2. fundamentos da medição por coordenadas

18
2. Fundamentos da medição por coordenadas A base para a medição por coordenadas é o sistema cartesiano, utilizando a representação de cada ponto num sistema ortogonal de coordenadas (x, y, z). A partir desta informação de posição, registrada diretamente do componente, é possível avaliar as características dimensionais do projeto. Na primeira máquina MMC desenvolvida no final da década de 50 pela empresa FERRANTI Ltd. para atender demandas da indústriaos movimentos da máquina eram definidos por operações essencialmente manuais enquanto as coordenadas cartesianas dos pontos tocados somente eram registradas no ―display‖ da máquina. Os eixos de medição x e y apresentavam curso de 610 mm e 381 mm, respectivamente, e o eixo z um curso de 254 mm sem registro de medida. A resolução apresentada era de 0,012mm com uma incerteza declarada do equipamento de 0,025mm (ORREGO, et al., 2000). De forma crescente, a utilização da MMC conquistou espaço no universo da manufatura sendo introduzida em todo o ciclo produtivo: participa do desenvolvimento do processo de fabricação, do controle de processos e encontra grande aplicação no controle dimensional da qualidade do produto acabado. A evolução das MMC, que se modernizaram ao incorporar controladores CNC, possibilitou uma maior velocidade de medição e redução significativa dos erros atribuíveis às operações então presentes nas MMC manuais. Por sua vez, os sistemas de aquisição com múltiplos apalpadores ou indexáveis trouxeram grande versatilidade e flexibilidade para as medições. O controle de especificações de produto, utilizando MMC, tornou possível a avaliação de distintas características dimensionais em um mesmo equipamento. Cada novo modelo de máquina passou a apresentar uma maior velocidade de movimentação e expressivas reduções dos erros máximos informados pelo fabricante do equipamento. Resultado de investimentos sucessivos no aprimoramento desses equipamentos, pela introdução de tecnologias inovadoras, permitiu sem dúvida a redução das incertezas associadas às medições, o que tem permitido de forma crescente, a conseqüente

Upload: others

Post on 19-Nov-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2. Fundamentos da medição por coordenadas

2. Fundamentos da medição por coordenadas

A base para a medição por coordenadas é o sistema cartesiano, utilizando a

representação de cada ponto num sistema ortogonal de coordenadas (x, y, z). A

partir desta informação de posição, registrada diretamente do componente, é

possível avaliar as características dimensionais do projeto.

Na primeira máquina MMC —desenvolvida no final da década de 50 pela

empresa FERRANTI Ltd. para atender demandas da indústria— os movimentos

da máquina eram definidos por operações essencialmente manuais enquanto as

coordenadas cartesianas dos pontos tocados somente eram registradas no

―display‖ da máquina. Os eixos de medição x e y apresentavam curso de 610 mm

e 381 mm, respectivamente, e o eixo z um curso de 254 mm sem registro de

medida. A resolução apresentada era de 0,012mm com uma incerteza declarada do

equipamento de 0,025mm (ORREGO, et al., 2000). De forma crescente, a

utilização da MMC conquistou espaço no universo da manufatura sendo

introduzida em todo o ciclo produtivo: participa do desenvolvimento do processo

de fabricação, do controle de processos e encontra grande aplicação no controle

dimensional da qualidade do produto acabado.

A evolução das MMC, que se modernizaram ao incorporar controladores

CNC, possibilitou uma maior velocidade de medição e redução significativa dos

erros atribuíveis às operações então presentes nas MMC manuais. Por sua vez, os

sistemas de aquisição com múltiplos apalpadores ou indexáveis trouxeram grande

versatilidade e flexibilidade para as medições. O controle de especificações de

produto, utilizando MMC, tornou possível a avaliação de distintas características

dimensionais em um mesmo equipamento. Cada novo modelo de máquina passou

a apresentar uma maior velocidade de movimentação e expressivas reduções dos

erros máximos informados pelo fabricante do equipamento. Resultado de

investimentos sucessivos no aprimoramento desses equipamentos, pela introdução

de tecnologias inovadoras, permitiu sem dúvida a redução das incertezas

associadas às medições, o que tem permitido de forma crescente, a conseqüente

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 2: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 28

melhoria da qualidade dos produtos produzidos ou controlados por essas

máquinas.

Resultante desses aprimoramentos —que permitiram sofisticações e a

modernização das atuais MMC, melhorando os aspectos construtivos do controle

dimensional e da fabricação, a operação e o processamento de dados— a nova

versão do equipamento passou a ter grande influência sobre o resultado da

medição. Devido à vasta gama de fatores de influência e à forte interação que

existe entre os diversos fatores que afetam a qualidade da medição, a avaliação da

confiabilidade metrológica resultante dos processos de medição passou a impor

novos desafios. Avaliar processos de medição com o uso de MMC é uma tarefa

que demanda conhecimento técnico e habilidade do avaliador sobre a tecnologia

de medição por coordenadas, sobre os métodos de avaliação dos processos de

medição, sobre o impacto que a falta de confiabilidade terá sobre o processo de

medição. Este conhecimento especializado tornou-se indispensável para que se

possa reconhecer as causas especiais e realizar as intervenções necessárias para

implementar as correções cabíveis. A falta desse conhecimento específico pode

ser indutora de equívocos e operação indevida, impondo ameaças no dia-a-dia da

prática de controle dimensional.

2.1. Fontes de erros em medição por coordenadas

Os fatores que atuam sobre os processos de medição por coordenadas são

normalmente divididos em cinco grandes grupos: máquina, ambiente, peça,

estratégia de medição e operador. Não obstante a literatura especializada

comumente classificar esses fatores de forma distinta, raramente eles atuam de

maneira independente sobre os resultados da medição, fato que torna impraticável

uma avaliação isolada das fontes associadas de erro. Apresentam-se, a seguir, os

principais fatores de influência sobre os resultados de medições por coordenadas e

suas inter-relações.

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 3: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 29

2.1.1. A máquina de medir por coordenadas

As MMC existentes possuem distintas arquiteturas e configurações, de

acordo com a aplicação para a qual são desenvolvidas. Dentre os subsistemas que

integram a maioria das MMC destacam a estrutura (guias e mancais), escalas,

sistema de apalpação, controlador e software de medição (comando numérico e

processamento de dados). No que concerne as prováveis fontes de erro do sistema,

estas originam-se, notadamente da estrutura e do sistema de apalpação

2.1.1.1. A estrutura

As fontes de erro provenientes da estrutura podem ser de origem estática

(desvios geométricos e de montagem) ou de origem dinâmica. O modelo de guia

rígida (VDI/VDE 2617-3, 1989) é o mais amplamente utilizado para descrever os

erros de origem geométrica das MMC. Esse modelo descreve seis possíveis erros

para cada guia (três de rotação e três de translação).

Erros de translação — ocorrem na direção transversal ao movimento (erros de

retitude das guias) e na direção paralela ao movimento (erros de escala). Os erros de

rotação, também provocados pelos erros de retitude das guias, são erros de primeira

ordem, e terão tanto mais influência quanto mais afastada a característica sendo

avaliada estiver das escalas.

Erros de escala ou posição e dois de retilineidade - representam a translação, os

de rotação ou angulares são chamados roll, pitch, yaw (figura 4).

Erros de ortogonalidade — Além dos 18 erros de corpo rígido para as três guias,

os erros de ortogonalidade entre as guias (nos planos XY, YZ e ZX) (figura 4)

caracterizam as diferentes (vinte e um) componentes de erros paramétricos

encontrados na maioria das MMC tridimensionais; i.e. tipo portal móvel (ISO

10360-1, 2000). A influência do erro é proporcional ao tamanho e distância entre as

características medidas

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 4: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 30

Figura 4. Erros geométricos associados à operação de uma máquina de medir por coordenadas: (a)

seis possíveis naturezas de erros geométricos do carro com movimento de translação pura na

direção Y; (b) três possíveis erros angulares - a k o – devido à falta de ortogonalidade entre os

eixos perpendiculares a direção k. (ORREGO, et al., 2000)

Desvios de retitude das guias — são geralmente derivados do processo de

fabricação, mas podem também ser modificados pelo carregamento sobre as

mesmas e pelos gradientes térmicos do ambiente. Os erros de ortogonalidade são

mecanicamente ajustados (não de maneira muito fina, porém) durante a montagem.

Desvios residuais de fabricação e de montagem — para promover a compensação

dos erros residuais de fabricação e de montagem é utilizando um ajuste via software

conhecido como CAA (computer-aided accuracy). Esse método se baseia no

mapeamento dos erros residuais através de ensaios com artefatos calibrados, e na

sua posterior compensação via software. Algumas máquinas possuem correção para

os 21 erros paramétricos, mas a maioria possui apenas para os erros de escala e de

ortogonalidade.

Desvios de origem dinâmica — são devidos às acelerações às quais a estrutura é

submetida. Ocorrem durante a desaceleração da MMC para entrar em velocidade de

apalpação (no modo de aquisição ponto a ponto) ou durante as aquisições por

scanning (modo de aquisição contínuo).

2.1.1.2. O sistema de apalpação

O sistema de aquisição por contato (sistema de apalpação) é subdivido em

duas categorias principais: os comutadores (ou touch-triggers) e os analógicos (ou

medidores). O primeiro tipo adquire os pontos de forma individual, perdendo

contato com a superfície adquirida após a aquisição de cada ponto. O segundo

adquire os pontos sem perder contato com a superfície (modo scanning),

geralmente podendo também adquirir pontos de forma individual. Cada tipo

possui suas próprias peculiaridades com relação aos erros de medição.

a) b)

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 5: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 31

Construtivamente, o apalpador comutador é mais simples que o analógico.

O princípio de funcionamento consiste em uma chave comutadora (ou cristal

piezelétrico nos sistemas mais modernos), segurada em sua posição por uma mola,

que altera seu estado de tensão elétrica quando submetida a um deslocamento. No

momento que a alteração da tensão é detectada, são adquiridas simultaneamente

as coordenadas das três escalas, representando a posição do centro da esfera do

apalpador. Geralmente são acoplados a um cabeçote indexador, que confere

grande versatilidade com respeito à orientação dos apalpadores.

Os principais erros associados aos apalpadores comutadores são o pré-travel

(erro devido à flexão da haste do apalpador antes que a força para comutação seja

atingida) e o erro de devido à anisotropia na força necessária para comutação de

acordo com a direção de apalpação. A exatidão dos modernos sistemas

comutadores é relativamente alta em detrimento do tempo de aquisição de pontos

individuais, que é extremamente lento quando comparado aos sistemas de

aquisição por scanning. Ainda, o cabeçote indexável ao qual o apalpador

comutador é geralmente acoplado constitui uma fonte adicional de erro. A

repetitividade de posicionamento angular influencia os resultados de medição, e

pode introduzir erros sistemáticos significativos quando o processo de

qualificação dos apalpadores é realizado a partir de um único ciclo (prática

comum em medições industriais).

Os sistemas analógicos são mais sofisticados, compostos por um conjunto

de sensores (indutivos ou ópticos) responsáveis pela efetiva medição da superfície

com referência a um caminho pre-estabelecido pelo usuário. A aquisição do perfil

é feita de maneira conjunta pelo sistema de apalpação e pelas escalas. São

subdivididos em sistemas ativos (que efetuam o controle da força de medição de

forma dinâmica) e passivos (sem controle da força de medição por parte do

cabeçote medidor). A aquisição de pontos individuais ocorre quando um

deslocamento pre-determinado (que corresponde a uma força de contato imposta

pelas molas) é atingido, o que confere a esses sistemas altíssima exatidão, mas os

torna mais lentos que os sistemas comutadores. Os principais erros associados ao

modo scanning são: a resposta dinâmica do sistema (velocidade de medição

versus massa, rigidez e amortecimento do sistema de apalpação, limitando a faixa

de freqüências em que o sistema é capaz de adquirir sem atenuação); a flexão

(média e variante) dos apalpadores devido à dificuldade do controle da força de

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 6: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 32

contato em tempo real para aquisições em alta velocidade; e a geração de calor no

interior do cabeçote.

2.1.2. Ambiente de medição

O ambiente de medição pode afetar o processo de medição de distintas

maneiras. As fontes de erro mais influentes relacionadas ao ambiente são a

temperatura, as vibrações e as partículas em suspensão.

A temperatura do ambiente pode apresentar uma tendência média em

relação à temperatura de referência, flutuações dessa tendência média ao longo do

tempo e variações em torno dessa tendência dentro do volume da sala de medição.

A temperatura de referência definida para controle dimensional é de 20°C (ISO 1,

2002). Algumas MMC possuem sistemas para medição de temperatura nas escalas

e nas peças, de forma a minimizar o efeito das tendências médias e flutuações da

temperatura ao longo do tempo. Os gradientes volumétricos da temperatura

ambiente provocam distorções não lineares na estrutura. Se esses gradientes forem

muito pronunciados, erros de rotação e translação irão surgir decorrentes desse

fator. Se houver uma variação significativa desses gradientes ao longo do tempo, a

matriz de erros utilizada pelo CAA perderá a validade. O material da estrutura

deve apresentar baixos coeficientes de expansão térmica (para minimizar

distorções) e alta condutividade térmica (para auxiliar na rápida equalização da

temperatura no caso de flutuações térmicas no ambiente).

Em máquinas próximas do ambiente de produção, o nível de vibrações pode

ser extremamente elevado. Vibrações podem representar um problema ainda mais

crítico no caso de equipamentos operando com apalpadores analógicos no modo

scanning. A influência das vibrações provenientes do ambiente de medição pode

ser minimizada pelo uso adequado de bases inerciais e amortecedores sob as

MMC.

2.1.3. A peça objeto da medição

A peça a ser medida não representa fonte de erro por si própria. Entretanto,

as interações de suas características físicas e mecânicas (e suas variações) com a

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 7: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 33

estratégia de medição, com o ambiente e com a própria MMC provocam uma das

mais significativas fontes de erro em medição por coordenadas (ARENHART, et

al., 2008).

Se o ambiente de medição apresentar tendência de aumento ou redução na

temperatura média, as medições de características de tamanho (diâmetros,

posições) serão tão mais afetadas quanto maior o coeficiente de expansão térmica

médio da peça (e também a dimensão da característica). Se houver uma variação

do coeficiente de expansão térmica do material utilizado, entre lotes do processo

de produção, haverá uma variação do erro de medição entre os distintos lotes.

A massa da peça pode também distorcer a estrutura e alterar a condição do

ajuste via CAA. Quanto maior for a dimensão da característica, maior será o os

erro de medição resultante dos desvios geométricos da estrutura. As variações dos

desvios de forma característicos do processo de fabricação também podem

interagir com erros geométricos e dinâmicos da máquina, provocando uma

variação do erro de medição entre peças, devido ao processo de fabricação. A

interação entre peça e estratégia de medição será discutida na próxima seção.

2.1.4. Estratégia de medição

A definição da estratégia de medição se dá em três etapas:

Preparação da medição (tempo de estabilização térmica das peças,

periodicidade e método de qualificação dos apalpadores, fixação das peças,

análise do desenho de projeto da peça a ser medida);

Aquisição dos dados (parâmetros da MMC, configuração de apalpadores,

número de pontos definições de scanner);

Avaliação dos parâmetros geométricos (parâmetros de filtragem, tipos de

ajustes matemáticos, relação entre os elementos geométricos).

Com relação à primeira etapa, o tempo de estabilização das peças requer

atenção especial. Os equipamentos mais modernos, estão dotados de termômetros

que permitem medir temperatura da peça, da estrutura e do meio ambiente. Isto

possibilita a compensação do resultado, utilizando o coeficiente de dilatação

térmica do respectivo material, para a dimensão em relação à temperatura de

referência. Porém como a medição de temperatura é feita na superfície da peça, no

caso da peça não estar estabilizada termicamente, a compensação poderá

apresentar um erro residual elevado.

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 8: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 34

A periodicidade da qualificação dos apalpadores também é um fator

importante, devendo ser mais frequente no uso de múltiplos apalpadores (ou

múltiplas orientações com cabeçotes indexáveis) e em ambientes onde há a

variação significativa da temperatura do ambiente. Quando ocorre a mudança de

temperatura a distância entre os apalpadores é alterada, devendo ser verificada a

necessidade de uma requalificação dos mesmos. Alterações significativas, tanto na

temperatura do meio ambiente ou observada nos resultados de medição de um

padrão de acompanhamento, definem a necessidade de uma requalificação dos

apalpadores.

Durante à aquisição dos dados, os parâmetros ajustáveis da MMC, a

velocidade de movimentação e a distância de aproximação (que definem o tempo

de estabilização dinâmica da estrutura para medições ponto a ponto) ou a

velocidade de medição e a força de medição (para medições por contato contínuo)

são os principais parâmetros. Quanto maior a velocidade de movimentação da

estrutura e menor a distância de aproximação existe a redução da qualidade dos

pontos adquiridos, ou seja, é maior o erro de medição. Em medições por scanning,

a força de contato e a velocidade de movimentação são os parâmetros críticos. A

interação entre os desvios de forma (e as variações dos mesmos) e o número e a

distribuição dos pontos utilizados na medição dos elementos é um fator

preponderante sobre a qualidade dos resultados de medição (WECKENMANN, et

al., 1998).

A configuração dos apalpadores é geralmente um fator de maior importância

nas medições que envolvem definição de uma ou mais referências a serem

medidas com distintos apalpadores, como comumente ocorre em especificações

de posição e orientação. Quanto maior o comprimento dos apalpadores, mais eles

estarão sujeitos a erros geométricos e a variação do gradiente de temperatura no

volume em torno da MMC tem influência sobre a estrutura. Isso é ainda mais

crítico com o uso de cabeçotes indexáveis, pois os erros residuais da calibração

podem ser elevados, dependendo do método utilizado na qualificação dos

mesmos.

A representação de um elemento geométrico será tão mais fiel quanto maior

for a amostragem utilizada para sua descrição. No contexto industrial, contudo, os

curtos tempos de medição requeridos não permitem altas densidades de

amostragem. Quando o processo de produção apresentar variabilidade nos desvios

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 9: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 35

de forma entre peças superior à repetitividade do processo de medição, as

estratégias de medição com baixa densidade de amostragem apresentam distintos

resultados dos valores de erro de medição entre peças. Essa fonte de variabilidade

é resultado da interação entre a estratégia de amostragem utilizada e os erros de

forma típicos gerados pelo processo de fabricação, sendo independente do

equipamento utilizado.

Estudos recentes revelaram que os métodos de avaliação dos parâmetros

geométricos utilizados nas medições industriais podem diferir significativamente

daqueles requeridos para uma correta avaliação da especificação segundo as

normas (ARENHART, et al., 2008). Na avaliação dos parâmetros os erros são

causados pela escolha incorreta dos algoritmos de ajuste que representem a função

da característica avaliada, passando por limitações do software de medição (p.ex.

a ausência de ajustes tipo best-fit para especificações onde nem todos os graus de

liberdade estão restritos, ou a desconsideração dos erros de forma dos elementos

ajustados nas avaliações), até erros grosseiros gerados por interpretações

equivocadas das especificações geométricas (p.ex. uso de referências não

especificadas). Os resultados mostraram que avaliações inconsistentes dos

parâmetros geométricos, tais como definidos pelas especificações geométricas de

produto, podem gerar erros superiores aos que são causados pelo conjunto

MMC/ambiente.

2.1.5. O operador

O operador, enquanto executor das tarefas de medição, terá pouca ou

nenhuma influência sobre os resultados de medição. Quando o ―operador‖ é

mencionado como fator de influência sobre os resultados de medição, geralmente

se está referindo ao recurso humano responsável pela definição das estratégias de

medição e avaliação do desempenho metrológico do processo de medição.

O conhecimento técnico especializado requerido do operador de medição

por coordenadas, responsável por planejar a medição (elaborar estratégia) e

avaliar o processo e seus resultados, vai muito além da proficiência em operar o

equipamento. Para alcançar o rendimento máximo do equipamento, sem superar

os critérios de aceitação do processo de medição para cada tarefa específica de

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 10: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 36

medição, são necessários conhecimentos técnicos em distintas áreas. Estes

conhecimentos, envolvendo a medição por coordenadas, incluem interpretação

das especificações de produto (ISO 1101, 2004; ASME Y14.5M, 1994),

conhecimento da tecnologia de medição por coordenadas, conhecimento da peça a

ser avaliada e seu processo de fabricação, conhecimento de metrologia e

estatística (para avaliação do processo de medição), etc.

O desconhecimento das especificações do produto fatalmente irá incorrer

em erros grosseiros como os citados na seção anterior. O uso indiscriminado de

velocidades de medição elevadas e/ou densidades de amostragem reduzidas, assim

como a redução da distância de aproximação para redução dos tempos de

medição, sem uma posterior validação do processo de medição, poderão levar os

resultados de medição a apresentarem erros completamente incompatíveis com

aqueles exigidos pelas tarefas de medição (OLIVEIRA, et al., 2003). Desta forma,

pode-se concluir: (i) que o operador (enquanto planejador e avaliador dos

processos de medição por coordenadas) é uma peça-chave para assegurar o uso

eficaz dos equipamentos de medição e (ii) que os investimentos feitos de forma

isolada em equipamento e ambiente podem não trazer o retorno esperado em

termos de desempenho metrológico dos processos de medição por coordenadas.

2.2. Avaliação da confiabilidade metrológica de processos por MMC

A realização de medições é tarefa essencial para assegurar a qualidade de

um produto durante todo o seu ciclo de vida. As medições realizadas no contexto

do desenvolvimento e validação do processo de produção de um produto

geralmente requerem o mais alto desempenho metrológico possível. Isto se dá

pelo fato do custo por falhas ocorridas nas etapas iniciais da vida de um produto

(não detectadas e não corrigidas antes de seu lançamento) ser, via de regra,

elevado. Portanto, nessa etapa os sistemas de medição devem apresentar alta

exatidão enquanto os procedimentos de medição tendem a ser mais elaborados e

mais robustos.

Após o lançamento da linha de produção, as medições passam a ser

realizadas para o controle e avaliação da produção, situação em que, de forma

geral, são empregados sistemas de medição e procedimentos adequados à

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 11: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 37

realidade da mesma. Neste contexto, os procedimentos de medição geralmente são

definidos de modo a se obter o menor tempo de medição possível, em detrimento

da confiabilidade das medições. O desconhecimento do desempenho metrológico

dos processos de medição por coordenadas pode levar, entretanto, a altos custos

por falhas internas e externas. Portanto, faz-se necessário uma validação do

processo de medição, de modo a se obter o status de confirmação metrológica do

processo de medição (ISO 10012, 2003).

A confirmação metrológica depende do critério de aceitação adotado para o

processo de medição, que por sua vez depende da aplicação a que se destinam as

medições. As principais atividades da garantia da qualidade relacionadas ao

controle dimensional de peças de linha de produção são a avaliação da

conformidade do produto, o controle estatístico e a avaliação da capacidade dos

processos de produção.

2.2.1. Metrologia para garantia da qualidade

A metrologia requerida para se assegurar a garantia da qualidade será

discutida segundo três vertentes distintas, a saber:

Controle estatístico do processo — O controle estatístico dos processos de

produção (CEP) tem como objetivo manter os processos em estado de

controle e previsibilidade, eliminando causas especiais de variação. Evita-se,

assim, a sua deterioração natural e reduz-se continuamente a variabilidade

por causas comuns e estruturais. O controle é feito a partir de uso de cartas de

controle, permitindo, assim detectar e corrigir causas especiais no início da

implantação do processo. Durante a fase da produção é aplicado para avaliar

a estabilidade do processo de produção ao longo do tempo. Na avaliação do

controle estatístico do processo de produção, a tendência apresentada pelos

processos de medição não influencia os limites de controle, mas sim a

posição do processo. Para esta aplicação, o critério de aceitação para o

processo de medição deve dizer respeito a sua variabilidade frente à

variabilidade do processo de produção. Se o processo de medição apresentar

variabilidade relativamente elevada, os limites de controle ficarão relaxados,

e a carta perderá a capacidade de detectar variabilidade por causas especiais e

alterações na média do processo de produção.

Capacidade do processo de produção — A capacidade de um processo de

produção procura avaliar o mesmo frente às especificações do produto. A

partir da avaliação de capacidade, pode-se estimar qual a fração não-

conforme a ser gerada pelo processo de produção. Entretanto, a avaliação

dessa capacidade somente tem valor preditivo se o processo estiver sob

controle estatístico. Os índices de capacidade de processo de produção mais

usuais são o Cp (que avalia a dispersão do processo frente à amplitude do

intervalo de tolerância) e o Cpk (que avalia, além da dispersão, a posição do

processo com relação à média do intervalo de tolerância). Para realizar a

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 12: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 38

avaliação da capacidade, é importante que o sistema de medição apresente

baixa variabilidade (para o caso do índice Cp) e também tendência não-

significativa (para o caso do índice Cpk). A capacidade Cp observada a partir

das medições denota uma composição da variabilidade apresentada pelo

processo de produção e da variabilidade inerente ao processo de medição,

fazendo com que o processo de produção pareça menos capaz do que ele é

efetivamente. O mesmo é válido para o índice Cpk, com a diferença que,

dependendo do sinal da tendência apresentada pelo processo de medição, o

processo de produção pode aparentar ser mais ou menos capaz do que ele é

na realidade.

Inspeção 100% — A avaliação da conformidade de 100% do produto

produzido é utilizada para processos com índice da capacidade inerentemente

baixos, que geram uma fração não-conforme elevada; para liberação ou

aceitação de lotes; ou para avaliação de características críticas. Na avaliação

da conformidade, os valores obtidos pelo sistema de medição são

confrontados às especificações do produto. Nesse processo de avaliação, a

incerteza de medição deve ser levada em consideração. A Norma ISO 14253-

1 (ISO 14253-1, 1998) apresenta um conjunto de regras que pode ser

utilizado para classificação de produtos. O fornecedor deve reduzir a

amplitude do intervalo de tolerância em função da incerteza de medição, para

que seja evitado que peças com possibilidade de apresentarem defeitos (na

região de dúvida definida pelo intervalo de incerteza em torno da tolerância)

cheguem até o cliente. Um controle dimensional tem por função segregar

corretamente os componentes conformes dos não conformes, porém o não

uso das regras pode levar a erros de classificação de produtos, figura 5, e

consequentemente a elevados custos por falha externa e interna.

Produção de componentes

Processo de inspeção

inadequado

Reprovação Indevida

Aumento de sucata

Ação indevida CEP

Falhas :de componentesde montagem

Conseqüências

conforme

conforme

conforme

conformeconforme

conforme

conforme

conforme

conforme

conforme

NÃO conforme

NÃO conforme

NÃO conforme

NÃO conforme

NÃO conforme

NÃO conforme

NÃO conforme

NÃO conforme

NÃO conforme

NÃO conforme

Figura 5. O processo de medição e suas consequências, adaptado de (OLIVEIRA, et al., 2003)

Produção de componentes

Controle dimensional

Satisfação dos clientes devido

a qualidade do produto

Redução amostragem

processo estavel

Facilidadede montagem

Conseqüências

conforme

conforme conforme

conforme

conforme conforme

conforme

NÃO conforme

NÃO conforme

NÃO conforme

NÃO conforme

NÃO conforme

NÃO conforme

NÃO conforme

NÃO conforme

conforme

conforme

conforme

NÃO conforme

NÃO conforme

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 13: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 39

Um estudo recente (ARENHART, et al., 2009) mostrou que os custos

associados à qualidade para inspeção realizada sem o uso das regras definidas pela

ISO 14253-1 são iguais ou maiores do que aqueles que fazem uso da inspeção

realizada com a redução do intervalo de incerteza. Este fato fica ainda mais

marcante quando os processos de produção refletem baixa capacidade e/ou

características críticas (custo por falha externa muito superior ao custo por falha

interna).

2.2.2. O manual de análise dos sistemas de medição

O Manual de Análise de Sistemas de Medição (MSA) (CHRYSLER;

FORD; GENERAL MOTORS, 2003) apresenta um conjunto de testes estatísticos

que permitem avaliar a confiabilidade metrológica dos processos de medição

frente aos processos de produção e às especificações de produto. Estes testes

estatísticos têm critérios de aceitação bem definidos e permitem avaliar a

capacidade dos sistemas de medição para a realização das tarefas de CEP, de

avaliação da capacidade do processo de produção e de avaliação da conformidade

de produtos.

O conjunto de testes avalia o desempenho metrológico do processo de

medição a partir de suas características metrológicas, separadamente. O processo

de medição terá atingido o status de confirmação metrológica segundo o MSA se

for aprovado em todos os testes. Entretanto, como os valores de referência

utilizados para estes testes não requerem que uma estimativa incerteza de medição

seja declarada, não fornecerão rastreabilidade ao processo de medição.

A seguir será conduzida uma breve revisão das características

metrológicas e respectivos testes estatísticos utilizados para acessá-las, quando o

foco recai nos processos de medição por coordenadas. São elas:

Repetitividade — A repetitividade (INMETRO VIM, 2008; INMETRO

VIM, 2008)é definida no MSA como a variação nos valores de medição

obtidos por um instrumento, quando utilizado por um mesmo operador,

medindo características idênticas na mesma peça. Em última análise, é a

menor variabilidade possível de ser obtida por um determinado sistema de

medição. No Apêndice D, o manual apresenta um teste estatístico para

avaliação da repetitividade, utilizando uma única peça medida 10 ou mais

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 14: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 40

vezes por um único operador. Entretanto, o MSA menciona que esse teste

não serve para o propósito de validação do processo de medição.

Tendência — A tendência (INMETRO VIM, 2008) é definida no MSA

como uma estimativa do erro sistemático do processo de medição. O teste

estatístico utilizado visa a avaliar se a tendência é ou não significativa frente

às variações por causa comum do processo de medição. O teste consiste em

se obter uma peça da linha de produção, determinar seu valor de referência,

escolher apenas um operador que irá realizar 10 ou mais medições na peça.

Caso a tendência resulte significativa, o manual recomenda que ela seja

corrigida antes da aprovação e liberação do sistema de medição para o uso.

Na avaliação de especificações de produto em máquinas de medir por

coordenadas, a tendência nem sempre é passível de correção, pois os erros

encontrados são resultado de um complexo sistema de causas. Por exemplo,

na avaliação do erro de posição de um furo em relação a duas referências

nominalmente ortogonais, não é mais possível saber a magnitude nem o

sentido da contribuição de cada escala para o erro observado, podendo tornar

inconsistente uma correção aplicada diretamente ao valor do erro de posição.

Linearidade — A linearidade é definida no MSA como a variação da

tendência ao longo da faixa de operação do instrumento. O teste estatístico de

linearidade é similar ao realizado para verificação da tendência, porém sendo

utilizadas cinco ou mais peças com seus valores de referência determinados,

escolhidas de maneira a cobrir toda a faixa de operação do instrumento. Esse

teste avalia tanto a tendência (offset) do sistema de medição quanto o erro de

ganho do sistema de medição. Caso o erro de linearidade resulte significativo,

o manual recomenda que seja corrigida antes da aprovação e liberação do

sistema de medição para o uso. Em máquinas de medir por coordenadas, um

teste semelhante é o ensaio de avaliação do máximo erro permissível para

medição e comprimentos (MPEE), conforme definido pela ISO 10360-2 (ISO

10360-2, 2001). Embora esse teste não avalie a linearidade frente à

repetitividade do equipamento, ele a avalia contra critérios de aceitação

estabelecidos pelo fabricante (especificações do fabricante). Os critérios de

aceitação para esse teste também podem ser definidos internamente ou no

contrato entre fornecedor e cliente.

Estabilidade — A estabilidade (INMETRO VIM, 2008) é definida no MSA

como a variação da tendência ao longo do tempo. O teste estatístico consiste

em selecionar uma peça que será medida por um único operador ao longo de

um período de tempo. A avaliação não difere de um estudo de CEP, podendo

ser realizado em fase 1 e 2, embora o manual não mencione o procedimento.

Em máquinas de medição por coordenadas, estudos similares são os interim

checks (ou ensaios de verificação rápida) (ISO 10360-2, 2001) (NADERLLI,

et al., 2006).

Reprodutibilidade — A reprodutibilidade é definida pelo MSA como a

variação da média das medições realizadas por diferentes operadores,

utilizando o mesmo sistema de medição e medindo características idênticas

na mesma peça. O termo reprodutibilidade não apenas se refere à diferença

entre operadores, a qualquer diferença que possa existir entre conjuntos de

subgrupos (e.g.:. um mesmo operador utilizando dois sistemas de medições

diferentes, ou utilizando dois procedimentos diferentes). Em medição por

coordenadas uma situação típica é a medição de um mesmo tipo de peça em

distintos locais dentro do volume de medição da MMC. Estudos realizados

por (ARENHART, et al., 2008) revelaram que diferenças significativas são

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 15: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 41

obtidas ao se medir uma mesma peça em distintas posições/orientações no

mesmo equipamento, principalmente na avaliação de especificações que

possuem referências físicas e requerem o uso de múltiplos apalpadores (p.ex.

especificações de posição e orientação). Não existe no MSA um teste

estatístico para avaliar especificamente a significância da reprodutibilidade

frente à repetitividade. Entretanto, o guia Evaluating the Measurement

Process (EMP) (WHEELER, et al., 1989) utiliza testes de hipótese baseados

em cartas de controle com limites de três sigmas para comparar tendência e

inconsistência (variação da dispersão) entre conjuntos de subgrupos com

relação à repetitividade do processo de medição, ao estilo dos demais estudos

apresentados pelo MSA.

Repetitividade & Reprodutibilidade — A ―repetitividade e

reprodutibilidade‖ (R&R) é definida no MSA como a estimativa da variação

combinada da repetitividade e reprodutibilidade. O teste estatístico consiste

na medição de cinco (5) ou mais peças representativas da variação esperada

do processo de produção, com dois ou três ciclos de medição realizados em

condições de repetitividade, para todos os subgrupos entre os quais pode

haver reprodutibilidade significativa. As estimativas de R&R são comparadas

à variação total do processo de produção (TV - total variation) encontrada no

estudo (%R&R/TV); e ao intervalo de tolerância (%R&R/Tol). O parâmetro

%R&R/TV posiciona o processo de medição frente à variabilidade do

processo de produção, sendo indicado quando as medições são utilizadas para

controle estatístico e avaliação da capacidade do processo de produção. O

parâmetro %R&R/Tol relaciona o processo de medição com o intervalo de

tolerância, sendo utilizado quando as medições são utilizadas para avaliação

da conformidade. O processo de medição é considerado capaz (com relação à

variabilidade) para desempenhar a tarefa para o qual é utilizado se os

parâmetros resultarem inferiores a 10% e marginalmente capaz quando entre

10% e 30%. O parâmetro R&R não pode ser considerado como estimador da

variabilidade total do processo de medição, uma vez que desconsidera a

variabilidade que pode ser provocada pela interação entre os erros de forma

inerentes das características (e suas variações ao longo do processo de

produção) e o procedimento adotado (no MSA, essa fonte de variabilidade é

referida como within part variation). No caso de processos de medição por

coordenadas, essa fonte de variabilidade, como anteriormente citado, não

pode ser negligenciada, sendo necessário um método para incluí-la na

avaliação da análise da variabilidade do processo de medição.

2.2.3. A incerteza de medição

A incerteza de medição é um dos mais poderosos estimadores da

confiabilidade metrológica de um processo de medição, uma vez que se propõe a

levar em consideração em um único parâmetro todas as possíveis fontes de erros

atuantes. Se suficientemente bem estimada, permite obter a rastreabilidade

(INMETRO VIM, 2008) da medição. A principal referência para avaliação da

incerteza de medição é o Guia para Expressão da Incerteza de Medição - ISO

GUM (BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIM, 1995).

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 16: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 42

A incerteza máxima permissível pode ser um critério adotado para a

obtenção do status de confirmação metrológica do processo de medição. Esse

valor é geralmente definido como uma parcela do intervalo de tolerância do

produto (p.ex. 10% do intervalo de tolerância). Entretanto, a incerteza máxima

permissível deve ser definida não somente com base na tolerância do produto, mas

também nos índices de capacidade do processo de produção, ou seja, nos custos

por falhas internas e externas que podem decorrer da avaliação da conformidade, e

nos custos de operação e manutenção do sistema de medição.

Por exemplo, se a incerteza de medição for muito alta, uma quantidade

muito grande de peças possivelmente boas poderá estar sendo rejeitada,

implicando em altos custos por falha interna. Por outro lado, para se obter

incertezas baixas, investimentos devem ser feitos no sistema de medição como um

todo, o que inclui não só equipamento, mas ambiente e principalmente

capacitação de recursos humanos.

2.2.4. Incerteza em medição por coordenadas

Atualmente, uma das temáticas mais abordadas em relação à medição por

coordenadas é a transferência de rastreabilidade para as medições realizadas em

peças de produção. Rastreabilidade (INMETRO VIM, 2008), por sua vez, só é

possível de ser obtida quando resultados de medição são informados de forma

completa, ou seja, com seus valores de incertezas de medição, tendo agregado o

uso de uma referência a um padrão rastreável ao SI.

Os principais métodos propostos para avaliação da incerteza em medição

por coordenadas podem ser divididos em (WILHELM, et al., 2001):

análise da sensibilidade;

parecer de um especialista emitido por profissional capacitado;

método numérico utilizando simulações computacionais;

método experimental utilizando artefatos calibrados.

Cada método apresenta suas peculiaridades com relação à complexidade e

custos em termos de implementação e operação e com relação à confiabilidade

obtida. O método de avaliação da incerteza deve, portanto, ser definido de acordo

com a finalidade da avaliação de incertezas, com o objetivo da medição, e com a

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 17: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 43

criticidade da tarefa, não sendo possível apontar um método definitivo que atenda

igualmente a esses requisitos (BALDO, 2009). A seguir será feita uma breve

análise com respeito a cada um dos métodos.

Análise de sensibilidade — Pode ser utilizada em casos nos quais um

modelo matemático do processo de medição pode definido. Para definição do

modelo, cada fonte de incerteza deve ter sua quantificação, ter seu coeficiente de

sensibilidade derivado a partir do modelo matemático, e ter sua correlação com as

demais fontes de incerteza estimada. Para processos de medição por coordenadas,

nem a definição do modelo matemático nem a estimativa das correlações são

tarefas simples de serem realizadas, podendo em alguns casos ser impossível.

Recentemente alguns modelos matemáticos para avaliação de especificações de

produto foram propostos (BALDO, 2009).

Parecer de um especialista — Essa técnica tem sido utilizada por

metrologistas especialistas por décadas, quando outras técnicas mais recentemente

estudadas não estavam disponíveis. As fontes de incerteza do tipo B conforme

definidas pelo ISO GUM são geralmente estimadas com base em um julgamento

de um especialista, em conhecimentos obtidos a priori (p.ex. especificações de

fabricantes), com experimentos isolados para estimação de algumas fontes, ou a

partir do histórico de medições realizadas. Essas informações, se adequadamente

estimadas e combinadas em um balanço de incertezas tipo aditivo, podem

fornecer uma estimativa razoavelmente confiável da incerteza de medição.

Simulações computacionais — O método computacional tem encontrado

espaço entre os métodos de avaliação de incerteza em MMC nos últimos anos.

Permitem uma propagação das fontes de incerteza de maneira mais consistente

que os métodos analíticos, fornecendo como saída uma estimativa mais realista da

distribuição. A estimativa de incerteza será tão completa quanto for o modelo. O

método apresenta duas principais dificuldades: uma delas é a implementação, pois

exige a criação de um modelo matemático do sistema de medição e de todas as

outras fontes de incerteza associadas; e a estimativa dos valores dos parâmetros do

modelo. Com a disponibilidade de softwares comerciais como o Virtual

Coordinate Measuring Machine (VCMM) (TRAPET, et al., 1999)

(SUMMERHAYS, et al., 2005), o primeiro problema passa a ser o custo de

aquisição do sistema. Entretanto, as estimativas dos parâmetros de entrada

continuam a ser um desafio: exigem ensaios demorados, utilizando artefatos de

referência, estimativas de algumas fontes; ou, quando possível podem-se utilizar

informações mais básicas, como ensaios de aceitação (p.ex. MPEE definido pela

ISO 10360-2) que não apresentam uma estimativa de incerteza tão robusta. A

especificação técnica ISO 15530-4 (ISO/TS 15530-4, 2008) fornece orientação

para implementação e validação de softwares de avaliação da incerteza para

processos de medição por coordenadas utilizando simulação computacional.

Experimental utilizando artefatos calibrados — A estimativa da

incerteza de medição pelo método da substituição, utilizando artefatos padrão

calibrados, é descrito pela especificação técnica ISO 15530-3 (ISO/TS 15530-3,

2004). O procedimento é de caráter fundamentalmente experimental, e fornece

estimativas robustas da incerteza de medição. Apresenta uma abordagem simples

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA
Page 18: 2. Fundamentos da medição por coordenadas

Fundamentos da medição por coordenadas 44

do ponto de vista do usuário, que considera basicamente quatro componentes de

incerteza, combinadas conforme a equação a seguir:

O componente ucal é relativa ao procedimento de calibração das peças padrão,

sendo obtida do certificado de calibração. O componente up é relativa ao erro de

repetitividade da tarefa específica de medição, estimado pelo desvio-padrão das

medições repetidas. O componente uw representa a interação entre o processo de

medição e as variações provenientes do processo de fabricação. Finalmente, b é a

tendência média estimada, a ser adicionada ao balanço de incerteza caso não seja

passível de correção. Apesar de a especificação citar a componente uw, não

apresenta uma proposta concreta para identificar a origem de tais contribuições à

incerteza (apenas faz referência à variação do coeficiente de expansão térmica de

diferentes lotes de material). Menciona, contudo, que tal fonte é parcialmente

considerada pela tendência observada na avaliação da incerteza realizada

utilizando uma única peça calibrada. Ainda, prevê o uso de mais de uma peça

calibrada, mas não fornece um método estatístico consistente para o tratamento

dos dados. Na literatura encontram-se algumas outras abordagens numéricas para

auxiliar na minimização da influência dessa componente pela definição de

estratégias de medição robustas, e/ou para contemplá-la na incerteza de medição

(WECKENMANN, et al., 1995) (SUMMERHAYS, et al., 2005) (MAY, et al.,

2007). Esses métodos se utilizam ou de modelos analíticos de perfis, ou perfis

obtidos de medições reais em peças de produção para emular, via simulação de

Monte Carlo, a interação entre peça e estratégia de medição (a ser) utilizada. Uma

abordagem recente (ARENHART, 2009) busca avaliar esse componente,

utilizando múltiplas peças padrão calibrada, situação em que a variação da

tendência entre peças permite acessar a componente uw. Conforme apontado pelos

mesmos, essa componente também pode ser utilizada para acessar a variabilidade

total do sistema de medição em um estudo de R&R.

DBD
PUC-Rio - Certificação Digital Nº 0713643/CA