tecnicas de inspeção eletrotecnica

1

Upload: renan-vinicius

Post on 21-Oct-2015

30 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: tecnicas de inspeção eletrotecnica

PCO PROGRAMA DE CERTIFICAÇÃO

OPERACIONAL CST

TÉCNICAS DE INSPEÇÃO E

PROCEDIMENTOS DE TESTES

Janeiro de 2005

Page 2: tecnicas de inspeção eletrotecnica

SUMÁRIO

SUMÁRIO ...................................................................................................................II

1 APRESENTAÇÃO........................................................................................ XI

2 INTRODUÇÃO ..............................................................................................12

3 MÁQUINAS ELÉTRICAS ROTATIVAS...................................................13

3.1 Fontes de Alimentação......................................................................................13

3.2 Proteção de Motores de Corrente Alternada.....................................................15

3.2.1 Proteção Contra Surtos de Tensão ..........................................................15

3.2.2 Proteção Contra Sobrecargas...................................................................17

3.2.3 Proteção Contra Curtos-Circuitos ...........................................................22

3.3 Proteção Contra Falta e Desequilíbrio de Fases ...............................................25

3.4 Interação Motor e Máquina Acionada ..............................................................26

3.5 Inspeção de Motores Elétricos ..........................................................................29

3.5.1 Instalação do Motor Elétrico. ..................................................................29

3.5.1.1 Aterramento................................................................................29

3.5.1.2 Dispositivos de Bloqueio e Calços.............................................30

3.5.1.3 Medição da Resistência de Isolamento ......................................30

3.5.1.4 Conexão de Força do Motor.......................................................31

3.5.1.5 Conexões dos Condutores dos Circuitos de Proteção e Controle31

3.5.1.6 Fixação do Motor à Base............................................................31

3.5.1.7 Proteções do Motor ....................................................................31

3.5.2 Operação com o Motor Desacoplado ......................................................31

3.5.3 Acoplamento Motor – Máquina Acionada..............................................33

3.5.4 Operação com o Motor Acoplado ...........................................................34

3.5.4.1 Indicadores e Proteção de Vibração...........................................35

3.5.4.2 Indicadores e Proteção Térmica dos Mancais............................35

3.5.4.3 Indicadores e Proteção Térmica dos Enrolamentos ...................37

3.5.4.4 Dispositivos Auxiliares ..............................................................37

Page 3: tecnicas de inspeção eletrotecnica

3.5.5 Inspeção Sistemática ...............................................................................38

3.5.5.1 Sistema de Alimentação .............................................................38

3.5.5.2 Motor..........................................................................................38

3.6 Inspeção em Máquinas com Escovas de Carvão ..............................................38

3.6.1 Porta Escovas e Escovas..........................................................................45

3.6.2 Comutadores e Anéis Coletores ..............................................................51

3.6.3 Interpolos e Linha Neutra........................................................................53

3.7 Principais Causas de Falhas de Máquinas Rotativas DE Corrente Alternada ..55

3.7.1 Introdução................................................................................................55

3.7.2 Rolamentos (Mancais).............................................................................56

3.7.3 Contaminação por Agentes Agressivos...................................................56

3.7.4 Degradação Térmica................................................................................57

3.7.4.1 Falta de Fase (Operação em Duas Fases)...................................58

3.7.4.2 Sobrecarga Mecânica .................................................................60

3.7.4.3 Rotor Travado ............................................................................61

3.7.4.4 Temperatura Ambiente Acima de 40 OC....................................62

3.7.4.5 Partidas Sucessivas.....................................................................62

3.7.4.6 Roçamento Rotor-Estator...........................................................63

3.7.4.7 Tensões Anormais ......................................................................63

3.7.5 Abrasão Mecânica ...................................................................................64

4 TRANSFORMADORES DE FORÇA..........................................................66

4.1 Análise Físico-química do Óleo Isolante..........................................................67

4.2 Cromatografia dos Gases Dissolvidos no Óleo Isolante...................................72

4.3 Relação de Transformação................................................................................76

4.4 Fator de Potência do Isolamento.......................................................................78

4.5 Resistência Ôhmica dos Enrolamentos.............................................................79

4.6 Acessórios Para Indicação e Proteção ..............................................................80

4.6.1 Relé Buchholz (Trafoscópio) ..................................................................80

Page 4: tecnicas de inspeção eletrotecnica

4.6.1.1 Características Gerais.................................................................81

4.6.1.2 Teste de Funcionabilidade do Relé Buchholz............................82

4.6.1.3 Teste de Inflamabilidade ............................................................83

4.6.1.4 Teste de Acetileno......................................................................83

4.6.1.5 Verificações na Operação do Relé Buchholz.............................83

4.6.2 Relé de Fluxo de Óleo e Gás ...................................................................84

4.6.3 Relé de Pressão Súbita ............................................................................84

4.6.3.1 Relé de Pressão de Gás ..............................................................85

4.6.3.2 Relé de Pressão de Óleo.............................................................86

4.6.4 Dispositivo de Alívio de Pressão ............................................................87

4.6.4.1 Tubo com Diafragma .................................................................88

4.6.4.2 Tubo com Mola Espiral..............................................................88

4.6.4.3 Alavanca Articulada...................................................................89

4.6.5 Termômetros Tipo Mostrador .................................................................90

4.6.5.1 Termômetro para Líquido Isolante.............................................90

4.6.5.2 Termômetro para Enrolamento (Imagem Térmica) ...................91

4.7 Plano de Inspeção de Transformadores de Força .............................................92

4.8 Coleta do Óleo para Análise .............................................................................93

4.8.1 Coleta para Ensaio Físico-Químico.........................................................93

4.8.2 Coleta para Cromatografia de Gases Dissolvidos ...................................94

5 CABOS ISOLADOS.......................................................................................95

5.1 Introdução .........................................................................................................95

5.2 Tipos de Isolação de Cabos de Potência ...........................................................96

5.3 O Fenômeno da Arborescência (TREEING) ....................................................96

5.4 Temperatura ......................................................................................................97

5.5 Descargas Parciais ............................................................................................97

5.6 Erros de Instalação............................................................................................98

5.7 Erros na Especificação da Tensão de Isolamento do Cabo ..............................98

Page 5: tecnicas de inspeção eletrotecnica

5.8 Terminais e Emendas........................................................................................99

5.9 Testes de Cabos Elétricos no Campo................................................................99

5.10 Inspeção de Cabos Isolados ............................................................................99

5.11 Ensaio de Tensão Elétrica (NBR 6881) .........................................................99

5.12 Ensaio de Tensão Elétrica Alternativo..........................................................102

6 CAPACITORES DE POTÊNCIA ..............................................................104

6.1 A inspeção de um capacitor ............................................................................105

6.1.1 Limpeza .................................................................................................105

6.1.2 Oxidação da Carcaça e Estruturas de Suporte.......................................105

6.1.3 Aterramento...........................................................................................105

6.1.4 Proteção Contra Curto-circuito .............................................................105

6.1.5 Deformação da Carcaça.........................................................................105

6.1.6 Isolamento .............................................................................................105

6.1.7 Teste da Integridade do Módulo Capacitor ...........................................106

7 PROTEÇÃO CONTRA DESCARGAS ATMOSFÉRICAS E

ATERRAMENTO ...................................................................................................107

7.1 Inspeção do Sistema de Proteção Contra Descargas Atmosféricas (SPDA) ..107

7.1.1 Captores.................................................................................................107

7.1.2 Cabos de Descida ..................................................................................108

7.1.3 Eletrodutos de Proteção.........................................................................109

7.1.4 Conexões Elétricas ................................................................................109

8 SISTEMAS DE ATERRAMENTO E MALHA DE TERRA ..................111

8.1 Inspeção do Sistema de Aterramento..............................................................113

8.1.1 Estruturas Metálicas ..............................................................................113

8.1.2 Carcaça dos Equipamentos Elétricos ....................................................113

8.1.3 Cubículos e Painéis Elétricos ................................................................113

8.1.4 Transformadores e Geradores ...............................................................113

8.1.5 Resistência e Reatância de Aterramento ...............................................114

Page 6: tecnicas de inspeção eletrotecnica

8.1.6 Malha de Aterramento...........................................................................114

9 BATERIAS....................................................................................................116

9.1 Inspeção de Bancos de Baterias e Carregador ................................................118

9.1.1 Limpeza .................................................................................................118

9.1.2 Elementos ..............................................................................................118

9.1.3 Conexões ...............................................................................................119

9.1.4 Oxidação................................................................................................119

9.1.5 Pintura....................................................................................................119

9.1.6 Nível do Eletrólito .................................................................................119

9.1.7 Medição de Tensão................................................................................120

9.1.8 Densidade ..............................................................................................120

9.1.9 Análise do Eletrólito..............................................................................120

9.1.10 Descarga da Bateria.............................................................................121

9.1.11 Painel do Carregador ...........................................................................121

9.1.12 Retificadores........................................................................................122

9.1.13 Indicadores de Tensão e Corrente .......................................................123

10 EQUIPAMENTOS E INSTALAÇÕES ELÉTRICAS EM

ATMOSFERAS EXPLOSIVAS. ............................................................................124

10.1 Introdução .....................................................................................................124

10.2 Tipos de Inspeção .........................................................................................124

10.3 Tipo de Proteção ...........................................................................................125

10.4 Formulário de Inspeção.................................................................................126

11 REOSTATOS E RESISTORES..................................................................131

11.1 Inspeção de Banco de Resistores Fixos ........................................................131

11.1.1 Inspeção Visual ...................................................................................131

11.1.2 Resistência de Isolamento ...................................................................131

11.1.3 Alteração nas Característica de Aceleração do Motor ........................132

11.2 Inspeção de Reostatos Líquidos....................................................................132

Page 7: tecnicas de inspeção eletrotecnica

11.2.1 Tanque .................................................................................................133

11.2.2 Eletrólito ..............................................................................................133

11.2.3 Eletrodos..............................................................................................133

11.2.4 Alteração nas Características de Aceleração do Motor.......................133

11.2.5 Mecanismo de Curto-circuitamento e Levantamento das Escovas.....133

11.2.6 Contator de Curto-circuito do Reostato ..............................................134

12 GALERIAS, ROTAS DE CABOS, ELETRODUTOS E ACESSÓRIOS135

12.1 Inspeção em Galerias, Rotas de Cabos, Eletrodutos e Acessórios ...............135

12.1.1 Circuito de Iluminação ........................................................................135

12.1.2 Sistema de Drenagem de Água ...........................................................135

12.1.3 Limpeza da Galeria .............................................................................135

12.1.4 Bandejamento e Cabos Elétricos.........................................................136

12.1.5 Eletrodutos...........................................................................................137

12.1.6 Proteção Passiva ..................................................................................137

13 SISTEMA DE ALARME E INCÊNDIO ...................................................139

13.1 Sensores ........................................................................................................139

13.2 Painel Local...................................................................................................139

13.3 Painel Central................................................................................................140

13.4 Teste Simulado de Incêndio..........................................................................140

14 SISTEMA DE ILUMINAÇÃO E TOMADAS DE FORÇA ....................141

14.1 Segurança e Meio Ambiente.........................................................................141

14.2 A inspeção nos Circuitos de Iluminação.......................................................142

14.2.1 Painéis de Distribuição e Controle ......................................................142

14.2.2 Eletrodutos e Linhas Elétricas Inclusive Condutores..........................142

14.2.3 Luminárias e Acessórios .....................................................................142

14.2.4 Torres de Iluminação – Escada de Acesso e Plataforma.....................143

14.3 Inspeção em Tomadas de Força....................................................................143

14.3.1 Painéis de Distribuição........................................................................144

Page 8: tecnicas de inspeção eletrotecnica

14.3.2 Tomadas ..............................................................................................144

15 FREIOS ELETRO-HIDRÁULICOS .........................................................145

16 FREIOS ELETROMAGNÉTICOS............................................................146

17 DETECTORES DE METAL E SEPARADORES MAGNÉTICOS. ......147

17.1 Técnicas de Inspeção ....................................................................................147

18 DISPOSITIVOS DE PROTEÇÃO E COMANDO DE CAMPO ............148

19 INVERSORES DE FREQÜÊNCIA ...........................................................149

19.1 Princípio Operacional ...................................................................................149

19.2 Potência do Inversor e do Motor Acionado ..................................................152

19.3 Reatância de Rede.........................................................................................154

19.4 Reatância de Carga .......................................................................................154

19.5 Instalação Elétrica .........................................................................................155

19.6 Grau de Proteção e Ventilação......................................................................155

19.7 Interferência Eletromagnética.......................................................................155

19.8 Inspeção ........................................................................................................156

19.8.1 Roteiro Para Inspeção..........................................................................157

20 DISJUNTORES ............................................................................................158

20.1 Geral..............................................................................................................158

20.2 Inspeção de Disjuntores ................................................................................159

20.3 Principais Causas de Falhas ..........................................................................159

21 CONTATORES ............................................................................................163

22 CHAVES SECCIONADORAS DE MÉDIA TENSÃO ............................165

23 CUBÍCULOS E PAINÉIS ELÉTRICOS...................................................166

23.1 Arco voltaico.................................................................................................170

23.2 Inspeção Detalhada .......................................................................................172

24 AVALIAÇÃO DO ISOLAMENTO ELÉTRICO UTILIZANDO

TENSÕES DE CORRENTE CONTÍNUA............................................................174

24.1 Introdução .....................................................................................................174

Page 9: tecnicas de inspeção eletrotecnica

24.2 Isolamento Elétrico .......................................................................................174

24.3 Aplicando Tensão Contínua no Isolamento..................................................175

24.3.1 Corrente de Carga Capacitiva .............................................................175

24.3.2 Corrente de Absorção Dielétrica .........................................................175

24.3.3 Corrente de Condução (Corrente de Fuga) .........................................176

24.4 Fatores que Afetam a Resistência de Isolamento .........................................176

24.4.1 Efeito das Condições da Superfície.....................................................176

24.4.2 Efeito da Umidade...............................................................................176

24.4.3 Efeito da Temperatura .........................................................................176

24.4.4 Efeito do Valor do Potencial de Teste.................................................177

24.4.5 Efeito da Duração do Teste .................................................................178

24.4.6 Efeito da Carga Residual.....................................................................178

24.5 Tensão Nominal e Máxima Tensão de Teste................................................178

24.6 Testes de Avaliação do Isolamento ..............................................................179

24.6.1 Resistência de Isolamento a 1 Minuto.................................................180

24.6.2 Método Resistência - Tempo. Índice de Polarização (IP)...................180

24.6.3 Teste de Multitensão ...........................................................................182

24.6.4 Teste com Tensões Acima do Valor Nominal do Equipamento .........183

24.7 Práticas Básicas para Operação do Megôhmetro..........................................186

24.7.1 Calibração............................................................................................186

24.7.2 Indicação do Zero................................................................................186

24.7.3 Indicação de Final de Escala ...............................................................187

24.7.4 Terminais do Instrumento ...................................................................187

24.7.5 Pontas de Prova ...................................................................................187

24.8 Práticas para Teste de Isolamento com Tensão de Corrente Contínua.........187

24.9 Testes de Isolamento em Máquinas Elétricas Rotativas...............................189

24.9.1 Geral ....................................................................................................189

24.9.2 Posições de Ligações para Teste .........................................................189

Page 10: tecnicas de inspeção eletrotecnica

24.9.2.1 Estator e Rotor CA com Três Cabos de Saída .......................189

24.9.2.2 Estator de Motor de CA com Seis ou Mais Terminais. .........190

24.9.2.3 Máquinas de Corrente Contínua.............................................194

24.9.2.4 Geradores de Corrente Alternada...........................................196

24.9.3 Avaliação dos Valores Medidos..........................................................197

24.10 Testes de Resistência de Isolamento em Transformadores ........................197

24.10.1 Geral ..................................................................................................197

24.10.2 Posições de Teste – Transformadores de 2 Enrolamentos ................198

24.10.3 Avaliação dos Valores Medidos........................................................201

24.11 Teste de Resistência de Isolamento em Cabos Elétricos ............................203

24.11.1 Geral ..................................................................................................203

24.11.2 Posição de Teste ................................................................................203

24.11.2.1 Cabo Unipolar com Blindagem Metálica.............................203

24.11.2.2 Cabo Multipolar com Blindagem Metálica Envolvendo Cada

Condutor...............................................................................................204

24.11.2.3 Cabo Multipolar sem Blindagem. ........................................204

24.11.2.4 Cabo Unipolar (de um Circuito Tripolar) sem Blindagem ..205

24.11.3 Avaliação dos Valores Medidos........................................................205

24.12 Testes de Resistência de Isolamento em Disjuntores e Contatores ............208

24.12.1 Geral ..................................................................................................208

24.12.2 Posições de Teste...............................................................................208

24.12.3 Avaliação dos Resultados dos Testes................................................210

25 REFERÊNCIAS BIBLIOGRÁFICAS .......................................................211

Page 11: tecnicas de inspeção eletrotecnica

1 APRESENTAÇÃO

As atividades de inspeção compreendem uma fatia importante das ações empreendidas por uma equipe de manutenção. Pode-se dizer, sem medo de errar, que uma inspeção bem implementada é um fator de sucesso da manutenção.

As ações de manutenção podem ser divididas em ações com o equipamento em

operação e aquelas que só podem ser executadas com o equipamento parado. É óbvio que devemos privilegiar as atividades de inspeção que podem ser executadas com o equipamento operando. A manutenção existe para que os equipamentos operem o maior tempo possível, com a máxima confiabilidade.

O plano e as ações de inspeção devem ser norteados para o acompanhamento do

estado do equipamento e instalação, acionando o órgão de planejamento e programação, sempre que as ações de manutenção preventiva (intervenções) se tornem necessárias para restaurar as condições operacionais.

Para que um inspetor possa executar sua função com sucesso, é necessário uma

sólida formação profissional, aliado a um profundo conhecimento do processo de degradação das diversas partes dos equipamentos e das técnicas de inspeção e procedimentos de testes.

Esta apostila reúne a experiência adquirida ao longo de vários anos de manutenção

industrial e uma vasta literatura técnica existente, porém dispersa.

Page 12: tecnicas de inspeção eletrotecnica

12

Técnicas de Inspeção e Procedimentos de Testes

2 INTRODUÇÃO

Muitas pessoas que lidam com a manutenção têm a opinião que equipamentos elétricos são diferentes das outras máquinas e operarão em quaisquer condições.

O oposto é verdadeiro. Equipamentos elétricos podem ser deteriorados mais

rapidamente devido às condições operacionais que qualquer outro equipamento. Água, poeira, calor, frio, umidade, atmosfera corrosiva, resíduos químicos, vibrações

e inúmeras outras condições podem afetar a confiabilidade operacional e a vida útil de equipamentos elétricos. Estas condições desfavoráveis, combinadas com negligência e descuido na manutenção do equipamento resultam em falha prematura desnecessária e, em muitos casos, na sua completa destruição.

Custos de reparos podem ser evitados implantando-se as recomendações de

manutenção fornecidas pelo fabricante. De maneira geral, devemos praticar algumas ações muito simples, mas de

fundamental importância para todo equipamento elétrico: Mantenha-o limpo Sujeira é a principal causa de falhas elétricas. Sujeira é a acumulação diária de

partículas atmosféricas, fiapos, partículas metálicas ou químicas, vapores e neblinas de óleo. Estes depósitos, se acumulados, contaminarão o equipamento elétrico, provocando sua falha. Roçando com alta energia pode causar abrasão e a destruição do isolamento. Depositado em enrolamentos e isoladores e combinado com umidade ou óleo pode causar a redução da tensão disruptiva, provocando descargas com conseqüente falha. Acumulado sobre carcaças reduz a transferência de calor, forçando a operação em temperaturas superiores à de projeto, reduzindo a sua vida útil.

Mantenha-o seco Equipamentos elétricos operam melhor em uma atmosfera seca por muitas razões.

Uma é que a umidade pode causar a oxidação do cobre, alumínio, ferro e ligas metálicas, afetando a resistência de conexões e contatos elétricos. Alta umidade pode causar sua condensação no interior do equipamento, causando curto circuito e falha prematura. Umidade e sujeira potencializam a degradação do material isolante.

Mantenha as conexões torqueadas Os parafusos das conexões elétricas tendem a afrouxar em função da dilatação e da

vibração. Conexões frouxas são fontes de calor provocando danos nos materiais isolantes próximos. Mantenha todas as conexões torqueadas conforme instruções do fabricante.

Page 13: tecnicas de inspeção eletrotecnica

13

Técnicas de Inspeção e Procedimentos de Testes

3 MÁQUINAS ELÉTRICAS ROTATIVAS

3.1 FONTES DE ALIMENTAÇÃO

Uma longa vida útil de um motor de indução trifásico depende fundamentalmente

das boas condições da fonte de alimentação, ou seja, da qualidade da energia fornecida, aí incluído o sistema de proteção.

A tensão e freqüência nos terminais do motor devem ser muito próximas à nominal.

O fluxo magnético do entreferro é dado por:

fKE=Φ

Onde: Φ= fluxo de magnetização (Wb) E= tensão no terminal do motor (V) f= freqüência da tensão estatórica (Hz) K= constante, função da geometria do pacote magnético e da construção do

enrolamento. Os efeitos das variações da tensão e freqüência serão mais danosos ao motor, quanto

mais próximo estiver operando da potência nominal.

Fig 1 Centro de controle de motores (CCM)

Page 14: tecnicas de inspeção eletrotecnica

14

Técnicas de Inspeção e Procedimentos de Testes

A NBR 7094 estabelece as variações permissíveis de tensão e freqüência em relação

ao nominal, conforme figura 2.

Fig 2 Gráfico de variação de tensão e freqüência conforme norma NBR 7094

Geralmente a freqüência é firme, muito próxima de 60Hz, ocorrendo variação na

tensão da concessionária e quedas de tensões nos elementos internos da industria, transformadores e cabos, principalmente.

As oscilações da tensão da concessionária podem ser minimizadas através de

transformadores equipados com comutador de tapes sob carga (Load Tape Changer). O transformador alimentador do Centro de Controle de Motores deve ser

especificado com tensão secundária 5% (cinco por cento) acima da tensão nominal dos motores, por exemplo 460V para motores de 440V e 480V para motores de 460V.

Os condutores de alimentação dos motores são calculados para que a tensão no

terminal dos motores, nas condições de partida e de regime, mantenha-se próximo da nominal (lembre-se que os conjugados de partida e nominal são proporcionais ao quadrado da tensão.

Page 15: tecnicas de inspeção eletrotecnica

15

Técnicas de Inspeção e Procedimentos de Testes

A zona A da figura 2 estipula as variações de tensão e freqüência permitidas, dentro das quais o motor deve ser capaz de desempenhar sua função principal continuamente,

podendo não atender completamente suas características de desempenho em

condições nominais, apresentando alguns desvios. Nesta zona a tensão pode variar em mais ou menos 5% e a freqüência em mais ou

menos 2%. Na zona B o motor ainda deve ser capaz de desempenhar sua função principal,

apresentando desvios superiores àquelas da zona A. Os valores máximos de desvio da tensão e freqüência são de 50%. Os efeitos das variações da tensão e freqüência se anulam quando tem o mesmo

sentido. Por exemplo, um motor com tensão e freqüência nominal de 440V e 60Hz opera muito bem em um sistema com tensão de 380V (-14%) e freqüência de 50Hz (-17%).

Quando as variações são de sinal contrário, os efeitos sobre as características do

motor são cumulativos, reduzindo seu desempenho. Tensões e correntes desequilibradas provocam aquecimento no interior do motor que

podem levar à degradação térmica e a conseqüente falha do material isolante. Correntes harmônicas aumentam as perdas do motor, elevando a temperatura média

nos enrolamentos, reduzindo a vida útil do material isolante por degradação térmica.

3.2 PROTEÇÃO DE MOTORES DE CORRENTE ALTERNADA.

3.2.1 Proteção Contra Surtos de Tensão

O nível de isolamento de máquinas rotativas é muito menor do que de outros tipos de equipamentos elétricos, como por exemplo, os transformadores, sendo portanto mais suscetíveis a danos por surtos de tensão.

As fontes comuns de surtos de tensão em motores são as operações de manobras e as

descargas atmosféricas. O chaveamento de pequenas cargas indutivas e bancos de capacitores através de disjuntores a vácuo, são fontes de surtos.

Page 16: tecnicas de inspeção eletrotecnica

16

Técnicas de Inspeção e Procedimentos de Testes

Fig 3 Caracterização da onda de um surto de tensão A forma de onda tem uma frente escarpada e uma cauda longa, conforme 0. A proteção do isolamento de máquinas rotativas compreende a limitação da tensão

de impulso e a redução da inclinação da frente de onda da tensão, denominado “achatamento de onda”. O circuito de proteção compreende a instalação de pára-raios e capacitores adequadamente calculados, instalados entre os terminais da máquina e a malha de aterramento, conforme Fig 4.

Surtos de tensão podem levar o isolamento ao stress, ocasionando a falha do isolamento nas primeiras espiras do enrolamento.

Page 17: tecnicas de inspeção eletrotecnica

17

Técnicas de Inspeção e Procedimentos de Testes

Fig 4 Esquemas de ligação de motores de indução para proteção contra surtos utilizando capacitores e para-raios..

3.2.2 Proteção Contra Sobrecargas. O funcionamento do motor acima de sua potência nominal acarreta uma corrente

acima da nominal circulando nos enrolamentos e um aumento na temperatura da máquina, podendo superar a temperatura máxima admitida pelo material isolante. A operação nesta condição levará a degradação térmica do material isolante e queima da máquina.

Os motores de baixa tensão são normalmente protegidos por um relé térmico,

percorrido pelas correntes das três fases, provocando o aquecimento de lâminas bimetálicas, que em condições de sobrecarga, desligará o contator, desenergizando o motor.

Page 18: tecnicas de inspeção eletrotecnica

18

Técnicas de Inspeção e Procedimentos de Testes

Fig 5 Relé de sobrecarga

A curva de operação do relé térmico deverá ser compatível com a curva térmica da

máquina protegida, conforme mostrado na Fig 6.

Fig 6 Curvas de um relé térmico de sobrecarga, um relé de sobrecorrente a tempo inverso e de integridade térmica de um motor

Page 19: tecnicas de inspeção eletrotecnica

19

Técnicas de Inspeção e Procedimentos de Testes

O relé térmico deve ser regulado para o valor da corrente nominal do motor protegido, mesmo em máquinas com fator de serviço.

Nos casos em que o motor tem sobra térmica (Fator de Serviço – FS>1) e está

acontecendo a operação do relé térmico, é possível regular o térmico para um valor até FS IN × . Neste caso recomenda-se verificar a temperatura no interior do enrolamento após a

nova regulagem do relé térmico. Procedimento para verificação da temperatura do enrolamento.

1. Regule o relé térmico para até FSI N × (corrente nominal vezes o fator de serviço do motor)

2. Com o motor à temperatura ambiente, meça a resistência ôhmica dos enrolamentos R1. Meça a temperatura ambiente t1.

3. Opere o motor com a carga na condição que estava provocando a operação do relé térmico por um tempo suficiente para que seja alcançado o equilíbrio térmico.

4. Desligue o motor e meça rapidamente a resistência ôhmica dos enrolamentos R2, e a temperatura do ar de refrigeração ta,

5. Calcule a elevação de temperatura do enrolamento através da formula abaixo:

( ) aa tttR

RRtt −++−

=− 111

122 235

6. Calcule a temperatura do ponto mais quente considerando a temperatura

ambiente de 40ºC.

T=(t2-ta)+40ºC+K

onde: K=5ºC para máquinas com ΔT de 60ºC e 75ºC K=10ºC para máquinas com ΔT de 80ºC K=15ºC para máquinas com ΔT de 100ºC e 125ºC ΔT=elevação de temperatura de projeto da máquina A temperatura do ponto mais quente não deve ser superior a: 100ºC- para máquinas com materiais de classe térmica “A” 120ºC- para máquinas com matérias de classe térmica “E” 130ºC- para máquinas com matérias de classe térmica “B” 155ºC- para máquinas com matérias de classe térmica “F”

Page 20: tecnicas de inspeção eletrotecnica

20

Técnicas de Inspeção e Procedimentos de Testes

180ºC- para máquinas com matérias de classe térmica “H” Nos motores de maior porte, de média tensão, a proteção contra sobrecargas é

confiada a relés de sobrecorrente associados a detectores de temperatura instalados no interior do enrolamento do motor. A curva de proteção do relé deve ser compatível com a curva térmica do motor de forma que o relé opere antes que o material isolante seja comprometido.

Os detectores de temperatura mais utilizados em motores de grande porte são os

“RTD” - Resistence Temperature Dependent ou “resistência calibrada”, tendo como característica uma relação linear com a temperatura, propiciando uma indicação da temperatura no interior dos enrolamentos.

Os RTDs mais comuns são os de platina e cobre que têm, respectivamente, suas

resistências a 0ºC de 100Ω e 10Ω.

Tabela 1 Conversão de resistência x temperatura para RTD PT-

100

Os RTDs são instalados nas ranhuras dos motores, em contato com as bobinas,

dispostos nas três fases, propiciando alarme e desligamento. Devido à inércia térmica, os detectores de temperatura não podem, na grande maioria

das situações, atuar de forma suficientemente rápida para defeitos que ocasionam elevações abruptas de corrente.

Page 21: tecnicas de inspeção eletrotecnica

21

Técnicas de Inspeção e Procedimentos de Testes

São muitos eficazes para motores sujeitos a regime intermitentes ou contínuos com carga intermitente e em casos em que ocorrem sobretemperaturas sem a correspondente sobrecorrente, como na obstrução no sistema de refrigeração ou perda de ventilação.

Os resistores são normalmente fornecidos com três terminais, permitindo, quando

ligados em ponte, eliminar o efeito da resistência dos condutores entre o resistor e o relé supervisor.

Outros dispositivos podem operar como detectores de temperatura, tais como os

bimetálicos e os termistores. Os termostatos são dispositivos bimetálicos que comutam um contato quando a

temperatura se aproxima de um valor estabelecido (fixo). Instalados nas cabeças de bobinas do lado oposto ao ventilador (individual, ou por fase), são ligados em série com a bobina do contator, desligando o circuito quando da abertura do contato.

Os termistores (Fig 7b) são dispositivos semicondutores instalados dentro das

cabeças das bobinas, do lado oposto à ventilação, podendo ser instalados em uma única fase, mas preferencialmente nas três. O termistor exige um relé que irá sentir a variação abrupta do valor da resistência, próxima à temperatura de operação, comutando um contato que irá provocar o desligamento do motor.

O termistor mais comumente usado na proteção de motores é o PTC que tem um

coeficiente de temperatura positivo (resistência aumenta com o aumento da temperatura).

Fig 7 Características típicas de um RTD de platina (a) e de um termistor tipo PTC (b)

(a) (b)

Page 22: tecnicas de inspeção eletrotecnica

22

Técnicas de Inspeção e Procedimentos de Testes

O desligamento da proteção por detectores de temperatura deve ser ajustada para o

limite da classe de isolação

Tabela 2 Limites de temperatura para cada classe de isolação

Classe de Isolação A E B F H

Desligamento 105ºC 120ºC 130ºC 155ºC 180ºC

O alarme deve ser ajustado para o valor da temperatura média do enrolamento em

condições nominais (ΔT+40ºC).

3.2.3 Proteção Contra Curtos-Circuitos

As correntes elevadas de curto-circuito podem ocasionar danos permanentes ao motor (fusão de cobre e colocação das lâminas do pacote magnético em curto-circuito e até a fusão das lâminas de aço) e aos outros elementos do circuito tais como cabos, dispositivos de comando, CCM, etc, devendo ser interrompidas muito rapidamente.

Os motores de baixa tensão são protegidos através de disjuntores com unidades

magnéticas ajustáveis ou fusíveis do tipo Diazed e NH. Nos motores de média tensão a proteção contra curtos-circuitos é confiada a um relé com atuação instantânea ajustados para um valor acima da corrente de rotor bloqueado, conjugado com uma função temporizada.

Fig 8 Relé tipo MV Microprocessado - Westinghouse

Page 23: tecnicas de inspeção eletrotecnica

23

Técnicas de Inspeção e Procedimentos de Testes

A proteção contra falta para terra (corrente de seqüência zero) é normalmente ligada

a um TC toroidal que abraça as três fases, conforme Fig 9

Fig 9 Esquema de proteção de falta fase terra Em máquinas de grande porte é comum a utilização de proteção diferencial dos

enrolamentos. Um esquema de ligação possível é mostrado na Fig 10. As vantagens desta proteção são a alta confiabilidade, alta velocidade e pelo fato de operar somente para faltas internas ao motor.

Page 24: tecnicas de inspeção eletrotecnica

24

Técnicas de Inspeção e Procedimentos de Testes

Fig 10 Circuito típico de um sistema de proteção diferencial

3 transformadores de

corrente no fechamento da

estrela

3 transformadores de

corrente na linha

Relé diferencial em cada

fase (somente mostrado

em uma fase)

Page 25: tecnicas de inspeção eletrotecnica

25

Técnicas de Inspeção e Procedimentos de Testes

Fig 11 Proteção diferencial de motor de média tensão

3.3 PROTEÇÃO CONTRA FALTA E DESEQUILÍBRIO DE FASES

Correntes desequilibradas provocam aquecimentos nos enrolamentos, capazes de levar o sistema isolante à falha por degradação térmica. Para a proteção de motores de média tensão são utilizadas unidades que filtram as correntes de seqüência negativa, desligando o motor.

Page 26: tecnicas de inspeção eletrotecnica

26

Técnicas de Inspeção e Procedimentos de Testes

3.4 INTERAÇÃO MOTOR E MÁQUINA ACIONADA

A transmissão consiste no conjunto responsável pela transferência da potência mecânica à carga acionada. Quando vista pelo motor, a transmissão é uma fonte de esforços externos, devendo-se garantir a compatibilidade entre o motor e a transmissão.

As transmissões diretas devem ser preferidas pelo fato de exercerem menores

esforços sobre a ponta do eixo do motor. Os motores padronizados pelos fabricantes nem sempre são adequados às aplicações

com transmissões não-diretas, aí incluídas polias e correias, rodas dentadas, engrenagens, etc, isso quando montadas diretamente sobre o eixo do motor.

A força transferida ao eixo será tanto maior quanto menor for a polia motora

montado no eixo do motor. As tabelas a seguir indicam o diâmetro primitivo mínimo de polias motoras em correspondência à carcaça e a metade do comprimento da polia (fonte WEG).

Tabela 3 Diâmetro primitivo mínimo de polias

Page 27: tecnicas de inspeção eletrotecnica

27

Técnicas de Inspeção e Procedimentos de Testes

A polia deve ser montada o mais próximo possível do mancal do motor conforme Fig

12.

Fig 12 Exemplo de instalação de polias

As polias motoras e movidas devem estar perfeitamente alinhadas, reduzindo os esforços radiais desnecessários nos mancais.

Page 28: tecnicas de inspeção eletrotecnica

28

Técnicas de Inspeção e Procedimentos de Testes

Fig 13 Alinhamento de polias

A tensão na correia deverá ser suficiente para evitar o escorregamento durante o funcionamento. Tensões excessivas aumentam o esforço na ponta do eixo e mancal, causando fadiga, com reflexo na redução da vida útil do rolamento e eventual cisalhamento do eixo.

Page 29: tecnicas de inspeção eletrotecnica

29

Técnicas de Inspeção e Procedimentos de Testes

Fig 14 Instalação de correias

Mesmo quando todos os requisitos citados estão atendidos, pode acontecer falha prematura de rolamentos. Neste caso o fabricante deve ser consultado com respeito à compatibilidade do motor para acionamento por correia.

3.5 INSPEÇÃO DE MOTORES ELÉTRICOS

3.5.1 Instalação do Motor Elétrico. Na atividade de instalação de um motor, o inspetor deve verificar os seguintes

pontos:

3.5.1.1 Aterramento

A carcaça do motor deve estar firmemente conectada ao potencial de terra através do quarto condutor ou diretamente à malha de terra, conforme Fig 15.

Page 30: tecnicas de inspeção eletrotecnica

30

Técnicas de Inspeção e Procedimentos de Testes

Fig 15 Aterramento da carcaça

3.5.1.2 Dispositivos de Bloqueio e Calços

Os dispositivos de bloqueio e calços instalados para transporte, devem ser removidos

permitindo a livre movimentação do rotor.

3.5.1.3 Medição da Resistência de Isolamento

Para que um motor seja energizado é necessário que a resistência do isolamento para a massa e entre fases tenha um valor mínimo que permita sua energização.

O valor mínimo é definido pela equação:

1+= KVRm Onde, Rm = resistência 1 minuto a 40ºC em megohms, na posição RST x massa KV = classe de tensão do motor em kV Para maiores informações consulte o capítulo 24 – “Avaliação de Isolamento

Elétrico Utilizando Tensões de Corrente Contínua”.

Ponto de aterramento

Page 31: tecnicas de inspeção eletrotecnica

31

Técnicas de Inspeção e Procedimentos de Testes

3.5.1.4 Conexão de Força do Motor

O inspetor deverá verificar se a conexão do motor foi realizada de acordo com a tensão da rede. Deverá ser verificado se a isolação dos cabos de conexão do motor está feita com um volume de fita isolante capaz de garantir tanto a resistência elétrica quanto a mecânica exigida pelos esforços contra paredes da caixa de ligações.

3.5.1.5 Conexões dos Condutores dos Circuitos de Proteção e Controle

Certificar-se da correta ligação dos resistores de aquecimento, dispositivos indicadores e de proteção (termostatos, termistores, termo-resistências , sensores de vibração, etc) e controle (solenóides, etc).

3.5.1.6 Fixação do Motor à Base

O motor deverá estar firmemente fixado à base, com todos os parafusos torqueados.

3.5.1.7 Proteções do Motor

Certificar se os dispositivos de proteção (relés térmicos, fusíveis, disjuntores, relés de sobrecorrente, diferencial e outros) estão ajustados corretamente para efetiva proteção do motor.

3.5.2 Operação com o Motor Desacoplado Na operação com o motor desacoplado são verificados o sentido de giro do motor e

ruídos que possam caracterizar algum problema de mancal e a correta operação do resistor de aquecimento (space heater).

A medição de vibração com o motor desacoplado tem como objetivo detectar

principalmente desbalanceamento, danos em rolamentos, desalinhamento entre furos das tampas, empeno de eixo e problemas magnéticos.

A medição normalmente é realizada com um medidor de velocidade de vibração em seis pontos da carcaça, posições axial, vertical e horizontal, mancal lado acoplado (LA) e oposto ao lado acoplado (LOA), conforme Fig 16.

O maior valor medido deve ser comparado com a Tabela 4, obtida com base na

Norma ISO 10816 – 1, editada em 1995

Page 32: tecnicas de inspeção eletrotecnica

32

Técnicas de Inspeção e Procedimentos de Testes

Fig 16 Pontos de medida de vibração

Tabela 4 Limites de vibração de acordo com a faixa de potência do motor

POTÊNCIA DO MOTOR LIMITE DE VIBRAÇÃO (mm/s) VALOR RMS

Menor que 20 cv 1,8 mm/s

20 cv até 100 cv 2,8 mm/ s

100 cv até 500 cv 4,5 mm/s

Caso algum valor medido supere o valor de tabela, recomenda-se uma análise de vibração para definição da causa do problema.

Durante a operação com o motor desacoplado é importante fazer a medição da

corrente nas três fases.

Caso as correntes estejam desequilibradas, calcular o desequilíbrio:

Page 33: tecnicas de inspeção eletrotecnica

33

Técnicas de Inspeção e Procedimentos de Testes

%100×=MTFDMDDI

onde:

DI = Desequilíbrio de corrente em percentagem.

DMD = Maior desvio de corrente de fase em relação à media das três fases.

MTF = Média das três fases. O limite do desequilíbrio de corrente recomendado pela WEG é: 10 % - para motores de 4, 6 e 8 pólos.

20 % - para motores de 2 pólos.

O desequilíbrio pode ter como causa o próprio desequilíbrio da tensão de

alimentação ou da impedância dos enrolamentos do motor.

Desequilíbrio de corrente ocasiona um sobreaquecimento nos enrolamentos e redução da vida útil do isolamento por degradação térmica.

3.5.3 Acoplamento Motor – Máquina Acionada O processo de acoplamento exige um criterioso procedimento de alinhamento

executado com relógio comparador ou equipamento a laser. O motor deve estar firmemente fixado à base.

O acoplamento deve ser flexível o bastante para compensar o desalinhamento

residual. As partes do acoplamento devem ser montadas de tal forma que deixe uma folga

mínima de 3 mm e que permita o deslocamento (passeio) magnético do eixo, permitindo que o motor trabalhe no centro magnético.

Page 34: tecnicas de inspeção eletrotecnica

34

Técnicas de Inspeção e Procedimentos de Testes

Fig 17 Alinhamento motor - máquina acionada

Fig 18 Carcaça do mancal e folga axial

3.5.4 Operação com o Motor Acoplado

O motor acoplado deve ser girado preferencialmente com carga máxima, quando serão novamente verificados os níveis de vibração, as correntes nas três fases e a existência de

Page 35: tecnicas de inspeção eletrotecnica

35

Técnicas de Inspeção e Procedimentos de Testes

ruídos anormais. Em máquinas de grande porte, pode ser importante uma análise das vibrações no espectro de freqüência.

Para máquinas acopladas valem os seguintes limites de vibração global (Veff em

mm/s). Tabela 5 Valores de vibração para motores com carga

GRUPO DE MÁQUINAS BOM ACEITÁVEL AINDA ACEITÁVEL

NÃO ACEITÁVEL

GRUPO K Máquinas pequenas. Motores até 15 kW fixadas rigidamente com a fundação.

0 a 0,7 mm/s 0,7 a 1,8 mm/s 1,8 a 4,5

mm/s > 4,5 mm/s

GRUPO M Máquinas médias. Motores com potência entre 15 e 75 kW fixadas rigidamente com a fundação.

0 a 1,1 mm/s 1,1 a 2,8 mm/s 2,8 a 7,1

mm/s > 7,1 mm/s

GRUPO G Máquinas maiores. Motores com potência acima de 75 kW sobre fundações rígidas.

0 a 1,8 mm/s 1,8 a 4,5 mm/s 4,5 a 11,0

mm/s > 11,0 mm/s

GRUPO T Máquinas montadas sobre fundações de freqüência manual baixa (apoiadas elasticamente).

0 a 2,8 mm/s 2,8 a 7,0 mm/s 7,0 a 18,0

mm/s > 18,0 mm/s

Nas máquinas de grande porte devem ser verificadas todas as proteções, instrumentos indicadores e dispositivos de controle.

3.5.4.1 Indicadores e Proteção de Vibração

Observar se os valores de vibração com carga estão dentro dos limites de controle, e se estão compatíveis com os níveis operacionais normais da máquina.

3.5.4.2 Indicadores e Proteção Térmica dos Mancais

A temperatura dos mancais, com o motor operando com carga e após atingir o equilíbrio térmico não deve ser superior a 80 ° C. Temperatura superior deve ser investigada.

Page 36: tecnicas de inspeção eletrotecnica

36

Técnicas de Inspeção e Procedimentos de Testes

Fig 19 Sensores de vibração e temperatura de mancal de motor de média tensão

Page 37: tecnicas de inspeção eletrotecnica

37

Técnicas de Inspeção e Procedimentos de Testes

Fig 20 Indicador de temperatura do mancal de motor de média tensão

3.5.4.3 Indicadores e Proteção Térmica dos Enrolamentos

Após o motor atingir o equilíbrio térmico, operando com carga, a temperatura dos enrolamentos não deve ser superior à temperatura de alarme, igual a ΔT+40ºC. Indicação de temperatura superior deve ser investigada.

3.5.4.4 Dispositivos Auxiliares

Observar a correta operação dos dispositivos de lubrificação forçada dos mancais, refrigeração à água do motor e outro circuitos periféricos.

Page 38: tecnicas de inspeção eletrotecnica

38

Técnicas de Inspeção e Procedimentos de Testes

Fig 21 Indicador e pressostatos do sistema de lubrificação dos mancais de motor de média

tensão 3.5.5 Inspeção Sistemática

3.5.5.1 Sistema de Alimentação

• Verificar se o valor da tensão está compatível com a nominal (±10%). • Verificar se as tensões estão equilibradas nas três fases. • As correntes nas três fases estão equilibradas e são inferiores à corrente

nominal? • O painel de alimentação e componentes (inclusive proteção) estão

plenamente operativos? • A linha elétrica e cabo de alimentação estão em perfeitas condições?

3.5.5.2 Motor

• O motor está rigidamente fixado à base? • O aterramento da carcaça está efetivo? Os cabos no interior da caixa de

ligações estão bem isolados, sem sinais de aquecimento e com o isolamento preservado?

• O interior da caixa de ligações está isento de contaminantes ? • A carcaça está limpa, sem acúmulo de materiais que comprometam a troca de

calor? • O sistema de ventilação (ventilador, dutos, etc) está funcionando

adequadamente? • Os sensores e indicadores de vibração e temperatura estão instalados

corretamente, limpos e os condutores e prensa cabos em boas condições? • A vibração total do motor está dentro dos valores aceitáveis por normas e os

valores estão de acordo com as medições anteriores? • Os valores das medições de isolamento estão de acordo com as medições

anteriores? Os valores garantem uma operação segura? • Os valores das medições de resistência ôhmica indicam enrolamentos

equilibrados?

3.6 INSPEÇÃO EM MÁQUINAS COM ESCOVAS DE CARVÃO

Motores de CA de rotor bobinado, motores de corrente contínua e geradores elétricos

utilizam escovas de carvão para transferir energia entre partes móveis e fixas. As máquinas que utilizam escovas exigem da manutenção um cuidado especial por

dois motivos básicos:

Page 39: tecnicas de inspeção eletrotecnica

39

Técnicas de Inspeção e Procedimentos de Testes

• Máquinas com escovas exigem da manutenção um esforço muito grande para manter a comutação em boas condições e o motor com uma grande confiabilidade.

• O pó de escova é um contaminante que, associado com a umidade e óleo, principalmente, reduz muito significativamente a resistência de isolamento dos enrolamentos.

Para que haja uma boa comutação, ou seja, para que o trabalho das escovas sobre o

comutador ou anel coletor seja perfeito, é necessário que haja um depósito de grafite sobre sua superfície, denominado filme ou patina.

A formação de um bom filme exige que a escova seja adequada às características

operacionais da máquina. Além disto são necessárias condições específicas de umidade, temperatura e rugosidade do comutador ou anel coletor.

A patina é uma camada semicondutora, imprescindível a uma boa comutação que,

reduzindo o atrito, reduz o desgaste e geração de pó de escova. Patinas normais tem uma coloração uniforme e uma espessura ideal de 0,3 mm.

Patinas de aparência normal P2, P4 e P6 - são exemplos de patinas com aparência normal, indicando bom funcionamento. A patina apresenta-se lisa, ligeiramente brilhante, coloração uniforme desde o bronzeamento, o marron claro (P2), até o marron escuro, podendo ainda conter tonalidade cinza (P6) azuladas, avermelhadas ou outras. IMPORTANTE É A REGULARIDADE, NÃO A TONALIDADE.

Page 40: tecnicas de inspeção eletrotecnica

40

Técnicas de Inspeção e Procedimentos de Testes

Patinas Anormais P12 - aspecto: Patina raiada com pistas mais ou menos largas. A cor é alternadamente clara ou escura. Não há desgaste no comutador. Causas: Alta umidade, vapores de óleo ou de gases agressivos ambientais, baixa densidade de correntes nas escovas. P14 - aspecto: Patina rasgada, de modo geral como P12, com pistas mais estreitas e ataque ao comutador. Causas: Como P12, porém, a danificação perdura há tempo. P16 - aspecto: Patina gordurosa com manchas aperiódicas, forma e cor desuniforme. Causas: Comutador deformado ou muito sujo.

Patina com manchas de origem mecânica P22 - aspecto: Manchas isoladas ou com espaçamento regular, apresentando-se em uma ou várias zonas do comutador. Causas: Ovalização do comutador, vibração da máquina, oriundas do desbalanceamento do rotor ou de mancais defeituosos. P24 - aspecto: Manchas escuras com bordas definidas, vide também T12 e T14. Causas: Lâmina ou grupo de lâminas defeituosos que provocam o erguimento das escovas e a conseqüente perda de contato. P26 e P28 - aspecto: Lâminas manchadas nas beiradas ou no centro. Causas: Freqüentes dificuldades de comutação ou também comutador mal retificado.

Page 41: tecnicas de inspeção eletrotecnica

41

Técnicas de Inspeção e Procedimentos de Testes

Patina com manchas de origem elétrica P42 - aspecto: Lâminas alternadamente claras e escuras. Causas: Desuniformidade na distribuição de corrente em dois bobinamentos paralelos de laço duplo ou, também, diferença de indutância em caso de duas bobinas por ranhura. P46 - aspecto: Manchas foscas em intervalo duplo - polares. Causas: Geralmente soldagens defeituosas das conexões auxiliares ou nas asas das lâminas.

B2, B6 e B8 - aspecto: Queimaduras no centro ou nas bordas lâminas. Causas: Faíscamento proveniente de dificuldades de comutação. B10 - aspecto: Patina perfurada, formação de pontos claros como densidade e distribuição variados. Causas: Perfuração da patina com conseqüência de excessiva resistência elétrica da mesma.

Page 42: tecnicas de inspeção eletrotecnica

42

Técnicas de Inspeção e Procedimentos de Testes

Manchas no comutador T10 - Manchas escuras reproduzindo à área de contato das escovas. Causas: Prolongadas paradas desenergizadas ou curtas paradas sobre carga. T12 - aspecto: Queimaduras nas bordas de saída e na entrada da lâmina subseqüente. Causas: Indica a existência de lâminas salientes (vide L2). T14 - aspecto: Manchas escuras. Causas: Indica a existência de lâminas em nível mais baixo (L4), ou de zonas planas no comutador. T16 - aspecto: Marcas escuras claramente delimitadas conjuntamente com queimaduras nas bordas das lâminas. Causas: Isolação entre lâminas, mica saliente (vide L6). T18 - aspecto: Manchas escuras. Causas: arestas das lâminas mal ou não chanfradas (vide L8).

Desgaste do comutador R2 - Desgaste Normal: Aspecto de um comutador mostrando o desgaste do metal, pista por pista, com montagem correta, conseqüente de um desgaste normal após um longo período de funcionamento. R4 - Desgaste Anormal: Aspecto de um comutador, mostrando desgaste anormal do metal conseqüente da montagem incorreta das escovas (nº de escovas positivas diferentes do número de escovas negativas sobre a pista), ou qualidade inadequada ou ainda poluições diversas.

Page 43: tecnicas de inspeção eletrotecnica

43

Técnicas de Inspeção e Procedimentos de Testes

Fig 22 Defeitos nas lâminas Uma operação adequada da comutação em máquinas de corrente contínua está

intimamente ligada às condições dos interpolos e ao funcionamento da comutação com a linha neutra ajustada.

Page 44: tecnicas de inspeção eletrotecnica

44

Técnicas de Inspeção e Procedimentos de Testes

Fig 23 Níveis de faiscamento

Exercem influência na comutação também a pressão das escovas (molas), o nível de assentamento (superfície específica da escova em contato com o comutador) das escovas, a carga aplicada ao eixo (porcentagem do conjugado nominal da máquina) e condições ambientais (vapores químicos).

Page 45: tecnicas de inspeção eletrotecnica

45

Técnicas de Inspeção e Procedimentos de Testes

Uma operação ideal de uma máquina com escovas acontece quando:

1. A patina tem aspecto normal. 2. Não existe faiscamento ou existe faiscamento pouco perceptível em situações

de sobrecarga. 3. As escovas têm vida longa e a taxa de formação de pó é mínima. 4. Não existe desgaste perceptível no comutador ou anéis coletores.

3.6.1 Porta Escovas e Escovas

Nem sempre as escovas originais fornecidas pelos fabricantes são as mais indicadas

para uma operação confiável. Os primeiros dias e semanas de operação de uma máquina com anéis devem ser

acompanhados pelo inspetor. Se qualquer uma das quatro condições listadas não estiverem atendidas é necessário atuar rapidamente no desenvolvimento de uma outra qualidade de escova.

Esta ação é realizada em conjunto com um técnico da empresa fabricante de escovas

de carvão, que de posse de informações de velocidade periférica, densidade de corrente na escova, regime de trabalho e condições ambientais, definirá uma qualidade de escova.

A troca de escovas deve ser precedida da remoção da patina formada pela escova

anterior, antes que a nova seja instalada. Após instalada, o desempenho da nova escova deve ser acompanhado intensamente

até a certeza de que a comutação tem um desempenho que propicie uma operação confiável e duradoura da máquina.

Após a instalação de um jogo de escovas é sempre necessário que a superfície das

escovas em contato com o comutador ou anéis coletores tenham a mesma curvatura, garantindo, pelo menos, 80% de área de contato.

Um dos métodos mais utilizados para o assentamento de escovas consiste na

instalação de uma fita de lixa sobre o comutador ou anel coletor, com o dorso abrasivo voltado para o lado externo em contato com as escovas, montadas no interior do porta-escovas.

O rotor com lixa é posto a girar manualmente, atritando a superfície das escovas

contra o abrasivo, até que se atinja o mínimo de 80% de área de contato em cada uma das escovas.

Page 46: tecnicas de inspeção eletrotecnica

46

Técnicas de Inspeção e Procedimentos de Testes

A lixa recomendada deve ter uma granulação em torno de 150. Após o processo o pó de carvão gerado deve ser totalmente aspirado e a limpeza complementada com pano seco.

As escovas devem trabalhar livremente no interior da bainha do conjunto porta-

escovas. Para isto é necessário que as medidas interiores das superfícies das bainhas e as medidas das faces das escovas estejam dentro das tolerâncias permitidas.

Tabela 6 Tolerâncias para “t” e “a” em micrômetros e para “r” em milímetros para escovas de grafite natural e metal-grafite

PORTA-ESCOVA (1) ESCOVA ELÉTRICA (2) FOLGA ESCOVA VALORES NOMINAIS

t a t a

mm Máx. Mín. Dif. Máx. Mín. Dif. Máx. Mín. r

1,6 2

2,5 + 54 + 14 40 - 120 - 60 60 174 74 ± 0,3

3,2 4 5

+ 68 + 20 48 -150 - 70 80 218 90 ± 0,3

6,3 8 10

+ 83 + 25 58 - 170 - 80 90 253 105 ± 0,3

12,5 16 + 102 + 32 70 - 260 - 150 110 362 182 ± 0,5

20 25 + 124 + 40 84 - 290 - 160 130 414 200 ± 0,5

32 40 + 150 + 50 100 - 330 - 170 160 480 220 ± 0,8

50 + 150 + 50 100 - 340 - 180 160 490 230 ± 0,8

64 + 180 + 60 120 - 380 - 190 190 560 250 ± 0,8

80 + 180 + 60 120 - 390 - 200 190 570 260 ± 0,8

100 125 ± 1,0

(1) – As tolerâncias para os porta-escovas são conforme a tolerância E10 da ISO. A verificação dimensional dos porta-escovas é efetuada com o calibrador “passa”, “não passa”.

(2) – As tolerâncias para as escovas são conforme a tolerância b11 da ISO para dimensões > 12,5 mm e c11 da ISO para dimensões < 12,5 mm.

* Tabela extraída da norma ABNT.

Page 47: tecnicas de inspeção eletrotecnica

47

Técnicas de Inspeção e Procedimentos de Testes

Page 48: tecnicas de inspeção eletrotecnica

48

Técnicas de Inspeção e Procedimentos de Testes

Fig 24 Dimensões de escovas elétricas

t = Dimensão da escova em sentido tangencial. a = Dimensão da escova em sentido axial. r = Dimensão da escova em sentido radial.

Escovas e bainhas com dimensões fora das tolerâncias permitidas devem ser eliminadas.

As escovas devem trabalhar com pressões dentro das tolerâncias recomendadas.

Todas as escovas devem ter pressões aproximadamente iguais.

Tabela 7 Recomendações de pressão nas escovas para cada tipo de máquina

TIPOS DE MÁQUINAS PRESSÃO NA ESCOVA

Máquinas estacionárias livres de vibração e ruído 150 a 200 g/cm2

Anéis deslizantes 170 a 250 g/cm2

Motores de tração 250 a 570 g/cm2

Máquinas com alta vibração até 350 g/cm2

Motores fracionários até 450 g/cm2

A medição da pressão das escovas é realizada com um dinamômetro que mede a

força aplicada na escova para se contrapor à força exercida pela mola. Introduz-se uma tira de

Page 49: tecnicas de inspeção eletrotecnica

49

Técnicas de Inspeção e Procedimentos de Testes

papel entre a escova e o comutador, ou anel coletor, para determinar o momento da leitura no instante em que o papel é arrastado, com leve tração exercida pela mão.

Fig 25 Medição de pressão na escova Todas as escovas instaladas em um comutador ou anéis coletores devem ter a mesma

qualidade (granulometria). O comprimento das escovas é um item de inspeção e controle da qualidade da

comutação e da confiabilidade operacional da máquina. Medir o comprimento das escovas, registrar as medições, trocar as escovas quando o comprimento atingir valores mínimos garantidos para a operação e controlar o desgaste das escovas em mm/mês, é importante para garantir uma vida longa com confiabilidade para a máquina. Um aumento do desgaste das escovas sem uma correspondente alteração operacional que o justifique, deve ser motivo de averiguações e de ações para que a qualidade da comutação seja reconstituída.

É muito comum a operação de motores elétricos com carga reduzida e conseqüente

baixa densidade de corrente nas escovas. Na maioria das vezes uma máquina nestas condições não consegue produzir uma boa patina e a má comutação conduz a um filetamento

Fazer a leitura da balança quando a tira de papel puder ser puxada de entre a escova e o coletor

Page 50: tecnicas de inspeção eletrotecnica

50

Técnicas de Inspeção e Procedimentos de Testes

(raiamento) do comutador com comprometimento de sua vida útil, devido à necessidade de usinagens freqüentes.

Uma das soluções, normalmente adotada, para aumentar a densidade de corrente para melhorar a comutação, é a redução do número de escovas.

Toda pista deverá ser percorrida por escovas positivas e negativas, sempre em igual

número. Pista é a faixa que uma escova determina sobre o comutador quando este está em movimento, tendo a largura igual à largura da escova.

Fig 26 Disposições corretas e incorretas de escovas ao longo do comutador

Os porta-escovas devem ficar dispostos paralelamente às lâminas do comutador. A

distância entre a face inferior do porta-escova e o comutador deve estar compreendida entre 1,5 e 2,0 mm.

Page 51: tecnicas de inspeção eletrotecnica

51

Técnicas de Inspeção e Procedimentos de Testes

Fig 27 Distância da bainha ao comutador ou anel coletor

3.6.2 Comutadores e Anéis Coletores

Page 52: tecnicas de inspeção eletrotecnica

52

Técnicas de Inspeção e Procedimentos de Testes

Fig 28 Vista interna de um motor de corrente contínua com comutador em primeiro plano

A inspeção de comutadores e anéis coletores deve compreender: A excentricidade total não deve superar os 20μm e a diferença entre lâminas

adjacentes deve ser inferior a 2μm. A alta excentricidade ocasiona uma dificuldade da mola em manter a escova em

contato com o comutador, conduzindo ao centelhamento e à baixa qualidade da comutação. A solução passa pela usinagem do comutador ou anel coletor.

O controle da altura da mica e seu rebaixamento é um item importante de inspeção.

Quando a mica está alta ou após usinagem, deve-se proceder o rebaixamento da mica com uma ferramenta cortante a uma profundidade de cerca de 1mm a 1,5 mm.

Fig 29 Rebaixamento da mica do comutador

As lâminas de cobre do comutador não podem operar com quinas vivas (ângulo de

90º). As quinas devem ser chanfradas com ângulos variáveis entre 60º e 90º, Fig 31.

Page 53: tecnicas de inspeção eletrotecnica

53

Técnicas de Inspeção e Procedimentos de Testes

Fig 30 Ferramenta para desgaste de cantos

Fig 31 Valores limites do ângulo de chanfro dos cantos A comutação é influenciada pela vibração da máquina. Altos valores de vibração

provocam o trepidamento das escovas, prejudicando a qualidade da comutação.

3.6.3 Interpolos e Linha Neutra A má qualidade na comutação pode estar associada aos defeitos no circuito dos

interpolos e a operação fora da linha neutra. Defeitos nos interpolos podem estar associados a curto-circuito nas bobinas ou erro

de ligação. A verificação do ajuste da linha neutra pode ser realizada da seguinte maneira

(recomendações WEG). Ajuste grosso

• Afrouxar os parafusos que fixam o anel do porta-escovas

• Energizar a armadura (50 a 80% da corrente nominal por no máximo 30s), com o campo desligado. Se a zona neutra estiver desajustada, o rotor irá girar. Gira-se o anel dos porta escovas em sentido contrário ao sentido de giro do rotor.

• A zona neutra estará ajustada, quando o rotor ficar parado.

Page 54: tecnicas de inspeção eletrotecnica

54

Técnicas de Inspeção e Procedimentos de Testes

Ajuste Fino Energizar o campo e a armadura com tensão nominal e corrente nominal nos dois

sentidos de rotação. A diferença de rotação não poderá ser maior que 1%. IMPORTANTE: Se ao girar o anel do porta-escovas para a direita o rotor girar ao contrário, os cabos

dos pólos de comutação que são ligados aos porta-escovas estão invertidos. Ligar corretamente os cabos e proceder ajuste grosso da zona neutra novamente.

Page 55: tecnicas de inspeção eletrotecnica

55

Técnicas de Inspeção e Procedimentos de Testes

3.7 PRINCIPAIS CAUSAS DE FALHAS DE MÁQUINAS ROTATIVAS DE

CORRENTE ALTERNADA

Fig 32 Motor de média tensão de 13,2 kV

3.7.1 Introdução

As falhas em máquinas elétricas rotativas têm como conseqüência, danos aos

enrolamentos. Os principais fatores de falha são os seguintes:

• Especificação incorreta da máquina para as condições reais de operação. • Falhas de fabricação e de reparação das máquinas, tais como na fabricação de

materiais, processos e falhas de mão de obra. • Inexistência, erros de calibração e de especificação dos dispositivos de

proteção. • Falhas ou exageros de operação. • Manutenção inadequada ou inexistente

Os fatores acima estão, em maior ou menor intensidade, presentes na quase totalidade das instalações com máquinas elétricas.

Page 56: tecnicas de inspeção eletrotecnica

56

Técnicas de Inspeção e Procedimentos de Testes

Estes fatores conduzem à condição de falha através de quatro causas principais:

• Rolamentos (mancais) • Contaminação por agentes agressivos • Degradação térmica do material isolante • Abrasão mecânica

3.7.2 Rolamentos (Mancais) Desgaste acentuado nos mancais das máquinas elétricas rotativas pode ocasionar a

fricção entre rotor e estator e sobreaquecimento devido ao atrito. As partes atritadas se apresentarão com aspecto polido ou, em casos extremos

azulados, devido ao aquecimento. A isolação se apresentará danificada pelo calor na área de roçamento, freqüentemente com curto entre espiras e para a massa. Com freqüência, este tipo de defeito provoca, além da queima do enrolamento, danos ao eixo, tampas e pacote magnético, levando muitas vezes ao sucateamento da máquina.

3.7.3 Contaminação por Agentes Agressivos Nenhuma máquina, por mais estanque que seja, está livre de contaminantes em seu

interior. Óleo, poeira, umidade, vapores químicos, etc, penetram no interior da máquina

através de lubrificações mal conduzidas, fendas na carcaça, ou simplesmente através do ar ambiente, no processo de contração e dilatação do ar, em função das variações de temperatura e pressão no interior da máquina.

Em geral a atmosfera industrial está carregada destes contaminantes, em especial na

faixa litorânea, onde a umidade relativa do ar é muito elevada. Estes contaminantes penetram no sistema isolante, agredindo física e quimicamente o

material, formando caminhos de menor resistência de isolamento, elevando as correntes de fuga e as perdas dielétricas, até a falha do isolamento e da máquina.

Várias medidas podem ser adotadas para impedir ou retardar este processo de

degradação do isolamento: • Utilização de máquinas totalmente fechadas. • Especificação detalhada dos contaminantes presentes, de forma que o fabricante ou reparador possa desenvolver uma impregnação que resista a estes contaminantes.

Page 57: tecnicas de inspeção eletrotecnica

57

Técnicas de Inspeção e Procedimentos de Testes

• Acompanhamento da evolução da contaminação do isolamento através das medições sistemáticas de resistência de isolamento. O índice de polarização (IP) é de valor inestimável e rejuvenescimento dos enrolamentos quando a contaminação atingir níveis que possam comprometer o isolamento do motor.

3.7.4 Degradação Térmica

Os materiais isolantes são agrupados em classes térmicas estabelecidas em norma,

que são basicamente, as seguintes: CLASSE A – 105OC CLASSE E - 120 OC CLASSE B - 130 OC CLASSE F - 155 OC CLASSE H - 180 OC CLASSE C - 220 OC A quase totalidade das máquinas modernas utiliza materiais isolantes das classes

“B”, “F” e “H”. Um material isolante, classificado dentro de uma classe térmica, é capaz de suportar

a temperatura limite da classe, por um tempo definido, sem que as suas propriedades isolantes fiquem prejudicadas.

Quando este isolante é submetido a temperaturas superiores a de sua classe térmica,

os efeitos da deterioração de suas propriedades dielétricas e mecânicas far-se-ão sentir num período de tempo menor.

Os efeitos da temperatura sobre os isolantes são função do tempo de exposição ao

calor. A figura abaixo mostra o tempo de vida de um isolante em função da temperatura.

Vida Útil (horas)

Page 58: tecnicas de inspeção eletrotecnica

58

Técnicas de Inspeção e Procedimentos de Testes

Fig 33 Redução da vida útil do isolante em função da temperatura Em geral, a cada 10 graus de sobre-temperatura a vida útil do isolante fica reduzida à

metade. Durante o funcionamento, as máquinas elétricas liberam calor que é transferido para

o meio ambiente através da carcaça. Os motores são projetados para, em condições normais, terem uma elevação de

temperatura, no ponto mais quente, de um certo valor acima da temperatura ambiente (40 OC pela ABNT), conhecido como variação de temperatura da máquina.

Escolhe-se então a classe térmica do material, igual ou superior à temperatura do

ponto mais quente da máquina. Em condições normais de operação os materiais isolantes vão ficar submetidos a uma

temperatura inferior à de sua classe térmica, de forma que a deterioração térmica se dará em período de tempo muito longo, da ordem de anos e até décadas.

Entretanto, algumas condições anormais de operação dão origem a um aumento das

perdas da máquina ou à redução da dissipação do calor gerado, aumentando a temperatura no enrolamento e a redução de sua vida útil.

A manutenção elétrica deve conhecer estas condições, identificá-las através de ações

preventivas, corrigindo-as antes que levem as máquinas a falhas de isolamento.

3.7.4.1 Falta de Fase (Operação em Duas Fases)

Temperatura (Cº)

Page 59: tecnicas de inspeção eletrotecnica

59

Técnicas de Inspeção e Procedimentos de Testes

Se uma fase de um motor elétrico trifásico, em funcionamento, for interrompida, o motor tentará manter-se em funcionamento, mesmo com torque reduzido, em função da alimentação monofásica.

Se o conjugado máximo do motor for superior ao conjugado resistente da carga, o

motor continuará funcionando, caso contrário, irá parar. Se o motor estiver parado e for energizado com duas fases, não rodará, por falta de

conjugado de partida. Em todas estas condições, o motor estará submetido a condições de sobretemperatura

em função das altas correntes circulando nos enrolamentos, salvo casos especiais em que o conjugado da carga é tão baixo que as correntes absorvidas pelo motor permanecem inferiores às correntes nominais.

Os motores deverão estar protegidos por relés térmicos com características de

proteção contra falta de fase ou dispositivos sensores de temperatura no enrolamento do motor (termistores ou protetores térmicos), ou ainda relés de seqüência negativa.

A identificação de um isolamento queimado por sobretemperatura em função de falta

de fase é muito fácil:

• Motores ligados em estrela: dois grupos queimados, seguidos de um em bom estado e assim sucessivamente.

• Motores ligados em triângulo: um grupo queimado, seguido de dois outros

em bom estado e assim sucessivamente.

Page 60: tecnicas de inspeção eletrotecnica

60

Técnicas de Inspeção e Procedimentos de Testes

Fig 34 Danos causados ao enrolamento

3.7.4.2 Sobrecarga Mecânica

É uma condição anormal em que o conjugado resistente da carga é maior que o

conjugado nominal do motor, continuamente, ou em ciclos, de forma que as temperaturas do enrolamento excedem aquelas estabelecidas em projeto.

Para evitar que essas sobrecargas levem à redução da vida útil e à queima prematura

do motor, os relés térmicos (ou os protetores no enrolamento) devem estar bem ajustados e aferidos.

Toda operação dos dispositivos de proteção deve ser acompanhada através de

medições de correntes absorvidas pelo motor e comparadas com a corrente nominal. Corrente de operação acima da nominal pode ser uma evidência de sobrecarga mecânica.

A operação de motores com tensões inferiores à nominal pode ocasionar

sobrecorrentes capazes de provocar sobretemperaturas no motor. A queima por sobretemperatura é característica e o enrolamento se apresenta com os

condutores uniformemente enegrecidos e a isolação quebradiça, podendo ter evoluído para curto entre espiras, fase-terra ou fase-fase em função da falha de isolamento, Fig 35.

Page 61: tecnicas de inspeção eletrotecnica

61

Técnicas de Inspeção e Procedimentos de Testes

Fig 35 Queima por sobrecarga

3.7.4.3 Rotor Travado

É um caso particular de sobretemperatura que acontece quando da partida de um

motor, por um tempo prolongado, em razão do travamento da máquina acionada, do próprio motor ou ainda em condições de falta de fase ou tensões reduzidas, etc.

A partida de um motor de indução, rotor de gaiola, é muito delicada em função da

alta corrente – as perdas são proporcionais ao quadrado da corrente (I2R) – e da precariedade da ventilação, em função das baixas velocidades.

Os tempos máximos permissíveis de rotor travado não passam de 20 segundos para

os motores mais modernos. Em caso de rotor travado, o relé térmico e os protetores de temperatura no

enrolamento devem desligar o motor antes que o isolamento venha a falhar. Os dispositivos de proteção devem estar aferidos e ajustados para operar antes da

degradação e falha do isolamento. O aspecto visual de um enrolamento de um motor queimado por rotor travado é

similar ao da queima por sobrecarga, Fig 36.

Page 62: tecnicas de inspeção eletrotecnica

62

Técnicas de Inspeção e Procedimentos de Testes

Fig 36 Queima por rotor travado

3.7.4.4 Temperatura Ambiente Acima de 40 OC

Motores operando com carga próxima à nominal, em locais com temperatura

ambiente superiores a 40 OC, podem estar com o isolamento submetido a sobretemperatura. Entretanto, nestes casos, o relé térmico não será capaz de proteger adequadamente o

motor. O aspecto do enrolamento queimado assemelha-se ao dos casos anteriores. Os motores não especificados para esta condição devem ter o seu sistema isolante

trocado para uma classe de maior temperatura. Os motores novos devem ser adquiridos com informações de que a temperatura

ambiente excede os 40 OC.

3.7.4.5 Partidas Sucessivas

Partidas sucessivas podem levar os enrolamentos a temperaturas muito altas,

comprometendo a vida dos materiais isolantes.

Page 63: tecnicas de inspeção eletrotecnica

63

Técnicas de Inspeção e Procedimentos de Testes

Os intervalos entre partidas devem ser suficientemente longos para permitir a

dissipação do calor gerado durante a aceleração do motor. A norma NBR 7094 determina um regime de partida mínimo que os motores devem

suportar: • A frio, duas partidas sucessivas, com retorno ao repouso entre as partidas. • A quente, uma partida após ter funcionado nas condições nominais. • Uma partida suplementar será permitida somente se a temperatura do motor,

antes da mesma, não exceder à temperatura de equilíbrio térmico sob carga nominal.

O número máximo de partidas permissível para um motor, por unidade de tempo, é

difícil de ser calculado, em função do número de variáveis envolvidas: conjugado líquido de aceleração, potência requerida do motor e momento de inércia do motor e da carga.

Na especificação de motores para acionamento de cargas que requeiram um número

elevado de partidas, reversões, com ou sem frenagem, etc, deve ser indicado a seqüência de funcionamento do motor e as potências exigidas pela carga ao longo do ciclo de trabalho.

3.7.4.6 Roçamento Rotor-Estator

Desgastes acentuados nos rolamentos podem ocasionar a fricção entre rotor e estator

e sobreaquecimento, devido ao atrito. As partes atritadas se apresentarão com aspecto polido ou, em casos extremos,

azulados, devido ao aquecimento. A isolação se apresentará danificada pelo calor na área de fricção, freqüentemente com curto entre espiras e para a massa.

A audição sistemática do ruído dos rolamentos com estetoscópio ou a medição de

vibrações nos mancais das máquinas podem reduzir a zero a ocorrência deste tipo de falha.

3.7.4.7 Tensões Anormais

Os motores de indução devem funcionar satisfatoriamente bem, dentro das condições

de potência nominal, se as tensões elétricas em seus terminais não diferirem da tensão nominal, em mais ou menos 10%, com freqüência nominal.

Um motor operando próximo a potência nominal, com tensões fora do limite de 10%,

pode estar com o seu isolamento submetido à sobretemperatura.

Page 64: tecnicas de inspeção eletrotecnica

64

Técnicas de Inspeção e Procedimentos de Testes

Em geral, as tensões nos terminais dos motores são inferiores às nominais. Na

maioria dos casos isto se deve à especificação de transformadores com tensão secundária igual à nominal dos motores. As quedas de tensões no próprio transformador e nos cabos condutores reduzem a tensão a valores substancialmente inferiores às tensões de placa dos motores.

As tensões desbalanceadas provocam a circulação de correntes desiguais nos

enrolamentos. O efeito da tensão desbalanceada em motores trifásicos de indução é equivalente ao

aparecimento de uma tensão de seqüência negativa com sentido de rotação oposto ao da tensão balanceada. Esta tensão de seqüência negativa produz um fluxo rotativo contrário à rotação do motor, acarretando altas temperaturas nos enrolamentos.

O percentual de desbalanceamento da tensão é calculado pela fórmula:

médiaTensãorededatensãodamáxDesvio .% =

A percentagem de desbalanceamento não deve ser superior a 1% durante períodos

prolongados, ou 1,5% durante curtos períodos. Um desbalanceamento de tensão de 2% ocasionará uma elevação de temperatura na

fase de maior corrente em torno de 8%. Em geral, a elevação de temperatura média do enrolamento, percentualmente, é um pouco menor que duas vezes o quadrado do desbalanceamento percentual.

A manutenção deve mapear, através de medições e registros, as tensões em todos os

barramentos dos Centros de Controle de Motores e nos terminais dos motores mais próximos e distantes destes CCM’s, corrigindo os desbalanceamentos e os níveis de tensões muito diferentes do nominal.

3.7.5 Abrasão Mecânica

A abrasão mecânica ou vibração do enrolamento é causada pela movimentação

relativa entre espiras de uma bobina, entre bobinas, entre bobinas e núcleo, bobinas e estecas e bobinas e amarrações.

As forças envolvidas são de natureza eletrodinâmica e proporcionais ao quadrado da

corrente.

Page 65: tecnicas de inspeção eletrotecnica

65

Técnicas de Inspeção e Procedimentos de Testes

A vibração tem uma freqüência igual ao dobro da freqüência da rede, ou seja, 120 hertz.

Durante a partida dos motores, quando a intensidade da corrente é algumas vezes

superior à corrente nominal, a intensidade das forças pode superar em 60 vezes a força em condições de regime.

Nos motores que operam com partidas freqüentes, deve-se tomar cuidados especiais

com a rigidez do enrolamento. Quando um motor em que os condutores estão soltos, entra em funcionamento, as

bobinas e os condutores, individualmente, vibram no interior e nas cabeças de bobinas, desenvolvendo-se uma abrasão, por fricção mecânica, do material isolante.

À medida que ocorre a movimentação e a abrasão, as folgas aumentam, permitindo

um maior grau de liberdade dos condutores, aumentando a amplitude de vibração. A abrasão provoca a fadiga do material isolante dos condutores, do isolamento das ranhuras e das cabeças de bobinas, nas regiões das amarrações.

Este tipo de falha ocorre tanto em motores de fio redondo, como nos de fio

retangular. Para evitar falhas deste tipo, deve-se tomar muito cuidado com a amarração das

bobinas, enchimento das ranhuras e estecagem, escolha do verniz a ser empregado e do processo de cura do impregnante.

As falhas produzidas por abrasão podem conduzir a curto circuitos entre espiras,

fase-fase e fase à massa.

Page 66: tecnicas de inspeção eletrotecnica

66

Técnicas de Inspeção e Procedimentos de Testes

4 TRANSFORMADORES DE FORÇA

A vida útil de um transformador é a vida do isolamento sólido, normalmente papel

kraft, de natureza celulósica. Os três grandes inimigos do sistema de isolação de um transformador são a temperatura, a água e o oxigênio.

O tanque de um transformador imerso em óleo mineral isolante é um lugar onde

reações químicas são iniciadas tão logo o transformador é cheio com óleo. O processo de oxidação do óleo tem início quando o oxigênio entra em combinação

com os hidrocarbonetos instáveis, na presença dos catalizadores existentes no transformador (cobre, ferro, água, etc). O oxigênio existe livre no ar presente no interior do transformador e dissolvido no óleo isolante.

A degradação da celulose é fonte de oxigênio e as reações no interior do

transformador tem como subproduto a água. O óleo possui inibidores naturais, compostos orgânicos de enxofre, termicamente

estáveis. Além disto são acrescentados inibidores sintéticos, tais como o diterciário-butilparacresol (DBCT). O calor é o principal acelerador das reações de oxidação, sendo um fator determinante no tempo de vida útil e nos cuidados de manutenção que se fazem necessários.

Page 67: tecnicas de inspeção eletrotecnica

67

Técnicas de Inspeção e Procedimentos de Testes

Fig 37 Transformador de potência 4.1 ANÁLISE FÍSICO-QUÍMICA DO ÓLEO ISOLANTE

O óleo isolante é o meio refrigerante com características isolantes do transformador e

imerge todo o enrolamento sólido, núcleo magnético e outras partes internas do transformador.

Os produtos das reações químicas e da deterioração do óleo isolante e do isolamento

sólido estão total ou parcialmente diluídos no fluido isolante. A análise físico-química do óleo isolante é um conjunto de testes recomendados para

o acompanhamento das condições dos materiais isolantes do transformador: Os testes mais comumente utilizados para a avaliação do estado operacional de um

transformador são os seguintes: Rigidez dielétrica – ABNT/IBPM-530, ASTM(D877)80 e ASTM(D1816)79 Umidade – ASTM(D1535)79 Fator de potência – ASTM(D924)81 Número de neutralização – ABNT/IBP MB-101, ASTM(D974) e ASTM(D1534)78 Tensão interfacial – ABNT/IBP MB320 e ASTM(D-971)77 As análises físico-química, normalmente são realizadas com um intervalo variável de

1 a 2 anos. A observação criteriosa dos valores dos testes físico-químicos indica a contaminação

do óleo e do isolamento sólido com a umidade e a deterioração do óleo mineral isolante. A água pode existir no óleo sob a forma dissolvida, não dissolvida (em suspensão) ou

livre (depositada). A quantidade de água em solução no óleo é função da temperatura e do grau de

refinação do óleo. Quando o conteúdo de umidade no interior do transformador é reduzido, as pequenas

quantidades de umidade ficam impregnando o papel isolante e dissolvidas no óleo mineral isolante.

Quando o conteúdo de umidade aumenta, o excedente é absorvido pelo papel isolante

e se dissolve no óleo isolante até atingir o limite de solubilidade no óleo (função de temperatura). A umidade excedente passará para a forma livre, sendo retido pelo papel isolante.

Page 68: tecnicas de inspeção eletrotecnica

68

Técnicas de Inspeção e Procedimentos de Testes

Rigidez dielétrica – A água livre em suspensão no óleo e as partículas sólidas em suspensão (fibras celulósicas, carvão, poeira, etc) diminuem acentuadamente sua rigidez dielétrica. A água dissolvida no óleo afeta muito pouco sua rigidez dielétrica. O método D-877 da ASTM, eletrodos de disco de 1 polegada, afastadas de 0,1 polegada é menos sensível que o método ASTM D-1816 que usa eletrodos esféricos.

A rigidez dielétrica determina a capacidade de uma amostra de óleo resistir à tensão

elétrica sob condições especificadas expressa em kV. Conteúdo de umidade – A quantidade de umidade contida no óleo isolante é um

fator importante para se inferir a quantidade de água presente no interior do transformador. A determinação do conteúdo de umidade no óleo isolante é realizada através da

titulação de uma amostra do líquido com o reagente Karl Fisher. O método ASTM D-1533 é utilizado para a determinação do conteúdo de umidade,

expresso em ppm (partes por milhão). A água contida no interior do transformador pode ser proveniente de:

• Resíduo da secagem do papel isolante e do óleo nos processos de fabricação e manutenção.

• Admissão de ar úmido através da sílica-gel do desidratador de ar. • Perda de estanqueidade através das borrachas de vedação e micro-fissuras na

carcaça. • Subproduto da deterioração do isolamento sólido e das reações de oxidação

do óleo isolante. Portanto, parte da água existente no transformador é gerada no interior do próprio

tanque. Os valores limites sugeridos para resultados de testes de óleo envelhecido em

serviço, por classe de tensão para os ensaios de rigidez dielétrica, conteúdo de umidade e perdas dielétricas são expressos na Tabela 8:

Tabela 8 Limites de rigidez dielétrica

Classe de tensão 69kV e

menor

Entre 69kV

e 288kV

345 kV e

acima

Método ASTM

de testes

Rigidez dielétrica 60Hz kV mínimo 26 26 26 D-877

Rigidez dielétrica kV mínimo separação de eletrodos 10,16mm(0,40”)

23 26 26 D-1816

Teor de água ppm máximo 35 25 20 D-1533

Perdas dielétricas 60Hz, 25oC máximo 0,65 0,39 0,31 D-924

Page 69: tecnicas de inspeção eletrotecnica

69

Técnicas de Inspeção e Procedimentos de Testes

Transformadores cujos óleos apresentam valores fora dos limites recomendados

devem ser tratados através da desidratação do óleo isolante e, caso necessário, da secagem da parte ativa.

A desidratação do óleo isolante é processada através de unidade termovácuo. Quando

o papel isolante contiver umidade em quantidade apreciável, deverá ser procedida a secagem da parte ativa.

A decisão da secagem da parte ativa pode ser realizada através da determinação da

umidade relativa sobre o isolamento (URSI). Outros parâmetros indicativos da necessidade de secagem da parte ativa: -Teor de umidade de 50 ppm no óleo recolhido no topo do transformador. - Rigidez dielétrica (ASTM D-877) de 22kV ou menor. Após o tratamento de secagem do óleo isolante e/ou isolamento sólido e após uma

semana, para a uniformização das condições, deve ser recolhida amostra de óleo para análise e os valores devem atender a Tabela 9:

Tabela 9 Condições limites para óleo isolante tratado

Ensaio Norma Valores limites

Teor de umidade ASTM D-1533 Menor que 10 ppm

Rigidez dielétrica ASTM D-877 Maior que 45kV

Perdas dielétricas ASTM D-924 Menor que 0,1%

Perdas dielétricas – Um óleo novo, em boas condições, deve ter um fator de potência igual a 0,05% ou menor a 20oC.

Em operação o fator de potência aumenta, podendo chegar a 0,5% à temperatura de

20oC, sem ser uma indicação de que uma investigação ou tratamento seja necessário. O fator de potência é expresso em “%” e o teste ASTM D-924 é adequado para testes

de rotina. O óleo mineral isolante é constituído de uma mistura de hidrocarbonetos em sua

maioria, e de não hidrocarbonetos em pequenas proporções. O processo de oxidação do óleo tem início quando o oxigênio entra em combinação

com os hidrocarbonetos instáveis, na presença dos catalizadores existentes no transformador (cobre, ferro, etc).

Page 70: tecnicas de inspeção eletrotecnica

70

Técnicas de Inspeção e Procedimentos de Testes

A oxidação do óleo tem como principal catalizador a água e é acelerado pelo calor. O processo de oxidação do óleo se desenvolve em dois ciclos:

• Formação de produtos solúveis da deterioração do óleo, principalmente ácidos; • Transformação dos produtos solúveis em produtos insolúveis, que compõem o sedimento.

O sedimento se deposita sobre a isolação sólida, núcleo e paredes do tanque e obstrui

as passagens de óleo. A dissipação de calor é prejudicada, aumentando a temperatura de operação do

transformador, acelerando as reações de oxidação. Tensão interfacial – A tensão interfacial mede a força necessária para que um anel

plano, de fio de platina, possa vencer a tensão existente entre a superfície da amostra de óleo e água. Uma diminuição da tensão superficial é o primeiro indicador do início da deterioração do óleo.

O método de ensaio para a determinação da tensão interfacial é o ASTM/D-971 e a

unidade utilizada é dina/cm Número de neutralização – ou acidez de um óleo, mede a quantidade de produto

básico, hidróxido de potássio (KOH), necessário para neutralizar uma amostra de óleo, expresso em mgKOH/g.

Tabela 10 Valores limites para os resultados dos testes de acidez e tensão interfacial

Classe de tensão 69kV e menor Entre 69kV e

288kV

Acima de

345kV

Método ASTM de

testes

Tensão interfacial mínimo(dina/cm)

24 26 30 D-971

Acidez máximo(mgKOH/g)

0,20 0,20 0,10 D-974

Tabela 11 Classificação do óleo isolante

Classificação do óleo

Acidez (mgKOH/g)

Tensão interfacial (dina/cm)

Tensão interfacial / Acidez

Cor

Bom 0,03 – 0,10 30 – 45 300 – 1500 Amarelo pálido

Page 71: tecnicas de inspeção eletrotecnica

71

Técnicas de Inspeção e Procedimentos de Testes

Regular 0,05 – 0,10 27 – 30 270 – 600 Amarelo Duvidoso 0,11 – 0,15 24 – 27 160 – 245 Amarelo brilhante

Ruim 0,16 – 0,40 18 – 24 45 – 150 Âmbar Muito ruim 0,41 – 0,65 14 – 18 22 – 44 Marrom Desastroso 0,65 – 1,5 9 – 13,9 6 - 21 Marrom escuro

Tabela 12 Dados históricos obtidos pela ASTM durante onze anos de testes em 500 transformadores e

que estabelecem a correlação entre o número de neutralização, a tensão interfacial e a formação de

sedimento em transformadores com óleo mineral isolante.

Número de neutralização e formação de sedimento

Número de neutralização

(mgKOH/g)

Percentagem de 500 Número de unidades nas quais houve formação de

sedimentos De 0,00 a 0,10 0 0

De 0,11 a 0,20 38 190

De 0,21 a 0,60 72 360

De 0,60 para cima 100 500

Tensão interfacial e formação de sedimento

Abaixo de 14 100 500

De 14 a 16 85 425

De 16 a 18 69 345

De 18 a 20 35 175

De 20 a 22 33 165

De 22 a 24 30 150

Acima de 24 0 0

O óleo deteriorado deve ser regenerado ou trocado por óleo novo. Na regeneração, o

óleo é tratado quimicamente, passando depois em unidade termovácuo. Nesses casos o núcleo e o tanque do transformador devem ser lavados para remoção

dos produtos ácidos. O óleo regenerado deve apresentar pelo menos, as seguintes características, após

repouso e estabilização.

Tabela 13 Limites para óleo regenerado

Page 72: tecnicas de inspeção eletrotecnica

72

Técnicas de Inspeção e Procedimentos de Testes

Ensaio Norma Valores limites Teor de umidade ASTM D-1533 Menor que 10 ppm Rigidez dielétrica ASTM D-877 Maior que 45 kV

Acidez ASTM D-974 Menor que 0,05mgKOH/g Tensão interfacial ASTM D-971 Maior que 40 dina/cm Perdas dielétricas ASTM D-924 Menor que 0,05%

4.2 CROMATOGRAFIA DOS GASES DISSOLVIDOS NO ÓLEO ISOLANTE

O óleo contém gases dissolvidos, entre eles, monóxido de carbono (CO), hidrogênio

(H2), metano (CH4), etano (C2H6), etileno (C2H4) e acetileno (C2H2), que são combustíveis. Os não combustíveis são o oxigênio (O2), nitrogênio (N2) e dióxido de carbono (CO2).

Os gases oxigênio e nitrogênio provêm do ar em contato com o óleo. A deterioração

normal da isolação sólida forma principalmente o dióxido e o monóxido de carbono. O sobreaquecimento do óleo isolante origina os gases metano, etano, etileno e CO2.

À temperaturas mais elevadas, forma principalmente hidrogênio e acetileno. A cromatografia dos gases dissolvidos no óleo é a técnica destinada a detectar falhas

incipientes no transformador, através da determinação da concentração dos gases na amostra. As normas NBR 7070 – Guia para amostragem de gases e óleo em transformadores

e análise dos gases livres e dissolvidos e NBR 7274 – Interpretação da análise dos gases de transformadores em serviço, são referência sobre o assunto.

A análise das concentrações de gases são referenciadas aos valores limites de cada

gás, relações características das concentrações e à taxa de geração do gás.

A avaliação da taxa de formação dos gases no transformador é um valioso meio para acompanhar a evolução de uma falha.

A taxa de geração de um gás é a quantidade de gás em volume gerado ao longo do

dia. Nos transformadores selados, sem colchão de gás, os gases gerados ficam dissolvidos

no óleo.

Page 73: tecnicas de inspeção eletrotecnica

73

Técnicas de Inspeção e Procedimentos de Testes

Nos transformadores selados com colchão de gás, parte dos gases gerados fica dissolvido no óleo e a outra parte irá para o colchão de gás.

Nos transformadores com conservador de óleo, parte dos gases gerados se perde para

a atmosfera. A maior dificuldade para a determinação da taxa de geração é a avaliação da taxa de perdas.

Page 74: tecnicas de inspeção eletrotecnica

74

Am

ostra

gem

de

rotin

a A

nális

e do

s gas

es. C

ompa

raçã

o co

m

limite

s de

sens

ibili

dade

Con

cent

raçã

o do

gás

ultr

apas

sa o

s lim

ites.

Com

para

r co

m o

pon

to d

e re

ferê

ncia

e

calc

ular

as r

elaç

ões

Con

cent

raçã

o de

s in

ferio

r ao

lim

ite.

Falh

a el

étric

a in

dica

ndo

os

caso

s B

,C,D

,E.

Com

para

r com

val

ores

nor

mai

s

Falh

a té

rmic

a in

dica

ndo

os

caso

s F,

G,H

,I.

Com

para

r com

os v

alor

es n

orm

ais

Toda

s as

re

laçõ

es

são

norm

ais.

Cas

o A

Todo

s os

ga

ses

infe

riore

s ao

s va

lore

s nor

mai

s To

dos

os g

ases

infe

riore

s ao

s va

lore

s nor

mai

s

Um

ou

m

ais

gase

s ac

ima

dos

valo

res

norm

ais:

1)

C

ompa

rar c

om a

mos

tra a

nter

ior

2)

Am

ostra

gem

de

conf

irmaç

ão

Um

ou

m

ais

gase

s ac

ima

dos

valo

res

norm

ais

1)

Com

para

r com

am

ostra

ant

erio

r 2)

A

mos

trage

m d

e co

nfirm

ação

Arm

azen

ar o

s dad

os

Prod

ução

ráp

ida

de g

ás (

incr

emen

to

méd

io >

10%

ao

mês

) crít

ico

Açã

o im

edia

ta

(incl

usiv

e ou

tros

mét

odos

fís

icos

par

a in

vest

igar

a

loca

lizaç

ão d

a fa

lha)

Prod

ução

pida

de

s (in

crem

ento

m

édio

< 1

0% a

o m

ês) s

ério

Ef

etua

r am

ostra

gens

fre

qüen

tes,

aval

iar

o te

mpo

par

a sa

tura

r o

óleo

. Ef

etua

r am

ostra

gens

lo

caliz

adas

pa

ra

iden

tific

ação

do

loca

l da

falh

a.

Prod

ução

pida

de

s (in

crem

ento

m

édio

> 1

0% a

o m

ês) s

ério

Ef

etua

r am

ostra

gens

fre

qüen

tes,

aval

iar

o te

mpo

par

a sa

tura

r o

óleo

. Ef

etua

r am

ostra

gens

lo

caliz

adas

pa

ra

iden

tific

ação

do

loca

l da

falh

a.

Insp

eção

e re

paro

Falh

a no

com

utad

or

Insp

eção

e re

paro

Fa

lha

no ta

nque

A

valia

r os

ser

viço

s de

in

speç

ão e

repa

ro

Avi

sar

os

serv

iços

de

insp

eção

e re

paro

Des

gase

ifica

r re

gula

rmen

te

Lim

itaçã

o de

car

ga

Insp

eção

e

repa

ro

Con

side

rar

Prod

ução

ráp

ida

de g

ás (

incr

emen

to

méd

io <

10%

ao

mês

) ins

atis

fató

rio

Efet

uar

amos

trage

ns

freq

üent

es,

aval

iar

o te

mpo

par

a sa

tura

r o

óleo

. Ef

etua

r am

ostra

gens

loc

aliz

adas

par

a id

entif

icaç

ão d

o lo

cal d

a fa

lha.

Dia

gram

a de

blo

cos –

NB

R 7

274/

1982

Page 75: tecnicas de inspeção eletrotecnica

75

Tabe

la 1

4 Fa

lhas

car

acte

rístic

as -

NB

R-7

274/

82

Rel

açõe

s C

aso

Falh

a ca

ract

erís

tica

42

22

HC

HC

24

HCH

6

2

42

HC

HC

Ex

empl

os tí

pico

s

A

Sem

falh

a 0

0 0

Enve

lhec

imen

to n

orm

al

B

Des

carg

as

parc

iais

de

pe

quen

a de

nsid

ade

de e

nerg

ia

0 1

0 D

esca

rgas

na

s bo

lhas

de

s re

sulta

ntes

de

im

preg

naçã

o in

com

plet

a, d

e su

pers

atur

ação

ou

de a

lta

umid

ade

C

Des

carg

as

parc

iais

de

al

ta

dens

idad

e de

ene

rgia

1

1 0

Com

o ac

ima,

por

ém p

rovo

cand

o ar

vore

jam

ento

ou

perf

uraç

ão d

a is

olaç

ão só

lida

D

Des

carg

as

de

ener

gia

redu

zida

1-

2 0

1-2

Cen

telh

amen

to

cont

ínuo

no

ól

eo

devi

do

a m

ás

cone

xões

de

di

fere

ntes

po

tenc

iais

ou

po

tenc

iais

flu

tuan

tes.

Rup

tura

die

létri

ca d

o ól

eo e

ntre

mat

eria

is

sólid

os

E D

esca

rgas

de

alta

ene

rgia

1

0 2

Des

carg

as d

e po

tênc

ia.

Arc

o. R

uptu

ra d

ielé

trica

do

óleo

ent

re e

spira

s ou

entre

esp

iras e

mas

sa. C

orre

nte

de

inte

rrup

ção

no se

leto

r

F Fa

lha

térm

ica

de

baix

a te

mpe

ratu

ra <

150

ºC

0 0

1 A

quec

imen

to g

ener

aliz

ado

de c

ondu

tor i

sola

do

G

Falh

a té

rmic

a de

ba

ixa

tem

pera

tura

150

ºC –

300

ºC

0 2

0

H

Falh

a té

rmic

a de

m

édia

te

mpe

ratu

ra 3

00 ºC

– 7

00ºC

0

2 1

I Fa

lha

térm

ica

de a

lta

tem

pera

tura

> 7

00ºC

0

2 2

Sobr

eaqu

ecim

ento

lo

cal

do

núcl

eo

devi

do

à co

ncen

traçõ

es d

e flu

xo. P

onto

s qu

ente

s de

tem

pera

tura

cr

esce

nte,

de

sde

pequ

enos

po

ntos

no

cleo

, so

brea

quec

imen

to n

o co

bre

devi

do a

cor

rent

es d

e Fo

ucau

lt, m

aus

cont

atos

(fo

rmaç

ão d

e ca

rbon

o po

r pi

rólis

e) a

té p

onto

s qu

ente

s de

vido

a c

orre

ntes

de

circ

ulaç

ão e

ntre

núc

leo

e ca

rcaç

a.

Page 76: tecnicas de inspeção eletrotecnica

76

Técnicas de Inspeção e Procedimentos de Testes

Tabela 15 Relações entre os gases (NBR-7274/82)

Código Relação entre os gases

característicos (R) 42

22

HCHC

2

4

HCH

62

42

HCHC

0,1 > R 0 1 0 0,1 < R < 1 1 0 0

1< R <3 1 2 1 3 < R 2 2 2

Para efeito de codificação, as relações com denominador igual a zero são consideradas iguais a zero.

Tabela 16 Valores normais e anormais de gases dissolvidos no óleo – California State University -

Sacramento Gás Gases dissolvidos ppm (vol/vol) Interpretação

Normal Anormal H2 <150 >1.000 Arco,corona

CH4 <25 >80 Centelhamento C2H6 <10 >35 Sobreaquecimento local C2H4 <20 >100 Sobreaquecimento severo CO <500 >100 Sobrecarga severa CO2 <10.000 >15.000 Sobrecarga severa

4.3 RELAÇÃO DE TRANSFORMAÇÃO

O teste de relação de transformação é um recurso valioso para verificação de espiras

em curto-circuito, de falhas em comutadores de derivações, em carga e em vazio. A variação dos valores medidos em relação aos da placa de identificação do transformador não deve ser maior que ±0,5%. Para a medição da relação, utiliza-se equipamento TTR (Transformer Turn-Ratio).

A figura abaixo identifica as ligações do TTR para medição da relação de

transformação para as várias ligações do transformador.

Page 77: tecnicas de inspeção eletrotecnica

77

Técnicas de Inspeção e Procedimentos de Testes

Fig 38 Esquemas de ligações para teste de relação de transformação

Page 78: tecnicas de inspeção eletrotecnica

78

Técnicas de Inspeção e Procedimentos de Testes

Fig 39 TTR (Transformer Turn Ratio)

4.4 FATOR DE POTÊNCIA DO ISOLAMENTO

Um dielétrico pode ser representado simplificadamente por um circuito formado por um capacitor e um resistor em paralelo ou em série.

Fig 40 Modelo esquemático de um dielétrico ou isolante

O fator de potência da isolação é igual à relação entre a potência em Watt (W)

dissipada no material e o produto da tensão eficaz (V) e da corrente (I) em volt-ampére (VA).

Page 79: tecnicas de inspeção eletrotecnica

79

Técnicas de Inspeção e Procedimentos de Testes

As perdas dielétricas se dissipam sob a forma de calor que, em conjunto com outros fatores, tais como umidade, produtos de deterioração do óleo, causam a deterioração da isolação sólida.

Os valores do ensaio de fator de potência são muito sensíveis à presença de umidade

na isolação devido ao alto fator de potência da água, comparado com o de outros materiais. O fator de potência máximo admissível para um transformador novo com óleo e adequadamente seco é 0,5%. Para um transformador com óleo e em operação, um fator de potência maior que 2,0% é considerado excessivo. Um transformador novo, com óleo, com fator de potência maior que 1,0% não deve ser colocado em operação.

Todos os valores acima estão referenciados a 20oC. O aparelho comumente utilizado para o teste do fator de potência é o medidor de

fator de potência, fabricado nas tensões de 2.500 e 10.000 Volts. As perdas da isolação sólida variam aproximadamente com o quadrado da tensão

aplicada. Porém se existir ionização na isolação, as perdas variarão com a tensão aplicada elevada a uma potência maior que 2.

O teste do fator de potência com várias tensões permite concluir a existência ou não

de ionização. Devido a variação do fator de potência com a temperatura, os valores medidos devem ser convertidos a 20oC.

4.5 RESISTÊNCIA ÔHMICA DOS ENROLAMENTOS

A resistência ôhmica dos enrolamentos no campo é realizada, normalmente, com um micro-ohmímetro ou ponte de Kelvin.

Como o valor da resistência varia com a temperatura, os valores medidos devem ser

corrigidos à temperatura de 20oC, através da seguinte fórmula:

5,2345,254

20 ++

=m

m

TRR

onde: R20 = Valor da resistência ôhmica à temperatura de 20oC Rm = Valor medido da resistência ôhmica à temperatura Tm Tm = Temperatura do enrolamento sob teste Os valores medidos devem ser comparados com os valores de fábrica. O desequilíbrio entre os três valores medidos deve ser calculado:

Page 80: tecnicas de inspeção eletrotecnica

80

Técnicas de Inspeção e Procedimentos de Testes

Resistência média = 3

321 RRR ++

Desequilíbrio 1 = %1001 ×−

m

m

RRR

Desequilíbrio 2 = %1002 ×−

m

m

RRR

Desequilíbrio 3 = %1003 ×−

m

m

RRR

O desequilíbrio não deve exceder 1%

Fig 41 Microohmímetro tipo ODI 100 – Nansen (medidor de resistência ôhmica dos

enrolamentos)

4.6 ACESSÓRIOS PARA INDICAÇÃO E PROTEÇÃO

Para operar com confiabilidade são instalados nos transformadores de médio e grande porte acessórios para proteção e indicação, alguns deles tratados a seguir:

4.6.1 Relé Buchholz (Trafoscópio)

Page 81: tecnicas de inspeção eletrotecnica

81

Técnicas de Inspeção e Procedimentos de Testes

4.6.1.1 Características Gerais

Defeitos no interior do tanque geram gases. Quando a formação de gases é

importante, o volume de gases se desloca até o relé buchholz provocando o alarme ou desligamento do trafo.

Toda sinalização ou alarme através do relé buchholz deve ser motivo de cuidadosa

investigação pois pode significar sérios problemas no transformador. Existem dois modelos: o O constituído de uma caixa metálica que tem em seu interior dois flutuadores

dispostos verticalmente. Cada flutuador tem preso um interruptor do tipo ampola de vidro com mercúrio;

o Com um flutuador e uma placa que é deslocada pelo fluxo do óleo.

Fig 42 Relé Buchholz O relé Buchholz deve ser adequado à potência do transformador para manter a

sensibilidade adequada. Ele é montado entre a tampa do tanque do transformador e o conservador ou tanque de expansão.

Ao ser instalado a seta que existe na caixa, Fig 42, deve apontar para a direção do

fluxo de óleo do tanque do transformador para o conservador. A tubulação de admissão para o

Page 82: tecnicas de inspeção eletrotecnica

82

Técnicas de Inspeção e Procedimentos de Testes

relé deve estar localizada na parte mais alta da tampa, que deve ser constatado com a ajuda de um nível.

4.6.1.2 Teste de Funcionabilidade do Relé Buchholz

É aconselhável testar o protetor Buchholz pelo menos uma vez por ano. Para o teste pode ser utilizada uma bomba tipo de bicicleta ligada a uma mangueira.

A extremidade da mangueira ligada à bomba deve ter uma válvula de retenção e a extremidade ligada ao trafoscópio deve ter uma torneira, Fig 43.

Fig 43 Dispositivo para teste do Relé Buchholz Procedimento: 1 - Teste do sistema de sinalização e alarme Com a torneira da mangueira fechada, afrouxar a porca (f) de uma volta. Abrir a

torneira (a) e fazer entrar, lentamente, ar no trafoscópio. Se o circuito de sinalização e alarme

Page 83: tecnicas de inspeção eletrotecnica

83

Técnicas de Inspeção e Procedimentos de Testes

estiver em boas condições, sua operação se verificará quando o volume de ar que entrar no relé tiver abaixado o nível do óleo o suficiente para liberar a bóia superior.

2 - Teste de desligamento dos disjuntores. Manter a torneira (a) fechada. Afrouxar a porca (f) de uma volta. Comprimir ar na

mangueira até uma pressão aproximada de 2 daN/cm2.. Abrir rapidamente a torneira (a). o

fluxo brusco de ar para o Buchholz deve atuar o circuito de desligamento dos disjuntores. (Fonte: Milan Milasch – Manutenção de Transformadores em Líquido Isolante)

4.6.1.3 Teste de Inflamabilidade

É a verificação se os gases contidos no relé são combustíveis, e deve ser feito antes

do envio da amostra para o laboratório. O método é o seguinte:

• retirar com uma seringa uma pequena quantidade dos gases acumulados no trafoscópio, pelo bujão de purga;

• adaptar à seringa uma agulha do tipo injeção, que será aproximada de uma

chama;

• pressionar o êmbolo da seringa;

• se os gases forem combustíveis, surgirá uma chama no orifício de saída que só apagará quando a seringa estiver completamente vazia;

• coletar a amostra conforme instruções anteriores e enviar ao laboratório.

4.6.1.4 Teste de Acetileno

É feita esta verificação passando-se uma corrente dos gases através de uma solução

de nitrato de prata, que no caso dos gases conterem acetileno, fará com que surja uma precipitação branca.

4.6.1.5 Verificações na Operação do Relé Buchholz

Após a operação do relé Buchholz, devem ser feitas as seguintes verificações:

• existência de gases e se os mesmos são inflamáveis;

Page 84: tecnicas de inspeção eletrotecnica

84

Técnicas de Inspeção e Procedimentos de Testes

• se não forem inflamáveis, é possível que seja ar atmosférico retido no transformador ou penetrado por alguma abertura, ou ainda, ter penetrado pelo tanque de expansão, quando o nível do óleo estiver abaixo do nível do trafoscópio

• se não existir gases, verificar os circuitos elétricos de sinalização e alarme, e

se houve penetração de óleo nos flutuadores; para isso, desenergizar o transformador, retirar os flutuadores e verificar se há existência de óleo em seus interiores;

• a operação do trafoscópio pode, também ter ocorrido em decorrência de um

aumento brusco de temperatura do óleo, causado por uma corrente de curto-circuito, que provoca um fluxo brusco de óleo pelo trafoscópio.

4.6.2 Relé de Fluxo de Óleo e Gás

Este relé fica situado entre o reservatório da chave comutadora sob carga e o

respectivo tanque de expansão. As falhas da chave comutadora levam à formação, em quantidade bastante considerável, de gases com superaquecimento do óleo, provocada pelo arco produzido nestas condições.

Como a tendência dos gases e do óleo é de ir para a parte superior do tanque do

comutador, passam pelo relé acionando a proteção. Este relé é similar ao tipo Buchholz, exceto que o mesmo não tem flutuadores; ao

invés disto, existe uma placa móvel articulada e situada em posição vertical frontal à passagem do fluxo dos gases e do óleo.

Na parte superior do mesmo existem dois botões, sendo um deles para rearmar o relé

e o outro para testá-lo .

4.6.3 Relé de Pressão Súbita É um equipamento de proteção para transformador tipo selado. Normalmente é

instalado acima do nível máximo do líquido isolante.

Page 85: tecnicas de inspeção eletrotecnica

85

Técnicas de Inspeção e Procedimentos de Testes

Fig 44 Relé de pressão súbita

Existem dois tipos de reles de pressão, o de gás e o de óleo.

4.6.3.1 Relé de Pressão de Gás

Quando ocorrem variações pequenas de pressão causadas por variações de

temperatura do transformador, a diferença de pressão entre o gás do tanque e da caixa do relé é imediatamente anulada através da passagem do gás pelo orifício de equalização.

Na formação de um arco elétrico no interior do transformador, haverá uma elevação

repentina da pressão do gás do colchão, devido a abundante formação de gases; com isto o fole do relé se expande, atuando uma micro-chave.

Page 86: tecnicas de inspeção eletrotecnica

86

Técnicas de Inspeção e Procedimentos de Testes

Fig 45 Esquemático do relé de pressão de gás

Para remover o relé em caso de manutenção ou substituição, deve-se reduzir a pressão do gás do colchão para a pressão atmosférica

4.6.3.2 Relé de Pressão de Óleo

É instalado em transformadores selados, abaixo do nível do óleo conforme indicado

na Fig 46:

Page 87: tecnicas de inspeção eletrotecnica

87

Técnicas de Inspeção e Procedimentos de Testes

Fig 46 Esquemático do relé de pressão de óleo montado no transformador

O relé é formado por recipiente metálico dividido em duas câmaras. A câmara

inferior é banhada pelo óleo do tanque do transformador, além de ter um fole metálico cheio de silicone líquido, que está diretamente em contato com um pistão.

A câmara superior tem um microswitch que é acionado pelo pistão. Na ocorrência de um surto de pressão do óleo, o fole se contrai, o pistão se desloca e

o microswitch é acionado.

4.6.4 Dispositivo de Alívio de Pressão

Este dispositivo é utilizado para aliviar a pressão interna do tanque do transformador

quando a formação de gases em seu interior é intensa, podendo a pressão atingir valores perigosos para a segurança do tanque. Os tipos mais comuns são os seguintes:

Page 88: tecnicas de inspeção eletrotecnica

88

Técnicas de Inspeção e Procedimentos de Testes

4.6.4.1 Tubo com Diafragma

Um diafragma calibrado para rompimento a uma pressão inferior à suportável pelo

tanque. No caso de uma elevação da pressão interna a um nível perigoso o diafragma se rompe, aliviando a sobre-pressão interna.

Fig 47 Sistema de alívio de pressão com tubo de explosão (a membrana do diafragma é, em geral, de vidro)

4.6.4.2 Tubo com Mola Espiral

Page 89: tecnicas de inspeção eletrotecnica

89

Técnicas de Inspeção e Procedimentos de Testes

A mola espiral pressiona um diafragma metálico, que fecha a abertura de saída dos gases. O dispositivo abre quando a força da pressão dos gases é maior que a exercida pela mola, fechando em seguida, quando a pressão estiver aliviada.

Fig 48 Dispositivo de alívio da pressão do tanque do transformador (Westinghouse Electric Corp.)

4.6.4.3 Alavanca Articulada

Fig 49 Dispositivo de alívio da pressão do tanque na posição fechada (Westinghouse Electric

Corp)

Page 90: tecnicas de inspeção eletrotecnica

90

Técnicas de Inspeção e Procedimentos de Testes

Uma alavanca, ligada a uma haste vertical, pressionada por uma mola, mantém o dispositivo na posição aberta ou fechada. Este dispositivo deverá ser colocado na posição fechada depois de abrir, do contrário, permanece naquela posição. A manutenção destes dispositivos se resume em eventual troca de gaxeta.

4.6.5 Termômetros Tipo Mostrador

A temperatura do ponto mais quente do enrolamento de um transformador é

considerado igual à sua temperatura média, medida pelo método da resistência, acrescida de 10° C. Em geral, os grandes transformadores são equipados com termômetros que medem a temperatura do óleo e do enrolamento, acionam alarme e desligam o equipamento.

4.6.5.1 Termômetro para Líquido Isolante

É constituído de uma ampola ou bulbo, ligado por um tubo capilar ao instrumento

indicador. Enche-se o conjunto com um líquido e as variações de seu volume com a temperatura são transmitidas ao ponteiro indicador, numa escala graduada em graus Celsius.

O bulbo é colocado numa câmara estanque com óleo isolante, soldada à tampa do

tanque do transformador. A indicação é local.

Fig 50 Medidor de temperatura de bulbo

Page 91: tecnicas de inspeção eletrotecnica

91

Técnicas de Inspeção e Procedimentos de Testes

4.6.5.2 Termômetro para Enrolamento (Imagem Térmica)

A temperatura do enrolamento varia mais rapidamente que a temperatura do óleo. Na prática verifica-se que a diferença entre estas duas temperaturas cresce aproximadamente com o quadrado da carga do transformador. Como não é possível medir diretamente a temperatura do enrolamento, o dispositivo de imagem térmica é o meio indireto mais adequado para realizar esta medição.

O primário de um TC é ligado ao enrolamento cuja temperatura de deseja medir. A

corrente secundária deste TC alimenta uma resistência de aquecimento enrolada em um tubo isolante perfurado no interior do qual é instalado um dispositivo sensor de temperatura, que pode ser o bulbo de um termômetro. Este conjunto é montado em um recipiente estanque cheio de óleo, montado na parte superior do transformador.

Com o dimensionamento adequado de todo o conjunto (TC, resistência de

aquecimento, volume de óleo, etc), o termômetro indicará a temperatura do enrolamento para as diferentes condições de carga no transformador. Os dados para o dimensionamento do conjunto são obtidos normalmente no ensaio de aquecimento realizado na fábrica.

Fig 51 Dispositivo de imagem térmica com bulbo metálico e transformador de corrente (TC) de

ajuste

Page 92: tecnicas de inspeção eletrotecnica

92

Técnicas de Inspeção e Procedimentos de Testes

Fig 52 Dispositivo de imagem térmica com bulbo metálico e resistor de ajuste

Fig 53 Indicador de temperatura com imagem térmica.

4.7 PLANO DE INSPEÇÃO DE TRANSFORMADORES DE FORÇA

Os itens do plano de inspeção são relativos à diversidade dos acessórios, proporcional à dimensão do equipamento. A freqüência das inspeções pode ser relacionada à temperatura do óleo isolante, proporcional à percentagem da carga nominal com que o transformador opera.

• Registrar os valores de tensão, corrente, temperatura do óleo e do enrolamento, temperatura da água de admissão e saída do sistema de refrigeração forçado.

• Registrar a pressão do gás do colchão de gás. • Verificar a existência de ruídos anormais. • Verificar se os aquecedores dos painéis e outros estão operacionais. • Verificar vazamento de óleo. • Observar nível de óleo no conservador, tanque e buchas.

Page 93: tecnicas de inspeção eletrotecnica

93

Técnicas de Inspeção e Procedimentos de Testes

• Inspecionar trocadores de calor do óleo. • Estado da sílica-gel. • Testar relé buchholz , termostatos de óleo e imagem térmica, dispositivo de nível de

óleo e outras proteções. Testar alarme e desligamento. • Retirar amostra de óleo para análise físico-química e cromatografia dos gases

dissolvidos no óleo. • Efetuar testes de resistência de isolamento, resistência ôhmica dos enrolamentos,

relação de transformação e fator de potência da isolação. • Verificar aterramento de carcaça e da estrela. • Verificar operação da ventilação forçada. • Inspecionar integridade da pintura e pontos de oxidação.

4.8 COLETA DO ÓLEO PARA ANÁLISE

4.8.1 Coleta para Ensaio Físico-Químico

A coleta deve ser realizada entre 9:00 e 15:00h em dia seco, com umidade relativa do

ar inferior a 75%. O frasco de coleta deverá conter um volume aproximado de 1000ml e deve estar perfeitamente limpo e seco.

O processo consiste na limpeza com solvente, detergente, água e posterior

desidratação em estufa. A coleta do óleo deve ser processada através de um tubo de plástico resistente ao

óleo, com uma válvula conectada ao adaptador através de uma válvula de duas vias e do outro lado um adaptador à boca do frasco, de forma que não haja contato do óleo com o ar atmosférico. Deixar escoar de 500 a 1000ml de óleo para um vasilhame de descarte.

Permitir uma pequena quantidade de óleo para o frasco, interromper o fluxo, tampar

e girar o frasco até que o óleo molhe toda a parede do frasco, inclusive a tampa. Descartar o óleo de lavagem. Coletar cerca de 1000ml de óleo, identificar o frasco, enviado-o para análise o mais rápido possível.

Dados mínimos para identificação da amostra. Empresa: Subestação / Sala Elétrica: Tipo de Equipamento: Ano de Fabricação: Tempo de Operação: Nº de Série: Fabricante:

Page 94: tecnicas de inspeção eletrotecnica

94

Técnicas de Inspeção e Procedimentos de Testes

Tensão: Potência: Transformador Selado ou com Conservador – Cobertura de N2 ou Ar? Temperatura Ambiente: Temperatura do Óleo: Umidade Relativa do Ar: Ponto de Amostragem: Data da Amostragem: Amostrador:

4.8.2 Coleta para Cromatografia de Gases Dissolvidos

O óleo deve ser coletado em uma seringa apropriada, a prova de gás, com volume da

ordem de 50 cm3, equipada com torneira, de forma que possa ser fechada hermeticamente. Previamente limpa.

Um tubo impermeável, resistente ao óleo, com uma torneira de três vias deve ser conectada à válvula de amostragem do trafo e à seringa. A amostra deve ser retirada com o equipamento na condição normal de funcionamento, através da válvula inferior de amostragem do trafo.

Eliminar 1000 a 2000ml de óleo antes da coleta. Deixar penetrar óleo na seringa até

que toda a superfície interna seja coberta pelo óleo. Descartar este óleo. Repetir a operação, fechar a torneira da seringa, embalando-a para envio ao

laboratório, após etiquetagem. Informar se o óleo já foi desgaseificado ou recondicionado e quando ocorreu.

Page 95: tecnicas de inspeção eletrotecnica

95

Técnicas de Inspeção e Procedimentos de Testes

5 CABOS ISOLADOS

5.1 INTRODUÇÃO

A confiabilidade e a vida útil de cabos de potência são influenciados pela qualidade

de fabricação, fatores de serviço como tensão e umidade e o tipo de material isolante e de cobertura. Esses fatores podem causar não somente a redução da vida útil dos cabos mas também a ocorrência de falhas durante o serviço.

Os testes de cabos de potência na fábrica, tem por finalidade garantir a qualidade do

produto. Durante o lançamento e preparação dos cabos, podem ocorrer danos mais ou menos

graves, capazes de inutilizar ou reduzir a vida útil, tais como esforços excessivos, raios de curvatura reduzidos, perfurações ou rasgos no isolamento e falhas na montagem de emendas e terminações. Testes de alto potencial podem ser capazes de detectar estes tipos de anormalidades.

Durante a operação podem acontecer avarias no isolamento com redução de sua vida

útil, conseqüência de contaminantes e sobretemperatura aliado a sobretensões. Testes de rotina podem detectar estas degradações, permitindo ação preventiva e evitando paradas intempestivas do processo produtivo.

Page 96: tecnicas de inspeção eletrotecnica

96

Técnicas de Inspeção e Procedimentos de Testes

Fig 54 Cabos lançados em leitos 5.2 TIPOS DE ISOLAÇÃO DE CABOS DE POTÊNCIA

Os mecanismos de avaria em cabos estão intimamente ligados ao material isolante

utilizado. O material isolante dos cabos de potência pode ser constituído por materiais sólidos e

podem ser do tipo estratificado. Os materiais sólidos podem ser termoplásticos (cloreto de polivinila e polietileno) e termofixos (borracha etileno-propileno e polietileno reticulado). As isolações estratificadas são as que utilizam papel impregnado.

O gradiente de perfuração do dielétrico, ou rigidez dielétrica é um dos parâmetros

mais importantes na escolha do material isolante, pois sua redução pode causar falhas. Essa rigidez é proporcional ao número de vazios ou impurezas localizadas no material isolante.

Sabe-se que a dispersão dos valores de rigidez é muito menor nos dielétricos

estratificados (ou laminados) do que nos sólidos (extrudados). Explica-se isto pelo fato que o método de aplicação do isolamento estratificado e subseqüente impregnação evita a presença de vazios localizados na isolação, enquanto o processo de preparação e aplicação dos dielétricos sólidos torna quase impossível garantir a total ausência destes vazios. Por este motivo, os mecanismos de degradação de cabos são observáveis em maior freqüência nos modelos com isolante sólido.

Os isolantes sólidos mais utilizados nos cabos de potência são PVC, PE EPR e

XLPE.

5.3 O FENÔMENO DA ARBORESCÊNCIA (TREEING)

A degradação por arborescência tem se mostrado um dos principais fatores que

podem levar à falha de cabos isolados, com conseqüente interrupção de serviço. A arborescência é uma estrutura difusa, no formato de um leque, que se forma em isolantes extrudados (principalmente em XLPE) e é causada pela ação combinada de água e campo elétrico aplicado.

Uma arborescência pode-se transformar numa árvore elétrica, ou atravessar o

isolamento e após a ocorrência de qualquer um desses eventos, a ruptura dielétrica é iminente. Esta redução na rigidez dielétrica em muitos casos é suficiente para causar uma falha mesmo sob tensão nominal de operação.

Enfim, este fenômeno causa modificações nas características isolantes do cabo como

o aumento no fator de dissipação, aumento na corrente de fuga e das descargas parciais o que o torna identificável através de testes adequados. Veja na Fig 55 um exemplo.

Page 97: tecnicas de inspeção eletrotecnica

97

Técnicas de Inspeção e Procedimentos de Testes

Fig 55 Exemplo do fenômeno da Arborescência

5.4 TEMPERATURA

A temperatura de operação é outro fator de degradação do isolamento do cabo. A

degradação pode decorrer de uma fonte pontual de calor, tal como em uma conexão com mau contato ou através da elevação de temperatura provocada pela circulação da corrente de operação e da limitação da troca de calor com o ambiente.

Cabos bem projetados normalmente trabalham com temperaturas que não levam à

degradação prematura do isolamento. É comum lançar novos condutores sobre leitos de cabos e eletrocalhas sem a

verificação do correspondente acréscimo de temperatura em razão de um maior número de condutores carregados. Este procedimento pode resultar em temperaturas de operação superiores às de projeto dos cabos.

Quando são lançados condutores de seções muito diferentes (3 ou mais seções) em

uma mesma linha elétrica, os condutores de menor seção devem ser superdimensionados por questões de aquecimento (NBR-5410/97).

5.5 DESCARGAS PARCIAIS

Como já foi mencionado anteriormente, o processo de fabricação deve evitar a

presença de vazios no isolante. A presença destes vazios podem ocasionar o surgimento de descargas parciais (corona) que, se não forem controladas, aumentam os vazios até romper definitivamente o dielétrico. Este fenômeno é causado por sobretensão e defeitos de fabricação.

Page 98: tecnicas de inspeção eletrotecnica

98

Técnicas de Inspeção e Procedimentos de Testes

5.6 ERROS DE INSTALAÇÃO

Falta de cuidado ao se manusear e lançar os cabos em eletrodutos ou outras linhas

elétricas, pode causar danos que, se não causarem falhas quando o sistema for colocado em funcionamento, provavelmente falharão com um tempo reduzido de operação. Durante a instalação podem ocorrer defeitos no material isolante tais como fissuras e perfurações do isolamento. Estes defeitos levarão à formação de arborescência e descargas parciais que podem causar o rompimento total do dielétrico.

5.7 ERROS NA ESPECIFICAÇÃO DA TENSÃO DE ISOLAMENTO DO CABO

É importante lembrar que, em sistemas com o neutro completamente isolado da terra ou ligado à terra através de impedância, uma falta à terra provoca uma elevação na tensão das fases não afetadas, podendo chegar a assumir um valor 1,73 vezes superior àquele de regime normal. A isolação dos cabos fica, portanto, submetida a uma tensão muito superior ao valor nominal, podendo ser danificada. A classe de isolamento do cabo deve ser escolhida de acordo com o tipo de aterramento funcional do sistema elétrico.

Fig 56 Condutor de cobre triplex 20/35kV- isolamento em borracha etileno propileno (EPR)

Page 99: tecnicas de inspeção eletrotecnica

99

Técnicas de Inspeção e Procedimentos de Testes

5.8 TERMINAIS E EMENDAS

Estatísticas mostram que um grande percentual de faltas ocorrem nos terminais e

emendas de cabos de potência. Portanto, estes componentes devem ser instalados de maneira correta e especificados de acordo com os níveis de tensão e dimensões dos cabos.

5.9 TESTES DE CABOS ELÉTRICOS NO CAMPO

Tradicionalmente os testes elétricos executados após o lançamento e execução das

terminações e emendas é o teste de alto potencial em corrente contínua e posterior teste de resistência de isolamento.

Vários autores desaconselham a utilização do teste de alto potencial para acompanhamento, pela manutenção, da degradação do isolamento, sob a argumentação de que tais testes aceleram a degradação do isolamento, principalmente em condutores que apresentam o fenômeno da arborescência.

A tendência atual são os testes com tensão alternada com freqüência muito baixa (0,1

a 1Hz), com o acompanhamento da evolução do fator de potência do isolamento e a medição das descargas parciais.

5.10 INSPEÇÃO DE CABOS ISOLADOS

A inspeção de cabos isolados se resume a:

• Teste de resistência de isolamento. • Teste de acompanhamento da degradação do isolamento. • Eliminação de água, causadora da arborescência. • Inspeção visual em emendas e terminações. • Eliminação de cupins e roedores.

5.11 ENSAIO DE TENSÃO ELÉTRICA (NBR 6881)

Page 100: tecnicas de inspeção eletrotecnica

100

Técnicas de Inspeção e Procedimentos de Testes

Estes ensaios são destinados a demonstrar a integridade dos cabos e seus acessórios, durante e após sua instalação.

Os ensaios podem ser classificados como:

A – Ensaios em qualquer ocasião, durante a instalação. B – Ensaios após a conclusão da instalação do cabo e seus acessórios, e antes destes

serem colocados em operação. C – Após o cabo e seus acessórios terem sido colocados em operação, em qualquer

ocasião, dentro do período de garantia. D – Cabos em operação, fora do período de garantia. Os ensaios podem ser realizados com tensão alternada ou contínua. Por facilidade,

dimensões, peso e custo inferiores dos equipamentos de tensão contínua, esta será a tensão a ser utilizada nestes ensaios.

A Tabela 17 define os valores de tensão elétrica e os tempos de aplicação da tensão

para os vários tipos de ensaios. A tensão elétrica contínua deve ser fornecida por meio de uma bateria, gerador eletrostático ou transformador com circuito retificador.

O aparelho tem que possuir um dispositivo capaz de controlar a taxa de variação de

tensão.

Tabela 17 Valor da tensão CC e tempo de teste em função da classe de tensão do cabo.

Tipos de ensaio

A B C D Tensão Vo / V do

Cabo Tensão (kV) Tempo Tensão

(kV) Tempo

Tensão

(kV) Tempo

Tensão

(kV) Tempo

0,6 / 1 6,3 6,8 5,5 1,4

1,8 / 3 11,6 12,4 10 4,3

3,6 / 6 19,8 21,2 17,2 8,6

6 / 10 27 28,8 23,4 14,4

8,7 / 15 39,7 42,4 34,4 20,8

12 / 20 54 57,6 46,8 28,8

15 / 25 67,5 72 58,5 36

20 / 35 90

5 min

96

15 min

78

5 min

48

5 min

Page 101: tecnicas de inspeção eletrotecnica

101

Técnicas de Inspeção e Procedimentos de Testes

O ensaio em tensão contínua deve ter um fator de ondulação inferior a 5%, salvo determinação diferente da norma específica do equipamento.

Cabos singelos ou múltiplos, com veias blindadas individualmente, com ou sem

blindagem ou armações metálicas sobre o conjunto das mesmas, aplicar tensão de ensaio entre condutor e blindagem.

Cabos com duas a quatro veias, sem blindagem individual e sem blindagem ou

armações metálicas sobre o conjunto das mesmas, aplicar tensão de ensaio entre cada condutor e todos os outros condutores.

Cabos com duas a quatro veias, sem blindagem individual e com blindagem ou

armações metálicas sobre o conjunto das mesmas, aplicar tensão de ensaio entre cada condutor e todos os outros condutores e também entre cada condutor e blindagem ou armações metálicas.

A tensão a ser aplicada deve ser elevada a partir de um valor inicial, o menor

possível, mas não superior a 20% da tensão nominal do cabo submetido ao ensaio. A taxa de elevação da tensão deve ser aproximadamente uniforme, de tal maneira

que a tensão especificada de ensaio seja atingida em não menos do que 10 segundos e nem mais que 60 segundos.

Ao atingir o valor da tensão de ensaio, o mesmo deve ser mantido durante o tempo

especificado. O valor da tensão e o tempo de aplicação estão especificados na Tabela 17. Decorrido o tempo de ensaio especificado, a tensão deve ser reduzida com taxa de

variação aproximadamente uniforme, até um valor menor possível, mas não superior a 20% da tensão nominal do cabo e em seguida, desligar o equipamento.

Caso durante a execução do ensaio houver uma ou mais interrupções por qualquer

anomalia no equipamento, conexões ou terminações do cabo, o ensaio pode ser continuado, acrescentando-se para cada interrupção, 20% do tempo total de aplicação de tensão ao tempo que resta para finalizar o ensaio.

O valor da tensão contínua de ensaio é definido pelo seu valor médio aritmético. Não ocorrendo perfuração total ou parcial do dielétrico submetido ao ensaio, o

condutor é considerado aprovado.

Page 102: tecnicas de inspeção eletrotecnica

102

Técnicas de Inspeção e Procedimentos de Testes

Este ensaio não é universalmente recomendado para testes de manutenção por ser destrutivo, podendo contribuir para o envelhecimento prematuro do isolamento e por não fornecer informações de evolução da degradação do material isolante.

5.12 ENSAIO DE TENSÃO ELÉTRICA ALTERNATIVO

O ensaio de tensão elétrica realizado com a aplicação de degraus de tensão e registro das correntes de fuga tem algumas vantagens com relação ao ensaio recomendado pela NBR 6881.

O método alternativo permite um controle da intensidade da corrente de fuga, refletindo em maior segurança, garantindo que o teste seja não destrutivo.

O método alternativo propicia ainda uma maior gama de informações para um

acompanhamento do estado do isolamento do cabo e sua confiabilidade operacional, sendo muito útil para controle preditivo por parte da manutenção.

O equipamento de ensaio e a ligação do cabo a ser testado são os mesmos da NBR

6881. O valor da tensão aplicada no último degrau é o valor constante na Tabela 17. O valor da tensão deve ser dividido em degraus, no mínimo 5 e no máximo 10. Preparar um gráfico para plotagem dos valores medidos, em papel milimetrado,

conforme Fig 57. Aplicar o primeiro degrau de tensão, lendo a corrente de fuga 1 minuto após a

aplicação da tensão, plotando-a no gráfico. Aplicar o segundo degrau, plotando a corrente de fuga lida 1 minuto após. Ligar os

dois pontos através de uma linha. Aplicar os outros degraus de tensão até o último, plotando as correntes de fuga lidas

e traçando a linha, unindo todos os pontos. O teste deve ser continuado enquanto a linha traçada for uma reta ou uma curva com

pequena inclinação. Após a aplicação do último degrau de tensão e da plotagem da corrente de fuga com

1 minuto, a tensão deve continuar imposta ao condutor sob ensaio pelo tempo definido na tabela e as correntes de fuga lidas e plotadas de 1 em 1 minuto.

Page 103: tecnicas de inspeção eletrotecnica

103

Técnicas de Inspeção e Procedimentos de Testes

Caso a corrente de fuga cresça rapidamente, formando um joelho, como mostrado no

gráfico, o ensaio deve ser interrompido. Isto indica um forte possibilidade de ruptura do dielétrico.

Kv Minutos

AB

Fig 57 Comportamento da corrente de fuga durante o ensaio

A - Ensaio típico de um cabo com isolamento em boas condições . B - Ensaio interrompido. Isolamento com indicação de ruptura do dielétrico para novos incrementos de tensão.

Um linha reta ou uma curva com pequena inclinação no ensaio corrente de fuga

versus degraus de tensão e valores decrescentes de correntes de fuga no ensaio corrente de fuga versus tempo, indicam cabo em bom estado.

Corrente de fuga com valores estáveis ou crescentes com o tempo, indicam

isolamento com polarização pobre (índice de polarização ≤ 1).

Joelho

Page 104: tecnicas de inspeção eletrotecnica

104

Técnicas de Inspeção e Procedimentos de Testes

6 CAPACITORES DE POTÊNCIA

Cada módulo capacitor é composto por um grupo de elementos capacitivos conectados em série e paralelo, para se obter a capacitância e a potência reativa desejada.

Na maioria dos casos as unidades capacitivas são montadas em caixas metálicas,

impregnadas com um líquido isolante e vedadas. Nos capacitores mais antigos um dos líquidos isolantes mais utilizados era o ascarel.

Os capacitores com ascarel não devem ser manipulados caso estejam com vazamento. Neste caso consultar as equipes de segurança e meio ambiente sobre o melhor tratamento a ser empregado.

Os capacitores, mesmo depois de desligados, permanecem carregados e pode causar

acidentes decorrentes do choque elétrico. Antes de tocar os terminais de um capacitor tenha certeza que a tensão entre seu terminal e terra não é superior a 50 volts. Em caso de dúvida aterre o terminal.

Fig 58 Capacitores de potência

Page 105: tecnicas de inspeção eletrotecnica

105

Técnicas de Inspeção e Procedimentos de Testes

6.1 A INSPEÇÃO DE UM CAPACITOR

6.1.1 Limpeza

• Manter a carcaça e os isoladores limpos

6.1.2 Oxidação da Carcaça e Estruturas de Suporte.

• Remover pontos de oxidação e fazer tratamento anticorrosivo.

6.1.3 Aterramento

A carcaça dos capacitores e a estrutura metálica devem ser rigidamente ligadas à

malha de terra. Chave de desligamento e aterramento do banco. Verificar operação e efetivo

aterramento do banco para a terra.

6.1.4 Proteção Contra Curto-circuito

Fusíveis devem proteger a caixa contra rompimento em caso de curto-circuito

interno.

6.1.5 Deformação da Carcaça Deformação pode ser conseqüência de sobrecorrente provocada por curto-circuito em

elementos unitários, sobretensão ou tensões harmônicas.

6.1.6 Isolamento

Meça o valor da resistência de isolamento entre terminais e carcaça com um

megômetro de 500V durante 1 min. Meça a temperatura externa no topo da carcaça e a umidade relativa do ar. Compare o valor medido com as medições anteriores do mesmo módulo. Compare o valor com os dos outros módulos similares. Unidades com valores decrescentes ou inferiores aos de módulos similares devem ser investigadas.

Page 106: tecnicas de inspeção eletrotecnica

106

Técnicas de Inspeção e Procedimentos de Testes

6.1.7 Teste da Integridade do Módulo Capacitor Aplicar tensão reduzida nos terminais do capacitor, medindo a corrente drenada. A potência fornecida pelo capacitor monofásico é calculado pela fórmula:

T

TNN V

IVP 2=

onde: PN = Potência nominal IT = Corrente medida no teste VT = Tensão reduzida de teste VN = Tensão nominal Para capacitor trifásico, aplicar os valores medidos na fórmula:

T

TNN V

IVP 23×=

Comparar a potência calculada com a potência da placa. Diferenças superiores a 5%

devem ser investigadas. Maiores que 10% indicam problemas internos no capacitor. Atenção: em caso de queima freqüente de capacitores verificar: • Tensão de alimentação superior à tensão nominal; • Distorção da tensão harmônica no barramento alimentador.

Page 107: tecnicas de inspeção eletrotecnica

107

Técnicas de Inspeção e Procedimentos de Testes

7 PROTEÇÃO CONTRA DESCARGAS ATMOSFÉRICAS E

ATERRAMENTO

O sistema de proteção contra descargas atmosféricas compreende os captores, os

condutores ou rabichos de descida e a malha de aterramento. Todo este sistema deve estar de acordo com a NBR 5419 (Proteção de Estruturas

contra Descargas Atmosféricas) em sua ultima revisão.

7.1 INSPEÇÃO DO SISTEMA DE PROTEÇÃO CONTRA DESCARGAS

ATMOSFÉRICAS (SPDA)

7.1.1 Captores

Nenhuma estrutura metálica (luminária, antena) deve estar acima dos captores

(pontas ou cabos). Em caso de dúvida solicite apoio junto à engenharia.

Fig 59 Luminárias atuando erradamente como captores

Page 108: tecnicas de inspeção eletrotecnica

108

Técnicas de Inspeção e Procedimentos de Testes

Estruturas metálicas só podem ser consideradas autoprotegidas (ser captoras e

descida da descarga) se cumprirem os requisitos exigidos pela norma.

7.1.2 Cabos de Descida O número e a bitola dos cabos de descida são itens de projeto. Em caso de dúvida

consulte a engenharia. Os condutores devem ser fixados à estrutura do prédio e não isolados com suportes e

roldanas. Os condutores devem estar o mais esticado possível. Os cabos de descida ou rabichos não devem ser compartilhados, como por exemplo,

rabichos de aterramento e carcaça de motores, painéis, etc. Cada rabicho deve ser conectado diretamente à malha de terra.

Fig 60 Rabichos de SPDA e aterramento compartilhados

Os raios de curvatura dos rabichos e cabos do SPDA e malha de terra devem ser

superiores a 200mm.

Rabichos compartilhados

Page 109: tecnicas de inspeção eletrotecnica

109

Técnicas de Inspeção e Procedimentos de Testes

Fig 61 Condutores com raio de curvatura inferior a 200mm

7.1.3 Eletrodutos de Proteção

Os eletrodutos de proteção devem ser de PVC. A utilização de eletroduto de ferro

exige a instalação de jumper entre o rabicho e o eletroduto na entrada e saída.

Fig 62 Exemplo de ligação em instalações com eletroduto de ferro

7.1.4 Conexões Elétricas As conexões elétricas devem ser preferencialmente com solda exotérmica em lugar

de conectores. Conexões com conectores devem ser revisadas e limpas de contaminantes e oxidações.

Cuidado! Ao abrir uma conexão de aterramento, a corrente circulante pode atravessar

o corpo e ter conseqüências fatais. Trabalhe com luvas isolantes e com curto-circuitamento provisório antes de abrir algum circuito de terra.

Page 110: tecnicas de inspeção eletrotecnica

110

Técnicas de Inspeção e Procedimentos de Testes

O sistema de aterramento funcional e de segurança de um sistema elétrico de

potência compreende: • A ligação do sistema elétrico à malha de terra (normalmente o centro da estrela

de transformadores e dos geradores) solidamente ou através de resistências e reatâncias.

• A conexão de todas as partes metálicas não condutoras de energia à malha de terra.

Page 111: tecnicas de inspeção eletrotecnica

111

Técnicas de Inspeção e Procedimentos de Testes

8 SISTEMAS DE ATERRAMENTO E MALHA DE TERRA

Nos sistemas elétricos solidamente aterrados, as massas (partes metálicas não

condutoras de energia) podem ser aterradas diretamente à malha de terra. Este sistema é designado com TT (Fig 63).

Fig 63 Sistema de aterramento TT As massas podem também ser aterradas via condutores de proteção (PE),

preferencialmente, ou via condutores de proteção e neutro (PEN), conectados a barramentos de terra existentes nos painéis e destes a malha de terra, próximo ao ponto em que a estrela do transformador (terminal Xo) é conectado a malha. Este sistema é designado como TN (Fig 64).

Sistema TN-S – Condutores de proteção (PE) e neutro (N) são independentes a partir

da fonte de energia. Sistema TN-C – Condutores de proteção e neutro (PEN) são comuns ao longo de

toda a instalação. Sistema TN-CS – Condutores de proteção (PE) e Neutro (N) são comuns durante um

trecho da instalação, tornando-se independentes a partir de um ponto. OBS: Após tornarem-se independentes, os condutores não podem vir a ser tornarem

comuns novamente.

Page 112: tecnicas de inspeção eletrotecnica

112

Técnicas de Inspeção e Procedimentos de Testes

Fig 64 Sistemas de aterramento TN No sistema isolado IT (Fig 65), o sistema elétrico não é conectado ao terra ou é

conectado através de resistor ou reatância.

Fig 65 Sistemas de aterramento IT

Page 113: tecnicas de inspeção eletrotecnica

113

Técnicas de Inspeção e Procedimentos de Testes

Neste sistema, quando uma fase é acidentalmente colocada no potencial de terra, a corrente de curto circuito é tão reduzida que o dispositivo de proteção não é sensibilizado, não desligando o circuito.

Nestes casos é importantes dotar o sistema de um circuito que sinalize a existência de

uma fase para a terra, de forma que a falha seja localizada e o circuito reparado. Caso isto não aconteça e uma segunda fase seja colocada para a terra, estabelece-se um curto-circuito fase-fase com alta intensidade de corrente, atuando a proteção. Nestes casos a localização das falta pode ser demorada e o circuito pode ficar interrompido por um longo período de tempo.

Em um sistema de aterramento é importante que a malha de terra e os rabichos de

aterramento sejam preservados, garantindo que as tensões de passo e toque sejam mantidas dentro de valores seguros, nos casos de elevadas correntes de descarga atmosférica e de curto-circuito.

8.1 INSPEÇÃO DO SISTEMA DE ATERRAMENTO

8.1.1 Estruturas Metálicas

Inspecione os rabichos de aterramento, se estão conectados ou soldados à estrutura

metálica e que o raio de curvatura não seja inferior a 200mm. Reaperte as conexões com conectores.

8.1.2 Carcaça dos Equipamentos Elétricos Inspecione se as carcaças dos equipamentos elétricos estão solidamente aterradas.

8.1.3 Cubículos e Painéis Elétricos

Inspecione se os condutores de proteção estão firmemente conectados a barra de

terra. A estrutura metálica e as portas devem estar aterradas.

8.1.4 Transformadores e Geradores Verifique se os condutores de aterramento do centro da estrela estão firmemente

conectados e se estão íntegros, sem danos.

Page 114: tecnicas de inspeção eletrotecnica

114

Técnicas de Inspeção e Procedimentos de Testes

8.1.5 Resistência e Reatância de Aterramento • Inspecione se os isoladores estão em boa situação, sem trincas, sinais de

descargas superficiais ou com a pintura queimada. • Inspecione se os elementos resistivos e reativos estão com algum sinal de

deterioração. • Efetue um teste de resistência de isolamento com megômetro 500V durante 1

min do elemento ativo para a massa e anote os valores de resistência de isolamento, temperatura e umidade do ar. Compare com as medições anteriores. Redução dos valores deve ser investigado.

Fig 66 Resistor de aterramento do centro da estrela do transformador

8.1.6 Malha de Aterramento

O valor da medição da resistência ôhmica da malha de terra, via de regra, não é uma

indicação segura de sua eficácia, pelos seguintes motivos:

Page 115: tecnicas de inspeção eletrotecnica

115

Técnicas de Inspeção e Procedimentos de Testes

• A dificuldade de medir a resistência ôhmica (IEEE std80 – Guide for Safety in Substation Grounding).

• O valor ôhmico da malha de terra não é garantia de segurança para as pessoas e os equipamentos.

Em casos de dúvidas sobre a eficiência de uma malha de terra, pode-se adotar o

seguinte roteiro: • De posse do projeto da malha, verifique se as tensões de passo e de toque estão

dentro dos limites seguros para as correntes de curto-circuito para a terra e de descarga atmosférica.

• Caso exista dúvida de que a malha possa ter sido rompida por alguma escavação, confirme a integridade dos condutores através de injeção de corrente e cálculo da resistência ôhmica nominal do condutor.

• Se não ficar garantida a integridade da malha, instale uma nova, interligando a nova malha à malha antiga.

Atenção: • Uma malha ineficaz pode ser pior do que sua inexistência. • Utilize solda exotérmica ao invés de conectores, sempre que possível, em todo

sistema de aterramento.

Page 116: tecnicas de inspeção eletrotecnica

116

Técnicas de Inspeção e Procedimentos de Testes

9 BATERIAS

Uma bateria é uma célula eletroquímica que armazena energia química,

transformando-a em energia elétrica quando necessário. Os elementos de um banco de baterias são dispostos em estantes ou cubículos e

interligados, formando um banco adequado ao valor da tensão e da capacidade em ampéres-hora (Ah), requeridos pela carga.

Os Ah representam o produto da corrente, em ampéres, por um período de tempo, em

horas, que as baterias podem fornecer, respeitando a corrente nominal. Segurança! Durante a carga o acumulador libera uma mistura de gases explosivos. A sala de

baterias deve possuir um sistema de exaustão de modo a manter a concentração de gases em baixo nível.

Só permaneça na sala de baterias com o sistema de exaustão ligado. Não é permitida a instalação de equipamentos que provoquem faíscas na sala de

baterias. Utilize roupas resistentes ao eletrólito da bateria ao executar inspeções que possam

mantê-lo exposto a um possível vazamento. Tenha em mãos produtos capazes de neutralizar o eletrólito. Em caso de contato com o olho, lave abundantemente com água e procure apoio especializado do médico do trabalho.

Cuidado! Nunca inverta água sobre ácido sulfúrico (H2SO4). A reação é muito

violenta, podendo produzir explosão de graves conseqüências. O plano de inspeção contendo os itens de verificação deve ser preparado de acordo

com as instruções do fabricante. O banco de baterias é alimentado por um carregador projetado para fornecer as

tensões de flutuação e para carga de equalização e carga profunda. O banco é mantido em carga de flutuação, responsável por compensar a auto-

descarga. A tensão de flutuação, normalmente, é de 1,38V a 1,42V, por elemento, para a bateria alcalina e de 2,20V a 2,25V para a chumbo-ácido.

Pode ser necessário submeter a bateria chumbo-ácido à carga, em tensões mais

elevadas, denominadas carga de equalização e carga profunda.

Page 117: tecnicas de inspeção eletrotecnica

117

Técnicas de Inspeção e Procedimentos de Testes

A carga de equalização é uma sobrecarga controlada que se destina a igualar as

cargas dos elementos. Os elementos estarão equalizados quando suas densidades e tensões forem aproximadamente iguais. A tensão de equalização é da ordem de 2,30V a 2,45V por elemento.

A carga profunda é necessária quando da ativação de baterias carregadas, na

preparação antes da colocação em serviço ou após uma descarga profunda. A carga profunda é dada com corrente constante, com intensidades entre 0,05C e

0,25C, onde C é a capacidade do banco em ampéres-hora (A.h). Para a bateria alcalina a carga de equalização substitui a carga profunda da bateria

chumbo-ácido e deve ser aplicada: • quando houver uma diferença de tensão entre seus elementos igual ou superior a

0,03V. • quando a tensão de flutuação da bateria estiver abaixo do valor recomendado; • depois de uma descarga da bateria, de qualquer natureza; • durante as manutenções preventivas mensais; • para homogeneizar a solução da bateria, principalmente as de maior capacidade.

Page 118: tecnicas de inspeção eletrotecnica

118

Técnicas de Inspeção e Procedimentos de Testes

Fig 67 Banco de baterias As baterias devem ser descarregadas de forma controlada, para verificação de sua

capacidade. O intervalo médio recomendado é de 12 meses, mas as instruções do fabricante devem ser seguidas.

As tensões mínimas de descarga, por elemento, salvo recomendações diferentes do

fabricante, deve ser de 1,75V para a bateria de chumbo-ácido e 1,0V para a bateria alcalina.

9.1 INSPEÇÃO DE BANCOS DE BATERIAS E CARREGADOR

9.1.1 Limpeza

Manter a sala, estantes e os elementos completamente limpos. O elemento chumbo-ácido deve ser limpo com um pano. Resíduos de eletrólito

devem ser limpos com um pano embebido com solução a 10% de bicarbonato de sódio e posteriormente com pano seco.

O elemento alcalino pode ser limpo com detergente neutro e pano limpo.

9.1.2 Elementos

Fazer limpeza e procurar causa do vazamento. Caso não seja possível reparo, o

elemento deverá ser reposto.

Page 119: tecnicas de inspeção eletrotecnica

119

Técnicas de Inspeção e Procedimentos de Testes

Fig 68 Elementos e conexões

9.1.3 Conexões Medir a temperatura das conexões elétricas dos elementos com termômetro

infravermelho com mira a laser. Retorquear as conexões com temperatura superior, utilizando instruções do fabricante.

Verificar conexões das peças metálicas da estante e a fixação dos elementos do

banco.

9.1.4 Oxidação

Verificar oxidação das peças da estante e dos elementos. As conexões dos elementos

devem ser protegidas com graxa própria ou conforme recomendação do fabricante.

9.1.5 Pintura Manter a estante e a sala de baterias com pintura em bom estado.

9.1.6 Nível do Eletrólito Manter o nível do eletrólito entre as marcações de mínimo e máximo. Se o nível

estiver abaixo, avalie:

Page 120: tecnicas de inspeção eletrotecnica

120

Técnicas de Inspeção e Procedimentos de Testes

• houve vazamento do eletrólito? A - acrescente solução de ácido sulfúrico com densidade de 1,210g/cm3 a 25 ºC, se a

bateria for chumbo-ácido. Cuidado! A1 – Não prepare a solução se não tiver um padrão para isto e se não tiver

experiência no trato de produtos químicos. Inverter água sobre ácido sulfúrico pode produzir uma explosão de graves conseqüências.

A2 – A solução de ácido sulfúrico é corrosiva, podendo provocar graves lesões na

pele, olho, etc. B- Se a bateria for alcalina, completar o nível com uma solução de hidróxido de

potássio (KOH) com densidade aproximada de 1,180 g/cm3. Cuidado! B1-A solução de hidróxido de potássio é altamente corrosiva, devendo ser preparada

e manipulada por pessoal experiente, em local ventilado, de posse de um padrão técnico. • Não houve vazamento de eletrólito?

Completar com água destilada.

9.1.7 Medição de Tensão A tensão e a corrente fornecida pelo carregador devem ser medidas e anotadas e a

tensão regulada para o valor sugerido pelo fabricante. Medir e anotar a tensão dos elementos, com o banco em flutuação. Os elementos com tensões abaixo da tensão crítica devem ser submetidos à carga de equalização (seguir instruções do fabricante).

9.1.8 Densidade Medir a densidade do eletrólito de todos os elementos das baterias chumbo-ácido e

dos elementos pilotos das baterias alcalinas. A densidade deve ser referida à temperatura de 25ºC.

A densidade da bateria chumbo-ácido varia com nível de carga do elemento.

Elementos com baixa densidade podem exigir uma carga de equalização.

9.1.9 Análise do Eletrólito

Page 121: tecnicas de inspeção eletrotecnica

121

Técnicas de Inspeção e Procedimentos de Testes

O eletrólito da bateria alcalina se contamina e deve ser substituído sempre que atingir o conteúdo de impurezas.

Tabela 18 Conteúdo de impurezas máximo permitido no eletrólito alcalino

Contaminante Eletrólito usado Eletrólito novo

Carbonato de potássio(K2CO3) 75,0 g/l 7,5 g/l

Sulfato de potássio (K2SO3) 4,0 g/l 0,15 g/l

Cloreto de potássio (KCl) 0,2 g/l 0,10 g/l

9.1.10 Descarga da Bateria

Periodicamente deve-se proceder a um processo de descarga controlada do banco de

baterias para testar sua capacidade.

9.1.11 Painel do Carregador • Verificar limpeza, trancas, dobradiças e borrachas de vedação. • Verificar aterramento do painel. • Observar funcionamento da iluminação e ventilação. • Inspecionar fixação, oxidação e identificação externa do painel, observar

anomalias dos fios e tampas das canaletas.

Page 122: tecnicas de inspeção eletrotecnica

122

Técnicas de Inspeção e Procedimentos de Testes

Fig 69 Painel do carregador 9.1.12 Retificadores

Medir temperatura das conexões com termômetro infravermelho. Solicitar

termografia caso haja alguma dúvida. Verificar visualmente os cartões eletrônicos

Page 123: tecnicas de inspeção eletrotecnica

123

Técnicas de Inspeção e Procedimentos de Testes

9.1.13 Indicadores de Tensão e Corrente

• Confirmar que a chave seletora está posicionada para flutuação. • Medir e anotar os valores de tensão e corrente. • Confirmar, com instrumentos portáteis previamente calibrados, a exatidão dos

valores indicados. • Comparar os valores medidos com valores nominais e registros anteriores. • Testar o zero dos instrumentos.

Page 124: tecnicas de inspeção eletrotecnica

124

Técnicas de Inspeção e Procedimentos de Testes

10 EQUIPAMENTOS E INSTALAÇÕES ELÉTRICAS EM

ATMOSFERAS EXPLOSIVAS.

10.1 INTRODUÇÃO

A inspeção e manutenção de equipamentos elétricos em atmosferas explosivas são definidos na norma internacional IEC-79.17 – Recommendations For Inspections and Maintenance of Electrical Installations In Hazardous Áreas (Other than Mines 1990). Três graus definem o nível de profundidade com que a inspeção é realizada:

Inspeção visual (V) – são observados defeitos que são evidentes visualmente. Inspeção apurada (A) – é a inspeção que cobre a inspeção visual e vai além,

utilizando-se ferramentas e equipamento de apoio, como escadas, não requerendo desernergização nem abertura de invólucro.

Inspeção detalhada (D) – inspeção completa com o equipamento desenergizado,

cobrindo as inspeções anteriores, com a abertura do equipamento e a utilização de ferramentas e instrumentos de testes.

As atividades de inspeção devem ser executadas por pessoal qualificado, instruído

sobre os vários tipos de proteção e práticas de instalação e que tenham noções sobre os princípios de classificação de áreas.

A inspeção deve estar amparada em documentação técnica referente à classificação

de áreas, classe de temperatura e grupo do equipamento, entre outros.

10.2 TIPOS DE INSPEÇÃO

Inspeção inicial – são inspeções realizadas em toda a instalação e equipamentos,

antes da colocação em operação, com o objetivo de verificar sua conformidade com o projeto e as normas aplicáveis. As inspeções devem ser do grau “detalhada” e os resultados devem ser registrados.

Inspeção periódica – são as inspeções realizadas em todos os equipamentos de forma

periódica, ou seja, em intervalos pré-definidos, e os resultados registrados. O intervalo entre inspeções periódicas deve ser determinado em função da instrução do fabricante, experiência anterior e a zona de uso, não devendo exceder a três anos, a menos que esteja continuamente sob a supervisão de pessoal qualificado.

Inspeção por amostragem – são inspeções realizadas em um percentual dos

equipamentos instalados. Fornecem informações para validar ou alterar o intervalo das

Page 125: tecnicas de inspeção eletrotecnica

125

Técnicas de Inspeção e Procedimentos de Testes

inspeções periódicas e o grau de inspeção determinado. As inspeções por amostragem devem ser registradas. 10.3 TIPO DE PROTEÇÃO

Os equipamentos e dispositivos elétricos capazes de operar em atmosferas explosivas devem possuir características específicas que evitem a ignição de uma atmosfera inflamável no seu entorno. Uma simbologia própria, composta da sigla Ex, seguida de uma letra minúscula define o tipo de proteção. Estaremos descrevendo os tipos constantes nos formulários de inspeção do parágrafo seguinte:

Ex d – Equipamento a prova de explosão. São os equipamentos encerrados em um invólucro capaz de resistir à pressão de

explosão interna, não permitindo que a explosão se propague para o meio externo. Ex e – Equipamento de segurança aumentada. Tipo de proteção aplicável a equipamentos elétricos que por natureza própria não

produzem arcos, centelhas ou alta temperatura em condições normais de operação. Mesmo assim, para ser considerado como de segurança aumentada, são incorporadas medidas construtivas adicionais, diminuindo sensivelmente a probabilidade que o equipamento cause altas temperaturas, arcos ou centelhas.

Por definição os equipamentos que podem ser desenvolvidos como de segurança

aumentada são limitados. Podemos citar os motores de indução com rotor em curto-circuito, as luminárias, caixas de passagem, entre outros.

Ex ê – Equipamento imerso em óleo. São os equipamentos em que as partes que podem produzir centelhamento ou alta

temperatura estão imersas em óleo, de forma que a atmosfera explosiva que possa existir acima da superfície do óleo, ou externamente ao invólucro, não seja inflamada pelo equipamento.

Ex n – Equipamento não acendível. São equipamentos elétricos que em condições normais de operação são incapazes de

provocar a ignição de uma atmosfera explosiva de gás, bem como é improvável que ocorra algum defeito capaz de causar a inflamação desta atmosfera.

Ex p – Equipamento pressurizado. São os equipamentos em que é mantida uma pressão superior à atmosférica no

interior do invólucro de forma que, caso haja uma mistura inflamável em seu redor, esta não entre em contato com partes que possam causar uma ignição.

Ex i – Equipamento de segurança intrínseca.

Page 126: tecnicas de inspeção eletrotecnica

126

Técnicas de Inspeção e Procedimentos de Testes

10.4 FORMULÁRIO DE INSPEÇÃO

Os formulários de inspeção apresentados foram retirados do livro “Manual de Instalações Elétricas em Indústrias Químicas, Petroquímicas e de Petróleo” de Dácio de Miranda Jordão, Qualitymark, 2ª ed, que recomendamos como fonte de consulta.

Page 127: tecnicas de inspeção eletrotecnica

127

FORMULÁRIO 1 – APLICÁVEL A EQUIPAMENTOS Ex i

VERIFICAR GRAU DA INSPEÇÃO

A EQUIPAMENTO D A V

1 A documentação do circuito e/ou equipamento mostra que o mesmo é adequado à classificação da área ♦ ♦ ♦

2 O equipamento instalado é o especificado na documentação (instalação fixa apenas) ♦ ♦

3 A categoria e o grupo do circuito e/ou equipamento estão corretos ♦ ♦

4 A classe de temperatura do equipamento está correta ♦ ♦ 5 A instalação está claramente marcada ♦ ♦ 6 Não há modificações não autorizadas ♦ 7 Não há modificações não autorizadas visíveis ♦ ♦

8

Barreiras de segurança, relés e outros dispositivos limitadores de energia são do tipo aprovado, instalados de acordo com os requisitos de certificação e seguramente aterrados onde necessário.

♦ ♦ ♦

9 As conexões elétricas estão apertadas ♦ 10 As placas de circuito impresso estão limpas e sem danos ♦ B INSTALAÇÃO 1 Os cabos estão instalados de acordo com a documentação ♦

2 As blindagens dos cabos estão aterradas conforme documentação ♦

3 Não há dano evidente no cabo ♦ ♦ ♦

4 A selagem de dutos, tubos, e/ou eletrodutos estão satisfatórias ♦ ♦ ♦

5 As conexões ponto-a-ponto estão todas corretas ♦

6 A continuidade do aterramento está satisfatória (i.e. as conexões estão apertadas e os condutores possuem suficiente seção reta)

7 As conexões de aterramento mantêm a integridade do tipo de proteção ♦ ♦ ♦

8 O circuito de segurança intrínseca está isolado da terra, ou aterrado em apenas um ponto (referir-se à documentação) ♦

9 A separação entre circuitos de segurança intrínseca e não de segurança intrínseca em caixas de distribuição comuns ou cubículos de relés está mantida

10 Se aplicável, a proteção de curto circuito da fonte de alimentação está conforme a documentação. ♦

11 Condições especiais de uso (se aplicável) estão conforme... ♦ C AMBIENTE

1 O equipamento está adequadamente protegido contra intempérie, corrosão, vibração, etc. ♦ ♦ ♦

2 Não há acúmulo externo de poeira e sujeira ♦ ♦ ♦

Page 128: tecnicas de inspeção eletrotecnica

128

FORMULÁRIO 2 – APLICÁVEL A INSTALAÇÕES E EQUPAMENTOS Ex p

VERIFICAR GRAU DA INSPEÇÃO

A EQUIPAMENTO D A V 1 O equipamento é adequado à classificação de áreas ♦ ♦ ♦ 2 O grupo do equipamento está correto ♦ ♦ 3 A classe de temperatura do equipamento está correta ♦ ♦ 4 A identificação do circuito está correta ♦ 5 A identificação do circuito está disponível ♦ ♦ ♦

6 Invólucro, vidro e selagem vidro-metal (gaxeta e/ou massa) estão satisfatórios ♦ ♦ ♦

7 Não há modificações não autorizadas ♦ 8 Não há modificações não autorizadas visíveis ♦ ♦ 9 Tipo, valor nominal e posição de lâmpadas estão corretos ♦ B INSTALAÇÃO 1 O tipo de cabo é adequado ♦ 2 Não há dano visível nos cabos ♦ ♦ ♦

3

As conexões de aterramento, incluindo qualquer aterramento suplementar estão satisfatórias, por exemplo as conexões estão apertadas e os condutores possuem seção suficiente -verificação física ♦

-verificação visual ♦ ♦

4 Impedância de falta (sistema TN) ou resistência de terra (sistema IT) está satisfatória ♦

5 Os dispositivos de proteção elétrica automáticos operam dentro dos limites permitidos ♦

6 Os dispositivos de proteção elétrica automáticos estão calibrados corretamente ♦

7 A temperatura do gás de proteção está abaixo da máxima permitida ♦

8 Os tubos, dutos e invólucros estão em boas condições ♦ ♦ ♦

9 O gás de proteção está substancialmente livre de contaminantes ♦ ♦ ♦

10 A pressão e a vazão do gás de proteção são adequadas ♦ ♦ ♦

11 Os indicadores de pressão e/ou vazão, alarmes e intertravamentos funcionam corretamente ♦

12 O período de purga para pré-energização é adequado ♦ 13 As condições especiais de uso (se aplicáveis) estão conforme ♦ C AMBIENTE

1 O equipamento está adequadamente protegido contra intempérie, corrosão, vibração, etc. ♦ ♦ ♦

2 Não há acúmulo externo de poeira e sujeira ♦ ♦ ♦

Page 129: tecnicas de inspeção eletrotecnica

129

FORMULÁRIO 3 – APLICÁVEL A EQUPAMENTOS Ex d, Ex e, Ex n VERIFICAR Ex d Ex e Ex n

GRAU DA INSPEÇÃO A EQUIPAMENTO D A V D A V D A V 1 O equipamento é adequado à classificação de áreas ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ 2 O grupo do equipamento está correto ♦ ♦ ♦ ♦ ♦ ♦ 3 A classe de temperatura do equipamento está correta ♦ ♦ ♦ ♦ ♦ ♦ 4 A identificação do circuito do equipamento está correta ♦ ♦ ♦ 5 A identificação do circuito do equipamento está disponível ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

6 Invólucro, vidro e gaxeta de vedação vidro-metal e/ou massa selagem estão satisfatórios ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

7 Não há modificações não autorizadas ♦ ♦ ♦ 8 Não há modificações não autorizadas visíveis ♦ ♦ ♦ ♦ ♦ ♦

9

Os parafusos, dispositivos de entrada de cabos (direta e indireta) e elementos de fechamento são do tipo correto e estão completos e apertados -verificação física ♦ ♦ ♦ ♦ ♦ ♦

-verificação visual ♦ ♦ ♦

10 As faces dos flanges estão limpas e não danificadas e as gaxetas, se existirem, estão satisfatórias ♦

11 Os interstícios dos flanges estão dentro dos valores máximos permitidos ♦ ♦ 12 Tipo de lâmpada, potência e posição estão corretos ♦ ♦ ♦ 13 As conexões elétricas estão apertadas ♦ ♦ 14 As condições das gaxetas dos invólucros estão satisfatórias ♦ ♦

15 Os dispositivos de desligamento em invólucro vedados e dispositivos hermeticamente selados não estão danificados ♦

16 O invólucro com restrição gás-vapor está satisfatório ♦

17 Os ventiladores de motores tem afastamento suficiente em relação ao invólucro e à tampa ♦ ♦ ♦

B INSTALAÇÃO 1 O tipo de cabo é adequado ♦ ♦ ♦ 2 Não há dano visível nos cabos ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ 3 A selagem de passagens, dutos, tubos e/ou eletrodutos é satisfatória ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

4 As unidades seladoras e a selagem de cabos estão corretamente preenchidas ♦

5 A integridade do sistema de eletrodutos e a interface com o sistema misto estão mantidos ♦ ♦ ♦

6

As conexões de aterramento, inclusive ligações à terra suplementares estão satisfatórias, isto é, as conexões estão apertadas e os condutores possuem seção suficiente -verificação física ♦ ♦ ♦

-verificação visual ♦ ♦ ♦ ♦ ♦ ♦

7 Impedância de falta (sistema TN) ou resistência de aterramento (sistema IT) está satisfatória ♦ ♦ ♦

8 A resistência de isolamento é satisfatória ♦ ♦ ♦

9 Os dispositivos de proteção elétrica automáticos operam dentro dos limites permitidos ♦ ♦ ♦

10 Os dispositivos de proteção elétrica automáticos estão calibrados corretamente (não é permitido rearme automático em zona 1) ♦ ♦ ♦

11 As condições especiais de uso (se aplicáveis) estão conforme ♦ ♦ ♦ C AMBIENTE

1 O equipamento está devidamente protegido contra intempérie, corrosão, vibração e outros fatores adversos ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

2 Não há acúmulo externo de poeira e sujeira ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ 3 O isolamento elétrico está limpo e seco ♦ ♦

Page 130: tecnicas de inspeção eletrotecnica

130

FORMULÁRIO 4 – APLICÁVEL A EQUPAMENTOS Ex o

VERIFICAR GRAU DA INSPEÇÃO

A EQUIPAMENTO D A V 1 O equipamento é adequado à classificação da área ♦ ♦ ♦ 2 O grupo do equipamento está correto ♦ ♦ 3 A classe de temperatura do equipamento está correta ♦ ♦ 4 A identificação do circuito do equipamento está correta ♦

5 A identificação do circuito do equipamento está disponível ♦ ♦ ♦

6 Invólucro, vidro e gaxetas seladoras vidro -metal e/ou massa seladora estão satisfatórios ♦ ♦ ♦

7 O nível de óleo está satisfatório ♦ ♦ 8 O indicador do nível de óleo está em bom estado ♦ ♦ ♦ 9 Não há modificações não autorizadas ♦ 10 Não há modificações não autorizadas visíveis ♦ ♦ B INSTALAÇÃO 1 O tipo de cabo é adequado ♦ 2 Não há dano visível nos cabos ♦ ♦ ♦

3

As conexões de aterramento estão adequadas, isto é, estão apertadas e os condutores possuem seção suficiente -verificação física ♦

-verificação visual ♦ ♦

4 Impedância de falta (sistema TN) ou resistência de aterramento (sistema IT) está satisfatória ♦

5 Os dispositivos automáticos de proteção elétrica operam dentro dos limites permitidos ♦

6 Os dispositivos automáticos de proteção elétrica automáticos estão ajustados corretamente ♦

7 Os dutos, tubos e invólucros estão em boas condições ♦ ♦ ♦ 8 O óleo está substancialmente livre de contaminantes ♦ ♦ ♦

9 As condições especiais de uso (se aplicáveis) estão conforme... ♦

C AMBIENTE

1 O equipamento está adequadamente protegido contra intempérie, corrosão, vibração, etc. ♦ ♦ ♦

2 Não há acúmulo externo de poeira e sujeira ♦ ♦ ♦

Page 131: tecnicas de inspeção eletrotecnica

131

Técnicas de Inspeção e Procedimentos de Testes

11 REOSTATOS E RESISTORES

O reostato tem larga aplicação no acionamento de motores de rotor bobinado. Através da inserção de resistores no circuito rotórico, reduz-se a corrente de partida

do motor, aumentando o conjugado. Em acionamentos que exigem alto conjugado de partida, o reostato é calculado para

que o motor forneça conjugado de partida próximo do conjugado máximo durante a aceleração.

Os bancos de resistências para partida de motores de menor potência são do tipo

banco de resistores sólidos. Na partida de grandes motores elétricos, geralmente de média tensão, são utilizados

reostatos com resistência líquida. Nestes reostatos a variação da resistência normalmente é processada pela alteração do nível do eletrólito (através de uma bomba) ou da movimentação dos eletrodos em relação à massa do eletrólito (movimento dos eletrodos)

11.1 INSPEÇÃO DE BANCO DE RESISTORES FIXOS

11.1.1 Inspeção Visual Verificar limpeza, estado dos isoladores e elementos resistores, indicação de

sobreaquecimento das conexões, aterramento da estante metálica, corrosão, pintura.

11.1.2 Resistência de Isolamento

Medir e anotar o valor da resistência de isolamento com megôhmetro 500V durante

1 minuto na posição RST x massa. Se o valor medido estiver muito inferior aos valores medidos anteriormente, pode-se fazer um teste com os condutores motor-resistor abertos, medindo-se as resistências de isolamento do resistor e motor separadamente. Confirmado que a queda na resistência de isolamento é devido ao resistor, abrir o fechamento da estrela do resistor e medir a resistência de isolamento nas posições R x STM, S x RTM e T x RSM. Através deste teste pode-se identificar o isolador ou grupo de isoladores com problema.

Page 132: tecnicas de inspeção eletrotecnica

132

Técnicas de Inspeção e Procedimentos de Testes

11.1.3 Alteração nas Característica de Aceleração do Motor Efetuar medição dos valores ôhmicos da resistência dos elementos, registrando e

comparando com os valores medidos na fábrica, convertidas as medidas para a mesma temperatura.

11.2 INSPEÇÃO DE REOSTATOS LÍQUIDOS

Fig 70 Reostato líquido para partida de um motor de 7000 kW, 13,2kV

Page 133: tecnicas de inspeção eletrotecnica

133

Técnicas de Inspeção e Procedimentos de Testes

A inspeção dos reostatos líquidos deve compreender as seguintes ações (não deixe de consultar o manual do fabricante):

11.2.1 Tanque

• Verificar limpeza, pontos de oxidação, estado da pintura e pontos de desgaste. • Observar existência de vazamentos • Inspecionar se os materiais isolantes estão em boas condições, medir isolamento

em caso de dúvida.

11.2.2 Eletrólito

• Verificar nível • Observar e anotar a temperatura. Valor limite deve ser tirado do manual do

fabricante. • Colher amostra e medir densidade e a condutividade ou resistividade,

comparando com dados do fabricante.

11.2.3 Eletrodos

• Verificar limpeza, pontos de corrosão e desgaste.

11.2.4 Alteração nas Características de Aceleração do Motor • Verificar densidade e resistividade ou condutividade do eletrólito • Verificar vazão das bombas de recalque do eletrólito • Verificar movimentação dos eletrodos.

11.2.5 Mecanismo de Curto-circuitamento e Levantamento das Escovas Efetuar uma simulação do funcionamento deste mecanismo: Com o motor em posição de repouso as escovas devem estar apoiadas nos anéis

coletores e os limites de escovas apoiadas devem estar sinalizando e permitindo a partida do motor. Atingindo a rotação nominal, a bucha de curto-circuitamento é acionada, curto-circuitando os anéis coletores e acionando o levantamento das escovas. Os limites de escovas totalmente levantadas acionam o desligamento do dispositivo.

Page 134: tecnicas de inspeção eletrotecnica

134

Técnicas de Inspeção e Procedimentos de Testes

Fig 71 Mecanismo de curto-circuitamento e levantamento de escovas de motor em operação

11.2.6 Contator de Curto-circuito do Reostato

• Inspecionar contatos e câmaras de arco. • Operar sistema em posição de teste, observando a operação do contator. • Efetuar teste de resistência de isolamento para a massa e entre fases com

megômetro 500V durante 1 min. • Efetuar teste de resistência dos contatos do contator com um micro-ohmímetro.

Page 135: tecnicas de inspeção eletrotecnica

135

Técnicas de Inspeção e Procedimentos de Testes

12 GALERIAS, ROTAS DE CABOS, ELETRODUTOS E

ACESSÓRIOS

A inspeção em galerias de cabos requer uma série de procedimentos de segurança próprios:

• A inspeção deve ser executada por pelo menos duas pessoas. • O inspetor deverá portar uma planta baixa mostrando a galeria e as possíveis

rotas de fuga em caso de um acidente. • Utilizar pelo menos um rádio de comunicação. • Não tocar em cabos energizados. • Portar lanternas para o caso de falta de energia de iluminação. • Utilizar detector de CO e oxímetro.

12.1 INSPEÇÃO EM GALERIAS, ROTAS DE CABOS, ELETRODUTOS E

ACESSÓRIOS

Os itens a seguir destacam os pontos onde o inspetor deverá estar atento:

12.1.1 Circuito de Iluminação Anotar anormalidades tipo pontos apagados, circuitos com defeito, limpeza das

luminárias.

12.1.2 Sistema de Drenagem de Água

Observar perfeito funcionamento do sistema de drenagem, moto-bombas, bóias de

controle de nível, painéis de controle. Verificar se existe acúmulo de água no interior da galeria

12.1.3 Limpeza da Galeria

Verificar se o trânsito está prejudicado devido à existência de sujeira ou obstáculo.

Page 136: tecnicas de inspeção eletrotecnica

136

Técnicas de Inspeção e Procedimentos de Testes

12.1.4 Bandejamento e Cabos Elétricos

Verificar se: • Os cabos estão organizados e amarrados ao leito de cabos. • Existe material sólido sobre os condutores. Material sólido reduz a transmissão

de calor fazendo com que os cabos trabalhem a uma maior temperatura, reduzindo sua vida útil.

• Existem condutores de bitolas muito diferentes, próximos uns dos outros. Os

condutores de menor seção devem ser super-dimensionados para trabalharem do lado de outros de seção muito maior (diferença de três bitolas).

• Os condutores de níveis de tensão diferentes e de funções distintas (força e

controle, por exemplo) estão dispostos em leitos de cabos diferentes. Cabos de média e baixa tensão e de controle devem ser lançados em leitos de cabos distintos.

• Aterramento dos leitos de cabos e eletrodutos metálicos.

1. As linhas elétricas (leitos de cabos, eletrodutos, etc) devem garantir um caminho

de baixa impedância para o retorno das correntes de falta à terra. 2. Verificar integridade dos cabos de aterramento. 3. Não pode haver interrupção da continuidade de eletrodutos e leitos de cabos em

nenhum ponto do circuito. • Existem vestígios de roedores, cupins e outros insetos. Roedores e cupins podem

danificar os condutores. • As emendas estão com bom aspecto visual. Observe sinais de aquecimento e de

fuga de corrente superficial. • Existem condutores comprimidos contra bordas. Observe se a compressão pode

ocasionar lesão no material isolante. • Leitos de cabos e suportes:

Se existe ponto de oxidação, esse os parafusos das emendas e suportes estão apertados.

Page 137: tecnicas de inspeção eletrotecnica

137

Técnicas de Inspeção e Procedimentos de Testes

Fig 72 Leito de cabos

12.1.5 Eletrodutos Verificar se: • Existem sinais de corrosão. • Há amassamento que pode comprometer o condutor. • O eletroduto tem continuidade elétrica desde a caixa terminal do equipamento

elétrico até o leito de cabos ou até o painel alimentador. Caso haja interrupção, deverá ser mantida a continuidade com um condutor de aterramento.

12.1.6 Proteção Passiva

Observar se a proteção passiva está efetiva, em boas condições, protegendo todas as passagens entre salas e entrada de painéis.

Page 138: tecnicas de inspeção eletrotecnica

138

Técnicas de Inspeção e Procedimentos de Testes

Fig 73 Proteção passiva na entrada de cabos – parte inferior dos painéis

Page 139: tecnicas de inspeção eletrotecnica

139

Técnicas de Inspeção e Procedimentos de Testes

13 SISTEMA DE ALARME E INCÊNDIO

A inspeção do sistema de alarme e incêndio compreende os sensores, painéis locais e painel central.

13.1 SENSORES

• Verificar se a fixação e limpeza estão em bom estado.

Fig 74 Sensores de fumaça

13.2 PAINEL LOCAL

Observar se: • A fixação, a pintura e a limpeza do painel estão em bom estado. Caso exista

contaminante no interior do painel deverá ser observado a causa. • A sinalização do painel está totalmente operativa. • O vidro de proteção do botão de alarme esta íntegro.

Page 140: tecnicas de inspeção eletrotecnica

140

Técnicas de Inspeção e Procedimentos de Testes

13.3 PAINEL CENTRAL

Verificar se: • A fixação, a pintura e a limpeza estão em bom estado. • A sinalização do painel está totalmente operativa. • As sirenes estão funcionando corretamente.

13.4 TESTE SIMULADO DE INCÊNDIO

• Efetuar teste de todas as funções, simulando um incêndio.

Page 141: tecnicas de inspeção eletrotecnica

141

Técnicas de Inspeção e Procedimentos de Testes

14 SISTEMA DE ILUMINAÇÃO E TOMADAS DE FORÇA

A inspeção em sistemas de iluminação inclui os painéis de distribuição e controle, a distribuição (linhas elétricas e condutores), suportes (braços, postes, torres) e as luminárias, lâmpadas e acessórios.

Fig 75 Iluminação de um galpão industrial

14.1 SEGURANÇA E MEIO AMBIENTE

As lâmpadas de descarga contêm mercúrio, elemento danoso ao meio ambiente e

prejudicial à saúde humana. Evite a quebra da lâmpada. Embale a lâmpada removida preferencialmente na

embalagem original, depositando em local apropriado para coleta e destinação para reciclagem.

Em caso de quebra, remova todos os resíduos, utilizando luva apropriada, destinando

os resíduos para o setor responsável. • Nos terminais de saída dos reatores e ignitores estão disponíveis elevadas tensões

que podem ocasionar danos à saúde e aos instrumentos portáteis de medição. Utilize preferencialmente instrumentos de teste categoria III (1000V). Nos circuitos aéreos externos utilize instrumentos categoria IV em razão da possibilidade de descargas atmosféricas.

Page 142: tecnicas de inspeção eletrotecnica

142

Técnicas de Inspeção e Procedimentos de Testes

• Atenção para inspeção em altura. Utilize cinto de segurança e obedeça rigorosamente os padrões de segurança. Faça um exame médico clínico antes de acessar postes e torres.

14.2 A INSPEÇÃO NOS CIRCUITOS DE ILUMINAÇÃO

14.2.1 Painéis de Distribuição e Controle • Não deve haver poeira ou umidade no interior do painel. Qualquer vestígio deve

ser relatado para reparo ou troca do painel, que garanta o grau de proteção necessário. Em áreas industriais o painel deve ser preferencialmente IP65, no mínimo IP55.

• Medir temperatura das conexões com termômetro infravermelho. A elevação de temperatura não pode ser superior a 30ºC. Observar sinais de aquecimento.

• O Painel deve estar aterrado. A fiação deve estar arrumada e os componentes fixados.

• O Painel deve estar com pintura em bom estado e sem pontos de oxidação. • Observar se os circuitos estão identificados. • Testar se o circuito está operando em manual e automático. • Meça a tensão e compare com a tensão nominal. A tensão na lâmpada não deve

variar da nominal em +5% ou -10%.

14.2.2 Eletrodutos e Linhas Elétricas Inclusive Condutores • Observar se existem eletrodutos amassados ou quebrados, soltos, com

continuidade comprometida, com conduletes abertos ou com vedação comprometida.

• Inspecionar conexões com isolamento deficiente e cabos com isolamento danificado.

14.2.3 Luminárias e Acessórios

Verificar se: • A vedação da luminária e caixa de acessórios está íntegra. • Não existe contaminante presente no interior. • O vidro está limpo, de forma a não impedir a passagem da luz. • A luminária está fixada firmemente com todos os elementos de fixação. • A luminária está numa boa posição ou poderia ser relocada com ganhos na

redução dos casos de manutenção.

Page 143: tecnicas de inspeção eletrotecnica

143

Técnicas de Inspeção e Procedimentos de Testes

• A entrada dos cabos na luminária e caixa de acessórios está em boas condições. • A luminária está exposta a um nível de vibração que possa comprometer a vida

útil da lâmpada. • A carcaça da luminária e acessórios estão aterrados.

14.2.4 Torres de Iluminação – Escada de Acesso e Plataforma • Verificar fixação. • Verificar pintura e pontos de oxidação • Verificar se estão aterradas. Caso existam condutores de descida de SPDA

(Sistema de Proteção Contra Descargas Atmosféricas), devem estar firmemente conectados à estrutura metálica, garantindo a equipotencialidade.

14.3 INSPEÇÃO EM TOMADAS DE FORÇA

Circuitos de tomadas de força podem representar um risco potencial de choque para

o usuário se o projeto não estiver de acordo com as normas técnicas ou se as instalações estiverem degradadas por descuido da manutenção.

De acordo com a NBR-5410 (1997), devem ser protegidas por dispositivos

diferenciais residuais com sensibilidade para operarem com correntes da ordem de 30mA: • As tomadas externas; • As tomadas internas que possam vir a alimentarem equipamentos externos; • As tomadas localizadas em áreas em que se usa água para limpeza. OBS: não estão relacionadas acima outras aplicações inerentes às instalações

prediais. Do exposto, observa-se que a maioria das tomadas de força industriais devem ser

protegidas por dispositivos DR de 30mA. Outro fator de risco importante é a possibilidade de conexão do plugue de um

equipamento em curto-circuito em uma tomada energizada, ou a remoção do plugue com equipamento em operação com carga.

Estas ações podem ocasionar arcos elétricos de altas temperaturas, podendo provocar

queimaduras sérias no operador e pessoas próximas. As tomadas de força devem ser equipadas com dispositivos de bloqueio que impeçam estas ações.

A inspeção de circuitos de tomadas de força deve compreender:

Page 144: tecnicas de inspeção eletrotecnica

144

Técnicas de Inspeção e Procedimentos de Testes

14.3.1 Painéis de Distribuição • Teste de operação dos dispositivos DR 30mA. • Estanqueidade do painel. • Arranjo dos componentes e identificação dos circuitos. • Integridade da pintura e pontos de oxidação.

14.3.2 Tomadas

• Limpeza e estanqueidade. • Medição de tensões entre fases e para terra. • Garantia da continuidade do terra da tomada com a barra de terra do painel de

distribuição. • Teste dos dispositivos de bloqueio para inserção e remoção de plugue com a

tomada energizada.

Page 145: tecnicas de inspeção eletrotecnica

145

Técnicas de Inspeção e Procedimentos de Testes

15 FREIOS ELETRO-HIDRÁULICOS

A inspeção deve observar os aspectos de limpeza, fixação, corrosão e comprometimento dos eletrodutos e condutores e a entrada do cabo na caixa de ligação.

• Verificar ruídos anormais e vazamentos de óleo.

• Observar sinais de abrasão no eixo de acionamento.

• Efetuar teste de frenagem observando o desempenho do equipamento.

• Efetuar teste de resistência de isolamento do motor.

Fig 76 Freio Eletro-hidráulico (ELDRO)

Page 146: tecnicas de inspeção eletrotecnica

146

Técnicas de Inspeção e Procedimentos de Testes

16 FREIOS ELETROMAGNÉTICOS

o Inspeção visual observando limpeza, fixação, corrosão, estado do eletrodutos e cabos de alimentação e entradas na caixa de ligações.

o Observar se existe vibração em nível elevado.

o Efetuar teste de frenagem, observando o desempenho do equipamento.

o Efetuar teste de resistência de isolamento.

o Observar sinais de aquecimento anormal do resistor de economia, se houver.

o Medir tensão de alimentação no conjunto freio e resistência de economia e

somente no freio. Verificar se a tensão corresponde à faixa permissível para a operação do freio.

o Medir o valor da resistência ôhmica do resistor de economia e comparar com

valor nominal.

Page 147: tecnicas de inspeção eletrotecnica

147

Técnicas de Inspeção e Procedimentos de Testes

17 DETECTORES DE METAL E SEPARADORES MAGNÉTICOS.

Peças metálicas abandonadas em pátios podem se recuperadas e lançadas sobre transportadores, provocando rasgos em correias transportadoras, com graves perdas.

Em numerosos processos industriais, a presença de material metálico pode provocar

danos ao processo, devendo ser detectadas e removidas prontamente através de detectores de metal e separadores magnéticos.

17.1 TÉCNICAS DE INSPEÇÃO

Os painéis de alimentação e controle devem estar completamente operacionais,

limpos, com pintura preservada, sem sinais de corrosão, lâmpadas de sinalização operativas, instrumentos de medição em ótimo estado com indicação confiável e componentes internos limpos e preservados. Verificar aterramento da carcaça.

Os elementos de detecção e de separação devem estar aterrados, firmemente fixados

e limpos, pintura preservada, sem pontos de oxidação. Quando refrigerados a óleo, inspecionar nível, temperatura e sinal de vazamento. Retirar amostra de óleo para análise físico-químico no máximo a cada dois anos. Efetuar teste de resistência de isolamento, comparando com os valores anteriores.

Efetuar teste com uma peça metálica (ver especificação do projeto e instruções do

fabricante) observando a correta identificação e remoção da peça. Fazer ajustes se necessário, até que esteja garantida a perfeita operação.

Fig 77 Separador Magnético instalado em correia transportadora

Page 148: tecnicas de inspeção eletrotecnica

148

Técnicas de Inspeção e Procedimentos de Testes

18 DISPOSITIVOS DE PROTEÇÃO E COMANDO DE CAMPO

Neste item estão englobadas as chaves de velocidade, sondas de nível, calha cheia, proteção de polia de cauda, desalinhamento de correia, chaves de emergência, chaves de comando local, limite de fim de curso, sensores indutivos de aproximação e de velocidade, entre outros.

Estes componentes estão localizados no campo, expostos à agressão ambiental

(poeira, umidade, gases, etc) e danos por pancadas. Como ação comum de inspeção para todos estes componentes, estão: • Fixação na base com todos os parafusos. • Limpeza e pintura preservada. • Eletrodutos, condutores e vedação na entrada do componente. • Preservação do grau de proteção contra entrada de poeira e umidade. • Preservação de proteção contra pancadas, quando existirem • Aterramento da carcaça Todos os componentes devem ser testados quando a sua funcionabilidade,

individualmente, em períodos predeterminados.

Fig 78 Chaves indicadoras de desalinhamento e de emergência de correias transportadoras

Page 149: tecnicas de inspeção eletrotecnica

149

Técnicas de Inspeção e Procedimentos de Testes

19 INVERSORES DE FREQÜÊNCIA

19.1 PRINCÍPIO OPERACIONAL

Inversores de freqüência são equipamentos que variam a freqüência da tensão senoidal fornecida a um motor de indução para permitir a operação com velocidade variável.

Para manter o fluxo magnético e conseqüentemente o conjugado do motor constante,

o inversor varia também o valor eficaz da tensão, de forma que a relação f

V não se altere.

A Fig 79 apresenta um diagrama esquemático com as principais características de um

inversor. Variando a freqüência da tensão, a velocidade (rpm) do motor irá variar conforme as

relações:

⎟⎠⎞

⎜⎝⎛ −×=

100%1 snn s

pfns 2

120×=

Onde: n= rotação nominal (rpm) ns = rotação síncrona (rpm) f = freqüência (Hz) 2p = número de pólos do motor s = escorregamento (%)

Page 150: tecnicas de inspeção eletrotecnica

150

Técnicas de Inspeção e Procedimentos de Testes

Fig 79 Bloco diagrama de um inversor CFW09-WEG

Page 151: tecnicas de inspeção eletrotecnica

151

Técnicas de Inspeção e Procedimentos de Testes

Entretanto a variação V/f só é linear até a freqüência nominal do motor. A variação

da freqüência acima da nominal não é acompanhada pela variação da tensão, que permanece constante.

Fig 80 Curva representativa da variação da tensão na saída do inversor

A curva característica conjugado x velocidade de um motor operando com inversor mostra que o conjugado na ponta do eixo do motor será constante até a freqüência nominal, caindo para freqüências superiores, chamada zona de enfraquecimento de campo.

Page 152: tecnicas de inspeção eletrotecnica

152

Técnicas de Inspeção e Procedimentos de Testes

Fig 81 Diminuição do torque devido ao aumento da velocidade

19.2 POTÊNCIA DO INVERSOR E DO MOTOR ACIONADO

É preciso considerar alguns fatores que acarretam uma elevação na temperatura de operação do motor e, por conseguinte, reduz o conjugado e potências admissíveis no motor.

• A operação de um motor auto-ventilado com freqüência e velocidade inferior à

nominal provoca uma redução na eficiência da ventilação.

Fig 82 Curva de torque x freqüência para motores fechados, autoventilados, com carcaça de ferro fundido

• A corrente de saída dos conversores não é perfeitamente senoidal e as

componentes de ordem superior provocam um aumento nas perdas e elevação de temperatura no motor.

Page 153: tecnicas de inspeção eletrotecnica

153

Técnicas de Inspeção e Procedimentos de Testes

Fig 83 Torque do motor alimentado por inversor de freqüência em função do fator de harmônicos de tensão

A potência máxima que um inversor de freqüência pode fornecer, impressa em placa, está relacionada à temperatura do ar de refrigeração e à altitude de instalação.

De acordo com a norma NBR-7094 as condições usuais de serviço são: • Altitude não superior a 1000m acima do nível do mar. • Ar ambiente (admissão) não superior a 40ºC. Para condições diferentes das indicadas, é necessário utilizar fatores de redução para

a potência e a corrente nominal que podem ser fornecidas continuamente por um inversor.

Fig 84 Curva de redução da potência em função da temperatura do ar de refrigeração

Page 154: tecnicas de inspeção eletrotecnica

154

Técnicas de Inspeção e Procedimentos de Testes

Fig 85 Curva de redução da potência em função da altitude 19.3 REATÂNCIA DE REDE

Os inversores, como todo equipamento eletrônico, são altamente susceptíveis às

sobretensões. As sobretensões provocam a queima dos diodos e capacitores de entrada, danificando o equipamento. Os supressores de surto montados no inversor não são capazes de proteger os inversores de todas as ocorrências de sobretensão.

A reatância de rede, instalada na entrada do inversor, é capaz de reduzir os

transientes de sobretensão, auxiliando na proteção do equipamento. A reatância reduz também as harmônicas introduzidas na rede pelo inversor,

proporcionando as seguintes vantagens: • Aumento do fator de potência; • Redução da corrente eficaz de entrada; • Aumento da vida útil dos capacitores do circuito intermediário; • Diminuição da distorção harmônica na rede de alimentação.

19.4 REATÂNCIA DE CARGA

A reatância na saída do inversor é utilizada quando a tensão do motor é superior a

460V e quando a distância entre o inversor e o motor for superior a 50m.

Page 155: tecnicas de inspeção eletrotecnica

155

Técnicas de Inspeção e Procedimentos de Testes

Com a utilização de reatância de carga , a taxa de variação da tensão (dv/dt) dos pulsos gerados pelo inversor será menor, reduzindo os picos de sobretensão impostos ao isolamento, reduzindo o stress e aumentando a vida útil do isolamento.

A utilização da reatância reduz as correntes para a terra através da capacitância dos

cabos longos, evitando a atuação da proteção de fuga à terra.

19.5 INSTALAÇÃO ELÉTRICA

Apesar de não exigida por alguns fabricantes, é recomendável para a confiabilidade

operacional do equipamento a instalação de fusíveis ultra-rápidos para a proteção dos dispositivos semicondutores contra sobrecorrentes. Os fusíveis devem ter qualidade comprovada e devem ter o I2t igual ou inferior ao sugerido pelo fabricante do inversor.

O inversor e a carcaça do motor elétrico devem ser conectados à malha de terra

dimensionada para intensidades das correntes de curto-circuito fase-terra e de descarga atmosférica.

O inversor e motor devem ser aterrados à mesma malha de terra ou através de um

condutor de seção compatível com o valor da corrente de defeito fase-terra que interligue a carcaça do motor ao inversor e ao potencial de terra (condutor de proteção “PE”).

As linhas elétricas metálicas (eletrodutos, leito de cabos, eletrocalhas, etc) utilizadas

para os condutores de força, controle e sinal devem estar solidamente aterradas.

19.6 GRAU DE PROTEÇÃO E VENTILAÇÃO

Os inversores são equipamentos geralmente com grau de proteção IP20 e devem,

portanto, serem montados em painéis e locais abrigados que ofereçam proteção contra exposição direta a raios solares, chuva, umidade, ambientes salinos, poeira e outros contaminantes.

Quando montados em painéis, os inversores devem ter espaços livres e um aporte

suficiente de ar à temperatura inferior a 40ºC para que a troca de calor seja efetiva a ponto de manter os componentes operando dentro de temperaturas adequadas.

19.7 INTERFERÊNCIA ELETROMAGNÉTICA

O funcionamento normal de um inversor pode ser afetado por interferência

eletromagnética de motores, cabos de potência e outras fontes eletromagnéticas.

Page 156: tecnicas de inspeção eletrotecnica

156

Técnicas de Inspeção e Procedimentos de Testes

O inversor pode criar interferências em equipamentos ou componentes próximos. Para evitar estes inconvenientes é necessário seguir as instruções do fabricante do

inversor, entre elas: Os equipamentos sensíveis tais com CLP, controlador de temperatura, cabos de

termopar, etc, devem estar afastados do inversor, reatâncias e cabo de alimentação do motor em pelo menos 250mm.

O painel elétrico onde o inversor está montado deve ter calhas independentes para a

separação física dos condutores de sinal, de controle e potência. Os cabos do motor devem ser separados dos demais cabos e devem estar contidos,

preferencialmente, em eletrodutos metálicos aterrados. Os cabos de controle e sinal devem ser blindados e a blindagem aterrada no lado do

inversor e isolada no outro lado. Caso o cruzamento destes cabos com os demais seja inevitável, deve ser feito na perpendicular, mantendo-se um afastamento mínimo de 50mm. Os cabos de interligação entre o inversor e a HMI externa devem estar separados dos demais cabos em, pelo menos, 100mm.

Para que não interfiram no circuito de controle, utilizar supressores RC (alimentação CA) e diodos de roda livre (alimentação CC) em paralelo com as bobinas de relés, contatores, solenóides e freios eletromecânicos instalados próximos aos inversores.

O cabo do encoder deve ser blindado, preferencialmente dentro de eletroduto

metálico, aterrados dos dois lados e mantidos afastados em, no mínimo, 250mm dos demais cabos.

19.8 INSPEÇÃO

Cuidado! Segurança • Antes de atuar no inversor desligue a fonte de energia elétrica. • Após desligar a energia aguarde pelo menos 10 minutos antes de tocar em

alguma parte viva do inversor. Os capacitores do link DC demoram a descarregar.

• Só após 10 min teste a inexistência de tensão com um multímetro , no mínimo categoria III – 600V

• Os cartões eletrônicos possuem componentes sensíveis a descargas eletrostáticas. Não toque diretamente sobre os componentes ou conectores. Caso necessário, toque antes na carcaça metálica aterrada ou utilize pulseira de aterramento adequada.

Page 157: tecnicas de inspeção eletrotecnica

157

Técnicas de Inspeção e Procedimentos de Testes

• Não execute ensaio de resistência de isolamento ou tensão aplicada CA ou CC no inversor sem consultar o fabricante.

19.8.1 Roteiro Para Inspeção

Limpeza – o inversor deve estar completamente livre de poeira, óleo ou qualquer

outro contaminante. Ventilação – verifique a distância entre inversores e outros componentes. Observe se

o inversor montado acima de outro não está recebendo o ar quente do de baixo. Certifique-se que o ar de admissão tenha temperatura inferior a 40ºC e que o

ventilador do inversor esteja funcionando adequadamente. Os ventiladores devem ser substituídos após 40.000 horas de operação

(aproximadamente 5 anos em operação contínua). Terminais – checar o aperto Capacitores do link DC – observar vazamento de eletrólito, válvula de segurança

expandida e carcaça deformada. Os capacitores devem ser substituídos após 5 anos em operação.

Aterramento - observar aterramento do inversor e motor. Resistores e reatâncias – testar resistências de isolamento e observar danos ao

isolamento, sujeira e aperto das conexões.

Page 158: tecnicas de inspeção eletrotecnica

158

Técnicas de Inspeção e Procedimentos de Testes

20 DISJUNTORES

20.1 GERAL

Os disjuntores são equipamentos altamente exigidos quando são solicitados a operarem e abrirem correntes de defeito de altíssimas intensidades.

Nestes casos altas temperaturas e grandes esforços eletrodinâmicos são impostos aos

elementos condutores e as partes isolantes do equipamento. As partes mecânicas do disjuntor necessitam de movimentação para que possam

operar adequadamente quando solicitado. Em várias aplicações o disjuntor pode permanecer inativo durante longos períodos, podendo não corresponder quando solicitado a operar.

Fig 86 Disjuntor extraível em cubículo

Page 159: tecnicas de inspeção eletrotecnica

159

Técnicas de Inspeção e Procedimentos de Testes

20.2 INSPEÇÃO DE DISJUNTORES

O plano de inspeção de disjuntores deve ser estabelecido para atender às seguintes ações:

• Manobrar (ligar e desligar) os disjuntores que, no período de 12 meses, não foram operados.

• Efetuar ensaios preditivos nos disjuntores que operam abrindo correntes de curto- circuito com valores próximos da capacidade de interrupção.

• Cumprir o plano de inspeção para os demais disjuntores. O plano de inspeção deve conter as seguintes ações: • Limpeza- o acúmulo de sujeira, junto com a umidade provoca a redução da

resistência de isolamento, a oxidação das partes metálicas e o travamento de rolamentos e êmbolos.

• Pintura- sinais de oxidação e falhas de pintura devem ser relatados para que sejam reparados.

• Manobra do mecanismo de abertura e fechamento – efetuar, no mínimo, três operações liga/desliga, para atuação das partes móveis.

20.3 PRINCIPAIS CAUSAS DE FALHAS

As causas de falhas em disjuntores estão relacionadas aos pólos de acionamento e ao

mecanismo de operação. As falhas nos pólos de acionamento são devidas a: • Disjuntor não tem capacidade de interrupção compatível com o nível de curto-

circuito da barra. Os níveis de curto circuito em uma barra podem aumentar com a entrada de novas

unidades geradoras, entrada de novas linhas de transmissão ou com entrada de novos motores de grandes potências próximos à barra.

É necessário que a cada cinco ou dez anos seja rodado um estudo de curto circuito

para verificação da capacidade dos disjuntores em operar com segurança para os novos níveis. • Disjuntor operar uma ou mais vezes abrindo correntes de curto-circuito com

intensidade de 70% ou maior da capacidade de interrupção. É importante que, toda vez que um disjuntor interrompa correntes de curto-circuito

próximas de sua capacidade de interrupção, que sejam executados testes de resistência de contato e de resistência de isolamento, para controle das condições mínimas de operação.

Page 160: tecnicas de inspeção eletrotecnica

160

Técnicas de Inspeção e Procedimentos de Testes

Constatado aumento da resistência de contato ou redução da resistência de

isolamento, pode ser necessário uma manutenção para restabelecer as boas condições de operação.

• Deterioração das características do meio de extinção do arco. O óleo mineral isolante e o hexafluoreto de enxofre (SF6), principalmente, podem se

degradar, impedindo que a extinção do arco se proceda de forma adequada, ocasionando danos ao disjuntor.

Danos à ampola de vácuo e ao mecanismo de sopro pneumático e magnético e

câmara de extinção dos disjuntores a ar, podem provocar sérios danos ao disjuntor. • Controle das condições do óleo isolante Nos disjuntores com grande volume de óleo recomenda-se efetuar, pelo menos, os

testes de rigidez dielétrica e acidez do óleo isolante. A rigidez dielétrica não deve cair para valores abaixo de 25kV. A acidez não deve

ser superior a 0,4mg KOH/g. Neste ponto o óleo está oxidado suficientemente para produzir produtos ácidos insolúveis (borra), apresentando riscos operacionais. A cor do óleo (amarelo forte, tendendo para marrom) é indicador de alta acidez.

Nos disjuntores a pequeno volume de óleo o líquido isolante deve ser trocado e o

pólo lavado com a passagem de uma pequena quantidade (cerca de 1 litro) de óleo novo, preferencialmente aquecido à 80ºC (ponto de anilina).

Manter o nível de óleo dentro da faixa de controle. • Controle da pressão de gás SF6 Controlar a pressão e demais parâmetros de acordo com as instruções do fabricante. • Aterramento da carcaça Verificar se o aterramento está adequado. • Inspeção do sistema de inserção e operação dos limites

Page 161: tecnicas de inspeção eletrotecnica

161

Técnicas de Inspeção e Procedimentos de Testes

O disjuntor deve ser inserido e removido sem exigir esforços, indicativo de que o sistema mecânico está em boas condições. Testar a sinalização e bloqueios nas posições inserido e teste.

• Teste do sistema de proteção. Simule a operação das proteções e o efetivo desligamento do disjuntor . • Teste da proteção antibombeamento (antipumping) Com um sinal de acionamento (por exemplo o botão liga comprimido), mantenha um

sinal de desligamento. O disjuntor não deve ficar abrindo e fechando. • Termovisão Verificar possíveis pontos quentes. Comparar com termografias anteriores.

Fig 87 Exemplo de termografia de um disjuntor

Page 162: tecnicas de inspeção eletrotecnica

162

Técnicas de Inspeção e Procedimentos de Testes

• Ensaios elétricos Efetuar os testes de:

1. Resistência de contatos 2. Resistência de isolamento 3. Tempo de abertura e fechamento dos contatos 4. Simultaneidade dos contatos 5. Fator de potência do isolamento

Consultar a apostila Dispositivos de Seccionamento e Comutação desta série e o

capítulo 24 desta apostila.

Page 163: tecnicas de inspeção eletrotecnica

163

Técnicas de Inspeção e Procedimentos de Testes

21 CONTATORES

Contatores são dispositivos destinados a comandar circuitos, acionados eletromagneticamente, capazes de suportar um número muito elevado de operações.

Na maioria das aplicações o contator é utilizado no acionamento de motores

elétricos. Comparando com os disjuntores, o contator tem uma capacidade muito maior de operações, porém no quesito capacidade de interrupção, o contator só é capaz de interromper correntes de pequena intensidade.

Em razão da pequena capacidade de interromper correntes elevadas, o contator deve

ser coordenado com a proteção de curto-circuito (fusíveis e disjuntores). Quando os elementos de proteção contra curto-circuito são sobre-dimensionados, os contatores são levados a abrirem correntes elevadas e se danificam, podendo chegar a colar os contatos.

A inspeção de contatores de baixa tensão se resume à verificações de limpeza,

operação sem vibrações caracterizadas pela alta relutância do circuito magnético, termografia quando possível, observação de descolorações e sinais de desgastes e testes de resistência de isolamento e de resistência de contatos para as unidades de maior porte.

Para os contatores de média tensão extraíveis, deverá ser inspecionado o dispositivo

de inserção/extração, guias e limites. Efetuar testes operacionais observando a correta operação de todos os dispositivos de alarme e proteção.

Page 164: tecnicas de inspeção eletrotecnica

164

Técnicas de Inspeção e Procedimentos de Testes

Fig 88 Contator de média tensão

Page 165: tecnicas de inspeção eletrotecnica

165

Técnicas de Inspeção e Procedimentos de Testes

22 CHAVES SECCIONADORAS DE MÉDIA TENSÃO

Chaves seccionadoras são dispositivos destinados a seccionar e isolar um circuito elétrico.

As seccionadoras para operação sem carga são capazes de interromper ou estabelecer

correntes de magnetização de transformadores. As seccionadoras para ação sob carga são capazes de estabelecer e seccionar

circuitos sob condições de cargas limitadas. A inspeção de chaves seccionadoras deve compreender, pelo menos:

1. Limpeza; 2. Pontos quentes através de termografia; 3. Oxidação e pintura; 4. Teste de resistência do isolamento; 5. Teste de resistência de contatos (na impossibilidade da termovisão).

Fig 89 Chave seccionadora tipo CSC com fusível limitador de corrente - Marini Daminelli

Page 166: tecnicas de inspeção eletrotecnica

166

Técnicas de Inspeção e Procedimentos de Testes

23 CUBÍCULOS E PAINÉIS ELÉTRICOS

É grande e diversificado o tipo, modelo, aplicação, custo e importância de cubículos e painéis elétricos em uma instalação industrial.

Os cubículos de potência (metal enclosed power switchgear) englobam os cubículos

de média e baixa tensão, blindados, completamente fechados em todos os lados e no topo, com chapas de aço, com dispositivos de interrupção e seccionamento, barramento e conexões, associados com dispositivos para controle, medição, proteção e auxiliares, com acesso às partes interiores através de portas ou coberturas removíveis.

Fig 90 Cubículo de média tensão

Por estes cubículos transitam potências de até dezenas de MVA em baixa e média

tensão, sendo o coração do sistema elétrico de potência. Uma pane que paralise um destes cubículos pode provocar a parada de toda uma unidade industrial com prejuízos enormes.

Os Centros de Controle de Motores (CCM) em baixa e média tensão são cubículos

com gavetas contendo contatores e proteção (disjuntores, fusíveis e relés), além de acessórios para medição comando e controle. Com a finalidade de comandar e proteger motores elétricos.

Page 167: tecnicas de inspeção eletrotecnica

167

Técnicas de Inspeção e Procedimentos de Testes

Fig 91 Centro de Controle de Motores de Média Tensão

Os CCMs são também vitais para a operação de uma plana industrial e uma falha pode comprometer a produção, com grandes prejuízos.

Os painéis de iluminação e tomadas, comando local, mesas de comando e auxiliares

têm importância limitada e uma falha provoca geralmente prejuízos de pequena monta, com raras perdas de produção.

O grande desafio da manutenção é manter os painéis isentos de contaminantes.

Contaminantes sólidos (poeira) e umidade são as maiores fontes ou causas de falhas. Os painéis externos devem ter grau de proteção adequado ao nível e tipo de contaminantes presentes (normalmente IP65) e as entradas de cabos, portas e carcaça devem estar em perfeitas condições para que o grau de proteção seja preservado.

A inspeção destes painéis se resume às seguintes atividades:

1. Verificação da estanqueidade. 2. Verificação da proteção anticorrosiva. 3. Limpeza interna. 4. Reaperto das conexões. 5. Manutenção do arranjo dos componentes.

Page 168: tecnicas de inspeção eletrotecnica

168

Técnicas de Inspeção e Procedimentos de Testes

6. Inspeção de pontos quentes com termômetro infravermelho. 7. Identificação de defeitos incipientes.

A inspeção dos cubículos de potência e dos CCMs de baixa e média tensão exige

outras ações, além daquelas recomendadas para painéis elétricos: • Termografia O levantamento da temperatura das conexões elétricas e do corpo de componentes

(pólos de disjuntores, câmaras de contatores, lâminas de chaves seccionadoras, transformadores de corrente e potencial) é capaz de identificar pontos com temperaturas elevadas, sinal de defeitos incipientes que podem evoluir para falhas operacionais.

Tabela 19 Limite de temperatura máxima para conexões internas e barramentos (ANSI C37.20-1969)

Limite de pontos quentes Tipo de barra ou conexão

Elevação máxima [ºC] Temperatura máxima [ºC] Barras de cobre e conexões de cobre com cobre 30 70

Barras e conexões com superfícies prateadas 65 103

Conexões de cabos isolados, cobre com cobre 30 70

Conexões de cabos isolados com superfícies prateadas ou equivalente

45 85

Page 169: tecnicas de inspeção eletrotecnica

169

Técnicas de Inspeção e Procedimentos de Testes

Fig 92 Exemplo de termografia

• Avaliação das condições de isolamento O sistema de isolamento dos cubículos e CCMs é projetado e especificado para

suportar as tensões de operação por 20 ou 30 anos. Durante este período o isolamento será submetido a condições que degradam a capacidade de suportar as tensões que tinha quando novo.

Umidade, junto com sujeira, é o grande fator de deterioração. Esta combinação

resulta em fugas superficiais no material isolante e possíveis arcos voltaicos. É muito importante para a manutenção conhecer as condições do material isolante

submetido às médias tensões. Isto é fundamental em instalações que estão operando por muitos anos e naquelas em que as condições de degradação são mais severas.

O método de teste do isolamento como parte do processo de manutenção é

importante. Os testes de isolamento mais comuns são:

1. Teste de resistência de isolamento com tensões reduzidas (500 a 5.000 Vcc), utilizando megôhmetro.

2. Teste de alto potencial com corrente contínua. 3. Teste de alto potencial com corrente alternada. 4. Teste do fator de potência.

O teste com megôhmetro realizado com tensões abaixo da nominal pode fornecer

informações importantes sobre a degradação dos materiais isolantes. Valores continuamente decrescentes indicam a degradação total ou parcial do isolamento.

O teste do fator de potência mede a potência em watt dissipada no isolamento pelo

produto da tensão e corrente (VA) aplicadas. Os valores medidos neste teste tal como no teste de resistência de isolamento são influenciados fortemente pela temperatura e umidade relativa do ar.

Os valores obtidos no teste do fator de potência devem ser comparados com os

anteriores depois de corrigidos para uma temperatura padrão. Valores continuamente crescentes do fator de potência indicam degradação do isolamento.

Os testes com alto potencial de corrente contínua não são recomendados para

acompanhamento da degradação do isolamento, podendo ser um fator de aceleração desta degradação.

Page 170: tecnicas de inspeção eletrotecnica

170

Técnicas de Inspeção e Procedimentos de Testes

Os testes devem ser realizados com os disjuntores, fusíveis e seccionadoras conectadas. Todos os outros equipamentos (TC’s, TP’s, reatores, capacitores, etc) deverão ser desconectados e testados separadamente. Equipamentos eletrônicos só devem ser testados se recomendado pelo fabricante.

• Mecanismo e limites de inserção/extração. O mecanismo de inserção, as guias metálicas e os limites de inserção/extração são de

fundamental importância para a correta e segura operação dos disjuntores e contatores. O mecanismo de inserção/extração e as guias são responsáveis pela inserção/extração

alinhada destes equipamentos e o correto acoplamento dos contatos (tulipas) fixos e móveis. Nas posições inseridas e de teste, o equipamento deve ser travado e os limites devem estar acionados, permitindo a operação.

A permissão para um disjuntor ser extraído com os contatos na posição fechado ou a

possibilidade de ser inserido desalinhado, sem um perfeito acoplamento dos contatos fixos e móveis, e uma posterior energização, são capazes de provocar um grave acidente com perdas materiais e humanas.

A observação, regulagem e ajustes das condições operacionais destes dispositivos

são itens importantes da inspeção elétrica.

23.1 ARCO VOLTAICO

A energia desenvolvida em um arco voltaico é expressa por I2t, produto do quadrado

da intensidade da corrente pelo tempo decorrido desde o estabelecimento do arco até sua extinção, decorrente da abertura do dispositivo de proteção.

A Fig 93 mostra que à medida que o fenômeno se mantém, a energia resultante funde

os metais presentes, cobre, alumínio e aço, transformando tudo em plasma, à altíssimas temperaturas, 10.000ºC ou mais, liberando gases tóxicos a pressões consideráveis.

Page 171: tecnicas de inspeção eletrotecnica

171

Técnicas de Inspeção e Procedimentos de Testes

Fig 93 A energia do arco voltaico é proporcional a i2t

Os danos às pessoas e equipamentos e função direta da intensidade da corrente e do

tempo de permanência do arco, conforme Fig 94.

Fig 94 Os danos causados pelo arco voltaico dependem da corrente de arco e do tempo

Devido ao seu alto poder de destruição, o arco voltaico deve ser evitado através de

um trabalho eficaz das equipes de inspeção e manutenção.

Page 172: tecnicas de inspeção eletrotecnica

172

Técnicas de Inspeção e Procedimentos de Testes

Fig 95 Danos causados em um cubículo devido ao arco voltaico 23.2 INSPEÇÃO DETALHADA

Verifique minuciosamente cada ponto do isolamento. Verifique a existência de odores característicos (ozônio), descargas superficiais (tracking) e descoloração característica de degradação térmica de materiais isolantes.

Verifique a correta operação de todos os resistores de aquecimento para que não

ocorra condensação de umidade. Observe a estanqueidade das portas e tampas.

Page 173: tecnicas de inspeção eletrotecnica

173

Técnicas de Inspeção e Procedimentos de Testes

Fig 96 Disjuntor extraível em posição inserido

Page 174: tecnicas de inspeção eletrotecnica

174

Técnicas de Inspeção e Procedimentos de Testes

24 AVALIAÇÃO DO ISOLAMENTO ELÉTRICO UTILIZANDO

TENSÕES DE CORRENTE CONTÍNUA

24.1 INTRODUÇÃO

A utilização de tensões de corrente contínua na avaliação do estado do isolamento de

uma máquina elétrica é uma das técnicas mais usadas e mais úteis na manutenção elétrica. Curiosamente, o pessoal de manutenção, mesmo nos níveis técnicos e de engenharia,

não tem um conhecimento profundo sobre o assunto. Muitos são os fatores que interferem nas medições da resistência de isolamento. É

importante conhecê-los para minimizá-los. Os ensaios apresentados podem ser utilizados em manutenção preventiva e também

como ensaio único para se determinar as condições do isolamento. Entretanto eles são muito mais úteis quando utilizados no controle preventivo preditivo.

24.2 ISOLAMENTO ELÉTRICO

O isolamento tem a finalidade de evitar que a corrente elétrica percorra caminhos

indesejáveis em um equipamento. Desta forma um isolamento ideal seria aquele que, quando submetido a um potencial

elétrico adequado, não fosse percorrido por nenhuma corrente elétrica, ou seja, tivesse uma resistência infinita.

O isolante real, entretanto, tem uma resistência finita e, quando submetido a um

potencial elétrico, é percorrido por uma corrente. Durante a sua vida útil, um isolamento é submetido a uma série de fenômenos físicos

e químicos - danos mecânicos, vibração, aquecimento, poeira, óleo, vapores corrosivos, umidade - capazes de reduzir a sua resistência à corrente de fuga.

Geralmente, a queda da resistência de isolamento se dá de uma forma lenta,

permitindo controle, se testado periodicamente.

Page 175: tecnicas de inspeção eletrotecnica

175

Técnicas de Inspeção e Procedimentos de Testes

24.3 APLICANDO TENSÃO CONTÍNUA NO ISOLAMENTO

Quando se aplica uma tensão de corrente contínua em um isolante, como já vimos, flui sobre a superfície e através do isolante uma corrente elétrica. Esta corrente é uma resultante de três componentes, conforme Fig 97.

Fig 97 Componentes de corrente em um teste de isolamento com corrente contínua.

24.3.1 Corrente de Carga Capacitiva

É a corrente necessária para carregar a capacitância natural do material em teste. Esta

capacitância depende do tamanho, forma e material isolante a ser ensaiado. Esta componente inicia-se num valor máximo, decrescendo a um valor desprezível

num tempo muito curto.

24.3.2 Corrente de Absorção Dielétrica Esta corrente circula através do corpo do isolante e seu valor é variável com o tempo.

Porém esta variação é mais lenta que a componente anterior, podendo requerer várias horas para atingir um valor desprezível.

Corrente Total

Corrente de Absorção

Dielétrica

Corrente de Condução ou

Dispersão

Corrente de

Carga

Capacitiva

Page 176: tecnicas de inspeção eletrotecnica

176

Técnicas de Inspeção e Procedimentos de Testes

24.3.3 Corrente de Condução (Corrente de Fuga)

É a corrente que flui sobre ou através do isolante, sendo invariável com o tempo.

24.4 FATORES QUE AFETAM A RESISTÊNCIA DE ISOLAMENTO

24.4.1 Efeito das Condições da Superfície

Materiais estranhos tais como pó de carvão nas superfícies do isolamento fazem

diminuir a resistência de isolamento, principalmente quando em presença de umidade. Este fato é particularmente sensível no caso de máquinas de corrente contínua que

tem grandes superfícies de dielétricos expostos. É importante fazer uma limpeza nos terminais dos equipamentos antes de se fazer um teste.

24.4.2 Efeito da Umidade

O grau de umidade do isolamento tem um grande efeito sobre o valor da resistência

de isolamento, principalmente se a superfície está contaminada. Se a temperatura do isolamento está abaixo do ponto de condensação do ar ambiente,

haverá a formação de uma película de umidade na superfície que pode diminuir a resistência de isolamento.

Para evitar a condensação da umidade os testes devem, sempre que possível, serem

executados quando o isolamento do equipamento estiver acima da temperatura ambiente.

24.4.3 Efeito da Temperatura

A resistência de isolamento da maioria dos materiais varia inversamente com a temperatura.

Para minimizar o efeito da temperatura, quando comparando testes de resistência de

isolamento entre si ou, quando aplicando o valor mínimo recomendado de resistência de isolamento, é importante que o valor medido no teste seja corrigido para uma temperatura padrão.

Page 177: tecnicas de inspeção eletrotecnica

177

Técnicas de Inspeção e Procedimentos de Testes

É importante frisar que os valores de correção são diferentes para equipamentos diversos tais como motores, transformadores, cabos elétricos, como também diferentes quando se trata de cabos com materiais isolantes diversos - cabos isolados em PVC, EPR, XLPE, etc.

Os coeficientes de correção (Kt) e as temperaturas padrões serão discutidas ainda

neste capítulo.

Fig 98 Coeficiente de correção da resistência de isolamento para máquinas elétricas em função da temperatura

24.4.4 Efeito do Valor do Potencial de Teste

Os valores de resistência de isolamentos secos e em boas condições devem variar muito pouco em função do valor da tensão de teste. Se a resistência de isolamento cai significativamente com um aumento da tensão aplicada, pode ser uma indicação de imperfeições ou fraturas do isolamento, agravado pela presença de sujeira e/ou umidade, ou pode ser devido apenas aos efeitos da sujeira e umidade.

Entretanto, quando se aplica tensões de teste acima da tensão nominal do

equipamento, a variação do valor da resistência de isolamento pode ser mais pronunciada.

Page 178: tecnicas de inspeção eletrotecnica

178

Técnicas de Inspeção e Procedimentos de Testes

24.4.5 Efeito da Duração do Teste A resistência de isolamento medida num enrolamento aumentará com o tempo de

aplicação da tensão de corrente contínua. O aumento será rápido assim que a tensão for aplicada, aproximando-se de um valor constante enquanto o tempo decorre.

A resistência de isolamento de um enrolamento seco e em boas condições pode

continuar a aumentar por horas. Contudo, um valor estável é usualmente alcançado em 10 ou 15 minutos. Se o enrolamento está úmido ou sujo, o valor estável será geralmente alcançado em 1 ou 2 minutos, após a aplicação da tensão de teste.

Fig 99 Variação dos valores de resistência de isolamento com o tempo de aplicação da tensão para enrolamentos contaminados e não contaminados.

24.4.6 Efeito da Carga Residual

Os valores de resistência de isolamento serão afetados se existirem cargas residuais no enrolamento. O equipamento a ser ensaiado deve ser completamente descarregado, através do aterramento de seus terminais por um tempo suficiente. Normalmente este tempo não deve ser inferior a quatro vezes o tempo decorrido no teste anterior.

24.5 TENSÃO NOMINAL E MÁXIMA TENSÃO DE TESTE

Os testes para avaliação das condições do isolamento utilizando tensões contínuas de valor abaixo do valor nominal de teste, só verifica as condições de contaminação do isolamento.

Page 179: tecnicas de inspeção eletrotecnica

179

Técnicas de Inspeção e Procedimentos de Testes

Considera-se tensão nominal de teste o valor da tensão em volts, corrente contínua,

compatível com a classe de tensão da máquina ensaiada. A menos de outra recomendação estabelecido por norma ou pelo fabricante, a tensão

nominal de teste é igual a:

NNT VT ×= 7,1 onde, VN = classe de tensão do equipamento ou enrolamento. TNT= Tensão nominal de teste Por exemplo, a tensão nominal de teste para um motor de baixa tensão cuja classe de

tensão é 600V é igual a 1020V1,7600 =× . Para o enrolamento secundário de um transformador 13800/440V cuja classe de tensão é de 1200V, a tensão nominal de teste é

040V21,72001 =× . Os testes com corrente contínua realizados com tensão acima da tensão nominal de

teste são capazes de verificar falhas ou imperfeições do dielétrico, tais como fissuras, imperfeições ou bolhas no isolamento.

Os testes chamados de alto potencial (Hypot) devem ser limitados a uma tensão

máxima, acima da qual o isolamento pode não ser capaz de suportar. A menos de recomendações de normas ou do fabricante, as tensões máximas em corrente contínua que podem ser aplicadas a um isolamento são:

• Para equipamentos novos, na fábrica: (2KV + 1) x 1,7.

• Para equipamentos novos, antes de operar, fora da fábrica: (2KV + 1) x 1,7 x

0,8.

• Para equipamentos em uso: 1,25 a 1,5 x KV x 1,7 Onde KV é a classe de tensão do isolamento sob teste em kV. O fator 1,7 é usado para converter tensão de corrente alternada em contínua.

24.6 TESTES DE AVALIAÇÃO DO ISOLAMENTO

Page 180: tecnicas de inspeção eletrotecnica

180

Técnicas de Inspeção e Procedimentos de Testes

24.6.1 Resistência de Isolamento a 1 Minuto É o teste mais comum. Liga-se o instrumento de medição no isolamento a ser testado

deixando-o ligado por um período curto, porém definido, normalmente 1 minuto, fazendo então a leitura.

Este ensaio é muito importante quando existem registros anteriores, para que os

valores possam ser comparados. Valores decrescentes devem ser investigados e o equipamento deve sofrer manutenção para que os valores de resistência de isolamento sejam restabelecidos. Fig 100.

O valor de medição isolada pode ser somente uma referência grosseira para se

concluir se o isolamento está bom ou ruim, apesar de existir, para cada tipo de equipamento, valores estabelecidos como mínimos aceitáveis.

Máquinas maiores, por terem mais material isolante, apresentam valores de

resistência de isolamento menores que as máquinas de menor potência, similares. Para obtenção de bons resultados é imprescindível, entre outros, os cuidados:

• Os valores devem ser lidos sempre no mesmo tempo após a aplicação da tensão de teste - 60 segundos.

• Os valores devem ser convertidos para a mesma temperatura. • Fazer medição sempre na mesma posição de teste, utilizando a mesma tensão.

Fig 100 A máquina A falhou primeiro que a B. A tendência dos valores é muito mais importante que o próprio valor.

24.6.2 Método Resistência - Tempo. Índice de Polarização (IP) Este método é completamente independente da temperatura. Ele é baseado no efeito

de absorção do bom isolamento, comparado com o isolamento úmido ou contaminado.

Page 181: tecnicas de inspeção eletrotecnica

181

Técnicas de Inspeção e Procedimentos de Testes

Este ensaio é executado ligando-se o megôhmetro aos terminais do equipamento a ser ensaiado, medindo-se os valores da resistência de isolamento em função do tempo de aplicação da tensão, registrando num gráfico Megohms x Minutos. Normalmente usa-se os tempos de 15, 30, 45 e 60 segundos e de minuto a minuto até 10, ou somente 1 e 10 minutos.

Observe através da Fig 101 que o bom isolamento apresenta um aumento contínuo da

resistência com o tempo praticamente durante todo o período de teste. No caso de um enrolamento úmido ou contaminado, o valor da resistência de isolamento aumenta muito pouco ou nada, a partir dos 30 ou 60 segundos de aplicação da tensão.

O teste resistência versus tempo é muito valioso também porque ele é independente

do tamanho do equipamento. Por exemplo, o aumento da resistência de isolamento de enrolamentos limpos e secos ocorre da mesma maneira, quer os motores sejam pequenos ou grandes. Pode-se, então, comparar vários motores e estabelecer padrões para os outros, independente de suas potências nominais.

Fig 101 Curvas típicas mostrando o efeito da absorção dielétrica em teste resistência-tempo.

Page 182: tecnicas de inspeção eletrotecnica

182

Técnicas de Inspeção e Procedimentos de Testes

O teste de resistência x tempo em equipamentos elétricos com isolamento em boas

condições, requer instrumento com fundo de escala de alto valor (normalmente da ordem de 50.000 a 100.000 Megohms ou mais).

A relação das leituras de resistências de isolamento obtidas com 10 e 1 minuto é

chamada de Índice de Polarização e pode ser comparado com valores da Tabela 20. Estes valores são tentativos e relativos - sujeitos à experiência, válidos para motores elétricos.

É possível encontrar enrolamentos com valores de índice de Polarização iguais ou

maiores que 5, secos e quebradiços, sujeitos a falharem em condições de sobretensões, por exemplo, durante a energização. Estes enrolamentos devem ser tratados com vernizes apropriados para que tenham suas boas condições restabelecidas.

Tabela 20 Condição do isolamento em função do Índice de Polarização (IP).

Condições do Isolamento Índice de Polarização (10/1 minuto)

Péssimo Menor que 1,0 Duvidoso 1,0 a 2,0

Bom 2,0 a 4,0 Excelente Acima de 4,0

24.6.3 Teste de Multitensão

Neste teste o isolamento elétrico é submetido a duas tensões de ensaios,

descarregando-se o isolamento entre os ensaios. As tensões devem estar numa relação de 1:5, por exemplo, 500 e 2500 Volts e a

tensão mais alta não deve ser maior que a tensão nominal do isolamento. Nos isolamentos em bom estado, obtém-se valores de resistência de isolamento

próximos nas duas tensões.

Page 183: tecnicas de inspeção eletrotecnica

183

Técnicas de Inspeção e Procedimentos de Testes

Fig 102 Teste de Multitensão - curva 1 mostra queda sensível da resistência com o aumento da tensão. Curva 2 mostra o mesmo enrolamento após limpeza, secagem e reimpregnação.

Quando os valores apresentam uma diferença da ordem de 25%, ou maior, é sinal

que o isolamento contém umidade e/ou outros contaminantes. Este ensaio, como os outros, tem o seu valor aumentado quando realizado

periodicamente e seus valores comparados entre si, por exemplo, através de um gráfico..

24.6.4 Teste com Tensões Acima do Valor Nominal do Equipamento

Todos os testes descritos anteriormente utilizam uma tensão igual ou inferior à

tensão nominal de teste do equipamento ensaiado. Não se pode garantir, com base nos testes anteriores, que um equipamento não vá falhar, quando submetido à tensão nominal de funcionamento e às sobretensões de chaveamento normais.

Em outras palavras, é necessário realizar outros ensaios para avaliar a capacidade do

isolamento em suportar as tensões normais de operação. Todos os ensaios anteriores, além disto, não são suficientes para se avaliar os

isolamentos secos e quebradiços, em mal estado, encontrados em máquinas com muitos anos

Page 184: tecnicas de inspeção eletrotecnica

184

Técnicas de Inspeção e Procedimentos de Testes

de uso, operando em regimes severos, ou que tenham sofrido danos físicos, nem tão pouco o isolamento de máquinas novas ou recondicionadas.

O ensaio com tensão acima da nominal do equipamento deve ser realizado por

pessoal especializado sendo, desta forma, perfeitamente seguro, confiável e não destrutivo. Neste ensaio o valor da tensão nominal é dividida em degraus (quanto mais degraus,

mais seguro será o ensaio, porém mais demorado). Aplica-se o primeiro degrau de tensão e lê-se a corrente de fuga, em microampéres,

60 segundos após aplicação da tensão. Plota-se o valor no gráfico, Fig 103. Aplica-se a tensão correspondente ao segundo degrau, plota-se a corrente de fuga no

gráfico e assim sucessivamente. Enquanto não houver o aparecimento de um joelho o teste deve continuar, até alcançar a tensão final estabelecida. Se houver a formação de um joelho, o teste deve ser paralisado para evitar falha do isolamento.

Curvas suaves ou retas indicam isolamento em bom estado. Após a aplicação da tensão final, esta deve ser mantida por 10 minutos e as correntes

de fuga, lidas e plotadas no gráfico a cada minuto. Valores decrescentes indicam isolamento em bom estado, enquanto valores estáveis

ou crescentes, isolamento com problema, Fig 103.

Page 185: tecnicas de inspeção eletrotecnica

185

Técnicas de Inspeção e Procedimentos de Testes

Cor

rent

e de

fuga

em

mic

roam

pere

s

C B

A

Fig 103 Curvas típicas mostrando o efeito da absorção dielétrica em um teste de resistência x tempo.

As curvas A e B indicam isolamento em condições de suportar os esforços de

operação. O isolamento B não está polarizando. O isolamento da máquina A não suporta as tensões finais do ensaio.

O teste foi interrompido para não provocar o colapso do isolamento. Este ensaio só pode ser iniciado se o valor da resistência de isolamento com 1 min ou

o Índice de Polarização, apresentarem valores acima do mínimo recomendado. Utilizando-se convenientemente as técnicas de isolamento com corrente contínua é

possível controlar com grande precisão o estado do isolamento de um equipamento elétrico, estabelecendo os exatos instantes de manutenção.

Entretanto, este controle só é possível, através de ensaios periódicos, onde o último

valor é comparado com os anteriores, de forma a se estabelecer uma tendência.

Page 186: tecnicas de inspeção eletrotecnica

186

Técnicas de Inspeção e Procedimentos de Testes

24.7 PRÁTICAS BÁSICAS PARA OPERAÇÃO DO MEGÔHMETRO

Fig 104 Megôhmetro tipo MI-5500 - Megabrás

24.7.1 Calibração O instrumento de teste deve estar calibrado, garantindo confiança nos valores

medidos.

24.7.2 Indicação do Zero

O operador deve testar o zero do instrumento, curto-circuitando os terminais de linha

e de terra, energizando o instrumento através das escalas de leitura e tensão mais baixas. O instrumento deve indicar leitura zero. Testar para todos os outros valores de tensão.

Terminal Guard

Terminal Terra Terminais de

Linha

Escalas de Medição

Page 187: tecnicas de inspeção eletrotecnica

187

Técnicas de Inspeção e Procedimentos de Testes

24.7.3 Indicação de Final de Escala Escolher a menor tensão de teste. Manter os terminais de linha e de terra abertos e

pontas de prova conectadas. Ligar o instrumento para menor escala de leitura e mudar até a última progressivamente. A leitura obtida na escala mais alta deverá corresponder ao fim de escala do instrumento.

24.7.4 Terminais do Instrumento Um bom instrumento de testes tem três terminais: “L”- Terminal de linha, normalmente com potencial (-), deve ser ligado ao terminal

do isolamento sob teste. “R” ou “E” – Terminal de terra, normalmente com potencial (+), deve ser ligado ao

potencial de terra ou a um terminal de referência de teste. “G”- Terminal de guard deve ser ligado a terminais cujos isolamentos se quer que

não interfiram na medição.

24.7.5 Pontas de Prova As pontas de prova devem ser apropriadas e originais do fabricante do instrumento.

A ponta de prova a ser ligada ao terminal terra (E) normalmente é blindada e a blindagem deve ser conectada ao terminal de guard (G).

24.8 PRÁTICAS PARA TESTE DE ISOLAMENTO COM TENSÃO DE

CORRENTE CONTÍNUA

• Tensão de Teste - Utilize sempre a mesma tensão de teste.

• Faça teste seguindo sempre a mesma ligação do instrumento. Lembre-se que a ligação determina a parte do isolamento que está sendo testada.

• Faça o teste sempre com a mesma duração (1 min, 10 min). Lembre-se que o

valor da resistência de isolamento varia com o tempo de aplicação da tensão. Não se esqueça que Índice de Polarização (IP) é ótimo indicador do grau de contaminação do isolamento e que ele independe da temperatura e da quantidade de isolamento que se está testando.

Page 188: tecnicas de inspeção eletrotecnica

188

Técnicas de Inspeção e Procedimentos de Testes

• Meça sempre a temperatura do enrolamento sob teste e a umidade relativa do

ar no instante na medição. Se não for possível medir a temperatura do enrolamento meça alguma temperatura próxima, por exemplo, temperatura do óleo do transformador.

No caso de uma máquina rotativa fechada, com o enrolamento aquecido, procure um

ponto no interior da caixa de ligação próximo do pacote magnético. Se não for possível meça a temperatura da carcaça. Se o enrolamento está na temperatura ambiente, este é o valor que deve se medido.

Para que o erro seja o menor possível, utilize sempre o mesmo critério para que os

valores medidos em tempos diferentes possam ser comparados. Converta os valores medidos para uma temperatura de referência. Estas tabelas

estarão disponíveis nos capítulos específicos de cada equipamento. Evite efetuar testes em dias nublados e chuvosos, com alta umidade relativa do ar. Os

valores medidos serão afetados pela umidade condensada.

• As cargas residuais presentes nos enrolamentos afetam a medição da resistência de isolamento que se vai fazer. Faz-se necessário garantir que as cargas residuais foram descarregadas antes de se proceder o teste.

Como regra geral aterre um enrolamento por um tempo não inferior a quatro vezes o

tempo gasto no teste anterior. Por exemplo: Concluído um teste na posição RxSTM, ou seja, fase “R” contra “S” e “T” ligadas à

massa, com duração de 1min, devemos aterrar todos os enrolamento para a massa por, no mínimo, 4 min, antes de iniciar o teste na posição SxRTM.

Se fizermos o primeiro teste com duração de 10 min, o tempo mínimo de aterramento

deverá ser de 40 min.

• Limpe a superfície das buchas e terminais do enrolamento sob teste. Sujeira e umidade provocam descargas superficiais que interferem no resultado dos testes.

• Compare os valores medidos com os anteriores. Valores de resistência de

isolamento baixos, porém estáveis, ao longo do tempo, são melhores indicadores do que altos valores de resistência de isolamento, declinantes com o tempo.

Page 189: tecnicas de inspeção eletrotecnica

189

Técnicas de Inspeção e Procedimentos de Testes

• Compare os valores de resistência de isolamento de uma fase com as outras duas, de um equipamento. Diferença superior a um para três, por exemplo 50 e 180MΩ, pode ser indicador de algum problema de isolamento, ainda incipiente.

Não faça teste de resistência de isolamento em equipamentos com circuitos

eletrônicos (soft-starter, inversores de freqüência, conversores AC-DC, PLC, Nobreak etc) a menos que recomendado pelo fabricante.

24.9 TESTES DE ISOLAMENTO EM MÁQUINAS ELÉTRICAS ROTATIVAS

24.9.1 Geral Os testes, preferencialmente, devem ser executados com a máquina desconectada dos

cabos de alimentação. Nestas condições é possível fazer uma melhor avaliação do estado dos isolamentos.

Para reduzir o tempo gasto no teste e o trabalho de desconexão e reconexão, muitas

equipes de manutenção tem como padrão efetuar o teste do motor com o cabo conectado, diretamente na saída do alimentador da gaveta do Centro de Controle de Motores (CCM).

Com este procedimento só é possível avaliar o isolamento para a massa, perdendo-se

a oportunidade de avaliar o isolamento entre fases para motores de seis ou mais pontas. Muitas são as possibilidades permitidas para avaliação dos valores de resistência de

isolamento de uma máquina rotativa utilizando-se um instrumento de teste megôhmetro de boa qualidade.

24.9.2 Posições de Ligações para Teste Vamos descrever as ligações usualmente executadas para a medição.

24.9.2.1 Estator e Rotor CA com Três Cabos de Saída

Neste caso o teste só pode ser executado entre enrolamento e massa. Algum

problema no isolamento entre fases não será detectado. Nesta posição estão sendo medidas as resistências RRM, RSM e RTM, respectivamente,

resistências de isolamento entre as fases R e massa, S e massa e T e massa, em paralelo.

Page 190: tecnicas de inspeção eletrotecnica

190

Técnicas de Inspeção e Procedimentos de Testes

Fig 105 Resistência de isolamento entre fases e massa

24.9.2.2 Estator de Motor de CA com Seis ou Mais Terminais.

Neste caso é possível medir as resistências de isolamento entre enrolamentos e entre

enrolamentos e massa. Varias são as possibilidades de ligação, mas só estarão sendo apresentadas as mais

usuais. • Procedimento com seis testes, com o uso do terminal guard.

Fig 106 Resistência de isolamento da fase “R” para a massa

Page 191: tecnicas de inspeção eletrotecnica

191

Técnicas de Inspeção e Procedimentos de Testes

Fig 107 Resistência de isolamento da fase “S” para a massa

Fig 108 Resistência de isolamento da fase “T” para a massa

Page 192: tecnicas de inspeção eletrotecnica

192

Técnicas de Inspeção e Procedimentos de Testes

Fig 109 Resistência de isolamento entre fases “R” e “S”

Fig 110 Resistência de isolamento entre fases “R” e “T”

Fig 111 Resistência de isolamento entre fases “S” e “T”

Page 193: tecnicas de inspeção eletrotecnica

193

Técnicas de Inspeção e Procedimentos de Testes

• Procedimento com três testes, sem uso o uso do terminal guard.

Fig 112 Resistência de isolamento da fase “R” para a massa e entre fases “R” e “S” e entre “R” e “T” (R x STM)

Fig 113 Resistência de isolamento da fase “S” para a massa e entre fases “S” e “R” e entre “S” e “T” (SxRTM)

G E L

T S

R

RRT

RTM

RST

Page 194: tecnicas de inspeção eletrotecnica

194

Técnicas de Inspeção e Procedimentos de Testes

Fig 114 Resistência de isolamento da fase “T” para a massa e entre fases “T” e “R” e entre “T” e

“S” (TxRSM)

24.9.2.3 Máquinas de Corrente Contínua

• Armadura x Massa

Fig 115 Resistência de isolamento da armadura para a massa Levanta-se as escovas de carvão deixando a armadura separada, enlaça-se o

comutador com um cabo de cobre nu flexível ou uma cordoalha fina e aplica-se o potencial de teste entre o comutador e o eixo. Mede-se a resistência de isolamento da armadura para a massa.

• Interpolo x Massa

Com as escovas levantadas mede-se a resistência de isolamento dos enrolamentos de

comutação ou interpolos para a massa. Se a máquina tem enrolamentos de campo série, desligá-los dos interpolos.

Comutador Eixo

Page 195: tecnicas de inspeção eletrotecnica

195

Técnicas de Inspeção e Procedimentos de Testes

Fig 116 Resistência de isolamento dos interpolos para a massa O terminal de terra (E) do megôhmetro deve ser ligado à carcaça do estator da

máquina. Neste teste estamos medindo a resistência de isolamento de todas as bobinas de

interpolo para a massa, em paralelo. Caso seja necessário observar ou comparar os valores individuais da resistência, é

necessário abrir o fechamento, efetuando-se tantos testes quantas forem as bobinas.

• Campo shunt e campo série para a massa.

Na medição do campo série estes enrolamentos devem ser desligados dos enrolamentos de interpolos.

Mede-se a resistência de isolamento das bobinas de campo em paralelo para a massa.

Para a medição das resistências de isolamento individuais os circuitos devem ser abertos.

Fig 117 Resistência de isolamento do campo shunt e série para a massa

F1-F2 – Campo Shunt (paralelo) D1-D2 – Campo Série

• Campo shunt x campo série

Page 196: tecnicas de inspeção eletrotecnica

196

Técnicas de Inspeção e Procedimentos de Testes

Em máquinas de excitação composta, é recomendável controlar o valor da resistência de isolamento entre os campos shunt e série, montados uns sobre os outros na sapata polar.

Fig 118 Resistência de isolamento dos campos paralelos para os campos séries

24.9.2.4 Geradores de Corrente Alternada

• Enrolamento estatórico (principal) Os testes de resistência de isolamento obedecem exatamente às mesmas ligações dos

motores de CA.

• Enrolamento de campo O teste é executado entre enrolamento e massa. O terminal de terra (E) deve ser

ligado ao eixo do rotor.

Fig 119 Resistência de isolamento do campo para a massa

• Excitatriz auxiliar

Page 197: tecnicas de inspeção eletrotecnica

197

Técnicas de Inspeção e Procedimentos de Testes

As ligações para teste são as mostradas para máquinas de corrente contínua.

24.9.3 Avaliação dos Valores Medidos O Índice de Polarização medido é uma indicação da contaminação do isolamento

Tabela 21 Condição do isolamento em função do índice de polarização

IP Contaminação do Isolamento <1 Enrolamento altamente contaminado, retirar máquina para rejuvenescimento

1 ≤ IP < 2 Enrolamento contaminado, programar remoção da máquina para rejuvenescimento 2 ≤ IP < 4 Enrolamento em boas condições quanto a contaminação

IP ≥ 4 Enrolamento sem sinais de contaminação Os valores medidos com 1 min devem ser convertidos para 40ºC, utilizando-se o

fator de conversão da Tabela 22. São considerados seguros para operação os enrolamentos com valores de resistência

de isolamento estáveis, sem redução substancial dos valores com o tempo e superiores ao valor mínimo

1+= kVRm

onde, Rm = Resistência de isolamento (MΩ) mínimo a 40ºC, medido na posição RST x

massa kV= Classe de tensão do enrolamento em kV Utilize a Tabela 22 para correção dos valores de resistência de isolamento de

máquinas rotativas para 40ºC.

24.10 TESTES DE RESISTÊNCIA DE ISOLAMENTO EM TRANSFORMADORES

24.10.1 Geral

Os testes devem ser realizados, preferencialmente, com todos os condutores desconectados dos terminais.

A temperatura do enrolamento pode se considerada a indicada pelo termômetro do

óleo

Page 198: tecnicas de inspeção eletrotecnica

198

Técnicas de Inspeção e Procedimentos de Testes

24.10.2 Posições de Teste – Transformadores de 2 Enrolamentos

Os testes devem ser realizados nas seguintes posições, para transformadores de 2 enrolamentos, Fig 120.

Tabela 22 Tabela de conversão dos valores medidos para 40ºC.

Temp ºC KT Temp ºC KT Temp ºC KT Temp ºC KT

10 0.12 39 0.93 68 7.00 97 52.00 11 0.13 40 1.00 69 7.50 98 56.00 12 0.14 41 1.07 70 8.00 99 60.00 13 0.15 42 1.15 71 8.60 100 64.00 14 0.16 43 1.23 72 9.20 101 69.00 15 0.18 44 1.32 73 9.90 102 74.00 16 0.19 45 1.41 74 10.60 103 79.00 17 0.20 46 1.52 75 11.30 104 84.00 18 0.22 47 1.62 76 12.10 105 91.00 19 0.23 48 1.74 77 13.00 106 97.00 20 0.25 49 1.87 78 13.90 107 104.00 21 0.27 50 2.00 79 14.90 108 111.00 22 0.29 51 2.14 80 16.00 109 119.00 23 0.31 52 2.30 81 17.20 110 128.00 24 0.33 53 2.46 82 18.40 111 137.00 25 0.35 54 2.64 83 19.70 112 147.00 26 0.38 55 2.83 84 21.10 113 158.00 27 0.41 56 3.03 85 22.60 114 169.00 28 0.43 57 3.25 86 24.30 115 181.00 29 0.47 58 3.48 87 26.00 116 193.00 30 0.50 59 3.73 88 27.90 117 207.00 31 0.53 60 4.00 89 29.90 118 221.00 32 0.57 61 4.29 90 32.00 119 238.00 33 0.62 62 4.59 91 34.30 120 256.00 34 0.66 63 4.92 92 36.80 121 274.00 35 0.71 64 5.30 93 39.40 122 294.00 36 0.76 65 5.70 94 42.20 123 316.00 37 0.81 66 6.10 95 45.30 124 338.00 38 0.87 67 6.50 96 48.50 125 362.00

Page 199: tecnicas de inspeção eletrotecnica

199

Técnicas de Inspeção e Procedimentos de Testes

* Valor corrigido para 40°C = (Valor medido à temperatura T) x (KT)

Page 200: tecnicas de inspeção eletrotecnica

200

Técnicas de Inspeção e Procedimentos de Testes

BM

Page 201: tecnicas de inspeção eletrotecnica

201

Técnicas de Inspeção e Procedimentos de Testes

Fig 120 Esquemas de ligações para teste de resistência de isolamento

24.10.3 Avaliação dos Valores Medidos Os valores medidos devem ser convertidos para 75ºC conforme Tabela 23: O teste deve ser realizado com um megôhmetro, utilizando-se as seguintes tensões de

teste: 500V ou 1.000V para enrolamentos de classe de tensão 1,2 kV; 2.500V para enrolamentos de classe de tensão até 15 kV e 5.000V para enrolamentos de classe de tensão superior a 15 kV.

Tabela 23 Tabela de correção de temperatura para 75ºC

Temperatura (oC)

Fator de correção

Temperatura (oC)

Fator de correção

Temperatura (oC)

Fator de correção

6 119 32 19,7 58 3,25 7 111 33 18,4 59 3,03 8 104 34 17,2 60 2,83 9 97 35 16,0 61 2,64

10 91 36 14,9 62 2,46 11 84 37 13,9 63 2,30 12 79 38 13,0 64 2,14 13 74 39 12,1 65 2,00 14 69 40 11,3 66 1,87 15 64 41 10,6 67 1,74 16 60 42 9,9 68 1,62 17 56 43 9,2 69 1,52 18 52 44 8,6 70 1,41 19 48,5 45 8,0 71 1,32 20 45,3 46 7,5 72 1,25 21 42,2 47 7,0 73 1,15 22 39,4 48 6,5 74 1,07 23 36,8 49 6,1 75 1,00 24 34,3 50 5,7 76 0,93 25 32,0 51 5,3 77 0,87 26 29,9 52 4,92 78 0,81 27 27,9 53 4,59 79 0,76 28 26,0 54 4,29 80 0,71 29 24,3 55 4,00 - - 30 22,6 56 3,73 - - 31 21,1 57 3,48 - -

Page 202: tecnicas de inspeção eletrotecnica

202

Técnicas de Inspeção e Procedimentos de Testes

Exemplo: Um valor medido de 500MΩ a uma temperatura de óleo de 45ºC deve ser convertido

para 75ºC da seguinte forma:

Ω=== MFCRR m

C 5,620,8

500º75

Onde: R75ºC = Resistência de isolamento convertida à temperatura de 75ºC. Rm= Resistência de isolamento medida com o enrolamento a uma temperatura t ºC. FC = Fator de correção para t ºC, indicado na Tabela 23. Existem procedimentos que exigem a medição dos valores de isolamento com 15, 30,

45 e 60 segundos e de 1 em 1 minuto até 10 minutos. Valores mínimos:

• Transformador a óleo trifásico

fP

ERm×

=65,2

onde, Rm = Resistência mínima a 75ºC E = Classe de tensão do enrolamento em kV P = Potência do trafo em kVA f = freqüência em Hz. Os valores mínimos não representam limite absoluto, mas somente ordem de

grandeza. Valores inferiores ao limite, mas estáveis, com pouca variação, não indicam necessariamente irregularidades no isolamento, embora seja aconselhável tentar elevar a resistência através da secagem do transformador. Da mesma forma, valores superiores ao limite não representam garantia do isolamento, se os mesmos forem inferiores aos obtidos em medições anteriores, em condições idênticas.

Page 203: tecnicas de inspeção eletrotecnica

203

Técnicas de Inspeção e Procedimentos de Testes

24.11 TESTE DE RESISTÊNCIA DE ISOLAMENTO EM CABOS ELÉTRICOS

24.11.1 Geral

Os testes devem ser realizados com os cabos desconectados dos dois lados. A NBR 6813 estipula tensão de teste entre 300V e 500V e tempo entre 1min e 5min.

Sugerimos a adoção de 500V e 1min. O teste de resistência de isolamento é executado para acompanhamento da

deterioração do isolamento com o tempo e após o teste de alto potencial, para detectar alguma avaria durante o teste.

24.11.2 Posição de Teste

As posições detalhadas se referem a condutores lançados em linhas elétricas.

24.11.2.1 Cabo Unipolar com Blindagem Metálica.

Fig 121 Posição de teste para cabo unipolar com blindagem OBS: existindo armação metálica, deverá ser ligada ao terminal guard “G”.

Page 204: tecnicas de inspeção eletrotecnica

204

Técnicas de Inspeção e Procedimentos de Testes

24.11.2.2 Cabo Multipolar com Blindagem Metálica Envolvendo Cada Condutor.

Fig 122 Posição de teste para cabo tripolar com blindagem Todas as partes metálicas dos condutores não envolvidas no teste devem ser

conectadas ao terminal guard (G) do megôhmetro. Repetir o teste para os condutores restantes.

24.11.2.3 Cabo Multipolar sem Blindagem.

Page 205: tecnicas de inspeção eletrotecnica

205

Técnicas de Inspeção e Procedimentos de Testes

Fig 123 Posição de teste para cabo tripolar sem blindagem Todos os condutores não ligados ao terminal linha (L) (eletroduto, leito de cabos)

devem ser ligados ao terminal de terra (E) do megger, que deve ser ligado ao potencial de terra.

Repetir o teste para os demais condutores.

24.11.2.4 Cabo Unipolar (de um Circuito Tripolar) sem Blindagem

O teste deverá ser realizado como se o cabo fosse multipolar, sem blindagem

(5.11.2.3).

24.11.3 Avaliação dos Valores Medidos

Para a avaliação dos valores medidos é necessário a obtenção de alguns dados:

• l –comprimento do condutor em km • D – diâmetro externo do isolamento do condutor em mm. • d – diâmetro interno do isolamento do condutor em mm • coeficiente de correção de temperatura do condutor ( a ser obtido junto ao

fabricante do cabo) • material do isolamento (EPR, XLPE, PE, PVC)

Os valores obtidos na medição devem ser convertidos a 20ºC utilizando-se a tabela

de conversão em função do coeficiente / ºC, Tabela 24.

Page 206: tecnicas de inspeção eletrotecnica

206

Técnicas de Inspeção e Procedimentos de Testes

Para entrar na Tabela 24 é necessário obter do fabricante do cabo seu coeficiente/°C.

Como exemplo, vamos converter o valor de resistência de isolamento de um cabo com coeficiente/ºC de 1,15, em cuja medição a 30ºC obtivemos um valor de 5.000 MΩ, sabendo-se que o cabo tem um comprimento de 200m.

Da Tabela 24, para temperatura de 30ºC e coeficiente de 1,15/ºC obtemos um fator

de correção de 4,05. O valor da resistência de isolamento convertido para 20°C será:

Ω=×=° MR C 250.2005,4000.520 Esta é a resistência de isolamento para 200m de cabo. Para 1000m (1 km), o valor da

resistência será:

Ω=×= MR kmeC 050.41000200250.20)1 º20(

Este é o valor a se comparado com “Rm”, valor mínimo da resistência de isolamento,

em MΩ por Km a 20°C, calculado pela fórmula a seguir:

Tabela 24 Coeficiente para correção da Resistência de Isolamento de cabos elétricos

Coeficiente / °C Temperatura

(°C) 1,06 1,07 1,08 1,09 1,10 1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,18 1,19 1,20 1,21 1,22 1,23

5 0,42 0,36 0,32 0,27 0,24 0,21 0,18 0,16 0,14 0,12 0,11 0,09 0,08 0,07 0,06 0,06 0,05 0,04

6 0,44 0,39 0,34 0,30 0,26 0,23 0,20 0,18 0,16 0,14 0,13 0,11 0,10 0,09 0,08 0,07 0,06 0,06

7 0,47 0,41 0,37 0,33 0,29 0,26 0,23 0,20 0,18 0,16 0,15 0,13 0,12 0,10 0,09 0,08 0,08 0,07

8 0,50 0,44 0,40 0,36 0,32 0,29 0,26 0,23 0,21 0,19 0,17 0,15 0,14 0,12 0,11 0,10 0,09 0,08

9 0,53 0,48 0,43 0,39 0,35 0,32 0,29 0,26 0,24 0,21 0,20 0,18 0,16 0,15 0,13 0,12 0,11 0,10

10 0,56 0,51 0,46 0,42 0,39 0,35 0,32 0,29 0,27 0,25 0,23 0,21 0,19 0,18 0,16 0,15 0,14 0,13

11 0,59 0,54 0,50 0,46 0,42 0,39 0,36 0,33 0,31 0,28 0,26 0,24 0,23 0,21 0,19 0,18 0,17 0,16

12 0,63 0,58 0,54 0,50 0,47 0,43 0,40 0,38 0,35 0,33 0,31 0,28 0,27 0,25 0,23 0,22 0,20 0,19

13 0,67 0,62 0,58 0,55 0,51 0,48 0,45 0,43 0,40 0,38 0,35 0,33 0,31 0,30 0,28 0,26 0,25 0,23

14 0,70 0,67 0,63 0,60 0,56 0,53 0,51 0,48 0,46 0,43 0,41 0,39 0,37 0,35 0,33 0,32 0,30 0,29

15 0,75 0,71 0,68 0,65 0,62 0,59 0,57 0,54 0,52 0,50 0,48 0,46 0,44 0,42 0,40 0,39 0,37 0,36

16 0,79 0,76 0,74 0,71 0,68 0,66 0,64 0,61 0,59 0,57 0,55 0,53 0,52 0,50 0,48 0,47 0,45 0,44

17 0,84 0,82 0,79 0,77 0,75 0,73 0,71 0,69 0,67 0,66 0,64 0,62 0,61 0,59 0,58 0,56 0,55 0,54

18 0,89 0,87 0,86 0,84 0,83 0,81 0,80 0,78 0,77 0,76 0,74 0,73 0,72 0,71 0,69 0,68 0,67 0,66

19 0,94 0,93 0,93 0,92 0,91 0,90 0,89 0,88 0,88 0,87 0,86 0,85 0,85 0,84 0,83 0,83 0,82 0,81

20 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00

21 1,06 1,07 1,08 1,09 1,10 1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,18 1,19 1,20 1,21 1,22 1,23

22 1,12 1,14 1,17 1,19 1,21 1,23 1,25 1,28 1,30 1,32 1,35 1,37 1,39 1,42 1,44 1,46 1,49 1,51

Page 207: tecnicas de inspeção eletrotecnica

207

Técnicas de Inspeção e Procedimentos de Testes

23 1,19 1,23 1,26 1,30 1,33 1,37 1,40 1,44 1,48 1,52 1,56 1,60 1,64 1,69 1,73 1,77 1,82 1,86

24 1,26 1,31 1,36 1,41 1,46 1,52 1,57 1,63 1,69 1,75 1,81 1,87 1,94 2,01 2,07 2,14 2,22 2,29

25 1,34 1,40 1,47 1,54 1,61 1,69 1,76 1,84 1,93 2,01 2,10 2,19 2,29 2,39 2,49 2,59 2,70 2,82

26 1,42 1,50 1,59 1,68 1,77 1,87 1,97 2,08 2,19 2,31 2,44 2,57 2,70 2,84 2,99 3,14 3,30 3,46

27 1,50 1,61 1,71 1,83 1,95 2,08 2,21 2,35 2,50 2,66 2,83 3,00 3,19 3,38 3,58 3,80 4,02 4,26

28 1,59 1,72 1,85 1,99 2,14 2,30 2,48 2,66 2,85 3,06 3,28 3,51 3,76 4,02 4,30 4,59 4,91 5,24

29 1,69 1,84 2,00 2,17 2,36 2,56 2,77 3,00 3,25 3,52 3,80 4,11 4,44 4,79 5,16 5,56 5,99 6,44

30 1,79 1,97 2,16 2,37 2,59 2,84 3,11 3,39 3,71 4,05 4,41 4,81 5,23 5,69 6,19 6,73 7,30 7,93

31 1,90 2,10 2,33 2,58 2,85 3,15 3,48 3,84 4,23 4,65 5,12 5,62 6,18 6,78 7,43 8,14 8,91 9,75

32 2,01 2,25 2,52 2,81 3,14 3,50 3,90 4,33 4,82 5,35 5,94 6,58 7,29 8,06 8,92 9,85 10,87 11,99

33 2,13 2,41 2,72 3,07 3,45 3,88 4,36 4,90 5,49 6,15 6,89 7,70 8,60 9,60 10,70 11,92 13,26 14,75

34 2,26 2,58 2,94 3,34 3,80 4,31 4,89 5,53 6,26 7,08 7,99 9,01 10,15 11,42 12,84 14,42 16,18 18,14

35 2.,40 2,76 3,17 3,64 4,18 4,78 5,47 6,25 7,14 8,14 9,27 10,54 11,97 13,59 15,41 17,45 19,74 22,31

36 2,54 2,95 3,43 3,97 4,59 5,31 6,13 7,07 8,14 9,36 10,75 12,33 14,13 16,17 18,49 21,11 24,09 27,45

37 2,69 3,16 3,70 4,33 5,05 5,90 6,87 7,99 9,28 10,76 12,47 14,43 16,67 19,24 22,19 25,55 29,38 33,76

38 2,85 3,38 4,00 4,72 5,56 6,54 7,69 9,02 10,58 12,38 14,46 16,88 13,67 22,90 26,62 30,91 35,85 41,52

39 3,03 3,62 4,32 5,14 6,12 7,26 8,61 10,20 12,06 14,23 16,78 19,75 23,21 27,25 31,95 37,40 43,74 51,07

40 3,21 3,87 4,66 5,60 6,73 8,06 9,65 11,52 13,74 16,37 19,46 23,11 27,39 32,43 38,34 45,26 53,36 62,82

⎟⎠⎞

⎜⎝⎛×=

dDkRm log , onde:

Rm = Valor mínimo da Resistência de Isolamento em megohms por km a 20ºC k = Constante, função do material isolante:

• Para cabo com isolação de polietileno reticulado (XLPE) = 3.700 MΩ x km • Para cabo com isolação de borracha etileno (EPR) = 3.700 MΩ x km • Para cabo com isolação de polietileno termoplástico (PE) = 12.000 MΩ x km • Para cabo com isolação de cloreto de polivinila (PVC/A) = 185 MΩ x km

Se os valores de resistência de isolamento mostrarem-se decrescentes com o tempo é

uma indicação segura da degradação do isolamento, pontual ou distribuída ao longo de todo o isolamento.

Deverão ser comparados os valores de cabos similares, mesmo fabricante, tipo,

comprimento e circuito. Valores diferentes da ordem de 3:1 devem ser investigados. Considere por exemplo a medição da Resistência de Isolamento das três fases de dois

circuitos.

Page 208: tecnicas de inspeção eletrotecnica

208

Técnicas de Inspeção e Procedimentos de Testes

Resistência de Isolamento 20ºC/km

Circuito Fase “R” Fase “S” Fase “T”

Descrição

1 2.000MΩ 1.800MΩ 2.100MΩ Cabo #70mm2, isolamento EPR, 200m, 0,6/1kV, energizado em 1985.

2 10.000MΩ 12.000MΩ 3.800MΩ Cabo #95mm2, isolamento EPR, 180m, 0,6/1kV, energizado em 2002

Apesar dos valores individuais de resistência de isolamento dos cabos do circuito 2

estarem superiores aos do circuito 1, o cabo da fase “T” deve ser investigado sobre o porque de estar com a resistência de isolamento tão inferior aos cabos das fases ”R” e “S” do mesmo circuito, energizados na mesma época e absolutamente similares. A comparação entre os valores dos circuitos 1 e 2 fica prejudicada em razão do longo período entre a energização dos cabos.

24.12 TESTES DE RESISTÊNCIA DE ISOLAMENTO EM DISJUNTORES E

CONTATORES

24.12.1 Geral Os testes devem ser realizados com todos os alimentadores desconectados. As

tensões normalmente utilizadas são 500V ou 1000V para os equipamentos de baixa tensão e 2500V para os equipamentos de classe de tensão 5kV ou maior.

Efetuar uma limpeza nas buchas isolantes antes dos testes. Os testes são realizados com o tempo de 1 min. Não é significativo medir o índice de

polarização de disjuntores.

24.12.2 Posições de Teste

• Com disjuntor aberto

Page 209: tecnicas de inspeção eletrotecnica

209

Técnicas de Inspeção e Procedimentos de Testes

Fig 124 Posição de teste para disjuntor aberto Neste teste estamos medindo a resistência de isolamento entre os contatos abertos da

fase “T”. Os contatos das outras duas fases são ligados ao terminal de guard. Repetir o teste para as outras duas fases.

• Com o disjuntor fechado Este teste mede a resistência de isolamento da fase “S” contra as outras duas fases e a

massa. Repetir o teste para as outras duas fases. Para descarregar as cargas residuais deve-se aterrar os terminais do disjuntor para a

massa, entre os testes, por um período não inferior à quatro vezes o tempo gasto no teste anterior.

Fig 125 Posição de teste para disjuntor fechado

Page 210: tecnicas de inspeção eletrotecnica

210

Técnicas de Inspeção e Procedimentos de Testes

24.12.3 Avaliação dos Resultados dos Testes

Os valores medidos em cada posição, devem ser comparados com os valores dos

testes anteriores, nas mesmas condições. Resistências de isolamento decrescentes são indicadores de contaminação por umidade, poeira ou outros contaminantes. Efetuar limpeza e secagem e verificar contaminação do meio de interrupção, no caso de óleo isolante.

Comparar as medições das três fases entre si. Diferenças da ordem de 3:1 devem ser

vistas com preocupação.

Page 211: tecnicas de inspeção eletrotecnica

211

Técnicas de Inspeção e Procedimentos de Testes

25 REFERÊNCIAS BIBLIOGRÁFICAS

• Apostilas do Programa de Certificação Operacional CST- Inspetor de Eletricidade, WEG Industrias LTDA.

• Apostila do Programa de Certificação Operacional CST- Inspetor de Eletricidade, “Dispositivos de Seccionamento e Comutação” – W-SERVICE.

• Manual de Escovas de Carvão CARBOMEC.

• Manual de Escovas de Carvão SEERCIL RINGS DORF.

• Jordão, D. M., Manual de Instalações Elétricas em Indústrias Químicas, Petroquímicas e de Petróleo. ATMOSFERAS EXPLOSIVAS – Qualitymark - 2ª ed – 1998.

• KITAGUCHI, T., Apostila Manutenção de Transformadores Imersos em Líquidos Isolantes.

• Lobosco, O. S. e Dias, J. L. P C., Seleção e Aplicação de Motores Elétricos, SIEMENS, Ed. McGRAW HILL- 1988.

• Lopes, P. T. F., Notas de Aula do curso de Pós Graduação em Engenharia de Manutenção – ABRAMAN/UNIVIX.

• Manual de Cabos Elétricos PIRELLI.

• Manual de Cabos de Média Tensão – ALCOA.

• Manual de Motores CC WEG.

• Manual de Motores Elétricos WEG.

• Milasch, M., Manutenção de Transformadores em Líquido Isolante , Ed. Edgard Blucher- 1984.

• Moran, A. V., Manutenção elétrica industrial, ED. Ícone – 1996.