ventilaÇÃo mecÂnica

40
VENTILAÇÃO MECÂNICA Fisiologia e Fisiopatologia Tatiane Melo de Oliveira R4 em UTI Pediátrica spital Regional da Asa Sul/Hospital Materno Infantil de Brasí Brasília, 31 de janeiro de 2014 www.paulomargotto.com.br

Upload: eavan

Post on 23-Feb-2016

108 views

Category:

Documents


0 download

DESCRIPTION

VENTILAÇÃO MECÂNICA. Fisiologia e Fisiopatologia Tatiane Melo de Oliveira R4 em UTI Pediátrica Hospital Regional da Asa Sul/Hospital Materno Infantil de Brasília Brasília, 31 de janeiro de 2014 www.paulomargotto.com.br. Diferenças Anatômicas e Fisiológicas. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: VENTILAÇÃO MECÂNICA

VENTILAÇÃO MECÂNICA

Fisiologia e Fisiopatologia

Tatiane Melo de OliveiraR4 em UTI Pediátrica

Hospital Regional da Asa Sul/Hospital Materno Infantil de BrasíliaBrasília, 31 de janeiro de 2014www.paulomargotto.com.br

Page 2: VENTILAÇÃO MECÂNICA

Diferenças Anatômicas e Fisiológicas

As crianças apresentam uma anatomia diferente da dos adultos, não só pelo tamanho das estruturas, com distribuição anatômica e maturidade fisiológica.

Essas diferenças tornam as crianças mais suscetíveis a desenvolver insuficiência respiratória aguda.

Obstrução do fluxo aéreo; Fadiga muscular; Alterações na complacência e resistência pulmonar.

Page 3: VENTILAÇÃO MECÂNICA

Via aérea em menor número

Via aérea de menor calibre

Resistência da via aérea

Page 4: VENTILAÇÃO MECÂNICA

A via aérea distal é relativamente mais estreita e não totalmente formada até 5 anos de idade, levando a um grande aumento na resistência da via aérea periférica.

O suporte cartilaginoso da traquéia é responsável pela estabilidade da via aérea de condução:

A relativa fraqueza deste suporte leva a compressão dinâmica da traquéia em situações com alto fluxo expiratório e aumento da resistência da via aérea.

Page 5: VENTILAÇÃO MECÂNICA

Alvéolos

O fato de a criança ter um menor número de alvéolos faz com que tenha menor reserva de troca gasosa, predispondo a IRA.

Ao mesmo tempo a criança tem maior potencial de recuperação, já que ocorre um aumento importante ao longo do tempo.

Page 6: VENTILAÇÃO MECÂNICA

Ventilação Colateral

Nos lactentes, os poros de Kohn (interalveolares) e os canais de Lambert (bronquíolo alveolares) são ausentes ou em menor número e tamanho. A ventilação em unidades obstruídas é mais

difícil, com prejuízo à troca gasosa e facilitando a ocorrência de atelectasias.

Page 7: VENTILAÇÃO MECÂNICA

Resistência ao Fluxo

É a diferença de pressão necessária para manter um determinado fluxo através de um sistema.

R = ΔP/Q Q = π ΔP r4/ 8 n l R = 8 n l / π r4

A resistência é diretamente proporcional a viscosidade do gás e ao comprimento do tubo e inversamente proporcional à quarta potencial do raio.

Page 8: VENTILAÇÃO MECÂNICA

Resistência ao Fluxo

Maior a resistência quanto:

Maior o raio e maior o comprimento do tubo.

Maior o fluxo turbulento (Ex: Vc e FR altos)

Page 9: VENTILAÇÃO MECÂNICA

Complacência

Mudança de volume para uma determinada mudança de pressão.

C = ΔV / ΔP Composta por:

Complacência da caixa torácica. Complacência pulmonar.

Page 10: VENTILAÇÃO MECÂNICA

Complacência Torácica

As costelas são cartilaginosas e horizontalizadas e a caixa torácica é mais circular.

As costelas já estão elevadas contribuindo pouco com o volume corrente.

O diafragma é mais achatado e seu ângulo de inserção na caixa torácica é muito aberto.

Prejudicando o mecanismo de alavanca durante a contração muscular

Page 11: VENTILAÇÃO MECÂNICA

Complacência Torácica

A composição das fibras musculares é diferente:

Apresenta fibras do tipo I em menor proporção que nos adultos.

Responsáveis pela contração lenta e e maior capacidade oxidativa, sendo mais resistente a fadiga.

Page 12: VENTILAÇÃO MECÂNICA

Complacência Torácica

Durante o sono REM (50% do tempo de sono do RN):

Relaxamento dos músculos intercostais que ajudam a estabilizar a caixa torácica durante a inspiração;

Movimento paradoxal da musculatura, com prejuízo no aumento do volume intratorácico e consequente piora da ventilação.

Page 13: VENTILAÇÃO MECÂNICA

complacência de caixa torácica

• Esterno menos calcificado

• Costelas mais maleáveis

• Musculatura menos desenvolvida

Maior tendência à colapso na expiração

Page 14: VENTILAÇÃO MECÂNICA

Complacência Pulmonar

Reflete as propriedades físicas do pulmão. Complacência dinâmica

Vc / Pins – PEEP Complacência estática

Vc / Pplatô – PEEP

Quando chego na Pins ainda tenho fluxo e se tenho fluxo ainda tenho resistência.

Page 15: VENTILAÇÃO MECÂNICA

100%

80%

60%

40%

20%

0%

63mls/kg 82mls/kg

Criança Adulto

Capa

cida

de p

ulm

onar

tot

al

Volu

me

corr

ente

VolumeFecha/oVolume

de reserva expirat.

Volume residual

CRF

CV CV

Capacidade de fechamento

Volumecorrente

CRF

Volume residual

CC

Page 16: VENTILAÇÃO MECÂNICA

PEEP x VOLUME CRÍTICO DE FECHAMENTO

CRF*

Volume Crítico Fechamento*

PEEP

SDRA com PEEP

SDRA

Normal

* Gemência: tentativa de aumentar a CRF e reduzir trabalho respiratório

Page 17: VENTILAÇÃO MECÂNICA

O2CO2N2H2O

O2O2

O2 O2O2

3 a 5 minO2 100%

O N2 mantem ar dentro do alvéolo. Se oferto 100% de O2 eu retiro N2 e meu O2 é reabsorvido. No alvéolo que está ruim, eu gero atelectasia de reabsorção.

Page 18: VENTILAÇÃO MECÂNICA

Complacência de parênquima pulmonar

• RN – 0,003 a 0,005 l/ cmH2O

• Adulto – 0,1 a 0,2 l/ cmH2O• Complacência específica =

1,1 ml/cmH2O/Kg

• Número de alvéolos• Paredes espessadas• Menos elastina no

parênquima pulmonar• Menor volume de pulmão• Menor ventilação

colateral

Page 19: VENTILAÇÃO MECÂNICA

Constante de Tempo É o tempo necessário para que ocorra um

equilíbrio de pressões na via aérea e nos pulmões e ocorram as trocas gasosas.

A constante de tempo é o tempo necessário para encher ou esvaziar os pulmões. Vale tanto para inspiração quanto expiração.

CT = Resistência x Complacência

Page 20: VENTILAÇÃO MECÂNICA

Volume

Tempo

Volume

TempoVolum

e

TempoSe complacência baixa preciso de menos tempo para atingir o equilíbrio

de pressão. Se resistência aumentada preciso de mais tempo.

Page 21: VENTILAÇÃO MECÂNICA
Page 22: VENTILAÇÃO MECÂNICA

Respiração Normal

Ventilação Oferta de O2 adequada precisa chegar ao

alvéolo. Ventilação/Perfusão:

O O2 precisa ser exposto ao sangue capilar pulmonar.

Difusão: Esta interface alvéolo-capilar precisa ocorrer

por tempo suficiente.

Page 23: VENTILAÇÃO MECÂNICA

Hipoventilação

Inadequada ventilação alveolar para manter a demanda metabólica;

O volume minuto está diminuído mesmo na vigência de adequada circulação pulmonar.

VM = VC X FR

O aumento da PACO2 leva a uma queda secundária da PAO2

O2CO2

N H2OCO2

Page 24: VENTILAÇÃO MECÂNICA

Hipoventilação

Diferença Alvéolo-arterial de O2

P(A-a)O2 = [(PB – PH2O) x FiO2 – PaCO2/0,8] – PaO2

P(A-a)O2 = [(700 – 47) x FiO2 – PaCO2/0,8] – PaO2

Valores normais

FiO2 21% => 5 – 15 mmHg FiO2 100% => 50 – 100 mmHg

Page 25: VENTILAÇÃO MECÂNICA

Hipoventilação

Valores normais com presença de hipoxemia são indicativos de hipoventilação pulmonar.

O aumento da D(A-a)O2 indica deficiência na troca alvéolo-capilar devido comprometimento do parênquima pulmonar.

Page 26: VENTILAÇÃO MECÂNICA

Distúrbio V/Q

A relação V/Q pode variar de:

Zero - unidade perfundida mas não ventilada – shunt;

Infinito - unidade ventilada mas não perfundida – espaço morto.

Page 27: VENTILAÇÃO MECÂNICA

Distúrbio V/Q

Page 28: VENTILAÇÃO MECÂNICA

Difusão

Difusão depende:

Área de troca; Espessura da membrana; Gradiente de pressão parcial entre o alvéolo e

o capilar.

Page 29: VENTILAÇÃO MECÂNICA

Distúrbio de Difusão

Dificuldade em se manter as trocas gasosas entre o alvéolo e o capilar pulmonar;

Devido a deposição de líquido ou outras substâncias na membrana alveólo-capilar.

Page 30: VENTILAÇÃO MECÂNICA

Transporte Gasoso

O O2 dissolvido no plasma combina-se com a hemoglobina para que ocorra o transporte gasoso.

O transporte de O2 pode ser alterado por várias situações com anemia, diminuição do fluxo sanguíneo para os tecidos, fatores que alteram a afinidade da hemoglobina pelo O2 .

Page 31: VENTILAÇÃO MECÂNICA

Curva de dissociação da Hb

Fatores que desviam a curva para a direita e diminuem a afinidade do O2 pela Hb

Aumento da temperatura

Redução pH / aumento da pCO2

Aumento de 2,3 DPG

Fatores que desviam a curva para esquerda e aumentam a afinidade do O2 pela Hb

Redução da temperatura

Aumento pH / diminuição da pCO2

Redução de 2,3 DPG Hemoglobina fetal

Page 32: VENTILAÇÃO MECÂNICA
Page 33: VENTILAÇÃO MECÂNICA

Referencial Bibliográfico

Carvalho W. B., et. al.; Aspecto Anatômicos e Funcionais da Criança em Ventilação Normal e Ventilação Pulmonar Mecânica. Ventilação pulmonar mecânica em Neonatologia e pediatria. 2ª edição – São Paulo Editora Atheneu, 2005.

Miyoshi, M. H., et. al.; Distúrbios respiratórios no período neonatal. São Paulo. Editora Atheneu, 1998.

Assisted Ventilation of the neonate. 5th Edition – Missouri Elsevier, 2011.

Page 34: VENTILAÇÃO MECÂNICA

Nota do Editor do site, Dr. Paulo R. Margotto

Consultem também!

Desenvolvimento Pulmonar e Fisiologia Respiratória no Período NeonatalAutor(es): Karina Nascimento Costa

“O conhecimento da fisiologiae da fisiopatologia do

sistema respiratório dos neonatosforma a base do cuidado

individual que otimiza a evoluçãopulmonar e o neurodesenvolvimentodos nossos vulneráveis pacientes”

Kesler & AbubakarIn: Assisted Ventilation of the Neonate

Page 35: VENTILAÇÃO MECÂNICA

Com o desenvolvimento, ocorrem alterações na fisiologia das vias aéreas (VA) e nas propriedades mecânicas das VA

afetando as dimensões e a mecânica das VA quando expostos a pressão positiva. Não somente ocorre

estiramento das VA afetando o tecido muscular, mas também ocorre injúria/dano epitelial que exerce

significativa influência no tônus muscular. As alterações na mecânica das VA influenciam o manuseio clinico e os

parâmetros da ventilação mecânica (VM). É de extrema importância a análise de todos estes fatores quando submetemos um RN à ventilação, pois uma melhora

momentânea das trocas gasosas pode acarretar sérias consequências futuramente.

Desenvolvimento e injúria das vias aéreas

Thomas Shaffer (EUA). Realizado por Paulo R. Margotto e Martha Vieira

Page 36: VENTILAÇÃO MECÂNICA

Avaliação da severidade clínica nos recém-nascidos sob assistência respiratória/escore preditivo de

morbimortalidadeAutor(es): Paulo R. Margotto

 

Capítulo do livro Assistência ao Recém-Nascido de Risco, ESCS, Brasília, 3ª Edição

P(A-a)O2 próximo de zero ou com valor negativo indica erro laboratorial (ou o paciente está respirando uma mistura enriquecida de O2 ao invés de ar ou a PaCO2 está falsamente alta; nunca interprete o valor do P(A-a)O2 sem conhecer a FiO2.

O P(A-a)O2 tem sido utilizado para avaliar o progresso da doença pulmonar, assim como um guia na instituição da assistência respiratória ou desmame do respirador.

Page 37: VENTILAÇÃO MECÂNICA

Capítulo do livro Assistência ao Recém-Nascido de Risco, ESCS, Brasília, 3ª Edição

Oximetria de pulso/capnografia:oxigenação ótima

Paulo R. Margotto    

Tipo de Hemoglobina: a Hemoglobina fetal (HbF) desvia a curva para a esquerda, enquanto que a Hemoglobina do adulto desvia para a direita (Figura).

Hipotermia: Desvia para a esquerda (razão pela qual o bebê hipotérmico tem uma cor vermelho vivo, podendo inclusive desorientar o médico, pensando que o RN está bem(Figura)

Hipertermia: Desvia para a direita (Figura)

Alcalose: Desvia para a esquerda (figura.)

Acidose: Desvia para a direita (figura)

Sob circunstâncias normais, estes fatores trabalham para o benefício fisiológico do organismo. Por exemplo: o metabolismo dos tecidos produz mais Hidrogênios e CO2 que resultam num discreto desvio da curva de disssociação para a direita, resultando assim quantidades aumentadas de O2 aos tecidos. Agora, um desvio súbito e grave para a direita , ocorre uma diminuição resultante no O2 disponível ao tecido, devido a uma diminuição do teor de O2 (veja a frente).O aumento da afinidade da Hemoglobina pelo O2 é controlado por uma enzima, a 2, 3 - Difosfoglicerato (2, 3 - DPG) que modula a afinidade pelo O2 através da ligação com a Desoxihemoglobina, reduzindo, assim, a quantidade de Hemoglobina disponível para ligação com o O2.

Quando há um aumento no 2, 3 - DPG intraeritrocitário, a curva desvia para a direita, facilitando a liberação de O2 aos tecidos (tem sido encontrado aumento de 2, 3 - DPG na anemia, doença cardíaca e doença pulmonar).

Page 38: VENTILAÇÃO MECÂNICA

Assistência respiratória ao recém-nascido

Autor(es): Jefferson Guimarães Resende, Paulo R. Margotto

Capítulo do livro Assistência ao Recém-Nascido de Risco, ESCS, Brasília, 3ª Edição

Page 39: VENTILAÇÃO MECÂNICA

Conceitos da fisiologia respiratória:

- Complacência:

É a propriedade de distensibilidade pulmonar e da parede torácica (expressa a variação de pressão necessária para permitir o acesso de determinado volume gasoso nos pulmões). Um RN sem doença pulmonar tem complacência que varia de 3 a 6 ml/cm H2O ou seja, após encher o

pulmão, cada vez que colocarmos mais 3 a 6 ml de gás no seu interior haverá incremento de 1 cm água na pressão de distensão. Por outro lado, em um RN com DMH, que caracteristicamente apresenta uma diminuição da complacência pulmonar (0,5 ml a 1 ml/ cm H2O), se quisermos aumentar o volume pulmonar em 6 ml, devemos aumentar a pressão de distensão em 6 a 12 cm de água.

- Resistência:

É uma medida da capacidade, inerente das vias aéreas, de resistir à entrada de ar. O RN, principalmente o prematuro, com suas vias aéreas estreitas, impõe significativa resistência à circulação de gases. A necessidade de intubá-los com tubos de 2 a 2,5 mm de diâmetro interno impõe grande dificuldade de fazermos com que a pressão de distensão imposta pelo respirador atinja os alvéolos, no tempo reservado à inspiração; assim, devemos usar o tubo endotraqueal de maior diâmetro interno possível, o menor comprimento do tubo, reduzir ao máximo a velocidade do fluxo de gases no interior do tubo através da redução do fluxo de admissão de gases (FAG) de gases no circuito do respirador.

A resistência é expressa em cm de água /L/seg. RN intubados têm resistência entre 50 e 150 cm de água/L/seg. (sem o tubo: 20 a 40 cmH2O/L/seg.). Quanto maior a resistência, menor a possibilidade do volume esperado atingir o alvéolo (o pulmão se enche lentamente).-

Como interpretar a Resistência:

No RN consegue-se passar l litro de gás através de sua via aérea em 1 segundo, desde que seja exercida uma pressão de até 40 cm de H2O (RN sem tubo) ou até 150 cm H2O (RN com o tubo endotraqueal).

Page 40: VENTILAÇÃO MECÂNICA

- Constante de tempo:

É o tempo requerido para equilibrar as pressões entre a via aérea e o alvéolo (por definição, uma constante de tempo é o tempo necessário para que a pressão intra-alveolar atinja 63% da pressão da via aérea), sendo definida como o produto da complacência pela resistência. A constante de tempo traduz a velocidade com que uma unidade pulmonar se enche ou se esvazia; quando atingida esta pressão de equilíbrio (o que ocorrerá entre 3 a 5 constantes de tempo), não haverá mais a modificação no fluxo ou no volume. Quanto maior a complacência, maior o tempo necessário para

encher o pulmão; quanto maior a resistência, maior a dificuldade para o gás passar através das vias aéreas; ambas interferem na velocidade com que a pressão dentro do alvéolo se iguala àquela existente no circuito de ventilação.

Na doença da membrana hialina (DMH) a constante de tempo é pequena, pois a complacência é pequena (assim podemos distribuir o gradiente de pressão para dentro dos pulmões em um menor tempo do que numa situação de complacência normal).

Na Aspiração Meconial a constante de tempo é maior, devendo ser proporcionado um tempo inspiratório prolongado para que o equilíbrio pressórico seja atingido entre a via aérea e os alvéolos. A dificuldade em ventilar um RN com Aspiração Meconial se deve ao fato de que, como alguns alvéolos estão mais obstruídos (constante de tempo maior), do que outros (constante de tempo menor), ao propiciarmos um tempo inspiratório curto, estaremos ventilando apenas áreas não obstruídas e ao propiciarmos um TI longo, estaremos correndo o risco de hiper-distender as unidades alveolares desobstruídas.

Aplicando os mesmos conceitos de constante de tempo, sabemos que devemos permitir um tempo adequado para que haja esvaziamento do alvéolo. Quando há diminuição da complacência pulmonar (maior tendência retrátil pulmonar) como na DMH, o esvaziamento alveolar é mais rápido; já na condição em que se observa aumento da resistência, como na Aspiração Meconial, o esvaziamento alveolar é mais lento e, neste caso, é necessário um tempo expiratório maior, caso contrário se cria condições para haver aprisionamento de ar nos alvéolos (air trapping).

Assim, levando-se em consideração os conceitos expostos, devemos calibrar os parâmetros do ventilador baseados nas necessidades de troca do RN, e em acordo com a doença que o levou à ventilação pulmonar mecânica.