um pouco de história números complexos

3
Um pouco de história No século XVI , os matemáticos Cardano e Bombelli, entre outros, realizaram alguns progressos no estudo das raízes quadradas de números negativos. Dois séculos depois, estes estudos foram ampliados por Wesses, Argand e Gauss. Estes matemáticos são considerados os criadores da teoria dos números complexos. A teoria dos Números Complexos, tem ampla aplicação nos estudos mais avançados de Eletricidade. Potências de i : i 0 = i 1 = i 2 = i 3 = i 4 = Percebe-se que os valores das potências de i se repetem no ciclo 1 , i , -1 , -i , de quatro em quatro a partir do expoente zero. Portanto, para se calcular qualquer potência inteira de i , basta eleva-lo ao resto da divisão do expoente por 4. Assim , podemos resumir: i 4n = i r onde r = 0 , 1 , 2 ou 3. (r é o resto da divisão de n por 4). Exemplo: Calcule i 2001 Ora, dividindo 2001 por 4, obtemos resto igual a 1. Logo i 2001 = NÚMERO COMPLEXO Definição: Dados dois números reais a e b , define-se o número complexo z como sendo: z = a + bi Exs: z = 2 + 3i ( a = 2 e b = 3) w = -3 -5i (a = -3 e b = -5) u = 100i ( a = 0 e b = 100) NOTAS: a) diz-se que z = a + bi é a forma binômia ou algébrica do complexo z b) dado o número complexo z = a + bi , a é denominada parte real e b parte imaginária. Escreve-se : a = Re(z) ; b = Im(z) . c) se em z = a + bi tivermos a = 0 e b diferente de zero, dizemos que z é um imaginário puro . Ex: z = 3i . d)se em z = a + bi tivermos b = 0 , dizemos que z é um número real . Ex: z = 5 = 5 + 0i . e)do item (c) acima concluímos que todo número real é complexo, ou seja, o conjunto dos números reais é um subconjunto do conjunto dos números complexos . f) um número complexo z = a + bi pode também ser representado como um par ordenado z = (a,b) . Um pouco de história No século XVI , os matemáticos Cardano e Bombelli, entre outros, realizaram alguns progressos no estudo das raízes quadradas de números negativos. Dois séculos depois, estes estudos foram ampliados por Wesses, Argand e Gauss. Estes matemáticos são considerados os criadores da teoria dos números complexos. A teoria dos Números Complexos, tem ampla aplicação nos estudos mais avançados de Eletricidade. Potências de i : i 0 = i 1 = i 2 = i 3 = i 4 = Percebe-se que os valores das potências de i se repetem no ciclo 1 , i , -1 , -i , de quatro em quatro a partir do expoente zero. Portanto, para se calcular qualquer potência inteira de i , basta eleva-lo ao resto da divisão do expoente por 4. Assim , podemos resumir: i 4n = i r onde r = 0 , 1 , 2 ou 3. (r é o resto da divisão de n por 4). Exemplo: Calcule i 2001 Ora, dividindo 2001 por 4, obtemos resto igual a 1. Logo i 2001 = NÚMERO COMPLEXO Definição: Dados dois números reais a e b , define-se o número complexo z como sendo: z = a + bi Exs: z = 2 + 3i ( a = 2 e b = 3) w = -3 -5i (a = -3 e b = -5) u = 100i ( a = 0 e b = 100)

Upload: pedro-sergio-buosi

Post on 29-Jun-2015

207 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Um pouco de história números complexos

Um pouco de história

No século XVI , os matemáticos Cardano e Bombelli, entre outros, realizaram alguns progressos no estudo das raízes quadradas de números negativos. Dois séculos depois, estes estudos foram ampliados por Wesses, Argand e Gauss. Estes matemáticos são considerados os criadores da teoria dos números complexos. A teoria dos Números Complexos, tem ampla aplicação nos estudos mais avançados de Eletricidade.

Potências de i :i0 = i1 = i2 = i3 = i4 =

Percebe-se que os valores das potências de i se repetem no ciclo 1 , i , -1 , -i , de quatro em quatro a partir do expoente zero. Portanto, para se calcular qualquer potência inteira de i , basta eleva-lo ao resto da divisão do expoente por 4. Assim , podemos resumir:

i4n = ir onde r = 0 , 1 , 2 ou 3. (r é o resto da divisão de n por 4).

Exemplo: Calcule i2001

Ora, dividindo 2001 por 4, obtemos resto igual a 1.

Logo i2001 =

NÚMERO COMPLEXO

Definição: Dados dois números reais a e b , define-se o número complexo z como sendo: z = a + bi Exs: z = 2 + 3i ( a = 2 e b = 3)w = -3 -5i (a = -3 e b = -5)u = 100i ( a = 0 e b = 100)

NOTAS:a) diz-se que z = a + bi é a forma binômia ou algébrica do complexo z

b) dado o número complexo z = a + bi , a é denominada parte real e b parte imaginária. Escreve-se : a = Re(z) ; b = Im(z) .

c) se em z = a + bi tivermos a = 0 e b diferente de zero, dizemos que z é um imaginário puro . Ex: z = 3i .

d)se em z = a + bi tivermos b = 0 , dizemos que z é um número real . Ex: z = 5 = 5 + 0i .

e)do item (c) acima concluímos que todo número real é complexo, ou seja, o conjunto dos números reais é um subconjunto do conjunto dos números complexos.

f) um número complexo z = a + bi pode também ser representado como um par ordenado z = (a,b) .

Um pouco de história

No século XVI , os matemáticos Cardano e Bombelli, entre outros, realizaram alguns progressos no estudo das raízes quadradas de números negativos. Dois séculos depois, estes estudos foram ampliados por Wesses, Argand e Gauss. Estes matemáticos são considerados os criadores da teoria dos números complexos. A teoria dos Números Complexos, tem ampla aplicação nos estudos mais avançados de Eletricidade.

Potências de i :i0 = i1 = i2 = i3 = i4 =

Percebe-se que os valores das potências de i se repetem no ciclo 1 , i , -1 , -i , de quatro em quatro a partir do expoente zero. Portanto, para se calcular qualquer potência inteira de i , basta eleva-lo ao resto da divisão do expoente por 4. Assim , podemos resumir:

i4n = ir onde r = 0 , 1 , 2 ou 3. (r é o resto da divisão de n por 4).

Exemplo: Calcule i2001

Ora, dividindo 2001 por 4, obtemos resto igual a 1.

Logo i2001 =

NÚMERO COMPLEXO

Definição: Dados dois números reais a e b , define-se o número complexo z como sendo: z = a + bi Exs: z = 2 + 3i ( a = 2 e b = 3)w = -3 -5i (a = -3 e b = -5)u = 100i ( a = 0 e b = 100)

NOTAS:a) diz-se que z = a + bi é a forma binômia ou algébrica do complexo z

b) dado o número complexo z = a + bi , a é denominada parte real e b parte imaginária. Escreve-se : a = Re(z) ; b = Im(z) .

c) se em z = a + bi tivermos a = 0 e b diferente de zero, dizemos que z é um imaginário puro . Ex: z = 3i .

d)se em z = a + bi tivermos b = 0 , dizemos que z é um número real . Ex: z = 5 = 5 + 0i .

e)do item (c) acima concluímos que todo número real é complexo, ou seja, o conjunto dos números reais é um subconjunto do conjunto dos números complexos.

Page 2: Um pouco de história números complexos

f) um número complexo z = a + bi pode também ser representado como um par ordenado z = (a,b) .

CONJUGADO DE UM NÚMERO COMPLEXO

Dado um número complexo z = a + bi , chama-se

conjugado de z e representa-se por , a um outro número complexo que possui a mesma parte real de z e a parte imaginária o simétrico aditivo da parte imaginária de z .

z = a + bi ® = a - bi

Ex: z = 3 + 5i ; = 3 - 5i

Obs : Sabemos que os números complexos podem também ser representados na forma de pares ordenados . Assim é que z=a+bi=(a,b).

Portanto , por analogia com o sistema de coordenadas cartesianas , pode-se representar graficamente qualquer número complexo z num sistema de coordenadas cartesianas , bastando marcar a parte real a no eixo horizontal e a parte imaginária b no eixo vertical . Neste caso , o eixo horizontal é chamado eixo real e o eixo vertical é chamado eixo imaginário. O plano cartesiano, neste caso , denomina-se plano de Argand-Gauss. O ponto que representa o número complexo z , denomina-se afixo de z.

DIVISÃO DE NÚMEROS COMPLEXOS NA FORMA BINÔMIA

Regra : Para dividir um número complexo z por outro w ¹ 0 , basta multiplicar numerador e denominador pelo complexo conjugado do denominador .

Ex:

Representação dos números complexos

Um número complexo é constituído por duas componentes: a parte real e a parte imaginária. Isso sugere a utilização de dois eixos para representá-lo: um para a parte real e o outro para a parte imaginária. Esses dois eixos chamam-se eixo real e eixo imaginário, respectivamente. O plano determinado por esses dois eixos chama-se plano complexo.

Para desenharmos o gráfico do número complexo a + bi, marcamos o ponto (a; b) no plano.

Exemplo

CONJUGADO DE UM NÚMERO COMPLEXO

Dado um número complexo z = a + bi , chama-se

conjugado de z e representa-se por , a um outro número complexo que possui a mesma parte real de z e a parte imaginária o simétrico aditivo da parte imaginária de z .

z = a + bi ® = a - bi

Ex: z = 3 + 5i ; = 3 - 5i

Obs : Sabemos que os números complexos podem também ser representados na forma de pares ordenados . Assim é que z=a+bi=(a,b).

Portanto , por analogia com o sistema de coordenadas cartesianas , pode-se representar graficamente qualquer número complexo z num sistema de coordenadas cartesianas , bastando marcar a parte real a no eixo horizontal e a parte imaginária b no eixo vertical . Neste caso , o eixo horizontal é chamado eixo real e o eixo vertical é chamado eixo imaginário. O plano cartesiano, neste caso , denomina-se plano de Argand-Gauss. O ponto que representa o número complexo z , denomina-se afixo de z.

DIVISÃO DE NÚMEROS COMPLEXOS NA FORMA BINÔMIA

Regra : Para dividir um número complexo z por outro w ¹ 0 , basta multiplicar numerador e denominador pelo complexo conjugado do denominador .

Ex:

Representação dos números complexos

Um número complexo é constituído por duas componentes: a parte real e a parte imaginária. Isso sugere a utilização de dois eixos para representá-lo: um para a parte real e o outro para a parte imaginária. Esses dois eixos chamam-se eixo real e eixo imaginário, respectivamente. O plano determinado por esses dois eixos chama-se plano complexo.

Para desenharmos o gráfico do número complexo a + bi, marcamos o ponto (a; b) no plano.

Page 3: Um pouco de história números complexos

Exemplo