transferência de calor transferência de calor em...

27
27/09/2016 1 Transferência de calor em superfícies aletadas 2 º. semestre, 2016 Transferência de calor 2 Aletas A taxa de transferência de calor à partir de uma superfície com temperatura T s para um meio externo a temperatura T é dada pela lei de Newton: Quando as temperaturas T s e T são mantidas fixas (questões de projeto, etc.) há duas maneiras para aumentar a taxa de transferência de calor: Aumentar o coeficiente de transferência de calor, h; Aumentar a área de troca térmica, A s . O aumento de h implica em aumentar a velocidade de escoamento do fluido de troca térmica, através de uma bomba, ventilador, etc. Isso pode implicar em um aumento da potência necessária para isso e, consequentemente, aumento do consumo de energia.

Upload: hoangtuyen

Post on 21-Apr-2018

244 views

Category:

Documents


11 download

TRANSCRIPT

Page 1: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

1

Transferência de calor em superfícies aletadas

2º. semestre, 2016

Transferência de calor

2

Aletas

A taxa de transferência de calor à partir de uma superfície com temperatura Ts para um meio externo a temperatura T∞ é dada pela lei de Newton:

Quando as temperaturas Ts e T∞ são mantidas fixas (questões de projeto, etc.) há duas maneiras para aumentar a taxa de transferência de calor:

� Aumentar o coeficiente de transferência de calor, h;� Aumentar a área de troca térmica, As.

O aumento de h implica em aumentar a velocidade de escoamento do fluido de troca térmica, através de uma bomba, ventilador, etc. Isso pode implicar em um aumento da potência necessária para isso e, consequentemente, aumento do consumo de energia.

Page 2: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

2

3

Uma alternativa é aumentar a superfície de troca térmica+, adicionando superfícies estendidas à superfície primária, que são chamadas de aletas. Essas aletas são fabricadas com materiais bons condutores de calor (cobre, alumínio, etc.)

_______________________+ Uma terceira possibilidade seria diminuir o valor de T∞, mas isso geralmente não é possível, ou

não é econômico.

Aletas

4

Veja o exemplo de um radiador automotivo, como mostrado na figura abaixo. As várias folhas metálicas finas colocadas nos tubos de água quente aumentam a superfície de convecção, aumentando a taxa de transferência de calor do fluido que passa no interior dos tubos para o ar ambiente.

Aletas

Substituindo nessa expressão alguns valores típicos:

Page 3: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

3

5

A temperatura na aleta varia desde a temperatura Ts, na sua base, até a temperatura T∞, igual ao do fluido, na sua extremidade. Na condição idealizada, a condutividade térmica do material da aleta deveria ser infinita, de forma que toda a superfície da aleta estivesse na temperatura da base.No entanto isso não é possível e por isso deve ser utilizado um material com condutividade térmica suficientemente elevada para minimizar a variação da temperatura ao longo de sua superfície.

Exemplos de aplicação de aletas:� Dispositivos para resfriar o cabeçote de motores e compressores;� Resfriamento de transformadores elétricos;� Trocadores de calor em geral (sistemas de refrigeração, ar condicionado, etc.);� Resfriamento de dispositivos eletrônicos.

Aletas

6

As aletas podem ser internas ou externas, individuais (uma para cada tubo) ou contínuas (unindo todos os tubos):

Aletas: classificação

Aletas externas

Page 4: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

4

7

Aletas: classificação

Aletas externas

Aletas internas

8

Aletas: classificação

Aletas planas contínuas, externas, para tubos circulares, planos, elípticos, etc.

β = 500 – 2000 m²/m³

Page 5: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

5

9

Trocadores de calor tubo-aletas (tube-fin) com aletas planas individuais ou contínuas:

Aletas: classificação

V

A==Volume

Áreaβ

A compacidade de um trocador de calor, isso é, sua relação entre área e volume, é dada por:

β = 100 – 500 m²/m³

10

Trocadores de calor aletados placa-tubo (plate-fin):

Aletas: classificação

Page 6: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

6

11

Exemplo de um trocador compacto: evaporador de um sistema de ar-condicionado automotivo.

Aletas: classificação

12

Dissipadores de calor para aplicações eletrônicas:

Aletas: classificação

Page 7: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

7

13

Aletas

Onde são utilizadas as aletas?

� Em aplicações com restrição de volume, tais como aeroespaciais, automotivas, refrigeração para transporte, condicionamento de ar residencial, etc.

Porquê utilizar?

� Para produzir equipamentos de troca térmica mais eficientes, visando a redução de tamanho e, consequentemente, de custos.

14

Uso de aletas no lado do ar, em trocadores de calor

Analisando a expressão abaixo:

• O último termo dessa expressão pode ser analisado como uma condutância térmica em relação à área Ai:

� Um maior número de aletas aumenta a relação Ae/Ai e, consequentemente, a condutância;

� O uso de aletas mais próximas aumenta he, devido a um menor diâmetro hidráulico, Dh;

� O uso de aletas especiais (onduladas, por exemplo) aumenta he;� A eficiência da superfície, η, é influenciada pela espessura, pelo comprimento e pela

condutividade térmica da aleta.

++==

eeiiAh

RAh

RUA parede,condtot η

111

i

ee

A

AhK

η=

Page 8: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

8

15

Uso de aletas no lado do ar, em trocadores de calor

• O desempenho térmico de trocadores de calor a ar é controlado pela resistência térmica no lado do ar (geralmente externa), que é tipicamente é em torno de 90%. Daí a necessidade do uso de aletas;

• Dessa forma, a eficiência das aletas é uma variável importante. Aletas de cobre ou de alumínio apresentam eficiências elevadas, entre 85 a 95%, devido à elevada condutividade térmica desses dois materiais.

16

Tipos de aletas

Em nosso estudo, serão analisadas quatro tipos de aletas, apresentadas na figura a seguir:

� Aleta plana com seção reta uniforme (a);� Aleta plana com seção reta variável, em função da distância da base (b);� Aleta anular (c);� Aletas piniformes (d).

Page 9: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

9

17

Tipos de aletas

A escolha do tipo de aleta depende de fatores como:

� Considerações de espaço;� Considerações de peso;� Fabricação e custo;� Queda de pressão (perda de carga) e coeficiente de transferência de calor.

Formação de geada entre as aletas de um evaporador

18

As hipóteses utilizadas para a realização dessa análise são:

� Regime permanente, sem geração de calor na aleta;� Embora a condução de calor na aleta seja bidimensional, a hipótese utilizada considera condução unidimensional da direção x;� A temperatura é uniforme na espessura na aleta;� A condutividade térmica do material da aleta é constante;� O coeficiente de transferência de calor, h, é uniforme ao longo da aleta;� Os efeitos da radiação na superfície da aleta são desprezíveis.

Distribuição de temperatura na aleta

Page 10: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

10

19

Fazendo um balanço de energia no elemento diferencial mostrado em azul na figura abaixo:

Distribuição de temperatura na aleta

Taxa de condução

de calor para o elemento em x

=

Taxa de condução

de calor do elemento em x+ ∆x

+

Taxa de convecção de

calor do elemento

convxx,condx,cond dqqq += +∆

Da lei de Fourier:

onde A é a área da seção transversal da aleta, que pode variar com x. A taxa de condução de calor em x+∆x pode ser representada como:

dx

dtkAqx −=

(1)

(2)

dxdx

dqqq x

xxx +=+∆(3)

20

Substituindo a eq. (2) em (3), resulta em:

ou pela consideração de k=const.:

A taxa de transferência de calor por convecção é dada por:

Substituindo as eq. (2), (4) e (5) na eq. (1):

Distribuição de temperatura na aleta

dxdx

dTkA

dx

d

dx

dTkAq xx

−−=+∆

(4)

(5)( )∞−= TThdAdq sconv

(6)

dxdx

dTA

dx

dk

dx

dTkAq xx

−−=+∆

( )∞−+

−−=− TThdAdxdx

dTA

dx

dk

dx

dTkA

dx

dtkA s

Page 11: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

11

21

A eq. (6) pode ser reordenada como:

Dividindo a eq. (7) por (-k) e derivando:

Dividindo a eq. (8) por A:

Distribuição de temperatura na aleta

(7)

(8)

(9)

( )∞−+

−−=− TThdAdxdx

dTA

dx

dk

dx

dTkA

dx

dtkA s

( )∞−+

−= TThdAdxdx

dTA

dx

dk s0

( )∞−−+= TTdx

dA

k

h

dx

dT

dx

dA

dx

TdA s

2

2

0

( ) 011

2

2

=−−

+ ∞TTdx

dA

k

h

Adx

dT

dx

dA

Adx

Td s

22

Para resolver a eq. (9) deve-se definir a geometria da aleta.

Caso da aleta plana retangular e aletas piniformes de seção transversal uniforme:

Cada aleta está fixada a uma superfície base, onde a temperatura T(0)=Tb e se estende para o interior de um fluido na temperatura T∞.Para esses dois tipos de aletas, A é constante e As =Px, onde P é o perímetro da aleta em contato com o fluido.

Distribuição de temperatura na aleta

Page 12: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

12

23

Dessa forma:

Introduzindo esses dois termos na eq. (9):

Para simplificar essa equação, define-se uma temperatura, chamada de temperatura de excesso, θ:

Resultando em:

Distribuição de temperatura na aleta

Pdx

dAPxA

dx

dA ss =⇒== como e constante) al transvers(seção 0 (10)

( ) 02

2

=−− ∞TTkA

hP

dx

Td(11)

( ) ( ) ∞−≡ TxTxθ (12)

02

2

=− θθkA

hP

dx

d(13)

pois

.constdx

dT

dx

d == ∞T que vezuma θ

24

Chamando

e substituindo na eq. (13):

A eq. (15) é uma equação diferencial de 2ª. ordem, linear e homogênea, cuja solução geral é dada por:

A temperatura da placa onde a aleta está fixada geralmente é conhecida. Então, na base da aleta temos uma condição de contorno especificada, expressa como:

Distribuição de temperatura na aleta

022

2

=− θmdx

Td

(14)

(15)

( ) 021 =+= −mxmx eCeCxθ (16)

kA

hPm =2

( ) ∞−== TTbbθθ 0 (17)

Page 13: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

13

25

A segunda condição de contorno especificada na extremidade da aleta (x=L) pode corresponder a uma das quatro diferentes situações físicas:

a) Aleta infinitamente longa

Nesse caso, a temperatura na extremidade da aleta aproxima-se de T∞ e, portanto, a diferença de temperatura aproxima-se de zero, conforme a eq. (18):

A variação da temperatura ao longo da aleta pode ser representada como:

Isso é, a temperatura ao longo da aleta diminui exponencialmente desde Tb até T∞.

Distribuição de temperatura na aleta

( ) kAhpxmx

b

eeTT

TxT −−

∞ ==−−

(18)

(19)

( ) 0=−= ∞TTL Lθ

26

Essa redução de temperatura é mostrada na fig. abaixo:

Distribuição de temperatura na aleta

(20)

A taxa de transferência de calor na aleta é dada por:

( )∞−= TThPkAq blonga,a&

Page 14: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

14

27

b) Perda de calor desprezível na extremidade da aleta (aleta isolada ou adiabática):

A transferência de calor da aleta é proporcional à área da superfície e a área da extremidade da aleta é uma fração desprezível em relação à área total da aleta. A ponta da aleta pode então ser assumida como adiabática. Nesse caso, a condição de contorno na ponta da aleta é dada pela eq. (21):

A condição na base da aleta continua igual à anterior (eq. 17). A aplicação dessas duas condições de contorno da equação geral (eq. 16) resulta na distribuição de temperatura:

A taxa de transferência de calor a partir da aleta é dada por:

Distribuição de temperatura na aleta

(21)0==Lxdx

( ) ( )( )mLcosh

)xLmcosh

TT

TxT

b

−=−−

∞ (22)

( )mLtanhhPkAq badiab,a θ=& (23)

28

c) Convecção (ou convecção + radiação) na extremidade da aleta:

Na prática, as pontas das aletas estão expostas ao meio e a condição de contorno é a convecção (ou convecção + radiação combinadas). Essa 2ª. condição de contorno pode ser empregada na equação geral resultando, no entanto, em uma análise bastante complexa, não justificada pela relação entre a área da ponta da aleta e a área total, que é muito pequena. Na prática isso é resolvido substituindo o comprimento da aleta, L, por um comprimento corrigido, Lc, conforme mostrado na figura abaixo:

Distribuição de temperatura na aleta

(24)

(25)

P

ALLc +=

onde A é a área transversal da aleta e P o perímetro da aleta na ponta. Multiplicando a relação dada pelo perímetro, obtém-se:

Isso é, a área corrigida equivale à soma da área lateral da aleta com a área de sua ponta.

ponta)lateral(aletacorrigida AAA +=

Page 15: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

15

29

c) Convecção (ou convecção + radiação) na extremidade da aleta:

Assim, as aletas submetidas à convecção em suas pontas podem ser tratadas como aletas com pontas isoladas, substituindo o comprimento real da aleta pelo comprimento corrigido nas eq. (22) e (23), isso é:

Distribuição de temperatura na aleta

(26)

(27)

e

( ) ( )( )c

c

b mLcosh

)xLmcosh

TT

TxT −=−−

( )cbconv,a mLtanhhPkAq θ=&

Os comprimentos corrigidos para aletas retangulares e cilíndricas são dados por:

(29)

(28)

44

2

DL

D

DLLc +=+=

π

π

2222

tL

w

wtL

tw

wtLLc +=+=

++=aletas retangulares

aletas cilíndricas

30

d) Temperatura especificada na ponta da aleta:

Nesse caso, a temperatura na ponta da aleta é fixa, isso é:

Esse caso é considerado uma generalização do caso da aleta longa, onde a temperatura na ponta é fixada em T∞. A condição de contorno na base permanece a mesma que a eq. (17). Aplicando essas condições de contorno na solução geral, resulta em:

Distribuição de temperatura na aleta

(30)

(31)

( ) ∞−== TTL LLθθ

(32)

( ) ( ) ( )[ ] ( ) ( )( )mLsinh

xLmsinhmxsinhTT/TT

TT

TxT bL

b

−+−−=−− ∞∞

( ) ( ) ( )[ ]( )mLsinh

TT/TTmLcoshhPkAq bL

besp_temp,a∞∞ −−−= θ&

Page 16: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

16

31

Resumindo os quatro casos mostrados

Caso Extremidade, x=L Distribuição T, θθθθ/θθθθb Taxa de TC aleta, qa

a Aleta longa:θ(L)=0

b Adiabática:dθ/dx =0

c Convecção:hθ(L)=-kdθ/dx

d Temperatura conhecida: θ(L)= θL

hPkAM bθ=

32’

Exemplo 1:

Uma aleta de alumínio de 10 mm de diâmetro e 300 mm de comprimento está fixada a uma superfície a 80 ºC. A superfície é exposta ao ar ambiente a 22 ºC com um coeficiente de transferência de calor convectivo de 11 W/m²K.

a) Qual a taxa de transferência de calor da aleta?b) Calcule a temperatura para cinco pontos ao longo da aleta e represente a distribuição de temperatura graficamente.

Page 17: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

17

33

Considere a figura abaixo. A superfície, a uma temperatura Tb, exposta a um meio a T∞ perde calor por convecção para o meio circundante, com um coeficiente de transferência de calor h, conforme a eq. (33). Nessa equação Tb =Ts:

Eficiência da aleta

(33)

(34)

( )∞−= TThAq ss&

Considere agora uma aleta, com área transversal constante (A=Ab) e comprimento L, fixada na mesma superfície anterior. Assim, o calor é transferido da superfície para a aleta por condução e da aleta para o meio por convecção, com o mesmo h.A temperatura da aleta diminui progressivamente desde a temperatura na base até a ponta.No caso limite de resistência térmica ou de condutividade térmica infinita (k→∞), a temperatura na aleta será uniforme e igual ao seu valor na base, Tb. A transferência de calor será máxima, representada como:

( )∞−= TThAq balemax,a&

34

Na realidade, a temperatura diminui ao longo da aleta e, portanto, a transferência de calor será menor em função da diminuição da diferença de temperatura T(x)-T∞, conforme a representação na figura:

Para levar em conta esse efeito, define-se a eficiência da aleta, conforme a eq. (35):

ou

onde Aa é a superfície total da aleta. Ou seja, a eq. (36) permite determinar a taxa de transf. de calor a partir de uma aleta quando sua eficiência é conhecida.

Eficiência da aleta

(35)

( )∞−== TThAqq baamax,aaa ηη

max,a

a

ba q

q

T==

a estivesse aleta a todase ideal t.c.de Taxa

aleta dapartir a real t.c.de Taxaη

(36)

Page 18: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

18

35

Para o caso de aletas de seção transversal constante muito longa, aleta com ponta adiabática ou com convecção, suas eficiências podem ser calculadas como:

pois, para aletas de seção transversal constante, a área da superfície da aleta, Aa e igual ao produto do seu perímetro pelo seu comprimento, ou seja:

Eficiência da aleta

(38)

( )( )

( ) ( ) ( )mLhP

kA

LLPh

kA

LPPhh

kA

hPL

hPkA

hPL

hPkA

TThA

TThPkA

q

q /

ba

b

max,a

alonga,a

11

21

21

21

21

21

2121

======−

−== −−∞

∞η

(39)

(37)

( )( ) mL

mLtanh

TThA

mLtanhTThPkA

q

q

ba

b

max,a

aadiab,a =

−−==

∞η

( )( ) mL

mLtanh

TThA

mLtanhTThPkA

q

q c

ba

cb

max,a

aconv,a =

−−==

∞η

PLAa = (40)

36

Relações para a eficiência da aleta são desenvolvidas para vários perfis. Observar as relações para as aletas de seção não uniforme:

Eficiência da aleta

(41)

(42)

(43)

kt

hm

2=a b

kD

hm

4=

Page 19: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

19

37

Relações para a eficiência da aleta são desenvolvidas para vários perfis:

Eficiência da aleta

(44)

(45)

(46)

kt

hm

2=a b

kD

hm

4=

38

Aletas com perfil triangular ou parabólico contém menos material e são mais eficientes que as de perfil retangular e são mais adequadas para aplicações que exigem mínimo peso (como em aplicações espaciais, por exemplo)

Observação quanto ao comprimento da aleta:Quanto mais longa for a aleta, maior será a área de transferência de calor e, portanto, maiorserá a taxa de transferência de calor a partir da aleta.

Da mesma forma, quanto mais longa, maior será sua massa, maior seu preço e maior será o atrito com o fluido de transferência de calor. Ou seja, aumentar o comprimento além de um dado valor, pode não ser interessante, a menos que os benefícios adicionais superem os custos adicionais.

�A eficiência da aleta diminui com o aumento do seu comprimento devido ao decréscimo na temperatura da aleta. Comprimentos de aleta que causem uma queda na eficiência abaixo de 60% não são justificados economicamente e devem ser evitados.A eficiência das maior parte das utilizadas aletas na prática está acima de 90%.

Eficiência da aleta

Page 20: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

20

39

Eficiência de aletas de perfis retangular, triangular e parabólico

40

Eficiência de aletas anulares de perfil retangular

Page 21: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

21

41

Conjunto de aletas

A eficiência global de superfície, ηo, caracteriza o desempenho de um conjunto de aletas e a superfície base na qual esse conjunto está fixado, de acordo com a eq. (47):

Nessa equação, qt é a taxa total de transferência de calor, At é a área superficial associada à área das aletas e a fração exposta da base, também chamada de área primária. Se existirem N aletas no conjunto, cada uma com área superficial Aa, e a área da superfície primária for designada de Ab, a área superficial total será dada por:

Usando a conservação da energia, tem-se que a taxa total de transferência de calor do sistema aletado, qt, é dada por:

onde qa é a taxa de t.c. pelas aletas e qb e a taxa de t.c. através da base sem aletas.

(47)

bt

t

max

to hA

q

q

q

θη ==

bat ANAA += (48)

bat qqq += (49)

42

Conjunto de aletas

Exemplos de conjuntos de aletas: (a) retangulares e (b) circulares. Nessa figura, S é o passo das aletas.

A eq. (49) pode ser reescrita substituindo cada termo pela equação correspondente. Da eq. (36), qa é dado por:

e qb é dado por:

(50a)baamax,aaa hAqq θηη ==

bbb hAq θ=(50b)

Page 22: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

22

43

Conjunto de aletas

Substituindo as eq. (36) e (50a) na eq. (49):

onde h, o coef. de t.c. por convecção é considerado equivalente para as superfícies das aletas e para a superfície primária (da base). A área da base é calculada como:

E substituindo a eq. (52) na (51):

resulta em:

(51)bbbaat hAhANq θθη +=

atb NAAA −= (52)

( ) batbaat NAAhhANq θθη −+= (53)

( )[ ] bt

a

t

t

t

aatbataat A

AN

A

A

A

ANhANAAANhq θηθη

−+=−+= (54)

( ) bat

atb

t

aa

t

atb

t

a

t

aatt A

ANhA

A

AN

A

ANhA

A

AN

A

ANhAq θηθηθη

−−=

+−=

−+= 1111 (55)

44

Conjunto de aletas

Substituindo a eq. (55) na eq. que define a eficiência global da aleta, eq. (47):

e reorganizando, essa eq. fica:

Pela análise da eq. (56) fica óbvio que a taxa de t.c. total é função da área total (aletas + base) e da eficiência do conjunto de aletas, podendo ser escrita como:

(56)

(57)

(58)

( )

bt

bat

at

max

to hA

A

ANhA

q

q

θ

θηη

−−

==11

( )at

ao A

AN ηη −−= 11

bott hAq θη=

Page 23: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

23

45

Efetividade da aleta

Aletas são usadas para aumentar a transferência de calor e sua utilização não deve ser recomendada a menos que o aumento da transferência e calor justifique o aumento de custo e de complexidade associado com as aletas.

Assim, o desempenho das aletas deve ser avaliado com base na eficácia da aleta, εa, definida pela eq. (59):

Nessa equação, Ab é a área da seção transversal da aleta na base, igual a área A definida anteriormente. O termo representa a taxa de t.c. dessa área se não houvesse uma aleta fixada na sua superfície.

aletasemq

(59)

bb

a

aletasem

a

b

ba hA

q

q

q

A

A

θε ===

área com superfície da t.c.de Taxa

base da área com aleta da t.c.de Taxa

46

Efetividade da aleta

A eficiência da aleta e sua eficácia estão relacionadas conforme a eq. (60):

Ou seja, a eficácia da aleta pode ser facilmente determinada a partir de sua eficiência ou vice-versa.

� Um valor de εa = 1 significa que a adição de aletas na superfície não afeta a t.c.

� Valores de εa < 1 indicam, na verdade, que a aleta funciona como isolamento, diminuindo a t.c. a partir da superfície. Por exemplo, material da aleta com baixa condutividade térmica.

� Valores de εa > 1 indicam que as aletas estão aumentando a t.c. da superfície mas, por si só, não justifica sua utilização, salvo se εa >> 1.

(60)( ) a

b

a

bb

baa

bb

a

aletasem

aa A

A

hA

hA

TThA

q

q

q ηθθηε ==

−==

Page 24: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

24

47

Efetividade da aleta

Considerando uma aleta longa, de seção transversal constante, em condições de regime permanente, a taxa de transferência de calor é dada pela eq. (20). Substituindo essa equação na eq. (59), o resultado é:

uma vez que A=Ab para esse caso. Analisando essa eq. pode-se observar que:

� A condutividade térmica, k, do material da aleta deve ser a mais elevada possível. O material mais usado é o alumínio devido ao baixo custo, baixo peso e sua resistência à corrosão;

� A razão entre o perímetro da aleta e sua área transversal, P/A, deve ser a mais elevada possível. Esse critério é satisfeito quando se utilizam aletas de chapas finas e aletas delgadas, na forma de pinos;

� As aletas são mais eficazes quanto menor for o valor do coef. de t.c. por convecção, h, como é o caso do escoamento com gases e, principalmente, em convecção natural.

(61)

hA

kP

hA

hPkA

hA

q

q

q

bb

b

bb

a

aletasem

aa ====

θθ

θε

48

Também pode ser definida uma efetividade total para uma superfície aletada, como a razão entre a transferência de calor a partir da superfície aletada e a transferência de calor para a mesma superfície, na ausência de aletas:

As áreas utilizadas na eq. (65) são mostradas na figura:

Note que a efetividade total depende do número de aletas por unidade de comprimento e da eficiência individual das aletas. A efetividade total é a melhor medida do desempenho de uma superfície aletada.

(62)

Efetividade da aleta

( )baletassem

baalenão

aletasem,t

ttotal,a hA

AAh

q

q

θθηε

+==

( )LwA

wtNwHA

wHA

a

aletassem

aletadanão

2

=−=

= (63)

(64)

(65)

Page 25: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

25

49

Exemplo de aletas anulares com perfil retangular:

Sem aleta Com aletas

Qual será o aumento na transferência de calor?

Efetividade da aleta

50

O desempenho de aletas pode também ser quantificado em termos de resistência térmica. Considerando que a força motriz do processo seja a diferença entre as temperaturas (Tb-T∞) = θb, a resistência de uma aleta é definida como:

A resistência térmica pela convecção da base exposta da aleta, Ab, é dada por:

Dividindo a eq. (70) pela eq. (69) e utilizando a eq. (60):

De forma similar, utilizando a eq. (56)

Análise de sistemas aletados com uso de resistências térmicas

a

ba,t q

Rθ= (66)

bb,t hA

R1= (67)

bb

aa

a

b

b

hA

q

q

hA

θεθ = como e

1

a,t

b,ta R

R=ε (68)

tot

bo,t hAq

θ 1== (69)

Page 26: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

26

51

Assim, Rt,o é uma resistência efetiva que leva em conta as trajetórias do calor paralelas por condução/convecção nas aletas e por convecção na superfície primária, como mostrado na figura abaixo.

Análise de sistemas aletados com uso de resistências térmicas

qa

qa

Nqa

Resistência da aleta

Resistência da base

Resistência de contato

Resistência da aleta

Resistência da base

Obs.: nas figuras, ηηηηf é igual a ηηηηa no texto, assim como Af e Aa.

52

No caso onde for considerada uma resistência de contato:

E a eficiência global correspondente será dada por:

O parâmetro C1 é dado por:

onde R”t,c é a resistência térmica de contato entre aleta e base. No projeto, deverá ser garantido que essa resistência seja muito menor que a resistência térmica da aleta.

Análise de sistemas aletados com uso de resistências térmicas

(70)

(71)

(72)

tc,ot

bc,t hAq

θ 1==

−−=

1

11CA

NA a

t

ac,o

ηη

+=

b,c

c,taa A

"RhAC η11

Page 27: Transferência de calor Transferência de calor em …professor.unisinos.br/mhmac/Transcal/Aletas.pdf27/09/2016 1 Transferência de calor em superfícies aletadas 2º.semestre, 2016

27/09/2016

27

53

Passagens aletadas são frequentemente formadas entre placas paralelas para melhorar a transferência de calor por convecção. Uma importante aplicação é no resfriamento de equipamentos eletrônicos, onde as aletas, resfriadas a ar, são colocadas entre componentes eletrônicos que dissipam calor.

Um chip de silício isotérmico, com lados de 20 mm, encontra-se soldado a um dissipador de calor de alumínio com um comprimento equivalente.O dissipador tem uma base com espessura 3 mm e 11 aletas retangulares, cada uma com comprimento de 15 mm, como indicado na figura abaixo.Um escoamento de ar a 20 ºC é mantido através dos canais formados pelas aletas (coeficiente convectivo de 100 W/m²K) com um espaçamento mínimo de 1,8 mm em função das limitações na perda de pressão no escoamento. A junta soldada tem uma resistência térmica de R”t,c=2x10-6 m²K/W.Considere a espessura das aletas de t=0,182 mm e o passo de S=1,982 mm.Se a máxima temperatura permitida do chip for Tc=85 ºC, qual é o valor correspondente da potência do chip?

Exemplo: