plataformas termoquímica e bioquímica para uso da biomassa concepção, rendimento e economia...

49
ataformas Termoquímica e Bioquímica par Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus Henrique Rocha Universidade Federal de Itajubá - UNIFEI

Upload: luciana-nunes-bras

Post on 07-Apr-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Plataformas Termoquímica e Bioquímica para Uso da Biomassa

Concepção, Rendimento e Economia

Electo Eduardo Silva Lora Doris del Socorro Obando Coral

Mateus Henrique Rocha

Universidade Federal de Itajubá - UNIFEI

Page 2: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Biodiesel em MTG

SOFC e gás desintese

MotoresStirling a biomassa

Gaseificaçãode biomassa

Nucleo de Excelência em GeraçãoTermelétrica e Distribuida

NEST

UNIV. FEDERAL DE ITAJUBÁ

ATIVIDADES EM BIOENERGIA

ACV de biocombustiveis

Page 3: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

LIVROS PUBLICADOS

Page 4: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus
Page 5: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Nova publicação Setembro 2008

Page 6: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

O NEST at internet www.nest.unifei.edu.br

Page 7: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Plataformas de conversão da biomassa• A biomassa pode ser utilizada como fonte de calor e geração de eletricidade a partir da sua combustão em fornos e caldeiras.

• A conversão da biomassa em um gás combustível, processo denominado gaseificação, permite a utilização de motores e turbinas em aplicações de geração de eletricidade, o que constitui um potencial técnico para o acréscimo da eficiência de conversão.

• A partir da biomassa também é possível obter hidrocarbonetos com características semelhantes aos combustíveis líquidos comerciais (gasolina e diesel).

• Existem duas rotas de conversão da biomassa lignocelulósica em biocombustíveis, a rota termoquímica e a rota bioquímica.

Page 8: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

• Rota bioquímicaRepresentada pela hidrólise e fermentação da biomassa.

• Rota termoquímicaRepresentada pela pirólise e/ou gaseificação da biomassa, passando pela obtenção de gás de síntese, seguido da síntese catalítica ou da fermentação, o que torna possível a obtenção de hidrocarbonetos, álcoois, hidrogênio, amônia, gás natural sintético, etc.

Page 9: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Rotas de conversão da biomassa em biocombustíveis

Fonte: Jenkins, 2007

Page 10: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus
Page 11: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Mercado mundial de etanol celulósico (em bilhões de litros)

Fonte;Ethanol Statistics, 2008

Page 12: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Plataforma

termoquímica

Page 13: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Conversão termoquímica da biomassa em ausência de oxigênio. Existem três produtos: gases, líquidos e sólidos (carvão). A fração resultante de cada produto depende da temperatura e pressão no reator e do tempo de residência dos sólidos no mesmo. Existem diferentes tipos de processos:

• Pirólise rápida

• Carvoejamento

• Pirólise a vácuo, etc.

Na produção de biocombustíveis a mais utilizada é a pirólise rápida ou fast pyrolysis, devido à predominância da fração de líquidos.

Pirólise

Page 14: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Conversão termoquímica da biomassa, com fornecimento de oxigênio em quantidades sub-estequiométricas, num gás com altos teores de CO, H2 e CH4.

A composição do gás e seu poder calorífico dependem do gás utilizado como agente de gaseificação e da pressão no reator.

Gaseificação

Page 15: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus
Page 16: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Gás de síntese

• Gás de síntese ou syngas é o nome dado a uma mistura de gases de composição química variada formada a partir da gaseificação da biomassa ou de outros combustíveis sólidos.

• É composto basicamente por uma mistura de hidrogênio (H2) e monóxido de carbono (CO) com aplicação em processos industriais de produção de hidrogênio para células combustíveis, metanol e vários produtos químicos, como a amônia.

• A poligeração consiste no uso do gás de gaseificação tanto para processos de síntese como para a geração de eletricidade numa única planta. No caso da via bioquímica de conversão existe ainda a opção de gaseificar os resíduos de lignina.

Page 17: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Principais aplicações do gás de síntese

Fonte:Wender, 1996

Page 18: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Os processos de síntese de combustíveis apresentam uma série de requerimentos em relação com:• Pressão e temperatura no reator• Tipo de catalisador utilizado• Relação H2/CO no gás de síntese• Teor de impurezas no gás

A relação H2/CO pode ser ajustada durante o condicionamento do gás utilizando-se a reação de shift.

Outro fator importante é a qualidade do gás, no que diz respeito aos teores de H2S e outros compostos sulfurosos, partículas, alcatrão e compostos alcalinos. A qualidade requerida do gás depende de qual é o processo que utiliza o gás de síntese como matéria-prima.

Parâmetros do processo

Page 19: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Etapas de obtenção de combustíveis pela rota termoquímica.

Fonte: Adaptado de Jenkins, 2006

Page 20: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

• A síntese de biocombustíveis mostra bons indicadores de viabilidade econômica apenas quando utilizada em larga escala.

• Alguns estudos indicam valores maiores que 1.700 MW térmicos de energia da biomassa.

• Outros se referem a 5.106 toneladas de biomassa por ano como mínimo econômico.

• Isto faz com que os gaseificadores de leito fixo (moving bed) ou borbulhante, típicos de capacidades térmicas pequenas não sejam perspectivos para projetos industriais de produção de gás de síntese para biocombustíveis.

Viabilidade da síntese de biocombustíveis

Page 21: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Opções tecnológicas da gaseificação para a produção de syngas

Fonte: Lora, 2008

Page 22: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Opções tecnológicas da gaseificação para gás de síntese

Fonte:Zwart e Van der Drift, 2006

Page 23: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus
Page 24: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Alguns exemplos de gaseificadores com potencial de utilização para a produção de gás de síntese.• Renugas (IGT): Leito Fluidizado Borbulhante que utiliza vapor e oxigênio.• Carbo V (composto por pirólise e gaseificação): Leito Fluidizado Borbulhante e gaseificação com oxigênio.• HTW (High Temperature Winkler): gaseificação com oxigênio e vapor.• DMT: aquecimento indireto (vapor como portador de calor).• Batelle/Ferco: Leito Fluidizado Duplo de aquecimento indireto.• FICFB (Fast Internally Fluidized Bed): Planta de Güssing na Áustria.• Processo AER: gaseificação com vapor.• Gaseificadores de leito a arrastado da Shell, Siemens, Lurgi e Texaco.

Page 25: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

•Capacidade insuficiente dos gaseificadores existentes.

• Experiência insuficiente na gaseificação utilizando misturas oxigênio/vapor como agente de gaseificação, assim como a modelagem e testes deste processo.

• Necessidade de desenvolvimento e testes de sistemas para a remoção de particulados a quente.

• Necessidade de desenvolvimento de catalisadores para a limpeza e condicionamento dos gases.

• Necessidade de desenvolvimento de tecnologias para a redução do custo da produção de oxigênio.

• Avaliação de opções de integração energética do processo de gaseificação e síntese de biocombustíveis com a geração de eletricidade (poligeração).

DIFICULDADES TECNOLOGICAS

Page 26: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Projeto Clean Hydrogen-rich Synthesis Gas - CHRISGAS

Fonte: Chrisgas, 2008

Page 27: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus
Page 28: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Economia

Page 29: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Prognóstico de redução de custos dos produtos da rota termoquímica

Fonte: Ethanol Statistics, 2008

Page 30: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Plataforma bioquímica

Page 31: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

• Consiste na produção do bioetanol a partir da hidrólise dos carboidratos presentes na biomassa celulósica e lignocelulósica.

• A biomassa lignocelulósica requer pré-tratamento mediante ações mecânicas e físicas para preparar e dimensionar a biomassa, e destruir sua estrutura celular para fazê-la mais acessível em um tratamento químico ou biológico posterior.

• O custo da produção de bioetanol a partir de matérias lignocelulósicos é relativamente alto, se comparado as atuais tecnologias de produção com matérias-primas açucaradas.

• A economia do processo depende criticamente da eficiência e rapidez das conversões de todos os açucares presentes na celulose e hemicelulose da matéria-prima, já que esta representa mais de 40% do custo total do processo.

Page 32: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Processo generalizado de produção de bioetanol a partir da biomassa

A biomassa lignocelulósica é composta basicamente de carboidratos (celulose e hemicelulose), lignina e uma pequena parte constituída por extrativos, ácidos, sais e minerais. A celulose e hemicelulose, são polissacarídeos que podem ser hidrolisados em açúcares e eventualmente ser fermentados para obtenção do bioetanol.

Fonte: Hamelinck et al., 2005

Page 33: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Parede celular da planta

Page 34: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Processo de hidrólise acida diluída

Fonte: Sivers e Zacchi, 1996

Page 35: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Processo de hidrólise ácida concentrada

Fonte: Sivers e Zacchi, 1996

Page 36: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Processo de bioconversão da biomassa utilizando o processo de hidrólise enzimática

Fonte: Hahn-Hägerdal et al., 2006

Page 37: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

• Geralmente, o processo de hidrólise enzimática apresenta vantagens associadas à obtenção de rendimentos superiores a 0,85 g glicose/g celulose, sob temperaturas moderadas, em torno de 40 a 50 ºC e pressão atmosférica.

• Aspectos operacionais relacionados à elevada duração do processo de 48 a 72 horas, desativação catalítica por inibição da atividade enzimática, bem como do elevado custo das enzimas, têm acarretado incertezas quanto à viabilidade econômica do processo de hidrólise enzimática no contexto da produção de bioetanol a partir de biomassas lignocelulósicas.

Page 38: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

• Hidrólise e fermentação separadas (SHF): este processo possui etapas separadas para a produção das enzimas, hidrólise da celulose e fermentação da glicose. A vantagem deste processo é que ele permite tratar separadamente cada uma das etapas mencionadas, o que minimiza as interações entre as mesmas. Porém, as enzimas celulase são inibidas pela acumulação dos açúcares, o que impede atingir concentrações razoáveis de bioetanol a altas taxas e com produções altas, mesmo usando grandes quantidades de enzimas.

Fonte: NILE, 2008

Page 39: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

• Sacarificação e fermentação simultânea (SSF): neste processo a glicose é convertida continuamente em bioetanol. A presença das leveduras juntamente com as enzimas minimiza a acumulação de açúcares no reator, por isso maiores taxas, produções, e concentrações de bioetanol são possíveis de ser obtidas para o sistema SSF que para o SHF com menores cargas de enzimas. Um valor típico de quantidade de enzima utilizada no processo é 7 FPU/g de celulose no sistema SSF.

Fonte: NILE, 2008

Page 40: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

• Desenvolvimento de sistemas de pré-tratamento adequados para diferentes tipos de biomassas e processos.

• Desenvolvimento de processos de destoxificação dos produtos da hidrólise.

• Desenvolvimento de novos tipos de enzimas com menores custos.

• Integração dos processos de hidrolise e fermentação.

• Desenvolvimento de novas cepas de leveduras capazes de fermentar tanto açúcares C6 como C5.

• Desenvolvimento de esquemas integrados para o aproveitamento dos resíduos de lignina para a geração de eletricidade.

DIFICULDADES TECNOLOGICAS

Page 41: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Atualmente estão em andamento vários projetos para obtenção de etanol celulósico no mundo:• 32 nos EUA: sendo 16 de hidrólise enzimática, 6 termoquímicas e 2 de hidrólise ácida concentrada e 8 não possuem informações. • 5 na Europa: sendo 4 de hidrólise enzimática e 1 sem informações.• 4 no restante do mundo: 2 de hidrólise enzimática e 2 sem informações.

Pode-se concluir que existe um predomínio absoluto da plataforma bioquímica enzimática nestes tipos de empreendimentos, como conseqüência de uma maior maturidade desta tecnologia.

Page 42: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus
Page 43: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Influência da capacidade, tipo de processo de hidrólise empregado, custo da matéria-prima e número de plantas implementadas sobre o custo anualizado

do etanol obtido pela plataforma bioquímica

Fonte: NILE, 2008

Page 44: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Ponto de equilíbrio do etanol celulósico e misturas para diferentes valores do custo da biomassa

Fonte: NILE, 2008

Page 45: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Custos de produção do bioetanol para os casos base (BC) e os casos de fermentação de pentose (C5)

Fonte: Sassner et al., 2007

Page 46: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Prognóstico de redução dos custos dos produtos da rota bioquímica

Fonte: Ethanol Statistics, 2008

Page 47: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Análise comparativa e conclusões (I)• A plataforma bioquímica tem alcançado um estágio de desenvolvimento que

pode ser caracterizado como pré-comercial, evidenciado pelo grande número de plantas em operação atual e planejada. Porém, esta plataforma apresenta uma série de desafios relacionado com a bioengenharia de novas enzimas e leveduras, destoxificação de substratos e integração de processos.

• A plataforma termoquímica encontra-se em estágio de concepção de plantas pilotos. A tecnologia de gaseificação para produção de gás de síntese ainda precisa ser desenvolvida, tanto no diz respeito à qualidade do gás, como à consecução das capacidades requeridas para plantas com viabilidade econômica.

• Tanto no caso da plataforma bioquímica como da plataforma termoquímica são requeridas plantas de grande capacidade para se alcançar viabilidade econômica. Estudos recentes publicados referem-se à 100 t/h de biomassa seca para a plataforma bioquímica e 500 t/h para a termoquímica (gaseificadores de 150 t/h de capacidade).

Page 48: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Análise comparativa e conclusões (II)• Custos atuais na faixa de 0,5 a 0,6 US$/l são resultados típicos para a

plataforma termoquímica. Para a plataforma bioquímica as estimativas são um pouco maiores e estão na faixa de 0,7 a 0,9 US$/l, porém no caso da plataforma bioquímica as reduções esperadas até 2012 são muito maiores, como conseqüência da implementação de dezenas de plantas comerciais, sendo que o custo poderia chegar próxima de 0,3 US$/l.

• As duas plataformas apresentadas apresentam oportunidades para o desenvolvimento tecnológico em Universidades e centros de pesquisas brasileiros. Dentre os temas perspectivos é possível citar: novas tecnologias de gaseificação, catálise aplicada a processos de obtenção e purificação de gás de síntese, desenvolvimento de novos processos de pré-tratamento, novas enzimas e leveduras, integração produtiva e energética de processos. Linhas de financiamento para projetos deste tipo são úteis para obtenção de resultados expressivos, além de cursos de extensão e pós-graduação de instituições sérias, que iriam contribuir para o desenvolvimento tecnológico de processos de produção de etanol. Parcerias público-privadas (PPP) também são de extrema importância para garantir a aplicação imediata dos resultados obtidos.

Page 49: Plataformas Termoquímica e Bioquímica para Uso da Biomassa Concepção, Rendimento e Economia Electo Eduardo Silva Lora Doris del Socorro Obando Coral Mateus

Muito obrigado

Duvidas, perguntas, sugestões e voluntarios para a gaseificação e sintese

[email protected]