alívio das tensões residuais de soldagem por shot peening na

61
Universidade Federal do Rio de Janeiro Centro de Tecnologia Escola Politécnica Engenharia Naval e Oceânica “ALÍVIO DAS TENSÕES RESIDUAIS DE SOLDAGEM POR SHOT PEENING NA CONSTRUÇÃO NAVAL” Aluno Marcela Correia Esteves DRE: 109046389 Professor Orientador Segen Farid Estefen, Ph.D. Professor Co-Orientador Tetyana Gurova, D.Sc. Rio de Janeiro, RJ Brasil Agosto de 2015

Upload: lymien

Post on 08-Jan-2017

214 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: alívio das tensões residuais de soldagem por shot peening na

Universidade Federal do Rio de Janeiro

Centro de Tecnologia

Escola Politécnica

Engenharia Naval e Oceânica

“ALÍVIO DAS TENSÕES RESIDUAIS DE SOLDAGEM POR SHOT PEENING NA

CONSTRUÇÃO NAVAL”

Aluno

Marcela Correia Esteves

DRE: 109046389

Professor Orientador

Segen Farid Estefen, Ph.D.

Professor Co-Orientador

Tetyana Gurova, D.Sc.

Rio de Janeiro, RJ – Brasil

Agosto de 2015

Page 2: alívio das tensões residuais de soldagem por shot peening na

i

ESCOLA POLITÉCNICA

ENGENHARIA NAVAL E OCEÂNICA

“ALÍVIO DAS TENSÕES RESIDUAIS DE SOLDAGEM POR SHOT PEENING NA

CONSTRUÇÃO NAVAL”

Marcela Correia Esteves

– DRE 109046389

Projeto Final Submetido Ao Corpo Docente Do

Departamento De Engenharia Naval E Oceânica

Da Escola Politécnica Da Universidade Federal

Do Rio De Janeiro Como Parte Dos Requisitos

Necessários Para A Obtenção Do Grau De

Engenheiro Naval e Oceânico.

Aprovado por:

___________________________________________________

Segen Farid Estefen, Ph.D.

(ORIENTADOR)

___________________________________________________

Tetyana Gurova, D.Sc.

(CO-ORIENTADORA)

___________________________________________________

Marta Cecília Tapia Reyes, D.Sc.

___________________________________________________

Anatoli Leontiev, D.Sc.

Rio de Janeiro, RJ – Brasil

Agosto de 2015

Page 3: alívio das tensões residuais de soldagem por shot peening na

ii

ESTEVES, Marcela C.

Alívio das Tensões Residuais de Soldagem por Shot

peening na Construção Naval-Rio de Janeiro: UFRJ/

Escola Politécnica, 2015.

48 p: X .;29,7 cm.

Orientador: Segen Farid Estefen

Projeto de Graduação – UFRJ/ Escola Politécnica/

Engenharia Naval e Oceânica, 2015

Monografia apresentada ao curso de Engenharia Naval e

Oceânica da Universidade Federal do Rio de Janeiro

Referências Bibliográficas: p. 48

1.Tensão Residual. 2 Solda de Reparo. 3.Shot peening.

I. Farid Estefen, Segen. II. Universidade Federal do Rio

de Janeiro, Escola Politécnica, Curso de Engenharia Naval

e Oceânica. III. Titulo.

Page 4: alívio das tensões residuais de soldagem por shot peening na

iii

À minha mãe e em memória de meu pai.

Page 5: alívio das tensões residuais de soldagem por shot peening na

iv

Agradecimentos

Gostaria de agradecer primeiro aos meus pais, que sempre foram meu pilar

central e fonte de inspiração.

Ao meu pai André Abrahão da Silva Esteves por todos os ensinamentos com

os quais me preparou para uma vida inteira, e que mesmo nesses últimos 10 anos

“afastados” tenho certeza não ter me desamparado e ter me passado força quando

precisei.

À minha mãe Vânia Vargas Correia Esteves pelo exemplo de força e mulher

guerreira, que sempre foi minha maior incentivadora, me levantou nos momentos que

precisei e sempre esteve ao meu lado. E, principalmente, nunca mediu esforços para

fazer com qualquer dificuldade na minha trajetória pudesse ser revertida.

Ao amigo Carlos Alberto Guerra pelo apoio e desdobramento incansável em

sempre me ajudar no meu dia-dia a passar pelas dificuldades que surgissem no

caminho.

À minha família que sempre esteve desde pequena ao meu lado torcendo e me

apoiando na minha formação e em continuar na busca do meu diploma.

Às minhas amigas e às segundas mães, que em todos esses longos anos de

amizade sempre me ouviram, me apoiaram, buscaram me compreender e dar forças

nos momentos difíceis, ou simplesmente, conseguiam torná-los de alguma forma mais

fáceis e por fim também me incentivar a continuar.

Às minhas amigas da Subsea7 que acompanharam de perto o meu dia-dia no

último ano e conseguiam torná-lo muito mais fáceis e agradáveis. Aos meus colegas

de profissão que me incentivaram e passaram grandes ensinamentos que agora

lavarei para minha vida profissional.

Aos amigos da Naval pelo apoio mútuo nestes anos de faculdade e pelas

risadas e até mesmo momentos de desesperos porém unidos que fizeram-nos

avançar na nossa graduação.

Ao meu orientador, Segen Farid Estefen, e à minha Co-orientadora, Tetyana

Gurova, pela oportunidade fornecida de iniciação científica no Laboratório de

Tecnologia Submarina (LTS), e pelos auxílios e contribuições ao longo do

desenvolvimento deste trabalho.

Ao apoio financeiro da Petrobras e Agência Nacional do Petróleo, Gás Natural

e Biocombustíveis – ANP, por meio do Programa de Recursos Humanos para o Setor

Petróleo e Gás – PRH-03 e ao apoio tecnológico e operacional do Estaleiro EISA.

Page 6: alívio das tensões residuais de soldagem por shot peening na

v

Resumo do Projeto de Graduação apresentado à Escola Politécnica/UFRJ como parte

dos requisitos necessários para a obtenção do grau de Engenheiro Naval.

“ALÍVIO DAS TENSÕES RESIDUAIS DE SOLDAGEM POR SHOT PEENING NA

CONSTRUÇÃO NAVAL”

Marcela Correia Esteves

Agosto/2015

Orientador: Segen Farid Estefen

Co-Orientador: Tetyana Gurova

Departamento: Engenharia Naval e Oceânica

Soldagem é uma das principais operações tecnológicas na construção naval.

Os efeitos colaterais da soldagem, tais como surgimento de distorções e de tensões

residuais, são indesejáveis durante o processo de fabricação, pois implicam no

retrabalho que é responsável por cerca de 25% do custo de mão de obra. Destaca-se

entre as operações de soldagem as soldas de reparo, que introduzem novas tensões

residuais nos elementos estruturais do navio não previstas no projeto original. O

processo de shot peening, adotado neste projeto, é um dos pós-tratamentos utilizados

para alívio das tensões de soldagem. Neste trabalho foi estudado o efeito da

distribuição das tensões induzidas por shot peening sobre metal depositado, zona

termicamente afetada e metal base próximo ao cordão de solda, para chapas navais

com solda de reparo. Estas áreas das chapas soldadas possuem tensões pré-

existentes tanto de tração como de compressão de natureza térmica, que

comprovadamente influenciam no resultado final das distribuições. Na obtenção dos

resultados experimentais foram utilizadas técnicas experimentais de mapeamento das

tensões mecânicas através do método magnético e de medição dos valores absolutos

pelo método de difração de raios-X.

Page 7: alívio das tensões residuais de soldagem por shot peening na

vi

Abstract of Undergraduate Project presented to POLI/UFRJ as a partial fulfillment of

the requirements for the degree of Engineer.

“RELIEF OF WELDING RESIDUAL STRESSES BY SHOT PEENING ON

SHIPBUILDING”

Marcela Correia Esteves

August/2015

Advisor: Segen Farid Estefen

Co-Advisor: Tetyana Gurova

Department: Naval and Ocean Engineering

Welding is one of the main technological operations in shipbuilding. Side effects

of welding, such as appearance of distortion and residual stresses are undesirable

during the manufacturing process, as it implies that the rework is responsible for about

25% of the labor cost. It stands between the welding operations, the repair welds,

which introduce new residual stresses in the structural elements of the ship, not

provided for in the original design. The process of shot peening, adopted in this project,

is one of the post-treatments used for relief of welding stresses. This study investigated

the effect of the distribution of stresses induced by shot peening on deposited metal,

heat affected zone and base metal near the weld bead, for welded ship plate top.

These areas of welded plates have pre-existing tensions both traction as thermal

compression nature, which proved to influence the final result of distribuições. To

obtain the experimental results were used experimental techniques of mapping

mechanical stresses through the magnetic measuring method and the absolute values

by the method of X-ray diffraction.

Page 8: alívio das tensões residuais de soldagem por shot peening na

vii

Sumário

1. Introdução e Objetivos .......................................................................................... 1

2. Motivação ............................................................................................................. 1

2.1. Histórico de Falhas ......................................................................................... 3

3. Revisão Bibliogáfica .............................................................................................. 6

3.1. Soldagem ....................................................................................................... 6

3.1.1. Soldagem a Arco Elétrico com Arame Tubular ...................................... 11

3.2. Tensões Residuais de Soldagem ................................................................. 13

3.3. Tratamentos de Alívio de Tensões ............................................................... 17

3.3.1. Shot Peening ......................................................................................... 18

3.3.2. Outros Tratamentos de Alívio ................................................................ 22

3.4. Tensões Residuais Pré-Existentes ............................................................... 25

3.5. Métodos e Equipamentos de Medição .......................................................... 28

3.5.1. Raystress .............................................................................................. 28

3.5.2. Stressvision ........................................................................................... 31

4. Procedimento Experimental ................................................................................ 34

5. Resultados Experimentais das Medições ............................................................ 37

6. Conclusões ......................................................................................................... 47

7. Bibliografia .......................................................................................................... 48

Page 9: alívio das tensões residuais de soldagem por shot peening na

viii

Lista de Figuras

Figura 1 - Método de fabricação por blocos na construção de um navio ....................... 2

Figura 2 - Distorções de fabricação na indústria naval .................................................. 3

Figura 3 - Navio da classe Liberty construído durante a II guerra mundial .................... 3

Figura 4 - Vista da ruptura do navio Charles S. Haight entre a secção central do navio

e popa. ......................................................................................................................... 4

Figura 5 - Fratura frágil do navio SS Schenectadyainda no porto. ................................ 4

Figura 6 - Repercussão dos acidentes nos jornais ........................................................ 5

Figura 7 - Principais tipos de procedimento de soldagem ............................................. 7

Figura 8 - Variáveis que influenciam no procedimento de soldagem ............................. 8

Figura 9 - Procedimento de soldagem e terminologia adotada ..................................... 9

Figura 10 – Terminologia de soldagem: poça de fusão, zona termicamente afetada e

metal base .................................................................................................................... 9

Figura 11 - Procedimento de soldagem e terminologia adotada ................................. 11

Figura 12 - Desenho esquemátido da soldagem a arco elétrico com arame tubular ... 12

Figura 13 - Terminologia e distribuição de tensões residuais de uma solda ................ 14

Figura 14 - Representação esquemática da variação de tensões residuais transversais

(𝛔𝐭) mostrando a superposição linear dos efeitos a) contração (C); b) resfriamento

superficial mais intenso (R); c) transformação de fase (T); d)C+R; e)C+R+T f)C+T; ... 15

Figura 15 - Tensões de solda em aço: a) espessura 2,5 mm resfriamento com ar,

b)espessura de 10 mm resfriamento com ar, c) espessura 2,5 mm resfriamento com

água. .......................................................................................................................... 16

Figura 16 - Máquina industrial de shot peening ........................................................... 18

Figura 17 - Zona de compressão formada pelo impacto do shot peening ................... 19

Figura 18 – Perfil ideal das distribuição das tensões induzidas por shot peening ....... 20

Figura 19 – Exemplo de uma aplicação do jateamento das granalhas em uma peça . 21

Figura 20 - Desenho esquemático do método de Almen ............................................. 22

Figura 21 – Equipamento Raystress ........................................................................... 29

Figura 22 - Esquema de medição de tensões com o equipamento portátil ................. 31

Figura 23 – Equipamento Stressvision ........................................................................ 32

Figura 24 – Esquema do funcionamento do sensor magneto-anisotrópico. ................ 33

Figura 25 - Preparação do corpo de prova no EISA .................................................... 35

Figura 26 - Corpo de prova com solda de reparo ........................................................ 35

Figura 27 - Equipamento de soldagem ....................................................................... 36

Figura 28 - Localização dos pontos de medição das tensões resíduas de soldagem

com relação a solda de reparo .................................................................................... 37

Page 10: alívio das tensões residuais de soldagem por shot peening na

ix

Figura 29 - Polimento eletrolítico sendo aplicado no primeiro dia................................ 38

Figura 30 – Corpo de prova com a malha de pontos desenhada ................................ 39

Figura 31 - Medição realizada após duas semanas .................................................... 40

Figura 32 - Solda de reparo com shot peening. Mapa de distribuição do fator de

concentração da tensão cisalhante máxima. Resultado inicial. ................................... 41

Figura 33 - Solda de reparo com shot peening. Mapa de distribuição do fator de

concentração da tensão cisalhante máxima. Resultado final. ..................................... 42

Page 11: alívio das tensões residuais de soldagem por shot peening na

x

Lista de Gráficos

Gráfico 1 - Gráfico de temperaturas para TTAT .......................................................... 23

Gráfico 2 - Variações das tensões durante TTAT ....................................................... 23

Gráfico 3 - Distribuição das tensões residuais numa camada sub-superficial dos corpos

de prova em relação à profundidade. (1) corpo de prova sem cementação; (2) e (3)

corpo de prova após a cementação, tensões na direção longitudinal e transversal,

respectivamente ......................................................................................................... 27

Gráfico 4 - Distribuição inicial e final dos valores da tensão cisalhante máxima na

posição A (acima) e B (abaixo) para corpo de prova submetido ao tratamento por shot

peening ....................................................................................................................... 43

Gráfico 5 - Distribuição da tensão cisalhante máxima na posição A, inicial (acima) e

final (abaixo), para solda de reparo sem e com shot peening ..................................... 44

Gráfico 6 - Distribuição da tensão cisalhante máxima na posição B, inicial (acima) e

final (abaixo), para solda de reparo sem e com shot peening ..................................... 45

Gráfico 7 - Valores iniciais e finais das tensões com profundidade nas direções

longitudinal e transversal com relação ao cordão de solda no ponto de medição A-2

para corpo de prova com solda de reparo submetido ao shot peening ....................... 46

Page 12: alívio das tensões residuais de soldagem por shot peening na

1

1. Introdução e Objetivos

Soldagem é uma das principais operações tecnológicas na construção naval. No

entanto os efeitos colaterais da soldagem, tais como surgimento de distorções e de

tensões residuais, são indesejáveis durante o processo de fabricação, pois implicam

no retrabalho que é responsável por cerca de 25% do custo de mão de obra. Destaca-

se entre as operações de soldagem as soldas de reparo, que introduzem novas

tensões residuais nos elementos estruturais do navio não previstas no projeto original.

Enquanto o procedimento de solda de junção está amplamente estudado, desde

o inicio do século passado, através dos métodos experimentais, numéricos e teóricos,

a solda de reparo começou a ser assunto das amplas pesquisas recentemente.

O processo de shot peening, abordado neste projeto, é um dos pós-tratamentos

utilizados para alívio das tensões de soldagem que consequentemente tem como sua

principal vantagem atuar no aumento da vida útil da estrutura.

Este trabalho tem como objetivo, portanto, estudar o efeito da distribuição das

tensões induzidas por shot peening sobre metal depositado, zona termicamente

afetada e metal base próximo ao cordão de solda, para chapas navais soldadas de

topo, sem considerar os efeitos desta aplicação na microestrutura e propriedades

mecânicas do material. O processo de soldagem escolhido foi soldagem a arco

elétrico com arame tubular e as chapas soldadas possuindo tensões pré-existentes,

que comprovadamente influenciam no resultado final das distribuições.

2. Motivação

A soldagem está presente em todas as etapas de fabricação de embarcações

sendo uma das principais técnicas usadas nos estaleiros. Estima-se que

aproximadamente um por cento de todo o peso do navio é proveniente dos

consumíveis de solda.

Painéis enrijecidos constituem estruturas básicas na construção de navios,

sendo estes obtidos por meio da união entre placas de aço e enrijecidos com a

soldagem de reforços transversais e longitudinais, em alguns casos ainda são

enrijecido em ambos os lados, como na figura 1. Os processos básicos empregados

Page 13: alívio das tensões residuais de soldagem por shot peening na

2

na confecção dos painéis são, portanto, o corte, a conformação mecânica e a

soldagem.

Figura 1 - Método de fabricação por blocos na construção de um navio

Porém os processos de soldagem empregados na fabricação naval inserem

diferentes níveis de tensões residuais, por diversas causas que serão abordadas neste

trabalho. Os principais efeitos da presença de tensões residuais em componentes

soldados:

Flambagem;

Falha por fadiga;

Fratura Frágil;

Formação de trincas.

Estas imperfeições constituem, portanto, sérias complicações, podendo causar

desde danos estruturais a atrasos nos prazos de conclusão do projeto, além de

aumentar o custo final do empreendimento, pois, parte considerável do tempo total

para construir uma embarcação é gasto com retrabalho para corrigir imperfeições. As

distorções inseridas em componentes oceânicos devido aos processos de fabricação

têm por fim um efeito negativo gerando estruturas com reduzido limite à resistência.

Page 14: alívio das tensões residuais de soldagem por shot peening na

3

Figura 2 - Distorções de fabricação na indústria naval

Dita a importância da soldagem para a indústria naval, porém não apenas nesta,

e também as consequências que pode implicar nas estruturas, é clara a necessidade

de desenvolvimento de novas tecnologias e estudos para um melhor entendimento

das consequências e possíveis ações mitigadoras no uso deste processo.

2.1. Histórico de Falhas

Pode-se apresentar um histórico de casos de falha em navios provocados pelo

uso inadequado de processos de soldagem. O caso mais clássico é o da fratura frágil

dos navios da classe Liberty (1941-1945). A Classe Liberty foi uma série de navios

cargueiros/militar, construídos nos EUA durante a Segunda Guerra Mundial.

Figura 3 - Navio da classe Liberty construído durante a II guerra mundial

Page 15: alívio das tensões residuais de soldagem por shot peening na

4

Na Segunda Guerra Mundial as estruturas dos navios eram soldadas para

economizar tempo na montagem devido a grande demanda de suprimentos que

atravessavam o Oceano Atlântico do EUA para Inglaterra principalmente, com a

finalidade para abastecer as tropas aliadas durante a época de guerra.

Os efeitos da temperatura, dos concentradores de tensão e de tensões residuais

não eram bem compreendidos para a época. Muitos deles acabavam afundando antes

de cumprir a travessia do Atlântico, alguns fraturavam em alto mar e outros atracados

no porto onde foi observado que o material perdia ductilidade necessária para resistir à

baixa temperatura.

Foram construídos 4694 navios deste tipo, dos quais 1289 sofreram fratura frágil.

Destas, 233 foram catastróficas, com perda completa e, em 19 casos, os navios

partiram-se ao meio, como os navios tanques SS Schenectady e o Charles S. Haight,

figuras 4 e 5.

Figura 4 - Vista da ruptura do navio Charles S. Haight entre a secção central do navio e popa.

O SS Schenectady, figura 5, fraturou em 16 de janeiro de 1943, atracado no píer

de acabamento do estaleiro, com mar calmo. A fratura frágil foi súbita, sem aviso e foi

ouvida pelo menos a 1500 metros de distância.

Figura 5 - Fratura frágil do navio SS Schenectady ainda no porto.

Page 16: alívio das tensões residuais de soldagem por shot peening na

5

Estes acidentes tiveram grande repercussão na mídia e na época surgiram

muitas críticas ao processo de soldagem, ao ensaio Charpy e a metodologia de projeto

(resistência dos materiais), o que levou ao desenvolvimento de uma nova abordagem

técnica, conhecida hoje como Mecânica da Fratura e uma preocupação com a

qualidade dos processos de soldagem já naquela época.

Figura 6 - Repercussão dos acidentes nos jornais

Outros acidentes ainda, no ramo offshore, podem ser relatados como, por

exemplo, a semi-submersível de perfuração Sedco 135 que sofreu uma falha por

fadiga em 1967 no Golfo do México e a jaqueta de perfuração Ranger I que sofreu um

colapso devido a um fissura por fadiga em 1979 também no Golfo do México. Assim

como estes estruturas de exploração offshore muitos casos similares e na mesma

época foram verificados no Mar do Norte, Mar do Sul da China, Canadá e Austrália.

Page 17: alívio das tensões residuais de soldagem por shot peening na

6

3. Revisão Bibliográfica

3.1. Soldagem

A Soldagem é o processo de união de materiais, particularmente metais,

utilizado na fabricação e recuperação de peças, equipamentos e estruturas, todos dos

mais variados tamanhos e setores industriais. Ou ainda, é caracterizada como a

operação que visa à união de duas ou mais peças, assegurando na junta, a

continuidade das propriedades físicas e químicas do material. Solda é o nome dado

para o resultado do procedimento de soldagem.

Após muitos avanços tecnológicos, atualmente existe uma vasta gama de

diferentes processos de soldagem, sendo necessária a seleção do processo adequado

para uma dada aplicação. As principais características positivas e negativas deste

processo podem ser vistas abaixo:

Vantagens:

Juntas de integridade e eficiência elevadas;

Grande variedade de processos;

Aplicável a diversos materiais;

Operação manual ou automática;

Pode ser altamente portátil;

Juntas totalmente estanques (ao contrário da rebitagem);

Custo, em geral, razoável;

Junta não apresenta problemas de perda de aperto;

Montagens de um único lado de acesso (ao contrário do aparafusamento);

Suporta esforços no próprio plano (ao contrário da rebitagem).

Desvantagens:

Prazo de validade limitado e resultados permanentes;

Apresentam formulações numerosas e variadas;

Page 18: alívio das tensões residuais de soldagem por shot peening na

7

Exigem controle, montagem e testes complexos;

Somente testes destrutivos;

Exigem mão-de-obra altamente capacitada;

Ás vezes são necessários processos de cura (forno);

Exigem limpeza minuciosa;

Exigem preparação das superfícies a serem unidas.

A soldagem pode ser dividida de modo geral em dois grandes grupos de

operações: soldagem por fusão ou soldagem por pressão (deformação), e cada tipo se

subdivide ainda em uma extensa lista de procedimentos de soldagem existentes, de

acordo com suas peculiaridades conforme mencionado. A quantidade total é um

número dinâmico, pois vários outros processos estão em constante desenvolvimento

em nível de pesquisa e projetos para breves inserções no mercado de soldagem. A

ilustração 7 apresenta um breve resumo dos tipos de procedimentos disponíveis.

Figura 7 - Principais tipos de procedimento de soldagem

Page 19: alívio das tensões residuais de soldagem por shot peening na

8

Dentre estes, os processos de soldagem a arco, que será adotado no

procedimento experimental deste trabalho, são os de maior importância industrial na

atualidade. Devido à tendência de reação do material fundido com os gases da

atmosfera, a maioria dos processos de soldagem por fusão utiliza algum meio de

proteção para minimizar estas reações.

A figura 8 mostra as variáveis envolvidas no processo de soldagem, observa-se

que para ter um bom resultado no processo deve-se levar em conta principalmente o

tipo de processo utilizado, o material e a sequência de realização da solda.

Figura 8 - Variáveis que influenciam no procedimento de soldagem

Após a operação de soldagem é necessário inspecionar e verificar as

propriedades das juntas soldadas, de acordo com o critério de aceitação da norma

adotada. Os principais métodos de ensaio não destrutivos (END) aplicados com esta

finalidade podem ser de quatro tipos: líquido penetrante, partícula magnética,

ultrassom e raio-x, além do ensaio visual que é considerado como um teste básico

que precede a todos os outros END’s. Conforme o nome indica, estes testes não

alteram as características físicas, mecânicas ou dimensionais e não interferem na vida

útil da peça. Cada método apresenta grau de complexibilidade e custos relacionados

bem diferentes, assim como seu nível de abrangência da solda, e por isso, de acordo

com o processo, solda, equipamento e outras circunstâncias a serem verificadas um

método será mais aplicável. A escolha dos ensaios não destrutivos está diretamente

relacionada às características das descontinuidades.

Page 20: alívio das tensões residuais de soldagem por shot peening na

9

Algumas definições de conceitos são importantes para compreensão do

procedimento da soldagem, muitas vezes envolvendo o entendimento da

nomenclatura e siglas apropriadas. Algumas destas importantes terminologias podem

ser vistas a seguir:

Material de Base (MB): É o material que sofre o processo de soldagem, e,

portanto, constitui as partes a unir.

Material de Adição (MA): É o material que será usado como enchimento no

processo de soldagem, capaz de preencher a região livre entre as superfícies a serem

unidas. Este material é da mesma natureza das partes e será usado para assegurar a

continuidade de propriedades no caso da soldagem por fusão, de chapas ou peças

relativamente espessas.

Figura 9 - Procedimento de soldagem e terminologia adotada

Poça de fusão (PF): Região em fusão, a cada instante, durante uma soldagem.

Zona termicamente afetada (ZTA): É a região da solda que não se fundiu

durante a soldagem, porém teve sua microestrutura e propriedades alteradas devido

ao calor induzido pela soldagem ou operações de corte.

Figura 10 – Terminologia de soldagem: poça de fusão, zona termicamente afetada e metal base

Page 21: alívio das tensões residuais de soldagem por shot peening na

10

Junta: Região entre duas ou mais peças que serão unidas. Classificação em

alguns tipos de juntas, porém, mais a mais comumente juntas de topo, que pode ser

ainda de penetração total ou parcial.

Chanfro: Corte efetuado na junta para possibilitar/facilitar a soldagem em toda a

sua espessura.

Raiz: Região mais profunda do cordão de solda conforme ilustrado na figura 11.

Tende a ser a região mais propensa à formação de descontinuidades em uma solda.

Face: Superfície oposta à raiz da solda conforme ilustrado na figura 11.

Passe: Depósito de material obtido pela progressão sucessiva de uma só poça

de fusão. Uma solda pode ser feita em um único ou em vários passes conforme

ilustrado na figura 11.

Camada: Conjunto de passes localizados em uma mesma altura no chanfro

conforme ilustrado na figura 11.

Reforço: Altura máxima alcançada pelo excesso de material de adição, medida

a partir da superfície do material de base conforme ilustrado na figura 11.

Margem: Linha de encontro entre a face da solda e a superfície do metal de

base conforme ilustrado na figura 11.

Page 22: alívio das tensões residuais de soldagem por shot peening na

11

Figura 11 - Procedimento de soldagem e terminologia adotada

3.1.1. Soldagem a Arco Elétrico com Arame Tubular

O processo de soldagem escolhido para ser adotado no procedimento deste

projeto foi a soldagem a arco elétrico com arame tubular. A utilização deste processo

tem apresentado um aumento em razão de ser mais produtivo que a soldagem com

eletrodos revestidos e também devido ao desenvolvimento de novos tipos de

consumíveis, que tornou possível soldar em qualquer posição e com qualquer tipo de

junta. Sua aplicação é notável nas indústrias nuclear e naval.

Este processo de soldagem, também conhecido pela sigla FCAW (Flux-cored

Arc Welding), é definido como sendo um processo de soldagem por fusão, onde o

calor necessário para ligação das partes é fornecido por um arco elétrico estabelecido

entre a peça e um arame alimentado continuamente. Em algumas situações pode

utilizar gás de proteção durante a soldagem e ainda, com ou sem proteção gasosa,

este processo pode ser do tipo semi-automático ou automático.

Page 23: alívio das tensões residuais de soldagem por shot peening na

12

A soldagem com arame tubular apresenta uma camada de escória que deve ser

removida antes que um novo cordão seja executado. O tipo de arame utilizado

condiciona a consistência e a aderência da escória; assim, existem escórias que se

partem ao esfriar e se destacam facilmente do cordão, enquanto que outras aderem

de tal modo ao cordão que precisam ser quebradas por meios mecânicos.

A escolha do arame tubular para soldagem segue as normas AWS que

consideram fatores como soldagem monopasse ou multipasse, uso ou não de gás

protetor, tipo de corrente, posições de soldagem e propriedades mecânicas desejadas

para o cordão de solda. O fluxo contido dentro do arame é responsável pela proteção

do arco e do cordão de solda e pode ser complementado por um fluxo de gás

fornecido por fonte externa conforme mencionado. Esta proteção gasosa é realizada

na maioria das vezes utilizando CO2 e em alguns casos podem-se utilizar misturas

específicas.

No caso de soldagem com arame autoprotegido, a própria fusão, a queima, a

formação de escória e a vaporização dos elementos do fluxo são suficientes para

proteger a poça de fusão e o arco elétrico.

Figura 12 - Desenho esquemático da soldagem a arco elétrico com arame tubular

Resumidamente é um processo semelhante ao processo MIG/MAG, diferindo

deste pelo fato de possuir um arame no formato tubular, que possui no seu interior um

fluxo composto por materiais inorgânicos e metálicos que possuem várias

funções, entre as quais a melhoria das características do arco elétrico, a transferência

do metal de solda a proteção do banho de fusão e em alguns casos a adição

de elementos de liga, além de atuar, como mencionado, na formação de escória.

Page 24: alívio das tensões residuais de soldagem por shot peening na

13

A soldagem com arame tubular apresenta as seguintes vantagens perante

outros processos de soldagem:

Alta produtividade;

Alta taxa de deposição do metal de solda;

Soldagem pode ser executada em todas as posições;

Requer menos limpeza antes da soldagem que o GMAW;

Distorção reduzida sobre o SMAW;

Uso de eletrodos autoprotegidos elimina a necessidade do uso de

aparelhos de gás além de ser mais tolerante para condições ao ar livre;

Alta tolerância com relação a contaminantes que podem originar trincas;

Resistente a trincas do cordão.

3.2. Tensões Residuais de Soldagem

Tensões residuais podem ser definidas como qualquer tensão que existe no

volume de um material sem aplicação de carga externa. Tais tensões influenciam

substancialmente nas características de resistência mecânica e no funcionamento dos

elementos da estrutura, podendo contribuir para o surgimento de trincas. Portanto,

para preservação da segurança e da capacidade de trabalho dos elementos da

estrutura é fundamental o entendimento do surgimento e atuação dessas tensões.

As tensões residuais provenientes da soldagem são tensões residuais internas

em equilíbrio, que permanecem na estrutura após a realização de uma operação desta

magnitude. São tensões geradas por escoamentos parciais localizados que ocorrem

durante o ciclo térmico de soldagem, e podem surgir tanto no metal depositado, zona

termicamente afetada e/ou metal base próximo ao cordão de solda, com variação

significante no seu valor absoluto (tanto tensões de compressão como de tração).

No geral, as tensões residuais de soldagem surgem como consequências dos

seguintes fatos:

Contração no resfriamento de regiões diferentemente aquecidas e

plastificadas durante a operação de soldagem;

Page 25: alívio das tensões residuais de soldagem por shot peening na

14

Resfriamento superficial mais intenso;

Transformações de fase.

A contração no resfriamento de regiões diferentemente aquecidas e plastificadas

durante a operação de soldagem normalmente representa a principal fonte de tensões

residuais. O nível de tensões varia ainda com o grau de restrição da estrutura na

direção considerada. Na maioria dos casos, a restrição é total na direção longitudinal

do cordão de solda. Não dispondo de rigidez suficiente, as peças se deformam,

tendendo a aliviar as tensões residuais através de escoamentos parciais localizados.

Estas deformações são proporcionais à extensão da zona plastificada. A distribuição

das tensões, considerando apenas as tensões de contração, pode ser vista na figura

13.

Figura 13 - Terminologia e distribuição de tensões residuais de uma solda

Tensões residuais também surgem devido ao resfriamento mais rápido da

superfície, pois o processo de resfriamento não é homogêneo ao longo da espessura,

a superfície resfria-se mais rapidamente do que o interior. Desta forma, além do

gradiente de temperatura nas direções longitudinal e transversal ao cordão de solda,

será também estabelecido um gradiente de temperatura ao longo da espessura da

Page 26: alívio das tensões residuais de soldagem por shot peening na

15

peça. Este gradiente de temperatura poderá ocasionar deformação plástica localizada

e, consequentemente, tensões residuais ao longo da espessura. Ocorrerá um nível

elevado de tensões residuais deste tipo quando a junta soldada apresentar elevado

gradiente de temperatura ao longo da espessura (no caso de chapas espessas), e

baixo limite de escoamento nesta faixa de temperatura. Se o resfriamento mais rápido

da superfície fosse a única fonte de tensões residuais, tensões compressivas seriam

obtidas na superfície e, em equilíbrio, tensões trativas seriam obtidas no interior.

A distribuição de tensões residuais transversais, devido somente ao efeito de

resfriamento mais rápido da superfície, ao longo do eixo, é observado na figura 14b.

Figura 14 - Representação esquemática da variação de tensões residuais transversais (𝛔𝐭)

mostrando a superposição linear dos efeitos a) contração (C); b) resfriamento superficial mais

intenso (R); c) transformação de fase (T); d)C+R; e)C+R+T f)C+T;

Tensões residuais devido às transformações de fases na solda ocorrem porque

a transformação de fase da austenita para ferrita, bainita, perlita ou martensita, ocorre

com variação de volume decorrente de mudanças no arranjo cristalino. Desta forma,

numa junta soldada, o material da zona fundida e da zona termicamente afetada (ZTA)

que sofre transformação de fase tenderá a se expandir, o que será impedido (pelo

Page 27: alívio das tensões residuais de soldagem por shot peening na

16

menos na direção longitudinal da solda) pelo restante do material frio e não

transformado. Explica-se então a geração de tensões residuais de compressão na

região transformada. A distribuição de tensões residuais transversais na superfície,

devido somente à transformação de fase, é mostrada na figura anterior 14c. A

superposição das tensões residuais transversais devido à contração, resfriamento

mais rápido da superfície e transformação de fase, é mostrada figura anterior 14e).

O estado de tensões na área do cordão de solda não é o mesmo, como foi

mostrado na figura 14. Ele depende muito da espessura das chapas soldadas e das

condições de resfriamento, conforme mostrado para diferentes casos na figura 15.

Figura 15 - Tensões de solda em aço: a) espessura 2,5 mm resfriamento com ar, b)espessura de 10

mm resfriamento com ar, c) espessura 2,5 mm resfriamento com água.

Page 28: alívio das tensões residuais de soldagem por shot peening na

17

Existem diversos métodos para medição destas tensões, e estes podem ser

divididos nos seguintes dois grupos:

Métodos destrutivos;

Métodos não-destrutivos.

Nos métodos do grupo destrutivo, como o nome já indica, a medição é

acompanhada de destruição parcial ou total da peça. Enquanto que os métodos do

grupo não-destrutivos permitem manter a forma e dimensões originais da estrutura,

permitindo também com isso medições repetidas durante o processo de medição a ser

executado.

Entre os métodos destrutivos mais comuns pode-se citar: método da

amostragem, método da trepanação, método da perfuração e método da remoção de

camadas. E os principais métodos não-destrutivos consiste em: métodos magnéticos,

métodos acústicos, métodos elétricos e métodos de raio-X, que será adotado na

atividade experimental deste trabalho. Cada técnica possui suas particularidades,

vantagens e restrições, cabe analisar perante cada situação qual o método adequado

para uma aplicação correta.

O uso dessas técnicas traz consequências positivas, pois o conhecimento da

distribuição e magnitude das tensões possibilita fazer estimativas sobre a resistência

estrutural, visto que as tensões e às distorções residuais constituem um sério

problema na construção naval.

3.3. Tratamentos de Alívio de Tensões

Já relatada a importância da soldagem na cadeia produtiva de um navio, e

também o fato deste processo ser um dos principais fatores gerador de tensões

residuais e distorções, que podem vir a trazer consequências indesejáveis à estrutura,

os tratamentos de alívio de tensões são vistos como de extrema importância e

desafiador às empresas fornecedoras deste serviço.

As tensões residuais podem ter sua origem em diversas causas, e não sendo

sempre possível controlar e suprimir o surgimento das tensões residuais durante o

processo de fabricação, o procedimento de alívio das tensões assim como o nome já

Page 29: alívio das tensões residuais de soldagem por shot peening na

18

diz é aplicado posteriormente para diminuir o nível das tensões e/ou redistribuí-las de

maneira mais uniforme.

Diversos métodos para alívio de tensões são oferecidos hoje em dia no

mercado, todos com o objetivo em comum de reduzir uma das principais dificuldades

do setor que são as já mencionadas distorções. Estes podem variar desde tratamentos

térmicos a métodos com vibração ou mecânicos conhecidos como martelamento,

porém cada um com suas particularidades, tanto positivas quanto negativas, e

devendo, portanto ser estudada sua aplicabilidade perante cada caso desejado.

O tratamento em questão neste trabalho é o tratamento mecânico de Shot

Peening apresentado a seguir, e mais em seguida outros tipos de tratamentos também

disponíveis serão abordados em nível de comparação.

3.3.1. Shot Peening

Processo de shot peening é um dos pós-tratamentos, também conhecido como

martelamento, utilizado para alívio das tensões de soldagem. Este método consiste

em um processo mecânico de trabalho a frio, amplamente utilizado nas indústrias nos

dias atuais, de custos relativamente baixos.

Figura 16 - Máquina industrial de shot peening

Basicamente, o procedimento consiste no jateamento da superfície da peça por

granalhas aceleradas com velocidades controladas. Estas granalhas adotadas

usualmente são partículas esféricas metálicas, de cerâmica ou ainda de vidro.

Page 30: alívio das tensões residuais de soldagem por shot peening na

19

Neste processo cada granalha golpeia o material na superfície, como um

“martelo”, provocando com este impacto a formação de um pequeno sulco/deformação

sobre a superfície tratada, e na região exatamente abaixo deste impacto o surgimento

de um volume de material deformado plasticamente a frio, figura 17. Considerando um

fluxo contínuo na aplicação destas granalhas ocorre então uma sobreposição destas

regiões encruadas, desenvolvendo-se uma camada regular de metal com tensão

residual compressiva. A metalurgia mecânica estabelece que a propagação das

trincas necessita de tensões de natureza contrária, ou seja, de tensões trativas, e

assim as falhas por fadiga mecânica ou por corrosão tem o seu avanço e/ou

surgimento prejudicado. O choque das partículas com a superfície do material tratado

pode gerar uma camada de tensões compressivas de até 80% do limite de

escoamento ou 60% da tensão de resistência máxima do material.

Deste modo as tensões de compressão, introduzidas na superfície pelo shot

peening, são de extrema importância agindo de modo a proporcionar uma espécie de

barreira para a propagação de trincas e, de uma maneira geral, aumentos

consideráveis na vida útil das peças tratadas.

Figura 17 - Zona de compressão formada pelo impacto do shot peening

Além da possibilidade em vista de induzir uma distribuição desejável das tensões

residuais de compressão numa camada sub-superficial, entre os principais fatores

benéficos do shot peening são considerados o endurecimento das camadas

superficiais do material tratado, refinamento de grãos, uniformização dos valores das

tensões residuais na superfície e aumento na resistência à corrosão.

Page 31: alívio das tensões residuais de soldagem por shot peening na

20

O perfil “ideal” da distribuição das tensões residuais esperado de um tratamento

por shot peening numa cama sub-superficial é apresentado na figura 18. Esta

distribuição é caracterizada por um valor da tensão de compressão na superfície 𝜎𝑠

que é constante em qualquer direção, um valor máximo da tensão de compressão 𝜎𝑡

introduzido conforme esperado, e sua profundidade ℎ𝑐 no qual a compressão atinge

seu valor máximo e por fim a profundidade da camada sub-superficial atingida.

Figura 18 – Perfil ideal da distribuição das tensões induzidas por shot peening

A profundidade das tensões obtidas com o shot peening varia entre 0,03 e 2

milímetros do material. A eficácia do processo, assim como a profundidade da camada

resultante são fortemente dependentes de vários fatores do processo de aplicação de

shot peening que irão influenciar no resultado, entre eles, velocidade, tamanho e

material das granalhas lançadas contra superfície e seu ângulo de impacto, tempo de

aplicação e percentual de cobertura. A propriedade do material é mais um fator que

influencia no resultado de shot peening, por exemplo, o mesmo procedimento resulta

numa distribuição completamente deferente para dos materiais com dureza diferente.

Page 32: alívio das tensões residuais de soldagem por shot peening na

21

Figura 19 – Exemplo de uma aplicação do jateamento das granalhas em uma peça

O Shot Peening ainda que vastamente divulgado pelas indústrias em processos

automatizados possui a vantagem da existência da sua aplicação manual, sendo esta

de fácil manuseio e podendo ser levado até as peças a serem tratadas, eliminando

possíveis custos com o transporte da peça. Exemplo desta aplicabilidade são os

grandes blocos de navio da construção naval.

A eficiência do tratamento é controlada de maneira indireta e relativa, utilizando

o método de Almen, que parte do princípio de que deformações iguais em chapas

padronizadas correspondem às aplicações com iguais intensidades. Neste método,

são utilizados três tipos de plaquetas padronizadas, uma tira é colocada em um

dispositivo paralelamente ao componente a ser tratado. Durante o processo, as

esferas induzem simultaneamente tensões residuais na tira, a qual se deforma no

formato de um pequeno arco. Após o processo, é medida a altura do arco da tira e

através de uma tabela de conversão obtém-se o valor de intensidade Almen.

Page 33: alívio das tensões residuais de soldagem por shot peening na

22

Figura 20 - Desenho esquemático do método de Almen

Existem ainda diferentes modificações do processo de shot peening, entre elas

os processos de stress peening e peen forming, quando a peça submetida ao

tratamento por shot peening é pré-tencionada e, consecutivamente, pré-deformada.

Neste caso a superfície submetida ao shot peening encontra-se no estado de tração

elástica por tensões atuantes (não residuais) externas. E também o lazer peening em

que um único “tiro” de alta energia repetido várias vezes na superfície da peça causa o

mesma efeito de compressão causado pelo impacto das partículas no shot peening

tradicional.

3.3.2. Outros Tratamentos de Alívio

Uma outra forma de minimizar as tensões oriundas do processo de soldagem, ou

seja, aliviá-las, é pela utilização do tratamento térmico de alívio de tensões (TTAT)

que, como o próprio nome já sugere, consiste em uma operação de aquecimento da

peça de trabalho, utilizando, por exemplo, um forno, após a conclusão da operação de

soldagem.

A temperatura de aquecimento na peça deve ser inferior à temperatura crítica de

transformação do material, ou seja, antes que ocorra alguma mudança de fase. Depois

de atingida essa temperatura, a peça é mantida aquecida durante um determinado

tempo, denominado tempo de patamar ou de encharque. É importante que a peça

atinja a temperatura uniformemente em todo seu comprimento. Segue-se então para o

Page 34: alívio das tensões residuais de soldagem por shot peening na

23

resfriamento uniforme e controlado da peça, geralmente a uma taxa relativamente

baixa. O gráfico 1demonstra as principais etapas operacionais do alívio de tensões.

Gráfico 1 - Gráfico de temperaturas para TTAT

Os principais parâmetros para se definir um Tratamento Térmico de Alívio de

Tensões como taxa de aquecimento (TA), o tempo e a temperatura de patamar e a

Taxa de Resfriamento (TR) são definidos com o auxílio de normas internacionais.

Basicamente que neste tipo de tratamento ocorre que ao se aquecer um material

a tensão de escoamento do material se torna muito baixa, de modo a não suportar as

tensões internas dos componentes e o material se deforma, aliviando a tensão. O fato

de o processo ser controlado faz com que não haja geração de tensão durante o

processo de resfriamento, garantindo assim restar um menor nível de tensão residual

ao final da aplicação do tratamento.

Gráfico 2 - Variações das tensões durante TTAT

Page 35: alívio das tensões residuais de soldagem por shot peening na

24

Os principais objetivos do TTAT são:

Aumento da ductilidade;

Diminuição da dureza tanto da zona fundida quanto da zona

termicamente afetada;

Redução de empeno;

Aumento da resistência à fadiga;

Aumento da resistência à corrosão sob tensão.

Por outro lado, esse método requer alto investimento em equipamentos e custos

relacionados ao alto consumo de energia, além do inconveniente do uso de peças de

grandes dimensões devido às limitações de tamanho dos fornos disponíveis e as

distorções que podem ocorrer nas estruturas e componentes tratados. O seu uso

também é restrito a estruturas homogêneas.

Por fim, um segundo tratamento que vem se destacando é o de alívio de tensões

por vibração mecânica, caracterizado por ser um método com custo inferior em

relação aos tratamentos térmicos e também por ser aplicável em materiais com

estruturas heterogêneas.

O alívio de tensões por vibração mecânica é um método baseado na

ressonância vibratória, em que as peças são submetidas a vibrações de baixa

frequência por um período de tempo. Essa energia aplicada é capaz de gera um

estado de deformação plástica em determinadas partes da estrutura, que realinha a

estrutura cristalina para que as tensões residuais sejam reduzidas a um nível mais

baixo, ou seja, aliviando-as. Este método é bastante flexível, pois em alguns casos sua

aplicação não depende da paralisação do equipamento que contém a parte a ser

tratada, o que representa uma das suas principais vantagens, senão a principal.

Este novo método possui algumas outras relevantes vantagens quando

comparado com os tratamentos térmicos, pois além de não alterar as propriedades

mecânicas, as tensões não reaparecem. Os tratamentos por vibração mecânica

apresentam custos até 90% inferiores, com utilização de apenas 1% da energia

empregada nos tratamentos térmicos convencionais e duração aproximada de 30

minutos.

Page 36: alívio das tensões residuais de soldagem por shot peening na

25

No entanto, a falta de compreensão completa do fenômeno é a principal

limitação para a aplicação deste tratamento em larga escala, estando ainda em

pesquisa a influência dos parâmetros de vibração nos resultados, tais como o tipo e a

frequência de excitação.

3.4. Tensões Residuais Pré-Existentes

Na maioria dos trabalhos experimentais dedicados ao estudo dos efeitos de shot

peening os autores não apresentavam nenhuma informação sobre estado inicial das

tensões residuais. Porém, o conhecimento deste estado inicial proporciona um quadro

mais completo do processo de distribuição das tensões de shot peening,

especialmente quanto se trata de comparação dos resultados do mesmo procedimento

para peças diferentes.

Em estudo prévio realizado buscou-se estudar as tensões residuais induzidas

por shot peening em peças com tensões residuais pré-existentes de compressão,

especificamente, as tensões pré-existente de origem térmica.

Para tal, foram utilizados corpos de prova de tamanho 300 x 35 x 6 milímetros

confeccionados de aço carbono SAE 1020. Primeiro os corpos de prova foram

submetidos ao tratamento térmico de alívio das tensões, que resultou numa

redistribuição uniforme das tensões residuais na faixa de 40 Mpa, observada na

superfície dos corpos de prova e numa camada sub-superficial com profundidade de

até 0.20 milímetros.

Após o alívio das tensões, um dos corpos de prova foi submetido ao processo de

cementação. Observou-se que os valores das tensões residuais e sua distribuição

com profundidade são diferentes na direção longitudinal e transversal para material

com mesma dureza. Podemos atribuir este resultado ao fato que os processos

térmicos durante cementação ocorreram de maneira diferente nestas direções por

causa da geométrica alongada do corpo de prova. Observou-se também que este

processo modificou as características do material aumentando o seu limite de

escoamento e as tensões resíduas de compressão atingiram o valor de -350MPa.

Os dois corpos de prova, com e sem cementação, foram submetidos ao mesmo

tratamento por shot peening utilizando equipamento GP-9075 em regime manual, com

granalha de aço esférica S-110, intensidade Almen 0.003”C, cobertura de 100%,

pressão do ar 100 PSIG e ângulo de jato 90 graus. As tensões residuais de

Page 37: alívio das tensões residuais de soldagem por shot peening na

26

compressão induzidas por shot peening na superfície da amostra cementada ficaram

iguais em ambas às direções, longitudinal e transversal, com valor de -380MPa,

embora existisse uma diferença significativa na sua distribuição antes do shot peening.

As tensões residuais de compressão de shot peening atingiram o valor maior de -

770MPa, na direção transversal, e o valor de -680MPa na direção longitudinal. O fato

que as tensões resíduas chegaram a estes valores de compressão bem elevados está

atribuído, além de endurecimento pela cementação, ao efeito de endurecimento da

camada superficial por deformação mecânica, que pode ser observado também na

amostra sem cementação, aonde a tensões máximas de compressão chegam até -

330MPa, valor acima do limite de escoamento do material do corpo de prova no seu

estado original.

A comparação das tensões de shot peening nos corpos de prova com e sem

cementação mostra o efeito esperado da dureza do material na distribuição das

tensões residuais. A localização do ponto de tensão máxima compressiva para corpo

de prova cementado encontra-se mais próximo da superfície do que no caso do corpo

de prova sem cementação. Observou-se que na profundidade 0.16 - 0.20 mm os

valores das tensões residuais do corpo de prova cementado chegam aos mesmos

níveis das tensões do corpo de prova sem cementação. Estes resultados podem ser

vistos no gráfico 3.

Page 38: alívio das tensões residuais de soldagem por shot peening na

27

Gráfico 3 - Distribuição das tensões residuais numa camada sub-superficial dos corpos de prova em relação à profundidade. (1) corpo de prova sem cementação; (2) e (3) corpo de prova após a

cementação, tensões na direção longitudinal e transversal, respectivamente.

Portanto, efeito da presença das tensões de compressão pré-existentes deve ser

considerado com um dos fatores que influenciam na distribuição final das tensões

residuais de shot peening de mesma maneira como contribuem nesta distribuição as

características do material e parâmetros do próprio processo de shot peening aplicado,

e por isso foi levado em consideração no tema principal do trabalho a ser apresentado

neste relatório. Considerando a aplicação do shot peening em peças que possuem

tensões residuais de soldagem, como tensões pré-existentes, neste trabalho

estudamos o efeito do shot peening, levando em consideração o fato que o próprio

campo das tensões pré-existentes de soldagem varia com tempo.

Page 39: alívio das tensões residuais de soldagem por shot peening na

28

3.5. Métodos e Equipamentos de Medição

3.5.1. Raystress

Os valores absolutos das tensões residuais foram medidos com o equipamento

portátil de raios-X, chamado Raystress. Este é um equipamento de tecnologia não

destrutiva caracterizado pelo seu tamanho portátil e peso reduzido, que lhe

proporciona a vantagem de realizar medições em praticamente qualquer condição de

campo, superfície de peças de geometria complexa e em locais de difícil acesso.

O método utilizado por este equipamento consiste em uma dupla exposição e

radiação K do Cr, técnica esta amplamente testada e utilizada com sucesso durante

vários anos em diferentes aplicações industriais.

O equipamento Raystress, figura21, apresenta as seguintes partes incluídas

como componentes deste equipamento:

Unidade de controle com fonte de alta tensão, que permite

monitoramento e o ajuste do nível de potência de alimentação do tubo de raios-X;

Fonte de alta tensão e tubo de raios-X. Uma das qualidades do

equipamento é que o tubo de raios-X é acoplado à fonte de alta tensão. A tensão e a

corrente de trabalho da fonte de raios-X são de 25 kV e 1,5 mA, respectivamente. O

tubo de raios-X possui dois anodos de cromo com resfriamento ao ar, e produz dois

feixes convergentes de raios-X para realizar a técnica de duas exposições de

medição de tensões por raios-X. O ângulo de convergência dos feixes de raios-X é

de 50 graus;

O suporte magnético permite instalar o equipamento diretamente na

peça analisada e ajustar o equipamento na posição de exposição;

O colimador com cassete para filme de raios-X. Duas janelas no

cassete permitem captar partes das linhas difratadas no intervalo angular de 2𝜃 de

148 a 164 graus.

Page 40: alívio das tensões residuais de soldagem por shot peening na

29

Figura 21 – Equipamento Raystress

Os princípios da tensometria por raios-X se baseiam, por um lado, na teoria de

difração de raios-X para materiais cristalinos, e por outro – em mecânica dos materiais

e, em particular, na teoria da elasticidade do corpo sólido. Os valores das tensões são

definidos a partir da deformação da estrutura cristalina causada pela ação destas

tensões. As deformações são medidas por sua vez, conforme lei de Bragg: 2 𝑑 sin 𝜃 =

𝜆, através do deslocamento da linha de difração.

Os princípios de técnica de dupla exposição, usada para medição de tensões

utilizando o equipamento portátil descrito acima, baseiam-se na determinação de duas

componentes de deformação:ℰ𝜑, 𝜓1 e ℰ𝜑, 𝜓2. Sendo a deformação é determinada por

meio da fórmula:

ℰφ,ψ =1 + υ

Eσφ. seno2ψ −

ν

E(σ1 + σ2) (1)

Logo a diferença entre duas componentes da deformação fica:

ℰφ, ψ2 − ℰφ, ψ1 =1 + υ

Eσφ. (seno2ψ2 − seno2ψ1) (2)

Onde:

Page 41: alívio das tensões residuais de soldagem por shot peening na

30

E = constantes elásticas do material;

ψ e φ = ângulos polar e azimutal respectivamente;

σφ = Componente medida de tensão;

σ1 e σ2 = São as tensões principais;

Da equação (2) a componente medida de tensão (σφ), se torna:

σφ =E

1 + ν .

ℰφ,ψ2− ℰφ,ψ1

seno2ψ2 − seno2ψ1 (3)

Derivando a lei de Bragg, tem-se:

ℰφ,ψ =dφ,ψ − d0

d0= ctg θ0(θφ,ψ − θ0) (4)

Onde:

dφ,ψ , d0 = distancias entre planos para materiais com e sem tensão

respectivamente;

θφ,ψ , θ0 = ângulos de difração para materiais com e sem tensão

respectivamente;

Usando as fórmulas (3) e (4), tem-se:

σφ =E

1 + ν .

ctg θ0(θφ,ψ2− θφ,ψ1

)

seno2ψ2 − seno2ψ1 (5)

Desta maneira, para determinar qualquer componente da tensão é necessário

medir os ângulos de difração correspondentes às reflexões dos planos cristalinos com

normais caracterizadas por ângulos 𝜓1 e 𝜓2.

Page 42: alívio das tensões residuais de soldagem por shot peening na

31

Figura 22 - Esquema de medição de tensões com o equipamento portátil

Os ângulos usados no equipamento são ψ1 = 0 graus e ψ2 = 50 graus e para se

medir as tensões é usada geometria de “ψ - goniômetro”, figura 22. A precisão da

medição do valor absoluto da tensão por equipamento utilizado neste trabalho é de

±10MPa.

3.5.2. Stressvision

Para o mapeamento do estado das tensões foi utilizado um equipamento

magnético portátil, que emprega o efeito inverso de magnetostrição, com sensor do

tipo MAS (sensor magneto-anisotrópico). O efeito inverso de magnetostrição consiste

na variação de magnetização do material ferromagnético sujeito às tensões

mecânicas, devido às mudanças na estrutura dos domínios magnéticos.

O equipamento utilizado, figura 23, é composto por:

Sensor de tipo MAS (diâmetro 20 mm);

Unidade de controle;

Computador portátil para visualização dos resultados em tempo real.

Page 43: alívio das tensões residuais de soldagem por shot peening na

32

Figura 23 – Equipamento Stressvision

O sensor MAS utilizado tem duas bobinas na forma de U, posicionadas entre si

nas posições ortogonais. Uma delas é a da indução (magnetização), a outra é a da

detecção. A bobina de indução produz uma onda eletromagnética que, passando pelo

material, gera uma onda refletida, captada pela bobina de detecção. Seja uma onda

senoidal com intensidade do campo magnético H0 e frequência ω transmitida na

diração do eixo z ortogonal à superfície do metal. Para semi-espaço ferromagnético

com permeabilidade magnética μ temos a intensidade do campo magnético Η na

profundidade z.

Η = Η0 . exp(𝑖𝑘𝑧)

Onde:

𝑘 = 𝑖 + 1

𝛿

𝛿 = 𝐶√2𝜋𝜇𝜔

Consideramos que o ângulo 𝛼 entre a direção do Η e uma das direções de

tensão mecânica principal é de 45 graus.

Page 44: alívio das tensões residuais de soldagem por shot peening na

33

Figura 24 – Esquema do funcionamento do sensor magneto-anisotrópico.

O fluxo magnético registrado pela bobina de detecção é proporcional à projeção

do vetor da indução magnética Β na direção entre os polos da bobina. A força

eletromotriz induzida na bobina de detecção fica:

dU = Μ (Βx − Βy). exp(ikz) dz

Onde:

Μ = Coeficiente que caracteriza as propriedades do metal analisado;

Integrando com relação à espessurahda camada, encontramos o sinal captado

pela bobina de detecção:

U = ΜΗ

2∫ (μx

h

0

(z) − μy(z)). exp (2ikz) dz

Com a variação da tensão mecânica σ variam também as permeabilidades

magnéticas na direção longitudinal μx e transversal μy. Esta variação é proporcional a

σ, ou seja:

μx − μy = β. σ

Onde:

β = Constante do material;

Page 45: alívio das tensões residuais de soldagem por shot peening na

34

Assim, para voltagem captada pelo sensor temos:

U = A ∫ σ(z)h

0

. exp (2ikz) dz

Onde:

A = Constante específica do sensor;

Desta maneira, o sensor registra o valor σreg da desmodulação em amplitude da

onda com frequência ω utilizada posteriormente para encontrar a diferença entre os

valores das tensões principais, cujo módulo é igual ao valor dobro da tensão

cisalhante máxima, utilizada diretamente no critério do escoamento de Tresca-Guest.

σreg = ∫ σ(z)

h

0. exp (2ikz) dz

∫ exp (2ikz) dzh

0

4. Procedimento Experimental

Para o procedimento experimental foi realizado uma parceria com o estaleiro

EISA, na Ilha do Governador/RJ. A primeira etapa, que antecedeu os testes, foi a

preparação de dois corpos de prova a serem utilizados. Para tal foi utilizado chapas de

aço AWS A5.20 com 10 milímetros de espessura utilizadas na construção naval,

cortadas no formato quadrado e com dimensões 400 x 400 milímetros. Em seguida

em cada uma das chapas foi realizado o corte de um furo vazado localizado em seu

centro e de formato retangular no tamanho 190 x 20 milímetros, de acordo com as

figuras 25 e 26.

Page 46: alívio das tensões residuais de soldagem por shot peening na

35

Figura 25 - Preparação do corpo de prova no EISA

Figura 26 - Corpo de prova com solda de reparo

Page 47: alívio das tensões residuais de soldagem por shot peening na

36

A segunda etapa consistiu na aplicação da solda de reparo fechando o furo

central da chapa, realizada por profissionais da soldagem do estaleiro. A solda de

reparo foi executada utilizando processo de soldagem a arco com arame tubular

(FCAW – Flux Cored Arc Welding), conforme processo descrito no item 3.1.1, com a

máquina MIG 408-T da marca ESAB, arame de solda E71T-1C de diâmetro 1.2 mm e

gás ativo de proteção CO2, figura 27.

Figura 27 - Equipamento de soldagem

A soldagem foi realizada com backing cerâmico, tendo um passe de raiz e dois

passes de face seguidos de passe de acabamento. Para os três primeiros passes a

voltagem e a velocidade de arame eram de 25,5V e 176 m/min, respectivamente, e

para o passe de acabamento a voltagem era de 25,5V e a velocidade 168 m/min.

Logo após o término da operação de soldagem apenas um dos corpos de prova

foi encaminhado para a aplicação do tratamento de shot peening. Os parâmetros do

shot peening aplicados no corpo de prova correspondem aos normalmente utilizados

nos estaleiros para trabalhos de acabamento superficial das chapas e sua preparação

para pintura, que são:

Grau de jateamento SA2 ½;

Grão angular;

Granometria G40 angular;

Ângulo de jateamento de 90 graus.

Page 48: alívio das tensões residuais de soldagem por shot peening na

37

Com esta aplicação deu-se fim ao procedimento experimental que havia sido

proposto para este trabalho. As medições em ambos os corpos de prova foram

realizadas no mesmo dia da soldagem e da aplicação do shot peening para a

obtenção do resultado inicial, e novamente duas semanas depois para obtenção do

resultado final.

5. Resultados Experimentais das Medições

As medições das tensões residuais nos dois corpos de prova foram realizadas

segundo o método de raios-X descrito no item 3.5. Estas foram feitas na superfície

frontal em pontos localizados no meio do corpo de prova, numa linha perpendicular ao

cordão de solda na superfície frontal (direção A), e numa linha de continuação do

cordão de solda para lado externo do corpo de prova (direção B), conforme mostrado

na figura 28.

Figura 28 - Localização dos pontos de medição das tensões resíduas de soldagem com relação à solda de reparo

Page 49: alívio das tensões residuais de soldagem por shot peening na

38

Para cada uma das direções, A e B, as medições foram realizadas em três

pontos do metal de base (pontos 1, 2 e 3) localizados conforme a figura 28 e também

no metal depositado (ponto MD), na zona termicamente afetada (ponto ZTA), e metal

base próximo ao cordão de solda (ponto MB), totalizando seis pontos de medição em

cada direção. Em cada um desses pontos as tensões foram medidas na direção

paralela ao cordão de solda (tensão longitudinal σL), na direção perpendicular ao

cordão de solda (tensão transversal σT) e na direção diagonal entre estas duas (σ45).

O processo de polimento eletrolítico foi aplicado em cada um dos pontos para

uma remoção controlável das camadas superficiais e realização das medições de

tensões residuais com profundidade. Com este polimento busca-se garantir a ausência

das tensões mecânicas induzidas na superfície da chapa durante o processo de

fabricação. A espessura da comada removida foi controlada com relógio comparador

eletrônico.

Figura 29 - Polimento eletrolítico sendo aplicado no primeiro dia

Page 50: alívio das tensões residuais de soldagem por shot peening na

39

O mapeamento das tensões foi realizado através do método magnético, também

descrito no item 3.5., em uma área de 360 x 360 milímetros, em 361 pontos da malha

retangular com passo uniforme de 20 milímetros, conforme na figura 30. As medições

foram feitas sobre área composta dos materiais com diferentes propriedades

mecânicas e magnéticas (especificamente metal base, metal depositado e ZTA). Por

esta razão, os resultados deste mapeamento têm caráter relativo para cada uma das

partes da área mapeada. Além disso, mapeamento magnético envolve mais pontos de

análise do que as medições feitas por raios-X. E, finalmente, o método magnético

representa um valor médio na profundidade de até três milímetros sob a superfície,

enquanto os resultados das medições pelo método de raios-X representam os valores

superficiais absolutos das tensões. Por estas razões, os resultados do mapeamento

foram utilizados neste trabalho somente para comparar entre si a evolução com o

tempo das tensões residuais.

Figura 30 – Corpo de prova com a malha de pontos desenhada

Page 51: alívio das tensões residuais de soldagem por shot peening na

40

Quando se trata de análise das tensões residuais induzidas pelo tratamento de

shot peening as seguintes condições devem ser avaliadas, de preferência, na

sequência apresentada:

Uniformidade dos valores das tensões no ponto (uniformidade local). Na

situação ideal, os valores das tensões em qualquer direção devem ser iguais;

Uniformidade dos valores das tensões em toda superfície tratada

(uniformidade global). Na situação ideal, os valores das tensões não devem variar de

um ponto para outro;

Os valores das tensões na superfície devem ser de compressão;

Perfil da distribuição das tensões com profundidade deve atingir a curva

desejada, com valor máximo de compressão numa camada sub-superficial;

O primeiro critério pode ser avaliado em termos da tensão cisalhante máxima,

uma vez que, menores valores da tensão cisalhante máxima correspondem a uma

maior uniformidade do campo das tensões no ponto. Por esta razão, os nossos

resultados de medição dos valores absolutos das tensões são apresentados na forma

de valores das tensões cisalhantes máximas.

Medições pelo método de raios-X e mapeamento magnético foram realizadas no

mesmo dia da soldagem e shot peening (resultados inicial), e duas semanas depois

(resultado final).

Figura 31 - Medição realizada após duas semanas

Page 52: alívio das tensões residuais de soldagem por shot peening na

41

O mapeamento através do método magnético representa uma distribuição do

fator de concentração da tensão cisalhante máxima. Observou-se nos resultados

iniciais uma forma simétrica na distribuição das tensões residuais no corpo de prova e

a localização dos pontos críticos das tensões no metal base ao longo das duas linhas,

uma perpendicular ao cordão de solda e outra direcionada na sua continuação para o

lado externo ao corpo de prova. Observou-se também a variação na posição das

linhas de nível apresentadas no mapeamento, quando comparado o resultado inicial

com final, figuras 32 e 33.

Figura 32 - Solda de reparo com shot peening. Mapa de distribuição do fator de concentração da tensão cisalhante máxima. Resultado inicial.

Page 53: alívio das tensões residuais de soldagem por shot peening na

42

Figura 33 - Solda de reparo com shot peening. Mapa de distribuição do fator de concentração da tensão cisalhante máxima. Resultado final.

A distribuição inicial e final dos valores da tensão cisalhante máxima, nas posições A e

B, para o corpo de prova submetido ao tratamento de shot peening está apresentada

nos gráficos 4. Tanto na posição de medição A como na posição B, existe uma

variação entre os valores iniciais e finais das tensões cisalhante máxima, sendo esta

mais explicita no caso das tensões medidas na posição B. Na posição A, a diferença

entre os valores inicias e finais é mínima, ou seja, o shot peening aplicado foi

suficiente para uniformizar as tensões residuais superficiais de soldagem nos pontos

localizados do lado esquerdo e direto do cordão de solda. Os resultados iniciais de

medição das tensões apontam numa variação bem significativa dos valores da tensão

cisalhante máxima na posição de medição B, porém os resultados finais mostram que

Page 54: alívio das tensões residuais de soldagem por shot peening na

43

aconteceu uma redistribuição bastante visível destes valores e a variação deles ficou

numa faixa de até 40MPa, bem próxima da faixa de variação para resultados de

medição na posição A.

Gráfico 4 - Distribuição inicial e final dos valores da tensão cisalhante máxima na posição A (acima) e B (abaixo) para corpo de prova submetido ao tratamento por shot peening

Page 55: alívio das tensões residuais de soldagem por shot peening na

44

Os gráficos 5 e 6 mostram a distribuição inicial e final da tensão cisalhante

máxima na posição A e B, para solda de reparo sem e com shot peening. O corpo de

prova submetido ao shot peening apresenta tanto valores iniciais como valores finais

das tensões cisalhantes máximas menores em comparação com corpo de prova sem

shot peening. Comparando somente os resultados finais, podemos concluir que o

corpo de prova com tratamento de shot peening apresenta distribuição mais uniforme

das tensões cisalhante máximas, especificamente no caso dos pontos de medição

localizados na posição B.

Gráfico 5 - Distribuição da tensão cisalhante máxima na posição A, inicial (acima) e final (abaixo), para solda de reparo sem e com shot peening.

Page 56: alívio das tensões residuais de soldagem por shot peening na

45

Gráfico 6 - Distribuição da tensão cisalhante máxima na posição B, inicial (acima) e final (abaixo), para solda de reparo sem e com shot peening.

Page 57: alívio das tensões residuais de soldagem por shot peening na

46

As medições das tensões residuais com profundidade foram realizadas no ponto

localizado na posição A-2, no mesmo dia da soldagem e shot peening (resultados

inicias) e duas semanas depois (resultados finais), gráfico 7. Observa-se que o efeito

de shot peening está presente e o valor máximo de compressão, encontra-se na

profundidade entre 0.06 e 0.08mm. Para os resultados iniciais existe uma diferença de

30 até 40MPa nos valores da tensão nas direções longitudinal e transversal. Esta

diferença diminui nos resultados finais numa camada de 0.06mm de profundidade e os

valores na superfície ficam iguais, porém menores do que nos resultados iniciais.

Desta maneira podemos concluir que a migração das tensões de soldagem observada

para solda de reparo no trabalho influi também na distribuição com profundidade das

tensões residuais induzidas por shot peening.

Gráfico 7 - Valores iniciais e finais das tensões com profundidade nas direções longitudinal e transversal com relação ao cordão de solda no ponto de medição A-2 para corpo de prova com

solda de reparo submetido ao shot peening

Page 58: alívio das tensões residuais de soldagem por shot peening na

47

6. Conclusões

Após a análise dos resultados obtidos, pode-se concluir com este trabalho que:

O tratamento por shot peening do corpo de prova com solda de reparo

contribui na uniformização dos valores das tensões cisalhantes máximas na

superfície e introduz tensões de compressão na superfície e numa camada sub-

superficial;

O tratamento por shot peening não impede o efeito de redistribuição das

tensões de soldagem com tempo;

A redistribuição com o tempo dos valores das tensões no corpo de

prova com solda de reparo submetido ao tratamento por shot peening consiste na

diminuição dos valores da tensão cisalhante máxima, ou seja, na uniformização dos

valores das tensões principais. Desta maneira, o estado das tensões num corpo de

prova com solda de reparo submetido ao tratamento por shot peening “melhora com

tempo”;

A redistribuição com o tempo das tensões afeta os valores não somente

na superfície, mais também nas camadas sub-superficiais;

A variação das tensões observadas após o término do processo de

soldagem indica a necessidade de especificar nos resultados experimentais de

análise das tensões de soldagem, o período de tempo entre a execução da operação

de soldagem, shot peening e a realização das medições;

Para efeito de comparação dos resultados de simulação computacional

tanto do processo de soldagem como do processo de shot peening, com resultados

experimentais, o fenômeno de migração das tensões após execução do processo de

soldagem deve ser incluído nos modelos numéricos;

A observação do efeito de redistribuição das tensões de soldagem após

término do processo de soldagem pode contribuir significativamente para o

entendimento dos processos relacionados às tensões residuais de soldagem; ajudar

no ajuste dos modelos computacionais e na interpretação dos dados de simulação

numérica das tensões de soldagem;

Provavelmente, o período de estabilização do estado das tensões de

soldagem e sua distribuição final dependem do tipo de processo de soldagem e das

condições de soldagem, assim como da geometria, material, tamanho das peças e

Page 59: alívio das tensões residuais de soldagem por shot peening na

48

locais a serem reparados. Estudos sobre a relação entre estes parâmetros e o tempo

mínimo necessário para a estabilização do estado das tensões, para cada técnica de

soldagem, constituem assuntos de grande interesse para serem abordados em

pesquisas futuras;

7. Bibliografia

"Fórmula 62" - Equipamento Vibratório para Alívio de Tensão. (s.d.). Acesso em Maio

de 2015, disponível em Dreyfus Global :

http://www.dreyfusglobal.com/downloads/sre/SRE-Tech-Guide-Portuguese.pdf

Caso 050: Fratura Frágil dos Navios Classe LIBERTY (1941/1945). (2013). Acesso em

Junho de 2015, disponível em Inspeção de Equipamentos: Estudo de Casos:

http://inspecaoequipto.blogspot.com.br/2013/11/caso-050-fratura-fragil-dos-

navios.html

Chuvas, T. d. (2012). Estudo da Influência dos Parâmetros de Tratamento de Alívio

das Tensões Residuais por Vibração Mecânica em Juntas Soldadas a Plasma.

Niterói - RJ.

Estefen, S. F., Gurova, T., & Esteves, M. C. (15 a 19 de outubro de 2012). Efeito de

Shot Peening em Juntas Soldadas. 24° Congresso Nacional de Transporte

Aquaviário, Construção Naval e Offshore - SOBENA. Rio de Janeiro - RJ:

SOBENA, 2012.

Estefen, S. F., Gurova, T., & Leontiev, A. (2013). Solda de Reparo na Construção

Naval: Avaliação do Estado das Tensões Residuais. 12° Conferência sobre

Tecnologias de Equipamentos - COTEQ. Porto de Galinhas - Ipojuca - PE:

ABENDI, 2013.

Estefen, S. F., Gurova, T., Barbosa, P. T., & Esteves, M. C. (21 de Junho de 2013).

Alívio das Tensões Residuais de Soldagem por Shot Peening. 12° Conferência

sobre Tecnologia de Equipamentos - COTEQ. Porto de Galinhas - Ipojuca - PE:

ABENDI, 2013.

Estefen, S. F., Gurova, T., Werneck, D. S., & Leontiev, A. (2011). Efeito de

Redistribuição das Tensões Residuais de Soldagem. Conferência sobre

Tecnologia de Equipamentos - COTEQ. Porto de Galinhas - Ipojuca - PE:

ABENDI, 2011.

Felizardo, I., & Bracarense, A. Q. (s.d.). SOLDAGEM MIG/MAG E COM ARAME

TUBULAR.

Gonzales, M. A. (2009). Análise Numérico-Experimental das Tensões Residuais

Induzidas por Jateamento com Granalha em molas Automotivas. São Paulo -

SP.

Page 60: alívio das tensões residuais de soldagem por shot peening na

49

Gurova, T., Estefen, S. F., & Leontiev, A. (2012). Controle Dimensional e

Monitoramento das Tensões Residuais na Fase de Sub-Montagem Durante a

Fabricação de Navios. Congresso Nacional de Ensaios Não Destrutivos e

Inspeção - CONAEND. São Paulo - SP: ABENDI, 2012.

Gurova, T., Estefen, S. F., & Leontiev, A. (2012). Efeito de Shot Peening em Peças

com Tensões Pré-Existentes de Compressão. Congresso Nacional de Ensaios

Não Destrutivos de Inspeção - CONAEND. São Paulo - SP: ABENDI, 2012.

Gurova, T., Estefen, S. F., & Leontiev, A. (2012). Redistribuição da Tensões Residuais

de Soldagem. Conferência Internacional em Tecnologias Naval e Offshore -

NAVTEC . Rio Grande - RS.

Gurova, T., Quaranta, F., & Estefen, S. (2006). Monitoramento do Estado das Tensões

Residuais Durante a Fabricação de Navios. 21º Congresso Nacional de

Transporte Aquaviário, Construção Naval e Offshore - SOBENA. SOBENA,

2006.

Oliveira, F. A. (Março de 2014). Análise das Tensões Residuais Induzidas pelos

Tratamentos Mecânicos Superficiais na Construção de Navios. Rio de Janeiro -

RJ.

Processo com Arame Tubular - Características . (s.d.). Acesso em Junho de 2015,

disponível em Infosolda: http://www.infosolda.com.br/artigos/processos-de-

soldagem/29-biblioteca-digital/livros-senai/processos/159-processo-com-

arame-tubular-caracteristicas.html

Processo com Arame Tubular - Consumíveis . (s.d.). Acesso em Junho de 2015,

disponível em Infosolda: http://www.infosolda.com.br/artigos/processos-de-

soldagem/29-biblioteca-digital/livros-senai/processos/161-processo-com-

arame-tubular-consumiveis.html

Processos de Soldagem: Arames Tubulares. (2014). Acesso em Junho de 2015,

disponível em ESAB:

http://www.esab.com.br/br/pt/education/blog/processo_soldagem_arames_tubul

ares.cfm

Riva, I. d. (2004). Análise de Fadigas de Estruturas Metálicas com Ênfase em

Offshore. Rio de Janeiro - RJ.

Scuracchio, B. G. (2012). Tensões Residuais Induzidas por Shot-Peening e

Durabilidade de Molas em Lâmina. São Paulo - SP.

Serizawa, G. H., & Gallego, J. (2005). Análise Estrutural da Aplicação do Processo de

Jateamento com Granalhas de Aço (Shot Peening) em Rotores Hidrelétricos.

XII Congresso Nacional de Estudantes de Engenharia Mecânica. Ilha Solteira -

SP.

Souza, E. C., Garuzzi, J. M., & Durão, B. R. (2013). Influência da Soldagem na

Geração de Tensões Residuais e Distorções em Painéis Soldados na Indústria

Naval. Aracruz - ES.

Page 61: alívio das tensões residuais de soldagem por shot peening na

50

Tratamento Térmico de Alívio de Tensões na soldagem. (02 de Junho de 2014).

Acesso em Maio de 2015, disponível em ESAB:

http://www.esab.com.br/br/pt/education/blog/tratamento_termico_alivio_tensoes

_soldagem.cfm

Vieira, D. L., Silva, B. M., Monin, V., Gurova, T., & Leontiev, A. (2008). Nova Técnica

de Avaliação do Estado das Tensões de Soldagem. Congresso Nacional de

Ensaios Não Destrutivos e Inspeção & Conferência Internacional sobre

Evaluación de Integridad y Extensión de Vida de Equipos Industriales -

CONAEND&IEV . São Paulo - SP.

Zeemann, A. (2003). Tensões Residuais de Soldagem. Acesso em Maio de 2015,

disponível em Infosolda: http://www.infosolda.com.br/artigos/metalurgia/394-

tensoes-residuais-de-soldagem.html