ

126.504m

-22.5108m

-3σ

156.307m

thd_t max

No.

of S

ampl

es

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Values (m)-30.0 -10.0 10.0 30.0 50.0 70.0 90.0 110.0 130.0 150.0 170.0 190.0

Number = 100Mean = 66.8981mStd Dev = 29.8030m

thd_t max 1

(b) Maximum Temperature (175 C)

Figure 7.7: Histogram of the Monte Carlo simulation of the THD at minimum (left) and

maximum (right) temperatures.

48

Page 64: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

999.889m

μ

993.551m

1.00623

σ

987.213m

-2σ

1.01256

980.875m

-3σ

1.01890

gain

No.

of S

ampl

es

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10

11

12

13

14

15

16

17

18

19

20

21

Values0.974 0.978 0.982 0.986 0.99 0.994 0.998 1.002 1.006 1.01 1.014 1.018 1.022 1.024

Number = 100Mean = 999.889mStd Dev = 6.33794m

gain 1

Figure 7.8: Histogram of the Monte Carlo simulation of the Gain at typical

temperature.

999.728m

μ

992.500m

1.00696

σ

985.271m

-2σ

1.01419

978.042m

-3σ

1.02141

gain_t min

No.

of S

ampl

es

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10

11

12

13

14

15

16

17

18

19

20

21

22

Values0.97 0.975 0.98 0.985 0.99 0.995 1.0 1.005 1.01 1.015 1.02 1.025 1.03

Number = 100Mean = 999.728mStd Dev = 7.22872m

gain_t min 1

(a) Minimum Temperature (-40 C)

1.00041

μ

995.173m

1.00564

σ

989.938m

-2σ

1.01088

984.703m

-3σ

1.01611

gain_t max

No.

of S

ampl

es

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10

11

12

13

14

15

16

17

18

19

20

21

22

Values0.98 0.984 0.988 0.992 0.996 1.0 1.004 1.008 1.012 1.016 1.02

Number = 100Mean = 1.00041Std Dev = 5.23493m

gain_t max 1

(b) Maximum Temperature (175 C)

Figure 7.9: Histogram of the Gain at minimum (left) and maximum (right) temperatures.

49

Page 65: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

-5.27660

μ

-5.44982

-5.10338

σ

-5.62304

-2σ

-4.93016

-5.79626

-3σ

-4.75695

phase

No.

of S

ampl

es

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10

11

12

13

14

15

16

17

18

19

20

21

22

Values-5.9 -5.8 -5.7 -5.6 -5.5 -5.4 -5.3 -5.2 -5.1 -5.0 -4.9 -4.8 -4.7

Number = 100Mean = -5.27660Std Dev = 173.218m

phase 1

Figure 7.10: Histogram of the Monte Carlo simulation of the phase at typical

temperature.

-4.60564

μ

-4.75273

-4.45855

σ

-4.89983

-2σ

-4.31146

-5.04692

-3σ

-4.16436

phase_t min

No.

of S

ampl

es

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10

11

12

13

14

15

16

17

18

19

20

21

Values-5.15 -5.1 -5.05 -5.0 -4.95 -4.9 -4.85 -4.8 -4.75 -4.7 -4.65 -4.6 -4.55 -4.5 -4.45 -4.4 -4.35 -4.3 -4.25 -4.2 -4.15 -4.1

Number = 100Mean = -4.60564Std Dev = 147.093m

phase_t min 1

(a) Minimum Temperature (-40 C)

-6.54327

μ

-6.80002

-6.28653

σ

-7.05676

-2σ

-6.02978

-7.31351

-3σ

-5.77304

phase_t max

No.

of S

ampl

es

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Values-7.4 -7.3 -7.2 -7.1 -7.0 -6.9 -6.8 -6.7 -6.6 -6.5 -6.4 -6.3 -6.2 -6.1 -6.0 -5.9 -5.8 -5.7 -5.6

Number = 100Mean = -6.54327Std Dev = 256.744m

phase_t max 1

(b) Maximum Temperature (175 C)

Figure 7.11: Histogram of the Monte Carlo simulation of the phase at minimum (top)

and maximum (bottom) temperatures.

50

Page 66: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

7.1.6 Input-Referred Noise

The results of the input-referred noise in the three temperatures are shown in

Table 7.4. The histograms are shown in figures 7.12, 7.13a and 7.13b. Those results

were slightly better than the simulation with the schematic. This is due the the

excess of parasitic capacitances of the extracted view, that act as a low-pass filter

for the noise.

Temperature Mean σ

-40 C 292.5 µV 4.4 µV

27 C 340.3 µV 5.6 µV

175 C 416.9 µV 7.4 µV

Table 7.4: Input-Referred Noise on three different temperatures.

340.318u

μ

334.733u

345.903u

σ

329.148u

-2σ

351.488u

323.563u

-3σ

357.073u

Band noise

No.

of S

ampl

es

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Values (u)320.0 322.0 324.0 326.0 328.0 330.0 332.0 334.0 336.0 338.0 340.0 342.0 344.0 346.0 348.0 350.0 352.0 354.0 356.0 358.0 360.0

Number = 100Mean = 340.318uStd Dev = 5.58505u

Band noise 1

Figure 7.12: Histogram of the Monte Carlo simulation of the Input-Referred

Noise at typical temperature.

51

Page 67: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

292.486u

μ

288.128u

296.844u

σ

283.770u

-2σ

301.202u

279.412u

-3σ

305.560u

Band noise_t min

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10

12

14

16

18

20

22

24

Values (u)276.0 278.0 280.0 282.0 284.0 286.0 288.0 290.0 292.0 294.0 296.0 298.0 300.0 302.0 304.0 306.0 308.0 310.0

Number = 100Mean = 292.486uStd Dev = 4.35804u

Band noise_t min 1

(a) Minimum Temperature (-40 C)

416.919u

μ

409.464u

424.375u

σ

402.009u

-2σ

431.830u

394.553u

-3σ

439.285u

Band noise_t max

No.

of S

ampl

es

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10

11

12

13

14

15

16

17

18

19

20

Values (u)390.0 395.0 400.0 405.0 410.0 415.0 420.0 425.0 430.0 435.0 440.0 445.0

Number = 100Mean = 416.919uStd Dev = 7.45536u

Band noise_t max 1

(b) Maximum Temperature (175 C)

Figure 7.13: Histogram of the Monte Carlo simulation of the Input-Referred Noise at

minimum (top) and maximum (bottom) temperatures.

7.1.7 Common-Mode Output Voltage

The results are shown in Table 7.5 and the histograms in Figures 7.14, 7.15a and

7.15b.

We can conclude that the physical implementation of the common-mode feedback

circuit has not caused a significant degradation in performance, as the common-

mode voltage kept close to the reference of 700 mV.

Temperature Mean σ

-40 C 696.1 mV 4.0 mV

27 C 695.7 mV 3.9 mV

175 C 694.0 mV 3.8 mV

Table 7.5: Common-Mode Output Voltage for three different temperatures.

The results of the output disparity are shown in Table 7.6 and the histograms in

Figures 7.16, 7.17a and 7.17b

Here we can see that, comparing the schematic results, the addition of parasitic

resistances in the post-layout simulation did not increased the output disparity.

52

Page 68: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

695.766m

μ

691.811m

699.721m

σ

687.855m

-2σ

703.677m

683.900m

-3σ

707.632m

Common Mode

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

Values (m)678.0 680.0 682.0 684.0 686.0 688.0 690.0 692.0 694.0 696.0 698.0 700.0 702.0 704.0 706.0 708.0 710.0 712.0

Number = 100Mean = 695.766mStd Dev = 3.95536m

Common Mode 1

Figure 7.14: Histogram of the Monte Carlo simulation of the Common-Mode

Output Voltage at typical temperature.

696.150m

μ

692.105m

700.196m

σ

688.060m

-2σ

704.241m

684.015m

-3σ

708.286m

Common Mode_t min

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

Values (m)678.0 680.0 682.0 684.0 686.0 688.0 690.0 692.0 694.0 696.0 698.0 700.0 702.0 704.0 706.0 708.0 710.0 712.0

Number = 100Mean = 696.150mStd Dev = 4.04511m

Common Mode_t min 1

(a) Minimum Temperature (-40 C)

694.033m

μ

690.157m

697.910m

σ

686.280m

-2σ

701.786m

682.404m

-3σ

705.663m

Common Mode_t max

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

Values (m)676.0 678.0 680.0 682.0 684.0 686.0 688.0 690.0 692.0 694.0 696.0 698.0 700.0 702.0 704.0 706.0 708.0 710.0

Number = 100Mean = 694.033mStd Dev = 3.87649m

Common Mode_t max 1

(b) Maximum Temperature (175 C)

Figure 7.15: Histogram of the Monte Carlo simulation of the Common-Mode Output

Voltage at minimum (left) and maximum (right) temperatures.

Temperature Mean σ

-40 C 2.3 mV 1.8 mV

27 C 2.2 mV 1.7 mV

175 C 2.1 mV 1.6 mV

Table 7.6: Output Disparity for three different temperatures.

53

Page 69: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

2.20452m

μ

468.138u

3.94090m

σ

-1.26824m

-2σ

5.67728m

-3.00463m

-3σ

7.41367m

output disparity N

o. o

f Sam

ples

0.0

2.0

4.0

6.0

8.0

10

12

14

16

18

20

22

24

25

Values (m)-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Number = 100Mean = 2.20452mStd Dev = 1.73638m

output disparity 1

Figure 7.16: Histogram of the Monte Carlo simulation of the Output Dispar-

ity at typical temperature.

2.30597m

μ

500.392u

4.11154m

σ

-1.30518m

-2σ

5.91712m

-3.11076m

-3σ

7.72269m

output disparity_t min

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

Values (m)-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Number = 100Mean = 2.30597mStd Dev = 1.80557m

output disparity_t min 1

(a) Minimum Temperature (-40 C)

2.05997m

μ

421.619u

3.69833m

σ

-1.21673m

-2σ

5.33668m

-2.85509m

-3σ

6.97503m

output disparity_t max

No.

of S

ampl

es

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

Values (m)-3 -2 -1 0 1 2 3 4 5 6 7 8 9

Number = 100Mean = 2.05997mStd Dev = 1.63835m

output disparity_t max 1

(b) Maximum Temperature (175 C)

Figure 7.17: Histogram of the Monte Carlo simulation of the Output Disparity at mini-

mum (left) and maximum (right) temperatures.

54

Page 70: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Chapter 8

Conclusion

8.1 Analysis of the results

Our results had shown that this design is able to sustain the desired gain in

a high temperature range. In Figure 8.1 we can see five different curves of the

gain vs differential input, each one representing one temperature from the range

between −40 C to 175 C. Considering the region from −600 mV to 600 mV we

can se that there is a small variation in the behavior. Our results have shown that

even considering parasitic effects (from using the post-layout extraction) and process

mismatch effects (from the Monte Carlo simulations), the buffer kept the gain and

phase, for the target frequency of 3 MHz.

Figure 8.1: Gain vs differential input in five different temperatures.

55

Page 71: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

We can also conclude that the techniques used in the layout phase have not

created a great disturbance in the buffer, comparing to the schematic results. When

contrasting both results, we se a very small difference in the performance, and for

some parameters, the results from the post-layout simulations were even better than

those considering only the schematic.

Considering the worst case of the THD, of 0.15% at −40 C, the SNR given by

the THD is equal to:

SNRTHD = 20 log( 1

0.0015

)= 56.5dB (8.1)

Our worst result with the noise bandwidth was with the maximum temperature

(175 C), is 416.9 mV. With this value, the SNR caused by the thermal noise is:

PM =V 2p

2=

0.62

2= 180 mW (8.2)

Pnoise = V 2noise = (416.9 m)2 = 173.8 nW (8.3)

SNRnoise = 10 log( PM

Pnoise

)= 10 log

( 180 mW

173.8 nW

)= 60.2 dB (8.4)

As the SNR given by the THD is lower than the one given by the thermal noise,

it will overlap the distortion created by the noise and will be the main limitation for

the resolution. If we want to use this buffer to sample an analog signal and them

convert it to digital, is important to take into account this distortion to determine

the maximum resolution of bits that is possible to achieve with this buffer. This

resolution can be calculated by comparing it with the ideal A/D converter, and is

given by the following equation:

SNR = 6.02 dB×N + 1.76 dB (8.5)

Where N is the number of bits and the constant 1.76 dB represents the

quantization noise, by plugging the value of our lowest SNR we have:

N =56.5− 1.76

6.02= 9.1 ≈ 9 bits (8.6)

56

Page 72: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

This means that this buffer can be used for instrumentation applications where

the resolution is at maximum 9 bits.

A recapitulation of the performance is shown at Table 8.1. Those results show

that we successfully achieved our objective of designing a low power buffer with a

wide temperature range.

Parameter Value

Bit resolution 9

ω3dB 60 MHz

Capacitive load 15 pF

Output peak-to-peak 1.2 V

Operating Temperature −40 C to 175 C

Supply Voltage 1.8 V

Power Consumption 1.6 mW

Size 138.24 µm x 104.295 µm.

Table 8.1: Summary of the results.

8.2 Future Work

The next phase of this work would be the implementation in silicon of a prototype

for validating the design. With this prototype, we can perform some tests that could

not be performed by our CAD tools, such as applying temperature gradients.

We could also make more simulations for getting a better characterization of this

cell. Some common amplifier parameters include: Noise figure; Voltage and current

offset; Input impedance and others.

If the prototype is validated, this cell can be integrated into more complex systems

and could provide a low cost solution for interfacing internal signals from chips used

in embedded systems that work in high temperature variations.

57

Page 73: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Bibliography

[1] FERREIRA, P. M., BARUQUI, F. A., PETRAGLIA, A., “A 0.35 µm Cmos Am

demodulator”, Analog Integrated Circuits and Signal Processing, v. 57, n. 1-2,

pp. 89–96, 2008.

[2] “Apostila Microeletronica Graduacao”, http://www.pads.ufrj.br/ fbaruqui /Ar-

quivos/Apostila Micro.pdf, Accessed : 2018-08-08.

[3] SACKINGER, E., GUGGENBUHL, W., “A versatile building block: the CMOS

differential difference amplifier”, IEEE Journal of Solid-State Circuits, v. 22, n. 2,

pp. 287–294, 1987.

[4] KARKI, J., “Fully-differential amplifiers”, Application Report sloa054, , 2002.

[5] INSTRUMENTS, T., “Noise analysis in operational amplifier circuits”, Appli-

cation Report, SLVA043B, , 2007.

58

Page 74: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Appendix A - MOSFET Level 3 Model – XFAB XH018

Transistor NMOS-NEL

2

2

, :2 1

, :021

pGS T DS DSsat

GS T

Dp

GS T DS DS DS DSsat

GS T

k WV V saturation V V

L V VI

k WV V V V triode V V

L V V

0

1.72

0Tp pk k T T

0

300.74 10

TT TV V T T Vgs

Vsb

Vds

Id

0

12 SBV

0 0 0T T SBV V V GS TDSsat

V VV

NEL W = 1µm e L = 1µm SATURATION TRIODE MATCHING

0 0.39TV V 0 1.23SBV

0 0.48TV V 0 1.23SBV

2 2 1827 10pk pk WL

2293.4pk A V 0.25 2293.4pk A V 0.34

0

2 2 180 82 10

TV TV WL

0 0.58V 0.48 0 0.58V 0.48 3 28.6 10oxC F m

NEL W = 1µm e L = 0.5µm SATURATION TRIODE MATCHING

0 0.39TV V 0 1.24SBV

0 0.5TV V 0 1.24SBV

2 2 1827 10pk pk WL

2292.6pk A V 0.78 2292.6pk A V 0.39

0

2 2 180 82 10

TV TV WL

0 0.51V 0.46 0 0.51V 0.46 3 28.6 10oxC F m

NEL W = 1µm e L = 0.18µm SATURATION TRIODE MATCHING

0 0.3TV V 0 1.24SBV

0 0.47TV V 0 1.24SBV

2 2 1827 10pk pk WL

2360.5pk A V 1.42 2360.5pk A V 0.74

0

2 2 180 138.6 10

TV TV WL

0 0.4V 0.33 0 0.4V 0.33 3 28.6 10oxC F m

NEL W = 5µm e L = 5µm SATURATION TRIODE MATCHING

0 0.4TV V 0 1.24SBV

0 0.48TV V 0 1.24SBV

2 2 1827 10pk pk WL

2333.1pk A V 0.38 2333.1pk A V 0.31

0

2 2 180 86.3 10

TV TV WL

0 0.31V 0.35 0 0.31V 0.35 3 28.6 10oxC F m

Page 75: BUFFER DIFERENCIAL PARA PADS DE CIRCUITOS INTEGRADOS …monografias.poli.ufrj.br/monografias/monopoli10025988.pdf · pads do circuito integrado, levando em conta os efeitos de capacit^ancia

Transistor PMOS-PEL

2

2

, :2 1

, :021

pSG T SD SDsat

SG T

Dp

SG T SD SD SD SDsat

SG T

k WV V saturation V V

L V VI

k WV V V V triode V V

L V V

0

1.2

0Tp pk k T T

0

300.88 10

TT TV V T T

12 2 BSV

0 2 2T T BSV V V SG TSDsat

V VV

PEL W = 1µm e L = 1µm SATURATION TRIODE MATCHING

0 0.38TV V 0 1.21SBV

0 0.47TV V 0 1.21SBV

2 2 1842 10pk pk WL

274.4pk A V 0.28 274.4pk A V 0.32

0

2 2 180 84 10

TV TV WL

0 0.71V 0.43 0 0.71V 0.43 3 29.1 10oxC F m

PEL W = 1µm e L = 0.5µm SATURATION TRIODE MATCHING

0 0.38TV V 0 1.2SBV

0 0.47TV V 0 1.2SBV

2 2 1842 10pk pk WL

280.7pk A V 0.35 280.7pk A V 0.43

0

2 2 180 84 10

TV TV WL

0 0.52V 0.39 0 0.52V 0.39 3 29.1 10oxC F m

PEL W = 1µm e L = 0.18µm SATURATION TRIODE MATCHING

0 0.34TV V 0 1.17SBV

0 0.46TV V 0 1.17SBV

2 2 1842 10pk pk WL

2124.1pk A V 0.85 2124.1pk A V 0.99

0

2 2 180 67 10

TV TV WL

0 0.48V 0.32 0 0.48V 0.32 3 29.1 10oxC F m

PEL W = 5µm e L = 5µm SATURATION TRIODE MATCHING

0 0.34TV V 0 1.22SBV

0 0.45TV V 0 1.22SBV

2 2 1842 10pk pk WL

278.8pk A V 0.31 278.8pk A V 0.34

0

2 2 180 67 10

TV TV WL

0 1.12V 0.54 0 1.12V 0.54 3 29.1 10oxC F m