sebenta estatística ii com anexos 2010

70
ESTATÍSTICA II 1 2010 Estatística II Teoria e exercícios passo-a-passo Este manual apresenta as estatísticas não paramétricas e os critérios de decisão para verificação de hipóteses. Pretende- se com esta compilação de testes e teorias, capacitar o leitor para a aplicação estatística à investigação em ciências humanas (sociais, médicas, psicológicas, etc) e biológicas Margarida Pocinho 17-09-2010

Upload: margaridapocinho

Post on 24-Jun-2015

25.461 views

Category:

Documents


9 download

TRANSCRIPT

Page 1: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

1

2010

Estatística II Teoria e exercícios passo-a-passo Este manual apresenta as estatísticas não paramétricas e os

critérios de decisão para verificação de hipóteses. Pretende-

se com esta compilação de testes e teorias, capacitar o leitor

para a aplicação estatística à investigação em ciências

humanas (sociais, médicas, psicológicas, etc) e biológicas Margarida Pocinho 17-09-2010

Page 2: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

2

2010

Índice Geral

I - INTRODUÇÃO.................................................................................................................... 7

ESTATÍSTICA PARAMÉTRICA E NÃO PARAMÉTRICA: REVISÕES ............................................... 7

TESTES NÃO PARAMÉTRICOS ....................................................................................... 13

TESTES PARA AMOSTRAS INDEPENDENTES: ........................................................... 14

TESTE DO QUI-QUADRADO .................................................................................................... 14

TESTE U DE MANN-WHITNEY ............................................................................................... 22

TESTE DE KRUSKAL-WALLIS ................................................................................................ 28

TESTES PARA AMOSTRAS RELACIONADAS .............................................................. 33

TESTE DE FRIEDMAN ............................................................................................................. 44

MEDIDAS DE CORRELAÇÃO E SUAS PROVAS DE SIGNIFICÂNCIA ............................................. 47

COEFICIENTE DE CORRELAÇÃO RHO DE SPEARMAN-RANK .................................................... 48

TESTES NÃO PARAMÉTRICOS NO SPSS ...................................................................... 50

O TESTE DE MANN-WHITNEY ....................................................................................... 50

O TESTE DE WILCOXON: ................................................................................................ 55

TESTE H DE KRUSKAL-WALLIS: .................................................................................. 57

ANEXOS ................................................................................................................................ 60

Page 3: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

3

2010

Programa da Unidade Curricular 2010-2011

Licenciatura: Psicologia

Ano: 2.º Semestre: 1

Unidade Curricular: Estatística II

Docente: Margarida Tenente dos Santos Pocinho

Página Web: http://docentes.ismt.pt/~m_pocinho/

Contacto do Docente: 916784049

Objectivos Gerais:

Esta Unidade Curricular (UC) visa estender os conhecimentos adquiridos em Estatística I, bem

como fornecer aos alunos conhecimentos teóricos e práticos relativos a metodologias de inferência

estatística não paramétrica. O conteúdo programático da unidade curricular compreende

instrumentos de inferência estatística não paramétrica como as ordens, as estatísticas, as estatísticas

de ordem, os estimadores e as distribuições de amostragem, a estimação não paramétrica pontual e

por intervalos e os testes de hipóteses não paramétricos. São igualmente tratados aspectos

essenciais de distribuições assintóticas. Os alunos devem ficar a conhecer os estimadores pontuais e

as suas propriedades, construir intervalos de confiança não paramétricos e realizar testes de

hipóteses não paramétricos. Relativamente a cada procedimento não paramétrico, os alunos devem

saber claramente as suas condições de aplicabilidade.

Esta UC tem ainda como objectivo o tratamento estatístico dos dados recolhidos, e sua análise, bem

como, aprofundar o tratamento computacional de dados.

Competências a Desenvolver:

1. Aprofundar os conhecimentos sobre a estatística paramétrica e não paramétrica

aplicada à psicologia iniciada em Estatística I,

2. Aprofundar as estratégias estatísticas paramétricas e não paramétricas adequadas à

resolução de determinado problema e aplicar as estratégias estatísticas não

paramétricas quando as paramétricas não se aplicarem

3. Organizar dados em matriz informática (SPSS) para análise de dados a partir de

qualquer meio de recolha de dados

4. Analisar dados e interpretar resultados resultantes quer dos cálculos manuais quer

Page 4: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

4

2010

dos outputs informáticos

Conteúdos Programáticos:

Introdução: Inferência Estatística. Escala nominal, ordinal, intervalar e de razão. População,

amostra, parâmetro, estatística, estatística de ordem. Métodos paramétricos, métodos robustos e

métodos não paramétricos. Estimação pontual e intervalar. Testes de hipóteses. P-value.

Comparação de duas populações. Amostras independentes e emparelhadas. Teste dos sinais. Teste

de Wilcoxon. Teste de Mann-Whitney.

Comparação de mais de duas populações. Amostras independentes ou relacionadas. Teste de

Kruskal-Wallis. Comparações a posteriori. Teste de Cochran. Teste de Friedman. Teste do qui-

quadrado para diferenças de probabilidades. Aleatoriedade e independência. Medidas e testes de

associação. Teste do qui-quadrado em tabelas de contingência, para independência.. Coeficientes

de correlação de Spearman. Teste de McNemar. Análise de ajustamento. Teste do qui-quadrado.

Teste de Kolmogorov-Smirnov. Teste de Shapiro-Wilk.

Calculo dos testes em SPSS e interpretação de resultados

Metodologia de Avaliação:

Avaliação Continuada:

Elemento de Avaliação Peso (%) Mínimos (%) *

Data e Hora Sala

Construção de uma base de dados e respectiva transformação (0,5 valor)

2,5 - Lab de Informática

Sintaxe dos cálculos efectuados (0,5 valor) 2,5 - Lab de Informática

Frequência teórica (9 valores) 45 - Qualquer

Avaliação Prática (6) 30 - Lab de Informática

Avaliação Final:

Elemento de Avaliação Peso (%) Mínimos (%) * Data e Hora Sala

Componente teórica (inclui a escolha de testes estatísticos adequados às variáveis em estudo

e hipóteses colocadas bem como a correcta decisão de hipóteses)

50% 50% Normal:. Recurso:.

Qualquer

Componente prática (será avaliada através do cálculo de estatísticas não paramétricas manualmente e com recurso ao suporte

informático spss)

50% 50% Normal:. Recurso:.

Laboratório Informática

Outras Notas sobre a Avaliação:

Page 5: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

5

2010

Embora as faltas sejam um aspecto ponderado na avaliação (cumprimento de tarefas), a aluna ou aluno que

faltar fica duplamente penalizado: por não ter assistido à matéria e por não estar presente nas tarefas pedidas

e por isso não sendo avaliado nessas tarefas. Assim não é necessário o estabelecimento de percentagem de

aulas obrigatórias, para que o sistema de avaliação seja justo.

Política Anti Cópia e Anti Plágio:

Nesta disciplina, os alunos podem e devem consultar várias fontes de informação, assim como

trocar ideias com colegas acerca dos conteúdos das aulas e dos trabalhos. No entanto, os

trabalhos finais apresentados pelos alunos deverão ser da sua exclusiva autoria.

No contexto da disciplina, considera-se cópia ou plágio quando parte ou a totalidade de um teste

ou de um trabalho entregue ao docente contém materiais não referenciados que não são da autoria

do aluno mas que são apresentados como tal.

A cópia e o plágio são inaceitáveis, e todos os trabalhos onde é feita cópia ou plágio, parcial ou

total, devem ser desclassificados. Tal aplica-se a quem copia ou plagia conteúdos alheios, assim

como a quem, deliberadamente, permite a cópia do teste ou trabalho, parcial ou integralmente. Em

caso de dúvida sobre o que é considerado plágio ou cópia, o aluno deverá contactar o docente

para obter esclarecimentos adicionais.

Gestão da Carga Horária:

N.º

Aula

Tipo Data Prevista Conteúdo Metodologia

1 PL 14-09-2010 Apresentação da disciplina e do docente

1 T 17-09-2010 Pré-requisitos da estatística paramétrica e princípios da

estatística não paramétrica Expositiva com resolução de exercícios

2 PL 21-09-2010 Iniciação à construção da matriz de dados em SPSS que

servirá de base ao trabalhos e tarefas do módulo prático

da disciplina

DEMONSTRATIVA (MEIOS

INFORMÁTICOS)

2 T 24-09-2010 Pré-requisitos da estatística paramétrica e princípios da

estatística não paramétrica (continuação) Expositiva com resolução de exercícios

3 PL 28-09-2010 Continuação da construção da matriz de dados em SPSS

que servirá de base ao trabalhos e tarefas do módulo

prático da disciplina

DEMONSTRATIVA (MEIOS

INFORMÁTICOS)

3 T 01-10-2010 Ordenações: somatórios e médias. Algoritmo e cálculo Expositiva com resolução de exercícios

4 T 08-10-2010 Cálculo das frequências esperadas Expositiva com resolução de exercícios

4 PL 12-10-2010 Verificação de pré-requisitos para decisão das estratégias

estatísticas em SPSS. Analise descritiva dos dados e

registo de procedimentos na sintaxe

DEMONSTRATIVA (MEIOS

INFORMÁTICOS)

5 T 15-10-2010 Qui-quadrado da aderência (X2) e qui-quadrado da Expositiva com resolução de exercícios

Page 6: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

6

2010

independência

5 PL 19-10-2010 Aumento da base de dados e cálculo da variáveis

transformadas

DEMONSTRATIVA (MEIOS

INFORMÁTICOS)

6 T 22-10-2010 Cálculo do x2 da aderência, da independência

(CONTINUAÇÃO) Expositiva com resolução de exercícios

6 T 29-10-2010 Cálculo do u de mann-whitney Expositiva com resolução de exercícios

7 PL 02-11-2010 Cálculo do x2 da aderência, da independência e u de

mann-whitney, em SPSS

DEMONSTRATIVA (MEIOS

INFORMÁTICOS)

7 T 05-11-2010 teste H de kruskal-wallis e W de wilcoxon Expositiva com resolução de exercícios

8 PL 09-11-2010 teste H de kruskal-wallis e W de wilcoxon em SPSS DEMONSTRATIVA (MEIOS

INFORMÁTICOS)

8 T 12-11-2010 Interpretação dos testes, diferença das leituras resultantes

dos procedimentos informáticos relativamente ao

procedimento manual e tabelado

Expositiva com resolução de exercícios e

exemplos

9 PL 16-11-2010 Interpretação dos testes, diferença das leituras resultantes

dos procedimentos informáticos relativamente ao

procedimento manual e tabelado

DEMONSTRATIVA (MEIOS

INFORMÁTICOS)

9 T 19-11-2010 Teste das mudanças de macnemar e q de cochran Expositiva com resolução de exercícios e

exemplos

10 PL 23-11-2010 Calculo do teste das mudanças de macnemar e q de

cochran em SPSS

DEMONSTRATIVA (MEIOS

INFORMÁTICOS)

10 T 26-11-2010 Friedman e esclarecimentos sobre duvidas para a

frequência

Expositiva com resolução de exercícios e

exemplos

11 PL 30-11-2010 Cálculo do teste Friedman em SPSS e esclarecimentos

sobre duvidas para a frequência

EXPOSITIVA E DEMONSTRATIVA

(MEIOS INFORMÁTICOS)

11 T 03-12-2010 revisões para a Frequência teórica

Utilização de papel, caneta e lápis,

calculadora, consulta de tabelas de

valores críticos e de tabelas de decisão

12 PL 07-12-2010 revisões para a Frequência pratica DEMONSTRATIVA (MEIOS

INFORMÁTICOS)

12 T 10-12-2010 Frequência teórica

Utilização de papel, caneta e lápis,

calculadora, consulta de tabelas de

valores críticos e de tabelas de decisão

13 PL 14-12-2010 Frequência pratica

Utilização de papel, caneta e lápis,

computador com SPSS, consulta de

tabelas de decisão

13 T 17-12-2010 Correcção da frequência teórica

Utilização de papel, caneta e lápis,

calculadora, consulta de tabelas de

valores críticos e de tabelas de decisão

Page 7: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

7

2010

I - INTRODUÇÃO

ESTATÍSTICA PARAMÉTRICA E NÃO PARAMÉTRICA: REVISÕES

Paramétricos: calcula as diferenças numéricas exactas entre os resultados.

Não paramétricos: apenas consideram se certos resultados são superiores ou inferiores a outros

resultados.

PRÉ-REQUISITOS PARA UTILIZAÇÃO DE TESTES

Testes paramétricos

1. que a variável tenha sido mensurada num nível mínimo intervalar;

2. que a distribuição seja simétrica (e por vezes mesocurtica);

3. que a característica estudada (variável) tenha distribuição normal numa dada população.

4. Pressupostos

Para saber se uma variável é simétrica dividimos o coeficiente assimetria (Skewness) pelo erro padrão

e se o resultado estiver entre 2 e -2 a distribuição é simétrica.

Para saber se uma variável é mesocurtica dividimos o coeficiente de achatamento (Kurtosis) pelo erro

padrão e se o resultado estiver entre 2 e -2 a distribuição é mesocurtica.

Mas se os resultados de um teste paramétrico, não cumpriram com os requisitos (no mínimo dados

intervalares; distribuição simétrica, mesocurtica e normal), então não têm interpretação significativa.

Quando acontecem estes factos, a maioria dos investigadores opta por testes de significância não-

paramétricos.

Sempre que não se pode, honestamente, admitir a simetria e a normalidade de distribuição, ou os

dados foram recolhidos num nível de mensuração inferior ao intervalar, devemos recorrer a testes que

não incluem a normalidade da distribuição ou nível intervalar de mensuração. Esses testes chamam-se

não paramétricos

Testes não-paramétricos: podem ser utilizados, mesmo quando os seus dados só podem ser medidos

num nível ordinal, isto é, quando for apenas possível ordená-los por ordem de grandeza) podem ser

utilizados mesmo quando os seus dados são apenas nominais, i.e., quando os sujeitos podem apenas

ser classificados em categorias.

Page 8: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

8

2010

PODER DE UM TESTE

O poder de um teste é a probabilidade de rejeitarmos a H0 quando ela é realmente nula

Os testes mais poderosos (os que têm maior probabilidade) de rejeição de H0, são testes que possuem

pré-requisitos mais difíceis de satisfazer (testes paramétricos como t e F).

As alternativas não paramétricas exigem muito menos pré-requisitos mas produzem testes de

significância com menos poder que os correspondentes paramétricos.

Em consequência

Ao rejeitar-se a H0 sem preencher as exigências mínimas dos testes paramétricos, é mais provável que

essa rejeição seja falsa (se rejeitar a H0 quando ela é verdadeira comete um erro de tipo I; se aceitar a

H0 quando ela é falsa comete um erro de tipo II). Quando os requisitos de um teste paramétrico são

violados, torna-se impossível conhecer o seu poder e a sua dimensão ()

É obvio que os investigadores querem, a todo o custo, rejeitar a H0 quando ela é mesmo falsa,

evitando um erro de tipo I.

O teste ideal seria aquele que =0 e =1, o que implicaria que o teste conduziria sempre à decisão

correcta, contudo o teste ideal raramente existe.

A probabilidade do erro de 1ª espécie deve ser reduzida, fixando teórico em 0,1; 0,05 ou 0,01. o

valor fixado para depende da importância que se dá ao facto de rejeitar a H0 quando esta é

verdadeira.

Uma ilustração deste ponto de vista pode ser feita com o seguinte exemplo:

Uma pessoa é inocente até prova do contrário

H0: A pessoa é inocente

H1: A pessoa é culpada

Erro I: A pessoa é condenada mas está inocente

Erro II: A pessoa é absolvida mas é culpada

Naturalmente a justiça procura reduzir a possibilidade de ocorrer o erro de 1ª espécie, pois entende-se

que é mais grave condenar inocentes que absolver criminosos.

Para certos sistemas judiciais um = 0,1 é demasiado elevado, optando por =0,01; noutros sistemas

judiciais pode admitir que = 0,05 é um valor razoável.

ASSIM …

Fixada a probabilidade do erro de tipo I (dimensão do teste), o teste mais potente é aquele em que a

escolha da região crítica minimiza a probabilidade do erro de 2ª espécie. Diz-se também que esta

região crítica é a mais potente.

Page 9: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

9

2010

Facilmente se conclui que o teste mais potente é aquele que, uma vez fixada a probabilidade de

rejeitar a H0, quando ela é verdadeira, maximiza a potência ou a capacidade para rejeitar a mesma

hipótese quando esta é falsa.

ESTRATÉGIAS ESTATISTICAS DE ANÁLISE DE DADOS

Para escolher qualquer tipo de teste estatístico

Distinguir se a nossa amostra é constituída pelos mesmos sujeitos em todas as situações ou se é

formada por diferentes sujeitos para cada situação

Inter-sujeitos ou design não-relacionado

este tipo de design é utilizado quando um indivíduo ou objecto é avaliado apenas uma vez. A

comparação é efectuado entre os grupos de sujeitos/ objectos cujos resultados são não-relacionado.

Desvantagem: conjunto das diferenças individuais na forma como os sujeitos reagem ou respondem à

tarefa.

Intra-sujeitos ou design relacionado

A comparação é feita entre os mesmos sujeitos (sujeitos do mesmo grupo).

A importância destes designs é a eliminação de quaisquer particularidades individuais, uma vez que

ficam igualizadas em todas as situações.

Desvantagem: Efeito de memória e aprendizagem.

Amostras emparelhadas

Igualizam-se sujeitos diferentes mas emparelhados, em termos de idade, sexo, profissão e outras

características gerais que parecem importantes para cada pesquisa em particular.

estes tipos de designs podem ser considerados de designs relacionados, uma vez que é controlado nas

suas características relevantes.

Desvantagem: Dificuldade em encontrar sujeitos que permitam o emparelhamento de todas as

características relevantes.

Dificuldades arranjar grandes amostras.

A maioria dos investigadores principiantes enfrenta sérias dificuldades quando tem de usar a análise

estatística. É apontado como prováveis causas o ensino de Estatística que, frequentemente, tem um

enfoque matemático ou de receita que não conduzem ao aproveitamento desta ferramenta e o

consequente despoletar de uma “ansiedade matemática”, que pode levar os estudantes a evitar o seu

Page 10: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

10

2010

uso. Essa situação conduz, não raras vezes, à dependência de outros para seleccionar a estatística

adequada ao seu projecto. O objectivo desta lição é ajudar a ter uma ideia da potencialidade da

estatística apropriada a sua pesquisa.

Primeiro examine seu estudo, identifique o que quer com sua análise estatística, devendo, para isso,

especificar claramente as várias questões a que quer que sua análise estatística responda (conhecer a

associação ou verificar as diferenças). Comece por escrever as suas questões de pesquisa e hipóteses.

Depois identifique a variável dependente e independente bem como os seus níveis de mensuração.

Após estar na posse dessa informação consulte a figura que se segue e vai ver que tudo começa a ficar

mais fácil.

Como segundo passo na escolha da estatística apropriada, verifique se sua variável dependente é

adequada para a estatística paramétrica. A estatística paramétrica envolve pelo menos dois

Page 11: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

11

2010

pressupostos iniciais: o primeiro é se a variável dependente segue uma distribuição normal e, o

segundo é se os dados entre diferentes sujeitos são independentes ou emparelhados/relacionados.

Portanto, uma variável dependente qualitativa ou categórica não se enquadra neste tipo de estatística,

devendo usar o enfoque da estatística não paramétrica.

Assim recorremos a estatística paramétrica quando analisamos variáveis dependentes contínuas.

Se essas variáveis violam os pressupostos e não tem como corrigir essa violação, então deve utilizar a

estatística não paramétrica. Só tem duas opções: ou aprende a lidar com a Estatística não

paramétrica ou então aumenta o tamanho da amostra.

Examine cada variável dependente uma por uma nesse processo. Nem todas terão as mesmas

características. Um erro comum, por exemplo, é assumir que pode usar sempre o mesmo teste

estatístico se os grupos experimentais são equivalente em idade, género, anos de estudos e outras

variáveis demográficas. Idade e anos de estudo são duas variáveis geralmente analisadas com

estatística paramétrica. O género e a etnia são variáveis nominais e por isto devem ser analisadas com

Estatística não paramétrica.

Definir quais as estratégias estatísticas a utilizar exige o conhecimento das lições anteriores. As mais

robustas estratégias estatísticas exigem que as variáveis apresentem propriedades intervalares para que

sejam obtidos resultados fidedignos. Contudo na investigação com seres humanos nem sempre é

possível termos variáveis quantitativas, por isso para cada teste estatístico paramétrico existe um

equivalente não paramétrico mas destes últimos existem vários que não tem equivalente paramétrico.

Por exemplo se tanto a nossa variável dependente (VD) quanto a independente (VI) forem nominais e

quisermos conhecer a associação entre elas podemos recorrer ao qui-quadrado (x2) da independência;

se ambas forem ordinais podemos recorrer ao rho de spearman mas se forem quantitativas e

cumprirem com os restantes pré-requisitos da estatística paramétrica (simétricas, mesocurticas e

distribuição normal) podemos utilizar o teste r de Pearson.

Se em vez de querermos ver umas associação ou correlação pretendermos verificar se existem

diferenças na distribuição de uma variável (VD) em função de outra com nível de mensuração

nominal e dicotómica (VI) então podemos utilizar o teste t de student para amostras independentes

(caso estejam cumpridos os pré-requisitos impostos à VD isto é, quantitativa, simétrica e apresente

distribuição aproximadamente normal) ou o seu equivalente não paramétrico u de Mann-Whitney

(caso não estejam cumpridos os pré-requisitos da estatística paramétrica mas a VD tenha um nível de

mensuração no mínimo ordinal).

Se a figura anterior não o deixou muito esclarecido experimente consultar o quadro que se segue. Os

testes estatísticos paramétricos estão assinados com um asterisco (*)

Page 12: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

12

2010

Testes para

uma amostra

NIVEIS DE MENSURAÇÃO

Nominal Ordinal/ grupo Quantitativa

TESTE DE QUI-QUADRADO DA

ADERÊNCIA

TESTE DE KOLMOROGOV-

SMIRNOV

TESTE DE QUI-QUADRADO DA

ADERÊNCIA

-TESTE DE KOLMOROGOV-

SMIRNOV

-TESTE T PARA UMA

AMOSTRA *

Variáveis Independentes

Qualitativas Quantitativa

Var

iávei

s D

epen

den

tes

Nominal

Nominal/ dicotómica/ grupo Ordinal/ Grupo

Qui-Quadrado da Independencia

Qui-Quadrado da Independencia

(Variáveis Grupo)

Kappa de Cohen (Tabelas Quadradas)

Macnemar (2x2)

Q de Cochran (Dicotómicas)

Ordinal

Teste Qui-Quadrado da Independencia Rho de Spearman

Rho de Spearman

Teste U de Mann-Whitney W de Wilcoxon (Igual Escala)

Teste H de Kruskal-Wallis

Kappa de Cohen (Tabelas

Quadradas)

Qui-Quadrado da Independencia

(Variáveis Grupo)

Quantitativa

t de Student p/ dados Independentes *

Rho de Spearman

T de Student p/ dados

Emparelhadas *

U de Mann-Whitney W de Wilcoxon

Anova a um critério e respectivo Post-

Hoc * R de Pearson *

H de Kruskal-Wallis e U Por Grupo

Rho de Spearman

Anova Para Medidas Repetidas

*

Friedman

Supondo que suas variáveis dependentes tivessem uma distribuição normal ou que sua amostra fosse

suficientemente grande, deve verificar todas as possibilidades de análise: univariada, bivariada,

múltipla e multivariada, se for o caso. A análise univariada é quando a variável é analisada per se,

análise bivariada quando uma variável dependente é relacionada com uma única variável

independente, análise múltipla quando se analisa uma variável dependente em função de várias

variáveis independentes, e análise multivariada, quando se analisa várias variáveis dependentes

contínuas em função de variáveis independentes categóricas ou quando se analisa a estrutura das

variáveis, visando a redução do número de variáveis.

O quadro anterior não esgota as analises estatísticas, aliás existem outras tantas quantas as que

apresentamos aqui, contudo mostra as mais utilizadas nas análises univariadas e bivariadas.

Page 13: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

13

2010

TESTES NÃO PARAMÉTRICOS

Frank Wilcoxon (1892 - 1965) tornou-se conhecido por ter desenvolvido dois testes não

paramétricos muito utilizados: o Teste de Soma de Postos Wilcoxon Rank Sum Test que é

equivalente ao teste de Mann-Whitney, e o Teste de Postos com Sinais ou Wilcoxon Signed Rank

Test (Rosner, 1995).

A estatística não paramétrica é de distribuição livre:

• Não incorpora as suposições restritivas, características dos testes paramétricos.

• Os dados não precisam estar normalmente distribuídos (Free Distribution). É necessário,

apenas, que eles sejam ordenáveis.

• São baseados em postos das observações e não em seus valores, como no caso dos

paramétricos.

• Podem ser aplicados para variáveis quantitativas, falsas intervalares( também chamadas de

semi-quantitativas) e qualitativas.

Desvantagens

• Menos sensíveis aos erros de medida e rápidos para pequenas amostras.

• Se as suposições básicas de um teste paramétrico são satisfeitas, então os testes não-

paramétricos são menos poderosos do que a técnica paramétrica correspondente (exigirá

uma amostra maior);

• As hipóteses testadas por testes não-paramétricos tendem ser menos específicas;

• Por usarem postos, em vez do valor da observação, esses testes não aproveitam toda a

informação disponível sobre a distribuição dos dados;

• Se existem muitas distribuições empatadas, as estatísticas serão superestimadas, exigindo

correções.

O posto de uma observação é a sua posição relativa às demais observações, quando os dados estão

em ordem crescente. É uma forma de medir a posição relativa da observação, sem usar o valor

observado diretamente.

Os postos correspondentes às observações de uma variável X1, X2,..., Xn são:

• Colocam-se as observações em ordem crescente, X1 < X2,...,< Xn.

• Associam-se valores, correspondendo às suas posições relativas na amostra. O primeiro

elemento recebe o valor 1, o segundo o valor 2, e assim por diante, até que a maior

observação receba o valor n.

Page 14: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

14

2010

• Se todas as observações são distintas, ou seja, se Xi Xj para todo i, j, os postos R1, R2,...,Rn

são iguais aos valores associados às observações no passo anterior. Para observações iguais,

associam-se postos todos iguais à média de suas posições relativas na amostra.

Exemplo: Considere uma amostra de 8 idades de crianças do ambulátorio do IC, apresentada na

tabela abaixo:

Os postos devem ser cuidadosamente atribuídos, pois os testes serão baseados nesses valores.

TESTES PARA AMOSTRAS INDEPENDENTES:

TESTE DO QUI-QUADRADO

O Qui-quadrado (X2) é um teste estatístico não paramétrico, sendo um dos mais utilizados e bastante

aplicado em diferentes planos experimentais. O X2 é muito usado mesmo ao nível da estatística

multivariada (no sentido de obter o grau de aderência entre o modelo obtido e o teórico).

Existem vários testes baseados no qui-quadrado, contudo só dois tem esse nome: o teste do qui-

quadrado da aderência ou ajustamento (para uma amostra) e o teste do qui-quadrado da

independência.

O Qui-quadrado (X2) de aderência consiste em comparar os dados obtidos experimentalmente com os

dados esperados de acordo com a lei. Das comparações surgem diferenças que podem ser grandes ou

pequenas: se forem grandes, a hipótese nula (H0) que pressupõe um bom ajustamento deverá ser

rejeitada em favor da hipótese alternativa (H1); se forem pequenas, a hipótese nula não será rejeitada e

as diferenças são atribuíveis ao acaso. O objectivo é comparar frequências observadas com

frequências teóricas ou esperadas, ou seja, verificar o seu grau de aproximação, que pode ser grande

(=0) ou pequeno (> 0).

Page 15: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

15

2010

Utiliza-se quando os dados são nominais, pelo que em vez de se medirem resultados dos sujeitos

apenas se podem distribuir os sujeitos por uma ou mais categorias.

O Qui-quadrado (X2) testa a hipótese experimental que prevê quantos sujeitos de cada grupo são

distribuídos por uma determinada categoria.

O X2 de independência serve para ajudar a decidir se as duas variáveis estão ou não "amarradas" uma

à outra por uma relação de dependência.

Utiliza-se quando os dados são qualitativos e se pretende saber como é que se comportam os dados

quando as variáveis se cruzam, isto é qual a contingência entre as variáveis.

O objectivo é comparar as frequências observadas em cada uma das células de uma tabela de

contingência com as diferenças esperadas. O teste compara o número de sujeitos que se distribuem por

uma determinada categoria com o número de sujeitos que se esperaria se distribuíssem por essa

mesma categoria, caso não existissem diferenças.

O teste do X2 reflecte o tamanho das diferenças entre as frequências observadas e esperadas. Para ser

significativo, o valor de X2 deverá ser igual ou superior aos valores críticos da tabela.

TESTE DO QUI-QUADRADO DA ADERENCIA PASSO-A-PASSO

1. Calcular as frequências esperadas (E) para cada célula, somando as frequências observadas e

dividindo pelo número total de categorias.

Em que O = frequências observadas para cada categoria

C = número de categorias

2. Calcular X

2:

3. Calcular os graus de liberdade:

g.l. = (C-1)

Se X2 observado X

2 crítico rejeita-se H0 Se X

2 observado <X2 crítico aceita-se H0

Page 16: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

16

2010

Exemplo: A depressão acontece mais em homens ou em mulheres. Estudo efectuado com

base na recolha de dados provenientes de uma amostra aleatória de indivíduos diagnosticados

com depressão nos últimos 5 anos, que foram ou estão a ser acompanhados na consulta de um

determinado hospital central.

FO FE Resíduos

Feminino 45 50 -5

Masculino 55 50 +5

100/2=50

X2 =

((-5)2/50)

+ (( 5)

2/50)

X2 = 1

O X2 observado é igual a 1

O X2 crítico é igual a 3,84

O valor observado é inferior ao valor crítico, logo, aceito a hipótese nula: a distribuição de

deprimidos por sexo é homogénea.

TESTE DO QUI-QUADRADO DA INDEPENDENCIA PASSO-A-PASSO

1. Numerar as "células" que representam cada uma das categorias e calcular as frequências

esperadas (E) para uma, multiplicando os dois totais parciais relevantes para cada uma e

dividindo pelo número total de sujeitos.

Page 17: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

17

2010

2. Calcular X2:

em que

O = frequências observadas para cada célula

E = frequências esperadas para cada célula

3. Calcular os graus de liberdade: g.l. = (r-1) (c-1)

em que

r = número de linhas da tabela de contingência

c = número de colunas da tabela de contingência

Exemplificando: para uma tabela de dupla entrada 2*2:

g.l. = (número de colunas - 1) (número de linhas - 1) = 1*1 = 1

consulta-se a tabela dos valores critico e,

Se X2 observado X

2 crítico rejeita-se H0 Se X

2 observado < X

2 crítico aceita-se H0

Exemplo: Suponha que quer saber se os estudantes de ciências sociais utilizam um método de estudo

significativamente diferente daquele que é utilizado pelos estudantes de tecnologia. A amostra

prevista ficou constituída por dois grupos, um composto por 50 estudantes de ciências sociais e o

outro por 50 estudantes de tecnologia. Enviou-se, então, via mail, um questionário aos 100 estudantes

Page 18: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

18

2010

pedindo-lhes que indicassem se o seu método de estudo era regular (diário), irregular (só em épocas

de avaliações) ou misto (estudar diariamente um pouco com maior intensidade nos períodos de

avaliações). Foram recebidas 44 respostas dos estudantes de ciências sociais e 42 dos estudantes de

tecnologia.

A hipótese experimental (H1) era:

H1: O tipo de estudo varia em função curso frequentado

Os resultados são apresentados na forma de uma tabela 2*3, designada por tabela de contingência

(crosstab).

Tipo de estudo

Regular Irregular Misto

Grupo 1-Estudantes de Ciências Sociais 6 15 23 Grupo 2-Estudantes de Tecnologia 10 8 24

Instruções Passo-a-Passo: enumerar as células, obter os totais e calcular as frequência esperadas (E)

Tipo de estudo

Regular Irregular Misto Total

Grupo 1 E1=

6

E2=

15

E3=

23

44

Grupo 2 E4=

10

E5=

8

E6=

24

42

Totais

16

23

47

N=86

Resolva:

Page 19: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

19

2010

Confira:

Célula 1: E1 = 16X44 / 86 = 8,19

Célula 2: E2 = 23X44 / 86 = 11,77

Célula 3: E3 = 47X44 / 86 = 24,05

Célula 4: E4 = 16X42 / 86 = 7,81

Célula 5: E5= 23X42 / 86 = 11,23

Célula 6: E6 = 47X42 / 86 = 22,95

2. Aplicar a fórmula do x2 e proceder ao cálculo do teste

X2 = (6-8,19)

2 + (15-11,77)

2 + (23-24,05)

2 + (10-7,81)

2 + (8-11,23)

2 + (24-22,95)

2

8,19 11,77 24,05 7,81 11,23 22,95

X2 = 0,59 + 0,89 + 0,05 + 0,61 + 0,93 + 0,05 = 3,12

3. Calcular os graus de liberdade (gl)

g.l. = (r - 1) (c - 1) = (2 -1) (3 - 1) = 2

4. Consultar a tabela dos valores críticos

Para p=0,05 e gl=2 x2 critico=5,99

Conclusões: Dado que o valor observado de X2 é apenas de 3,12, ou seja, inferior ao valor crítico de

5,99 para p < 0,05, o resultado da experiência não é significativo. Aceita-se hipótese nula de que os

padrões de estudo dos estudantes de ciências sociais e de tecnologia não diferem, rejeitando-se desta

forma a nossa hipótese experimental (H1).

Page 20: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

20

2010

Ao estudarmos as diferenças entre dois grupos podemos utilizar grupos relacionados/emparelhados ou

grupos independentes. No caso de duas amostras independentes determinamos se as diferenças nas

amostras constituem uma evidência convincente de uma diferença nos processos de tratamento a elas

aplicados.

Apesar do uso de duas amostras relacionadas em projectos de pesquisa ter méritos indiscutíveis, a sua

aplicação, em geral, não é prática. Frequentemente, a natureza da variável dependente impede a

utilização dos indivíduos como seus próprios controlos, tal como ocorre quando a variável dependente

é o suicídio tentado; um problema que pode acontecer uma única vez. Pode ser também impossível

delinear um projecto que utilize pares de dados, talvez por desconhecimento, por parte do

investigador, de variáveis úteis que possam formar pares, ou pela impossibilidade de obter

mensurações adequadas de alguma variável de reconhecida importância ou, enfim, porque

simplesmente não se dispõe de “pares” adequados.

Quando a utilização de duas amostras relacionadas não é prática ou adequada, podemos utilizar duas

amostras independentes. Em tais projectos, as duas amostras podem ser obtidas por um de dois

métodos:

Podem ser extraídas aleatoriamente de duas populações;

Podem decorrer da atribuição aleatória de dois tratamentos aos membros de uma amostra de origem

arbitrária.

Nota: Em nenhum destes casos se exige que as amostras tenham o mesmo tamanho.

PROCEDIMENTOS PARA ORDENAÇÃO DE RESULTADOS

Os testes não paramétricos U de Mann-Whitney; Wilcoxon; H de Kruskal-Wallis; rho de Spearman;

tau de Kendall e Friedman, exigem o recurso a ordenações de resultados para efectuar os seus

cálculos. Neste sentido começaremos por explicar os procedimentos de ordenação de resultados

Ordenamento global de resultados (designs não-relacionados para sujeitos diferentes), utilizados nas

estatísticas U de Mann-Whitney, H de Kruskal-Wallis e rho de Spearman:

Page 21: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

21

2010

Para se ordenar resultados, atribui-se a ordem 1 (ordem mais baixa) ao sujeito que fuma menos, a

ordem 2 ao seguinte, e por aí adiante, tal como no exemplo que se segue:

n.º de cigarros/ dia ordem

6 4

3 1

12 7

4 2

7 5

5 3

8 6

n.º de cafés/ dia ordem

1

3

2

4

6

5

8

Sempre que exista um resultado 0 (zero) é contado como o valor observado mais baixo, sendo-lhe

atribuída a ordem 1, tal como no exemplo que se segue:

n.º de consultas ordem

2.ª feira 6 5

3.ª feira 3 2

4.ª feira 0 1

5.ª feira 4 3

6.ª feira 5 4

n.º de telefonemas ordem

2.ª feira 60

3.ª feira 30

4.ª feira 40

5.ª feira 24

6.ª feira 75

Sábado 15

Domingo 0

Page 22: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

22

2010

Quando existem resultados iguais são-lhe atribuídas a média das posições ou das ordens, calculadas

com base na globalidade das ordens que deviam ter sido atribuídas a estes resultados, tal como no

exemplo que se segue:

absentismo no mês de Dezembro ordem

1 2

2 4

1 2

4 6,5

1 2

3 5

4 6,5

6 9

5 8

Assim os sujeitos com uma falta são 3 (1+1+1) que ocupariam o 1.º - 2.º - 3.º lugar, então

3+2+1=6:(1+1+1)=2; com 4 faltas temos 2 sujeitos que ocupariam o 6.º e 7.º lugar, então

6+7=13:(1+1)=6,5

Refeições de carne ordem Refeições de peixe ordem

100

120

200

230

111

11

412

42

111

121

30

30

412

30

600

30

500

120

TESTE U DE MANN-WHITNEY

Quando Utilizar

Dadas duas amostras, de tamanhos n1 e n2, é possível, mediante a prova U de Mann-Whitney, saber

se ambas as amostras podem ser consideradas provenientes da mesma população.

Como já se sabe, a estatística paramétrica só pode ser usada desde que os dados tenham sido

mensurados, no mínimo, no nível intervalar. Além disso, as amostras devem ser aleatórias,

independentes e a variável observacional precisa de ter distribuição normal na população.

Page 23: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

23

2010

O teste U de Mann-Whitney deve ser utilizado em designs com duas situações, não-relacionado,

quando são utilizados sujeitos diferentes em cada uma das situações experimentais.

MANN-WHITNEY-WILCOXON: TESTE PARA PEQUENAS AMOSTRAS

O cálculo da estatística do teste (U critico), e a consequente regra de decisão, depende do tamanho

da amostra. Se qualquer dos grupos (nA ou nB) menor que 10 o valor crítico é obtido da tabela.

Vejamos um exemplo em que o grupo A tem 4 sujeitos e o grupo B 5 e se pretende verificar se têm

desempenhos significativamente diferentes.

Um conjunto de 9 atletas 4 da equipa A e 5 da Equipa B vão em competição e chegara à meta nas

seguintes posições

Os tempos foram contabilizados e os atletas ordenados da seguinte forma:

Qual o valor de U critico?

Para o obter somamos as posições da equipa A e as posições da equipa B e obtemos

UB=9+8+6+3+2= 28 UA=7+5+4+1= 17

Page 24: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

24

2010

A seguir vamos à tabela dos valores críticos e cruzamos o número de indivíduos de uma equipa com o

número de indivíduos da outra:

Como podemos observar os valores de aceitação da H0 ( que não existem diferenças entre os grupos)

estão entre 11 e 29 e os valores observados são 17 e 28 o que está dentro do intervalo. Logo podemos

concluir que as equipas não têm desempenhos significativamente diferentes.

Exercício: Um estudo visa a comparar, ao nível de significância de 5 %, se a taxa de creatinina é a mesma em

dois grupos de pacientes renais: um grupo com 6 indivíduos que apresentavam insuficiência renal aguda (IRA),

e outro, com 5 indivíduos, que não apresentavam IRA.

H0: os grupos não são estatisticamente diferentes.

HA: os grupos são estatisticamente diferentes.

Ordene, confira com as soluções e conclua com base na consulta da tabela

Paciente com IRA sem IRA

1 3,3 0,9

2 3,0 0,8

3 4,0 0,6

4 1,5 0,7

5 2,4 0,8

6 0,9

Taxa de Creatinina (mg/100ml)

10911785,550,5 A R

5,5 3,5 1 2 3,5 15,5BR

Page 25: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

25

2010

MANN-WHITNEY-WILCOXON: TESTE PARA GRANDES AMOSTRAS

Se ambos os grupos têm pelo menos dez observações, podemos usar a chamada forma assintótica do

teste, na qual a estatística do teste pode ser aproximada por uma Normal.

Procedimento:

• Calculam-se as estatísticas padronizadas UA e UB, onde:

UA

UB

U = min (U1 , U2)

Mann-Whitney-Wilcoxon Forma Assintótica

• Calculam-se a média e a variância de U, dadas por:

• Calcula-se a variável padronizada zU, dada por:

• Compara-se o valor absoluto de zU com o valor de z crítico (tabela z), para o nível de

significância desejado.

( ) 0,5;

var( )U

U E Uz

U

( )2

A Bn nE U

( 1)var( ) ;

12

A B A Bn n n nU

( 1)

2

B BA A B B

n nU n n R

( 1);

2

A AB A B A

n nU n n R

Page 26: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

26

2010

Exemplo:Considere as distribuições de scores de idade mental normalizados de duas populações de

crianças que sofrem de fenilcetonúria. Indivíduos com essa disfunção são incapazes de metabolizar a

proteína fenilalanina. Desconfia-se de que um elevado nível sérico dessa proteína aumenta a

probabilidade de deficiência mental da criança. Deseja-se comparar dois grupos de crianças: um com

baixa exposição à fenilalanina (menos que 10 mg/dl diários) e outro com alta exposição (acima de 10

mg/dl diários).

Não há evidências de que os scores normalizados de idade mental sejam normalmente distribuídos nos

pacientes com essa disfunção.

Os scores de idade mental normalizados para as duas amostras de crianças sofrendo de fenilcetonúria

estão na tabela abaixo:

As estatísticas padronizadas de UA são:

Para de 5% (bicaudal), o ZU de -1,2051, o que conclui?

1 Test Statistics b

FENIL

Mann-Whitney U 83,500

Wilcoxon W 203,500

Z -1,205

Asymp. Sig. (2-tailed) ,228

Exact Sig. [2*(1-tailed Sig.)] ,233a

Baixa Exp. Alta Exp.

39.5 35.0

40.0 37.0

45.5 37.0

47.0 43.5

47.0 44.0

47.5 45.5

48.7 46.0

49.0 48.0

51.0 48.3

51.0 48.7

52.0 51.0

53.0 52.0

54.0 53.0

54.0 53.0

55.0 54.0

Page 27: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

27

2010

Racional:

O racional que está por trás do teste U de Mann-Whitney é bastante semelhante ao do teste de

Wilcoxon. A diferença fundamental entre as duas reside no facto do segundo se aplicar a designs

relacionados e o U se aplicar a designs não-relacionado, utilizando, portanto, sujeitos diferentes. O

teste de Wilcoxon analisa as diferenças entre a performance dos mesmos sujeitos (ou pares de sujeitos

emparelhados) submetidos a duas situações experimentais. Com um design não-relacionado não temos

uma base que nos permita comparar diferenças entre pares de resultados. Assim, o teste U de Mann-

Whitney ordena os resultados de todos os sujeitos em ambas as situações como se fossem apenas um

conjunto simples de resultados.

Page 28: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

28

2010

Se as diferenças entre as situações forem aleatórias, como é postulado pela hipótese nula, então os

resultados devem ser aproximadamente os mesmos e, consequentemente, as ordens devem ser também

aproximadamente as mesmas para as duas situações. Se houver uma preponderância de ordens altas

ou baixas numa situação ou na outra, então é porque a diferença no total dos resultados ordenados

para cada situação é devida aos efeitos previstos da variável independente e não ao acaso. Se a soma

total das ordens for muito baixa para uma das situações, então terá de haver uma preponderância de

ordens elevadas na outra situação. Quanto menor for U mais significativas serão as diferenças entre

as ordens das duas situações.

O investigador pode precisar de decidir se diversas variáveis independentes devem ser consideradas

como procedentes da mesma população. Os valores amostrais quase sempre são um tanto diferentes e

o problema é determinar se as diferentes amostras observadas sugerem realmente diferenças entre as

populações ou se são apenas variações casuais que podem ser esperadas entre amostras aleatórias da

mesma população.

Apresentamos técnicas para comparar a significância de diferenças entre três ou mais grupos de

amostras independentes, ou seja, para comprovar a hipótese de nulidade de que K amostras

independentes tenham sido extraídas da mesma população ou de populações idênticas.

As provas não-paramétricas têm a vantagem de permitir estudar, quanto à significância, dados que são

inerentemente classificados (escala nominal) ou se apresentam em postos (escala ordinal).

Exercicio: Suponha que quer investigar o n.º de queixas dolorosas durante um tratamento a um mesmo problema

terapêutico (controlada a gravidade e a extensão da lesão) em que se utilizaram duas técnicas diferentes. A

hipótese experimental supõe que é durante a utilização da técnica B que o doente se apresenta mais queixoso.

Paciente A Ordem (T1) B Ordem (T2)

1 3 3 9 11

2 4 4 7 9

3 2 1,5 5 5,5

4 6 7,5 10 12

5 2 1,5 6 7,5

6 5 5,5 8 10

TOTAL 22 T1=23 45 T2=55

MÉDIA 3,67 7,5

TESTE DE KRUSKAL-WALLIS

Requisitos para o uso do teste de Kruskal-Wallis

O teste de Kruskal-Wallis pressupõe as seguintes condições para o seu adequado uso:

1. Comparação de três ou mais amostras independentes;

Page 29: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

29

2010

2. O teste de Kruskal-Wallis não pode ser usado para testar diferenças numa única amostra de

respondentes mensurados mais de uma vez;

3. Dados cujo nível de mensuração seja no mínimo ordinal;

4. Esta prova exige dados que possam ser ordenados e aos quais, por isso mesmo, seja possível

atribuir postos ou ordens; 5. O tamanho mínimo de cada amostra deve ser de 6 para se poder recorrer ao x

2.

Quando n > 5 por grupo de respondentes, a significância de H pode ser determinada por recorrência à Tabela do Qui-quadrado (Anexo I). Para

testar diferenças entre amostras de tamanho inferior a 6, deve recorrer a tabelas especiais (Anexo IV).

Quando utilizar

Este teste pode ser considerado uma extensão do teste U de Mann-Whitney quando necessitamos de

utilizar três ou mais situações. Deve ser utilizado em designs não-relacionado quando sujeitos

diferentes são distribuídos por três ou mais situações.

Exemplo: Suponha que estamos interessados em descobrir se existem diferenças no acesso a uma

página da internet em função da característica: muito ilustrada, com algumas ilustrações e, sem

ilustrações. Alocámos três páginas na internet com o mesmo assunto e titulo durante 4 meses. A seguir

verificámos o número de vezes que foram acedidas durante quatro sábados seguidos. Os resultados

foram.

Sujeitos do grupo 1

(página muito ilustrada)

Sujeitos do grupo 2

(página com algumas

ilustrações)

Sujeitos do grupo 3

(Página sem ilustrações)

Resultados Ordem Resultados Ordem Resultados Ordem

Sábado 1 19 10 14 6 12 3,5

Sábado 2 21 11 15 7 12 3,5

Sábado 3 17 9 9 1 13 5

Sábado 4 16 8 10 2

TOTAL 73 38 38 14 47 14

MÉDIA 18,25 12,67 11,75

Racional

Este teste pretende determinar se os resultados são significativamente diferentes para três ou mais

grupos. Uma vez que todos os resultados foram, em princípio, obtidos por sujeitos diferentes a única

forma de verificarmos as diferenças entre as situações é ordená-las em conjunto, como se tratassem

apenas de um conjunto de resultados, tal como havíamos efectuado no teste U de Mann-Whitney. Isto

acontece porque, não temos uma base para comparar resultados dos mesmos sujeitos ou de sujeitos

emparelhados em diferentes situações, como com o teste U de Mann-Whitney para designs

relacionados. Este ordenamento global, quando posteriormente adicionamos as ordens de cada coluna

em separado, permite-nos obter o total das ordens para cada situação. Se existirem apenas diferenças

aleatórias entre as situações, como é postulado na hipótese nula, é de esperar que ordens altas e baixas

se distribuam de forma aproximadamente equivalente pelas diferentes situações. Mas, se pelo

Page 30: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

30

2010

contrário, houver uma preponderância de altos ou baixos resultados em qualquer uma das situações, é

provável que tal facto reflicta diferenças significativas devidas à variável independente.

O valor das diferenças entre os totais das ordens é dado pela estatística designada por H. Desde que

a hipótese experimental preveja a existência de diferenças significativas entre as situações, o valor

que obtivermos de H deverá ser igual ou superior ao valor crítico da Tabela, para que possa ser

considerado significativo.

Instruções passo-a-passo para calcular H

Ordene todos os grupos do design como se tratasse apenas de um conjunto de resultados,

atribuindo a Ordem 1 ao menor resultado e assim sucessivamente.

Para um ordenamento global dos resultados, veja as colunas ordem para os grupos 1, 2 e 3, em que

todos os resultados são considerados em conjunto

Adicione os totais das ordens para cada situação.

Calcule o valor de H a partir da fórmula

OU

em que:

Número total de sujeitos N=11

nc número de sujeitos em cada grupo n1=4; n2=3; n3=4

Tc=total de ordens para cada situação, ou seja, os totais das ordens para cada coluna T1=38;T2=14;T3=14

Tc2=total das ordens para cada situação, cada um elevado ao quadrado T1

2=382;T22=142; T3

2=142

=soma dos quadrados dos totais das ordens para cada situação dividido pelo número de sujeitos dessa situação (nc)

Page 31: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

31

2010

Cálculo de H

Calcule os graus de liberdade, ou seja, o número de situações/categorias (C) menos uma.

gl = C – 1 = 3 – 1 = 2

Consulta da significância na tabela

A Tabela (Anexo IV) utiliza-se em experiências com três grupos de sujeitos, e com um máximo de

cinco sujeitos em cada grupo. Para um maior número de sujeitos, deve ser utilizada a Tabela do

Qui-quadrado (Anexo I). Quando não são utilizados mais de três grupos, poderá localizar na coluna

da esquerda da Tabela o número de sujeitos de cada grupo. Localize então a combinação que

procura (no nosso caso: 4, 4, 3). Note que a ordem do número de sujeitos não é importante, mas a

combinação apropriada na Tabela é 4, 4 e 3. Para essa combinação encontrará os valores críticos de

H para várias probabilidades. Se o valor de H que obteve for igual ou superior ao valor crítico de

um determinado nível de significância pode rejeitar a hipótese nula. No nosso exemplo, o valor

obtido de H=7,26 é superior ao valor crítico de 7,1439 para p<0,01, pelo que podemos aceitar a

hipótese experimental a este nível de significância.

Se possuir mais de três situações, e/ou sujeitos em cada situação, deverá procurar o valor crítico na

Tabela do Qui-quadrado. Repare que para isso terá que calcular os graus de liberdade. Localize os

Page 32: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

32

2010

valores dos graus de liberdade (no nosso exemplo, gl=2) ao longo da coluna do lado esquerdo e

verifique ao longo da linha os valores críticos para as diferentes probabilidades. O valor que

obtivemos H=7,26 é superior ao valor crítico de 5,99 para p<=0,05, pelo que podemos aceitar que

o resultado é significativo a este nível. Dará conta que esta probabilidade é menos significativa de

que quando utilizamos a Tabela anterior. Isso acontece porque essa Tabela é especialmente

concebida para nos dar as probabilidades com um pequeno número de sujeitos e de situações.

Notará também que o teste de Kruskal-Wallis apenas lhe pode dizer que existem diferenças globais

nos resultados entre as situações experimentais. Na tabela apresentada parece existir uma tendência

para consultar páginas com mais ilustrações do que sem ilustrações. Mas para poder testar se essa

tendência realmente existe, terá de utilizar um teste de tendência.

Page 33: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

33

2010

TESTES PARA AMOSTRAS RELACIONADAS

Empregam-se as provas estatísticas de duas amostras quando o investigador deseja determinar se dois

tratamentos são diferentes ou se um tratamento é “melhor” do que o outro. Em cada caso, compara-se

o grupo em que se aplicou o tratamento com outro que não sofreu nenhum tratamento ou que sofreu

tratamento diferente.

Em tais comparações de dois grupos observam-se, por vezes, diferenças significativas que não são

resultantes do tratamento aplicado.

Uma das maneiras de superar a dificuldade decorrente da introdução de diferenças “extrínsecas” entre

dois grupos consiste em utilizar na pesquisa duas amostras relacionadas, isto é, relacionar de alguma

forma as duas amostras estudadas. Tal relacionamento pode ser conseguido utilizando-se cada

indivíduo como seu próprio controlo ou então formando pares de indivíduos e, em seguida, associando

os dois membros de cada par às duas condições. Quando um indivíduo “serve como o seu próprio

controlo”, ele é submetido a ambos os tratamentos em ocasiões diferentes. Quando se utiliza o método

do emparelhamento devem procurar seleccionar-se, para cada par, indivíduos que sejam tão

semelhantes quanto possível em relação a quaisquer variáveis extrínsecas que possam influenciar os

resultados da pesquisa.

Sempre que possível, o método de utilização do indivíduo como o seu próprio controlo

(contrabalançando a ordem em que se aplicam os tratamentos ou métodos) é preferível ao método de

emparelhamento. E a razão disso é que é limitada a nossa capacidade para formar os pares

adequadamente, em consequência do nosso desconhecimento das variáveis relevantes que determinam

o comportamento. A validade por emparelhamento está na razão directa do investigador para

determinar como formar os pares, e essa capacidade é quase sempre muito limitada. Essa dificuldade é

contornada quando se utiliza cada indivíduo como seu próprio controlo; não se pode pretender

relacionamentos mais precisos do que a própria identidade.

Ordenamento de diferenças entre resultados (designs relacionados para os mesmos sujeitos ou

emparelhados):

Em geral, a atribuição de ordens às diferenças entre resultados efectua-se tal como fizemos para os

resultados, sendo atribuída a ordem mais baixa à menor diferença e por aí adiante;

Diferenças idênticas entre resultados são ordenadas da mesma forma que resultados idênticos,

atribuindo-se uma ordem média resultante da globalidade de ordens que essas diferenças deveriam

ocupar;

Resultados nulos de 0 são contados como o resultado mais baixo possível quando se calculam

diferenças entre resultados;

Page 34: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

34

2010

Contudo, quando existe igualdade entre resultados que originem uma diferença nula entre as situações

experimentais, estes não são ordenados, sendo retirados da análise;

Diferenças positivas e negativas são ordenadas em conjunto como se tratasse de um ordenamento

simples de resultados, ignorando os sinais positivos e negativos.

Exemplo: Suponha que quer ordenar as diferenças entre o número de frases correctas que um grupo de

crianças com suspeita de perda auditiva produziu antes da colocação de um aparelho auditivo e após a

colocação daquele.

Quadro 14: Ordenação para Amostras Relacionadas ou Emparelhadas

Ao contrário do que acontece nos casos das amostras relacionadas quando a diferença entre 2

situações é nula nas amostras relacionas a este tipo de resultado não é atribuída nenhuma ordem,

sendo que o resultado nem sequer é considerado na análise. No ordenamento de resultados negativos

em amostras relacionadas ignoram-se os sinais quando se ordenam os resultados.

PROVA DE MCNEMAR PARA A SIGNIFICÂNCIA DE MUDANÇAS

Quando utilizar

A prova de McNemar para a significância de mudanças é particularmente aplicável aos planeamentos

do tipo “antes e depois”, em que cada indivíduo é utilizado como o seu próprio controlo e a

mensuração se faz ao nível de uma escala nominal ou ordinal. Pode, assim, ser usada para testar a

eficiência de determinada técnica (reuniões, folhetos, visita, etc.) sobre as preferências eleitorais a

respeito de vários candidatos.

Nestes casos, cada pessoa pode servir como o seu próprio controlo, utilizando-se a mensuração em

escala nominal para avaliar as alterações da situação “após” em relação à situação “antes”.

856110

96719

-0448

6,54517

53526

21545

6,54514

21323

42752

21651

ordemdiferençasNº de frases correctas

depois do aparelho auditivo

Nº de frases correctas antes do aparelho

auditivoSujeitos

856110

96719

-0448

6,54517

53526

21545

6,54514

21323

42752

21651

ordemdiferençasNº de frases correctas

depois do aparelho auditivo

Nº de frases correctas antes do aparelho

auditivoSujeitos

Page 35: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

35

2010

Racional

Para comparar a significância de qualquer mudança observada, por este método, constrói-se uma

tabela de frequências de 4 casas para representar o 1º e o 2º conjunto de reacções dos mesmos

indivíduos. As características gerais desta tabela são as que se apresentam a seguir, em que se utilizam

os sinais “+” e “-” para indicar diferentes reacções.

ANTES

- +

DEPOIS + A B

- C D

Note-se que os casos que acusam modificações entre a 1ª e a 2ª reacção aparecem nas células A e D.

Um indivíduo é localizado na célula A se passou de “+” para “-” e na célula D se passou de “-“ para

”+”. Na ausência de modificação, o indivíduo é classificado na célula B (reacção “+” antes e depois)

ou na célula C (reacção “-” antes e depois).

Como A e D representa o número total de indivíduos que acusam modificação, a perspectiva, sob a

hipótese de nulidade, seria que ½ (A+D) acusassem modificações num sentido e ½ (A+D) acusassem

modificações noutro sentido. Ou seja, ½ (A+D) é a frequência esperada, sob H0, tanto na célula A

como na célula D.

Na prova de McNemar de significância de mudança, estamos interessados apenas nas células A e D.

Portanto,

A=número de casos observados na célula A,

D=número de casos observados na célula D e

½ (A+D)=número esperado de casos tanto nas células A como D,

Então

com graus de liberdade=1

CORRECÇÃO DE CONTINUIDADE

A aproximação, pela distribuição do Qui-quadrado, da distribuição amostral da fórmula torna-se

excelente se introduzir uma correcção de continuidade. Tal correcção é necessária, porque se utilizou

um distribuição contínua (Qui-quadrado) para aproximar uma distribuição discreta. Quando todas as

frequências esperadas são pequenas, tal aproximação pode ser fraca. A correcção de continuidade

(Yates, 1934) constitui uma tentativa de remoção dessa fonte de erro.

Com a correcção de continuidade, tem-se:

com graus de liberdade=1

Page 36: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

36

2010

Esta expressão indica que se deve subtrair 1 do valor absoluto da diferença entre A e D antes de elevar

ao quadrado. O grau de significância de qualquer valor observado de Qui-quadrado, tal como

calculado através da fórmula, é determinado mediante referência a uma Tabela (Anexo I). Se o valor

observado de Qui-quadrado é igual a, ou maior do que, o valor exibido na Tabela para determinado

nível de significância com gl=1, a implicação é que existe efeito “significativo” nas reacções “antes” e

“depois”.

Instruções passo-a-passo para calcular x2

Enquadrar as frequências observadas numa tabela de 4 casas.

Determinar as frequências esperadas nas células A e D E=1/2 (A+D)

Se as frequências esperadas são inferiores a 5, empregar a prova binomial em

substituição à prova de McNemar.

Se as frequências esperadas não são inferiores a 5, calcular o valor de X2 através

da fórmula

Mediante referência à Tabela (Anexo I), determinar a probabilidade, sob H0, associado a um valor tão

grande quanto o valor observado de X2. Se trata de uma prova unilateral, dividir por 2 o valor da

probabilidade exibido na Tabela. Se o valor de p, dado pela Tabela para o valor observado de X2 com

gl=1, não supera p, rejeita-se H0 em favor de H1.

Exemplo: Suponha que um profissional de saúde está interessado em estudar os comportamentos

resultantes da iniciação de obesos à prática do exercício físico. Este profissional observou ao longo

dos anos que os obesos utilizam preferencialmente o elevador para se dirigirem à sua consulta cujo

consultório era no 1.º andar. Coloca a hipótese de que os obesos que tiveram com terapêutica

exercício físico começariam a usar preferencialmente as escadas. A fim de testar a hipótese o técnico

observa 25 doentes em que ministrou como exercício físico caminhar uma hora por dia cinco vezes

por semana. Decorrido um mês de exercício observa os mesmos 25 doentes e faz a classificação

comportamentos. Os dados são os seguintes:

Preferência após 30º dias de exercício

Escadas Elevador

Preferência antes da

terapêutica

Elevador 4 (A) 14 (B)

Escadas 4 (C) 3 (D)

Page 37: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

37

2010

Hipótese de nula (H0): Para os obesos que modificaram a sua atitude, a probabilidade de mudar o

percurso do elevador para as escadas (PA) é igual à probabilidade de mudar de mudar das escadas

para o elevador (PD) e ambas são iguais a ½. Isto é,

H0: PA=PD=1/2 H1: PA>PD

Prova estatística:

Utiliza-se a prova de McNemar para significância de mudanças, porque o estudo utiliza duas amostras

relacionadas, é do tipo antes-e-depois e utiliza a escala de medida nominal (classificativa).

Nível de significância:

p=0,05 N=25

Distribuição amostral:

A distribuição Qui-quadrado com 1 grau de liberdade dá uma boa aproximação da distribuição

amostral de Qui-quadrado, tal como calculada pela fórmula.

Região de Rejeição:

Como H1 especifica o sentido da diferença prevista, a região de rejeição é unilateral. Consiste de

todos os valores de Qui-quadrado que são tão grandes que acusem uma probabilidade unilateral,

associada à sua ocorrência sob H0 não superior a 0,05.

Decisão:

Estamos interessados nos obesos cujo comportamento acusa alteração: representados nas células A e D.

Para os dados, temos:

Sendo 0 valor observado de x2=0, devemos consultar a tabela (Anexo I) para obter o valor crítico, não

esquecendo que temos uma amostra unicaudal a um nível de 0,05. consultando a tabela observamos

um x2 critico de 5,41.

Page 38: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

38

2010

TESTE DOS SINAIS DE WILCOXON

Teste de Wilcoxon ou Wilcoxon Signed Rank Test

ou

Teste de postos com sinais (equivalente do teste t emparelhado)

Quando utilizar

O teste de Wilcoxon deve ser utilizado num design experimental relacionado, com duas situações

experimentais quando são utilizados os mesmos sujeitos ou sujeitos emparelhados em ambas as

situações.

Exemplo: Suponha que quer investigar se existe alguma diferença na quantidade de vocabulário

utilizado por crianças que usam um aparelho auditivo ou por crianças que não usam. Este é um bom

exemplo dum caso em que é essencial a utilização de sujeitos emparelhados. Como é óbvio, não é

possível utilizar os mesmos sujeitos, uma vez que nenhuma criança que não precisa de usar aparelho

auditivo usa um mesmo tempo. Por outro lado, não podemos escolher aleatoriamente os sujeitos para

cada grupo. Pode dar-se o caso, por exemplo, de os sujeitos que usam aparelho auditivo serem mais

velhos. Qualquer efeito encontrado neste grupo pode ficar a dever-se unicamente a esta diferença. Os

dois grupos “com aparelho” e “sem aparelho” necessitam de ser emparelhados em termos de idade,

sexo, inteligência e todas as outras variáveis que achemos necessário serem controladas.

Apresentamos depois às crianças um teste que meça o seu vocabulário, traduzindo-o em resultados, tal

como é mostrado na tabela seguinte.

Par de

sujeitos

Situação A

(com aparelho)

Situação B

(sem aparelho) d (A-B) Ordem de d

Ordem das

diferenças

positivas

Ordem das

diferenças

negativas

1 3 5 -2 5(-) 5

2 4 5 -1 2(-) 2

3 3 2 +1 2(+) 2

4 1 5 -4 8,5(-) 8,5

5 5 4 +1 2(+) 2

6 2 5 -3 7(-) 7

7 3 5 -2 5(-) 5

8 4 4 0 -

9 1 5 -4 8,5(-) 8,5

10 3 5 -2 5(-) 5

TOTAL 29 45 4 41

RACIONAL

O objectivo do teste dos sinais de Wilcoxon é comparar as performances de cada sujeito (ou pares de

sujeitos) no sentido de verificar se existem diferenças significativas entre os seus resultados nas duas

situações. Os resultados da Situação B são subtraídos dos da Situação A e à diferença resultante (d) é

Page 39: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

39

2010

atribuído o sinal mais (+) ou, caso seja negativa, o sinal menos (-). Estas diferenças são ordenadas em

função da sua grandeza (independentemente do sinal positivo ou negativo). O ordenamento assim

obtido é depois apresentado separadamente para os resultados positivos e negativos. O menor dos

valores dá-lhe o valor de uma “estatística” designada por W, que pode ser consultada na Tabela de

significância apropriada.

A ideia é que se existirem apenas diferenças aleatórias, tal como é postulado pela hipótese nula, então

haverá aproximadamente o mesmo número de ordens elevadas e de ordens inferiores tanto para as

diferenças positivas como negativas. Caso se verifique uma preponderância de baixos resultados para

um dos lados, isso significa a existência de muitos resultados elevados para o outro lado, indicando

uma diferença em favor de uma das situações, superior àquilo que seria de esperar se os resultados se

devessem ao acaso. Dado que a estatística W reflecte o menor total de ordens, quanto menor for o W

mais significativas serão as diferenças nas ordenações entre as duas situações.

INSTRUÇÕES PASSO-A-PASSO PARA CALCULAR W

Calcule a diferença d entre cada par de resultados, atribuindo o sinal mais ou menos.

Veja a coluna d(A-B)

Ordene as diferenças por ordem de grandeza desde a ordem inferior até à superior, ignorando os sinais

positivos e negativos.

Veja a coluna ordenamento de d

Em separado, junte também a ordenação correspondente aos sinais diferentes (+ ou -).

Veja os totais para ordenamentos de diferenças positivas e de diferenças negativas nas respectivas

colunas

Considere o menor dos totais das ordens como W. Valor observado de W=4, uma vez que o total das ordens para as diferenças positivas é o menor

Conte o número de pares de sujeitos N (não considere as igualdades). N=10-1=9

Consulta da significância na tabela

A tabela anexada (Anexo III) apresenta-lhe o nível de significância de w tanto para os testes

unicaudais como bicaudais. Na coluna da esquerda encontra os valores de N. Uma vez que não

efectuámos uma previsão da direcção (como por exemplo, que obteríamos melhores resultados no

vocabulário de criança em jardim de infância) teremos de utilizar os níveis de significância para uma

hipótese bicaudal. Seleccione o valor adequado N=9 e verifique ao longo dessa linha se o valor de W

é significativo. Uma vez que se convencionou utilizar o menor valor das ordens, então o valor obtido

de W terá de ser igual ou inferior ao valor crítico da Tabela. Como o valor obtido W=4 é inferior ao

Page 40: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

40

2010

valor crítico de 6 para p<0,05 (bicaudal), pode rejeitar a hipótese nula e concluir que existe uma

diferença significativa entre os resultados no vocabulário dos dois grupos de sujeitos emparelhados.

Suponha que tinha efectuado uma previsão numa dada direcção, por exemplo, que as crianças que

usam aparelho auditivo (Situação B) obtêm resultados mais elevados no teste de vocabulário. O valor

obtido de W=4, é inferior a 6, que é o valor crítico de W para p<0,025 (hipótese unicaudal), uma

probabilidade inferior e, consequentemente, mais significativa do que o nível de significância para

uma hipótese bicaudal p<0,05.

As estatísticas para K amostras relacionadas servem para comprovar a significância de

diferenças entre três ou mais grupos, ou seja, para comparar a hipótese de nulidade de que K (3 ou

mais) amostras tenham sido extraídas da mesma população ou de populações idênticas.

As circunstâncias exigem, por vezes, o recurso a um experimento que nos permita estudar

simultaneamente mais de duas amostras ou condições. Quando se trata de comparar três ou mais

amostras ou condições de um experimento, é necessário aplicar uma prova estatística que indique se

há alguma diferença global entre as K amostras ou condições, antes que possamos cogitar de

comprovar a significância da diferença entre duas amostras quaisquer.

Só quando uma prova global (prova de K amostras) nos autoriza a rejeitar a hipótese nula é que

podemos empregar um processo para determinar diferenças significativas entre duas quaisquer das K

amostras.

Estas provas não-paramétricas têm a vantagem de permitir o estudo da significância de dados que,

inerentemente, se apresentam apenas sob a forma classificativa ou em postos.

Há dois planos básicos para comparar K grupos:

No primeiro deles, as K amostras de igual tamanho são postas em correspondência de acordo com

determinado(s) critério(s) que podem afectar os valores das observações. Nalguns casos, essa

correspondência obtém-se comparando os mesmos indivíduos ou casos sob todas as K condições ou

então cada um dos N grupos pode ser mensurado sob todas as K condições. Em tais planos, devem

usar-se provas estatísticas para K amostras relacionadas;

O segundo plano envolve K amostras aleatórias independentes (não necessariamente do mesmo

tamanho), uma de cada população. Em tais casos, devemos usar as provas estatísticas para K amostras

independentes.

Page 41: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

41

2010

PROVA DE COCHRAN

Quando utilizar

A prova de McNemar para duas amostras pode ser estendida para aplicação a pesquisas que envolvem

mais de duas amostras. Essa extensão, que constitui a prova Q de Cochran para K amostras

relacionadas, proporciona um método para comparar se três ou mais conjuntos correspondentes de

frequências ou proporções diferem entre si significativamente. A correspondência pode basear-se

em características relevantes dos diferentes indivíduos ou no facto de os mesmos indivíduos serem

observados sob condições diferentes. A prova Q de Cochran adapta-se especialmente ao caso em que

os dados se apresentam numa escala nominal ou sob a forma de informação ordinal dicotomizada.

Exemplo: Suponha que estamos interessados em saber se a atitude de um entrevistador influencia a aceitação de participação num estudo por

inquérito. Poderemos treinar o entrevistador para efectuar as suas entrevistas de três maneiras diferentes:

Demonstrando interesse, cordialidade, entusiasmo;

Demonstrando formalismo, reserva e cortesia;

Demonstrando modo abrupto, formalismo e aspereza.

Exemplo: O entrevistador visitaria 3 grupos de 18 casas, aplicando o tipo 1 de entrevista a um grupo, o tipo 2 a outro grupo e o 3 ao terceiro

grupo. Teríamos, assim, 18 conjuntos de potenciais inquiridos com três deles correspondendo em cada conjunto. Em cada conjunto atribuir-se-

iam aleatoriamente aos três membros as três condições (tipos de entrevista). Teríamos, então, 3 amostras relacionadas (correspondentes) com 18

elementos cada uma (N=18). Poderíamos, pois, comprovar se as diferenças fundamentais nos tipos de entrevista influenciariam o número de

respostas afirmativas “sim” dadas para aceitação de participação pelos 3 grupos de correspondentes.

Conjunto Resposta à entrevista 1 Resposta à entrevista 2 Resposta à entrevista 3

1 1 1 1

2 2 2 1

3 1 2 1

4 1 1 1

5 2 1 1

6 2 2 1

7 2 2 1

8 1 2 1

9 2 1 1

10 1 1 1

11 2 2 2

12 2 2 2

13 2 2 1

14 2 2 1

15 2 2 1

16 2 2 2

17 2 2 1

18 2 2 1

Respostas “Sim” (1) e “Não” (2) dadas por donas de casa a três tipos de entrevistas

Hipótese nula: A probabilidade de um “Sim” é a mesma para os três grupos de entrevistas.

H1: As probabilidades de um “Sim” diferem conforme o tipo de entrevista.

Prova estatística:

Escolhe-se a prova Q de Cochran, porque os dados se referem a mais de dois grupos relacionados (K=3) e apresentam-se dicotomizados sob a

forma “Sim” e “Não”.

Nível de significância: p=0,01 N=18

Page 42: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

42

2010

Decisão:

Recodificámos “Sim” por 1 e “Não” por 0.

Conjunto Resposta à entrevista 1 Resposta à entrevista 2 Resposta à entrevista 3 Li

(soma em linha)

Li2

1 0 0 0 0 0

2 1 1 0 2 4

3 0 1 0 1 1

4 0 0 0 0 0

5 1 0 0 1 1

6 1 1 0 2 4

7 1 1 0 2 4

8 0 1 0 1 1

9 1 0 0 1 1

10 0 0 0 0 0

11 1 1 1 3 9

12 1 1 1 3 9

13 1 1 0 2 4

14 1 1 0 2 4

15 1 1 0 2 4

16 1 1 1 3 9

17 1 1 0 2 4

18 1 1 0 2 4

Total

G1=13 G2=13 G3=3 Li=29 Li2=63

Li=número total de respostas “Sim” para cada linha

K=número de colunas Número de linhas

Substituindo estes valores na fórmula, vem:

Em que K= n.º de grupos

Gj= n.º total de sucessos

A Tabela (Anexo I) indica que Q 16,7 tem uma probabilidade de ocorrência, sob H0, p < 0,001,

quando gl=K-1=3-1=2. Essa probabilidade é inferior ao nível de significância de p=0,01. O valor de Q

está na região de rejeição e, consequentemente, a nossa decisão é rejeitar H0 em favor de H1,

concluindo que o número de respostas “Sim” difere significativamente em relação aos tipos 1, 2 e 3 de

entrevista.

Page 43: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

43

2010

Racional

Se os dados de uma pesquisa se dispõem numa tabela de dupla entrada com N linhas e K colunas, é

possível testar a hipótese de nulidade de que a proporção ou frequência de respostas de determinado

tipo seja a mesma em cada coluna, exceptuando as diferenças devidas ao acaso. Cochran mostrou que

se a hipótese de nulidade é verdadeira, isto é, se não há diferença na probabilidade, digamos de

“Sucesso” sob cada condição (o que equivale a dizer que os “Sucessos” ou “Fracassos” se distribuem

aleatoriamente pelas linhas e colunas da tabela de dupla entrada), então, se o número de linhas é muito

pequeno

tem distribuição aproximadamente Qui-quadrado com gl=K-1, em que:

Gj=número total de “Sucessos” na coluna j

G=média dos Gj

Li=número total de “sucessos” na linha i

Uma expressão equivalente à fórmula anterior, e facilmente dedutível dela, mas que simplifica os

cálculos é:

Instruções passo-a-passo para calcular Q

Para dados dicotomizados, atribuir a pontuação “1” a cada “Sucesso” e “0” a cada “Falha”.

Dispor os dados numa tabela K.N, com K colunas e N linhas (Número de condições em cada um dos

grupos).

Determinar o valor de Q, aplicando a fórmula.

A significância do valor observado de Q pode ser determinada mediante a observação do Anexo I,

pois Q recorre à distribuição do Qui-quadrado com gl=K-1. Se a probabilidade associada à ocorrência,

sob H0, de um valor tão grande quanto um valor observado de Q não supere p, rejeita-se H0.

Page 44: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

44

2010

TESTE DE FRIEDMAN

Quando utilizar

Este teste pode ser considerado uma extensão do teste de Wilcoxon, quando é necessário utilizar três

ou mais situações experimentais. Deve ser utilizado para um design relacionado quando os mesmos

sujeitos (ou sujeitos emparelhados) são distribuídos por três ou mais situações experimentais.

Exemplo: Suponha que um editor de livros de estatística produziu uma série de livros e quer escolher

de entre três tipos de ilustrações, aquele que é mais eficaz para os estudantes.

É pedido a oito universitários que classifiquem as obras numa escala de cinco pontos, desde “nada

boa” até “muito boa”.

Obtiveram-se os resultados apresentados na tabela seguinte.

Sujeitos Situação 1 (Ilustração A) Situação 2 (Ilustração B) Situação 3 (Ilustração C)

Resulta. Ordem Resulta. Ordem Resulta. Ordem

1 2 1 5 3 4 2

2 1 1 5 3 3 2

3 3 1 5 2,5 5 2,5

4 3 2 5 3 2 1

5 2 1 3 2 5 3

6 1 1 4 2,5 4 2,5

7 5 3 3 2 2 1

8 1 1 4 3 3 2

TOTAL 18 11 34 21 28 16

MÉDIA 2,25 4,25 3,50

Racional

Uma vez que se trata de um design relacionado no qual o mesmo sujeito obtém resultados em todas as

situações, é permitido comparar os resultados de cada sujeito através de todas as situações, no sentido

de verificarmos em que situação obtém maiores e menores resultados.

Uma vez que existem mais do que duas situações, não é possível calcular as diferenças nos resultados

de duas situações, como era o caso do teste de Wilcoxon. Pelo contrário, o ordenamento dos

resultados de cada sujeito para as três condições será feita horizontalmente ao longo das linhas, tal

como mostra a tabela. Por exemplo, aos resultados do sujeito 1, respectivamente 2 na Situação 1, 5 na

Situação 2 e 4 na Situação 3, são atribuídas três ordens, do menor resultado para o maior: Ordem 1

para a Situação 1, Ordem 2 para a Situação 3 e Ordem 3 para a Situação 2; este procedimento é

Page 45: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

45

2010

semelhante para todos os sujeitos. Claro que se existissem quatro situações experimentais, os

resultados de cada sujeito seriam ordenados de 1 a 4.

O próximo passo é calcular os totais de ordens para cada situação. Se existirem apenas diferenças

aleatórias entre os resultados de todas as situações, como é postulado pela hipótese nula, é de esperar

que estes totais sejam aproximadamente iguais partindo do princípio de que surgiriam algumas ordens

baixas (baixos resultados) e algumas ordens altas (altos resultados). Contudo, se as situações forem

significativamente diferentes, é de esperar que se obtenham totais das ordens significativamente

diferentes, com algumas situações a terem uma preponderância de ordens baixas e outras, uma

preponderância de ordens altas. O tamanho das diferenças entre os totais das ordens é-nos dado por

uma estatística designada por Xr2. Se o valor de Xr

2 for igual ou superior aos valores críticos das

Tabelas C e D (Anexo V), isso implica que as diferenças nos totais das ordens são suficientemente

grandes para que se possam considerar significativas.

Instruções passo-a-passo para calcular w

Ordene os resultados de cada sujeito em separado, ao longo de cada linha, atribuindo a Ordem 1 ao

menor resultado e por aí adiante.

(Veja as colunas das Ordens na tabela. Note que a ordem para cada linha de resultados corresponde às

ordens 1,2 e 3, dado existirem três situações)

Calcule o total das ordens para cada situação.

Calcule o valor de XR2 ou Fr a partir da fórmula

1(3)1(

12

1

2

kNRkNk

Fk

j

jr

ou

em que

C=número de situações C=3

Número de sujeitos N=8

Tc=total de ordens para cada situação T1=11;T2=21;T3=16

Tc2=quadrado do total de ordens para cada situação T1

2=112;T22=212; T3

2=162

Tc2=soma dos quadrados dos totais das ordens para cada situação: 112+212+162

Page 46: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

46

2010

Cálculo de XR2

Calcule os graus de liberdade, ou seja, o número de situações menos uma.

(gl = C – 1 = 3 – 1 = 2)

Consulta da significância na tabela

Existem duas tabelas para consultar os valores críticos de Xr2. Uma delas, a Tabela C (Anexo V), é

utilizada quando o número de situações e de sujeitos é pequeno. A Tabela C (1) apresenta os valores

de Xr2 para três situações quando N (número de sujeitos) se situa entre 2 e 9. A Tabela C (2) apresenta

os valores de Xr2 para quatro situações quando N (número de sujeitos) é de 2, 3 ou 4. A Tabela D

(Anexo V) é a tabela de distribuição do Qui-quadrado; pode utilizá-la quando a amostra de sujeitos for

superior às das Tabelas C (1) e C (2), uma vez que o Xr2 tem uma distribuição semelhante à do Qui-

quadrado.

A Tabela que deve utilizar para consultar o valor de Xr2, no caso desta experiência, é a Tabela C (1),

uma vez que se trata de 8 sujeitos expostos a 3 situações experimentais. Aquilo que temos de fazer é

encontrar a coluna apropriada para N (número de sujeitos ou pares de sujeitos emparelhados) e

descobrir na coluna p a probabilidade mais próxima que seja inferior aos níveis de significância

convencionais. Consultando as probabilidades para N=8, o valor obtido de Xr2=6,25 é equivalente a

uma probabilidade de p<0,047, que é inferior aos níveis de significância convencionais (p<0,05=).

Para considerarmos o nível de significância de p<0,01 o nosso valor de Xr2 teria de ser 9,00, dado que

p<0,009 é inferior a p<0,01. Se o valor de Xr2 não for apresentado na Tabela, deverá considerar o

valor seguinte mais próximo quando consulta as probabilidades. Por exemplo, se o valor de Xr2 for

5,95 terá de considerar a probabilidade apresentada para 5,25, ou seja, p<0,079, que é superior a

p<0,05 e, consequentemente, não significativa. Para consultar os valores da Tabela C (2) deverá

proceder tal como para a Tabela C (1).

Se tiver mais situações e/ou sujeitos e tiver de consultar a Tabela D, aquilo que tem a fazer é localizar

os valores dos graus de liberdade ao longo da coluna da esquerda (no nosso exemplo, gl=2, ou seja,

número de situações-1). Depois siga ao longo da linha de probabilidades até que encontre um dos

níveis de significância convencionais. O valor que obtivemos de Xr2=6,25 é superior ao valor crítico

de 5,99 apresentado na Tabela do Qui-quadrado, pelo que podemos aceitar que os nossos resultados

Page 47: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

47

2010

são significativos ao nível de significância de p<0,05. Apesar disso, e dado que o nosso valor de Xr2 é

inferior ao valor crítico de 9,21 para p<0,01, não podemos rejeitar a hipótese nula a este nível de

significância.

A partir da análise estatística da experiência pode concluir que as crianças mostram preferências

significativamente diferentes pelos três tipos de ilustrações. Em função das médias apresentadas na

tabela, sabemos que preferem a Ilustração B, que recolheu as ordens mais elevadas, seguindo-se a

Ilustração C e, por último, a Ilustração A. Contudo, o teste de Friedman pode apenas indicar que

existem diferenças globais entre as situações. Para verificar se existe uma tendência para uma

determinada ordem de preferência das Ilustrações, necessita de utilizar um teste de tendência.

MEDIDAS DE CORRELAÇÃO E SUAS PROVAS DE SIGNIFICÂNCIA

Frequentemente, o investigador quer saber se dois resultados estão relacionados e qual o grau desse

relacionamento.

Apresentam-se medidas não-paramétricas de correlação e de provas estatísticas para determinar a

probabilidade associada à ocorrência de uma correlação tão grande quanto a observada na amostra,

sob a hipótese de nulidade de que as variáveis sejam não-relacionadas na população.

Mas é de muito maior interesse poder afirmar se determinada associação observada numa amostra

indica, ou não, a probabilidade de associação entre as variáveis na população da qual se extraiu a

amostra. O coeficiente de correlação, por si só, representa o grau de associação. As provas de

significância sobre aquele coeficiente determinam, a um certo nível de probabilidade, se existe a

associação na população da qual se extraiu a amostra que serviu de base para o cálculo do coeficiente.

Interpretação:

O coeficiente de correlação obtido pode se interpretado com base em:

Para Cardoso:

r 0,2 Correlação muito baixa (valores desprezíveis)

0,2 < r 0,5 Correlação baixa

0,5 < r 0,7 Valores significativos

0,7 < r 0,9 Alta correlação

0,9 < r 1 Muito alta correlação

Page 48: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

48

2010

Para Borg:

0,20 < r 0,35 Ligeira relação entre as variáveis, embora já possam ser

estatisticamente significativas

0,35 < r 0,65 Correlação estatisticamente significativa para além do nível de 1%

0,65 < r 0,85 Correlações que tornam possíveis predições do grupo de que são dignas

r > 0,85 Íntima relação entre as variáveis correlacionadas

Para Bryman e Cramer (1995), citando Cohen e Holliday (1982)

se Eta, r, rho, phi:

0,2 Correlação muito fraca e sem significância

0,2 < r 0,39 Correlação fraca

0,4 < r 0,69 Correlação moderada

0,7 < r 0,89 Correlação forte

0,9 < r 1 Correlação muito elevada

Coeficiente de correlação dá-nos:

A direcção que é indicada pelo sinal + ou -

A intensidade ou força que é dada pelo valor que varia entre -1 e 1. Se a correlação for zero não existe

correlação entre as variáveis (exemplo: cor dos olhos e inteligência).

COEFICIENTE DE CORRELAÇÃO RHO DE SPEARMAN-RANK

Condições de utilização

Este tipo de coeficiente de correlação utiliza-se quando temos:

Teste não paramétrico (semelhante a uma distribuição livre), isto é, não coloca restrições quanto à

forma da distribuição;

Escala de medida no mínimo ordinal.

Pode acontecer que os caracteres estudados não sejam mensuráveis, mas podem ser ordenados ou

classificados. Por exemplo, quando se considera um grupo de candidatos a um certo lugar, eles podem

Page 49: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

49

2010

ser examinados segundo dois pontos de vista: conhecimentos e personalidade. Estas duas qualidades

não podem ser medidas, mas é possível para cada uma delas efectuar uma classificação dos

candidatos. Podemos, assim, examinar se existe correlação entre estes dois caracteres; cada par de

dados (xi, yi) é formado pelas ordens ocupadas por um candidato nas duas classificações.

Em que:

di= diferença entre as posições nas duas variáveis, isto é, di=xi-yi

Para tal, temos que dar valores às posições: à pontuação mais baixa damos o valor 1 e assim

sucessivamente. Quando os valores são iguais é a média dessas duas posições.

Então, -1 1

Se as duas classificações são iguais, di é sempre zero e então r=1 e a correlação é perfeita. Se as

ordens mais altas de uma classe estão associadas às mais baixas da outra r torna-se negativo e se as

duas classificações são inversas =-1.

Exemplo: Calcule , sabendo que:

xi 18 17 14 13 13 12 11 9 7 5

yi 24 27 17 22 19 20 14 11 3 6

xi posição yi posição di di2

18 1 24 2 -1 1 17 2 27 1 1 1 14 3 17 6 -3 9 13 4,5 22 3 1,5 2,25 13 4,5 19 5 -0,5 0,25 12 6 20 4 2 4 11 7 14 7 0 0 9 8 11 8 0 0 7 9 3 10 -1 1 5 10 6 9 1 1

=19,5

Page 50: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

50

2010

TESTES NÃO PARAMÉTRICOS NO SPSS

Mais especificamente, veremos como realizar os testes:

• Teste de Mann-Whitney U para comparar duas amostras independentes;

• Teste de Wilcoxon para comparar duas amostras relacionadas;

• Teste de Kruskal-Wallis H para comparar duas ou mais amostras independentes;

Às vezes não podemos assumir normalidade e, outras vezes os dados que dispomos não nos

permite calcular a média (e.g. quando os dados são ordinais). Os Métodos Não Paramétricos

são aplicáveis em tais situações. Em particular, nós os usaremos principalmente quando não

pudermos afirmar que a nossa amostra foi retirada de uma população normal.

Como regra geral, recomenda-se o uso de um teste paramétrico ao invés de um não

paramétrico, uma vez que os testes paramétricos tendem a discriminar mais e a ser mais

poderosos. Entretanto, os não paramétricos devem ser usados quando os dados não respeitam

as premissas básicas que embaçam os procedimentos estatísticos (e.g. normalidade ou

homogeneidade de variâncias).

O TESTE DE MANN-WHITNEY

O teste de Mann-Whitney é a alternativa mais comum ao teste t para amostras independentes.

Pode se utilizar este teste para testar a hipótese nula que afirma que as médias populacionais

são as mesmas para os dois grupos. Este teste não exige que as populações tenham a mesma

variância.

Para fins ilustrativos, usaremos o seguinte exemplo:

Um grupo 5 de ratos foi treinado para imitar o rato líder em um labirinto a procura de

alimento e outro grupo de 4 ratos (controle) foi submetido a mesma situação, porém sem

Page 51: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

51

2010

treinamento prévio. O número de tentativas é o critério de comparação entre os grupos. Existe

diferença entre os dois grupos.

Treinados 78 64 75 45 82

Não treinados 110 70 53 51

No SPSS...

Figura 1: Entrada dos dados no programa.

Em todo software estatístico, as colunas representam variáveis. No exemplo em questão,

temos apenas uma variável (nº tentativas dos ratos), então digitaremos os dados numa coluna

apenas. Criaremos uma segunda variável, “ensinado”, para discriminar a origem dos dados

(amostra pertencente).

Page 52: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

52

2010

Feito isso, para realizar o teste, devemos clicar em:

ANALYSE/ NONPARAMETRIS TESTS/ 2 INDEPENDENT SAMPLES...

Como consequência, surgirá a seguinte caixa de diálogo:

Figura 2: Caixa de diálogo referente ao teste de Mann-Whitney.

Page 53: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

53

2010

Devemos clicar em Define Groups...

Após clicar em Continue e em Ok

MANN-WHITNEY TEST

Page 54: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

54

2010

Ao observar a tabela acima, vemos que a estatística teste Mann-Whitney U = 9,000 tem uma

significância (P-valor) de 0,806. Assim, concluímos que não há evidência estatística de

diferença entre os grupos de ratos.

Page 55: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

55

2010

O TESTE DE WILCOXON:

Este teste é a versão não paramétrica do teste t para amostras emparelhadas. Em particular,

nós usamos este teste quando temos medições repetidas de uma amostra, mas a população

original não tem necessariamente o formato de uma Normal.

Como o teste U de Mann-Whitney, o teste de Wilcoxon pode ser usado com dados ordinais,

intervalares ou proporcionais.

Os dados para esse teste consistem dos diferentes registos das medições repetidas. Essas

diferenças são então classificadas da menor para a maior em valores absolutos (sem

considerar o sinal). Se existir uma diferença real entre as duas medições, ou tratamentos,

então os diferentes registos serão consistentemente positivos ou negativos. Por outro lado, se

não houver diferença entre os tratamentos, então os diferentes registos serão misturados

regularmente.

A hipótese nula é que a diferença entre os registos não é sistemática e, deste modo, não existe

diferença entre os tratamentos.

Como ilustração, usaremos o exemplo:

Um fabricante de cigarros afirma que o conteúdo de nicotina dos cigarros Y é menor do que o

dos cigarros X. Um laboratório fez as seguintes determinações do conteúdo de nicotina (em

miligramas) das duas marcas:

X: 1,0, 1,3, 1,5, 1,1, 1,6

Y: 0,8, 1,2, 1,4, 0,9, 1,0

Concorda com a afirmação do fabricante? Por quê?

Page 56: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

56

2010

No SPSS...

CLICAR EM ANALYSE/ NONPARAMETRIS TESTS/ 2 RELATED SAMPLES...

Clicando em OK...

WILCOXON SIGNED RANKS TEST

Page 57: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

57

2010

A estatística teste de Wilcoxon, convertida num score z = -2,041 tem uma significância (P-

valor) de 0,041. Assim, concluímos que os grupos são estatisticamente diferentes.

TESTE H DE KRUSKAL-WALLIS:

O teste H de Kruskal-Wallis é a versão não-paramétrica para medições da ANOVA de um

factor independente. Nós usamos esse teste quando temos mais de duas amostras

independentes e podemos assumir que elas são de populações com o mesmo formato, não

necessariamente Normal. O teste H de Kruskal-Wallis pode ser usado com dados ordinais,

intervalares ou proporcionais.

Como o teste U de Mann-Whitney, o teste H de Kruskal-Wallis classifica todos os resultados

observados. Se existirem diferenças entre os grupos, então os resultados das várias amostras

serão sistematicamente agrupados (cluster) em ordem de classificação. Alternativamente, se

não existirem diferenças entre os grupos, os resultados serão misturados com toda a ordem de

classificação. A hipótese nula estabelece que mão há diferença entre os grupos, logo os

resultados não irão se agrupar sistematicamente.

Exemplo:

Considerem os dados abaixo para estudar a hipótese da igualdade das médias do aumento dos

pesos dos porcos alimentados com as rações A, B e C. Use α = 0,01.

A: 3 1 5 2 4

B: 8 7 10 6 9

C: 14 13 12 11

Page 58: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

58

2010

>ANALYSE > NONPARAMETRIC TESTS >K INDEPENDENT SAMPLES...

>Clique em “Define Range” (definir variação).... A próxima caixa de diálogo nos leva a

designar valores máximo e mínimo para a variável agrupada. No nosso arquivo de dados, os

grupos foram rotulados de 1 a 3.

Clicando em Continue e em OK...

Page 59: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

59

2010

KRUSKAL-WALLIS TEST

A estatística teste de Kruskal-Wallis (Qui-quadrado) é igual a 11,571 com significância

de 0,003. Assim, concluímos que há evidência estatística de aumento de peso devido ao

tipo de ração.

Page 60: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

60

2010

ANEXOS

Page 61: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

61

2010

ANEXO I

Tabela do Quiquadrado (x2):Valores críticos

gl 0,995 0,99 0,975 0,95 0,9 0,1 0,05 0,025 0,01 0,005

1 0,000 0,000 0,001 0,004 0,016 2,706 3,841 5,024 6,635 7,879

2 0,010 0,020 0,051 0,103 0,211 4,605 5,991 7,378 9,210 10,597

3 0,072 0,115 0,216 0,352 0,584 6,251 7,815 9,348 11,345 12,838

4 0,207 0,297 0,484 0,711 1,064 7,779 9,488 11,143 13,277 14,860

5 0,412 0,554 0,831 1,145 1,610 9,236 11,070 12,832 15,086 16,750

6 0,676 0,872 1,237 1,635 2,204 10,645 12,592 14,449 16,812 18,548

7 0,989 1,239 1,690 2,167 2,833 12,017 14,067 16,013 18,475 20,278

8 1,344 1,647 2,180 2,733 3,490 13,362 15,507 17,535 20,090 21,955

9 1,735 2,088 2,700 3,325 4,168 14,684 16,919 19,023 21,666 23,589

10 2,156 2,558 3,247 3,940 4,865 15,987 18,307 20,483 23,209 25,188

11 2,603 3,053 3,816 4,575 5,578 17,275 19,675 21,920 24,725 26,757

12 3,074 3,571 4,404 5,226 6,304 18,549 21,026 23,337 26,217 28,300

13 3,565 4,107 5,009 5,892 7,041 19,812 22,362 24,736 27,688 29,819

14 4,075 4,660 5,629 6,571 7,790 21,064 23,685 26,119 29,141 31,319

15 4,601 5,229 6,262 7,261 8,547 22,307 24,996 27,488 30,578 32,801

16 5,142 5,812 6,908 7,962 9,312 23,542 26,296 28,845 32,000 34,267

17 5,697 6,408 7,564 8,672 10,085 24,769 27,587 30,191 33,409 35,718

18 6,265 7,015 8,231 9,390 10,865 25,989 28,869 31,526 34,805 37,156

19 6,844 7,633 8,907 10,117 11,651 27,204 30,144 32,852 36,191 38,582

20 7,434 8,260 9,591 10,851 12,443 28,412 31,410 34,170 37,566 39,997

21 8,034 8,897 10,283 11,591 13,240 29,615 32,671 35,479 38,932 41,401

22 8,643 9,542 10,982 12,338 14,041 30,813 33,924 36,781 40,289 42,796

23 9,260 10,196 11,689 13,091 14,848 32,007 35,172 38,076 41,638 44,181

24 9,886 10,856 12,401 13,848 15,659 33,196 36,415 39,364 42,980 45,558

25 10,520 11,524 13,120 14,611 16,473 34,382 37,652 40,646 44,314 46,928

26 11,160 12,198 13,844 15,379 17,292 35,563 38,885 41,923 45,642 48,290

27 11,808 12,878 14,573 16,151 18,114 36,741 40,113 43,195 46,963 49,645

28 12,461 13,565 15,308 16,928 18,939 37,916 41,337 44,461 48,278 50,994

29 13,121 14,256 16,047 17,708 19,768 39,087 42,557 45,722 49,588 52,335

30 13,787 14,953 16,791 18,493 20,599 40,256 43,773 46,979 50,892 53,672

31 14,458 15,655 17,539 19,281 21,434 41,422 44,985 48,232 52,191 55,002

32 15,134 16,362 18,291 20,072 22,271 42,585 46,194 49,480 53,486 56,328

33 15,815 17,073 19,047 20,867 23,110 43,745 47,400 50,725 54,775 57,648

34 16,501 17,789 19,806 21,664 23,952 44,903 48,602 51,966 56,061 58,964

35 17,192 18,509 20,569 22,465 24,797 46,059 49,802 53,203 57,342 60,275

36 17,887 19,233 21,336 23,269 25,643 47,212 50,998 54,437 58,619 61,581

37 18,586 19,960 22,106 24,075 26,492 48,363 52,192 55,668 59,893 62,883

38 19,289 20,691 22,878 24,884 27,343 49,513 53,384 56,895 61,162 64,181

39 19,996 21,426 23,654 25,695 28,196 50,660 54,572 58,120 62,428 65,475

40 20,707 22,164 24,433 26,509 29,051 51,805 55,758 59,342 63,691 66,766

Page 62: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

62

2010

ANEXO II

Tabela de U para 0,05

This table gives critical values of U. Decide on n2, the number of data belonging to the

majority group, and n1, the number of data belonging to the minority group. n1 and n2 may be

the same. Look up the corresponding critical value of U. E.g., for n2=6 and n1=3, the critical

value is 2. If the calculated value of U is equal to or less than this value, then the majority

group and the minority group are significantly different.

Thus in the example given above, the value of U=2 for n2=6 and n1=3, and the two groups are

significantly different from one another.

n2

n1 3 4 5 6 7 8

3 0 0 1 2 2 3

4 1 2 3 4 5

5 4 5 6 8

6 7 8 10

7 11 13

8 15

Note: The table gives critical values for rejecting, as having a probability of 0.05 or less, the

null hypotheses that the average values of the majority group and the minority group are the

same.

Page 63: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

63

2010

Tabela Z

z 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09

0,0 0,00000 0,00399 0,00798 0,01197 0,01595 0,01994 0,02392 0,02790 0,03188 0,03586

0,1 0,03983 0,04380 0,04776 0,05172 0,05567 0,05962 0,06356 0,06749 0,07142 0,07535

0,2 0,07926 0,08317 0,08706 0,09095 0,09483 0,09871 0,10257 0,10642 0,11026 0,11409

0,3 0,11791 0,12172 0,12552 0,12930 0,13307 0,13683 0,14058 0,14431 0,14803 0,15173

0,4 0,15542 0,15910 0,16276 0,16640 0,17003 0,17364 0,17724 0,18082 0,18439 0,18793

0,5 0,19146 0,19497 0,19847 0,20194 0,20540 0,20884 0,21226 0,21566 0,21904 0,22240

0,6 0,22575 0,22907 0,23237 0,23565 0,23891 0,24215 0,24537 0,24857 0,25175 0,25490

0,7 0,25804 0,26115 0,26424 0,26730 0,27035 0,27337 0,27637 0,27935 0,28230 0,28524

0,8 0,28814 0,29103 0,29389 0,29673 0,29955 0,30234 0,30511 0,30785 0,31057 0,31327

0,9 0,31594 0,31859 0,32121 0,32381 0,32639 0,32894 0,33147 0,33398 0,33646 0,33891

1,0 0,34134 0,34375 0,34614 0,34849 0,35083 0,35314 0,35543 0,35769 0,35993 0,36214

1,1 0,36433 0,36650 0,36864 0,37076 0,37286 0,37493 0,37698 0,37900 0,38100 0,38298

1,2 0,38493 0,38686 0,38877 0,39065 0,39251 0,39435 0,39617 0,39796 0,39973 0,40147

1,3 0,40320 0,40490 0,40658 0,40824 0,40988 0,41149 0,41308 0,41466 0,41621 0,41774

1,4 0,41924 0,42073 0,42220 0,42364 0,42507 0,42647 0,42785 0,42922 0,43056 0,43189

1,5 0,43319 0,43448 0,43574 0,43699 0,43822 0,43943 0,44062 0,44179 0,44295 0,44408

1,6 0,44520 0,44630 0,44738 0,44845 0,44950 0,45053 0,45154 0,45254 0,45352 0,45449

1,7 0,45543 0,45637 0,45728 0,45818 0,45907 0,45994 0,46080 0,46164 0,46246 0,46327

1,8 0,46407 0,46485 0,46562 0,46638 0,46712 0,46784 0,46856 0,46926 0,46995 0,47062

1,9 0,47128 0,47193 0,47257 0,47320 0,47381 0,47441 0,47500 0,47558 0,47615 0,47670

2,0 0,47725 0,47778 0,47831 0,47882 0,47932 0,47982 0,48030 0,48077 0,48124 0,48169

2,1 0,48214 0,48257 0,48300 0,48341 0,48382 0,48422 0,48461 0,48500 0,48537 0,48574

2,2 0,48610 0,48645 0,48679 0,48713 0,48745 0,48778 0,48809 0,48840 0,48870 0,48899

2,3 0,48928 0,48956 0,48983 0,49010 0,49036 0,49061 0,49086 0,49111 0,49134 0,49158

2,4 0,49180 0,49202 0,49224 0,49245 0,49266 0,49286 0,49305 0,49324 0,49343 0,49361

2,5 0,49379 0,49396 0,49413 0,49430 0,49446 0,49461 0,49477 0,49492 0,49506 0,49520

2,6 0,49534 0,49547 0,49560 0,49573 0,49585 0,49598 0,49609 0,49621 0,49632 0,49643

2,7 0,49653 0,49664 0,49674 0,49683 0,49693 0,49702 0,49711 0,49720 0,49728 0,49736

2,8 0,49744 0,49752 0,49760 0,49767 0,49774 0,49781 0,49788 0,49795 0,49801 0,49807

2,9 0,49813 0,49819 0,49825 0,49831 0,49836 0,49841 0,49846 0,49851 0,49856 0,49861

3,0 0,49865 0,49869 0,49874 0,49878 0,49882 0,49886 0,49889 0,49893 0,49896 0,49900

3,1 0,49903 0,49906 0,49910 0,49913 0,49916 0,49918 0,49921 0,49924 0,49926 0,49929

3,2 0,49931 0,49934 0,49936 0,49938 0,49940 0,49942 0,49944 0,49946 0,49948 0,49950

3,3 0,49952 0,49953 0,49955 0,49957 0,49958 0,49960 0,49961 0,49962 0,49964 0,49965

3,4 0,49966 0,49968 0,49969 0,49970 0,49971 0,49972 0,49973 0,49974 0,49975 0,49976

3,5 0,49977 0,49978 0,49978 0,49979 0,49980 0,49981 0,49981 0,49982 0,49983 0,49983

3,6 0,49984 0,49985 0,49985 0,49986 0,49986 0,49987 0,49987 0,49988 0,49988 0,49989

3,7 0,49989 0,49990 0,49990 0,49990 0,49991 0,49991 0,49992 0,49992 0,49992 0,49992

3,8 0,49993 0,49993 0,49993 0,49994 0,49994 0,49994 0,49994 0,49995 0,49995 0,49995

3,9 >0,49995 etc ...

z 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09

Tabela da Distribuição Normal Padrão

Page 64: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

64

2010

P(Z<z) z 0,0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09

0,0 0,5000 0,5040 0,5080 0,5120 0,5160 0,5199 0,5239 0,5279 0,5319 0,5359

0,1 0,5398 0,5438 0,5478 0,5517 0,5557 0,5596 0,5636 0,5675 0,5714 0,5753

0,2 0,5793 0,5832 0,5871 0,5910 0,5948 0,5987 0,6026 0,6064 0,6103 0,6141

0,3 0,6179 0,6217 0,6255 0,6293 0,6331 0,6368 0,6406 0,6443 0,6480 0,6517

0,4 0,6554 0,6591 0,6628 0,6664 0,6700 0,6736 0,6772 0,6808 0,6844 0,6879

0,5 0,6915 0,6950 0,6985 0,7019 0,7054 0,7088 0,7123 0,7157 0,7190 0,7224

0,6 0,7257 0,7291 0,7324 0,7357 0,7389 0,7422 0,7454 0,7486 0,7517 0,7549

0,7 0,7580 0,7611 0,7642 0,7673 0,7704 0,7734 0,7764 0,7794 0,7823 0,7852

0,8 0,7881 0,7910 0,7939 0,7967 0,7995 0,8023 0,8051 0,8078 0,8106 0,8133

0,9 0,8159 0,8186 0,8212 0,8238 0,8264 0,8289 0,8315 0,8340 0,8365 0,8389

1,0 0,8413 0,8438 0,8461 0,8485 0,8508 0,8531 0,8554 0,8577 0,8599 0,8621

1,1 0,8643 0,8665 0,8686 0,8708 0,8729 0,8749 0,8770 0,8790 0,8810 0,8830

1,2 0,8849 0,8869 0,8888 0,8907 0,8925 0,8944 0,8962 0,8980 0,8997 0,9015

1,3 0,9032 0,9049 0,9066 0,9082 0,9099 0,9115 0,9131 0,9147 0,9162 0,9177

1,4 0,9192 0,9207 0,9222 0,9236 0,9251 0,9265 0,9279 0,9292 0,9306 0,9319

1,5 0,9332 0,9345 0,9357 0,9370 0,9382 0,9394 0,9406 0,9418 0,9429 0,9441

1,6 0,9452 0,9463 0,9474 0,9484 0,9495 0,9505 0,9515 0,9525 0,9535 0,9545

1,7 0,9554 0,9564 0,9573 0,9582 0,9591 0,9599 0,9608 0,9616 0,9625 0,9633

1,8 0,9641 0,9649 0,9656 0,9664 0,9671 0,9678 0,9686 0,9693 0,9699 0,9706

1,9 0,9713 0,9719 0,9726 0,9732 0,9738 0,9744 0,9750 0,9756 0,9761 0,9767

2,0 0,9772 0,9778 0,9783 0,9788 0,9793 0,9798 0,9803 0,9808 0,9812 0,9817

2,1 0,9821 0,9826 0,9830 0,9834 0,9838 0,9842 0,9846 0,9850 0,9854 0,9857

2,2 0,9861 0,9864 0,9868 0,9871 0,9875 0,9878 0,9881 0,9884 0,9887 0,9890

2,3 0,9893 0,9896 0,9898 0,9901 0,9904 0,9906 0,9909 0,9911 0,9913 0,9916

2,4 0,9918 0,9920 0,9922 0,9925 0,9927 0,9929 0,9931 0,9932 0,9934 0,9936

2,5 0,9938 0,9940 0,9941 0,9943 0,9945 0,9946 0,9948 0,9949 0,9951 0,9952

2,6 0,9953 0,9955 0,9956 0,9957 0,9959 0,9960 0,9961 0,9962 0,9963 0,9964

2,7 0,9965 0,9966 0,9967 0,9968 0,9969 0,9970 0,9971 0,9972 0,9973 0,9974

2,8 0,9974 0,9975 0,9976 0,9977 0,9977 0,9978 0,9979 0,9979 0,9980 0,9981

2,9 0,9981 0,9982 0,9982 0,9983 0,9984 0,9984 0,9985 0,9985 0,9986 0,9986

3,0 0,9987 0,9987 0,9987 0,9988 0,9988 0,9989 0,9989 0,9989 0,9990 0,9990

3,1 0,9990 0,9991 0,9991 0,9991 0,9992 0,9992 0,9992 0,9992 0,9993 0,9993

3,2 0,9993 0,9993 0,9994 0,9994 0,9994 0,9994 0,9994 0,9995 0,9995 0,9995

3,3 0,9995 0,9995 0,9995 0,9996 0,9996 0,9996 0,9996 0,9996 0,9996 0,9997

3,4 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9998

3,5 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998

3,6 0,9998 0,9998 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999

3,7 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999

3,8 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999

3,9 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

P(Z<z)

Page 65: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

65

2010

z 0,0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09

0,0 0,5000 0,4960 0,4920 0,4880 0,4840 0,4801 0,4761 0,4721 0,4681 0,4641

-0,1 0,4602 0,4562 0,4522 0,4483 0,4443 0,4404 0,4364 0,4325 0,4286 0,4247

-0,2 0,4207 0,4168 0,4129 0,4090 0,4052 0,4013 0,3974 0,3936 0,3897 0,3859

-0,3 0,3821 0,3783 0,3745 0,3707 0,3669 0,3632 0,3594 0,3557 0,3520 0,3483

-0,4 0,3446 0,3409 0,3372 0,3336 0,3300 0,3264 0,3228 0,3192 0,3156 0,3121

-0,5 0,3085 0,3050 0,3015 0,2981 0,2946 0,2912 0,2877 0,2843 0,2810 0,2776

-0,6 0,2743 0,2709 0,2676 0,2643 0,2611 0,2578 0,2546 0,2514 0,2483 0,2451

-0,7 0,2420 0,2389 0,2358 0,2327 0,2296 0,2266 0,2236 0,2206 0,2177 0,2148

-0,8 0,2119 0,2090 0,2061 0,2033 0,2005 0,1977 0,1949 0,1922 0,1894 0,1867

-0,9 0,1841 0,1814 0,1788 0,1762 0,1736 0,1711 0,1685 0,1660 0,1635 0,1611

-1,0 0,1587 0,1562 0,1539 0,1515 0,1492 0,1469 0,1446 0,1423 0,1401 0,1379

-1,1 0,1357 0,1335 0,1314 0,1292 0,1271 0,1251 0,1230 0,1210 0,1190 0,1170

-1,2 0,1151 0,1131 0,1112 0,1093 0,1075 0,1056 0,1038 0,1020 0,1003 0,0985

-1,3 0,0968 0,0951 0,0934 0,0918 0,0901 0,0885 0,0869 0,0853 0,0838 0,0823

-1,4 0,0808 0,0793 0,0778 0,0764 0,0749 0,0735 0,0721 0,0708 0,0694 0,0681

-1,5 0,0668 0,0655 0,0643 0,0630 0,0618 0,0606 0,0594 0,0582 0,0571 0,0559

-1,6 0,0548 0,0537 0,0526 0,0516 0,0505 0,0495 0,0485 0,0475 0,0465 0,0455

-1,7 0,0446 0,0436 0,0427 0,0418 0,0409 0,0401 0,0392 0,0384 0,0375 0,0367

-1,8 0,0359 0,0351 0,0344 0,0336 0,0329 0,0322 0,0314 0,0307 0,0301 0,0294

-1,9 0,0287 0,0281 0,0274 0,0268 0,0262 0,0256 0,0250 0,0244 0,0239 0,0233

-2,0 0,0228 0,0222 0,0217 0,0212 0,0207 0,0202 0,0197 0,0192 0,0188 0,0183

-2,1 0,0179 0,0174 0,0170 0,0166 0,0162 0,0158 0,0154 0,0150 0,0146 0,0143

-2,2 0,0139 0,0136 0,0132 0,0129 0,0125 0,0122 0,0119 0,0116 0,0113 0,0110

-2,3 0,0107 0,0104 0,0102 0,0099 0,0096 0,0094 0,0091 0,0089 0,0087 0,0084

-2,4 0,0082 0,0080 0,0078 0,0075 0,0073 0,0071 0,0069 0,0068 0,0066 0,0064

-2,5 0,0062 0,0060 0,0059 0,0057 0,0055 0,0054 0,0052 0,0051 0,0049 0,0048

-2,6 0,0047 0,0045 0,0044 0,0043 0,0041 0,0040 0,0039 0,0038 0,0037 0,0036

-2,7 0,0035 0,0034 0,0033 0,0032 0,0031 0,0030 0,0029 0,0028 0,0027 0,0026

-2,8 0,0026 0,0025 0,0024 0,0023 0,0023 0,0022 0,0021 0,0021 0,0020 0,0019

-2,9 0,0019 0,0018 0,0018 0,0017 0,0016 0,0016 0,0015 0,0015 0,0014 0,0014

-3,0 0,0013 0,0013 0,0013 0,0012 0,0012 0,0011 0,0011 0,0011 0,0010 0,0010

-3,1 0,0010 0,0009 0,0009 0,0009 0,0008 0,0008 0,0008 0,0008 0,0007 0,0007

-3,2 0,0007 0,0007 0,0006 0,0006 0,0006 0,0006 0,0006 0,0005 0,0005 0,0005

-3,3 0,0005 0,0005 0,0005 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0003

-3,4 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0002

-3,5 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002

-3,6 0,0002 0,0002 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001

-3,7 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001

-3,8 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001

-3,9 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

Page 66: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

66

2010

ANEXO III

Tabela de Wilcoxon Valores críticos:

TABLE: WILCOXON SIGNED RANK TEST (CI % = 95%)

Critical values:

Wilcoxon Signed-Ranks Test Critical values

Number (n) 2 sided 1 sided

6 0 2

7 2 3

8 3 5

9 5 8

10 8 10

11 10 13

12 13 17

13 17 21

14 21 25

15 25 30

16 29 35

17 34 41

18 40 47

19 46 53

20 52 60

21 58 67

22 65 75

23 73 83

24 81 91

25 89 100

Critical values: Wilcoxon Signed-Ranks test p=0.05 (CI% = 95%). Significant, if the calculated values

presented in this table [the sum of the positive ranks or the negative ranks] is too small.

Page 67: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

67

2010

ANEXO IV

Tabela H

Null Hypothesis versus Alternative Hypothesis

Ho: Populations are identical vs. Ha: At least one pair of populations is different

(Right-Tailed)

Procedure

Step 1 Rank all the data from smallest to largest (imagine they all are in one sample). Tied

scores are assigned the rank equal to the mean of the rank positions that they normally

occupy.

Step 2 Calculate the rank sums of each sample

Step 3 Calculate H

Step 4: If the sample sizes are 5 or more then H is a 2 distribution with degrees of freedom

(k 1).

For a chi-squared distribution, the following table is needed:

Chi-Squared Table

Step 5 Compare H (found in step 3) with the number found in step 4

Page 68: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

68

2010

ANEXO V

Tabelas A a D (Tabelas de Friedman)

Testa a hipótese de que vários grupos relacionados têm, todos, a mesma distribuição – é uma

alternativa par a análise de variância com duas classificações.

Aplicar este teste se possuir poucos dados amostrais e/ou as pressuposições, exigidas pela

análise de variância, estiverem seriamente comprometidas.

Exigência: as observações precisam ser medidas pelo menos em escala ordinal.

Valores Críticos para a análise de variância por número de ordem de Friedman*

k N 0.10 0.05 0.01

3 3 6.00 6.00

4 6.00 6.50 8.00

5 5.20 6.40 8.40

6 5.33 7.00 9.00

7 5.43 7.14 8.86

8 5.25 6.25 9.00

9 5.56 6.22 8.67

10 5.00 6.20 9.60

11 4.91 6.54 8.91

12 5.17 6.17 8.67

13 4.77 6.00 9.39

∞ 4.61 5.99 9.21

4 2 6.00 6.00

3 6.60 7.40 8.60

4 6.30 4.80 9.60

5 6.36 7.80 9.96

6 6.40 7.60 10.00

7 6.26 7.80 10.37

8 6.30 7.50 10.35

∞ 6.25 7.82 11.34

5 3 7.47 8.53 10.13

4 7.60 8.80 11.00

5 7.68 8.96 11.52

∞ 7.78 9.49 13.28

* Adaptado de Siegel, S. e Castellan Jr., N. J. Nonparametric statistics for the Behavioral

Sciences, McGraw-Hill, 1988

)1(3)1(

12

1

2

kNRkNk

Fk

j

jr

Page 69: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

69

2010

RHO DE SPEARMAN

There are several kinds of correlation coefficient. The Spearman rank correlation

coefficient demonstrated here, can safely be used with any kind of data that can be arranged

in a sequence (i.e. can be ranked).

The first three columns contain 'raw' data. In the example, column 1 is species names, the

second column is the abundance of each species in sample 1, and column three is the

abundance of species in sample 2. The test can, however, be used for any sets of paired values

that can be ranked. So column two could be 'phi'-50, and column three could be macrobenthic

biomass.

In column 4, put the ranks of the abundances in column 2. In column 5 put the ranks of the

abundances in column 3. Notice in column 5, the two ranks of 6=, which are given a score of

6.5. Because there are two rows ranked 6=, there is no rank 7. Column 6 is the difference

between the ranks, and column 7 is the difference squared.

- SAMPLE 1 SAMPLE 2 SAMPLE 1 SAMPLE 2 - -

species abundance abundance rank rank rank difference rank difference squared

A 5 3 4 5 -1 1

B 22 4 3 4 -1 1

C 3 1 6 6= (6.5) -0.5 0.25

D 1 0 8 8 0 0

E 567 24 1 2 -1 1

F 4 7 5 3 2 4

G 102 25 2 1 1 1

H 2 1 7 6=(6.5) -0.5 0.25

The formula for calculating the value of the Spearman coefficient is:

ou

SRDS is the 'sum of rank differences squared, 8.5 in the example;

N is the number of rows of data, 8 in the present case, so (N x (N2-1) = 8 x 63 = 504;

So, the example value of the rank correlation coefficient is +0.899

Page 70: Sebenta estatística II com anexos 2010

ESTATÍSTICA II

70

2010

Note the positive sign, implying a positive correlation - the coefficient may have any value

between -1.0 and +1.0.

To decide if the coefficient's value is significant (i.e. if the correlation is meaningful), look up

the critical value in the following table:

N critical value

5 0.9

6 0.829

7 0.714

8 0.643

9 0.6

10 0.564

12 0.506

16 0.425

20 0.377

Then compare the absolute value of the coefficient with the critical value. If the calculated

value exceeds the critical value, then the correlation coefficient is significant. (To get the

'absolute' value of a negative value, replace the negative sign by a positive sign.)

The critical value is 0.643 for N=8, so the example value of 0.899 is significant. There is a

real correlation between the ranks of the species abundances in sample1 and sample 2. (If the

calculated coefficient were -0.899, it would also be significant, but now would imply an

inverse correlation. If the calculated coefficient were between -0.642 and +0.642, it would not

be significant - i.e. no correlation would be apparent.)

To be more precise, the hypothesis that the apparent relationship between sample 1 and

sample 2 is only a result of chance, can be rejected in the exemplified case where the

calculated coefficient is 0.899 for N=8, since the observed relationship would have occurred

solely by chance less than 1 time in 20 (i.e. with a probability of less than 0.05).