programa del curso “fisica computacional –i”ilia.miscomunidades.com/computational...

25
PROGRAMA DEL CURSO "FISICA COMPUTACIONAL" (64 horas) 1 Simulación del movimiento de una partícula (8 horas) 1.1 Problema de Cauchy para una partícula 1.2 Algoritmos de Euler y de Runge-Kutta para simular el movimiento de una partícula 1.3 Ejemplo simple: simulación de la caída libre 1.4 Movimiento de una partícula en 1D bajo fuerza potencial 1.5 Efectos de resistencia 1.6 Trayectorias bidimensionales 1.7 Procesos de decaimiento 2 Sistemas oscilatorios (8 horas) 2.1 Movimiento armónico simple 2.2 El movimiento de un péndulo 2.3 Oscilaciones amortiguadas 2.4 Oscilaciones forzadas 2.5 Oscilaciones en circuitos eléctricos 2.6 Precisión y estabilidad de los algoritmos -------------------Primer Proyecto------------------------------------------- 3 Sistemas de pocos cuerpos: El movimiento de los planetas (8 horas) 3.1 Las ecuaciones de movimiento planetario 3.2 Unidades astronómicas y adimensionales 3.3 Orbitas elípticas, parabólicas e hiperbólicas 3.4 Un sistema mini-solar 3.5 Simulación de la órbita 3.6 Problemas de dos y tres cuerpos 3.7 Problema de dispersión 4 La dinámica de sistemas de muchas partículas (8 horas) 4.1 El potencial intermolecular 4.2 Ecuaciones diferenciales de dinámica molecular en unidades adimensionales 4.3 El algoritmo numérico 4.4 Condiciones de frontera y condiciones iniciales 4.5 Un Programa de Dinámica Molecular. Control de precisión 4.6 Parámetros termodinámicas --------------------------Segundo Proyecto---------------------------- 5 Modos Normales y Ondas (8 horas) 5.1 Osciladores acoplados y modos normales 5.2 Series de Fourier 5.3 Transformación de Fourier y densidad espectral 5.4 Movimiento ondulatorio 5.5 Interferencia 5.6 Difracción de Fraunhofer 5.7 Difracción de Fresnel 6 Campo eléctrico (8 horas) 6.1 Las cargas estáticas y campos eléctricos 6.2 Líneas de campo 6.3 Potencial eléctrico. 6.4 Solución de la Ecuación de Laplace --------------------------------------- Tercer Proyecto--------------------- 7 Simulación del movimiento caótico de los sistemas dinámicos (8 horas) 7.1 Sistemas dinámicos. Diagrama de bifurcación para modelo demográfico 7. 2 Duplicación del periodo demográfico 7.3 Auto-similitud y puntos fijos 7.4 Sistemas caóticos y sus características 7.5 Oscilaciones forzadas no-lineales 8 Procesos Aleatorios (8 horas) 8.1 Desde orden hacia desorden 8.2 Procesos de caminos aleatorios simples 8.3 Esquemas modificados de caminos aleatorios 8.4 La distribución de Poisson y la desintegración nuclear 8.5 Aplicación a los problemas de cálculo de la probabilidad -------------------------------------Cuarto Proyecto------------------------------------------ Bibliografía 1 H. Gould y J. Tobochnik. An Introduction to Computer Simulation Methods Applications to Physical Systems, Addison - Wesley Publishing Company, 1989 2 S. E. Koonin. Computational Physics, Addison -Wesley Publishing Company, 1986 3 T. Pang. Introduction to computational physics ,Cambridge University Press, 2006

Upload: hakhue

Post on 25-Jun-2018

228 views

Category:

Documents


1 download

TRANSCRIPT

PROGRAMA DEL CURSO "FISICA COMPUTACIONAL"

(64 horas)

1 Simulación del movimiento de una partícula (8 horas)

1.1 Problema de Cauchy para una partícula

1.2 Algoritmos de Euler y de Runge-Kutta para simular el movimiento de una partícula

1.3 Ejemplo simple: simulación de la caída libre

1.4 Movimiento de una partícula en 1D bajo fuerza potencial

1.5 Efectos de resistencia

1.6 Trayectorias bidimensionales

1.7 Procesos de decaimiento

2 Sistemas oscilatorios (8 horas)

2.1 Movimiento armónico simple

2.2 El movimiento de un péndulo

2.3 Oscilaciones amortiguadas

2.4 Oscilaciones forzadas

2.5 Oscilaciones en circuitos eléctricos

2.6 Precisión y estabilidad de los algoritmos

-------------------Primer Proyecto-------------------------------------------

3 Sistemas de pocos cuerpos: El movimiento de los planetas (8 horas)

3.1 Las ecuaciones de movimiento planetario

3.2 Unidades astronómicas y adimensionales

3.3 Orbitas elípticas, parabólicas e hiperbólicas

3.4 Un sistema mini-solar

3.5 Simulación de la órbita

3.6 Problemas de dos y tres cuerpos

3.7 Problema de dispersión

4 La dinámica de sistemas de muchas partículas (8 horas)

4.1 El potencial intermolecular

4.2 Ecuaciones diferenciales de dinámica molecular en unidades adimensionales

4.3 El algoritmo numérico

4.4 Condiciones de frontera y condiciones iniciales

4.5 Un Programa de Dinámica Molecular. Control de precisión

4.6 Parámetros termodinámicas

--------------------------Segundo Proyecto----------------------------

5 Modos Normales y Ondas (8 horas)

5.1 Osciladores acoplados y modos normales

5.2 Series de Fourier

5.3 Transformación de Fourier y densidad espectral

5.4 Movimiento ondulatorio

5.5 Interferencia

5.6 Difracción de Fraunhofer

5.7 Difracción de Fresnel

6 Campo eléctrico (8 horas)

6.1 Las cargas estáticas y campos eléctricos

6.2 Líneas de campo

6.3 Potencial eléctrico.

6.4 Solución de la Ecuación de Laplace

---------------------------------------Tercer Proyecto---------------------

7 Simulación del movimiento caótico de los sistemas dinámicos (8 horas)

7.1 Sistemas dinámicos. Diagrama de bifurcación para modelo demográfico

7. 2 Duplicación del periodo demográfico 7.3 Auto-similitud y puntos fijos

7.4 Sistemas caóticos y sus características

7.5 Oscilaciones forzadas no-lineales

8 Procesos Aleatorios (8 horas)

8.1 Desde orden hacia desorden

8.2 Procesos de caminos aleatorios simples

8.3 Esquemas modificados de caminos aleatorios

8.4 La distribución de Poisson y la desintegración nuclear

8.5 Aplicación a los problemas de cálculo de la probabilidad

-------------------------------------Cuarto Proyecto------------------------------------------

Bibliografía

1 H. Gould y J. Tobochnik. An Introduction to Computer Simulation Methods Applications to Physical Systems, Addison -

Wesley Publishing Company, 1989

2 S. E. Koonin. Computational Physics, Addison -Wesley Publishing Company, 1986

3 T. Pang. Introduction to computational physics ,Cambridge University Press, 2006

Prefacio

Las simulaciones en computador son ahora una parte importante de la física básica y aplicada contemporánea, y la

computación se ha convertido tan significativa como la teoría y la experimentación. La capacidad de calcular es ahora parte del

repertorio esencial de los científicos de investigación.

El propósito de este curso incluye siguientes objetivos

1. Proporcionar un medio adicional para hacer la física.

2. Dar la oportunidad de obtener una comprensión más profunda de la física que han aprendido en otros cursos.

3. Estimular a "descubrir" la física de una manera similar a cómo los físicos aprenden en el contexto de la investigación.

4. Aprender a aplicar los métodos numéricos en diferentes áreas de la física y analizar los límites de su aplicabilidad

5. Dar un contexto diferente del plan de estudios tradicional de física de pregrado.

6. Enseñar formular los problemas de física en un lenguaje algorítmico

Cálculo actualmente es una parte integral de la ciencia contemporánea y está teniendo un efecto profundo en la forma como

hacer la física, como hacer las preguntas importantes, y como seleccionar los sistemas físicos a estudiar. Los avances en la

tecnología informática están dando lugar a nuevas formas de pensar acerca de los sistemas físicos. Preguntar "¿Cómo puedo

formular este problema para un equipo computacional?" ha llevado a la comprensión de cómo es práctico y natural formular las

leyes físicas y las reglas entendibles para un equipo en lugar de sólo en términos de ecuaciones diferenciales.

El uso de computadoras en la física se puede convencionalmente clasificar en las siguientes categorías:

- análisis numérico,

- la manipulación simbólica,

- la visualización,

- la simulación,

- la recopilación y análisis de datos

- Análisis numérico se refiere a la solución de problemas matemáticos bien definidos para encontrar soluciones numéricas (en

contraste con simbólicos). El computador es una herramienta indispensable para calcular las integrales multidimensionales,

manipular grandes matrices, o resolver ecuaciones diferenciales no lineales. Este uso de la computadora es importante en la física.

- Uno de los puntos fuertes de las matemáticas es su capacidad formular problemas en una forma abstracta, lo que nos permite

resolver muchos problemas similares de manera simultánea mediante el uso de símbolos. Las computadoras pueden ser utilizadas

para hacer mucho de la manipulación simbólica. Las operaciones matemáticas tales como la diferenciación, integración, inversión

de la matriz, y la expansión en serie de potencias pueden ser programas de manipulación simbólica. El cálculo de los diagramas de

Feynman, que representan las integrales multidimensionales de la importancia de la electrodinámica cuántica, ha sido un

importante impulso para el desarrollo de software de álgebra computacional que puede manipular y simplificar expresiones

simbólicas. Maple, Mathematica y Matlab son ejemplos de paquetes de software que tienen capacidades de manipulación

simbólica, así como muchas herramientas para el análisis numérico.

- A medida que el computador juega un papel cada vez mayor en nuestra comprensión de los fenómenos físicos, la representación

visual de los resultados numéricos complejos es cada vez más importante. El uso de gráficos puede aumentar nuestra comprensión

de la naturaleza de las soluciones analíticas. Tradicionalmente, la presentación de las variables de dos y tres dimensiones incluye

las curvas de niveles de campo y gráficos de líneas de fuerza. Con frecuencia, se necesitan más de tres variables para entender el

comportamiento de un sistema, y se están desarrollando nuevos métodos de uso de color y la textura para ayudar a los

investigadores a obtener mejor representación de sus datos.

-Por qué es la computación llegó a ser tan importante en la física? Una de las razones es que la mayor parte de nuestras

herramientas analíticas tales como el cálculo diferencial son los más adecuados para el análisis de problemas lineales. Por

ejemplo, es probable que haya analizado el movimiento de una partícula unida a un resorte lineal asumiendo una fuerza de

restauración y la solución de la segunda ley de Newton del movimiento. En este caso un pequeño cambio en el desplazamiento de

la partícula lleva a un pequeño cambio en la fuerza. Sin embargo, muchos fenómenos naturales son no lineales, y un pequeño

cambio en una variable puede producir un gran cambio en la otra. Debido a que son relativamente pocos problemas no lineales

pueden ser resueltos por métodos analíticos, el computador nos proporciona una nueva herramienta para explorar los fenómenos

no lineales.

-Otra razón de la importancia de la computación es el creciente interés en los sistemas con muchas variables o con muchos grados

de libertad. Las simulaciones por ordenador se refieren a veces como los experimentos de computación, ya que comparten mucho

en común con los experimentos de laboratorio. El punto de partida de una simulación por computador es el desarrollo de un

modelo idealizado de un sistema físico de interés. Los resultados de una simulación por computador pueden servir como un

puente entre los experimentos de laboratorio y cálculos teóricos. Por otro lado, a veces nos podemos hacer simulaciones de un

modelo más realista que se puede hacer en teoría, y por lo tanto hacer una comparación más directa con los experimentos de

laboratorio. Computación se ha convertido en una tercera manera de hacer física y complementa la teoría y experimento.

1 Simulación del movimiento de una partícula (8 horas)

Los términos la simulación y el modelado de los fenómenos físicos se utilizan para una descripción matemática en una forma

digital, gráfica o audiovisual las relaciones que existen entre los parámetros o la evolución de los mismos con el tiempo en un

sistema cerrado o variación bajo de una perturbación externa. Por ejemplo, relación entre coordenadas velocidades y periodos de

rotación de los planetas en el sistema solar, o dependencia de estos parámetros del tiempo, o variación de ellos bajo la influencia

de una cometa.

El proceso de simulación incluye los siguientes elementos:

- elaboración del modelo matemático. En la mayoría de los casos el modelo matemático se reduce a una ecuación o sistema

de ecuaciones algebraicas o diferenciales

- elaboración del método de solución del modelo matemático. En la mayoría de los casos métodos son numéricos

- elaboración del algoritmo que define los parámetros de entrada, los procedimientos para obtener los parámetros de salida y

la manera de la representación de los resultados

- codificación del algoritmo o elaboración el programa

- ensayo del programa y verificación los límites de aplicación del algoritmo usando modelos simplificados cuyos soluciones

exactos son conocidos o otros tipos de criterios

En este curso de Física Computacional consideremos fenómenos físicos de diferentes áreas, mecánica, termodinámica,

electromagnetismo y ondas, cuyos modelos matemáticos se reducen en la mayoría de los casos al problema de Cauchy para un

sistema de ecuaciones diferenciales, que se formula de la siguiente manera. Si un conjunto de los parámetros físicos

, 1, 2, ,iX i N en el momento inicial 0t tenían valores 0 , 1, 2, ,iX i N y estos parámetros satisfacen un sistema

de ecuaciones diferenciales de primera orden 1 2, , , , , 1, 2, ,i i NdX dt f X X X t i N entonces ¿Cuáles serán valores de

estos parámetros , 1, 2, ,iX t i N en el momento del tiempo t cualquiera? Algoritmos más usados para resolver este tipo de

problemas se basan en los métodos de Euler y Runge-Kutta.

1.1 Problema de Cauchy para una partícula

En la Mecánica Clásica el movimiento de una partícula se describe por medio del vector de posición en función del tiempo

tr que define la trayectoria y del vector de la velocidad en función del tiempo tv que define la rapidez y la dirección del

desplazamiento. La evolución de estos dos parámetros se encuentra a partir de la segunda ley de Newton:

,;

d t d t t

dt dt m

r v F r, vv (1)

Aquí m es la masa de la partícula y , tF r, v es una fuerza que actúa sobre la partícula que genera su movimiento, la cual en el

caso general puede depender de la posición y velocidad de la partícula y del tiempo. Si , t F r, v F r, v la fuerza se llama

estacionaria, si , t V F r, v F r r se llama potencial y la función V r en este caso se llama energía potencial.

Para que el sistema de ecuaciones diferenciales (1), la cual tiene dos vectores tr , tv incognitos tenga la solución

única es necesario completarlo con dos condiciones iniciales, es decir definir los valores de los vectores de la posición y de la

velocidad en el momento del tiempo 0t :

0 00 ; 0 r r v v (2)

Ejemplo 1

Una pelota de masa 0.5m kg se lanza hacia arriba desde la tierra con la velocidad 0v 50 /m s . Sobre pelota actúan dos

fuerzas, la gravedad 5gF mg N (coordenada X esta direccionada hacia arriba y gravedad hacia abajo), y la resistencia de

aire que actúa en la dirección contraria a la dirección de la velocidad 0.1vrF . Formúlese el problema de Cauchy que describe

la evolución de la coordenada y velocidad de la pelota.

Solución.

La dinámica de este sistema se define a través de dos variables 1 2, vX x X con las condiciones iniciales:

1 2 00 0, 0 v 50X X

que satisfacen las ecuaciones diferenciales

1 2 2 2v= ; dv = 5 0.1v 0.5 10 0.5g rdX dt X dX dt dt F F m X

Finalmente el problema de Cauchy se formula como:

1 2 1 1

2 2 2 2

0 0; ;

10 0.5 0 50 v

dX dt X X X x

dX dt X X X

Ejemplo 2

Una pelota de masa 0.5m kg se lanza desde la tierra con la velocidad 0v 50 /m s en la dirección forma con el horizonte el

ángulo 30 . Sobre pelota actúan dos fuerzas, la gravedad 5g m N F g i (coordenada X y el vector unitario i están

direccionados hacia arriba y gravedad hacia abajo), y la resistencia de aire que actúa en la dirección contraria a la dirección de la

velocidad 0.1r F v . Formúlese el problema de Cauchy que describe la evolución de los vectores de la posición y de la velocidad

de la pelota.

Solución.

La dinámica de este sistema se define a través de dos vectores bidimensionales , , v ,vx yx y r v o 4 variables

1 2 3 3, , =v , =vx yX x X y X X con las siguientes condiciones iniciales:

1 2 3 0 4 00 0 0, 0 0 =0, 0 v 0 v cos 25 3, 0 v 0 v sin 25x yX x X y X X (3a)

Los vectores de la posición y de la velocidad satisfacen las ecuaciones diferenciales

0.1; 10 0.2

g rd t d t m

dt dt m m

F Fr v g vv i v (3b)

Estas mismas ecuaciones (3b) escritas para 4 coordenadas 1 2 3 3, , =v , =vx yX x X y X X junto con 4 condiciones iniciales

(3a) forman un problema de Cauchy para un sistema de 4 ecuaciones diferenciales:

1 11 3

2 22 4

33 3 3

44 4 4

0 0

0 0; ;

v10 0.2 0 25 3

v0.2 0 25

x

y

X X xdX dt X

X X ydX dt X

XdX dt X X

XdX dt X X

(4)

Ejemplo 3

Formúlese el problema de Cauchy que describe la evolución de los vectores de la posición y de la velocidad del electrón en el

átomo de hidrogeno clásico, siendo el vector de la posición inicial igual a 0 0 , 0, 0xr y el vector de la velocidad inicial

0 00, v , 0v y la única fuerza que actúa sobre electrón es electrostática 2 3

04e r F r

Solución.

La dinámica de este sistema se define a través de dos vectores tridimensionales , , , v ,v ,vx y zx y z r v o 6 variables

1 2 3 4 5 6, , , =v , =v , =vx y zX x X y X z X X X con las siguientes condiciones iniciales:

1 0 2 3 4 5 0 6 00 , 0 =0, 0 =0, 0 0, 0 v , 0 vX x X X X X X (5a)

Los vectores de la posición y de la velocidad satisfacen las ecuaciones diferenciales

2

30

;4e e

d t d t e

dt dt m m r

r v F rv (5b)

Estas mismas ecuaciones (5b) escritas para 6 coordenadas 1 2 3 4 5 6, , , =v , =v , =vx y zX x X y X z X X X junto con 6

condiciones iniciales (5a) forman un problema de Cauchy:

1 4

2 511 0

2 622

32 2 2 2 33

4 1 0 1 2 3

443

2 2 2 255 05 2 0 1 2 3

6 632 2 2 2

6 3 0 1 2 3

0

0 0

0 04 ; ;v0 0

v0 v4

0 0 v

4

e

x

ye

z

e

dX dt X

dX dt X X xX xdX dt X X yX

X zXdX dt e X m X X XXX

XXdX dt e X m X X X

X X

dX dt e X m X X X

(5c)

El problema de Cauchy para el sistema de ecuaciones diferenciales (1) con las condiciones iniciales (2) en su mayoría de los casos

se puede resolver solamente numéricamente utilizando uno de los métodos desarrollados con este fin. Existe una multitud de los

métodos que fueron desarrollados y los programas correspondientes pueden encontrarse en diferentes bibliotecas. A continuación

presentamos una breve clasificación de diferentes métodos.

- Métodos de un paso, que comúnmente utilizan las mallas equidistantes y usando diferentes procedimientos basados en las

relaciones de recurrencia se encuentran los valores de la función incógnita en cada nodo de la malla a partir de sus valores

conocidos de un solo nodo anterior. Los métodos más conocidos de este grupo son diferentes algoritmos modificados del método

de Euler y los métodos de Runge-Kutta. Estos métodos tienen una ventaja que permiten un arranque automático, partiendo de las

condiciones iniciales se encuentran uno por uno los valores de los siguientes nodos similar al “efecto de domino”.

-Métodos de multipasos también utilizan comúnmente las mallas equidistantes y diferentes procedimientos basados en las

relaciones de recurrencia pero en este caso los valores de la función incógnita en cada nodo de la malla se encuentran a partir de

sus valores conocidos en varios nodos anteriores (2,3,4,...,etc.) Los métodos más conocidos de este grupo son métodos de Adams-

Bashforth, Adams-Moulton y los métodos de Milne. Estos métodos no permiten un arranque automático, y sugieren un cálculo

preliminar los valores de las funciones incógnitas in varios nodos iniciales, usando uno de los métodos de un paso y solo después

arrancar la iteración por método de multipasos

-Métodos “predictor-corrector”

En análisis numérico, los métodos de predicción-corrección pertenecen a una clase de algoritmos diseñados para integrar

ecuaciones diferenciales ordinarias - para encontrar una función desconocida que satisface una ecuación diferencial dada. Todos

estos algoritmos de proceder en dos pasos:

- La "predicción" paso inicial, comienza a partir de una función ajustada a la función de los valores y los valores derivados en un

conjunto anterior de puntos de extrapolar ("anticipar") el valor de esta función en un nuevo punto posterior.

- El siguiente, "corrector" paso refina la aproximación inicial utilizando el valor predicho de la función y otro método para

interpolar el valor de esa función desconocida en el mismo punto posterior

-Algoritmos auto-adaptivos

Los algoritmos adaptativos son aquellos que modifican su conducta durante su ejecución, atendiendo a los cambios que se

producen en su entorno o en el propio programa.

1.2 Algoritmos de Euler y de Runge-Kutta para simular el movimiento de una partícula

- A continuación resumimos algunas de las técnicas numéricas que se basan en los métodos de diferencias finitas para la solución

de las ecuaciones del movimiento de Newton (1) con funciones de fuerza , tF r, v dadas por unos leyes de física independientes.

El método de diferencias finitas para el problema de Cauchy (1), (2) incluye los siguientes pasos:

-1) Definición de una malla discreta equidistante de N+1 nodos para la variable del tiempo con la separación h t entre los

nodos adyacentes:

1; 0,1, 2, , ;n n n Nt n h n N h t t t t N (6)

-2) Para los vectores desconocidos , , , ,t t t t tr v F r v en los momentos del tiempo correspondientes a los nodos de la

malla se usan las notaciones

; , , , ; 0,1, 2, ,n n n n n n n nt t t t t n N r r v v F F r v (7)

-3) A partir de las ecuaciones diferenciales (1) se establecen las relaciones de recurrencia aproximadas;

1 1, , ; , , ; ; 0,1, 2, , 1; 2,3,pn n n p n n n p pR h Q h O h n N p r r v v r v (8)

Aquí p se llama el error del método, y p-el orden del método y las funciones R y Q definen un procedimiento, que permite

expresar los vectores desconocidos 1 1,n n r v en el nodo 1n a través de los vectores conocidos ,n nr v en el nodo n.

-4) Sustituyendo sucesivamente en las relaciones der recurrencia (8) 0,1, 2, , 1n N se encuentran los valores de los vectores

de la posición y de la velocidad en los momentos del tiempo correspondientes a todos nodos de la malla

Las relaciones de recurrencia (8) definen la complejidad y la precisión del método. Generalmente, más sencillos son las

relaciones menor es la precisión método. Error del método es más pequeño cuanto más alto es el orden del método. Por ejemplo,

si escogeremos el paso de la malla 0.01h , entonces el error del método de segundo orden 2p es 4

2 10 (en el cuarto

digito de decimales), mientras que para un método de cuarto orden 4p el error del método es 8

2 10 (en el octavo digito

de decimales). Para simplificar nuestras notaciones en el proceso de derivación de las fórmulas de recurrencia tendremos en

cuenta que las ecuaciones del movimiento de una partícula (1) pueden escribirse en la forma

,; ;

d t d t tt t t

dt dt m

r v F r, vv a a (9)

El objetivo de los métodos de diferencias finitas consiste en determinar los valores de los vectores 1 1,n n r v en el

momento del tiempo 1nt a partir de los valores conocidos de vectores ,n nr v en el momento del tiempo nt . Para analizar la

evolución de los vectores ,t tr v entre los nodos n y 1n utilizaremos la expansión de las funciones subintegrales en las

series de Taylor:

2 12 1

1 1 2 1

12 1

1

2 12 1

1 1 2 1

1 1 1

1! 2! 2!

1 1

2 2!

1 1 1

1! 2! 2!

1

2

pn n n p p

n n n n p

pn p p

n n n p

pn n n p p

n n n n p

nn n

d t d t d tt t h t h h h O h

dt dt dt

d th h h O h

dt

d t d t d tt t h t h h h O h

dt dt dt

dh h

dt

r r rr r r r

rr v a

v v vv v v v

av a

22 1

2

1; ,

2!

pp pn

n n n np

dh O h t m

dt

aa F r , v

(10)

Todos algoritmos que se basan en las relaciones de recurrencia (10) se llaman métodos de Euler-

1.1.1 Algoritmos de Euler

Algoritmo de Euler simple (de segunda orden)

Restringimos las expansiones en las series de Taylor (10) hasta los términos de la primera orden respecto h

21

2 21

;

,

n n n

n n n n n n n

h O h

h O h h t m O h

r r v

v v a v F r , v (11)

Según (11) el error de truncamiento local, o el error en cada paso de tiempo, es del orden2h . Al llegar al punto final de la malla

hay que hacer 1N h pasos, durante los cuales el error local se acumula formando el error global sobre el tiempo de interés.

Debido a la acumulación de errores de un paso el error global del método de Euler simple definido por las relaciones de

recurrencia (11) es de orden Euler h . El algoritmo de Euler por eso es un ejemplo de un algoritmo de primer orden.

Algoritmo de Euler-Cromer

El algoritmo de Euler simple es asimétrico debido a que en las formulas (11) se utiliza la información sobre la velocidad y de

aceleración solamente al comienzo del intervalo 1n nt t t . La precisión del algoritmo de Euler es limitada y por eso con

frecuencia sus soluciones no son estables. Una posible forma de modificar el algoritmo de Euler es utilizar en la primera fila de

las ecuaciones (11) la velocidad en el final del intervalo para obtener la nueva posición. Esta modificación del método de Euler se

llama el algoritmo de Euler-Cromer:

2 21

21 1

,

;

n n n n n n n

n n n

h O h h t m O h

h O h

v v a v F r , v

r r v (12)

El algoritmo de Euler de punto medio

Una manera más simple para mejorar el algoritmo de Euler es utilizar la velocidad media durante el intervalo 1n nt t t en la

primera fila de las ecuaciones (11) para obtener la nueva posición. El algoritmo de punto medio correspondiente se puede escribir

como

2 21

31 1

,

2 ;

n n n n n n n

n n n n

h O h h t m O h

h O h

v v a v F r , v

r r v v (13)

El algoritmo de punto medio se obtiene una precisión local de tercera orden para la posición y la precisión de segunda orden para

la velocidad y una precisión global de segundo orden para la posición y la precisión de primer orden para la velocidad

(¡demuéstrelo!). Aunque la aproximación del punto medio da resultados exactos para la aceleración constante, no suele producir

resultados mucho mejores que el algoritmo de Euler simple. De hecho, ambos algoritmos son igualmente pobres porque los

errores aumentan bastante rápido con cada paso de tiempo.

El algoritmo de Euler-Richardson de medio paso

Un algoritmo de orden superior cuyo error está acotado es el algoritmo de medio paso. En este algoritmo, la velocidad media

durante un intervalo se toma para ser la velocidad en el medio del intervalo. El algoritmo de media paso se puede escribir como

3 31 2 1 2 1 2

31 1 2

,n n n n n n n

n n n

h O h h t m O h

h O h

v v a v F r , v

r r v (14)

Anótese que el algoritmo de media a paso no es de arranque automático, es decir, (14) no nos permite iniciar el proceso iterativo

poniendo en la primera ecuación 0n para encontrar 1 2v por no saber el valor 1 2v . Esta dificultad se puede superar mediante

la adopción del algoritmo de Euler simple para hallar el valor 1 2v

1 2 0 0 0 0 0 02 2 ,h h t m v v a v F r , v (14a)

Debido a que el algoritmo de medio paso la precisión local mayor orden que los algoritmos anteriores, es un algoritmo más estable

y se encuentra con mayor frecuencia en diferentes libros de texto. Una ventaja del algoritmo de Euler-Richardson es que las

cantidades 2 1r r y 2 1v v dan en este algoritmo una estimación del error del método y pueden utilizarse como las

estimaciones para cambiar el paso de tiempo de modo que el error esté siempre dentro de un cierto nivel de precisión deseado. Se

puede además demostrar que el algoritmo de Euler-Richardson es equivalente a la de segundo orden algoritmo de Runge-Kutta

(que se consideran a la siguiente sección).

El algoritmo “leapfrog” (pídola) Uno de los algoritmos de orden superior y libre de errores más comunes fue propuesto llamado “leapfrog” (pídola) fue propuesta

por Verlet. Consideremos dos expansiones en series de Taylor para dos vectores de posición:

2 3 2 31 12 ; 2n n n n n n n nh h O h h h O h r r v a r r v a

Si sumamos estas dos igualdades los términos de expansión de ordenes impares se cancelan y se obtiene

2 4 2 41 1 1 12 2n n n n n n n nh O h h O h r r r a r r r a

Similarmente si restamos estas dos igualdades podemos encontrar la expresión para la velocidad en el nodo número n:

3 31 1 1 12 2n n n n n nh O h h O h r r v v r r

Relaciones de recurrencia para el método “leapfrog” finales son:

2 4 2 41 1 1

31 1

2 2 ,

2

n n n n n n n n n

n n n

h O h h t m O h

h O h

r r r a r r F r , v

v r r (15a)

Anótese que el error global asociado con el algoritmo (15a) es de tercer orden para la posición y de segundo orden para la

velocidad. Sin embargo, la velocidad no juega ningún papel en la integración de las ecuaciones de movimiento. Debido a que las

partes derechas de las recurrencias (15a) tienen dos incógnitas este algoritmo no permite un arranque automático, otro algoritmo

debe utilizarse para obtener los primeros términos. Un problema adicional es que la nueva velocidad en (15a) se encuentra

mediante el cálculo de la diferencia entre dos cantidades del mismo orden de magnitud. Dicha operación resulta en una pérdida de

precisión numérica y puede dar lugar a errores por redondeo significativos. Por esta razón, es preferible usar otro esquema del

algoritmo “leapfrog” similar a (15a) que se deduce a partir del mismo y es equivalente a (15a)

2 31

4 41 1 1 1 1

2

2 , , 2

n n n n

n n n n n n n n n n n

h h O h

h O h h t t m O h

r r v a

v v a a v F r , v F r , v (15b)

La dificultad con este último algoritmo consiste en que la velocidad 1nv en la segunda ecuación entra en una forma implícita y se

necesita elaborar un método especial para encontrarla, mientras que el vector 1nr s puede hallar directamente a partir de la

primera ecuación (15).

Ejemplo 1

Una partícula de masa 1kg se arranca a lo largo de eje X a partir de punto 0 0x con la velocidad 0v 50 /m s . Suponiendo que

sobre partícula actúa la fuerza 10 2 5 10 2 5vF x x x . Encuéntrese las relaciones de recurrencia para el método de Euler

de tercer orden.

Solución Las ecuaciones dinámicas correspondientes al problema Cauchy son:

0 0

v , v,v ; 10 2 5v; 0; v 50

dx t d t F r tt x x

dt dt m (E1)

Escogeremos la malla , 0,1, 2,nt h n n sobre la cual se cumplen las siguientes relaciones

2 32 3 4

1 2 3

2 32 3 4

1 2 3

1 1 1

1! 2! 3!

v v v1 1 1v v v

1! 2! 3!

n n nn n n

n n nn n n

dx t d x t d x tx x t h x t h h h O h

dt dt dt

d t d t d tt h t h h h O h

dt dt dt

(E2)

Usando las ecuaciones dinámicas (E1) uno puede expresar los valores de las derivadas en (E2) en los términos de las funciones en

el nodo número n:

2

2

2 3

2 3

3

3

v; v v ; 10 2 5v ;

v v2 5 2v 5 10 2 5v 50 10 27v ;

v v10 27 10v 27 10 2 5v 270 54 135v

n n nn n n n n n

n n n nn n n n n

n n nn n n n n

dx t d t d x tx t x t x

dt dt dt

d t d x t dx t d tx x

dt dtdt dt

d t dx t d tx x

dt dtdt

(E3)

Sustituyendo las derivadas (E3) en (E2) se obtiene:

2 3 41 0 0

2 3 41

1 1v 10 2 5v 50 10 27v ; 0;; v 50

2 6

1 1v v v 10 2 5v 50 10 27v 270 54 135v

2 6

n n n n n n n

n n n n n n n n n

x x h x h x h O h x

t x h x h x h O h

(E4)

Este ejemplo muestra como en cada caso particular se puede obtener las relaciones de recurrencia para pos algoritmos de Euler de

unos órdenes superiores

1.1.2 Métodos de Runge-Kutta

Una clase de algoritmos para resolver el problema de Cauchy para un sistema de las ecuaciones diferenciales muy

conveniente y ampliamente utilizado son los algoritmos de Runge-Kutta, que vienen en diferentes órdenes de precisión. A

continuación consideremos una versión más simple del algoritmo de Runge_Kutta de segunda orden para dar una idea como se

deduce la ecuación similar de uso general del método de Ruinge-Kutta de cuarto orden.

Para analizar la evolución de los vectores ,t tr v entre los nodos n y 1n consideremos en lugar de las ecuaciones

diferenciales (9), las ecuaciones integrales, que se obtienen al integrar ambas partes de las ecuaciones (9) desde el nodo nt hasta un

punto t , situado dentro del intervalo 1n n nt t t t h :

1; ; ; ,

n n

t t

n n n

t t

t d t d t t t m r r v v a a F r , v (16)

Poniendo en estas ecuaciones 1n nt t t h se obtiene:

1 1

1 1; ; ,n n

n n

t

n n n n

t t

d t d m

r r v v v a a F r , v (16a)

El cálculo aproximado de las integrales lo realicemos utilizando la expansión de la función subintegral en serie de Taylor

alrededor del punto correspondiente a la mitad del intervalo:

3 31 1 2 1 1 2 1 2 1 2; ,n n n n n n n nt h O h t h t t t m O h r r v v v F r , v (16b)

Aquí el error surge del término cuadrático en la serie de Taylor, puesto que el término lineal al integrar se anula. Aunque a la

primera vista parece lo que para realizar el paso (16b) necesitamos saber los valores de las funciones desconocidos en la mitad del

intervalo que aparecen en las partes derecha, pero esto no es absolutamente cierto. En realidad, ya que el término de error es de

orden de 3O h cualquiera aproximación de las funciones en el punto 1 2nt cuya error es de orden 2O h ) es lo suficientemente

buena. Esto es lo que es exactamente proporciona por el simple método de Euler, la ecuación (14a).

2 21 2 1 22 ; 2 ; ,n n n n n n n n n nh O h h O h t m r r v v v a a F r , v (16c)

Por lo tanto, se obtiene el siguiente procedimiento en dos etapas (primero 16c y después 16b) que permiten expresar los valores

1 1,n n r v en términos ,n nr v y esto es un algoritmo de Runge-Kutta de segundo orden.

Esquemas de Runge-Kutta de órdenes superiores se pueden elaborar de una manera similar. Con esta fin se puede utilizar para

aproximar las integrales (16a) diferentes fórmulas de cuadraturas que expresan el resultado de integración mediante una suma

finita de los valores de las funciones subintegrales en los puntos intermedias.. Por ejemplo, usando la regla de Simpson tenemos:

51 1 2 1

51 1 2 1

4 ;6

4 ; ,6

n n n n n

n n n n n

ht t t O h

ht t t t O h m

r r v v v

v v a a a a F r , v

El siguiente algoritmo de Runge-Kutta de cuarto orden, que se obtiene en la base de estas cuadraturas y que requiere una

evaluación de la función subintegral cuatro veces para cada paso de integración y tiene un error local de 5O h ha sido

encontrado experimentalmente como un mejor compromiso entre la precisión y el esfuerzo computacional se puede escribir de la

siguiente manera:

1 2 3 4 1 2 3 45 51 1

1 1

2 1 2 1 1

3 2 3 2 2

4 3 4 3 3

2 2 ; 2 2 ;6 6

; , ;

2 : 2 2, 2 ;

2 : 2 2, 2 ;

: ,

n n n n

n n n n

n n n n

n n n n

n n n n

h hO h t O h

t m

h h h t h m

h h h t h m

h h h t

r r v v v v v v a a a a

v v a F r , v

v v a a F r v , v a

v v a a F r v , v a

v v a a F r v , v a ;h m

(17)

Ejemplo 2

Una partícula de masa 1kg se arranca a lo largo de eje X a partir de punto 0 0x con la velocidad 0v 50 /m s . Suponiendo que

sobre partícula actúa la fuerza vF x x x encuéntrese relaciones de recurrencia para método de Runge-Kutta de 4ta orden.

Solución Las ecuaciones dinámicas correspondientes al problema Cauchy son:

0 0

v x, vv ; v; 0; v 50

dx t d t Ft a x x

dt dt m (E1)

Escogeremos la malla 1 1 1 1, 0,1, 2, v v v v vn n n n n n n n n n nt h n n x t x t x t x t h x t t h

Hay que establecer relaciones entre 1 yn nx x y 1v y vn n

1 2 3 4 1 2 3 45 51 1 0 0

1 1n n n

2 1 2 1 1

3 2

v +2v +2v +v ; v v 2 2 ; ; 0; v 50; 1, 2,6 6

v =v ; = F ,v v ;

v v 2 v v 2; v 2 v 2 v 2 v v 2

v v 2 v v 2

n n n n

n n

n n n n n n n n n n n

n n n n

h hx x O h t a a a a O h x n

a x m x

a h x h a F x h a h m x h x h

a h x h

,

3 2 2

4 3

4 3 3

v v 2 2; v 2 v 2

v v 2 2 v v 2 v v 2 2 ;

v v v v v 2 2 v v 2 v v 2 2 ;

v v v v 2 v

n n n n n

n n n n n n n n n n

n n n n n n n n n n n n

n n n n n n

x h h a F x h a h m

x x h h x h x h h

a h x x h h x h x h h h

a F x h a h m x x h

,

,

v 2

v v v 2 2 v v 2 v v 2 2 ;

n n n

n n n n n n n n n n n

x h h

x x h h x h x h h h

1.3 Ejemplo simple: Simulación de la caída libre

Una de las formas en que la ciencia progresa es haciendo modelos. Si el modelo es lo suficientemente detallado, podemos

determinar su conducta y luego comparar el comportamiento con los experimentos. Esta comparación puede dar lugar a la

verificación del modelo, los cambios en el modelo, y estimular otras simulaciones y experimentos. En el contexto de la

simulación por computador, por lo general tenemos que a partir de un conjunto de datos iniciales, determinar el comportamiento

dinámico del modelo numérico, y generar los datos en forma de tablas de números, gráficos y animaciones. Comenzamos con un

ejemplo sencillo para ver cómo funciona este proceso.

Imagínese una partícula puntual de masa m está sujeta a una sola fuerza, la fuerza de la gravedad. Suponemos que la fricción

del aire es despreciable, y la fuerza gravitacional está dada por

F mg (1.3.1)

Aquí g=9,8 N/kg. Para que nuestro ejemplo sea máximo posible simple consideremos sólo el movimiento vertical y definimos la

coordenada vertical Y definida como positiva en la dirección hacia arriba, denotemos t como el tiempo, F como la fuerza total

sobre la partícula. Según la segunda ley de Newton:

m y t F (1.3.2)

Si sustituimos (1.3.1) en (1.3.2) y suponemos que la posición del balón en el momento inicial es 00y y y la velocidad inicial

0v(0) 0 vy esto conduce al siguiente problema de Cauchy:

0 0=v: v ; 0 ; 0 vdy dt d dt g y y y (1.3.3)

Las relaciones (1.3.1) y (1.3.2) presentan un modelo matemático para analizar el movimiento de la partícula. En este caso, el

modelo tiene una la forma de un problema de Cauchy para una ecuación diferencial de segundo orden. Para este caso particular el

modelo tiene la solución analítica exacta:

20 0 0 v 2; v vy t y t g t t g t (1.3.4)

Sin embargo, vamos a analizar el movimiento de una partícula en caída libre numéricamente mediante métodos

computacionales con el fin de comparar las discrepancias de diferentes algoritmos con la solución exacta que nos servirá como

una guía para escoger un método aceptable para analizar los sistemas para los cuales la solución analítica no se conoce. Uno para

escoger un método numérico aceptable siempre tiene que buscar un compromiso entre el “costo” de cálculo y tolerancia (el nivel

del error aceptable). Por ejemplo, si uno quiere calcular el valor de una función usando su expansión en serie de Taylor, entonces

tiene que buscar un compromiso entre el número de términos que se utilizan para el cálculo (la tolerancia) y el “costo” (tiempo de

cálculo). Es claro mayor el número de términos que se tienen en cuenta, el menor es la tolerancia (el error) y el mayor es el costo

(tiempo del cálculo).

Con el fin de aplicar diferentes métodos numéricos reducimos ecuación (1.3.3) de segundo orden a dos ecuaciones

diferenciales de primer orden:

0 0v; v= ; 0 ; v 0 vy t g y y (1.3.5)

Para la variable independiente (el tiempo) escogeremos una malla equidistante , 0,1, 2,nt n h n y denotemos

, v vn n n ny t y t Coordenadas y velocidades , vn ny se encuentran uno por uno usando las relaciones de recurrencia desde

más sencillas como en el caso del algoritmo de Euler simple hasta más complicados como en el caso de método de Runge-Kutta

de cuarto orden

1) Algoritmo de Euler simple

1 1v ; , 0,1, 2,n n n n ny y h g h n v v (1.3.6)

Poniendo en estas relaciones 0n (el primer paso de iteración) se obtiene 1 0 0 1 0v ; v vy y h g h , y comparando estas

relaciones exactas con (1.3.4) se ve que para este caso particular, en el método de Euler simple (1.3.6) la fórmula para la velocidad

coincide con la exacta, teniendo en cuenta que t h , mientras que la fórmula para la coordenada tiene el error de orden 2O h .

2) Algoritmo de Euler-Cromer

Utilizaremos en la primera de las ecuaciones (1.3.6) la velocidad en el final del intervalo para obtener la nueva posición. Esta

modificación del algoritmo de Euler llamada Euler-Cromer: tiene la forma:

1 1 1, v ; 0,1, 2,n n n n ng h y y h n v v (1.3.7)

3) El algoritmo de Euler de punto medio

Una manera más simple para mejorar los dos algoritmos anteriores es utilizar la velocidad media durante el intervalo

1n nt t t en la segunda de las ecuaciones (1.3.7) para obtener la nueva posición. El algoritmo de punto medio correspondiente

se puede escribir como

1 1 1, v +v 2; 0,1, 2,n n n n n ng h y y h n v v (1.3.8)

El algoritmo de punto medio se obtiene una precisión local de tercera orden para la posición y la precisión de segunda orden para

la velocidad y una precisión global de segundo orden para la posición y la precisión de primer orden para la velocidad

(¡demuéstrelo!). Aunque la aproximación del punto medio da resultados exactos para la aceleración constante, no suele producir

resultados mucho mejores que el algoritmo de Euler simple. De hecho, ambos algoritmos son igualmente pobres porque los

errores aumentan bastante rápido con cada paso de tiempo.

4 El algoritmo de Euler-Richardson de medio paso

Un algoritmo de orden superior cuyo error está acotado es el algoritmo de medio paso. En este algoritmo, en la calidad de la

velocidad media durante un intervalo se toma la velocidad en el medio del intervalo. El algoritmo de media paso se escribe como

1 2 1 2 1 1 2v v ; v ; 0,1, 2,n n n n ng h y y h n (1.3.9)

Anótese que el algoritmo de medio paso no es de arranque automático, es decir, (1.3.9) no nos permite iniciar el proceso iterativo

poniendo en la primera ecuación 0n para encontrar 1 2v por no saber el valor 1 2v . Esta dificultad se puede superar mediante

la adopción del algoritmo de Euler simple para hallar el valor 1 2v : 1 2 0v v 2g h

Debido a que en el algoritmo de medio paso la precisión local es de mayor orden que en los algoritmos anteriores, este algoritmo

es más estable y se encuentra con mayor frecuencia en diferentes libros de texto.

5) El algoritmo “leapfrog” (pídola)

Uno de los algoritmos de orden superior y libre de errores más comunes se llama “leapfrog” (pídola). Consideremos dos

expansiones en series de Taylor para dos vectores de posición:

2 3 2 31 1v 2 ; v 2n n n n n ny y h g h O h y y h g h O h

Sumando una vez y restando otra después de unas manipulaciones algebraicas se obtienen las relaciones de recurrencia para el

método “leapfrog” finales:

2 4 31 1 1 12 ; v 2n n n n n ny y y g h O h y y h O h (1.3.10)

Anótese que el error global asociado con el algoritmo (15a) es de tercer orden para la posición y de segundo orden para la

velocidad. Sin embargo, la velocidad no juega ningún papel en la integración de las ecuaciones de movimiento. Debido a que las

partes derechas de las recurrencias (15a) tienen dos incógnitas este algoritmo no permite un arranque automático, otro algoritmo

debe utilizarse para obtener los primeros términos. Un problema adicional es que la nueva velocidad en (1.3.10) se encuentra

mediante el cálculo de la diferencia entre dos cantidades del mismo orden de magnitud. Dicha operación resulta en una pérdida de

precisión numérica y puede dar lugar a errores por redondeo significativos. Por esta razón, es preferible usar otro esquema del

algoritmo “leapfrog” similar a (1.3.10) que se deduce a partir del mismo y es equivalente a (1.3.10)

2 3 41 1v 2 ; v vn n n n ny y h g h O h g h O h (1.3.11)

6) El algoritmo de Runge-Kutta de cuarto orden

El siguiente algoritmo de Runge-Kutta de cuarto orden, que tiene un error local de 5O h para nuestro caso particular se puede

escribir de la siguiente manera:

1 2 3 4 1 2 3 45 51 1

1 2 3 4 1 2 3 4

v 2v 2 ; 2 2 ;6 6

v v ; v v v 2 v v ; ;

n n n n

n n n

h hy y O h t a a a a O h

g h g h a a a a g

v v v v (1.3.12)

Problema 1.3.1 La comparación de algoritmos de Euler y Runge-Kutta

(A) Escriba un programa que analiza el proceso de la caída libre en el cual una partícula se lanza hacia arriba desde una altura

inicial 0y con una velocidad inicial 0V , utilizando método de Euler simple. En el programa los parámetros de entrada

son 0y , 0V y el paso de la malla del tiempo h t . El programa debe calcular las coordenadas y velocidades

,n n n ny y t V V t sobre la malla hasta que 0n ny y t y presentar los resultados en la forma de una tabla de

cinco columnas, en la primera columna el tiempo nt , en las siguiente dos columnas valores calculados ,n ny V , en la

cuarta y quinta los errores del cálculo exact ny y y exact nV V , donde valores exactos de la coordenada y de la

velocidad se calculan usando las fórmulas (1.3.4(

(B) Para diferentes valores de 0y , 0V y los pasos de la malla del tiempo 0.1,0.05, 0.01,0.001h t determine el error

numérico en la posición y la velocidad final. Es el algoritmo original de Euler estable para este sistema? ¿Qué ocurre si

se ejecuta por más tiempo (cuando 0y , 0V se aumentan significativamente)?

(C) Repita las partes (A, B) utilizando el algoritmo de Euler-Cromer, Euler-Richardson, y “leapfrog”. ¿Cuál algoritmo

funciona mejor?

(D) Modifique los programas para que se calcula la energía total,2 / 2 E V g y y discrepancias 0D E E donde

20 0 0 / 2 E V g y es la energía inicial y coloque los valores E y D en la sesta y séptima columnas de la tabla.

Cómo la energía total se conserva para diferentes algoritmos? Ten en cuenta también la cantidad.

(E) Extienda el programa para que este encuentre a partir de los datos de la tabla los valores maxy , altura máxima de la

trayectoria y T , el tiempo de vuelo hasta llegar a la tierra y compare los resultados del cálculo con las fórmulas exactas.

La solución de las ecuaciones dinámicas en la base de la segunda Ley de Newton para una partícula bajo una fuerza constante

como para el caso de la casida libre en las ecuaciones (1.3. 4) se conocen en la forma exacta y por eso el análisis numérico en

este caso presente solamente un interés restringido como una prueba de estabilidad y restricciones que pueden tener

correspondientes algoritmos. Las ecuaciones dinámicas para la mayoría sistemas de interés no se puede resolver en la forma

analítica y en estos casos la única opción es usar los métodos numéricos. A continuación consideremos casos cada vez un

poco más complicados, cuando conseguir una solución analítica o es muy complicado o imposible.

1.4 Movimiento de una partícula en 1D bajo fuerza potencial

Consideremos el movimiento de una partícula a lo largo de eje y bajo una fuerza F y que depende solamente del a

posición de la partícula. Para este caso a cada fuerza definida en la función de coordenada se puede poner en concordancia una

energía potencial definida como la primitiva de F y :

F y V y V y F y dy (1.4.1a)

Por esta razón las fuerzas de este tipo en 1D pueden considerarse como potenciales y para estas fuerzas se cumple la Ley de

conservación de la energía mecánica:

2 2E K V m y V y const (1.4.1b)

El problema de Cauchy en este caso para dos ecuaciones diferenciales de primer orden tiene la siguiente forma:

0 0v; v= ; 0 ; v 0 vy t a y y y (1.4.2)

Aquí la dependencia de la aceleración de la coordenada está definida como:

a y F y m (1.4.3)

Igual como en el párrafo anterior introduciremos una malla equidistante del tiempo , 0,1, 2,nt n h n y usaremos

denotaciones , v vn n n ny t y t Coordenadas y velocidades , vn ny se encuentran uno por uno usando las relaciones de

recurrencia desde más sencillas como en el caso del algoritmo de Euler simple hasta más complicados como en el caso de método

de Runge-Kutta de cuarto orden

1) Algoritmo de Euler simple

1 1v ; , 0,1, 2,n n n n n ny y h a y h n v v (1.4.4)

El error de orden 2O h .

2) Algoritmo de Euler-Cromer

Utilizaremos en la primera de las ecuaciones (1.3.6) la velocidad en el final del intervalo para obtener la nueva posición. Esta

modificación del algoritmo de Euler llamada Euler-Cromer: tiene la forma:

1 1 1v v , v ; 0,1, 2,n n n n n na y h y y h n (1.4.5)

El error de orden 2O h .

3) El algoritmo de Euler de punto medio

En este algoritmo se utiliza la velocidad media durante el intervalo 1n nt t t en la segunda de las ecuaciones (1.4.5) para

obtener la nueva posición. El algoritmo de punto medio correspondiente es:

1 1 1v +v 2; 0,1, 2,n n n n n n na y h y y h n v v (1.4.6)

El algoritmo de punto medio se obtiene una precisión local de tercera orden para la posición y la precisión de segunda orden para

la velocidad y una precisión global de segundo orden para la posición y la precisión de primer orden para la velocidad.

4) El algoritmo de Euler-Richardson de medio paso

Un algoritmo de orden superior cuyo error está acotado es el algoritmo de medio paso. En este algoritmo, en la calidad de la

velocidad media durante un intervalo se toma la velocidad en el medio del intervalo. El algoritmo de media paso se escribe como

1 2 1 2 1 1 2v v ; v ; 0,1, 2,n n n n n na y h y y h n (1.4.7)

El algoritmo de medio paso no es de arranque automático, es decir, (1.4.7) no nos permite iniciar el proceso iterativo poniendo en

la primera ecuación 0n para encontrar 1 2v por no saber el valor 1 2v . Esta dificultad se puede superar mediante la adopción

del algoritmo de Euler simple para hallar el valor 1 2v : 1 2 0 0v v 2a y h

Debido a que en el algoritmo de medio paso la precisión local es de mayor orden que en los algoritmos anteriores, este algoritmo

es más estable y se encuentra con mayor frecuencia en diferentes libros de texto.

5) El algoritmo “leapfrog” (pídola)

Uno de los algoritmos de orden superior y libre de errores más comunes se llama “leapfrog” (pídola). Consideremos dos

expansiones en series de Taylor para dos vectores de posición:

2 3 2 31 1v 2 ; v 2n n n n n n n ny y h a y h O h y y h a y h O h

Sumando una vez y restando otra después de unas manipulaciones algebraicas se obtienen las relaciones de recurrencia para el

método “leapfrog” finales:

2 4 31 1 1 12 ; v 2n n n n n n ny y y a y h O h y y h O h (1.4.8a)

El error global asociado con el algoritmo (1.4.8a) es de tercer orden para la posición y de segundo orden para la velocidad. Sin

embargo, la velocidad no juega ningún papel en la integración de las ecuaciones de movimiento. Debido a que las partes derechas

de las recurrencias (1.4.8a) tienen dos incógnitas este algoritmo no permite un arranque automático, y otro algoritmo debe

utilizarse para obtener los primeros términos. Un problema adicional es que la nueva velocidad en (1.4.8a) se encuentra mediante

el cálculo de la diferencia entre dos cantidades del mismo orden de magnitud. Dicha operación resulta en una pérdida de precisión

numérica y puede dar lugar a errores por redondeo significativos. Por esta razón, es preferible usar otro esquema del algoritmo

“leapfrog” similar a (1.3.10) que se deduce a partir del mismo y es equivalente a (1.4.8a)

2 3 41 1 1v 2 ; v v 2n n n n n n n ny y h a y h O h a y a y h O h (1.4.8b)

6) El algoritmo de Runge-Kutta de cuarto orden

El siguiente algoritmo de Runge-Kutta de cuarto orden, que tiene un error local de 5O h para nuestro caso particular se puede

escribir de la siguiente manera:

1 2 3 4 1 2 3 45 51 1

1 1

2 1 2 1

3 2 3 2

4 3 4 3

v 2v 2 ; 2 2 ;6 6

v v ; ;

v v 2; v 2

v v 2; v 2

v v ; +v

n n n n

n n

n n

n n

n n

h hy y O h t a a a a O h

a a y

a h a a y h

a h a a y h

a h a a y h

v v v v

(1.4.9)

A) Fuerza gravitacional

El análisis del proceso de caída libre presentado en el párrafo anterior es válido solo para el

caso cuando el movimiento de la partícula sucede cerca de la Tierra, es decir la altura y es mucho

menor del radio de la Tierra R 66400 6.4 10R km m . Sin embargo, no es difícil extender el

análisis numérico para alturas grandes a pesar de que soluciones analíticas simples para este caso no

se consiguen. Según la Ley de Newton de gravitación la fuerza atracción entre una partícula de

masa m y la Tierra cuya masa denotemos como M es igual a:

2 2 22 1 1g

G M m G M m gF y m

R y R y R y R

(1.4.10a)

En el caso cuando la distancia hasta la Tierra es mucho menor que el radio de la misma se puede utilizar la siguiente aproximación

que resulta desde la expansión de la expresión (1.4.10) en la serie de Taylor (¡demuéstrelo!)

2

1 2 1 2 ,g

G MF y m y R m g y R si y R

R

(1.4.10b)

Aquí .11 3 26.67 10G m kg s es la constante gravitacional y 2

29.8 /

G Mg m s

R

es la aceleración gravitacional de caída

libre. Las expresiones (1.4.10) definen una fuerza que depende de la posición de la partícula y se ve esta dependencia se hace

despreciable cuando y R .

A la fuerza gravitacional (1.4.10) le corresponde la energía potencial (la primitiva de esta función)

2 3 2

1 1

G M m G M m m g R m g yV y m g R m g y y R y R

R y R y R y R

(1.4.11a)

Para este sistema la Ley de conservación de la energía mecánica (1.4.1b) se puede utilizar en el cálculo en la siguiente forma:

2

2 1

y g yE m const

y R

(1.4.11b)

Para aplicar los algoritmos 1)-6) en este caso hay que tener en cuenta que la dependencia de la aceleración de la posición de la

partícula ga y F y m según las fórmulas (1.4.10) es:

2

1 21

ga y g y R

y R

(1.4.12)

B) Resorte anarmónico

Otro ejemplo de sistemas dinámicos con las Fuerzas Potenciales son

sistemas oscilatorios. Por ejemplo, en el caso más simple de una masa conectada a

un resorte con el coeficiente de elasticidad k, la fuerza restauradora (un poco más

allá de la Ley de Hook) depende del desplazamiento dela masa desde posición de

equilibrio y como:

2 3F y m y y (1.4.13a)

Aquí el primer término ese llama armónico y se debe a las fuerzas de elasticidad y el segundo, anarmónico, se debe a plasticidad

de la resorte. El parámetro llamaremos el coeficiente de plasticidad. Para las oscilaciones pequeños (armónicas) aporte de este

término es despreciable y se puede en las fórmulas poner 0 . A la fuerza (1.413a) le corresponde la energía potencial:

2 2 22 1 2V y F y dy m y y (1.4.13b)

Para este sistema la Ley de conservación de la energía mecánica (1.4.1b) se puede utilizar en el cálculo en la siguiente forma:

2

2 2 22 1 22

yE m y y const (1.4.13c)

Para aplicar los algoritmos 1)-6) en este caso hay que usar para la dependencia de la aceleración a del desplazamiento y desde la

posición del equilibrio del bloque ga y F y m la siguiente expresión:

2 2 6 3a y y m y (1.4.14)

Para el caso de las oscilaciones pequeñas (armónicas) en la expresión (1.4.14) hay que poner 0

C) Péndulo matemático : desde las oscilaciones hacia la rotación

´ El péndulo simple (también llamado péndulo matemático o péndulo ideal) es un

sistema idealizado constituido por una partícula de masa m que está suspendida de un

punto fijo mediante un hilo de la longitud L inextensible y sin peso. Naturalmente es

imposible la realización práctica de un péndulo simple, pero si es accesible a la teoría.

Para determinar la naturaleza de las oscilaciones deberemos escribir la ecuación del

movimiento de la partícula. La partícula se mueve sobre un arco de circunferencia bajo la

acción de dos fuerzas: su propio peso (mg) y la tensión del hilo (N), siendo la fuerza motriz

la componente tangencial del peso. Aplicando la segunda ley de Newton obtenemos:

sint tF m g y m a (1.4.15a)

siendo y el ángulo de la rotación, ta la aceleración tangencial y donde hemos incluido el signo negativo para manifestar que la

fuerza tangencial tiene siempre sentido opuesto al desplazamiento (fuerza recuperadora). Al tratarse de un movimiento circular,

podemos relacionar la velocidad de rotación v con la velocidad angular y y la aceleración tangencial vta d dt con la

aceleración angular y :

v ; tL y a L y (1.4.15b)

A la fuerza (1.413a) le corresponde la energía potencial:

cosV y F y dy m g y (1.4.15c)

Para este sistema la Ley de conservación de la energía mecánica (1.4.1b) se puede utilizar en el cálculo en la siguiente forma: 2

cos2

yE m g y const (1.4.15d)

Combinando ahora las relaciones (1.4.15a) y (1.4.15b) se puede formular el problema de Cauchy para dos incógnitas, el ángulo

y de la rotación y la velocidad de rotación v

0 0v/ ; v = sin ; 0 ; v 0 vtdy t dt L d dt a y g y y y (1.4.16)

Problema 1.4.1 El movimiento 1D de una partícula en el campo gravitacional

(A) Escriba un programa que analiza el proceso del movimiento libre en el cual un cohete se lanza hacia arriba en la

dirección vertical desde la superficie de la Tierra ( 60 6400 6.4 10y R km m ) con una velocidad inicial 0V , utilizando

método de Euler simple según las fórmulas (1.4.4) y (1.4.12). En el programa los parámetros de entrada son 0y , 0V y el

paso de la malla del tiempo h t . El programa debe calcular las coordenadas y velocidades , v vn n n ny y t t

sobre la malla hasta que 0n ny y t y presentar los resultados en la forma de una tabla de cinco columnas, en la

primera columna el tiempo nt , en las siguiente dos columnas valores calculados ,n ny V , en la cuarta y quinta loa energía

normalizada /E m según la fórmula (1.4.11b) y la discrepancia 0 /E E m que caracteriza los errores del cálculo

(B) Para diferentes valores de 0y , 0V y los pasos de la malla del tiempo 0.1,0.05, 0.01,0.001h t analícese el error

numérico en la posición y la velocidad final. Es el algoritmo original de Euler estable para este sistema? ¿Qué ocurre si

se ejecuta por más tiempo (cuando 0y , 0V se aumentan significativamente)?

(C) Repita las partes (A, B) utilizando el algoritmo de Euler-Cromer, Euler-Richardson, y “leapfrog”. ¿Cuál algoritmo

funciona mejor?

(D) Realícese las simulaciones numéricas para estimar la velocidad de escape y compárese los resultados de cálculo con la

velocidad de escape exacta v 2 11.2 /escape g R km s (¡demuéstrelo1)

Problema 1.4.2 El movimiento de una masa conectada con un resorte anarmónico

(A) Escriba un programa que analiza el proceso del movimiento de una masa conectada con un resorte anarmónico con un

desplazamiento inicial desde la posición de equilibrio 0y ) con una velocidad inicial 0V , utilizando método de Euler

simple según las fórmulas (1.4.4) y (1.4.14). En el programa los parámetros de entrada son 0y , 0V , la frecuencia

propia , el coeficiente de plasticidad , el número de los pasos, stopN y el paso de la malla del tiempo h t . El

programa debe calcular las coordenadas y velocidades , v vn n n ny y t t sobre la malla hasta que stopn N y

presentar los resultados en la forma de una tabla de cinco columnas, en la primera columna el tiempo nt , en las siguiente

dos columnas valores calculados ,n ny V , en la cuarta y quinta loa energía normalizada /E m según la fórmula (1.4.13c)

y la discrepancia 0 /E E m que caracteriza los errores del cálculo

(B) Para diferentes valores de 0y , 0v , , y los pasos de la malla del tiempo 0.1,0.05, 0.01,0.001h t analícese

el error numérico en la posición y la velocidad final. Es el algoritmo original de Euler estable para este sistema? ¿Qué

ocurre si se ejecuta por más tiempo?

(C) Repita las partes (A, B) utilizando el algoritmo de Euler-Cromer, Euler-Richardson, y “leapfrog”. ¿Cuál algoritmo

funciona mejor?

(D) Realícese las simulaciones numéricas para el analizar el efecto de plasticidad sobre la amplitud y el periodo de

oscilaciones

Problema 1.4.3 Péndulo matemático: desde las oscilaciones hacia la rotación

(A) Escriba un programa que analiza el proceso del movimiento del péndulo matemático con diferentes condiciones iniciales,

el ángulo inicial 0y y la velocidad inicial 0v , utilizando método de Euler simple según las fórmulas (1.4.4) y (1.4.16).

En el programa los parámetros de entrada son 0y , 0v , longitud L, el tiempo final 2finalT L g (¡explíquelo,

porque!) y el paso de la malla del tiempo h t . El programa debe calcular las coordenadas y velocidades

, v vn n n ny y t t sobre la malla hasta que n finalt T y presentar los resultados en la forma de una tabla de cinco

columnas, en la primera columna el tiempo nt , en las siguiente dos columnas valores calculados ,n ny V , en la cuarta y

quinta loa energía normalizada /E m según la fórmula (1.4.15b) y la discrepancia 0 /E E m que caracteriza los

errores del cálculo

(B) Analícese el error numérico en la posición y la velocidad final para diferentes valores de 0y , 0V y los pasos de la malla

del tiempo 0.01,0.005, 0.001,0.0001final finalh T t T . Es el algoritmo original de Euler estable para este sistema?

¿Qué ocurre si se ejecuta por más tiempo

(C) Repita las partes (A, B) utilizando el algoritmo de Euler-Cromer, Euler-Richardson, y “leapfrog”. ¿Cuál algoritmo

funciona mejor?

(D) Realícese las simulaciones numéricas para analizar como un aumento de los parámetros de entrada 0y , 0v producen la

transformación del movimiento oscilatorio en un rotatorio. Con este fin, presente los resultados de cálculos para

diferentes valores de parámetros de entrada 0y , 0v , las curvas de Poincaré considerando las velocidades

v vn nt como funciones de coordenadas (ángulos) n ny y t . Analícese, como un conjunto de las curvas de

Poincaré cerradas para pequeños valores de parámetros de entrada 0y , 0v se transforman en otro conjunto de curvas

abiertas a medida que crezcan estos valores y dos conjuntos están separadas por una curva especial llamada la curva

separatriz. Encuéntrese la fórmula para esa curva.

1.5 Efectos de resistencia

A continuación, discutimos los modelos más realistas que se pueden simular mediante la extensión v de las clases de fuerzas

que actúen sobre partículas. Por ejemplo, para partículas cerca de la superficie de la Tierra, una modificación más importante es

incluir la fuerza de adicional rF generada por la resistencia del aire. La dirección de esta fuerza rF es opuesta a la velocidad de

la partícula. Para un cuerpo que cae, rF es hacia arriba y hacia abajo cuando el cuerpo sube. Por lo tanto, la fuerza F resultante

sobre al del cuerpo que cae se puede expresar como

vrF m g F (1.5.1)

La fuerza rF aquí tiene un signo opuesto a la velocidad, es decir v 0rF si v 0 y viceversa v 0rF si v 0 . La

dependencia de la velocidad de vrF se conoce teóricamente en el límite de velocidades muy bajas para objetos pequeños.

Generalmente, para determinar la dependencia velocidad de vrF ) empíricamente para cada intervalo limitado de velocidades.

Una manera de obtener la forma de vrF es medir y como una función del tiempo t y luego calcular v (t) mediante la derivación

numérica de la coordenada y t . Del mismo modo, podemos utilizar v (t) para calcular la aceleración a t numéricamente. A

partir de esta información, es posible, en principio, encontrar la aceleración como una función de v y para extraer

vrF m a m g a partir de (1.5.1). Sin embargo, este procedimiento introduce errores grandes ya que la precisión de las

derivadas calculadas numéricamente será menor que la precisión de las mediciones. Una alternativa es invertir el procedimiento,

es decir, asumir una forma explícita de la dependencia de vrF y utilizarlo para encontrar y t resolviendo el problema de

Cauchy para correspondiente ecuación diferencial. Si los valores calculados de y t son consistentes con los valores

experimentales de y t entonces la supuesta dependencia de vrF se justifica empíricamente. Las dos formas asumidas

comunes de la dependencia de la velocidad de vrF son:

v v ; 1, 2n p

r pF m p (1.5.2)

Aquí los parámetros 1 2, dependen de las propiedades del medio y la forma del objeto. En general, (1.5.2) es una expresión

fenomenológica útil, que producen resultados aproximados de vrF en un rango limitado de v.

Consideremos el caso de la caída libre de un cuerpo desde una altura inicial 0y hacia la Tierra 0, v 0y , para el cual la

II Ley de Newton tiene la forma:

v v ; 1, 2, v 0 0p

pm d dt m g m p (1.5.3)

Debido a que al inicio de la caída el primer término en la parte derecha de la ecuación es dominante la aceleración es negativa y la

velocidad hacia la Tierra se incrementa. Pero, por otro lado la resistencia vrF en el segundo término se aumenta a medida que

v crezca y llega ser igual a fuerza gravitacional cuando la velocidad se deja de crecer y el movimiento acelerado se transforma en

un movimiento uniforme con la velocidad final. Esta velocidad final se puede encontrar a partir de

1

v ; 1, 2p

f pg p (1.5.4)

Por lo tanto, combinando las ecuaciones (1.5.3) y (1.5.4) podemos encontrar la siguiente relación entre la aceleración y velocidad

para caída libre de un cuerpo teniendo en cuenta a resistencia de aire:

v v 1 v v ; 1, 2, v 0 0p

fa d dt g p (1.5.5)

Para determinar si los efectos de la resistencia del aire son importantes durante la caída de objetos ordinarios, consideremos como

un ejemplo la caída de una piedra redonda de masa 10m g . Una buena aproximación para este caso es la fuerza de resistencia

proporcional a 2v . Para una piedra esférica de radio 0,01 m, se encontró empíricamente que valor del coeficiente 2

aproximadamente es 1210 m

. A partir de (1.5.4) encontramos una estimación de la velocidad final alrededor de 30m/s.

Sabiendo esta velocidad se consigue mediante análisis numérico para la caída libre de un cuerpo desde unos 50 metros un tiempo

de aproximadamente 3s. Estos valores se pueden utilizar para una estimación de los efectos de la resistencia del aire que serían

apreciables para los tiempos y las distancias comparables.

En la sección anterior hemos presentado los algoritmos para resolver el problema de Cauchy en 1D en el caso cuando la

fuerza externa es potencial, es decir depende solamente de la posición de la partícula. Estos algoritmos no nos sirven en la

presencia de las fuerzas de resistencia, las cuales la fuerza depende también de la velocidad. Por esta razón, a continuación

extenderemos estos algoritmos para el caso cuando la aceleración ( y la fuerza externa) depende de ambas variables, de la

coordenada y de la velocidad.

El problema de Cauchy en este caso para dos ecuaciones diferenciales de primer orden tiene la siguiente forma:

0 0v; v= , v ; 0 ; v 0 vy t a y y y (1.5.6)

Igual como en el párrafo anterior introduciremos una malla equidistante del tiempo , 0,1, 2,nt n h n y usaremos

denotaciones , v vn n n ny t y t Coordenadas y velocidades , vn ny se encuentran uno por uno usando las relaciones de

recurrencia desde más sencillas como en el caso del algoritmo de Euler simple hasta más complicados como en el caso de método

de Runge-Kutta de cuarto orden

7) Algoritmo de Euler simple

1 1v ; , 0,1, 2,n n n n n ny y h a y h n v v (1.5.7)

El error de orden 2O h .

8) Algoritmo de Euler-Cromer

Utilizaremos en la primera de las ecuaciones (1.5.7) la velocidad en el final del intervalo para obtener la nueva posición. Esta

modificación del algoritmo de Euler llamada Euler-Cromer: tiene la forma:

1 1 1v v , v , v ; 0,1, 2,n n n n n n na y h y y h n (1.5.8)

El error de orden 2O h .

9) El algoritmo de Euler de punto medio

En este algoritmo se utiliza la velocidad media durante el intervalo 1n nt t t en la segunda de las ecuaciones (1.5.8) para

obtener la nueva posición. El algoritmo de punto medio correspondiente es:

1 1 1, v +v 2; 0,1, 2,n n n n n n n na y h y y h n v v v (1.5.9)

El algoritmo de punto medio se obtiene una precisión local de tercera orden para la posición y la precisión de segunda orden para

la velocidad y una precisión global de segundo orden para la posición y la precisión de primer orden para la velocidad.

10) El algoritmo de Euler-Richardson de medio paso

Un algoritmo de orden superior cuyo error está acotado es el algoritmo de medio paso. En este algoritmo, en la calidad de la

velocidad media durante un intervalo se toma la velocidad en el medio del intervalo. El algoritmo de media paso se escribe como

1 2 1 2 1 1 2v v , ; v ; 0,1, 2,n n n n n n na y h y y h n v (1.5.10)

El algoritmo de medio paso no es de arranque automático, es decir, (1.5.10) no nos permite iniciar el proceso iterativo poniendo

en la primera ecuación 0n para encontrar 1 2v por no saber el valor 1 2v . Esta dificultad se puede superar mediante la

adopción del algoritmo de Euler simple para hallar el valor 1 2v : 1 2 0 0v v 2a y h

Debido a que en el algoritmo de medio paso la precisión local es de mayor orden que en los algoritmos anteriores, este algoritmo

es más estable y se encuentra con mayor frecuencia en diferentes libros de texto.

11) El algoritmo “leapfrog” (pídola)

Uno de los algoritmos de orden superior y libre de errores más comunes se llama “leapfrog” (pídola). Consideremos dos

expansiones en series de Taylor para dos vectores de posición:

2 3 2 31 1v , v 2 ; v , v 2n n n n n n n n n ny y h a y h O h y y h a y h O h

Sumando una vez y restando otra después de unas manipulaciones algebraicas se obtienen las relaciones de recurrencia para el

método “leapfrog” finales:

2 4 31 1 1 12 , v ; v 2n n n n n n n ny y y a y h O h y y h O h (1.5.11a)

El error global asociado con el algoritmo (1.5.11a) es de tercer orden para la posición y de segundo orden para la velocidad. Sin

embargo, la velocidad no juega ningún papel en la integración de las ecuaciones de movimiento. Debido a que las partes derechas

de las recurrencias (1.5.11a) tienen dos incógnitas este algoritmo no permite un arranque automático, y otro algoritmo debe

utilizarse para obtener los primeros términos. Un problema adicional es que la nueva velocidad en ((1.5.11a) se encuentra

mediante el cálculo de la diferencia entre dos cantidades del mismo orden de magnitud. Dicha operación resulta en una pérdida de

precisión numérica y puede dar lugar a errores por redondeo significativos. Por esta razón, es preferible usar otro esquema del

algoritmo “leapfrog” similar a (1.5.11a) que se deduce a partir del mismo y es equivalente a (1.5.11a)

2 3 41 1 1 1v , v 2 ; v v , v , v 2n n n n n n n n n n ny y h a y h O h a y a y h O h (1.5.11b)

12) El algoritmo de Runge-Kutta de cuarto orden

El siguiente algoritmo de Runge-Kutta de cuarto orden, que tiene un error local de 5O h para nuestro caso particular se puede

escribir de la siguiente manera:

1 2 3 4 1 2 3 45 51 1

1 1

2 1 2 1 1

3 2 3 2 2

4 3 4 3 3

v 2v 2 ; 2 2 ;6 6

v v ; , v ;

v v 2; v 2, v 2

v v 2; v 2, v 2

v v ; +v , v

n n n n

n n n

n n n

n n n

n n n

h hy y O h t a a a a O h

a a y

a h a a y h a h

a h a a y h a h

a h a a y h a h

v v v v

(1.5.12)

Problema 1.5.1 Efecto de la resistencia del aire sobre el ascenso y descenso de una piedra redonda

(A) Escriba un programa que analiza el proceso de caída libre de una piedra desde el reposo a una altura 0y , utilizando

método de Euler simple según las fórmulas (1.5.7). En el programa los parámetros de entrada son 0y , el número del

modelo de resistencia p en la fórmula (1.5.2) y el paso de la malla del tiempo h t . El programa debe calcular las

coordenadas y velocidades , v vn n n ny y t t sobre la malla hasta que 0ny y presentar los resultados en la

forma de una tabla de tres columnas, en la primera columna el tiempo nt , en las siguiente dos columnas valores

calculados , vn ny . Calcúlese el tiempo y la velocidad a la que la piedra llega al suelo si se deja caer desde el reposo a

una altura de 50 m. Compárese el tiempo y la velocidad con la de la piedra que cae libremente sin resistencia bajo las

mismas condiciones 0 02 v 2libre libret y g g y . Suponga que la fuerza de resistencia es proporcional a v2 y que

la velocidad final es de 30 m/s.

(B) Analícese los cambios que sufren los resultados del cálculo relacionados con el error numérico en la posición y la

velocidad final para diferentes valores de 0y y los pasos de la malla del tiempo 0.01,0.005, 0.001,0.0001( )t s . Es el

algoritmo original de Euler estable para este sistema? ¿Qué ocurre si se ejecuta por más tiempo

(C) Repita las partes (A, B) utilizando el algoritmo de Euler-Cromer, Euler-Richardson, y “leapfrog”. ¿Cuál algoritmo

funciona mejor?

(D) .Supongamos que una piedra es lanzada verticalmente hacia arriba con una velocidad inicial 0v . En la ausencia de la

resistencia del aire, sabemos que la altura máxima alcanzada por la piedra es20v 2g , su velocidad a su regreso a la 0v a

la Tierra es igual, el tiempo de ascenso es igual al tiempo de descenso, y el tiempo total en el aire es 02v g . Antes de

hacer una simulación, presente una estimación simple cualitativa de cómo cree que estas cantidades se verán afectados

por la resistencia del aire. En particular, ¿cuál será el cambio del tiempo de ascenso comparando con el tiempo de

descenso?

(E) Realícese una simulación para determinar si sus respuestas cualitativas en la parte anterior son correctas. Compárese los

resultados de simulación para dos modelos de resistencia diferentes, para 1p y 2p tomando en ambos casos la

velocidad final en (1.5.5) v 30 /f m s

1.6 Trayectorias bidimensionales

Al pasar del problema del movimiento en 1D al problema similar en el espacio 2D uno puede esperar que complejidad

numérica debe crecer significativamente por la duplicación del número de las ecuaciones diferenciales. Pero esto no es cierto para

todos modelos. Por ejemplo, los problemas de la trayectoria de dos dimensiones en la ausencia de la resistencia de aire, como se

sabe e los cursos de mecánica tienen unas soluciones analíticas. Si se lanza una pelota en el aire con una velocidad inicial 0v con

un ángulo de 0 con respecto al horizonte uno puede deducir las fórmulas para responder a preguntas ¿cuál es la forma de la

trayectoria?, ¿cuál es el recorrido de la pelota en la dirección horizontal?, ¿cuál es su altura máxima y el tiempo de vuelo? Si una

pelota se lanza en las mismas condiciones desde una altura h por encima del suelo distinto de cero. ¿Cuál es el ángulo 0 para el

recorrido máximo? Pero si se toma en cuenta la resistencia del aire estas respuestas dejan de ser aplicables y respuestas a estas y

otras preguntas similares se puede conseguir solamente mediante

simulaciones numéricas.

Consideremos una partícula de masa m, cuya velocidad inicial v0 cuya

dirección forma un ángulo 0 con el horizonte (véase la figura). Sobre la

partícula actúan dos fuerzas, gravitacionales m g en la dirección vertical

hacia la Tierra y de resistencia rF en la dirección opuesta al vector de la

velocidad v (véase la figura).

La segunda Ley de Newton para dos componentes de la velocidad en este caso se puede presentar de la siguiente forma:

v cos ; v sinx r y rm d dt F m d dt mg F (1.6.1)

Aquí es el ángulo que forma el vector de la velocidad con el horizonte que relacione los componentes del vector de la

velocidad con su valor absoluta cos v / v, sin v / vx y . Teniendo en cuenta estas relaciones y sustituyendo en las

ecuaciones (1.6.1) la expresión analítica (1.5.2) y (1.5.4) se obtiene la siguiente forma explícita para la segunda ley de Newton

para este caso (¡demuéstrelo!)

2 2v vv vv v

; 1 ; 1, 2, v= v vv v v v

p p

y yx xx y

f f

ddg g p

dt dt

(1.6.2a)

Anótese que para una partícula que se mueve en el aire y sin fricción del aire en las fórmulas anteriores hay que poner v f y

para este caso:

vv0;

yxdd

gdt dt

(1.6.2b)

Para formular para este sistema dinámico el problema de Cauchy se necesita completar dos ecuaciones (1.6.2a) para dos

componentes de velocidades con otras dos ecuaciones para coordenadas y cuatro condiciones iniciales:

v ; vx y

dx dy

dt dt (1.6.2c)

0 0 0 0 00 0; 0 ; v 0 v cos : v 0 v sinx yx y y (1.6.2d)

Ahora, podemos formular diferentes algoritmos a partir de estas cuatro ecuaciones, pero es una objeción contra esta manera de

resolver este tipo de problemas. Cada vez cuando se aumenta la dimensión del espacio y el número de partículas crece el número

de ecuaciones el número de ecuaciones hasta que el volumen del trabajo con la escritura se hace casi insoportable. Por ejemplo,

para una partícula en 3D el número de ecuaciones es 6, para tres partículas en 3D es 18, etc. Si en el futuro queremos analizar

sistemas dinámicos con muchos cuerpos esto nos obliga unificar el trabajo para no escribir para cada problema de Cauchy un

algoritmo específico, sino elaborar unos algoritmos universales en una forma compacta, que tengan la misma forma para

diferentes problemas de Cauchy independiente del número de las ecuaciones. Un camino evidente para lograr este objetivo es

usar notaciones vectoriales. Siendo 2 I el número de funciones incógnitas de tiempo , , 1, 2, , 2q i t i I , primeras

I incógnitas son coordenadas en funciones del tiempo y los últimas I incógnitas son componentes de los vectores de velocidades

en funciones del tiempo, que satisfacen las condiciones iniciales 0, 0 , 1, 2, , 2i

q i q i I y 2 I ecuaciones diferenciales

, 1, , 2, , , , , , 1,2, , 2idq i t dt R q t q t q I t t i I , entonces este problema de Cauchy se puede escribirse de la

siguiente forma vectorial compacta:

1

10

220

0 0

2

0

1, , 2, , , 2 ,1,

1, , 2, , , 2 ,2,, 0 ; ,

2 , 1, , 2, , , 2 ,IN

q R q t q t q I tq t

R q t q t q I tq tdQ t qR Q t t Q Q Q t Q R Q t

dt

q I t R q t q t q I tq

(1.6.3)

Anótese que en el vector ,R Q t correspondiente a las partes derecha de las ecuaciones diferenciales dependencia del

tiempo en una forma explícita aparece solamente en los casos cuando sobre el sistema están actuando fuerzas externas

dependientes del tiempo. Para el problema particular (1.6.2) la dimensión de todos los vectores en (1.6.3) es cuatro y los vectores

correspondientes son:

1

0

2

000 23

0 00

4 0 00

3,01,

4,1,22,

; ; , ;v v 3, vv v cos3, v= 3,

v v sin4, 1 v v 4, v

p

fx

py

f

q tqx tq t

q tpy t q yq t

Q t Q R Q t g q ttq t q t qqtq t g q tq

2 4, t (1.6.4a)

Para una partícula que se mueve en el aire y sin fricción del aire en las fórmulas anteriores hay que poner v f y para este

caso:

1

0

2

000 3

0 00

4 0 00

01, 3,

2, 4,; ; ,

v v cos3, 0

v v sin4,

x

y

qx tq t q t

y t q yq t q tQ t Q R Q t

tq t qtq t g

q

(1.6.4b)

En este caso estacionario en las partes derecha de las ecuaciones diferenciales ,R Q t el tiempo no aparece en la forma explícita.

Según (1.6.4a) y(1.6.4b) el primer componente del vector Q t define la coordenada x, el segundo componente la coordenada y,

el tercer componente la proyección horizontal vx de la velocidad y el último cuarto componente la proyección vertical v y de la

velocidad y sus valores iniciales correspondientes son 0, 0y , 0 0v cos y 0 0v sin ,respectivamente.

Los algoritmos que vamos a formular a continuación son aplicables al problema de Cauchy (1.6.3) para un número de

funciones incógnitas arbitrario. Todos estos algoritmos se formulan en el marco del método de diferencias finitas sobre una de

malla discreta.

Todos algoritmos para resolver el problema de Cauchy (1.6.3) para un sistema de 2 I ecuaciones diferenciales incluyen los

siguientes pasos:

1) Definición de una malla discreta equidistante para la variable del tiempo t, en la cual N+1 nodos se ubican de tal manera que la

separación entre todos nodos adyacentes sea la misma e igual a t h :

1; 0,1, 2, , ;n n n Nt n h n N h t t t t N (A)

2) Para los vectores desconocidos Q t y ,R Q t de la dimensión 2 I en la ecuación (1.6.3) en los momentos del tiempo

nt n h correspondientes a los nodos de la malla se introducen las notaciones

; , ; 0,1,2, ,n n n nQ Q t R R Q t n N (B)

3) Partiendo de las ecuaciones diferenciales (1.6.3) se establecen las relaciones de recurrencia aproximadas que permiten mediante

un procedimiento expresar el valor del vector 1nQ en el nodo número 1n en términos de los valores de los vectores en los

nodos anteriores:

1 1 1, , , , , ; ; 0,1,2, , 1; 2,3,pn n n n s p pQ F Q Q Q t h O h n N p (C)

Aquí p se llama el error del método, y p-el orden del método y la función 1 1, , , , ,n n n sF Q Q Q t h define un procedimiento

iterativo, que permite expresar el vector desconocido 1nQ ,en el nodo 1n , a través de los vectores en s nodos definidos

anteriormente para los tiempos preliminares. Si en la relación (C) el número 1s , el algoritmo correspondiente se llama el

algoritmo de un paso:

1 , , ; ; 0,1,2, , 1; 2,3,pn n p pQ F Q t h O h n N p (D)

Comúnmente, en las aplicaciones se utilizan los algoritmos tipo (D). Si en (C) 1s , los algoritmos correspondientes se llaman

los algoritmos de multipasos y estos algoritmos no son de arranque automático y para iniciar el proceso iterativo sugieren hacer

varias iteraciones de arranque usando uno de los algoritmos de un paso (D).

-4) Sustituyendo sucesivamente en las relaciones der recurrencia (D) 0,1, 2, , 1n N se encuentran los valores de los vectores

1nQ en los momentos del tiempo correspondientes a todos nodos de la malla

A continuación presentamos los algoritmos de un paso para el problema de Cauchy

0, 0dQ t

R Q t t Q Qdt

para un

sistema de ecuaciones. Antes de aplicar estos algoritmos el vector 0Q (los valores de las funciones en el punto inicial 0t t ) debe

ser definido numéricamente y el vector R Q t (las partes derecha de las ecuaciones diferenciales) debe ser definido

analíticamente-

1) Algoritmo de Euler simple

1 , ; 0,1,2, ,n n n nQ Q R Q t h n N (1.6.5)

El error de orden 2O h . En este algoritmo en la calidad de la pendiente de la función Q t se utiliza el valor de la derivada

dQ t dt solamente al inicio del intervalo 1n nt t t sin tener en la cuenta la variación de la pendiente y por eso el algoritmo

(1.6.5) es poco estable respecto delos errores del método.

2) El algoritmo de Euler predictor-corrector

Una de las opciones para mejorar la estabilidad del algoritmo de Euler es incluir en el cálculo también la información sobre la

pendiente al final del intervalo 1 1,n nR Q t , pero el valor del vector 1nQ al inicio del proceso iterativo se desconoce y hay solo

una opción para estimarlo es usar el algoritmo (1.6.5) a través el proceso, llamado “predictor”

1

1 , ; 0,1,2, ,n n nnQ Q R Q t h n N (1.6.6a)

Ahora podemos corregir el valor del vector 1nQ recalculándolo repetitivamente mediante el proceso llamado “corector”:

1

1 1, , 2; 1,2, ; 0,1,2, ,r r

n n n nn nQ Q R Q t R Q t h h r n N

(1.6.6b)

El proceso iterativo 1, 2,3,r debe ser repetido hasta que la discrepancia sea tolerable 1

1 1

r r

n nQ Q tolerancia

. Pero,

comúnmente las iteraciones (1.6.6b) se repiten 2-3veces y se acepta 1

1 1 ; 2 3r

n nQ Q r r

. El error de orden 3O h .

3) El algoritmo de Euler-Richardson de medio paso

Otro algoritmo de orden 3O h es el algoritmo de medio paso. En este algoritmo, en la calidad de la pendiente media durante del

intervalo de tiempo se toma la velocidad en la mitad del intervalo. El algoritmo de media paso se escribe como

1 1 2 1 2 1 2, / 2 ; 0,1,2, , , ; 1,2, ,n n n n n n n nQ Q R Q t h h n N Q Q R Q t h n N (1.6.7)

El algoritmo de medio paso no es de arranque automático, es decir, (1.6.7) no nos permite iniciar el proceso iterativo poniendo en

la primera ecuación 0n para encontrar 1Q por no saber el valor 1 2Q . Esta dificultad se puede superar mediante la adopción del

algoritmo de Euler simple para hallar el valor 1 2Q : 1 2 0 0 2Q Q R Q h

4) El algoritmo de Runge-Kutta de cuarto orden

Un algoritmo más usado en las aplicaciones es el algoritmo de Runge-Kutta de cuarto orden, que tiene un error local de 5O h

por dos razones- Primero, es un algoritmo de un paso que se arranque de manera automática sin usar otros algoritmos para el

arranque y, el segundo, es un algoritmo de poca complejidad para programar y de alta precisión.

Las formulas del algoritmo de Runge-Kutta de cuarto orden son las siguientes:

1 2 3 4 51

1 2 1

3 2 4 3

K 2K 2K K ; 0,1,2, ,6

K , ; K K 2, / 2 ;

K K 2, / 2 ; K K ,

n n

n n n n

n n n n

hQ Q O h n N

R Q t R Q h t h

R Q h t h R Q h t h

(1.6.8)

5) El algoritmo “predictor-corrector” de Adams en la base del método de multipasos

Presentamos las fórmulas del algoritmo de Adams de multipasos con el error local de orden 5O h

El primer paso del método llamado #predictor” se realiza mediante el uso la fórmula de Adams-Basforth:

51 1 2 2 3 31 55 , 59 , 37 , 9 , ; 3,4, ,

24

p

n n n n n n n n nn

hQ Q R Q t R Q t R Q t R Q t O h n N

(1.6.9a)

El segundo paso, llamado “corrector” se basa en la fórmula de Adams-Moulton

51 1 2 21 19 , 19 , 5 , , ; 3,4, ,

24

c p

n n n n n n n nn n

hQ Q R Q t R Q t R Q t R Q t O h n N

(1.6.9b)

El algoritmo (1.6.9) no es de arranque automático, es decir, no nos permite iniciar el proceso iterativo poniendo en la primera

ecuación 3n para encontrar 4Q por no saber los valores 3 2 1, ,Q Q Q en la parte derecha de la ecuación (1.6.9a). Esta dificultad

se puede superar mediante la adopción del algoritmo de Runge-Kutta de cuarta orden para hallar uno por uno los vectores

3 2 1, ,Q Q Q iterativamente a partir del vector conocido 0Q y después usarlos en las fórmulas (1.6.9)

Problema 1.6.1 Representación vectorial del problema de Cauchy.

(A) Considere el movimiento de una partícula con la carga eléctrica e y masa m en presencia de campos homogéneos,

eléctrico 0,0, zEE y magnético (0,0, )zBB para el cual ecuaciones tridimensionales acoplados entre sí según la II

Ley de Newton y las fórmulas de electrodinámica en el espacio 3D pueden escribirse en forma vectorial como:

;d d e e

dt dt m m

r vv v B E (1)

Para las condiciones iniciales 0 00 ,0,0 ; 0 0, ,0r v r v formúlese el problema de Cauchy en la forma (1.6.3

Solución

Las proyecciones de las ecuaciones (1) sobre los ejes X, Y, y Z tienen la forma (¡demuéstrelo!)

v , v , v v v , v v , vx y z x y z y x z z zx y z e B m e B m eE m (2)

Sistema dinámico en las coordenadas cartesianas se describe mediante un vector con 6 componentes y seis coordenadas iniciales

0

0

0

v1,

v2, 0

3, v0; ;

v v4, v0

v v5, v v

6, 0v v

x

y

z

x x y z

y y x z

z z z

x t x tq t r

y t y tq t

z t z tq t dQ tQ t Q

t tq t e B mdt

t tq t e B m

q t t t e E m

,R Q t

(3)

(B) Escriba un programa que analiza el movimiento de la partícula cargada en presencia de campos homogéneos, eléctrico

0,0, zEE y magnético (0,0, )zBB según ecuaciones (1)-(3). utilizando método de Euler simple según las fórmulas

(1.6.5). En el programa los parámetros de entrada son 0r , 0v .e, m ,z zE B ) y el paso de la malla del tiempo h t . El

programa debe calcular y presentar los resultados en la forma de una tabla de nueve columnas, en la primera columna el

tiempo nt , en las siguiente tres columnas las coordenadas , , ,n n n n n nx x t y y t z z t en siguientes tres,

velocidades v v v vn n

x x n y y nt t , v vn

z z nt sobre la malla y en dos últimas columnas los valores 2 2

n nx y y

2 2 22v v v 2z x yeE z m . Los valores en las últimas dos columnas no deben cambiarse (¿Por qué?). y las

discrepancias en estas dos columnas muestran aproximadamente el orden del error del cálculo (¿Por qué?).

(C) Analícese los cambios que sufren los resultados del cálculo relacionados con el error numérico para diferentes valores del

paso de la malla del tiempo 0.01,0.005, 0.001,0.0001( )t s . Es el algoritmo original de Euler estable para este

sistema? ¿Qué ocurre si se ejecuta por más tiempo.

(D) Repita las partes (A, B) utilizando el algoritmo de Runge-Kutta (1.6.8)”. ¿Cuál algoritmo funciona mejor?

Problema 1.6.2 Trayectoria de una bola de acero

(A) Escriba un programa que analiza la trayectoria de dos dimensiones de una pelota que se mueve en el aire y sin fricción

del aire utilizando las relaciones (1.6.2) y (1.6.4) y el algoritmo de Euler. simple según las fórmulas (1.6.5). En el

programa los parámetros de entrada son 0v . 0 ) y el paso de la malla del tiempo h t . El programa debe calcular y

presentar los resultados en la forma de una tabla de nueve columnas, en la primera columna el tiempo nt , en las siguiente

cuatro columnas , , v v v vn n

n n n n x x n y y nx x t y y t t t , en siguientes cuatro columnas correspondientes

valores exactos calculados con las formulas analíticas y en la última columna los valores de 2 2v v 2x yg y . Los

valores en la última columna no deben cambiarse (¿Por qué?). y discrepancias en esta columna debe aproximadamente

coincidir con el orden del error del cálculo (¿Por qué?). Considere el caso de una pelota es lanzada desde el nivel del

suelo con un ángulo 0 por encima de la horizontal con una velocidad inicial de 0v 15 /m s . Variando el ángulo

0 demuéstrese que el alcance máximo se produce cuando 0 max = 45 °. ¿Cuál es valor maxx el alcance máximo, en

este ángulo? Compárese su resultado numérico con el resultado analítico 2

max 0vx g .

(B) Considere una bola de acero que se lanza desde una altura 0y en un ángulo 0 por encima de la horizontal con la misma

velocidad inicial como en la parte (A). Si se desprecia la resistencia del aire se puede esperar el valor max ¿será mayor o

menor que 45 °? ¿Cuál es max para 0 2y m ? ¿En qué porcentaje se cambia el valor maxx si el ángulo inicial 0 difiere

de max en 2%?

(C) Tenga en cuenta los efectos de la resistencia del aire sobre el alcance y el ángulo óptimo de una bola de acero. Analícese

los resultados para dos diferentes modelos de resistencia con 1p , 2p y diferentes valores de v f . los efectos.

Usando las mismas condiciones iniciales como en el punto (B) y realizando los cálculos similares compare los resultados.

¿Es maxx más o menos sensible a las desviaciones del ángulo inicial 0 desde max que en la parte (B)? Determínese el

ángulo de lanzamiento óptimo y la gama correspondiente para diferentes valores v f . •

Problema 3.11 Comparando el movimiento de dos objetos

Considere el movimiento de dos objetos idénticos que ambos parten de una altura 0y . Un objeto se deja caer verticalmente desde

el reposo y la otra es lanzada con una velocidad v0 horizontal. ¿Qué objeto alcanza el suelo primero?

(A) ¿Cuál es la respuesta si se asume que la resistencia del aire se puede despreciar?

(B) Considere el caso cuando la resistencia del aire no se puede despreciar y que la fuerza de resistencia es proporcional a v2.

(C) Considere el caso cuando la resistencia del aire no se puede despreciar y que la fuerza de resistencia es proporcional a v

1.6 Procesos de decaimiento

El vigor de las matemáticas en sus aplicaciones al estudio de los fenómenos físicos proviene en parte del hecho de que los

problemas aparentemente no relacionados entre sí con frecuencia tienen la misma formulación matemática. Por lo tanto, los

métodos matemáticos desarrollados para resolver un problema en un área de Física, pueden ser utilizados también para resolver

problemas que podrían en otras áreas de Física los cuales a la primera vista parecen no relacionados. Por ejemplo, el crecimiento

de las bacterias, el enfriamiento de una taza de agua caliente, la carga de un condensador en un circuito RC, y la desintegración

nuclear pueden ser formuladas en términos de ecuaciones diferenciales equivalentes.

Consideremos, por ejemplo, un gran número de núcleos radiactivos. Aunque el número de núcleos es discreta, es posible que

a menudo tratan este número como una variable continua, porque el número de núcleos es muy grande. En este caso, la Ley de la

desintegración radiactiva afirma: que la tasa de decaimiento (o desintegración radioactiva) es proporcional al número de núcleos.

Por lo tanto, podemos escribir

0;

dN tN t N t N

dt (1.7.1)

Aqui N t es el número de núcleos en el momento del tiempo t, 0N es el número inicial de partículas y es la constante de

desintegración. Por supuesto, no es necesario utilizar un computador dor para resolver esta ecuación de decaimiento, cuya

solución analítica es;

0tN t N e (1.7.2)

El parámetro en (1.7.1) y (1.7.2) tiene la dimensión de tiempo inverso.

Problema 1.7.1 Desintegración nuclear de material simple

(A) Escriba un programa que analiza que resuelva el problema de Cauchy (1.7.1) usando el método de Euler simple. . Para

1 y 0.01h t , calcúlese la diferencia entre el resultado del analítico y el resultado del algoritmo de Euler para

0N t N en los momentos del tiempo t = 1 y t = 2. Asúmase que el tiempo se mide en segundos.

(B) Comúnmente, para analizar la desintegración radiactiva como una unidad de tiempo se usa el tiempo de la vida media 1 2T

correspondiente al tiempo que tarda la desintegración de la mitad de los núcleos iniciales. Otra escala de tiempo natural es

el tiempo t que tarda la desintegración de la parte 1 e del número 0N de los núcleos iniciales. Utilícese el programa

modificado para verificar que 1 2 ln 2T .

C) Debido a que es inconveniente tratar en un computador los números muy grandes o muy pequeños ( por errores por

redondeo grandes!), es preferible cambiar las unidades de tal manera que los valores calculados de las variables no estén

demasiado lejos de la unidad. Determínese la constante de desintegración en unidades de |s para el proceso

radioactivo 238 234 U Th si el tiempo de la vida media es de 4,5 x 109 años. ¿Qué unidades y paso de tiempo sería

apropiado para la solución numérica de (|.7.1)? ¿Cómo cambian estos valores si la partícula modelada era un muon con un

tiempo de la vida media de 2,2 x 10-6 s?

(D) Modifíquese su programa para que el tiempo t se exprese en términos del tiempo de la vida media. Es decir, en estas

nuevos unidades para 1t , se desintegre una media de las partículas iniciales, en t = 2, un cuarto de las partículas

integrales habría decaído. Utilice el programa para determinar el momento del tiempo cuando de 1.000 átomos de 238U

decaigan al 20% de su número inicial. ¿Cuál sería el tiempo correspondiente para muones?

En muchos casos la desintegración nuclear se realiza a través de varios procesos en cadena. En este caso, los procesos de las

desintegraciones nucleares se describen mediante de un sistema de ecuaciones diferenciales de primera orden. Problema 1.7.2

considera un modelo de la desintegración nuclear a partir de las formulas similares al problema anterior

Problema 1.7.2 Desintegraciones nucleares en cadena

(A) El núcleo 76Kr decae a 76Br a través de captura de un electrón con un tiempo de la vida media 14,8 h, y 76Br decae a 76Se

través de captura de un electrón y emisión de positrones con un tiempo de la vida media 16,1 h. En este caso hay dos

tiempos de la vida media, y es conveniente para medir el tiempo en unidades de tiempo de la vida media la más pequeña.

Escribase un programa para calcular la dependencia temporal de la cantidad de 76Kr y 76Se durante un intervalo de una

semana. Suponga que la muestra contiene inicialmente 1 g de puro 76Kr.

(B) 28Mn se desintegra a través de beta emisión a 28Al con un tiempo de la vida media de 21h, y 28Al decae mediante la emisión

de positrón a 28Si con un tiempo de la vida media de 2,31min. Si tuviéramos que utilizar minutos como unidad de tiempo,

el programa tendría que hacer muchas iteraciones antes de que veríamos un deterioro significativo de la 28Mn. ¿Qué

suposición simplificadora se puede hacer para acelerar el cálculo?

Problema 1.7.3 El enfriamiento de una taza de café

La naturaleza de la transferencia de energía desde el agua caliente en una taza de café al aire que rodea su superficie es bastante

complicada complicado y, en general, involucra los procesos de convección, radiación, evaporación, y conducción. Sin embargo,

si la diferencia de temperatura entre el agua y su entorno no es demasiado grande, la velocidad de cambio de la temperatura del

agua supuestamente debe ser proporcional a la diferencia temperatura del agua y el entorno. Podemos formular esta declaración

más precisamente en términos de una ecuación diferencial (llamada Ley del enfriamiento de Newton):

0; 0s

dT tr T t T T T

dt (1.7.3)

donde T t es la temperatura del agua en el momento del tiempo t, sT es la temperatura de su entorno, y r es la constante de

enfriamiento. El signo menos en (1.7.3) implica que si sT t T la temperatura del agua disminuirá con el tiempo. El valor de la

constante r de enfriamiento depende del mecanismo de transferencia de calor, el área de contacto con el entorno, y las propiedades

térmicas del agua. La relación (1.7.3) a veces se conoce como la ley de enfriamiento de Newton, a pesar de que la relación es sólo

aproximada, y Newton no expresó la velocidad de enfriamiento en esta forma.

(A) Escribir un programa que calcula la solución numérica de (1.7.3). Pruebe su programa seleccionando la temperatura inicial

0 100 , 0 , 1, 0.1 sT C T C r y t s

B) Considere el modelo del enfriamiento de una taza de café con r = 0,03. ¿Cuáles son las unidades de r? Presente los gráficos

exactos parar la temperatura en función del tiempo usando parámetros 0 87 y 17 sT C T C . Asegúrese de que el

valor de t en los cálculos numéricos sea suficientemente pequeño para que los resultados numéricos y exactos no se

difieren notablemente. ¿Cuál es la unidad de tiempo apropiado en este caso?

(C) Supongamos que la temperatura inicial de una taza de café es 87°C, pero el café puede ser sorbido cómodamente sólo

cuando su temperatura es <75 ° C. Suponga que la adición de cremase enfría el café en un 5 ° C. Si se tiene prisa y quiere

esperar el menor tiempo posible, se debe añadir primero la crema y se permitirá que el café se enfríe, o debe esperar hasta

que el café se ha enfriado a 80 ° C antes de añadir la crema? Utilice el programa para "simular" estos dos casos.

Elija 0,03 °17sr y T C . ¿Cuál es la unidad de tiempo apropiado en este caso? Asúmase que el valor de r no cambia

cuando se añade la crema.