universidade federal fluminense escola de engenharia ... dos santos sodrÉ... · espessura, exceto...

98
UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL MARIANNA DOS SANTOS SODRÉ PROJETO ESTRUTURAL DE RESIDÊNCIA MULTIFAMILIAR EM CONCRETO ARMADO Niterói 2018

Upload: others

Post on 24-Oct-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

UNIVERSIDADE FEDERAL FLUMINENSE

ESCOLA DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA CIVIL

MARIANNA DOS SANTOS SODRÉ

PROJETO ESTRUTURAL DE RESIDÊNCIA MULTIFAMILIAR EM CONCRETO

ARMADO

Niterói

2018

Page 2: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

2

MARIANNA DOS SANTOS SODRÉ

PROJETO ESTRUTURAL DE RESIDÊNCIA MULTIFAMILIAR EM CONCRETO

ARMADO

Trabalho de conclusão de curso

apresentado ao curso de Engenharia Civil

da Universidade Federal Fluminense,

como requisito parcial para conclusão do

curso.

Orientador:

Prof.a Claudia Maria de Oliveira Campos

Niterói

2018

Page 3: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura
Page 4: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

4

DEDICATÓRIA

Dedico este trabalho a todos os professores

do curso, aos orientadores, aos familiares,

amigos e a todos aqueles que de certa

forma contribuíram para a realização deste

projeto.

Page 5: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

5

AGRADECIMENTOS

Agradeço primeiramente à minha família, por todo apoio e investimento que me

permitiram chegar até aqui. Aos meus amigos, sempre disponíveis nos momentos difíceis,

mesmo quando não pude estar tão presente. À Universidade Federal Fluminense, por todo

aprendizado técnico e pessoal. Aos companheiros de turma, por dividirem as ansiedades e

preocupações diárias. Aos professores Claudia e Rafael, por toda disponibilidade e paciência

para orientar este projeto. Ao professor Claudio, por ceder a licença do software utilizado. Aos

colegas do estágio, por todo conhecimento transmitido, e pela colaboração para a conclusão

deste projeto. Aos professores Maurício e Jermann, pela disponibilidade de participar desta

banca.

Page 6: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

6

RESUMO

Este trabalho aborda as etapas de concepção, pré-dimensionamento e modelagem

computacional de um projeto estrutural de residência multifamiliar em concreto armado. Foram

realizadas análises comparativas entre os resultados fornecidos pelo modelo computacional e

valores calculados manualmente. Os softwares utilizados foram AutoCAD, Ftool e CAD/TQS.

Serão abordadas as diversas considerações e tentativas realizadas durante o processo de

concepção, as considerações adotadas para o pré-dimensionamento, e as etapas do processo de

lançamento da estrutura no CAD/TQS, bem como os erros apresentados em cada

processamento, e suas correções.

Palavras-chave: concreto armado, CAD/TQS

Page 7: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

7

ABSTRACT

This work addresses the design, pre-dimensioning and computational modeling stages

of a multifamily residential structural project in reinforced concrete. Comparative analyzes

were performed between the results provided by the computational model and manually

calculated values. The software used was AutoCAD, Ftool and CAD/TQS. The various

considerations and attempts made during the design process, the considerations adopted for the

pre-dimensioning, and the steps of the process of launching the structure in the CAD / TQS, as

well as the errors presented in each processing, and their corrections will be addressed.

Keywords: reinforced concrete, CAD/TQS

Page 8: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

Ficha catalográfica automática - SDC/BEE

Bibliotecária responsável: Fabiana Menezes Santos da Silva - CRB7/5274

S679p Sodré, Marianna dos Santos Projeto estrutural de residência multifamiliar em concretoarmado / Marianna dos Santos Sodré ; Claudia Maria DeOliveira Campos, orientadora. Niterói, 2018. 96 f. : il.

Trabalho de Conclusão de Curso (Graduação em EngenhariaCivil)-Universidade Federal Fluminense, Escola de Engenharia,Niterói, 2018.

1. Projeto estrutural. 2. Residência multifamiliar. 3.Concreto armado. 4. Modelagem computacional. 5. Produçãointelectual. I. Título II. De Oliveira Campos,Claudia Maria,orientadora. III. Universidade Federal Fluminense. Escola deEngenharia. Departamento de Engenharia CivilGraduação.

CDD -

Page 9: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

8

SUMÁRIO

1. INTRODUÇÃO ................................................................................................................. 9

1.1 Objetivo ....................................................................................................................... 9

1.2 O Concreto Armado .................................................................................................. 9

2. METODOLOGIA GERAL ............................................................................................ 10

3. DADOS DO PROJETO .................................................................................................. 10

3.1 Documentos de Referência ...................................................................................... 11

3.2 Softwares Utilizados ................................................................................................ 11

3.3 Propriedades dos Materiais .................................................................................... 12

3.3.1 Massa Específica do Concreto ......................................................................... 12

3.3.2 Resistência à Compressão do Concreto .......................................................... 13

3.3.3 Resistência à Tração do Concreto ................................................................... 14

3.3.4 Módulo de Elasticidade do Concreto .............................................................. 15

3.3.5 Coeficiente de Poisson e módulo de elasticidade transversal ....................... 16

3.3.6 Aço para Concreto Armado ............................................................................ 16

3.4 Premissas Adotadas ................................................................................................. 18

4. CONCEPÇÃO ESTRUTURAL ..................................................................................... 22

5. PRÉ-DIMENSIONAMENTO ........................................................................................ 33

5.1 Vigas .......................................................................................................................... 33

5.2 Lajes .......................................................................................................................... 34

5.3 Pilares ........................................................................................................................ 53

6. LANÇAMENTO DA ESTRUTURA ............................................................................. 57

7. PROCESSAMENTO DO MODELO ............................................................................ 76

8. RESULTADOS FINAIS ................................................................................................. 85

9. CONCLUSÃO ................................................................................................................. 87

ANEXO A................................................................................................................................88

ANEXO B................................................................................................................................95

Page 10: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

9

1. INTRODUÇÃO

1.1 Objetivo

Este trabalho tem por objetivo apresentar o projeto estrutural em concreto armado de uma

residência multifamiliar, passando pelas etapas de concepção estrutural, pré-dimensionamento e

modelagem computacional. A edificação em estudo é composta por subsolo, semi-enterrado, quatro

pavimentos tipos, dentre eles o térreo, cobertura, além do pavimento que comporta a casa de máquinas

e caixa d’água. Serão apresentadas as soluções estruturais estudadas até se chegar à concepção final,

além das considerações adotadas para o pré-dimensionamento, e das etapas de lançamento da estrutura.

Os softwares utilizados foram AutoCAD, Ftool e CAD/TQS. Serão realizadas análises comparativas

entre os resultados fornecidos pelo software e valores calculados manualmente. Os erros apresentados

nos processamentos do modelo computacional, bem como suas correções também serão comentados.

1.2 O Concreto Armado

Conforme Libânio (2007, p.1), “concreto é um material de construção proveniente da mistura,

em proporções adequadas, de: aglomerantes, agregados e água”. Os aglomerantes são responsáveis pela

união dos materiais, pois reagem quimicamente ao entrar em contato com ar ou água, solidificando-se.

Normalmente é utilizado o cimento Portland, aglomerante hidráulico seco, em pó, à base de cálcio,

silício e alumínio. Já os agregados dividem-se em miúdos e graúdos, e consistem em partículas minerais

quimicamente inertes, responsáveis pelo aumento do volume da mistura, ajudando na redução de custo.

O concreto simples, após seu endurecimento, apresenta boa resistência à compressão, no

entanto, possui uma baixa resistência à tração (da ordem de 10% da resistência à compressão). Sendo

assim, apresenta um comportamento frágil, sofrendo uma ruptura brusca, sem sofrer grandes

deformações. Diante disso, viu-se a necessidade da associação do concreto simples com o aço, que

resistem em conjunto aos esforços solicitantes, suprindo as deficiências um do outro. Dessa forma, a

armadura trabalha nas regiões tracionadas do elemento, enquanto o concreto trabalha à compressão,

além de ser responsável pela proteção da armadura.

De acordo com Libânio (2007, p.6) o concreto é o material mais utilizado no mundo, sendo o

seu consumo anual da ordem de uma tonelada por habitante. No que diz respeito às estruturas de

edificações residenciais, seu intenso uso se justifica pelas seguintes vantagens do concreto armado: trata-

se de um material moldável, podendo assumir diversas formas, de acordo com a arquitetura; diante de

dimensionamento e detalhamento adequados, apresenta boa resistência à maioria dos tipos de

Page 11: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

10

solicitações; toda a estrutura trabalha em conjunto, ou seja, consiste em uma estrutura monolítica;

apresenta baixo custo tanto de materiais, como de mão de obra, uma vez que não exige mão de obra com

grande qualificação; seu processo construtivo é bem difundido em todo o país; possui rápida execução,

com a possibilidade, inclusive, de uso de peças pré-moldadas e pré-fabricadas; apresenta alta

durabilidade e baixo custo de manutenção, caso a estrutura tenha sido projetada e executada

adequadamente.

2. METODOLOGIA GERAL

A partir do projeto arquitetônico foi realizada a concepção estrutural, chegando-se a um

resultado final depois de diversas tentativas, que visavam associar, além das questões padrões de um

projeto estrutural (economia, segurança e conforto), aspectos estéticos e referentes à utilização dos

ambientes. As plantas de forma dos pavimentos, a princípio foram desenhadas no software AutoCAD

tendo como base as plantas de arquitetura. A verificação da interferência com os pavimentos de garagem

também foi realizada com as plantas ainda em AutoCAD, bem como as transições também foram

previstas nessa etapa. Para a modelagem da estrutura em software, foi necessária a conversão dos

arquivos em DWG para DXF, de maneira que pudessem ser utilizados com máscaras para a modelagem

da estrutura.

3. DADOS DO PROJETO

A edificação a ser projetada localiza-se no bairro de Piratininga, na cidade de Niterói, Rio de

Janeiro. O subsolo possui 850,83 m² de área construída, inteiramente utilizada para vagas de garagem,

com um pé direto de 2,70 m. O semi-enterrado possui 841,65 m² de área construída, comportando mais

algumas vagas de garagem, além de toda a área comum do prédio que inclui: salão de festas, terraço,

área para crianças, piscina, academia. Seu pé direito é de 2,83 m.

Cada pavimento tipo possui 841,65 m² de área construída, e é composto por cinco apartamentos,

com três configurações distintas. O maior apartamento possui: quatro quartos, sendo dois deles suítes,

closet, banheiro social, lavabo, sala, cozinha, despensa, área de serviço e duas varandas. Outro modelo

de apartamento é constituído por: três quartos, sendo um deles suítes, escritório, banheiro social, lavabo,

sala, cozinha, despensa, área de serviço e varanda. O menor dos apartamentos apresenta: três quartos,

sendo um deles suíte, closet, banheiro social, lavabo, sala, cozinha, despensa, área de serviço e varanda.

O pé direito dos três primeiros tipos é de 3,10 m. O último tipo possui um pé direto de 3,50 m. Outra

particularidade do último tipo é que dois dos apartamentos são duplex.

Page 12: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

11

A cobertura possui 420,83 m² de área construída, divididos em quatro apartamentos. Dois

apartamentos apresentam: quatro suítes, lavabo, sala, cozinha, despensa, área de serviço, varanda com

piscina ao longo de todo o perímetro externo do apartamento. Os outros dois consistem na extensão de

dois apartamentos do último tipo, adicionando mais um quarto, banheiro, sala, lavabo, além da varanda

com piscina ao longo do perímetro externo. Todas as paredes são em alvenaria e possuem 12 cm de

espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura. Já

as paredes da cisterna e da caixa d’água superior também são em concreto armado, porém com 15 cm

de espessura. Todas as plantas baixas e cortes do projeto arquitetônico serão apresentadas no anexo A

deste projeto.

3.1 Documentos de Referência

Os documentos utilizados como referência para o projeto em questão são as normas: ABNT

NBR 6118:2014 Projeto de estruturas de concreto – Procedimento; ABNT NBR 6120:1980 Cargas para

cálculo de estruturas de edificações, ABNT NBR 6123:1988 Forças devidas ao vento em edificações,

ABNT NBR 5738:2015 Concreto - Procedimento para moldagem e cura de corpos de prova, ABNT

NBR 5739:2007 Concreto - Ensaios de compressão de corpos-de-prova cilíndricos, ABNT NBR

8953:2015 Concreto para fins estruturais - Classificação pela massa específica, por grupos de resistência

e consistência, ABNT NBR 8522:2017 Concreto - Determinação dos módulos estáticos de elasticidade

e de deformação à compressão, ABNT NBR 7480:2007 – Aço destinado a armaduras para estruturas de

concreto armado – Especificação, ABNT NBR ISO 6892-1:2013 – Materiais metálicos – Ensaio de

Tração; além da ABECE - Recomendação 003:2015 Memorial Descritivo do Projeto Estrutural.

Também foram consultadas as apostilas: Fundamentos do Concreto e Projeto de Edifícios, do autor

Libânio M. Pinheiro (2007); e Concreto Armado, dos autores Mayra Perlingeiro, Leonardo Valls e

Eduardo Valeriano (2016). Outro material de consulta foi o livro Curso de Concreto Armado, volume

2, do autor José Milton de Araújo (2010).

3.2 Softwares Utilizados

Os softwares utilizados para o desenvolvimento do trabalho foram AutoCAD e CAD/TQS. O

AutoCAD foi utilizado para a etapa de concepção, na qual a estrutura foi definida a partir da arquitetura

da edificação. Dessa forma, usando como base os desenhos arquitetônicos em DWG, foram definidas

as posições das vigas e pilares, passando por diversas tentativas e adaptações, que buscavam associar as

imposições arquitetônicas, com uma boa solução estrutural. Portanto, as plantas de formas foram

Page 13: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

12

inicialmente desenhadas no AutoCAD, para que posteriormente fossem exportadas no formato

adequado para o software CAD/TQS, servindo assim, como máscaras para a modelagem do edifício.

“O CAD/TQS é um conjunto de ferramentas para cálculo, dimensionamento, detalhamento e

desenho de estruturas de concreto armado, protendido e pré-moldado” (TQS Informática Ltda., ano). O

principal objetivo do software é fornecer uma ferramenta computacional que permita o desenvolvimento

de um projeto estrutural de concreto armado com segurança, qualidade e produtividade. Porém é

importante salientar que a ferramenta computacional não retira a responsabilidade do engenheiro. Trata-

se apenas de um auxílio em seus trabalhos. É necessária a validação de todos os dados de entrada, bem

como dos resultados obtidos.

“O CAD/TQS é formado por diversos subsistemas que trabalham de forma contínua e

sequencial para o dimensionamento, detalhamento e desenho de um edifício de concreto armado” (TQS

Informática Ltda.). Entre suas características está a possibilidade de modelagem de um edifício de

concreto armado composto por vigas, pilares, lajes, bloco de fundações, sapatas, estacas e cargas

(verticais e horizontais). Além disso, “em função do modelo escolhido para o pavimento, as lajes e vigas

poderão se discretizadas por grelhas, com simulação de plastificação nos apoios (lajes e vigas), onde a

continuidade das lajes se dá pela continuidade das barras das lajes e não pela torção das vigas. Como

opção, as lajes podem ser calculadas por processos simplificados – elásticos e plásticos” (TQS

Informática Ltda.). Outro aspecto importante é que “em função do modelo escolhido para o edifício, a

estrutura deverá ser calculada por pórtico espacial, com ligação flexibilizada nas ligações de vigas e

pilares, em que o modelo matemático, gerado automaticamente, é uma representação muito boa da

realidade, levando-se em conta o processo construtivo” (TQS Informática Ltda.).

3.3 Propriedades dos Materiais

3.3.1 Massa Específica do Concreto

A NBR 6118 se aplica às estruturas de concretos normais com massa específica maior que 2000

kg/m³, sem exceder 2800 kg/m³. Quando a massa específica real for conhecida, considera-se para o

concreto armado, o valor referente ao concreto simples acrescido de 100 kg/m³ a 150 kg/m³. Como a

massa específica real não é conhecida, será dotado, para efeito de cálculo, o valor de 2400 kg/m³ para

concreto simples e 2500 kg/m³ para concreto armado.

Page 14: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

13

3.3.2 Resistência à Compressão do Concreto

A resistência à compressão simples, denominada 𝑓𝑐, é a característica mecânica mais importante

do concreto. Para determiná-la são realizados ensaios com corpos de prova preparados conforme a NBR

5738:2015 Concreto - Procedimento para moldagem e cura de corpos de prova. O padrão brasileiro para

o corpo de prova é o formato cilíndrico com 15 cm de diâmetro e 30 cm de altura. Os ensaios são

executados conforme as determinações da NBR 5739:2007 Concreto - Ensaios de compressão de

corpos-de-prova cilíndricos. A idade de referência para o ensaio é de 28 dias.

Após um grande número de corpos de prova testados, pode-se elaborar um gráfico com os

valores de resistência obtidos e as quantidades de corpos de prova relativos a determinado valor de

resistência. Trata-se da densidade de frequência. O resultado obtido é a Curva Estatística de Gauss ou

Curva de Distribuição Normal para a resistência do concreto à compressão (Gráfico 1).

Figura 1 – Curva de Gauss para a resistência do concreto à compressão

Fonte: LIBÂNIO (2007)

A curva de Gauss fornece dois valores importantes: a resistência média à compressão do

concreto, 𝑓𝑐𝑚, que consiste na média aritmética dos valores de 𝑓𝑐 para o conjunto de corpos de prova

ensaiados; e a resistência característica à compressão do concreto, 𝑓𝑐𝑘, que é obtida a partir da fórmula:

𝑓𝑐𝑘 = 𝑓𝑐𝑚 − 1,65𝑠

Onde s é o desvio-padrão e corresponde à distância entre a abscissa de 𝑓𝑐𝑚 e o ponto de

inflexão da curva. O valor de 1,65 diz respeito ao quantil de 5%, isto é, apenas 5% dos corpos

de prova apresentam resistência à compressão inferior ao 𝑓𝑐𝑘. Portanto, a resistência

característica pode ser definida, como o valor que tem 5% de probabilidade de não ser alcançado

Page 15: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

14

nos ensaios com os corpos de prova. A NBR 8953 define as classes de resistência em função

do 𝑓𝑐𝑘, conforme a figura 2.

Figura 2 – Classes de resistência dos grupos I e II

Fonte: NBR 8953 (2015)

O projetista deve determinar um valor de resistência características para o projeto, e o

engenheiro responsável pela obra deve realizar os ensaios a fim de comprovar a resistência

desejada. Visando a segurança, é adotada a resistência de cálculo, 𝑓𝑐𝑑, que consiste na

resistência característica verificada aos 28 dias, dividida por um coeficiente de minoração, 𝛾𝑐,

indicado na figura 3, para verificações no estado-limite último (ELU).

Figura 3 – Coeficientes de minoração 𝛾𝑐e 𝛾𝑠

Fonte: NBR 6118 (2014)

3.3.3 Resistência à Tração do Concreto

A resistência à tração do concreto é obtida através de ensaios, assim como a resistência à

compressão, o que difere é o tipo de ensaio realizado. Existem três tipos de ensaios normalizados, são

Page 16: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

15

eles: tração direta, compressão diametral e tração na flexão. No ensaio de tração direta é aplicada tração

axial até a ruptura em corpos de prova de concreto simples. Já no ensaio de tração na compressão

diametral, conhecido como Ensaio Brasileiro, por ter sido desenvolvido por Lobo Carneiro em 1943, o

corpo de prova cilíndrico é colocado com o seu eixo horizontal entre os pratos de uma prensa, e uma

força é aplicada até a ruptura por tração indireta. No ensaio de tração na flexão, o corpo de prova é

submetido à flexão, com cargas aplicadas em duas seções, que se encontram nos terços do vão.

Na ausência de ensaios, pode-se calcular a resistência média à tração do concreto, 𝑓𝑐𝑡𝑚, a partir

da resistência característica à compressão, 𝑓𝑐𝑘, bem como as resistências características à tração inferior,

𝑓𝑐𝑡𝑘,𝑖𝑛𝑓, e superior, 𝑓𝑐𝑡𝑘,𝑠𝑢𝑝, através da resistência média:

𝑓𝑐𝑡𝑚 = 0,3𝑓𝑐𝑘2/3

𝑓𝑐𝑡𝑘,𝑖𝑛𝑓 = 0,7𝑓𝑐𝑡𝑚

𝑓𝑐𝑡𝑘,𝑠𝑢𝑝 = 1,3𝑓𝑐𝑡𝑚

Onde as resistências são expressas em MPa, e a fórmula para cálculo da resistência média à

tração só é válida para concretos de classe até C50. Para concretos de classes superiores, deve ser

aplicada outra fórmula, com maior grau de complexidade.

3.3.4 Módulo de Elasticidade do Concreto

Outra propriedade importante é o módulo de elasticidade do concreto. São definidos dois

módulos de elasticidade: tangente e secante. O módulo de deformação tangente inicial, 𝐸𝑐𝑖, é obtido a

partir da curva tensão-deformação do concreto, e consiste no coeficiente angular da parte retilínea da

curva, ou, na ausência de parte retilínea, é utilizada a tangente à curva na origem. É empregado no

cálculo de deslocamentos produzidos por ações de curta duração. A NBR 8522 estabelece o método de

ensaio para obtenção do módulo de deformação tangente inicial. Caso não sejam realizados ensaios, o

valor pode ser estimado usando as expressões abaixo, para a idade de referência de 28 dias:

𝐸𝑐𝑖 = 𝛼𝐸 . 5600 √𝑓𝑐𝑘 para 𝑓𝑐𝑘 de 20 MPa a 50 MPa;

𝐸𝑐𝑖 = 21,5 . 103 . 𝛼𝐸 . (𝑓𝑐𝑘

10+ 1,25)

1/3para 𝑓𝑐𝑘 de 55 MPa a 90 Mpa.

Onde 𝐸𝑐𝑖 e 𝑓𝑐𝑘 são dados em MPa e 𝛼𝐸 depende da natureza do agregado utilizado no concreto:

𝛼𝐸 = 1,2 para basalto e diabásio

𝛼𝐸 = 1,0 para granito e gnaisse

𝛼𝐸 = 0,9 para calcário

Page 17: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

16

𝛼𝐸 = 0,7 para arenito

O módulo de deformação secante, 𝐸𝑐𝑠, utilizado nas análises elásticas do projeto, para

determinação de esforços solicitantes e verificação de limites de serviço para ações de longa duração,

pode ser obtido através de ensaios, conforme a NBR 8522. Na ausência de ensaios, o valor pode ser

estimado pela expressão:

𝐸𝑐𝑠 = 𝛼𝑖 . 𝐸𝑐𝑖

Sendo:

𝛼𝑖 = 0,8 + 0,2𝑓𝑐𝑘

80≤ 1

A figura 4 apresenta valores de módulo de elasticidade estimados e arredondados, para diversas

classes de concreto, considerando o granito como agregado graúdo:

Figura 4 – Módulos de elasticidade tangente e secante estimados

Fonte: NBR 6118 (2014)

3.3.5 Coeficiente de Poisson e módulo de elasticidade transversal

O coeficiente de Poisson, 𝜈, consiste na relação entre a deformação transversal e longitudinal.

Para tensões de compressão menores que 0,5𝑓𝑐 e de tração menores que 𝑓𝑐𝑡, o coeficiente de Poisson

pode ser adotado como igual a 0,2, e o módulo de elasticidade transversal, 𝐺𝑐, igual a 𝐸𝑐𝑠/2,4.

3.3.6 Aço para Concreto Armado

O aço utilizado em estruturas de concreto armado, denominado aço para armadura passiva pela

NBR 6118, deve atender às prescrições da NBR 7480. Pode ser encontrado sob a forma de barras, fios

e telas soldadas, e são classificados conforme sua resistência à tração. A NBR 7480 classifica os aços

para concreto armado em CA-25, CA-50 e CA-60, sendo a parte numérica equivalente à tensão

Page 18: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

17

característica de escoamento do aço, 𝑓𝑦𝑘, em (kN/cm²). Os ensaios de tração para obtenção do diagrama

tensão-deformação, bem como dos valores característicos de resistência ao escoamento, da resistência

à tração, 𝑓𝑠𝑡𝑘, e da deformação na ruptura, 휀𝑢𝑘, são definidos pela NBR ISO 6892-1. Para aços sem

patamar de escoamento (CA-60), o valor de 𝑓𝑦𝑘 é adotado como a tensão correspondente à deformação

permanente de 0,2%.

A NBR 7480 também define as bitolas padrões das barras para concreto armado, conforme a

figura 5:

Figura 5 – Bitolas padrões das barras de aço para concreto armado

Fonte: NBR 7480 (2007)

Na ausência de ensaios ou informação fornecida pelo fabricante, o módulo de elasticidade do

aço pode ser adotado como 210 GPa. Já a massa específica, para o aço de armadura passiva, pode ser

adotada como 7850 kg/m³. Os fios e barras podem apresentar superfícies lisas, entalhadas ou providas

de saliências e mossas. Diante disso, de acordo com a capacidade aderente entre o aço e o concreto, é

definido um coeficiente de conformação superficial, 𝜂1, de acordo com a figura 6:

Page 19: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

18

Figura 6 – Coeficiente de conformação superficial

Fonte: NBR 6118 (2014)

Quanto à dutilidade, que consiste na capacidade do material de se deformar plasticamente sem

romper, os aços CA-25 e CA-50 são considerados de alta dutilidade, caso atendam aos valores mínimos

de 𝑓𝑠𝑡/𝑓𝑦 e 휀𝑢𝑘 estabelecidos pela NBR 7480. Já os aços CA-60, caso atendam às especificações desta

norma, são considerados de dutilidade normal. Quanto maior a dutilidade do aço, maior é a redução de

área ou o alongamento antes da ruptura. Um material que não apresenta esse comportamento, isto é, não

se deforma plasticamente antes da ruptura, é caracterizado como frágil.

O funcionamento do concreto armado como um material estrutural único pode ser atribuído a

três propriedades principais: aderência, proteção do aço pelo concreto e coeficientes de dilatação térmica

próximos. A aderência entre o aço e o concreto adjacente permite que os materiais se deformem

igualmente, podendo ser dividida em aderência por adesão, por atrito e mecânica. A adesão decorre das

ligações físico-químicas que ocorrem na interface dos dois materiais durante a pega. O atrito ocorre

devido à pressão transversal que o concreto exerce sobre a barra, e depende da rugosidade da mesma. A

aderência mecânica ocorre devido à presença de nervuras nas superfícies das barras, constituindo assim,

obstáculos físicos que contribuem para o aumento da solidariedade entre os dois materiais.

3.4 Premissas Adotadas

A estrutura a ser projetada consiste na projeção do subsolo, ficando fora do escopo, portanto, as

áreas do pavimento semi-enterrado que vão além dessa projeção. Essas áreas serão consideradas

apoiadas sobre o terreno, não constando também no modelo do edifício no software TQS, conforme

ilustrado pela figura 7. Além disso, o projeto de fundação também não faz parte do escopo do projeto,

porém, assumiu-se a fundação como sapata, uma vez que, conforme será apresentado posteriormente, o

piso do subsolo apresenta um cintamento. Outra informação considerada no projeto é a presença de nível

d’água a uma altura de 72 cm a partir do fundo da laje do piso do subsolo. No subsolo e semi-enterrado

atua ainda o empuxo da terra, no entanto, por tratar-se de uma carga que atua igualmente em todas as

direções, não foi considerado no modelo computacional.

Page 20: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

19

Figura 7 – Escopo do projeto (projeção do subsolo)

Como a edificação em estudo localiza-se em frente à Praia de Piratininga, foi adotada a classe

de agressividade ambiental III (Forte), por tratar-se de um ambiente marinho, conforme indicado pela

figura 8. No entanto, a NBR 6118 permite que seja adotada uma classe de agressividade mais branda

para ambientes internos secos.

Figura 8 – Classe de agressividade ambiental

Fonte: NBR 6118 (2014)

Page 21: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

20

Foi adotado um concreto de classe C35, e um fator de água/cimento de 0,50, de acordo com a

classe de agressividade ambiental escolhida, atendendo aos valores limites recomendados pela NBR

6118, conforme ilustra a figura 9:

Figura 9 – Classe de concreto mínima em função da classe de agressividade ambiental

Fonte: NBR 6118 (2014)

Os cobrimentos também foram definidos com base na classe de agressividade ambiental

adotada, conforme figura 10. No caso da caixa d’água, a recomendação da NBR 6118 é a de que sejam

adotados os cobrimentos da classe de agressividade IV. Logo:

Laje: c = 3,5 cm (Classe de agressividade III)

Viga/Pilar/Parede: c = 4,0 cm (Classe de agressividade III)

Laje da caixa d’água: c = 4,5 cm (Classe de agressividade IV)

Viga/Pilar/Parede da caixa d’água: c = 5,0 cm (Classe de agressividade IV)

Porém, como a classe do concreto adotada (C35) é superior ao mínimo exigido (C30), os

cobrimentos podem ser reduzidos em até 5 mm. Além disso, em ambientes internos secos pode-se

considerar uma classe de agressividade ambiental mais branda, logo os cobrimentos também podem ser

reduzidos, nos pavimentos em que isso se aplica. O piso do subsolo não se encaixa na categoria de

ambientes internos secos, pois não apresenta revestimento, além disso, suas paredes estão em contato

com o solo. Logo, os cobrimentos passam a ser:

Laje: c = 2,0 cm (2,5 cm da classe II menos 0,5 cm do concreto de classe superior ao mínimo)

Viga/Pilar: c = 2,5 cm (3,0 cm da classe II menos 0,5 cm do concreto de classe superior ao

mínimo)

Page 22: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

21

Laje do piso do subsolo: c = 3,0 cm (3,5 cm da classe III menos 0,5 cm do concreto de classe

superior ao mínimo)

Viga/Pilar/Parede do subsolo: c = 3,5 cm (4,0 cm da classe III menos 0,5 cm do concreto de

classe superior ao mínimo)

Laje da caixa d’água: c = 4,5 cm (Classe de agressividade IV)

Viga/Pilar/Parede da caixa d’água: c = 5,0 cm (Classe de agressividade IV)

O módulo de elasticidade tangente e secante do concreto é calculado a partir da sua classe de

resistência. O valor utilizado no projeto foi retirado da figura 4, considerando, portanto, o granito como

agregado graúdo. Logo, para concreto de classe C35:

𝐸𝑐𝑖 = 33 𝐺𝑃𝑎

𝐸𝑐𝑠 = 29 𝐺𝑃𝑎

𝛼𝑖 = 0,89

O coeficiente de Poisson adotado foi de 0,2 e o módulo de elasticidade transversal 𝐺𝑐 =29

2,4=

12,1 𝐺𝑃𝑎. O aço adotado foi o CA-50, com bitola máxima de 25 mm, e comprimento de barra máximo

de 12 metros. As barras de aço CA-50 apresentam superfície nervurada, logo o coeficiente de

conformação superficial, conforme figura 6 é 𝜂1 = 2,25. O módulo de elasticidade do aço adotado foi

de 210 GPa, e sua massa específica de 7850 kg/m³. Para o concreto armado foi adotada uma massa

específica de 2500 kg/m³.

Figura 10 – Cobrimentos nominais em função da classe de agressividade ambiental

Fonte: NBR 6118 (2014)

Page 23: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

22

4. CONCEPÇÃO ESTRUTURAL

O sistema estrutural escolhido para todos os pavimentos foi o de lajes maciças apoiadas sobre

vigas em concreto armado, por ser o mais convencional. As formas foram primeiramente desenhadas no

AutoCAD, sobre as plantas de arquitetura, que já estavam em formato DWG. Em seguida, as formas

foram exportadas para o software TQS, no formato DXF, para servirem como máscaras para o

lançamento da estrutura no programa. A concepção estrutural foi realizada para todos os pavimentos do

edifício em estudo. Dessa forma, como pode-se observar no corte BB da arquitetura (Figura 11), a

concepção estrutural incluiu: piso do subsolo, teto do subsolo, teto do semi-enterrado, teto do tipo, piso

da cobertura, teto da cobertura, casa de máquinas do elevador, piso da caixa d’água e teto da caixa

d’água. Na figura 11 também constam os pé-direito estruturais.

Figura 11 – Corte BB

O primeiro pavimento a ser concebido foi o tipo. Uma observação importante a respeito desse

pavimento é que ele apresenta uma certa simetria em sua arquitetura, como pode ser observado na figura

12, e, a princípio, essa simetria também poderia ser explorada na concepção da estrutura, de maneira

que apenas metade do pavimento seria concebido, aproveitando-se a mesma concepção para a outra

metade. Utilizando como base a planta de arquitetura, o posicionamento das vigas foi sendo definido

com base no posicionamento das alvenarias, para que as cargas de alvenaria fossem transmitidas

diretamente para as vigas e não para as lajes. Além disso, essa estratégia para o posicionamento das

vigas apresenta vantagens do ponto de vista estético, uma vez que as vigas ficam embutidas nas paredes,

evitando-se assim, vigas passando no meio de ambientes. Primeiramente, considerou-se que embaixo

de todas as alvenarias haveria uma viga (Figura 13), além das vigas da varanda, que como veremos

posteriormente, compõem a fachada da edificação, com altura previamente definida pela arquitetura.

Page 24: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

23

Porém, como pode ser observado na figura 12, há um grande número de paredes, o que resultou em um

número excessivo de vigas e lajes muito pequenas, ou com formatos não muito convencionais.

Figura 12 – Arquitetura do pavimento tipo

A partir desse esboço inicial, algumas vigas foram sendo eliminadas, bem como alguns trechos

foram acrescentados, a fim de que as lajes apresentassem formatos mais simples. Porém, sempre se

atentando para os ambientes nos quais as vigas ficariam expostas. Nessas primeiras propostas de

concepção houve grande preocupação em se evitar ao máximo a passagem de vigas no meio de

ambientes como quartos e sala. No caso de cozinha, banheiros, despensa, área de serviço e área de

circulação, permitiu-se a passagem de vigas no meio das dependências. Dessa forma, chegou-se a uma

segunda proposta, apresentada na figura 14.

Page 25: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

24

Essa segunda proposta, além do primeiro refinamento do esboço inicial, apresenta uma prévia

do posicionamento dos pilares. Os pilares, nesta etapa, foram definidos apenas com base na arquitetura

do pavimento tipo, preocupando-se com os vãos das portas e janelas, evitando-se mudanças na fachada

do prédio, bem como, pilares na varanda. Do ponto de vista estrutural, o principal aspecto foi o vão das

vigas, que não poderiam ser muito grandes, uma vez que grandes vãos exigem vigas de grandes

dimensões, o que para um edifício deste porte e com utilização residencial não é usual. Foi adotada a

recomendação de Libânio (2007, p.32), segundo o qual os pilares devem estar dispostos de forma que

resultem em distâncias entre seus eixos da ordem de 4 m a 6 m. Além disso, o pé-direito estrutural do

pavimento tipo é de 3,10 m, não permitindo assim vigas tão altas, exceto para o último tipo, cujo pé-

direito estrutural é de 3,50 m, uma vez que trata-se de um pavimento de transição, no qual é natural que

as vigas necessitem de maior altura. Sobrepondo-se a arquitetura do tipo, pode-se verificar que apenas

nas salas dos apartamentos, observa-se um trecho grande de viga passando pelo meio da dependência,

o que confirma a preocupação já mencionada anteriormente. Além disso, as modificações realizadas do

esboço inicial para a segunda proposta mantiveram a simetria do pavimento.

Figura 13 – Esboço de concepção com vigas sob todas as paredes

Page 26: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

25

Figura 14 – Segunda proposta de concepção com arquitetura sobreposta

A segunda proposta de concepção (Figura 14), apesar de um número reduzido de vigas em

relação ao esboço inicial, ainda apresenta excesso de vigas. A partir dela foram eliminando-se mais

vigas, obtendo-se assim panos de laje maiores. Além disso alguns pilares foram sendo eliminados, e

começou-se a observar a interferência com os pavimentos do subsolo, o qual é totalmente ocupado por

vagas de garagem, e semi-enterrado, que apresenta dependências de uso comum, como salão de festas,

academia, sauna, terraço coberto, brinquedoteca, lounge, hall social, além de mais algumas vagas de

garagem. Em relação ao subsolo, atentou-se para a questão de movimentação dos veículos, além das

vagas em si, que necessitam de uma largura mínima de 2,50 m. Quanto ao semi-enterrado, evitou-se a

passagem de pilares que fossem prejudiciais ao bom funcionamento das dependências de uso comum,

ou causassem desconforto estético. Além disso, a presença de vagas de garagem no pavimento, manteve

a necessidade dos mesmos cuidados tomados com o subsolo.

Após diversas tentativas, afinal, a concepção estrutural é um processo interativo, uma nova

proposta de forma para o teto do tipo (Figura 15), anterior à etapa de pré-dimensionamento foi definida.

Os pilares foram posicionados a fim de que fosse realizado o menor número possível de transições.

Nesta etapa, já havia sido definido, como será abordado na etapa de pré-dimensionamentos, que as vigas

teriam 15 cm de largura, uma vez que as paredes possuem 12 cm, e os pilares inicialmente teriam 15x30

cm, de maneira que estes ficassem embutidos nas vigas. Essas dimensões iniciais também atendem à

área de seção mínima estabelecida pela NBR 6118 de 360 cm². Alguns pilares, por questões geométricas

Page 27: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

26

e estruturais, mesmo nessa etapa anterior ao pré-dimensionamento já apresentavam dimensões maiores,

como o pilar do elevador, que apresenta seção em U, e suas dimensões seguem o que foi estabelecido

pela arquitetura. Além disso, alguns pilares, tiveram suas dimensões alteradas em relação ao

estabelecido inicialmente para apoiar vigas cujos eixos não eram alinhados, porém estavam próximos.

Outro aspecto importante é a estabilidade global, que mesmo nessa etapa preliminar já poderia ser

considerada, posicionando-se os pilares das bordas com sua maior inércia coincidindo com a maior

inércia do edifício, e os pilares internos com sua maior dimensão na outra direção.

Figura 15 – Nova concepção para o teto do tipo

Nessa nova proposta de concepção para o tipo, a preocupação com a passagem de vigas por

cômodos sem rebaixo, quartos e salas, principalmente, se manteve. Porém, em alguns pontos abriu-se

mão da simetria, em prol de evitar interferências com as vagas de garagem do subsolo ou semi-enterrado,

bem como com as dependências de uso comum do semi-enterrado. Outra mudança em relação às

primeiras tentativas de concepção, é uma maior flexibilidade em relação ao tamanho dos vãos. A

recomendação anteriormente mencionada de vão com 4 a 6 m não foi atendida para os maiores vãos,

nos quais admitiu-se valores entre 7 e 8 metros. Essa decisão visou a redução do número de pilares e

aumentos dos panos de lajes. Diante disso, algumas vigas apresentaram alturas de 70 e 75 cm, com pé-

direito livre de 2,4 e 2,35 m, respectivamente. As lajes da varanda possuem rebaixo de 5 cm, e suas

vigas não apresentam função estrutural, apresentando altura definida pela arquitetura, já que compõem

Page 28: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

27

a fachada do prédio. As varandas, portanto, representam um ponto de bastante atenção no projeto, já que

estão em balanço e possuem grandes dimensões: a maior das varandas apresenta 3,80 m em balanço.

Existem ainda as lajes técnicas (LT) como pode ser observado na figura 12. Essas lajes não possuem

rebaixo, apresentam um bordo livre e também estão em balanço, porém com dimensões muito inferiores

às das varandas.

O piso do subsolo (Figura 16) é composto por paredes em concreto armado ao longo de sua

fronteira, que realizam a contenção do solo, e, portanto, estão sujeitas ao empuxo de terra. As paredes

em concreto armado vão do fundo da laje do piso do subsolo ao topo da laje do teto do subsolo. Além

disso, no piso do subsolo há um cintamento cujo objetivo é travar os pilares em pelo menos duas

direções. Buscou-se, na realidade, para o máximo de pilares possíveis, projetar três travamentos, através

de vigas ligando um pilar ao outro. Dessa forma, foi necessário projetar vigas inclinadas para os pilares

que não estavam no mesmo alinhamento. Optou-se por apoiar as lajes sobre as vigas de cintamento, e

as paredes apoiam-se sobre o solo. A forma apresentada na figura 16 não representa ainda a forma final

do pavimento, uma vez que, apesar de já considerar o pré-dimensionamento dos pilares provenientes do

teto do tipo, houveram mudanças significativas nas dimensões dos pilares após o processamento do

modelo computacional, como será observado posteriormente. No entanto, a disposição das vigas e

pilares se manteve.

Figura 16 – Forma em andamento do piso do subsolo

Page 29: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

28

Quanto ao semi-enterrado, a mudança de layout do pavimento em relação ao tipo, criou a

necessidade de transições no teto deste pavimento, como pode ser observado na figura 18. A concepção

do teto do semi-enterrado, foi feita com base na do teto do tipo, apenas adicionando as transições

necessárias. Dessa forma, neste pavimento ocorre o nascimento de alguns dos pilares que fazem parte

do teto do tipo, mas que não poderiam passar pelos pavimentos inferiores, devido às interferências com

as vagas de garagem e dependências de uso comum. Em número menor, também foram realizadas

algumas transições no teto do subsolo (Figura 17), a fim de manter o máximo de vagas disponíveis. O

pé-direito estrutural limitado do semi-enterrado (2,83 m), e principalmente do subsolo (2,70 m),

acentuou a preocupação quanto ao vão máximo das vigas dos pavimentos teto do subsolo e teto do semi-

enterrado, que ainda possuem o agravante da presença de transições. Dessa forma, alguns pilares foram

criados apenas para redução de vãos e/ou realização de transições, de forma que as vigas de transição

não se apoiassem sobre outras vigas. Tanto para o teto do subsolo, como para o teto do semi-enterrado

admitiu-se uma altura máxima de viga de 70 cm, possibilitando alturas livres de 2 e 2,13 metros

respectivamente. Dessa forma, para as vigas com maiores carregamentos, recorreu-se ao aumento de

largura. No caso do subsolo, a altura livre de 2 metros atende ao recomendado pela arquitetura, como

pode ser observado na figura 11. Já no semi-enterrado, a menor altura livre sugerida pela arquitetura é

de 2,20 metros. Logo, seria necessário verificar com o arquiteto a possibilidade de aumento do pé-

direito. As formas apresentadas nas figuras 17 e 18 não correspondem às formas finais, pois os elementos

ainda sofreram mudanças em suas dimensões, após processamento do modelo no software TQS. A

disposição das vigas e pilares, no entanto, não sofreram alterações.

Figura 17 – Forma em andamento do teto do subsolo

Page 30: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

29

Figura 18 – Forma em andamento do teto do semi-enterrado

Após a concepção do teto do tipo e dos pavimentos que compõem o embasamento da edificação

(piso do subsolo, teto do subsolo e teto do semi-enterrado) por meio de um processo que buscava

compatibilizar os pavimentos entre si e com a arquitetura, realizou-se a concepção da cobertura. Mais

uma vez houve uma mudança no layout do pavimento em relação ao tipo, inclusive com um recuo em

suas laterais. Dessa forma, houve a necessidade de transições no piso da cobertura, pois alguns dos

pilares provenientes do tipo não poderiam seguir para a cobertura, por atravessarem o meio das

dependências, assim como outros pilares seriam necessários para o teto da cobertura. Dessa forma, a

concepção do piso da cobertura foi realizada a partir do teto do tipo, realizando-se apenas as transições

necessárias. O último tipo, conforme já mencionado anteriormente, apresenta um pé-direito estrutural

superior aos demais pavimentos, de 3,50 m, possibilitando a execução de vigas mais altas. Além disso,

outra particularidade é a presença de um duplex, trazendo assim, a necessidade de uma escada que leva

do piso do último tipo ao piso da cobertura, conforme pode observar-se na figura 19. Portanto, houve a

necessidade de um furo na laje do piso da cobertura para a chegada dessa escada. Como a carga na

cobertura é baixa, se comparada aos pavimentos do embasamento, algumas vigas de transição,

Page 31: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

30

diferentemente do que foi feito para os pavimentos inferiores, apoiam-se se sobre outras vigas (apoio

indireto), como pode ser observado na figura 19. Para o teto da cobertura (Figura 20), onde a carga é

muito baixa, seguiram-se com alguns pilares provenientes do tipo, porém, a maioria dos pilares

nasceram no piso da cobertura, principalmente os pilares dos cantos, devido ao recuo do pavimento em

relação ao tipo. Sob o teto da cobertura está o barrilete e casa de bombas da caixa d’água, que entram

como cargas no modelo computacional. Os pavimentos acima do teto da cobertura são: casa de máquinas

do elevador, piso e teto da caixa d’água, conforme apresentado pela figura 21. O pavimento casa de

máquinas do elevador, consiste em uma laje apoiada sobre o pilar do elevador, localizada 1 m acima do

topo da laje do teto da cobertura. Já a caixa d’água está localizada na projeção da caixa de escada, e

possui um pé direito estrutural de 2,20 m, com capacidade para 35000 litros, conforme especificado pela

arquitetura. A caixa d’água é constituída por paredes de concreto armado e sua laje de piso apoia-se

sobre os pilares que vêm dos pavimentos inferiores. A continuação do duto da escada não foi

considerada como pavimento, mas sim como uma carga sobre o teto da caixa d’água. As formas

apresentadas nas figuras 19, 20 e 21 também consistem em formas em andamento, que sofreram

mudanças nas dimensões dos elementos após o processamento no software TQS. As disposições das

vigas e pilares foram mantidas.

Figura 19 – Forma em andamento do piso da cobertura

Page 32: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

31

Figura 20 – Forma em andamento do teto da cobertura

Figura 21 – Formas em andamento da casa de máquinas do elevador, do piso e teto da caixa d’água

Em relação as escadas e rampas, têm-se as escadas de uso comum que levam de um andar ao

outro, as escadas dos dois apartamentos duplex, que vão do piso do último tipo ao piso da cobertura, a

rampa do piso ao teto do subsolo para o tráfego dos veículos, além das rampas e escadas de acesso ao

pavimento semi-enterrado (teto do subsolo), que por estarem fora da projeção do subsolo, não fazem

parte do escopo do projeto. Para as escadas de uso comum, que apresentam formato em U, foi feita uma

caixa de escadas, composta por vigas em todo o perímetro e pilares nos quatro cantos. Logo as escadas

Page 33: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

32

apoiam-se nas vigas dos pavimentos e em vigas intermediárias, que não aparecem na forma dos

pavimentos por estarem em níveis diferentes (nível do patamar), porém essa viga intermediária apoia-

se nos pilares da caixa de escadas. As escadas do duplex apresentam formato em L e apoiam-se nas lajes

dos pavimentos (piso do último tipo e piso da cobertura) e possui um apoio intermediário localizado na

curva, embutido na parede. A rampa que vai do piso ao teto do subsolo (Figura 22), apoia-se na laje do

piso do subsolo, nas paredes de concreto da garagem e um uma viga inclinada ao logo de toda a sua

extensão. Esta viga não aparece na forma, porém apoia-se nos pilares dos pavimentos.

Figura 22 – Arquitetura do piso do subsolo (rampa)

Page 34: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

33

5. PRÉ-DIMENSIONAMENTO

5.1 Vigas

Para o pré-dimensionamento das vigas foi adotada a largura de 15 cm para as vigas do teto do

tipo, visto que as paredes possuem 12 cm de largura. Dessa forma, buscou-se colocar as sobras de 3 cm

para as dependências com rebaixo, como cozinhas, banheiros, ou dependências não tão habitadas como

quartos e salas, como despensas e closets. Nas situações onde não se poderia priorizar para qual ambiente

a sobra ficaria, o eixo da viga coincidiu com o eixo da alvenaria, restando uma sobra de 1,5 cm para

cada lado. Além disso, no caso das varandas, essa diferença de largura entre viga e alvenaria ficava na

parte interna, evitando-se assim interferências na fachada. Para os demais pavimentos, para as vigas que

não possuem transição, também adotou-se uma largura de 15 cm. Já para as vigas nas quais existem

pilares nascendo, as larguras adotadas variavam conforme a dimensão desses pilares. A princípio, para

as vigas de transição adotou-se a mesma largura dos pilares que nesta nasciam. Nesta etapa, conforme

será visto posteriormente, o pré-dimensionamento dos pilares do teto do tipo já havia sido considerado,

por isso alguns pilares já não possuíam a dimensão estabelecida inicialmente de 15x30 cm. Por vezes,

havia a necessidade de nascer numa mesma viga de transição, pilares que possuíam dimensões distintas

entre si, ou que não estavam alinhados, o que também influenciou na largura de viga adotada.

Em relação à altura das vigas, foi adotado para todos os pavimentos a recomendação de Libânio

(2007, p.37), segundo o qual para tramos externos ou vigas apoiadas a altura estimada corresponde a

10% do vão. No projeto foi adotado este valor para todos o tramos de todas as vigas, exceto as que

possuem transição, para as quais a altura adotada foi estimada inicialmente como o maior valor de altura

de viga permitido no pavimento, no caso das vigas mais carregadas. Para vigas de transição com vãos

menores, ou com carregamentos baixos, as alturas adotadas foram maiores que 10% do vão, porém, não

necessariamente o maior valor possível. No caso do piso da cobertura, a maioria das vigas de transição

apresentam alturas iguais a 10% do vão, devido à carga ser muito baixa. Nos balanços foi atendido o

valor mínimo de 20% do vão. As vigas de bordo possuem alturas pré-definidas pela arquitetura: no teto

do semi-enterrado e teto do tipo a altura é de 65 cm; para o piso da cobertura a altura é de 1 m; e para o

teto da cobertura as vigas são invertidas com altura de 60 cm. Outro aspecto importante é que no caso

de vigas apoiadas sobre outras vigas, as alturas também dependem da definição de qual dos elementos

é o apoio. A viga que apoia precisa ter no mínimo as mesmas dimensões da viga apoiada. Em todos os

pavimentos evitou-se variar as dimensões de seção ao longo de uma mesma viga, visando a facilidade

de execução. No entanto, para as vigas com transição, nos trechos sem nascimento de pilar, as dimensões

puderam ser reduzidas em relação aos trechos com transição.

Page 35: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

34

A figura 23 exibe as dimensões de vigas adotadas para a concepção do teto do tipo (Figura 15),

que passou ainda por alterações, após processamento do edifício no software TQS.

Figura 23 – Pré-dimensionamento das vigas do teto do tipo

5.2 Lajes

Para o pré-dimensionamento das lajes adotou-se a espessura estimada como um valor de L/60

a L/40, sendo L o menor vão da laje, considerando-se nesta etapa como vão, a distância entre faces das

Page 36: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

35

vigas. Além disso, os valores mínimos para lajes maciças prescritos pela NBR 6118 foram respeitados,

são eles:

- 7 cm para cobertura não em balanço;

- 8 cm para lajes de piso não em balanço;

- 10 cm para lajes em balanço;

- 10 cm para lajes que suportem veículos de peso total menor ou igual a 30 kN;

- 12 cm para lajes que suportem veículos de peso total maior que 30 kN;

- 15 cm para lajes com protensão apoiadas em vigas, com mínimo de L/42 para lajes de piso

biapoiadas e L/50 para lajes de piso contínuas;

- 16 cm para lajes lisas e 14 cm para lajes-cogumelo, fora do capitel.

Em todos os pavimentos, foi adotada uma única espessura para todas as lajes, que foi

determinada com base no pior caso, isto é, na laje com as maiores dimensões. Dessa forma, para o teto

do tipo, conforme pode ser observado na figura 24, a maior laje é a L13, cujas dimensões são 729 x

707,5 cm.

Figura 24 – Pré-dimensionamento das lajes do teto do tipo

Page 37: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

36

Dessa forma:

𝐿

60=

707,5

60= 11,8 𝑐𝑚 ≅ 12 𝑐𝑚

𝐿

40=

707,5

40= 17,7 𝑐𝑚 ≅ 18 𝑐𝑚

Para a estimativa inicial, adotou-se a espessura de 12 cm para todas as lajes do teto do tipo,

atendendo assim, as dimensões mínimas para lajes com e sem balanço, de 10 cm e 8 cm,

respectivamente.

Para os demais pavimentos, foi realizado o mesmo procedimento:

- Piso do subsolo: a laje considerada no cálculo foi a L9, cujas dimensões são 996 x 648,5 cm,

conforme pode ser observado na figura 25. A espessura estimada para todas as lajes do pavimento foi

de 12 cm, pois atende à convenção adotada, além de já ter sido adotada como espessura para as lajes do

teto do tipo, representando assim, a tentativa de padronizar todas as lajes do edifício.

Figura 25 – Pré-dimensionamento das lajes do piso do subsolo

𝐿

60=

648,5

60= 10,8 𝑐𝑚 ≅ 11 𝑐𝑚

𝐿

40=

648,5

40= 16,2 𝑐𝑚 ≅ 17 𝑐𝑚

- Teto do subsolo: a laje considerada no cálculo foi a L7, cujas dimensões são 935 x 664 cm,

conforme pode ser observado na figura 26. A espessura estimada para todas as lajes do pavimento foi

de 12 cm, pelos mesmos motivos apresentados para o piso do subsolo.

Page 38: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

37

Figura 26 – Pré-dimensionamento das lajes do teto do subsolo

𝐿

60=

664

60= 11,1 𝑐𝑚 ≅ 12 𝑐𝑚

𝐿

40=

664

40= 16,6 𝑐𝑚 ≅ 17 𝑐𝑚

- Teto do semi-enterrado: a laje considerada no cálculo foi a L15, cujas dimensões são 709 x

694 cm, conforme pode ser observado na figura 27. A espessura estimada para todas as lajes do

pavimento foi de 12 cm, pelos mesmos motivos apresentados para os pavimentos mencionados

anteriormente.

Figura 27 – Pré-dimensionamento das lajes do teto do semi-enterrado

Page 39: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

38

𝐿

60=

694

60= 11,6 𝑐𝑚 ≅ 12 𝑐𝑚

𝐿

40=

694

40= 17,4 𝑐𝑚 ≅ 18 𝑐𝑚

- Piso da cobertura: a laje considerada no cálculo foi a L21, cujas dimensões são 699 x 681 cm,

conforme pode ser observado na figura 28. A espessura estimada para todas as lajes do pavimento foi

de 12 cm, pelos mesmos motivos apresentados para os pavimentos mencionados anteriormente.

Figura 28 – Pré-dimensionamento das lajes do piso da cobertura

𝐿

60=

681

60= 11,4 𝑐𝑚 ≅ 12 𝑐𝑚

𝐿

40=

681

40= 17,0 𝑐𝑚

- Teto da cobertura: a laje considerada no cálculo foi a L8, cujas dimensões são 709 x 691 cm,

conforme pode ser observado na figura 29. A espessura estimada para todas as lajes do pavimento foi

de 12 cm, pelos mesmos motivos apresentados para os pavimentos mencionados anteriormente.

Page 40: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

39

Figura 29 – Pré-dimensionamento das lajes do teto da cobertura

𝐿

60=

691

60= 11,5 𝑐𝑚 ≅ 12 𝑐𝑚

𝐿

40=

691

40= 17,3 𝑐𝑚 ≅ 18 𝑐𝑚

- Casa de máquinas do elevador, piso e teto da caixa d’água: esses pavimentos não seguem o

pré-dimensionamento adotado para os demais pavimentos, pois suas lajes possuem dimensões muito

pequenas, porém estão submetidas a grandes cargas. Dessa forma, foi adotada a espessura de 15 cm

paras as lajes desses pavimentos.

A seguir serão realizados cálculos dos momentos, reações e flechas para algumas lajes do

pavimento teto do tipo, com o auxílio de fórmulas e tabelas retiradas do livro Curso de Concreto

Armado, volume 2, do autor José Milton de Araújo (2010). Os resultados obtidos serão comparados

posteriormente com os valores fornecidos após do processamento do modelo computacional. As lajes

escolhidas foram L13. L19 e L24, por serem lajes adjacentes com as maiores dimensões do pavimento

(Figura 30). Como pode ser observado na figura 24, as lajes L13, L19 e L24 apresentam continuidade

nos quatro bordos. Dessa forma, em uma primeira análise, pode-se considerar para as três lajes, os quatro

bordos engastados.

Page 41: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

40

Figura 30 – Lajes L13, L19 e L24 do teto do tipo

Os vãos efetivos foram definidos conforme estabelecido pela NBR 6118, segundo a qual:

𝑙𝑒𝑓 = 𝑙0 + 𝑎1 + 𝑎2

Onde 𝑎1 é igual ao menor valor entre 𝑡1/2 e 0,3h e 𝑎2 é igual ao menor valor entre 𝑡2/2 e 0,3h,

conforme a figura 31.

Figura 31 – Determinação do vão efetivo

Fonte: NBR 6118 (2014)

Page 42: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

41

Dessa forma, para L13,considerando como 𝑙𝑥 a menor dimensão da laje, tem-se:

𝑙𝑥 = 707,5 + 𝑎1 + 𝑎2

Onde 𝑎1 = 𝑎2 < {𝑡

2=

15

2= 7,5 𝑐𝑚

0,3 𝑥 12 = 3,6 𝑐𝑚

Logo:

𝑙𝑥 = 707,5 + 3,6 + 3,6 = 714,7 𝑐𝑚

𝑙𝑦 = 729 + 3,6 + 3,6 = 736,2 𝑐𝑚

Analogamente, para L19:

𝑙𝑥 = 564 + 3,6 + 3,6 = 571,2 𝑐𝑚

𝑙𝑦 = 729 + 3,6 + 3,6 = 736,2 𝑐𝑚

E por fim, para L24:

𝑙𝑥 = 555,5 + 3,6 + 3,6 = 562,7 𝑐𝑚

𝑙𝑦 = 729 + 3,6 + 3,6 = 736,2 𝑐𝑚

A partir dos vãos efetivos, pode-se classificar as lajes como armada em uma ou duas direções.

Para isso, considera-se que, caso a relação entre o maior e o menor vão da laje seja superior a 2, trata-se

de uma laje armada em uma direção. Caso contrário, a laje é armada em duas direções. Logo:

Para L13:

𝑙𝑦

𝑙𝑥=

736,2

714,7= 1,03 < 2 → 𝐴𝑟𝑚𝑎𝑑𝑎 𝑒𝑚 𝑑𝑢𝑎𝑠 𝑑𝑖𝑟𝑒çõ𝑒𝑠

Para L19:

𝑙𝑦

𝑙𝑥=

736,2

571,2= 1,29 < 2 → 𝐴𝑟𝑚𝑎𝑑𝑎 𝑒𝑚 𝑑𝑢𝑎𝑠 𝑑𝑖𝑟𝑒çõ𝑒𝑠

Para L24:

𝑙𝑦

𝑙𝑥=

736,2

562,7= 1,31 < 2 → 𝐴𝑟𝑚𝑎𝑑𝑎 𝑒𝑚 𝑑𝑢𝑎𝑠 𝑑𝑖𝑟𝑒çõ𝑒𝑠

Com os valores de vãos efetivos também é possível realizar uma análise mais refinada das

condições de apoio das lajes. Considerando agora a horizontal como eixo x, a avaliação baseia-se no

seguinte critério: caso 2/3 do maior vão seja superior ao menor vão, considera-se o bordo da laje de

maior dimensão na direção considerada como apoiado. O bordo da laje de menor dimensão permanece

engastado. Caso contrário, ambos os bordos permanecem engastados. Dessa forma:

Page 43: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

42

Para L13, como pode ser observado na figura 33:

Em x:

2

3 𝑥 736,2 = 490,8 > {

383,6 (𝐿10) → 𝑎𝑝𝑜𝑖𝑎𝑑𝑜355,2 (𝐿12) → 𝑎𝑝𝑜𝑖𝑎𝑑𝑜

Em y:

2

3 𝑥 714,7 = 476,5

> 272,7 (𝐿11) → 𝑎𝑝𝑜𝑖𝑎𝑑𝑜

< 571,2 (𝐿19) → 𝑒𝑛𝑔𝑎𝑠𝑡𝑎𝑑𝑜

Para L19, como pode ser observado na figura 33:

Em x:

2

3 𝑥 736,2 = 490,8 > {

121,2 (𝐿17) → 𝑎𝑝𝑜𝑖𝑎𝑑𝑜175,6 (𝐿18) → 𝑎𝑝𝑜𝑖𝑎𝑑𝑜

Em y:

2

3 𝑥 571,2 = 380,8 < 562,7 (𝐿24) → 𝑒𝑛𝑔𝑎𝑠𝑡𝑎𝑑𝑜

Para L24, como pode ser observado na figura 33:

Em x:

2

3 𝑥 736,2 = 490,8 > {

383,6 (𝐿22) → 𝑎𝑝𝑜𝑖𝑎𝑑𝑜355,2 (𝐿28) → 𝑎𝑝𝑜𝑖𝑎𝑑𝑜

Em y:

2

3 𝑥 562,7 = 375,1 > 272,7 (𝐿31) → 𝑎𝑝𝑜𝑖𝑎𝑑𝑜

O resultado final para as vinculações nas bordas das lajes L13, L19 e L24 pode ser observado

na figura 32.

Figura 32 – Condições de apoio das lajes L13, L19 e L24 após 2ª análise

Page 44: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

43

Figura 33 – Vãos efetivos das lajes em estudo

Quanto ao carregamento, foram consideradas as cargas permanentes (peso próprio, paredes e

revestimentos), além das sobrecargas de utilização, definidas pela NBR 6120. O peso próprio, a carga

de revestimento e sobrecarga de utilização são iguais para as três lajes em estudo. Para o revestimento

adotou-se 1,5 cm de gesso na face inferior da laje, 2 cm de contra-piso e 1cm de piso na face superior.

Os valores de peso específico adotados para os materiais foram retirados da NBR 6120. Somente a carga

de alvenaria varia conforme a disposição das paredes nas lajes (Figura 34). Para todas as paredes

considerou-se tijolos furados de 9 cm de largura, e revestimento em argamassa de cal, cimento e areia

com 1,5 cm de espessura em cada face, totalizando os 12 cm de largura das paredes acabadas, conforme

indicado pela arquitetura. Logo:

Peso próprio:

25 𝑥 0,12 = 3 𝑘𝑁/𝑚²

Page 45: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

44

Revestimento:

0,01 𝑥 18 = 0,18 𝑘𝑁/𝑚² (𝑝𝑖𝑠𝑜 𝑐𝑒𝑟â𝑚𝑖𝑐𝑜)

0,02 𝑥 21 = 0,42 𝑘𝑁/𝑚² (𝑎𝑟𝑔𝑎𝑚𝑎𝑠𝑠𝑎 𝑑𝑒 𝑐𝑖𝑚𝑒𝑛𝑡𝑜 𝑒 𝑎𝑟𝑒𝑖𝑎)

0,015 𝑥 12,5 = 0,1875 𝑘𝑁/𝑚² (𝑎𝑟𝑔𝑎𝑚𝑎𝑠𝑠𝑎 𝑑𝑒 𝑔𝑒𝑠𝑠𝑜)

Sobrecarga acidental: 2 kN/m², conforme NBR 6120.

Alvenaria: composta por argamassa de cal, cimento e areia e tijolos furados.

0,03 𝑥 19 + 0,09 𝑥 13 = 1,74 𝑘𝑁/𝑚²

Considerando uma altura de parede de 2,98 m (3,10 m do pé direito estrutural descontados dos

12 cm de laje), tem-se:

Carga de parede em L13:

(1,74 𝑥 2 + 2,70 𝑥 2 + 1,37 𝑥 3 + 7,29) 𝑥 2,98 𝑥 1,74

7,362 𝑥 7,147= 2 𝑘𝑁/𝑚²

Carga de parede em L19:

(7,29 + 3,11 + 1,5 𝑥 3 + 1,4 𝑥 2 + 2,20 + 0,80) 𝑥 2,98 𝑥 1,74

7,362 𝑥 5,712= 2,55 𝑘𝑁/𝑚²

Carga de parede em L24:

(1,74 𝑥 2 + 2,70 𝑥 2) 𝑥 2,98 𝑥 1,74

7,362 𝑥 5,627= 1,11 𝑘𝑁/𝑚²

Logo, as cargas permanentes totais são:

𝑔13 = 3 + 0,18 + 0,42 + 0,1875 + 2 = 5,8 𝑘𝑁/𝑚²

𝑔19 = 3 + 0,18 + 0,42 + 0,1875 + 2,55 = 6,3 𝑘𝑁/𝑚²

𝑔24 = 3 + 0,18 + 0,42 + 0,1875 + 1,11 = 4,9 𝑘𝑁/𝑚²

Os carregamentos totais (permanente + acidental), por sua vez, são:

𝑝13 = 5,8 + 2 = 7,8 𝑘𝑁/𝑚²

𝑝19 = 6,3 + 2 = 8,3 𝑘𝑁/𝑚²

𝑝24 = 4,9 + 2 = 6,9 𝑘𝑁/𝑚²

Como para a obtenção dos esforços nas lajes são consideradas faixas de 1 m, os carregamentos

totais são multiplicados por esse valor, e suas unidades passam de kN/m² para kN/m.

Page 46: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

45

Figura 34 – Alvenarias nas lajes L13, L19 e L24

Para o cálculo dos esforços e flechas das lajes serão utilizadas as formulações e tabelas da teoria

das grelhas, considerando os apoios flexíveis. Este método foi escolhido pois o software utilizado

também faz essa consideração, além de ser uma aproximação que mais se assemelha à situação real. As

expressões para cálculo dos momentos, reações e flechas por este método são:

𝑀𝑥 = 0,001𝑚𝑥𝑝𝑙𝑥2

𝑀𝑦 = 0,001𝑚𝑦𝑝𝑙𝑥2

𝑀𝑥𝑒 = 0,001𝑚𝑥𝑒𝑝𝑙𝑥2

𝑀𝑦𝑒 = 0,001𝑚𝑦𝑒𝑝𝑙𝑥2

𝑅𝑥 = 0,001𝑟𝑥𝑝𝑙𝑥

𝑅𝑦 = 0,001𝑟𝑦𝑝𝑙𝑥

𝑅𝑥𝑒 = 0,001𝑟𝑥𝑒𝑝𝑙𝑥

𝑅𝑦𝑒 = 0,001𝑟𝑦𝑒𝑝𝑙𝑥

Page 47: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

46

𝑊𝑐 = 0,001𝑤𝑐

𝑝𝑙𝑥4

𝐷

Onde:

𝐷 =𝐸ℎ3

12(1 − 𝜈2)

𝑊𝑐 - flecha no centro da laje;

𝑀𝑥 e 𝑀𝑦 - momentos positivos no centro da laje nas direções dos vãos 𝑙𝑥 e 𝑙𝑦, respectivamente;

𝑀𝑥𝑒 e 𝑀𝑦𝑒 - momentos negativos nos engastes nas direções dos vãos 𝑙𝑥 e 𝑙𝑦, respectivamente;

𝑅𝑥 – reação de apoio por unidade de comprimento no lado 𝑙𝑥, quando tratar-se de um apoio

simples;

𝑅𝑦 – reação de apoio por unidade de comprimento no lado 𝑙𝑦, quando tratar-se de um apoio

simples;

𝑅𝑥𝑒 – reação de apoio por unidade de comprimento no lado 𝑙𝑥, quando tratar-se de um engaste;

𝑅𝑦𝑒 – reação de apoio por unidade de comprimento no lado 𝑙𝑦, quando tratar-se de um engaste;

p – carga distribuída em uma faixa de 1 m de laje;

E – módulo de elasticidade secante

Os demais coeficientes das fórmulas são obtidos entrando nas tabelas com a relação 𝑙𝑦/𝑙𝑥, onde

o lado y é sempre o que contém o engaste, nos casos onde só há um engaste ou engastes paralelos, como

ocorre nas lajes em estudo. Para as lajes L13 e L24 foi utilizada a tabela A2.28 do livro Curso de

Concreto Armado, volume 2, do autor José Milton de Araújo (Figura 36). Já para a L19, utilizou-se a

tabela A2.29 do mesmo livro (Figura 37).

Para L13:

𝑙𝑦

𝑙𝑥=

736,2

714,7= 1,03

Os coeficientes foram obtidos por interpolação:

𝑤𝑐 = 5,078

𝑚𝑥𝑒 = −54,2

𝑚𝑥 = 54,2

𝑚𝑦 = 46,03

𝑟𝑥 = 178,9

Page 48: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

47

𝑟𝑦𝑒 = 379,7

𝑟𝑦 = 270,8

Aplicando-se os coeficientes obtidos:

𝑀𝑥 = 0,001 𝑥 54,2 𝑥 7,8 𝑥 7,1472 = 21,6 𝑘𝑁𝑚/𝑚

𝑀𝑦 = 0,001 𝑥 46,03 𝑥 7,8 𝑥 7,1472 = 18,3 𝑘𝑁𝑚/𝑚

𝑀𝑥𝑒 = 0,001 𝑥 (−54,2)𝑥 7,8 𝑥 7,1472 = − 21,6 𝑘𝑁𝑚/𝑚

𝑅𝑥 = 0,001 𝑥 178,9 𝑥 7,8 𝑥 7,147 = 10,0 𝑘𝑁/𝑚

𝑅𝑦 = 0,001 𝑥 270,8 𝑥 7,8 𝑥 7,147 = 15,1 𝑘𝑁/𝑚

𝑅𝑦𝑒 = 0,001 𝑥 379,7 𝑥 7,8 𝑥 7,147 = 21,2 𝑘𝑁/𝑚

𝑊𝑐 =0,001 𝑥 5,078 𝑥 7,8 𝑥 7,1474

29 𝑥 106𝑥 0,123

12(1 − 0,2²)

= 0,024 𝑚 = 2,4 𝑐𝑚

A flecha fornecida pela expressão de 𝑊𝑐 trata-se da flecha imediata. A flecha diferida, 𝛿∞, é

calculada conforme a NBR 6118, e leva em consideração a fluência do concreto. Seu valor pode ser

obtido de maneira aproximada pela multiplicação da flecha imediata pelo fator 𝛼𝑓, cuja expressão é:

𝛼𝑓 = Δ𝜉

1 + 50𝜌′

Onde:

𝜌′ =𝐴𝑠′

𝑏𝑑

Δ𝜉 = 𝜉(𝑡) − 𝜉(𝑡0)

Visando a obtenção da flecha diferida para o pior caso, adotou-se 𝑡0= 0 e 𝑡 = 70 meses. Dessa

forma, conforme indicado pela NBR 6118 (Figura 35), tem-se:

𝜉(𝑡0) = 0

𝜉(𝑡) = 2

Δ𝜉 = 2

Como não há armadura de compressão (𝐴𝑠′= 0), 𝜌′= 0.

Logo: 𝛼𝑓 = 2

E a flecha diferida pode ser expressa por:

𝛿∞ = (1 + 2)𝑊𝑐

Page 49: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

48

Para a L13:

𝛿∞ = (1 + 2) 𝑥 2,4 = 7,2 𝑐𝑚 > 𝑙

250=

714,7

250= 2,9 𝑐𝑚

O valor encontrado para a flecha diferida está muito acima do deslocamento limite estabelecido

pela NBR 6118 de l/250 para lajes que não estejam em balanço. Porém, é importante salientar que

adotou-se o pior caso em todos os sentidos, tanto no método escolhido para cálculo da flecha imediata

(teoria das grelhas com apoios flexíveis), como na obtenção do coeficiente 𝛼𝑓, ao calcular-se a flecha

para o tempo de 70 meses, considerando que todas as cargas de longa duração começaram a atuar juntas

no tempo 0. Dessa forma, antes de qualquer interferência, optou-se por observar o valor de flecha

diferida fornecido pelo modelo computacional.

Figura 35 – Valores do coeficiente 𝜉 em função do tempo

Fonte: NBR 6118 (2014)

Para L19:

𝑙𝑦

𝑙𝑥=

736,2

571,2= 1,29

Os coeficientes foram obtidos diretamente da tabela, sem necessidade de interpolação:

𝑤𝑐 = 4,57

𝑚𝑥𝑒 = −54,8

𝑚𝑥 = 54,8

𝑚𝑦 = 26

𝑟𝑥 = 80

𝑟𝑦𝑒 = 379,7

𝑟𝑦 = 270,8

Aplicando-se os coeficientes obtidos:

𝑀𝑥 = 0,001 𝑥 54,8 𝑥 8,3 𝑥 5,7122 = 14,8 𝑘𝑁𝑚/𝑚

𝑀𝑦 = 0,001 𝑥 26 𝑥 8,3 𝑥 5,7122 = 7,0 𝑘𝑁𝑚/𝑚

Page 50: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

49

𝑀𝑥𝑒 = 0,001 𝑥 (−54,8)𝑥 8,3 𝑥 5,7122 = − 14,8 𝑘𝑁𝑚/𝑚

𝑅𝑥 = 0,001 𝑥 80 𝑥 8,3 𝑥 5,712 = 3,8 𝑘𝑁/𝑚

𝑅𝑦𝑒 = 0,001 𝑥 439 𝑥 8,3 𝑥 5,712 = 20,8 𝑘𝑁/𝑚

𝑊𝑐 =0,001 𝑥 4,57 𝑥 8,3 𝑥 5,7124

29 𝑥 106𝑥 0,123

12(1 − 0,2²)

= 0,0089 𝑚 = 0,89 𝑐𝑚

𝛿∞ = (1 + 2)𝑊𝑐 = 3 𝑥 0,89 = 2,67 𝑐𝑚 > 𝑙

250=

571,2

250= 2,3 𝑐𝑚

Mais uma vez o valor encontrado para a flecha diferida está acima do deslocamento limite

estabelecido pela NBR 6118 de l/250 para lajes que não estejam em balanço. No entanto, pelos mesmos

motivos mencionados para a L13, optou-se por observar o valor de flecha diferida fornecido pelo modelo

computacional antes de qualquer modificação na forma. No caso da L19 acrescenta-se ainda o fato da

diferença entre os valores não ser tão grande.

Para L24:

𝑙𝑦

𝑙𝑥=

736,2

562,7= 1,31

Os coeficientes foram obtidos diretamente da tabela, sem necessidade de interpolação:

𝑤𝑐 = 6,46

𝑚𝑥𝑒 = −68,9

𝑚𝑥 = 68,9

𝑚𝑦 = 36,7

𝑟𝑥 = 113

𝑟𝑦𝑒 = 482

𝑟𝑦 = 344

Aplicando-se os coeficientes obtidos:

𝑀𝑥 = 0,001 𝑥 68,9 𝑥 6,9 𝑥 5,6272 = 15,1 𝑘𝑁𝑚/𝑚

𝑀𝑦 = 0,001 𝑥 36,7 𝑥 6,9 𝑥 5,6272 = 8,0 𝑘𝑁𝑚/𝑚

𝑀𝑥𝑒 = 0,001 𝑥 (−68,9)𝑥 6,9 𝑥 5,6272 = − 15,1 𝑘𝑁𝑚/𝑚

𝑅𝑥 = 0,001 𝑥 113 𝑥 6,9 𝑥 5,627 = 4,4 𝑘𝑁/𝑚

𝑅𝑦 = 0,001 𝑥 344 𝑥 6,9 𝑥 5,627 = 13,4 𝑘𝑁/𝑚

Page 51: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

50

𝑅𝑦𝑒 = 0,001 𝑥 482 𝑥 6,9 𝑥 5,627 = 18,7 𝑘𝑁/𝑚

𝑊𝑐 =0,001 𝑥 6,46 𝑥 6,9 𝑥 5,6274

29 𝑥 106𝑥 0,123

12(1 − 0,2²)

= 0,010 𝑚 = 1,0 𝑐𝑚

𝛿∞ = (1 + 2)𝑊𝑐 = 3 𝑥 1,0 = 3,0 𝑐𝑚 > 𝑙

250=

562,7

250= 2,3 𝑐𝑚

Assim como nas lajes verificadas anteriormente, a flecha diferida está acima do deslocamento

limite estabelecido pela NBR 6118 de l/250 para lajes que não estejam em balanço. No entanto, pelos

mesmos motivos mencionados para L13 e L19, optou-se por observar o valor de flecha diferida

fornecido pelo modelo computacional antes de qualquer alteração. No caso da L24, assim como na L19,

a diferença entre a flecha encontrada e o valor limite não é tão grande como no caso da L13.

Figura 36 – Tabela para laje retangular simplesmente apoiada em três lados e engastada no quarto,

com carga uniformemente distribuída (Teoria das Grelhas – apoios flexíveis)

Fonte: ARAÚJO (2010)

Page 52: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

51

Figura 37 – Tabela para laje retangular apoiada em dois lados opostos e engastada nos demais, com

carga uniformemente distribuída (Teoria das Grelhas – apoios flexíveis)

Fonte: ARAÚJO (2010)

Os valores de momentos encontrados para as lajes L13, L19 e L24, em kN.m/m, encontram-se

resumidos na figura 38.

Uma última análise pode ser feita quanto às condições de apoio das lajes: observando-se os

momentos nos engastes obtidos a partir de lajes adjacentes, caso a relação entre o maior e o menor

momento seja igual ou inferior a 2, a condição de engaste pode ser mantida. Caso contrário, deve-se

rever as condições de apoio das lajes. Dessa forma:

21,6

14,8= 1,46 < 2 → 𝐸𝑛𝑔𝑎𝑠𝑡𝑒 𝑚𝑎𝑛𝑡𝑖𝑑𝑜

15,1

14,8= 1,02 < 2 → 𝐸𝑛𝑔𝑎𝑠𝑡𝑒 𝑚𝑎𝑛𝑡𝑖𝑑𝑜

A figura 39 exibe os valores dos momentos para as lajes em estudo após a compatibilização. O

momento compatibilizado corresponde ao maior valor entre a média dos momentos no engaste e 80%

do momento máximo. Logo:

Page 53: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

52

𝑀𝑐𝑜𝑚𝑝 1 > {

21,6 + 14,8

2= 18,2 𝑘𝑁𝑚/𝑚

0,8 𝑥 21,6 = 17,3 𝑘𝑁𝑚/𝑚

𝑀𝑐𝑜𝑚𝑝 1 = 18,2 𝑘𝑁𝑚/𝑚

∆𝑀1 =21,6 − 18,2

2= 1,7 𝑘𝑁𝑚/𝑚

𝑀𝑐𝑜𝑚𝑝 2 > {

15,1 + 14,8

2= 15,0 𝑘𝑁𝑚/𝑚

0,8 𝑥 15,1 = 12,1 𝑘𝑁𝑚/𝑚

𝑀𝑐𝑜𝑚𝑝 2 = 15,0 𝑘𝑁𝑚/𝑚

∆𝑀2 =15,1 − 15,0

2= 0,05 𝑘𝑁𝑚/𝑚

Para a laje L13, como o momento no engaste antes da compatibilização (Figura 38) é superior

ao momento compatibilizado (Figura 39), o momento positivo aumentará de ∆𝑀 após a

compatibilização. O mesmo ocorre para a laje L24, porém, com um ∆𝑀diferente. Já para a laje L19 o

momento no engaste é inferior ao momento compatibilizado, logo, o momento positivo não será

alterado, visto que não há sentido em reduzi-lo.

Figura 38 – Valores dos momentos nas lajes L13, L19 e L24, em kN.m/m (antes da compatibilização)

Page 54: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

53

Figura 39 – Valores dos momentos compatibilizados nas lajes L13, L19 e L24, em kN.m/m

5.3 Pilares

Na fase de concepção, definiu-se que as dimensões iniciais dos pilares seriam de 15 x 30 cm,

exceto para os casos onde fosse necessário por questões geométricas e estruturais pilares maiores, como

por exemplo, para apoiar duas vigas com eixos não alinhados. Como mencionado anteriormente essas

dimensões adotadas inicialmente atendem ao mínimo estabelecido pela NBR 6118 de 360 cm². A NBR

6118 também recomenda que os pilares não apresentem dimensões inferiores a 19 cm, porém permite

que em casos especiais sejam adotadas dimensões entre 14 e 19 cm, desde que se multipliquem os

esforços solicitantes de cálculo a serem considerados no dimensionamento por um coeficiente adicional

𝛾𝑛, conforme a figura 40. No entanto, a área mínima de seção transversal de 360 cm² deve ser sempre

respeitada.

Page 55: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

54

Figura 40 – Coeficiente adicional 𝛾𝑛 para pilares e pilares-parede

Fonte: NBR 6118 (2014)

Para o pré-dimensionamento dos pilares dividiu-se o teto do tipo em áreas de influência para a

estimativa das cargas absorvidas por cada pilar. Nessa etapa não foi aplicado o coeficiente adicional,

visto que este só é utilizado na fase de dimensionamento para majorar os esforços solicitantes finais de

cálculo, como consta na nota da figura 40.

A partir da analogia com as estruturas unidimensionais, nas quais para vigas biapoiadas e

biengastadas, cada pilar absorve metade da carga, e para vigas engastadas e apoiadas, o pilar do engaste

absorve aproximadamente 60% da carga, e o pilar do apoio os 40% restantes, dividiu-se o pavimento

em estudo nas áreas de influência. Para a definição das áreas, dividiu-se as distâncias entre os eixos dos

pilares, de acordo com a analogia mencionada. Dessa forma, para vigas biapoiadas ou trechos

biengastados, como no caso de vigas que apresentam vários trechos em continuidade, divide-se a

distância entre os eixos dos pilares ao meio. Já para os trechos engastados e apoiados, como no caso do

último trecho de uma viga com continuidade, a distância entre os eixos dos pilares é dividida em 0,6 l

para o pilar do meio e 0,4 l para o pilar do canto. A divisão do teto do tipo em áreas de influência pode

ser observada na figura 41.

Após o levantamento das áreas de influência, para a estimativa das cargas absorvidas por cada

pilar, considerou-se a uma carga média por pavimento de 10 kN/m², e um total de oito pavimentos (piso

e teto do subsolo, teto do semi-enterrado, três tetos do tipo, piso e teto da cobertura). Como trata-se de

uma aproximação, considerou-se todos os pavimentos iguais ao tipo, porém, nem todos os pilares do

teto do tipo irão percorrer oito pavimentos, assim como alguns pilares ainda receberão cargas

provenientes da transição. Além disso, não foram considerados os pavimentos: casa de máquinas do

elevador, piso e teto da caixa d’água. Portanto, o resultado obtido pode não corresponder às dimensões

finais dos pilares, sofrendo modificações após o processamento do edifício no software TQS. Dessa

forma, a carga estimada para cada pilar é fornecida pela expressão:

𝑁𝑘 = Á𝑟𝑒𝑎 𝑑𝑒 𝑖𝑛𝑙𝑓𝑢ê𝑛𝑐𝑖𝑎 𝑥 𝑞𝑚é𝑑𝑖𝑎 𝑥 𝑁º 𝑑𝑒 𝑝𝑎𝑣𝑖𝑚𝑒𝑛𝑡𝑜𝑠

Page 56: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

55

Foi adotada uma tensão de pré-dimensionamento, 𝜎𝑝𝑟é, igual a metade do 𝑓𝑐𝑘. Essa tensão deve

ser igual ou superior a relação entre a carga estimada, 𝑁𝑘, e a área de concreto, 𝐴𝑐, da seção transversal

do pilar. Além disso, a menor dimensão do pilar é de 15 cm, conforme estabelecido na fase de

concepção. Assim:

𝑁𝑘

𝐴𝑐≤ 𝜎𝑝𝑟é =

𝑓𝑐𝑘

2=

35

2= 17,5 𝑀𝑃𝑎 = 17,5 𝑥 103𝑘𝑃𝑎

𝐴𝑐 ≥𝑁𝑘

𝜎𝑝𝑟é=

𝑁𝑘

17,5 𝑥 10³

𝑑 𝑥 0,15 ≥𝑁𝑘

17,5 𝑥 10³

Figura 41 – Áreas de influência para os pilares do teto do tipo

Page 57: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

56

A tabela 1 resume os valores das áreas de influência encontrados para os pilares do teto do tipo,

bem como as cargas estimadas, áreas de concreto necessárias e dimensões adotadas:

Tabela 1 – Pré-dimensionamento dos pilares do teto do tipo

Carga Média: 10 kN/m²

Nº de pavimentos: 8

fck 35 MPa

P1A 0,15 14,85 1188,0 0,068 0,45 0,45

P2A 0,15 9,4 752,0 0,043 0,29 0,30

P8B 0,15 8,88 710,4 0,041 0,27 0,30

P8A 0,15 19,68 1574,4 0,090 0,60 0,60

P4 0,15 9,62 769,6 0,044 0,29 0,30

P5 0,15 2,6 208,0 0,012 0,08 0,30

P12 0,2 15,7 1256,0 0,072 0,36 0,40

P6A 0,15 13,42 1073,6 0,061 0,41 0,45

P7A 0,2 14,9 1192,0 0,068 0,34 0,35

P7B 0,15 9,52 761,6 0,044 0,29 0,30

P9B 0,2 18,07 1445,6 0,083 0,41 0,45

P10A 0,3 36,11 2888,8 0,165 0,55 0,55

P11A 0,15 12,65 1012,0 0,058 0,39 0,40

P13A 0,3 27,77 2221,6 0,127 0,42 0,45

P15A 0,15 10,4 832,0 0,048 0,32 0,35

P16A 0,15 12,44 995,2 0,057 0,38 0,40

P17A 0,2 27,05 2164,0 0,124 0,62 0,65

P18 0,15 7,16 572,8 0,033 0,22 0,30

P21 0,2 10,96 876,8 0,050 0,25 0,30

P22 0,45 36,47 2917,6 0,167 0,37 0,40

P23 0,15 19,5 1560,0 0,089 0,59 0,60

P19 0,15 6 480,0 0,027 0,18 0,30

P20 0,15 11,08 886,4 0,051 0,34 0,35

P26 0,45 38,13 3050,4 0,174 0,39 0,40

P24 0,15 7,23 578,4 0,033 0,22 0,30

P25 0,15 13,21 1056,8 0,060 0,40 0,40

P28 0,2 13,52 1081,6 0,062 0,31 0,35

P29A 0,25 30,31 2424,8 0,139 0,55 0,55

P30 0,15 18,91 1512,8 0,086 0,58 0,60

P27 0,15 42,91 3432,8 0,196 1,31 ELEVADOR

P31 0,2 25,75 2060,0 0,118 0,59 0,60

P38 0,2 15,7 1256,0 0,072 0,36 0,40

P34A 0,35 27,66 2212,8 0,126 0,36 0,40

P30A 0,15 15,42 1233,6 0,070 0,47 0,50

P32A 0,15 20,33 1626,4 0,093 0,62 0,65

P37A 0,25 24,92 1993,6 0,114 0,46 0,50

P33 0,15 4,48 358,4 0,020 0,14 0,30

P39A 0,25 15,26 1220,8 0,070 0,28 0,30

P40 0,15 12,1 968,0 0,055 0,37 0,40

P40A 0,2 12,2 976,0 0,056 0,28 0,30

P41A 0,2 15,79 1263,2 0,072 0,36 0,40

P43 0,3 32,99 2639,2 0,151 0,50 0,50

P44 0,2 12,67 1013,6 0,058 0,29 0,30

P40B 0,15 9,7 776,0 0,044 0,30 0,30

P42A 0,2 20,25 1620,0 0,093 0,46 0,50

P45A 0,2 14,88 1190,4 0,068 0,34 0,35

P46A 0,15 9,38 750,4 0,043 0,29 0,30

P47 0,15 11,76 940,8 0,054 0,36 0,40

P48 0,2 2,6 208,0 0,012 0,06 0,30

Dimensão

adot. (m)Pilar

Dimensão

definida (m)

Área de

influência (m²)

Carga

estimada (kN)

Área

necessária (m²)

Dimensão(m)

Page 58: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

57

Como pode ser observado na tabela 1, para os pilares cuja dimensão encontrada é inferior ao

estabelecido inicialmente (15 x 30 cm), adotou-se 30 cm. Além disso, a menor dimensão de alguns

pilares foi alterada para valores superiores aos 15 cm previamente estabelecido. Isso ocorreu nos casos

onde os valores para segunda dimensão encontrados eram muito altos. Em relação ao pilar do elevador,

não foi adotado o valor encontrado no pré-dimensionamento, uma vez que este possui o formato em U,

e suas dimensões foram definidas com base na arquitetura. Além disso, sua área de concreto é muito

superior à necessária.

6. LANÇAMENTO DA ESTRUTURA

Conforme mencionado anteriormente, o software utilizado foi o CAD/TQS. A primeira etapa

para o lançamento da estrutura foi a criação do edifício. Nesta etapa foram definidos os pavimentos, a

carga de vento, e outras premissas como classe do concreto, classe de agressividade ambiental e

cobrimentos adotados. Além disso definiu-se o modelo estrutural do edifício. Na aba “Gerais” da edição

de edifício, adicionou-se o título (Trabalho de Conclusão de Curso I), definiu-se a norma adotada (NBR

6118:2014), bem como o tipo de estrutura (Concreto Armado). Além disso, essa aba apresenta um

desenho esquemático com todos os pavimentos criados, como pode ser observado na figura 42.

Figura 42 – Aba “Gerais” da edição de edifício do TQS

Na aba “Modelo” (Figura 43) definiu-se o modelo estrutural adotado. O TQS fornece seis

opções de modelos, e para o projeto em questão foi utilizado o modelo VI. No modelo VI o edifício é

Page 59: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

58

modelado por um pórtico espacial composto por elementos que simularão as vigas, pilares e lajes da

estrutura. Os efeitos gerados pela aplicação das ações verticais e horizontais serão calculados com esse

modelo. Portanto, diferentemente dos outros modelos, além das vigas e pilares, as lajes passarão a

resistir parte dos esforços gerados pelo vento. Outra particularidade desse modelo, é que todos os

pavimentos devem ser definidos como grelha de lajes. Nessa aba também é possível alterar o método de

análise dos efeitos de 2ª ordem globais de Gama Z para P-delta. Para o projeto optou-se por manter o

Gama Z, por ser uma estrutura com mais de 4 pisos, conforme recomendação do software.

Figura 43 – Aba “Modelo” da edição de edifício do TQS

Na aba “Pavimentos” foram lançados os pisos, com seus respectivos pés-direitos. Foram

definidos os modelos estruturais de cada pavimento, bem como sua classe. Caso haja repetição, pode-

se alterar o número de pisos, como é o caso do pavimento tipo. A tabela 2 apresenta um resumo dos

pavimentos criados. Como pode ser observado na tabela 2, o pé-direito lançado consiste na distância

entre o topo da laje do piso criado, e o topo da laje do pavimento imediatamente abaixo. Dessa forma,

para o pavimento fundação, o software não permite lançar um valor diferente de zero para o pé-direito.

Outra observação importante é a existência de dois tipos. Isso foi necessário pois no último tipo as cargas

de alvenaria são diferentes, visto que o pé-direito é maior. Quanto às classes, o pavimento classificado

como térreo é aquele a partir do qual se aplica vento. Dessa forma, considerou-se a aplicação do vento

a partir do piso do semi-enterrado (teto do subsolo), denominado no software como Térreo. A classe

“Primeiro” refere-se ao primeiro pavimento, cujo pé-direito é diferente do tipo. Logo, o teto do semi-

enterrado se aplica à essa definição. A classe “Cobertura” é utilizada para piso da cobertura, já o ático

engloba o teto da cobertura, a casa de máquinas e o reservatório. Conforme mencionando anteriormente,

Page 60: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

59

devido à escolha do modelo VI, o modelo adotado para todos os pavimentos foi o de grelhas de lajes

planas.

Tabela 2 – Resumo das informações lançadas na aba “Pavimentos”

Na aba “Materiais” definiu-se a classe de concreto utilizada, a classe de agressividade

ambiental, e se a estrutura será em concreto armado ou protendido. Devido à localização do prédio, em

frente à praia de Piratininga, adotou-se a classe de agressividade ambiental III. A estrutura foi projetada

em concreto armado de classe C35, conforme pode ser observado na figura 44. Quanto aos cobrimentos

(Figura 45), foram adotados os valores já mencionados no item 3.4. Para o piso do subsolo, piso e teto

da caixa d’água foram utilizados cobrimentos diferenciados (Figura 46), devido às recomendações da

NBR 6118, conforme explicado no item 3.4.

Figura 44 – Aba “Materiais” da edição de edifício do TQS

Pavimento Nº de pisos Pé-direito (m) Classe Modelo Estrutural

Fundação 1 0 Fundação Grelha de lajes planas

Subsolo 1 3 Subsolo Grelha de lajes planas

Térreo 1 2,7 Térreo Grelha de lajes planas

Primeiro 1 2,83 Primeiro Grelha de lajes planas

Tipo 2 3,1 Tipo Grelha de lajes planas

Tipo 2 1 3,1 Tipo Grelha de lajes planas

Piso da Cobertura 1 3,5 Cobertura Grelha de lajes planas

Teto da Cobertura 1 3,2 Ático Grelha de lajes planas

Casa de Máquinas 1 1 Ático Grelha de lajes planas

Piso da Caixa d'água 1 1,4 Ático Grelha de lajes planas

Teto da Caixa d'água 1 2,2 Ático Grelha de lajes planas

Page 61: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

60

Figura 45 – Aba “Cobrimentos” da edição de edifício do TQS

Figura 46 – Cobrimentos diferenciados por planta (Subsolo, piso e teto da caixa d’água)

Na aba “Cargas” adicionou-se a carga de vento, a partir da determinação da velocidade e dos

fatores S1, S2 e S3, bem como do coeficiente de arrasto para quatro ângulos de incidência do vento: 0°,

90°, 180° e 270°, como pode ser observado na figura 47. A velocidade básica foi definida com base no

mapa fornecido pelo próprio software, no qual seleciona-se a região da edificação, e obtém-se um valor

aproximado da velocidade básica (Figura 48). Para a região da edificação em estudo foi encontrado um

valor de 34 m/s. Para o fator topográfico (S1), que leva em consideração as variações do relevo do

Page 62: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

61

terreno, adotou-se 1, pois trata-se de um terreno praticamente plano. Quanto à rugosidade, adotou-se a

categoria II, por tratar-se de uma zona costeira, com poucos obstáculos. A edificação foi considerada

como classe B, pois sua maior dimensão horizontal ou vertical está entre 20 e 50 m. Sua maior dimensão

horizontal é de 37,46 m, enquanto sua maior dimensão vertical é de 27,33 m. Adotou-se 1 como fator

estatístico (S3), por tratar-se de um edifício residencial. A princípio, o coeficiente de arrasto pode ser

definido a partir da geometria da edificação. O software estima as larguras do edifício para cada ângulo

de incidência do vento, bem como sua altura, e, considerando vento de baixa turbulência, entra com as

informações no ábaco, fornecendo automaticamente os coeficientes de arrasto para os quatro ângulos,

como pode ser verificado na figura 49. Logo, o primeiro coeficiente de arrasto foi estimado dessa forma.

Após o processamento do modelo, como será comentado posteriormente, será necessário adotar outro

coeficiente de arrasto.

Além da carga de vento, foi criada a carga de subpressão, que atua no piso do subsolo, conforme

mencionado anteriormente. Nesta etapa a carga foi apenas criada, sendo o seu valor inserido nas lajes

do pavimento piso do subsolo, denominado no modelo como subsolo. Por trata-se de um carregamento

que atua de baixo para cima, o valor da carga deve ser inserido com o sinal negativo. A subpressão foi

considerada como carga acidental, com ponderador favorável nulo, de maneira que esta não seja

considerada sempre que for favorável. Os fatores de redução de combinação foram considerados nulos,

visto que esta é a única carga variável que atua no piso do subsolo, uma vez que não se aplica a carga

de vento neste pavimento.

Figura 47 – Adição da carga de vento na aba “Cargas”

Page 63: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

62

Figura 48 – Mapa das velocidades básicas do vento por região

Figura 49 – Determinação do coeficiente de arrasto (primeira estimativa)

Page 64: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

63

Figura 50 – Adição da carga de subpressão na aba “Cargas”

Na aba “Cargas” foram definidos ainda os ponderadores das cargas permanentes e sobrecargas,

𝛾𝑓, além dos redutores das sobrecargas, 𝜓0, 𝜓1 e 𝜓2, conforme estabelecido pela NBR 6118 (Figuras

51 e 52). Como pode ser observado na figura 53, adotou-se 1,4 como ponderador para as cargas

permanentes desfavoráveis, e 1 para as cargas favoráveis. Já para as sobrecargas, como pode ser

observado na figura 54, os valores adotados foram de 1,4 e 0, respectivamente. Para a definição dos

redutores das sobrecargas considerou-se que não há predominância de pesos de equipamentos que

permanecem fixos por longos período de tempo, nem de elevadas concentrações de pessoas, pois trata-

se de um edifício residencial. Os valores adotados podem ser observados na figura 54.

Figura 51 – Coeficiente 𝛾𝑓

Fonte: NBR 6118 (2014)

Page 65: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

64

Figura 52 – Coeficientes 𝜓0, 𝜓1 e 𝜓2

Fonte: NBR 6118 (2014)

Figura 53 – Ponderadores de carga permanente

Na aba “Critérios” não foram realizadas alterações, adotando-se os critérios padrões do TQS.

Page 66: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

65

Figura 54 – Ponderadores e redutores de sobrecargas

Após a criação do edifício no software, o próximo passo foi a modelagem dos pavimentos. Para

isso foram utilizadas como máscaras as formas desenhadas no AutoCAD, convertidas de DWG para

DXF, e inseridas no modelador estrutural como referências externas, conforme figura 55. A escala foi

um ponto de atenção ao se inserir as máscaras: como o desenho das formas foi feito em metro, foi

necessário, antes da conversão para DXF, passar os desenhos para centímetro (unidade do TQS). Para

isso ampliou-se em 100 vezes os desenhos das formas. Além disso, todas as referências externas foram

inseridas com o mesmo ponto de referência. Para isso os desenhos em DXF foram salvos com o ponto

de referência escolhido localizado na mesma coordenada. No caso do projeto em estudo, adotou-se um

dos cantos do pilar do elevador como referência, posicionando-o na origem (0,0) do sistema de eixos do

AutoCAD.

Figura 55 – Inserção das máscaras como referências externas

Page 67: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

66

Após se inserir as máscaras, deu-se início a modelagem propriamente dita. Para lançamento dos

pilares, utilizou-se as abas “Identificação”, “Seção”, “Modelo” e “Plantas/Seções”. Na aba

“Identificação” (Figura 56), definiu-se a numeração do pilar, com a possibilidade de adição de título

opcional, que não precisa conter somente números. Esse recurso foi utilizado para nomear pilares que

sofrem transição e pilares fictícios, como será abordado posteriormente. Na aba “Seção” (Figura 57)

definiu-se o ponto de inserção dos pilares, bem como seus formatos e dimensões em cm. Na aba

“Modelo” (Figura 58) definiu-se se o pilar nasce na fundação ou em viga. Os demais campos dessa aba

não foram alterados, adotando-se o padrão do software. E na aba “Plantas/Seções” (Figura 59) definiu-

se os pavimentos onde os pilares nascem e morrem. Essa aba também foi utilizada para alterar a seção

de um pilar. Para isso, inseriu-se um pavimento intermediário, acima do qual o pilar poderia assumir

outra dimensão. As abas não mencionadas não foram utilizadas.

Figura 56 – Aba “Identificação” dos dados de pilares

Page 68: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

67

Figura 57 – Aba “Seção” dos dados de pilares

Figura 58 – Aba “Modelo” dos dados de pilares

Page 69: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

68

Figura 59 – Aba “Plantas/Seções” dos dados de pilares

Para lançamento das vigas, utilizou-se as abas “Identificação”, “Inserção” e ” Seção/Carga”. Na

aba “Identificação” (Figura 60) adicionou-se a numeração da viga. Os elementos são numerados pelo

software conforme a ordem de lançamento. Logo, caso as vigas sejam inseridas na ordem correta de

numeração, não há necessidade de alteração desse campo. Outro recurso disponível é o de renumeração

de elementos (Figura 61), em caso de alteração na forma. Na aba “Inserção” (Figura 62) foi definido se

a viga seria inserida pela face esquerda, pelo eixo, ou pela face direita. Na aba “Seção/Carga” (Figura

63), foram lançadas as dimensões das vigas. Quando necessário, definiu-se o rebaixo da viga, de valor

positivo quando para baixo, conforme convenção do TQS. O TQS recomenda que as vigas sejam

lançadas de face a face dos pilares.

Figura 60 – Aba “Identificação” dos dados gerais da viga

Page 70: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

69

Figura 61 – Renumeração de elementos

Figura 62 – Aba “Inserção” dos dados gerais da viga

Após o lançamento de todas as vigas do pavimento, utilizou-se o comando “Definir

cruzamento”. O TQS exige que em todos os pavimentos, para todos os cruzamentos de viga seja definido

qual das vigas é o apoio. Dessa forma, através desse comando seleciona-se o cruzamento, e define-se a

viga que recebe a carga. Outro comando utilizado foi o “Ligação forçada com pilar”. Nos casos onde a

Page 71: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

70

viga não reconheceu um pilar como apoio, ou, em caso de transição, o pilar não reconheceu a viga, este

comando foi utilizado.

Figura 63 – Aba “Seção/Carga” dos dados gerais da viga

Para o lançamento das lajes, utilizou-se as abas “Identificação” e “Seção/Carga”. Assim como

nos outros elementos, na aba “Identificação” (Figura 64) definiu-se a numeração da laje, não sendo

necessária alteração, caso a laje tenha sido lançada na ordem correta de numeração. Na aba

“Seção/Carga” (Figura 65) definiu-se a espessura de laje adotada, bem como as cargas distribuídas

permanente e acidental, em tf/m². Quando necessário, definiu-se o rebaixo. Conforme mencionado

anteriormente, somente as lajes das varandas do tipo apresentam um rebaixo de 5 cm. As cargas

distribuídas acidentais foram definidas de acordo com a NBR 6120. Já as sobrecargas permanentes

adotadas foram as cargas de revestimento utilizadas para o cálculo dos esforços e flechas para as lajes

L13, L19 e L24 do teto do tipo. Dessa forma, considerou-se que todos os pavimentos apresentam o

mesmo revestimento, exceto o piso do subsolo, que não é revestido, e o teto da cobertura, bem como os

pavimentos acima dele, nos quais adicionou-se a carga de impermeabilização à carga de revestimento.

A tabela 3 resume as cargas distribuídas adotadas em cada pavimento. Considerou-se ainda, conforme

determinado pela NBR 6120, cargas lineares verticais nas bordas das varandas de 2 kN/m.

Como pode ser observado na tabela 3, no piso do subsolo foram consideradas duas cargas

acidentais, a carga de utilização e a subpressão, correspondente à uma altura de água de 72 cm a partir

do fundo da laje do subsolo. Assim:

10 𝑥 0,72 = 7,2 𝑘𝑁 𝑚²⁄ = 0,72 𝑡𝑓/𝑚²

Page 72: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

71

No térreo (teto do subsolo) foram consideradas cargas acidentais diferentes de acordo com a

utilização das dependências. Adotou-se 0,5 tf/m² para as lajes da academia e salão de festas; 0,3 tf/m²

para as lajes dos terraços, lounge e vagas de garagem e 0,2 tf/m² para as demais lajes. No teto da

cobertura também ocorreu uma diferenciação de cargas para as lajes do barrilete e casa de bombas, nas

quais foi adotado 0,75 tf/m². Para as demais lajes desse pavimento adotou-se 0,1 tf/m². Para o piso da

caixa d’água, considerou-se uma altura de água de 2 metros. Esse valor baseou-se na capacidade de

35000 L informada pela arquitetura.

Ao se inserir uma laje, o TQS solicita ainda que seja informada a direção principal da mesma,

através da seleção de uma linha que apresente tal direção. Dessa forma, selecionou-se uma viga na

direção do menor vão da laje. Para as lajes com bordo livre, utilizou-se o recurso “Fechamento de

bordo”. Esse comando permite a inserção de uma linha como bordo da laje, e foi utilizado nas lajes

técnicas do pavimento tipo, por exemplo.

Figura 64 – Aba “Identificação” dos dados de lajes

As cargas de alvenaria foram lançadas como cargas lineares (Figura 66), e os valores utilizados

basearam-se naqueles adotados para o cálculo dos esforços e flechas das lajes L13, L19 e L24 do teto

do tipo. Dessa forma, os valores utilizados para cargas de alvenaria foram calculados a partir da

expressão:

1,74 𝑘𝑁 𝑚²⁄ 𝑥 𝐴𝑙𝑡𝑢𝑟𝑎 𝑑𝑎 𝑎𝑙𝑣𝑒𝑛𝑎𝑟𝑖𝑎 (𝑒𝑚 𝑚)

Para a maior parte das alvenarias, adotou-se uma altura igual ao pé-direito estrutural do

pavimento descontado da espessura da laje do pavimento superior. No entanto, alguns pavimentos

Page 73: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

72

apresentam alvenarias com alturas diferentes, como os muros que dividem a cozinha da área de serviço

no pavimento tipo, e as alvenarias em toda a borda do piso da cobertura.

Figura 65 – Aba “Seção/Carga” dos dados de lajes

Tabela 3 – Cargas distribuídas aplicadas nos pavimentos

Para os guarda-corpos em vidro da varanda, utilizou-se o peso específico de 26 kN/m³, conforme

indicado pela NBR 6120.

No piso da cobertura adicionou-se ainda as cargas distribuídas por área (Figura 67) referentes a

piscina e deck de madeira, cujos valores adotados foram 1 tf/m² e 0,02 tf/m², respectivamente.

Pavimento Permanente (tf/m²) Acidental (tf/m²) Observação

Subsolo 0 0,3/-0,72 Utilização/Subpressão

0,08 0,5 Academia/ Salão de festas

0,3 Vagas de garagem/ Terraços/Lounge

0,2

Primeiro 0,08 0,2

Tipo 0,08 0,2

Tipo 2 0,08 0,2

Piso da Cobertura 0,08 0,2

0,1 0,1

0,1 0,75 Barrilete e Casa de bombas

Casa de Máquinas 0,1 0,75

Piso da Caixa d'água 2,1 - Revestimento + Água

Teto da Caixa d'água 0,1 0,1

Térreo

Teto da Cobertura

Page 74: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

73

Figura 66 – Inserção de cargas lineares (alvenarias)

Figura 67 – Inserção de cargas distribuídas por área (piscina e deck de madeira)

As escadas foram simuladas por lajes de espessura de 27 cm, cujo carregamento adotado foi

0,08 tf/m² de sobrecarga permanente, referente ao revestimento, e 0,3 tf/m² de sobrecarga acidental,

conforme indicado pela NBR 6120 para escadas com acesso ao público. A espessura adotada

corresponde a espessura média da escada, calculada a partir dos desenhos da arquitetura, considerando

uma laje de 12 cm, conforme pode ser observado na figura 68. No caso das escadas dos apartamentos

duplex, adotou-se a carga de 0,8 tf/m². Dessa forma, dividindo-se a escada em dois trechos biapoiados

de 1,5m e 3,5 m, conforme a figura 69, chegou-se a valores de cargas lineares de 0,6 tf/m e 1,4 tf/m,

respectivamente. A carga de 0,6 tf/m foi lançada na laje do piso do último tipo (tipo 2), na saída da

escada. Já a carga de 1,4 tf/m foi lançada na laje do piso da cobertura, na chegada da escada. Também

foi lançada a carga de 0,6 tf/m na laje do piso do último tipo, representado um apoio intermediário

embutido na alvenaria.

Page 75: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

74

0,8 𝑥 1,5

2= 0,6 𝑡𝑓/𝑚

0,8 𝑥 3,5

2= 1,4 𝑡𝑓/𝑚

Figura 68 – Cálculo da espessura média das escadas

Figura 69 – Escada do piso do último tipo ao piso da cobertura (duplex)

A rampa do piso ao teto do subsolo (Figura 70) foi considerada no modelo como cargas lineares

no topo das paredes da garagem, carga linear na laje do piso do subsolo, e cargas concentradas nos

pilares, representando a viga inclinada ao longo de todo o comprimento da rampa.

Page 76: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

75

Figura 70 – Rampa do piso ao teto do subsolo

Considerou-se a rampa como uma laje de 12 x 3,50 m, com 15 cm de espessura, armada em

uma direção. Assim:

Peso próprio:

0,15 𝑥 25 = 3,75 𝑘𝑁/𝑚

Carga de utilização: 3 kN/m

Vãos efetivo na direção principal:

3,50 + 2 𝑥 0,3 𝑥 (0,15) = 3,59 𝑚

Carga linear na parede e na viga inclinada (direção principal):

(3 + 3,75) 𝑥 3,59

2= 12,1 𝑘𝑁 𝑚⁄ = 1,21 𝑡𝑓/𝑚

Aplicou-se a carga linear encontrada na viga inclinada, com o auxílio do software Ftool,

conforme figura 71:

Figura 71 – Carga linear na viga inclinada

As reações encontradas nos pilares P8, P9, P10 e P11, conforme figura 72, foram:

𝑅𝑃8 = 4,7 𝑘𝑁

𝑅𝑃9 = 59,6 𝑘𝑁

𝑅𝑃10 = 66,5 𝑘𝑁

Page 77: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

76

𝑅𝑃11 = 14,5 𝑘𝑁

Figura 72 – Reações nos pilares P8, P9, P10 e P11

Dessa forma, lançou-se as reações nos pilares como cargas concentradas no teto do subsolo

(pavimento térreo no modelo), na direção secundária adotou-se cargas lineares de 0,5 tf/m, lançadas na

laje do piso do subsolo e no topo da parede da garagem.

7. PROCESSAMENTO DO MODELO

Antes do modelo final, foram processados outros dois modelos. Ambos eram compostos apenas

pelos pavimentos tipo. O primeiro modelo, denominado “TCC - Tipo” (Figura 73) foi elaborado a partir

da concepção apresentada na figura 15. As dimensões adotadas seguiram o pré-dimensionamento

apresentado no item 5. Porém, o processamento global deste modelo apontou alguns erros graves,

conforme pode ser observado na figura 74.

Figura 73 – 3D do modelo “TCC – Tipo”

Diante dos erros apontados, verificou-se que seriam necessárias alterações nas dimensões dos

pilares. Além disso, algumas seções de lajes também não puderam ser dimensionadas para flexão

negativa, cisalhamento e punção. No entanto, concluiu-se que tratam-se de pontos de pico, decorrentes

do modelo de grelhas utilizado no software. Dessa forma, manteve-se a espessura de laje adotada (12

cm), realizando-se apenas algumas mudanças na concepção. O erro “Esforços de desaprumo

significativos”, a princípio foi ignorado pelo fato de estar relacionado com a estabilidade global do

edifício, e o modelo processado não contemplar todos os pavimentos.

Page 78: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

77

Figura 74 – Lista de erros graves do modelo “TCC – Tipo”

Dessa forma, a partir do modelo anterior e dos erros indicados pelo software elaborou-se um

novo modelo, denominado “TCC – Tipo 2”. Porém, antes disso, como os cálculos para as lajes L13,

L19 e L24 do teto do tipo, realizados no item 5.2, basearam-se na concepção da figura 15 e pré-

dimensionamento do item 5, assim como o modelo “TCC – Tipo 1”, as análises comparativas foram

realizadas com base nesse modelo. Assim, considerando a horizontal como eixo x:

Para L13, os resultados do modelo podem ser observados nas figuras 75, 76 e 77.

Figura 75 – 𝑀𝑥 na L13 (em tf.m/m)

Comparando-se os valores de momentos calculados, observados na figura 39, com os valores

obtidos pelo modelo (Figuras 75 e 76), observa-se que o modelo fornece valores inferiores para os

momentos positivos no centro da laje. Em x essa diferença é de aproximadamente 30%, já em y, a

diferença é de aproximadamente 55%. Além disso, a laje apresentou um comportamento diferente do

esperado, tendo por direção principal o eixo x. Outra diferença significativa é que para os cálculos

manuais considerou-se a laje apoiada em três dos seus bordos. Dessa forma, não foram encontrados

valores de momentos negativos para esses bordos. Já o modelo apresenta momentos negativos em todos

Page 79: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

78

os bordos. Para o bordo onde foi considerado engaste nos cálculos manuais, a diferença entre os valores

encontrados é de aproximadamente 10%. Em relação à deformação, o valor fornecido pelo modelo

(Figura 77) é muito inferior ao calculado. Isso ocorre pois o TQS considera que as vigas e lajes se

deformam juntas. Dessa forma, o deslocamento relativo é menor. Além disso, o software multiplica as

flechas imediatas por 2,5 para consideração da fluência, enquanto para os cálculos manuais utilizou-se

3 para este fator. Apesar de inferior ao valor calculado, o deslocamento fornecido pelo modelo também

não atende ao deslocamento limite estabelecido pela NBR 6118. É importante salientar que as

deformações do modelo foram retiradas do visualizador de grelhas no estado limite de serviço para

combinação quase-permanente.

Figura 76 – 𝑀𝑦 na L13 (em tf.m/m)

Figura 77 – Deformação na L13 (em cm)

Page 80: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

79

No caso da laje L19, os resultados fornecidos pelo modelo podem ser observados nas figuras

78, 79 e 80.

Figura 78 – 𝑀𝑥 na L19 (em tf.m/m)

Figura 79 – 𝑀𝑦 na L19 (em tf.m/m)

Em relação aos momentos positivos no centro da laje, em x, o valor fornecido pelo modelo é

superior ao calculado em aproximadamente 10%, já em y, o valor fornecido pelo modelo é inferior em

aproximadamente 20% ao calculado. Quando aos momentos negativos, ocorre situação similar à

verificada na laje L13: no modelo todos os bordos apresentam momentos negativos, enquanto nos

cálculos manuais somente dois bordos foram considerados como engastados. Os valores calculados

diferem em aproximadamente 10% dos resultados do software. Como já esperado, pelos motivos

Page 81: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

80

anteriormente mencionados, o deslocamento fornecido pelo modelo é inferior ao calculado, porém a

diferença é bem menor se comparada com a laje L13. Além disso, o valor fornecido pelo modelo atende

ao deslocamento limite estabelecido pela NBR 6118, como pode ser observado na figura 80.

Figura 80 – Deformação na L19 (em cm)

Por fim, para a laje L24, os resultados fornecidos pelo modelo podem ser observados nas figuras

81, 82 e 83.

Figura 81 – 𝑀𝑥 na L24 (em tf.m/m)

Page 82: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

81

Figura 82 – 𝑀𝑦 na L24 (em tf.m/m)

Figura 83 – Deformação na L24 (em cm)

Comparando-se os resultados obtidos pelo modelo com os valores calculados manualmente,

observa-se que o modelo fornece valores inferiores para os momentos positivos no centro da laje tanto

em x como em y. Em x a diferença é insignificante, em y, está em torno de 35%. Para o momento

negativo calculado, a diferença em relação ao software é de aproximadamente 10%, porém, o modelo

apresenta outros três valores de momentos negativos que não foram calculados manualmente, devido à

consideração dos bordos como apoiados. O deslocamento fornecido pelo modelo (Figura 83) é inferior

ao calculado, conforme já esperado.

As divergências entre os resultados provenientes dos cálculos manuais e fornecidos pelo

software basicamente decorrem da diferença dos critérios adotados na teoria das grelhas e no método de

cálculo utilizado pelo programa, embora ambos considerem os apoios flexíveis. Em relação aos

deslocamentos, soma-se ainda o fato do fator de fluência utilizado pelo TQS ser diferente daquele

adotado nos cálculos manuais. Dessa forma, já era esperada uma certa divergência entre os resultados.

Page 83: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

82

Após as análises comparativas, seguiu-se então para o próximo modelo: “TCC – Tipo 2”. Esse

modelo foi elaborado com base no anterior, com algumas alterações. Alguns pilares tiveram suas seções

aumentadas: a menor dimensão foi alterada de 15 cm para 20 cm em todos os pilares que não foram

dimensionados pelo programa. A forma do pavimento também sofreu alterações com prolongamento de

algumas vigas e mudança de posição de outra. A princípio, avaliando-se apenas os erros apresentados

no processamento, a altura das lajes não sofreria modificação em relação ao modelo anterior, no entanto,

como a laje L13 apresentou deslocamento superior ao limite, aumentou-se as lajes para 15 cm. A nova

proposta de forma para o teto do tipo pode ser observada na figura 84.

Como pode ser observado na figura 84, as vigas V9, V15 e V26 foram prolongadas até a

varanda, para auxiliar no apoio desta. A viga V40 foi prolongada passando agora pelas suítes. Portanto,

nessa nova concepção houve uma maior flexibilidade quanto à passagem das vigas em dependências

como quartos e salas, visando vantagens do ponto de vista estrutural, como redução de deslocamentos e

esforços. A viga V15 sofreu um deslocamento vertical, passando a apoiar diretamente nos pilares P25 e

P26. No modelo anterior esta viga apoiava-se sobre outras vigas. Uma observação importante é que os

trechos das vigas V9, V15 e V26 que passam pelas varandas, também apresentam rebaixo de 5 cm.

Dessa forma, a maior altura possível para esses trechos é 60 cm, a fim de evitar interferências na fachada

da edificação.

Figura 84 – Nova forma do teto do tipo

Page 84: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

83

O processamento desse novo modelo resultou em um número muito menor de erros como pode

ser observado na figura 85.

Figura 85 – Lista de erros graves do modelo “TCC – Tipo 2”

O erro “Esforços de desaprumo significativos” será mais uma vez ignorado, visto que sua

correção só é possível após o lançamento de toda a estrutura. Os erros relativos às lajes permaneceram

e como explicado anteriormente, decorrem do modelo de grelhas do software. Mesmo aumentando a

espessura da laje, esses erros se mantiveram, pois, em determinados pontos da grelha é comum a

formação de picos. Quanto ao erro “Pilar com tração” trata-se de um erro recorrente do TQS devido ao

modelo de pórtico.

O modelo “TCC – Tipo 2” serviu como base para o modelo “Trabalho de Conclusão de Curso

I” (Figura 86). Aproveitou-se o lançamento dos pavimentos tipo já realizado e adicionou-se os

pavimentos do embasamento e cobertura. As paredes da garagem foram lançadas como vigas: no

pavimento subsolo (piso do subsolo) foram lançadas vigas invertidas com aproximadamente metade da

altura da parede. No pavimento superior lançou-se vigas com a outra metade da altura da parede, apenas

deixando alguns centímetros entre as vigas dos dois pavimentos para evitar erros de interferência. Além

disso, foram lançados pilares de 20 x 20 cm a cada 2 metros, simulando a rigidez de uma parede de

concreto. O mesmo procedimento foi adotado para a caixa d’água. Por isso, os pilares que deveriam

morrer no piso da caixa d’água, seguem até o teto. Buscando uma padronização, as lajes de todos os

pavimentos possuem 15 cm de altura.

O novo modelo passou por diversos processamentos até se chegar a sua configuração final.

Pilares precisaram ser aumentados significativamente, assim como vigas, principalmente as que contém

transição. Além disso, em seu primeiro processamento, foi exibido o erro “Esforços de desaprumo

significativos” (Figura 87). Para a correção desse erro, substituiu-se o coeficiente de arrasto calculado a

partir da geometria do edifício, pelo coeficiente sugerido no relatório de estabilidade global.

Page 85: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

84

Figura 86 – 3D do modelo “Trabalho de Conclusão de Curso I”

Figura 87 – Erro “Esforços de desaprumo significativos”

O processamento final do modelo apresentou ainda alguns erros: lajes sem dimensionamento

para cisalhamento, punção e flexão negativa, pilares com tração, e alguma vigas apresentando estribos

com 𝜙 50, indicando que não passavam no cortante. Em relação às lajes, trata-se do mesmo erro

mencionado anteriormente: picos formados em decorrência do modelo de grelhas. A tração no pilar

decorre do modelo de pórtico, ocorrendo quando há diferença de rigidez entre as vigas de dois

pavimentos. Quando a viga do pavimento superior apresenta rigidez maior em relação ao pavimento

inferior, os esforços, ao invés de serem transferidos para a viga de baixo, podem acabar indo para cima,

caracterizando a tração no pilar. Portanto, trata-se de um erro comum do TQS, uma vez que este não

considera o processo construtivo, e por isso, foi ignorado. Quanto às vigas, verificou-se através de

cálculos se 𝑉𝑆𝑑 < 𝑉𝑅𝑑2. Para as vigas nas quais, apesar de o software mostrar o contrário, os cálculos

indicavam que o esforço solicitante era inferior ao resistente, as dimensões não foram alteradas.

Page 86: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

85

8. RESULTADOS FINAIS

Após o processamento final, extraiu-se resultados importantes do modelo, como o relatório de

estabilidade global, apresentado na figura 88. Como pode ser observado, o valor de Gama Z encontrado

é inferior ao limite de referência.

Outra informação importante é a carga média por pavimento, apresentada na figura 89. O valor

médio encontrado não difere muito do valor adotado no pré-dimensionamento de 10 kN/m².

A figura 90 exibe a deformada do pavimento tipo 2 (piso do último tipo). No TQS os

deslocamentos verticais são multiplicados por 2,50 para consideração simplificada de deformação lenta.

Como pode ser observado os valores máximos ocorrem nas lajes L15, L24 e L41, sendo a L15 a laje

com as maiores dimensões do pavimento e as lajes L24 e L41 pertencentes às varandas. O deslocamento

fornecido pelo modelo atende ao máximo estabelecido pela NBR 6118 em todos os casos:

Para L15:

707,5 + (2 𝑥 0,3 𝑥 15)

250= 2,9 𝑐𝑚 > 1,8 𝑐𝑚

Para L24:

250 + (0,3 𝑥 15)

125= 2,0 𝑐𝑚 > 1,8 𝑐𝑚

Para L41:

350 + (0,3 𝑥 15)

125= 2,8 𝑐𝑚 > 2,3 𝑐𝑚

Figura 88 – Relatório de estabilidade global

Page 87: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

86

Figura 89 – Carga média por pavimento (em tf/m²)

Figura 90 – Deformada do pavimento tipo 2 (cm)

As plantas de forma finais dos pavimentos serão apresentadas no anexo B deste projeto.

Page 88: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

87

9. CONCLUSÃO

A etapa de concepção do projeto estrutural é um processo que requer muitas tentativas e

considerações, que além de segurança, conforto e economia, visam atender às necessidades

arquitetônicas. Quanto mais detalhes e restrições a arquitetura apresentar, mais complicado é o processo

de concepção. Neste projeto, a dimensão das varandas, e a grande quantidade de detalhes presentes na

arquitetura, além da preocupação com as vagas de garagem e movimentação dos veículos, representaram

as maiores dificuldades. Os pavimentos com transição também foram pontos críticos, exigindo muitas

tentativas na busca da melhor solução, considerando o sistema estrutural adotado: lajes maciças apoiadas

sobre vigas em concreto armado. O sistema estrutural adotado talvez não seja o mais adequado,

justamente pela quantidade de detalhes arquitetônicos. Além disso, em alguns pavimentos,

inevitavelmente, há um grande número de vigas, como no piso da cobertura, devido a escolha desse

sistema.

No mercado atual, os modelos computacionais substituíram quase que totalmente os cálculos

manuais, utilizados por vezes para efeito de verificação. No entanto, o software não substitui o trabalho

do engenheiro, uma vez que as informações devem ser lançadas de maneira correta, bem como a

coerência dos resultados deve ser sempre julgada. A comparação dos resultados do software com valores

obtidos a partir de cálculos manuais demonstrou que há divergências. Tais divergências decorrem da

adoção de critérios diferentes no método de cálculo do software utilizado em relação à teoria das grelhas,

método adotado para os cálculos manuais, embora em ambos os casos os apoios sejam considerados

flexíveis.

O lançamento de uma estrutura em um software de cálculo estrutural é um processo que exige

muitos cuidados, além de atenção às características e recomendações próprias do programa utilizado.

Os erros encontrados nos processamentos dos modelos computacionais mostraram que muitas vezes o

próprio modelo de grelhas utilizado no TQS gera erros no dimensionamento das lajes, devido à formação

de picos. Erros relativos à estabilidade global, como “Esforços de desaprumo significativos” são

específicos do TQS, e o próprio software fornece alternativas para corrigi-lo. A tração nos pilares

encontrada também decorre de uma característica própria do software. O TQS, em geral, apresenta

grande facilidade no lançamento dos elementos estruturais e cargas, o que talvez seja uma das

justificativas para sua vasta utilização no mercado brasileiro.

As etapas seguintes à concepção, pré-dimensionamento e lançamento da estrutura em software,

bem como a elaboração das formas de escadas e rampas, que não foram lançadas no software, apenas

simuladas, serão abordadas no Trabalho de Conclusão de Curso II.

Page 89: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

88

ANEXO A

Page 90: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

89

Page 91: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

90

Page 92: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

91

Page 93: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

92

Page 94: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

93

Page 95: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

94

Page 96: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

AA

BB

A1 - 594 X 841

A

B

C

D

E

F

G H I J MK L N

AutoCAD SHX Text
PISO DO SUBSOLO
AutoCAD SHX Text
P1
AutoCAD SHX Text
P2
AutoCAD SHX Text
P15
AutoCAD SHX Text
P3
AutoCAD SHX Text
P4
AutoCAD SHX Text
P5
AutoCAD SHX Text
P7
AutoCAD SHX Text
P10
AutoCAD SHX Text
P11
AutoCAD SHX Text
P13
AutoCAD SHX Text
P17
AutoCAD SHX Text
P16
AutoCAD SHX Text
P18
AutoCAD SHX Text
P8
AutoCAD SHX Text
P19
AutoCAD SHX Text
P20
AutoCAD SHX Text
P21
AutoCAD SHX Text
P23
AutoCAD SHX Text
P22
AutoCAD SHX Text
P24
AutoCAD SHX Text
P26
AutoCAD SHX Text
P25
AutoCAD SHX Text
P27
AutoCAD SHX Text
P28
AutoCAD SHX Text
P29
AutoCAD SHX Text
P30
AutoCAD SHX Text
P31
AutoCAD SHX Text
P32
AutoCAD SHX Text
P34
AutoCAD SHX Text
P35
AutoCAD SHX Text
P39
AutoCAD SHX Text
P37
AutoCAD SHX Text
P38
AutoCAD SHX Text
P40
AutoCAD SHX Text
P44
AutoCAD SHX Text
P41
AutoCAD SHX Text
P43
AutoCAD SHX Text
P47
AutoCAD SHX Text
P45
AutoCAD SHX Text
P46
AutoCAD SHX Text
P48
AutoCAD SHX Text
P12
AutoCAD SHX Text
V29 15/35
AutoCAD SHX Text
V1 15/60
AutoCAD SHX Text
P9
AutoCAD SHX Text
P33
AutoCAD SHX Text
P6
AutoCAD SHX Text
P36
AutoCAD SHX Text
P14
AutoCAD SHX Text
P42
AutoCAD SHX Text
PAR1
AutoCAD SHX Text
PAR2
AutoCAD SHX Text
PAR3
AutoCAD SHX Text
PAR4
AutoCAD SHX Text
V2 15/50
AutoCAD SHX Text
V4 15/60
AutoCAD SHX Text
V3 15/45
AutoCAD SHX Text
V5 15/35
AutoCAD SHX Text
V7 15/70
AutoCAD SHX Text
V6 15/30
AutoCAD SHX Text
V8 15/30
AutoCAD SHX Text
V9 15/60
AutoCAD SHX Text
V12 15/30
AutoCAD SHX Text
V13 15/75
AutoCAD SHX Text
V15 15/60
AutoCAD SHX Text
V16 15/35
AutoCAD SHX Text
V17 15/75
AutoCAD SHX Text
V18 15/40
AutoCAD SHX Text
V19 15/65
AutoCAD SHX Text
V22 15/65
AutoCAD SHX Text
V24 20/50
AutoCAD SHX Text
V25 20/50
AutoCAD SHX Text
V26 15/55
AutoCAD SHX Text
V27 15/65
AutoCAD SHX Text
V28 15/40
AutoCAD SHX Text
V30 15/30
AutoCAD SHX Text
V33 15/30
AutoCAD SHX Text
V11
AutoCAD SHX Text
V32 15/50
AutoCAD SHX Text
15/50
AutoCAD SHX Text
V20 15/40
AutoCAD SHX Text
15/30
AutoCAD SHX Text
V31 15/30
AutoCAD SHX Text
V21 15/55
AutoCAD SHX Text
V35 15/70
AutoCAD SHX Text
V23 15/50
AutoCAD SHX Text
V36 15/35
AutoCAD SHX Text
V34 15/55
AutoCAD SHX Text
20/285
AutoCAD SHX Text
95x20
AutoCAD SHX Text
55x20
AutoCAD SHX Text
50x30
AutoCAD SHX Text
80x40
AutoCAD SHX Text
40x30
AutoCAD SHX Text
95x20
AutoCAD SHX Text
50x40
AutoCAD SHX Text
40x70
AutoCAD SHX Text
50x20
AutoCAD SHX Text
80x20
AutoCAD SHX Text
40x30
AutoCAD SHX Text
20x50
AutoCAD SHX Text
95x35
AutoCAD SHX Text
50x35
AutoCAD SHX Text
30x70
AutoCAD SHX Text
75x30
AutoCAD SHX Text
80x20
AutoCAD SHX Text
40x30
AutoCAD SHX Text
30x20
AutoCAD SHX Text
55x20
AutoCAD SHX Text
20x85
AutoCAD SHX Text
70x40
AutoCAD SHX Text
30x60
AutoCAD SHX Text
15x30
AutoCAD SHX Text
30x45
AutoCAD SHX Text
80x40
AutoCAD SHX Text
20x85
AutoCAD SHX Text
70x45
AutoCAD SHX Text
25x60
AutoCAD SHX Text
20x70
AutoCAD SHX Text
80x25
AutoCAD SHX Text
70x40
AutoCAD SHX Text
40x45
AutoCAD SHX Text
20x40
AutoCAD SHX Text
80x20
AutoCAD SHX Text
20x30
AutoCAD SHX Text
20x40
AutoCAD SHX Text
70x20
AutoCAD SHX Text
50x60
AutoCAD SHX Text
25x60
AutoCAD SHX Text
20x70
AutoCAD SHX Text
30x70
AutoCAD SHX Text
20x30
AutoCAD SHX Text
70x20
AutoCAD SHX Text
50x45
AutoCAD SHX Text
20x40
AutoCAD SHX Text
20x30
AutoCAD SHX Text
20/285
AutoCAD SHX Text
20/285
AutoCAD SHX Text
20/285
AutoCAD SHX Text
V10
AutoCAD SHX Text
12/30
AutoCAD SHX Text
V14
AutoCAD SHX Text
L1
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L2
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L3
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L4
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L5
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L6
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L7
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L8
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L9
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L10
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L11
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L12
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L13
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L16
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L14
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L17
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L18
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L19
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L20
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L21
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L22
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L23
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L25
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L26
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L28
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L27
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L24
AutoCAD SHX Text
h=15
AutoCAD SHX Text
-3.93
AutoCAD SHX Text
TETO DO SUBSOLO
AutoCAD SHX Text
V7 15/60
AutoCAD SHX Text
V1 15/60
AutoCAD SHX Text
V3 15/60
AutoCAD SHX Text
V4 15/30
AutoCAD SHX Text
15/40
AutoCAD SHX Text
V17 70/70
AutoCAD SHX Text
V6 15/30
AutoCAD SHX Text
V24 15/40
AutoCAD SHX Text
V10 15/70
AutoCAD SHX Text
V11 15/60
AutoCAD SHX Text
V12 15/40
AutoCAD SHX Text
V13 15/70
AutoCAD SHX Text
V19 50/70
AutoCAD SHX Text
V15 70/70
AutoCAD SHX Text
V20 15/70
AutoCAD SHX Text
V16 15/65
AutoCAD SHX Text
V21 15/40
AutoCAD SHX Text
P12
AutoCAD SHX Text
P13A
AutoCAD SHX Text
P20
AutoCAD SHX Text
V22 15/35
AutoCAD SHX Text
P9A
AutoCAD SHX Text
P6A
AutoCAD SHX Text
P45A
AutoCAD SHX Text
P1A
AutoCAD SHX Text
P2A
AutoCAD SHX Text
P39A
AutoCAD SHX Text
V23 15/60
AutoCAD SHX Text
V27 15/50
AutoCAD SHX Text
P46A
AutoCAD SHX Text
V26 50/70
AutoCAD SHX Text
V5 15/70
AutoCAD SHX Text
V2 35/50
AutoCAD SHX Text
V18 50/70
AutoCAD SHX Text
V14 15/50
AutoCAD SHX Text
P16A
AutoCAD SHX Text
P40A
AutoCAD SHX Text
P7A
AutoCAD SHX Text
V9
AutoCAD SHX Text
V25 45/70
AutoCAD SHX Text
P1
AutoCAD SHX Text
P2
AutoCAD SHX Text
P15
AutoCAD SHX Text
P3
AutoCAD SHX Text
P4
AutoCAD SHX Text
P5
AutoCAD SHX Text
P7
AutoCAD SHX Text
P10
AutoCAD SHX Text
P11
AutoCAD SHX Text
P13
AutoCAD SHX Text
P16
AutoCAD SHX Text
P18
AutoCAD SHX Text
P8
AutoCAD SHX Text
P19
AutoCAD SHX Text
P21
AutoCAD SHX Text
P23
AutoCAD SHX Text
P22
AutoCAD SHX Text
P24
AutoCAD SHX Text
P26
AutoCAD SHX Text
P25
AutoCAD SHX Text
P27
AutoCAD SHX Text
P28
AutoCAD SHX Text
P29
AutoCAD SHX Text
P30
AutoCAD SHX Text
P31
AutoCAD SHX Text
P34
AutoCAD SHX Text
P35
AutoCAD SHX Text
P39
AutoCAD SHX Text
P37
AutoCAD SHX Text
P38
AutoCAD SHX Text
P40
AutoCAD SHX Text
P44
AutoCAD SHX Text
P41
AutoCAD SHX Text
P43
AutoCAD SHX Text
P47
AutoCAD SHX Text
P45
AutoCAD SHX Text
P46
AutoCAD SHX Text
P48
AutoCAD SHX Text
P12
AutoCAD SHX Text
P9
AutoCAD SHX Text
P6
AutoCAD SHX Text
P36
AutoCAD SHX Text
P14
AutoCAD SHX Text
P42
AutoCAD SHX Text
95x20
AutoCAD SHX Text
55x20
AutoCAD SHX Text
50x30
AutoCAD SHX Text
80x40
AutoCAD SHX Text
40x30
AutoCAD SHX Text
95x20
AutoCAD SHX Text
50x40
AutoCAD SHX Text
40x70
AutoCAD SHX Text
50x20
AutoCAD SHX Text
80x20
AutoCAD SHX Text
40x30
AutoCAD SHX Text
20x50
AutoCAD SHX Text
95x35
AutoCAD SHX Text
50x35
AutoCAD SHX Text
30x70
AutoCAD SHX Text
75x30
AutoCAD SHX Text
40x30
AutoCAD SHX Text
30x20
AutoCAD SHX Text
55x20
AutoCAD SHX Text
20x85
AutoCAD SHX Text
70x40
AutoCAD SHX Text
30x60
AutoCAD SHX Text
15x30
AutoCAD SHX Text
30x45
AutoCAD SHX Text
80x40
AutoCAD SHX Text
20x85
AutoCAD SHX Text
70x45
AutoCAD SHX Text
25x60
AutoCAD SHX Text
80x25
AutoCAD SHX Text
70x40
AutoCAD SHX Text
40x45
AutoCAD SHX Text
20x40
AutoCAD SHX Text
80x20
AutoCAD SHX Text
20x40
AutoCAD SHX Text
70x20
AutoCAD SHX Text
50x60
AutoCAD SHX Text
25x60
AutoCAD SHX Text
20x70
AutoCAD SHX Text
30x70
AutoCAD SHX Text
20x30
AutoCAD SHX Text
70x20
AutoCAD SHX Text
50x45
AutoCAD SHX Text
20x40
AutoCAD SHX Text
20x30
AutoCAD SHX Text
P17
AutoCAD SHX Text
80x20
AutoCAD SHX Text
70x20
AutoCAD SHX Text
45x70
AutoCAD SHX Text
70x20
AutoCAD SHX Text
50x40
AutoCAD SHX Text
50x50
AutoCAD SHX Text
70x50
AutoCAD SHX Text
45x20
AutoCAD SHX Text
70x20
AutoCAD SHX Text
70x25
AutoCAD SHX Text
PAR1
AutoCAD SHX Text
PAR2
AutoCAD SHX Text
PAR3
AutoCAD SHX Text
PAR4
AutoCAD SHX Text
20/285
AutoCAD SHX Text
20/285
AutoCAD SHX Text
20/285
AutoCAD SHX Text
20/285
AutoCAD SHX Text
V8
AutoCAD SHX Text
12/30
AutoCAD SHX Text
50x30
AutoCAD SHX Text
50x70
AutoCAD SHX Text
L1
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L2
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L3
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L4
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L5
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L6
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L7
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L8
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L9
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L10
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L11
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L12
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L13
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L14
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L16
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L17
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L21
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L18
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L19
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L20
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L22
AutoCAD SHX Text
h=15
AutoCAD SHX Text
P33
AutoCAD SHX Text
20x30
AutoCAD SHX Text
P32
AutoCAD SHX Text
20x70
AutoCAD SHX Text
-1.23
AutoCAD SHX Text
P3
AutoCAD SHX Text
P8
AutoCAD SHX Text
P9
AutoCAD SHX Text
V29
AutoCAD SHX Text
V32
AutoCAD SHX Text
V31
AutoCAD SHX Text
V26
AutoCAD SHX Text
V30
AutoCAD SHX Text
PAR2
AutoCAD SHX Text
PAR1
AutoCAD SHX Text
PAR3
AutoCAD SHX Text
P16
AutoCAD SHX Text
P25
AutoCAD SHX Text
P27
AutoCAD SHX Text
P32
AutoCAD SHX Text
P36
AutoCAD SHX Text
P42
AutoCAD SHX Text
P20
AutoCAD SHX Text
P41
AutoCAD SHX Text
CORTE A-A
AutoCAD SHX Text
V1
AutoCAD SHX Text
V4
AutoCAD SHX Text
V7
AutoCAD SHX Text
V15
AutoCAD SHX Text
V17
AutoCAD SHX Text
V21
AutoCAD SHX Text
CORTE B-B
AutoCAD SHX Text
PAR1
AutoCAD SHX Text
V22
AutoCAD SHX Text
P9
AutoCAD SHX Text
V1
AutoCAD SHX Text
V26
AutoCAD SHX Text
V3
AutoCAD SHX Text
V24
AutoCAD SHX Text
V7
AutoCAD SHX Text
V23
AutoCAD SHX Text
V11
AutoCAD SHX Text
V13
AutoCAD SHX Text
PAR2
AutoCAD SHX Text
V25
AutoCAD SHX Text
P3
AutoCAD SHX Text
P8
AutoCAD SHX Text
P9A
AutoCAD SHX Text
P16
AutoCAD SHX Text
P16A
AutoCAD SHX Text
P20
AutoCAD SHX Text
P25
AutoCAD SHX Text
P27
AutoCAD SHX Text
P32
AutoCAD SHX Text
P41
AutoCAD SHX Text
P42
AutoCAD SHX Text
P36
AutoCAD SHX Text
-3.93
AutoCAD SHX Text
-1.23
AutoCAD SHX Text
COBRIMENTO DAS ARMAÇÕES:
AutoCAD SHX Text
DIMENSÕES EM CENTÍMETROS EXCETO ONDE INDICADO.
AutoCAD SHX Text
FATOR ÁGUA/CIMENTO < 0,50
AutoCAD SHX Text
AÇO CA - 50
AutoCAD SHX Text
6_
AutoCAD SHX Text
5_
AutoCAD SHX Text
CONCRETO ESTRUTURAL - fck > 35 MPa
AutoCAD SHX Text
1_
AutoCAD SHX Text
2_
AutoCAD SHX Text
NOTAS :
AutoCAD SHX Text
CLASSE DE AGRESSIVIDADE - III AGRESSIVIDADE FORTE
AutoCAD SHX Text
4_
AutoCAD SHX Text
LAJES C=3,0cm
AutoCAD SHX Text
CLIENTE:
AutoCAD SHX Text
ESC.
AutoCAD SHX Text
OBRA:
AutoCAD SHX Text
01
AutoCAD SHX Text
Nº DESENHO
AutoCAD SHX Text
PROF.
AutoCAD SHX Text
01
AutoCAD SHX Text
PROJ.
AutoCAD SHX Text
Nº DA OBRA
AutoCAD SHX Text
PLANTA DE FORMA
AutoCAD SHX Text
PROJ. ESTRUTURAL DE RESIDÊNCIA MULTIFAMILIAR EM CONCRETO ARMADO
AutoCAD SHX Text
TRABALHO DE CONCLUSÃO DE CURSO I
AutoCAD SHX Text
1/100
AutoCAD SHX Text
MARIANNA SODRÉ
AutoCAD SHX Text
3_
AutoCAD SHX Text
CLAUDIA CAMPOS
AutoCAD SHX Text
PISO E TETO DO SUBSOLO
AutoCAD SHX Text
VIGAS, PILARES E PAREDES C=3,5cm
AutoCAD SHX Text
PILAR QUE SEGUE
AutoCAD SHX Text
PILAR QUE MORRE
AutoCAD SHX Text
PILAR QUE NASCE
AutoCAD SHX Text
LEGENDA :
AutoCAD SHX Text
PISO DO SUBSOLO
AutoCAD SHX Text
TETO DO SUBSOLO
AutoCAD SHX Text
LAJES C=2,0cm
AutoCAD SHX Text
VIGAS E PILARES C=2,5cm
Page 97: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

BB

AA

A1 - 594 X 841

A

B

C

D

E

F

G H I J MK L N

AutoCAD SHX Text
TETO DO TIPO
AutoCAD SHX Text
V39 15/60
AutoCAD SHX Text
V2 15/40
AutoCAD SHX Text
V48 15/65
AutoCAD SHX Text
V52 15/60
AutoCAD SHX Text
h=15
AutoCAD SHX Text
V38 15/60
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
V54 15/65
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
V41 15/65
AutoCAD SHX Text
V36 15/65
AutoCAD SHX Text
V40 15/75
AutoCAD SHX Text
V44 15/65
AutoCAD SHX Text
V47 15/65
AutoCAD SHX Text
V50 15/50
AutoCAD SHX Text
15/75
AutoCAD SHX Text
V58 15/70
AutoCAD SHX Text
15/65
AutoCAD SHX Text
V43 15/60
AutoCAD SHX Text
V59 15/70
AutoCAD SHX Text
V37 15/65
AutoCAD SHX Text
V56 15/65
AutoCAD SHX Text
V57 15/65
AutoCAD SHX Text
V42 15/65
AutoCAD SHX Text
V45 15/65
AutoCAD SHX Text
V55 15/75
AutoCAD SHX Text
V51 15/50
AutoCAD SHX Text
15/65
AutoCAD SHX Text
V4 15/60
AutoCAD SHX Text
V3 15/65
AutoCAD SHX Text
V46 15/40
AutoCAD SHX Text
15/75
AutoCAD SHX Text
V1 15/65
AutoCAD SHX Text
V8 15/65
AutoCAD SHX Text
V6 15/70
AutoCAD SHX Text
V11 15/30
AutoCAD SHX Text
V7 15/40
AutoCAD SHX Text
15/60
AutoCAD SHX Text
V22 15/60
AutoCAD SHX Text
V15 15/60
AutoCAD SHX Text
V21 15/70
AutoCAD SHX Text
V19
AutoCAD SHX Text
V20
AutoCAD SHX Text
15/75
AutoCAD SHX Text
15/65
AutoCAD SHX Text
V18 15/30
AutoCAD SHX Text
V23 15/30
AutoCAD SHX Text
V25 15/60
AutoCAD SHX Text
V24 15/65
AutoCAD SHX Text
V32 15/60
AutoCAD SHX Text
V27 15/65
AutoCAD SHX Text
V28 15/30
AutoCAD SHX Text
V35 15/65
AutoCAD SHX Text
V33 15/65
AutoCAD SHX Text
V34 15/40
AutoCAD SHX Text
V29 15/40
AutoCAD SHX Text
V30 15/70
AutoCAD SHX Text
V49 15/60
AutoCAD SHX Text
V14 15/30
AutoCAD SHX Text
V13 15/70
AutoCAD SHX Text
L1
AutoCAD SHX Text
L5
AutoCAD SHX Text
L7
AutoCAD SHX Text
L8
AutoCAD SHX Text
L9
AutoCAD SHX Text
L2
AutoCAD SHX Text
L10
AutoCAD SHX Text
L14
AutoCAD SHX Text
L12
AutoCAD SHX Text
L13
AutoCAD SHX Text
L15
AutoCAD SHX Text
L16
AutoCAD SHX Text
L17
AutoCAD SHX Text
L24
AutoCAD SHX Text
L22
AutoCAD SHX Text
L21
AutoCAD SHX Text
L20
AutoCAD SHX Text
L23
AutoCAD SHX Text
L25
AutoCAD SHX Text
L27
AutoCAD SHX Text
L26
AutoCAD SHX Text
L29
AutoCAD SHX Text
L28
AutoCAD SHX Text
L30
AutoCAD SHX Text
L35
AutoCAD SHX Text
L31
AutoCAD SHX Text
L32
AutoCAD SHX Text
L33
AutoCAD SHX Text
L37
AutoCAD SHX Text
L38
AutoCAD SHX Text
L39
AutoCAD SHX Text
L41
AutoCAD SHX Text
L40
AutoCAD SHX Text
L19
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
V5 15/40
AutoCAD SHX Text
V31 15/40
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L3
AutoCAD SHX Text
L6
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L42
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L43
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L4
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L18
AutoCAD SHX Text
L11
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L36
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L34
AutoCAD SHX Text
V10 15/60
AutoCAD SHX Text
V9 15/60
AutoCAD SHX Text
V26 15/60
AutoCAD SHX Text
P8B
AutoCAD SHX Text
P8A
AutoCAD SHX Text
P10A
AutoCAD SHX Text
P11A
AutoCAD SHX Text
P7B
AutoCAD SHX Text
P9B
AutoCAD SHX Text
P15A
AutoCAD SHX Text
P15B
AutoCAD SHX Text
P17A
AutoCAD SHX Text
P40C
AutoCAD SHX Text
P42A
AutoCAD SHX Text
P35A
AutoCAD SHX Text
P32A
AutoCAD SHX Text
P37A
AutoCAD SHX Text
P30A
AutoCAD SHX Text
P34A
AutoCAD SHX Text
P20
AutoCAD SHX Text
P6A
AutoCAD SHX Text
P45A
AutoCAD SHX Text
P39A
AutoCAD SHX Text
P46A
AutoCAD SHX Text
P16A
AutoCAD SHX Text
P7A
AutoCAD SHX Text
P4
AutoCAD SHX Text
P5
AutoCAD SHX Text
P19
AutoCAD SHX Text
P24
AutoCAD SHX Text
P26
AutoCAD SHX Text
P25
AutoCAD SHX Text
P27
AutoCAD SHX Text
P31
AutoCAD SHX Text
P38
AutoCAD SHX Text
P40
AutoCAD SHX Text
P44
AutoCAD SHX Text
P43
AutoCAD SHX Text
P47
AutoCAD SHX Text
P48
AutoCAD SHX Text
P12
AutoCAD SHX Text
80x40
AutoCAD SHX Text
40x30
AutoCAD SHX Text
20x50
AutoCAD SHX Text
30x20
AutoCAD SHX Text
55x20
AutoCAD SHX Text
15x30
AutoCAD SHX Text
30x45
AutoCAD SHX Text
80x40
AutoCAD SHX Text
80x25
AutoCAD SHX Text
20x40
AutoCAD SHX Text
50x60
AutoCAD SHX Text
30x70
AutoCAD SHX Text
20x30
AutoCAD SHX Text
20x40
AutoCAD SHX Text
20x30
AutoCAD SHX Text
70x20
AutoCAD SHX Text
50x40
AutoCAD SHX Text
45x20
AutoCAD SHX Text
70x20
AutoCAD SHX Text
70x25
AutoCAD SHX Text
50x30
AutoCAD SHX Text
P1A
AutoCAD SHX Text
70x20
AutoCAD SHX Text
20x30
AutoCAD SHX Text
20x60
AutoCAD SHX Text
35x55
AutoCAD SHX Text
20x40
AutoCAD SHX Text
15x35
AutoCAD SHX Text
20x50
AutoCAD SHX Text
20x35
AutoCAD SHX Text
63x20
AutoCAD SHX Text
20x40
AutoCAD SHX Text
15x50
AutoCAD SHX Text
65x20
AutoCAD SHX Text
50x25
AutoCAD SHX Text
50x40
AutoCAD SHX Text
20x40
AutoCAD SHX Text
25x55
AutoCAD SHX Text
20x30
AutoCAD SHX Text
P2A
AutoCAD SHX Text
45x70
AutoCAD SHX Text
P18
AutoCAD SHX Text
40x30
AutoCAD SHX Text
P33
AutoCAD SHX Text
20x30
AutoCAD SHX Text
V12
AutoCAD SHX Text
P29A
AutoCAD SHX Text
P21
AutoCAD SHX Text
P22
AutoCAD SHX Text
P28
AutoCAD SHX Text
20x85
AutoCAD SHX Text
70x40
AutoCAD SHX Text
20x85
AutoCAD SHX Text
25x55
AutoCAD SHX Text
P13A
AutoCAD SHX Text
70x50
AutoCAD SHX Text
P23
AutoCAD SHX Text
30x60
AutoCAD SHX Text
15/60
AutoCAD SHX Text
V16
AutoCAD SHX Text
15/65
AutoCAD SHX Text
V17 12/30
AutoCAD SHX Text
15/30
AutoCAD SHX Text
P30
AutoCAD SHX Text
25x60
AutoCAD SHX Text
V53
AutoCAD SHX Text
P40B
AutoCAD SHX Text
P41A
AutoCAD SHX Text
20x30
AutoCAD SHX Text
20x40
AutoCAD SHX Text
+0.00
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
TETO DO SEMI-ENTERRADO
AutoCAD SHX Text
V19 15/30
AutoCAD SHX Text
V22 15/70
AutoCAD SHX Text
V14 15/70
AutoCAD SHX Text
V29 15/65
AutoCAD SHX Text
P8B
AutoCAD SHX Text
P8A
AutoCAD SHX Text
P10A
AutoCAD SHX Text
P11A
AutoCAD SHX Text
P7B
AutoCAD SHX Text
P9B
AutoCAD SHX Text
P15A
AutoCAD SHX Text
P15B
AutoCAD SHX Text
P17A
AutoCAD SHX Text
P29A
AutoCAD SHX Text
P40C
AutoCAD SHX Text
P42A
AutoCAD SHX Text
P40B
AutoCAD SHX Text
P35A
AutoCAD SHX Text
P32A
AutoCAD SHX Text
P37A
AutoCAD SHX Text
P30A
AutoCAD SHX Text
P34A
AutoCAD SHX Text
P41A
AutoCAD SHX Text
V4 15/60
AutoCAD SHX Text
V46 15/65
AutoCAD SHX Text
V3 15/65
AutoCAD SHX Text
V1 15/65
AutoCAD SHX Text
V38 15/65
AutoCAD SHX Text
V8
AutoCAD SHX Text
15/65
AutoCAD SHX Text
V37 15/65
AutoCAD SHX Text
V20
AutoCAD SHX Text
V39 15/60
AutoCAD SHX Text
V33 15/60
AutoCAD SHX Text
V42 15/65
AutoCAD SHX Text
V34 15/65
AutoCAD SHX Text
V48 15/65
AutoCAD SHX Text
V52 15/65
AutoCAD SHX Text
V36 15/65
AutoCAD SHX Text
V9 50/70
AutoCAD SHX Text
50/70
AutoCAD SHX Text
85/70
AutoCAD SHX Text
V16 15/60
AutoCAD SHX Text
V23 15/70
AutoCAD SHX Text
V30 60/70
AutoCAD SHX Text
V31 70/70
AutoCAD SHX Text
V55 15/65
AutoCAD SHX Text
V25 15/65
AutoCAD SHX Text
V45 15/65
AutoCAD SHX Text
V41 70/70
AutoCAD SHX Text
V43 15/65
AutoCAD SHX Text
V49 40/70
AutoCAD SHX Text
V44 70/70
AutoCAD SHX Text
V50 75/70
AutoCAD SHX Text
30/70
AutoCAD SHX Text
V24 15/30
AutoCAD SHX Text
V26 20/70
AutoCAD SHX Text
V35 15/40
AutoCAD SHX Text
V56 15/70
AutoCAD SHX Text
V11 15/65
AutoCAD SHX Text
V27 15/40
AutoCAD SHX Text
V57 40/70
AutoCAD SHX Text
V47 15/40
AutoCAD SHX Text
V18
AutoCAD SHX Text
V51 20/70
AutoCAD SHX Text
15/70
AutoCAD SHX Text
V53 80/70
AutoCAD SHX Text
V2 15/40
AutoCAD SHX Text
V5 60/70
AutoCAD SHX Text
15/65
AutoCAD SHX Text
V40 15/60
AutoCAD SHX Text
V12 15/30
AutoCAD SHX Text
V15 15/30
AutoCAD SHX Text
V10 50/60
AutoCAD SHX Text
40/70
AutoCAD SHX Text
V28 40/60
AutoCAD SHX Text
V6 15/40
AutoCAD SHX Text
V32 15/40
AutoCAD SHX Text
P12
AutoCAD SHX Text
P20
AutoCAD SHX Text
P9A
AutoCAD SHX Text
P6A
AutoCAD SHX Text
P45A
AutoCAD SHX Text
P39A
AutoCAD SHX Text
P46A
AutoCAD SHX Text
P16A
AutoCAD SHX Text
P40A
AutoCAD SHX Text
P7A
AutoCAD SHX Text
P15
AutoCAD SHX Text
P3
AutoCAD SHX Text
P4
AutoCAD SHX Text
P5
AutoCAD SHX Text
P10
AutoCAD SHX Text
P11
AutoCAD SHX Text
P16
AutoCAD SHX Text
P18
AutoCAD SHX Text
P8
AutoCAD SHX Text
P19
AutoCAD SHX Text
P21
AutoCAD SHX Text
P23
AutoCAD SHX Text
P22
AutoCAD SHX Text
P24
AutoCAD SHX Text
P26
AutoCAD SHX Text
P25
AutoCAD SHX Text
P27
AutoCAD SHX Text
P28
AutoCAD SHX Text
P29
AutoCAD SHX Text
P30
AutoCAD SHX Text
P31
AutoCAD SHX Text
P34
AutoCAD SHX Text
P35
AutoCAD SHX Text
P37
AutoCAD SHX Text
P38
AutoCAD SHX Text
P40
AutoCAD SHX Text
P44
AutoCAD SHX Text
P41
AutoCAD SHX Text
P43
AutoCAD SHX Text
P47
AutoCAD SHX Text
P48
AutoCAD SHX Text
P12
AutoCAD SHX Text
P36
AutoCAD SHX Text
P42
AutoCAD SHX Text
50x30
AutoCAD SHX Text
80x40
AutoCAD SHX Text
40x30
AutoCAD SHX Text
40x70
AutoCAD SHX Text
80x20
AutoCAD SHX Text
40x30
AutoCAD SHX Text
20x50
AutoCAD SHX Text
30x70
AutoCAD SHX Text
75x30
AutoCAD SHX Text
40x30
AutoCAD SHX Text
30x20
AutoCAD SHX Text
55x20
AutoCAD SHX Text
20x85
AutoCAD SHX Text
70x40
AutoCAD SHX Text
30x60
AutoCAD SHX Text
15x30
AutoCAD SHX Text
30x45
AutoCAD SHX Text
80x40
AutoCAD SHX Text
20x85
AutoCAD SHX Text
70x45
AutoCAD SHX Text
25x60
AutoCAD SHX Text
80x25
AutoCAD SHX Text
70x40
AutoCAD SHX Text
40x45
AutoCAD SHX Text
20x40
AutoCAD SHX Text
80x20
AutoCAD SHX Text
20x40
AutoCAD SHX Text
50x60
AutoCAD SHX Text
25x60
AutoCAD SHX Text
20x70
AutoCAD SHX Text
30x70
AutoCAD SHX Text
20x30
AutoCAD SHX Text
20x40
AutoCAD SHX Text
20x30
AutoCAD SHX Text
P17
AutoCAD SHX Text
80x20
AutoCAD SHX Text
70x20
AutoCAD SHX Text
50x40
AutoCAD SHX Text
50x50
AutoCAD SHX Text
45x20
AutoCAD SHX Text
70x20
AutoCAD SHX Text
70x25
AutoCAD SHX Text
50x30
AutoCAD SHX Text
50x70
AutoCAD SHX Text
P1A
AutoCAD SHX Text
70x20
AutoCAD SHX Text
20x30
AutoCAD SHX Text
20x60
AutoCAD SHX Text
35x55
AutoCAD SHX Text
20x40
AutoCAD SHX Text
15x35
AutoCAD SHX Text
20x50
AutoCAD SHX Text
20x35
AutoCAD SHX Text
63x20
AutoCAD SHX Text
20x40
AutoCAD SHX Text
25x55
AutoCAD SHX Text
15x50
AutoCAD SHX Text
65x20
AutoCAD SHX Text
50x25
AutoCAD SHX Text
50x40
AutoCAD SHX Text
20x40
AutoCAD SHX Text
20x30
AutoCAD SHX Text
20x40
AutoCAD SHX Text
25x55
AutoCAD SHX Text
20x30
AutoCAD SHX Text
15/65
AutoCAD SHX Text
15/60
AutoCAD SHX Text
V17
AutoCAD SHX Text
15/65
AutoCAD SHX Text
12/30
AutoCAD SHX Text
V21 15/70
AutoCAD SHX Text
40/65
AutoCAD SHX Text
V13
AutoCAD SHX Text
V54
AutoCAD SHX Text
L4
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L5
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L8
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L3
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L10
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L9
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L6
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L11
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L1
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L2
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L13
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L14
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L7
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L16
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L17
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L18
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L19
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L21
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L22
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L20
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L23
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L24
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L25
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L26
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L29
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L27
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L30
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L28
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L34
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L35
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L36
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L37
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L38
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L39
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L40
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L43
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L42
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L41
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L32
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L31
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L33
AutoCAD SHX Text
h=15
AutoCAD SHX Text
P2A
AutoCAD SHX Text
45x70
AutoCAD SHX Text
P33
AutoCAD SHX Text
20x30
AutoCAD SHX Text
P32
AutoCAD SHX Text
20x70
AutoCAD SHX Text
P13A
AutoCAD SHX Text
70x50
AutoCAD SHX Text
+1.60
AutoCAD SHX Text
60/70
AutoCAD SHX Text
V7 15/70
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L12
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
-5
AutoCAD SHX Text
CORTE A-A
AutoCAD SHX Text
V1
AutoCAD SHX Text
V49
AutoCAD SHX Text
V7
AutoCAD SHX Text
V9
AutoCAD SHX Text
V51
AutoCAD SHX Text
V10
AutoCAD SHX Text
V16
AutoCAD SHX Text
V22
AutoCAD SHX Text
V50
AutoCAD SHX Text
V31
AutoCAD SHX Text
V48
AutoCAD SHX Text
P3
AutoCAD SHX Text
P8
AutoCAD SHX Text
P9A
AutoCAD SHX Text
P15A
AutoCAD SHX Text
P15A
AutoCAD SHX Text
P16
AutoCAD SHX Text
P16A
AutoCAD SHX Text
P20
AutoCAD SHX Text
P25
AutoCAD SHX Text
P27
AutoCAD SHX Text
P32A
AutoCAD SHX Text
P41A
AutoCAD SHX Text
P42A
AutoCAD SHX Text
P32
AutoCAD SHX Text
P36
AutoCAD SHX Text
P41
AutoCAD SHX Text
P42
AutoCAD SHX Text
V36
AutoCAD SHX Text
P9B
AutoCAD SHX Text
P8A
AutoCAD SHX Text
V41
AutoCAD SHX Text
CORTE B-B
AutoCAD SHX Text
V1
AutoCAD SHX Text
V48
AutoCAD SHX Text
V6
AutoCAD SHX Text
V51
AutoCAD SHX Text
V52
AutoCAD SHX Text
V10
AutoCAD SHX Text
V15
AutoCAD SHX Text
V49
AutoCAD SHX Text
V22
AutoCAD SHX Text
V25
AutoCAD SHX Text
V50
AutoCAD SHX Text
V30
AutoCAD SHX Text
V47
AutoCAD SHX Text
V35
AutoCAD SHX Text
P8A
AutoCAD SHX Text
P9B
AutoCAD SHX Text
P16A
AutoCAD SHX Text
P20
AutoCAD SHX Text
P25
AutoCAD SHX Text
P27
AutoCAD SHX Text
P32A
AutoCAD SHX Text
P41A
AutoCAD SHX Text
P42A
AutoCAD SHX Text
+1.55
AutoCAD SHX Text
+1.60
AutoCAD SHX Text
-1.55
AutoCAD SHX Text
-0.05
AutoCAD SHX Text
+0.00
AutoCAD SHX Text
-0.05
AutoCAD SHX Text
COBRIMENTO DAS ARMAÇÕES:
AutoCAD SHX Text
DIMENSÕES EM CENTÍMETROS EXCETO ONDE INDICADO.
AutoCAD SHX Text
FATOR ÁGUA/CIMENTO < 0,50
AutoCAD SHX Text
AÇO CA - 50
AutoCAD SHX Text
6_
AutoCAD SHX Text
5_
AutoCAD SHX Text
CONCRETO ESTRUTURAL - fck > 35 MPa
AutoCAD SHX Text
1_
AutoCAD SHX Text
2_
AutoCAD SHX Text
NOTAS :
AutoCAD SHX Text
CLASSE DE AGRESSIVIDADE - III AGRESSIVIDADE FORTE
AutoCAD SHX Text
4_
AutoCAD SHX Text
CLIENTE:
AutoCAD SHX Text
ESC.
AutoCAD SHX Text
OBRA:
AutoCAD SHX Text
01
AutoCAD SHX Text
Nº DESENHO
AutoCAD SHX Text
PROF.
AutoCAD SHX Text
02
AutoCAD SHX Text
PROJ.
AutoCAD SHX Text
Nº DA OBRA
AutoCAD SHX Text
PLANTA DE FORMA
AutoCAD SHX Text
PROJ. ESTRUTURAL DE RESIDÊNCIA MULTIFAMILIAR EM CONCRETO ARMADO
AutoCAD SHX Text
TRABALHO DE CONCLUSÃO DE CURSO I
AutoCAD SHX Text
1/100
AutoCAD SHX Text
MARIANNA SODRÉ
AutoCAD SHX Text
3_
AutoCAD SHX Text
CLAUDIA CAMPOS
AutoCAD SHX Text
TETOS DO SEMI-ENTERRADO E TIPO
AutoCAD SHX Text
PILAR QUE SEGUE
AutoCAD SHX Text
PILAR QUE MORRE
AutoCAD SHX Text
PILAR QUE NASCE
AutoCAD SHX Text
LEGENDA :
AutoCAD SHX Text
LAJES C=2,0cm
AutoCAD SHX Text
VIGAS E PILARES C=2,5cm
Page 98: UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA ... DOS SANTOS SODRÉ... · espessura, exceto as paredes do subsolo que são em concreto armado e possuem 20 cm de espessura

AA

BB

CC

DD

EE

A1 - 594 X 841

A

B

C

D

E

F

G H I J MK L N

AutoCAD SHX Text
PISO DA COBERTURA
AutoCAD SHX Text
P27
AutoCAD SHX Text
P64
AutoCAD SHX Text
P49
AutoCAD SHX Text
P50
AutoCAD SHX Text
P51
AutoCAD SHX Text
P52
AutoCAD SHX Text
P54
AutoCAD SHX Text
P55
AutoCAD SHX Text
P57
AutoCAD SHX Text
P56
AutoCAD SHX Text
P58
AutoCAD SHX Text
P59
AutoCAD SHX Text
P60
AutoCAD SHX Text
P61
AutoCAD SHX Text
P62
AutoCAD SHX Text
P63
AutoCAD SHX Text
P65
AutoCAD SHX Text
P68
AutoCAD SHX Text
P70
AutoCAD SHX Text
P71
AutoCAD SHX Text
P67
AutoCAD SHX Text
P72
AutoCAD SHX Text
P53
AutoCAD SHX Text
P66
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L1
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L2
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L3
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L6
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L4
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L5
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L11
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L7
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L8
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L9
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L10
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L12
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L13
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L14
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L19
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L15
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L17
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L16
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L18
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L20
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L21
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L22
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L23
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L28
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L25
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L29
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L24
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L30
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L31
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L27
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L26
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L32
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L34
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L33
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L36
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L35
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L37
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L41
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L43
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L42
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L45
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L46
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L52
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L49
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L48
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L50
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L55
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L56
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L54
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L53
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L44
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L51
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L40
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L38
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L39
AutoCAD SHX Text
V53 15/105
AutoCAD SHX Text
V2 15/105
AutoCAD SHX Text
15/105
AutoCAD SHX Text
V70 15/60
AutoCAD SHX Text
V51 15/105
AutoCAD SHX Text
V73 15/65
AutoCAD SHX Text
V49 15/105
AutoCAD SHX Text
15/65
AutoCAD SHX Text
V65 15/105
AutoCAD SHX Text
V68 15/70
AutoCAD SHX Text
V72 15/75
AutoCAD SHX Text
V79 15/105
AutoCAD SHX Text
15/105
AutoCAD SHX Text
V61 15/40
AutoCAD SHX Text
V80 15/105
AutoCAD SHX Text
V50 15/105
AutoCAD SHX Text
V76 15/70
AutoCAD SHX Text
V78 15/105
AutoCAD SHX Text
V59 15/65
AutoCAD SHX Text
V63 15/65
AutoCAD SHX Text
V69 15/70
AutoCAD SHX Text
15/105
AutoCAD SHX Text
V4 15/105
AutoCAD SHX Text
V3 15/105
AutoCAD SHX Text
V64 15/40
AutoCAD SHX Text
V1 15/105
AutoCAD SHX Text
V13 15/65
AutoCAD SHX Text
V7 15/70
AutoCAD SHX Text
V17 15/30
AutoCAD SHX Text
V8 15/40
AutoCAD SHX Text
V23
AutoCAD SHX Text
15/60
AutoCAD SHX Text
V29 15/60
AutoCAD SHX Text
V21 15/70
AutoCAD SHX Text
V28 15/70
AutoCAD SHX Text
V26
AutoCAD SHX Text
15/30
AutoCAD SHX Text
15/1O5
AutoCAD SHX Text
V25 15/30
AutoCAD SHX Text
V30 15/30
AutoCAD SHX Text
V31
AutoCAD SHX Text
V45 15/105
AutoCAD SHX Text
V36 15/65
AutoCAD SHX Text
V37 30/40
AutoCAD SHX Text
V48 15/105
AutoCAD SHX Text
V46 15/105
AutoCAD SHX Text
V42 15/70
AutoCAD SHX Text
V20 15/30
AutoCAD SHX Text
30/70
AutoCAD SHX Text
V6 15/40
AutoCAD SHX Text
V43 15/40
AutoCAD SHX Text
V16 15/60
AutoCAD SHX Text
V9 15/50
AutoCAD SHX Text
30/40
AutoCAD SHX Text
V11 15/60
AutoCAD SHX Text
V14 25/75
AutoCAD SHX Text
V10
AutoCAD SHX Text
V56
AutoCAD SHX Text
V15 15/40
AutoCAD SHX Text
V19 15/30
AutoCAD SHX Text
V24 15/70
AutoCAD SHX Text
V67 15/60
AutoCAD SHX Text
V32 15/60
AutoCAD SHX Text
V33 30/75
AutoCAD SHX Text
V44 15/105
AutoCAD SHX Text
V40 15/50
AutoCAD SHX Text
V58 15/65
AutoCAD SHX Text
V54 15/65
AutoCAD SHX Text
15/65
AutoCAD SHX Text
35/70
AutoCAD SHX Text
V55
AutoCAD SHX Text
V39 15/60
AutoCAD SHX Text
V74 15/75
AutoCAD SHX Text
V60 15/105
AutoCAD SHX Text
V5 15/105
AutoCAD SHX Text
15/105
AutoCAD SHX Text
15/105
AutoCAD SHX Text
15/105
AutoCAD SHX Text
15/105
AutoCAD SHX Text
V47 15/105
AutoCAD SHX Text
15/65
AutoCAD SHX Text
V57 15/105
AutoCAD SHX Text
15/105
AutoCAD SHX Text
V52 15/105
AutoCAD SHX Text
15/105
AutoCAD SHX Text
P69
AutoCAD SHX Text
V38 15/40
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L47
AutoCAD SHX Text
V41 15/70
AutoCAD SHX Text
45/70
AutoCAD SHX Text
15/105
AutoCAD SHX Text
15/105
AutoCAD SHX Text
20/60
AutoCAD SHX Text
15/65
AutoCAD SHX Text
P8B
AutoCAD SHX Text
P8A
AutoCAD SHX Text
P10A
AutoCAD SHX Text
P11A
AutoCAD SHX Text
P7B
AutoCAD SHX Text
P15A
AutoCAD SHX Text
P15B
AutoCAD SHX Text
P17A
AutoCAD SHX Text
P40C
AutoCAD SHX Text
P42A
AutoCAD SHX Text
P35A
AutoCAD SHX Text
P32A
AutoCAD SHX Text
P37A
AutoCAD SHX Text
P30A
AutoCAD SHX Text
P34A
AutoCAD SHX Text
P20
AutoCAD SHX Text
P6A
AutoCAD SHX Text
P45A
AutoCAD SHX Text
P39A
AutoCAD SHX Text
P46A
AutoCAD SHX Text
P16A
AutoCAD SHX Text
P7A
AutoCAD SHX Text
P4
AutoCAD SHX Text
P5
AutoCAD SHX Text
P19
AutoCAD SHX Text
P24
AutoCAD SHX Text
P26
AutoCAD SHX Text
P25
AutoCAD SHX Text
P31
AutoCAD SHX Text
P38
AutoCAD SHX Text
P40
AutoCAD SHX Text
P44
AutoCAD SHX Text
P43
AutoCAD SHX Text
P47
AutoCAD SHX Text
P48
AutoCAD SHX Text
P12
AutoCAD SHX Text
80x40
AutoCAD SHX Text
40x30
AutoCAD SHX Text
20x50
AutoCAD SHX Text
30x20
AutoCAD SHX Text
55x20
AutoCAD SHX Text
15x30
AutoCAD SHX Text
30x45
AutoCAD SHX Text
80x40
AutoCAD SHX Text
80x25
AutoCAD SHX Text
20x40
AutoCAD SHX Text
50x60
AutoCAD SHX Text
30x70
AutoCAD SHX Text
20x30
AutoCAD SHX Text
20x40
AutoCAD SHX Text
20x30
AutoCAD SHX Text
70x20
AutoCAD SHX Text
50x40
AutoCAD SHX Text
45x20
AutoCAD SHX Text
70x20
AutoCAD SHX Text
70x25
AutoCAD SHX Text
50x30
AutoCAD SHX Text
P1A
AutoCAD SHX Text
70x20
AutoCAD SHX Text
20x30
AutoCAD SHX Text
20x60
AutoCAD SHX Text
35x55
AutoCAD SHX Text
20x40
AutoCAD SHX Text
15x35
AutoCAD SHX Text
20x35
AutoCAD SHX Text
63x20
AutoCAD SHX Text
20x40
AutoCAD SHX Text
15x50
AutoCAD SHX Text
65x20
AutoCAD SHX Text
50x25
AutoCAD SHX Text
50x40
AutoCAD SHX Text
20x40
AutoCAD SHX Text
25x55
AutoCAD SHX Text
20x30
AutoCAD SHX Text
P2A
AutoCAD SHX Text
45x70
AutoCAD SHX Text
P18
AutoCAD SHX Text
40x30
AutoCAD SHX Text
P33
AutoCAD SHX Text
20x30
AutoCAD SHX Text
P29A
AutoCAD SHX Text
P28
AutoCAD SHX Text
20x85
AutoCAD SHX Text
25x55
AutoCAD SHX Text
P13A
AutoCAD SHX Text
70x50
AutoCAD SHX Text
P23
AutoCAD SHX Text
30x60
AutoCAD SHX Text
P30
AutoCAD SHX Text
25x60
AutoCAD SHX Text
P40B
AutoCAD SHX Text
P41A
AutoCAD SHX Text
20x30
AutoCAD SHX Text
20x40
AutoCAD SHX Text
25x30
AutoCAD SHX Text
P21
AutoCAD SHX Text
P22
AutoCAD SHX Text
20x85
AutoCAD SHX Text
70x40
AutoCAD SHX Text
20x40
AutoCAD SHX Text
30x15
AutoCAD SHX Text
30x15
AutoCAD SHX Text
15x30
AutoCAD SHX Text
30x15
AutoCAD SHX Text
30x15
AutoCAD SHX Text
30x15
AutoCAD SHX Text
20x25
AutoCAD SHX Text
30x15
AutoCAD SHX Text
30x15
AutoCAD SHX Text
25x40
AutoCAD SHX Text
15x30
AutoCAD SHX Text
30x15
AutoCAD SHX Text
30x15
AutoCAD SHX Text
20x30
AutoCAD SHX Text
30x15
AutoCAD SHX Text
30x15
AutoCAD SHX Text
30x15
AutoCAD SHX Text
30x15
AutoCAD SHX Text
15x30
AutoCAD SHX Text
30x15
AutoCAD SHX Text
15x30
AutoCAD SHX Text
30x15
AutoCAD SHX Text
30x15
AutoCAD SHX Text
15x55
AutoCAD SHX Text
V12
AutoCAD SHX Text
V22
AutoCAD SHX Text
V27
AutoCAD SHX Text
12/30
AutoCAD SHX Text
15/105
AutoCAD SHX Text
V35
AutoCAD SHX Text
V18
AutoCAD SHX Text
30/40
AutoCAD SHX Text
V62
AutoCAD SHX Text
V71
AutoCAD SHX Text
30/40
AutoCAD SHX Text
15/65
AutoCAD SHX Text
V77
AutoCAD SHX Text
V66
AutoCAD SHX Text
V75
AutoCAD SHX Text
15/40
AutoCAD SHX Text
+14.40
AutoCAD SHX Text
V34 15/40
AutoCAD SHX Text
P9B
AutoCAD SHX Text
20x50
AutoCAD SHX Text
TETO DA COBERTURA
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L1
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L2
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L3
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L4
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L5
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L6
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L7
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L9
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L8
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L10
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L13
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L12
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L14
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L16
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L19
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L18
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L20
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L17
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L23
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L24
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L21
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L22
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L25
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L25
AutoCAD SHX Text
V1 15/60
AutoCAD SHX Text
V2 15/60
AutoCAD SHX Text
V38 15/60
AutoCAD SHX Text
15/60
AutoCAD SHX Text
V62 15/60
AutoCAD SHX Text
V58 15/60
AutoCAD SHX Text
V54 15/60
AutoCAD SHX Text
V57 15/60
AutoCAD SHX Text
V61 15/60
AutoCAD SHX Text
V37 15/60
AutoCAD SHX Text
V10 15/60
AutoCAD SHX Text
V15 15/60
AutoCAD SHX Text
V18 15/60
AutoCAD SHX Text
V25 15/60
AutoCAD SHX Text
V33 15/60
AutoCAD SHX Text
V34 15/60
AutoCAD SHX Text
15/60
AutoCAD SHX Text
V35 15/60
AutoCAD SHX Text
V6
AutoCAD SHX Text
V3 15/40
AutoCAD SHX Text
V4 15/60
AutoCAD SHX Text
V42 15/60
AutoCAD SHX Text
V5 15/60
AutoCAD SHX Text
V8 15/40
AutoCAD SHX Text
V13 15/60
AutoCAD SHX Text
V22 15/70
AutoCAD SHX Text
V21 15/30
AutoCAD SHX Text
12/30
AutoCAD SHX Text
V12 15/30
AutoCAD SHX Text
V11 15/50
AutoCAD SHX Text
V9 15/30
AutoCAD SHX Text
V14 15/40
AutoCAD SHX Text
V20 15/50
AutoCAD SHX Text
V23 15/30
AutoCAD SHX Text
V24 15/50
AutoCAD SHX Text
V27 15/30
AutoCAD SHX Text
V26 15/60
AutoCAD SHX Text
15/70
AutoCAD SHX Text
V30 15/60
AutoCAD SHX Text
V32 15/40
AutoCAD SHX Text
V31 15/60
AutoCAD SHX Text
V39 15/30
AutoCAD SHX Text
V41 15/60
AutoCAD SHX Text
V45 15/60
AutoCAD SHX Text
V36 15/70
AutoCAD SHX Text
V48 15/60
AutoCAD SHX Text
V55 15/60
AutoCAD SHX Text
V59 15/40
AutoCAD SHX Text
V40 15/30
AutoCAD SHX Text
15/70
AutoCAD SHX Text
V46
AutoCAD SHX Text
V52 15/40
AutoCAD SHX Text
V53 15/40
AutoCAD SHX Text
V56 15/60
AutoCAD SHX Text
V49 15/60
AutoCAD SHX Text
V60 15/40
AutoCAD SHX Text
V51 15/45
AutoCAD SHX Text
15/30
AutoCAD SHX Text
V50
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L11
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L15
AutoCAD SHX Text
P27
AutoCAD SHX Text
P64
AutoCAD SHX Text
P49
AutoCAD SHX Text
P50
AutoCAD SHX Text
P51
AutoCAD SHX Text
P52
AutoCAD SHX Text
P54
AutoCAD SHX Text
P55
AutoCAD SHX Text
P57
AutoCAD SHX Text
P56
AutoCAD SHX Text
P58
AutoCAD SHX Text
P59
AutoCAD SHX Text
P60
AutoCAD SHX Text
P61
AutoCAD SHX Text
P62
AutoCAD SHX Text
P63
AutoCAD SHX Text
P65
AutoCAD SHX Text
P68
AutoCAD SHX Text
P70
AutoCAD SHX Text
P71
AutoCAD SHX Text
P67
AutoCAD SHX Text
P53
AutoCAD SHX Text
P69
AutoCAD SHX Text
P15B
AutoCAD SHX Text
P32A
AutoCAD SHX Text
P30A
AutoCAD SHX Text
P34A
AutoCAD SHX Text
P20
AutoCAD SHX Text
P16A
AutoCAD SHX Text
P7A
AutoCAD SHX Text
P19
AutoCAD SHX Text
P24
AutoCAD SHX Text
P25
AutoCAD SHX Text
P40
AutoCAD SHX Text
30x20
AutoCAD SHX Text
55x20
AutoCAD SHX Text
15x30
AutoCAD SHX Text
30x45
AutoCAD SHX Text
50x60
AutoCAD SHX Text
50x40
AutoCAD SHX Text
45x20
AutoCAD SHX Text
65x20
AutoCAD SHX Text
20x40
AutoCAD SHX Text
15x50
AutoCAD SHX Text
P13A
AutoCAD SHX Text
P23
AutoCAD SHX Text
30x60
AutoCAD SHX Text
25x30
AutoCAD SHX Text
20x40
AutoCAD SHX Text
30x15
AutoCAD SHX Text
30x15
AutoCAD SHX Text
30x15
AutoCAD SHX Text
15x30
AutoCAD SHX Text
30x15
AutoCAD SHX Text
30x15
AutoCAD SHX Text
20x25
AutoCAD SHX Text
30x15
AutoCAD SHX Text
30x15
AutoCAD SHX Text
25x40
AutoCAD SHX Text
15x30
AutoCAD SHX Text
30x15
AutoCAD SHX Text
30x15
AutoCAD SHX Text
20x30
AutoCAD SHX Text
30x15
AutoCAD SHX Text
30x15
AutoCAD SHX Text
30x15
AutoCAD SHX Text
15x30
AutoCAD SHX Text
30x15
AutoCAD SHX Text
15x30
AutoCAD SHX Text
30x15
AutoCAD SHX Text
15x55
AutoCAD SHX Text
P66
AutoCAD SHX Text
30x15
AutoCAD SHX Text
P72
AutoCAD SHX Text
30x15
AutoCAD SHX Text
V44
AutoCAD SHX Text
V7
AutoCAD SHX Text
15/60
AutoCAD SHX Text
V16
AutoCAD SHX Text
15/30
AutoCAD SHX Text
V28
AutoCAD SHX Text
V29 15/60
AutoCAD SHX Text
V43
AutoCAD SHX Text
V19
AutoCAD SHX Text
15/40
AutoCAD SHX Text
15/40
AutoCAD SHX Text
V17
AutoCAD SHX Text
V47
AutoCAD SHX Text
15/60
AutoCAD SHX Text
+17.60
AutoCAD SHX Text
CASA DE MÁQ. DO ELEVADOR
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L1
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L2
AutoCAD SHX Text
V1 12/30
AutoCAD SHX Text
V2 15/40
AutoCAD SHX Text
P23
AutoCAD SHX Text
P25
AutoCAD SHX Text
P27
AutoCAD SHX Text
210x15
AutoCAD SHX Text
P19
AutoCAD SHX Text
30x20
AutoCAD SHX Text
P20
AutoCAD SHX Text
55x20
AutoCAD SHX Text
30x45
AutoCAD SHX Text
30x60
AutoCAD SHX Text
+18.60
AutoCAD SHX Text
PISO DA CAIXA D'ÁGUA
AutoCAD SHX Text
P19
AutoCAD SHX Text
P20
AutoCAD SHX Text
P25
AutoCAD SHX Text
P23
AutoCAD SHX Text
P27
AutoCAD SHX Text
PAR1
AutoCAD SHX Text
PAR3
AutoCAD SHX Text
15/235
AutoCAD SHX Text
PAR5
AutoCAD SHX Text
PAR6
AutoCAD SHX Text
PAR7
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L1
AutoCAD SHX Text
PAR4
AutoCAD SHX Text
30x20
AutoCAD SHX Text
55x20
AutoCAD SHX Text
30x45
AutoCAD SHX Text
30x60
AutoCAD SHX Text
210x15
AutoCAD SHX Text
15/235
AutoCAD SHX Text
15/235
AutoCAD SHX Text
15/235
AutoCAD SHX Text
15/235
AutoCAD SHX Text
PAR2
AutoCAD SHX Text
15/235
AutoCAD SHX Text
15/235
AutoCAD SHX Text
+20.00
AutoCAD SHX Text
TETO DA CAIXA D'ÁGUA
AutoCAD SHX Text
h=15
AutoCAD SHX Text
L1
AutoCAD SHX Text
PAR1 15/235
AutoCAD SHX Text
PAR3 15/235
AutoCAD SHX Text
PAR2 15/235
AutoCAD SHX Text
PAR4 15/235
AutoCAD SHX Text
PAR5
AutoCAD SHX Text
PAR6 15/235
AutoCAD SHX Text
15/235
AutoCAD SHX Text
+22.20
AutoCAD SHX Text
V1
AutoCAD SHX Text
V7
AutoCAD SHX Text
V66
AutoCAD SHX Text
V69
AutoCAD SHX Text
V11
AutoCAD SHX Text
V16
AutoCAD SHX Text
V70
AutoCAD SHX Text
V21
AutoCAD SHX Text
V24
AutoCAD SHX Text
V29
AutoCAD SHX Text
V67
AutoCAD SHX Text
V32
AutoCAD SHX Text
V68
AutoCAD SHX Text
V39
AutoCAD SHX Text
V42
AutoCAD SHX Text
V65
AutoCAD SHX Text
V48
AutoCAD SHX Text
P51
AutoCAD SHX Text
P8A
AutoCAD SHX Text
P9B
AutoCAD SHX Text
P16A
AutoCAD SHX Text
P20
AutoCAD SHX Text
P25
AutoCAD SHX Text
P27
AutoCAD SHX Text
P32A
AutoCAD SHX Text
P41A
AutoCAD SHX Text
P42A
AutoCAD SHX Text
P70
AutoCAD SHX Text
CORTE A-A
AutoCAD SHX Text
V2
AutoCAD SHX Text
V4
AutoCAD SHX Text
V11
AutoCAD SHX Text
V14
AutoCAD SHX Text
V20
AutoCAD SHX Text
V15
AutoCAD SHX Text
V18
AutoCAD SHX Text
V24
AutoCAD SHX Text
V5
AutoCAD SHX Text
V31
AutoCAD SHX Text
V38
AutoCAD SHX Text
V44
AutoCAD SHX Text
V49
AutoCAD SHX Text
V52
AutoCAD SHX Text
V35
AutoCAD SHX Text
V54
AutoCAD SHX Text
V53
AutoCAD SHX Text
V35
AutoCAD SHX Text
V48
AutoCAD SHX Text
V43
AutoCAD SHX Text
V33
AutoCAD SHX Text
V37
AutoCAD SHX Text
P68
AutoCAD SHX Text
P70
AutoCAD SHX Text
P32A
AutoCAD SHX Text
P27
AutoCAD SHX Text
P25
AutoCAD SHX Text
P20
AutoCAD SHX Text
P16A
AutoCAD SHX Text
P53
AutoCAD SHX Text
P51
AutoCAD SHX Text
CORTE B-B
AutoCAD SHX Text
+14.40
AutoCAD SHX Text
+17.60
AutoCAD SHX Text
V1
AutoCAD SHX Text
V2
AutoCAD SHX Text
P27
AutoCAD SHX Text
P27
AutoCAD SHX Text
P19
AutoCAD SHX Text
P23
AutoCAD SHX Text
CORTE C-C
AutoCAD SHX Text
PAR1
AutoCAD SHX Text
PAR2
AutoCAD SHX Text
P27
AutoCAD SHX Text
P19
AutoCAD SHX Text
P23
AutoCAD SHX Text
PAR3
AutoCAD SHX Text
CORTE D-D
AutoCAD SHX Text
PAR6
AutoCAD SHX Text
PAR1
AutoCAD SHX Text
PAR4
AutoCAD SHX Text
PAR2
AutoCAD SHX Text
PAR5
AutoCAD SHX Text
PAR3
AutoCAD SHX Text
CORTE E-E
AutoCAD SHX Text
+18.60
AutoCAD SHX Text
+20.00
AutoCAD SHX Text
+22.20
AutoCAD SHX Text
PAR5
AutoCAD SHX Text
COBRIMENTO DAS ARMAÇÕES:
AutoCAD SHX Text
DIMENSÕES EM CENTÍMETROS EXCETO ONDE INDICADO.
AutoCAD SHX Text
FATOR ÁGUA/CIMENTO < 0,50
AutoCAD SHX Text
AÇO CA - 50
AutoCAD SHX Text
6_
AutoCAD SHX Text
5_
AutoCAD SHX Text
CONCRETO ESTRUTURAL - fck > 35 MPa
AutoCAD SHX Text
1_
AutoCAD SHX Text
2_
AutoCAD SHX Text
NOTAS :
AutoCAD SHX Text
CLASSE DE AGRESSIVIDADE - III AGRESSIVIDADE FORTE
AutoCAD SHX Text
4_
AutoCAD SHX Text
CLIENTE:
AutoCAD SHX Text
ESC.
AutoCAD SHX Text
OBRA:
AutoCAD SHX Text
01
AutoCAD SHX Text
Nº DESENHO
AutoCAD SHX Text
PROF.
AutoCAD SHX Text
03
AutoCAD SHX Text
PROJ.
AutoCAD SHX Text
Nº DA OBRA
AutoCAD SHX Text
PLANTA DE FORMA
AutoCAD SHX Text
PROJ. ESTRUTURAL DE RESIDÊNCIA MULTIFAMILIAR EM CONCRETO ARMADO
AutoCAD SHX Text
TRABALHO DE CONCLUSÃO DE CURSO I
AutoCAD SHX Text
1/100
AutoCAD SHX Text
MARIANNA SODRÉ
AutoCAD SHX Text
3_
AutoCAD SHX Text
CLAUDIA CAMPOS
AutoCAD SHX Text
PISOS E TETOS DA COBERTURA E CAIXA D'ÁGUA, PISO DA CASA DE MÁQUINAS
AutoCAD SHX Text
PILAR QUE SEGUE
AutoCAD SHX Text
PILAR QUE MORRE
AutoCAD SHX Text
PILAR QUE NASCE
AutoCAD SHX Text
LEGENDA :
AutoCAD SHX Text
LAJES C=2,0cm
AutoCAD SHX Text
VIGAS E PILARES C=2,5cm