pilhas e baterias

113

Click here to load reader

Upload: luis-fm-timoteo

Post on 19-Jun-2015

10.495 views

Category:

Technology


41 download

DESCRIPTION

Parte de história das pilhas e baterias.....

TRANSCRIPT

Page 1: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 1

Energia Química

Pilhas e Baterias

Page 2: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 2

Importância do Armazenamento da Energia: As Pilhas e Baterias Importância do Armazenamento da Energia: As Pilhas e Baterias

Intr

oduç

ão

Electrónicos portáteis Veículos Eléctricos

Dispositivos de Implante Armazenamento das Energias Renováveis e de Rede

Solar Eólica

Tesla Roadster

Pilha é uma fonte portátil de energia , resultante de reacções químicas que ocorrem no seu interior, ou seja, um gerador portátil. Desde o início dos tempos, o homem sempre desejou dominar a energia disponibilizando-a quando e onde quiser. Uma pilha, é portanto, uma fonte de energia portátil que se consome à medida que se utiliza.

Page 3: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 3

Invenção da Bateria Invenção da Bateria

Intr

oduç

ão

Mais de 30 anos antes de Faraday produzir a electricidade, movendo um fio num campo magnético, Alessandro Volta, em 1800, descobria uma forma diferente de gerar electricidade. Volta, descobriu que dois metais diferentes separados por um electrólito produziam uma pequena voltagem que poderiam conduzir uma corrente através de um circuito externo que se ligava entre os dois eléctrodos de metal.

Assim, foi inventada a célula electroquímica, predecessor da bateria moderna. Diferentes combinações de materiais de eléctrodos produzem diferentes tensões, geralmente na faixa de 1-2 V. Tensões superiores são alcançadas pelo empilhamento de várias células electroquímicas em série para formar uma bateria. A tensão de um sistema electroquímico tem uma polaridade constante, por isso, a corrente sempre flui numa única direcção. Este tipo de fluxo de corrente é chamada de Corrente Contínua (DC), em contraste com a corrente alternada produzida pelos geradores electromecânicos.

As células electroquímicas em uso comum hoje em dia (mais comummente chamadas de baterias) fornecem níveis relativamente baixos de energia e potência adequada para pequenos aparelhos electrónicos. Baterias maiores, como as utilizadas em automóveis, proporcionam uma maior quantidade de energia (com correntes acima de 100 amperes) por períodos curtos. Eventualmente, porém, todas as baterias se esgotam, e devem ser substituídas, incluindo as baterias recarregáveis.

A bateria, estritamente falando, é um grupo de células fotovoltaicas em série , de modo que as suas tensões individuais são somadas. Na fala quotidiana, no entanto, o termo também pode ser aplicada a uma única célula voltaica.

Page 4: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 4

Generalidades das Baterias Generalidades das Baterias

Intr

oduç

ão

Existem várias classes de baterias. Uma bateria primária não pode ser recarregada, por isso é jogado fora quando a bateria está "morta", isto é, quando os componentes atingiram suas concentrações de equilíbrio. Em contraste, quando uma bateria secundária, ou bateria recarregável, descarrega, é recarregada através do fornecimento de energia eléctrica para reverter a reacção celular e reformar os reagentes. Em outras palavras, neste tipo de bateria, as células fotovoltaicas são periodicamente convertidas em células electrolíticas para restaurar as concentrações de equilíbrio. A célula de combustível, ou de bateria de fluxo, é aquela que não é auto-suficiente e tem que se fornecer continuamente um ou mais reagentes…

A maioria das baterias convertem a energia química em energia eléctrica com uma eficiência de cerca de 90%. Isto pode ser comparado com os ganhos de eficiência muito menor que normalmente caracterizam a conversão de calor em trabalho (3,040%). No entanto, é importante lembrar que a energia necessária para a fabricação de células electroquímicas é considerável . Metais e minerais devem ser extraídos e processados, e os vários componentes fabricados e montados. Além disso, a bateria tem uma vida finita. Cedo ou tarde, a reacção química vai chegar ao fim, a tensão irá cair para zero, e os electrões não fluem mais.

A bateria estará "morta" e pronta para eliminação/reciclagem sendo a eliminação um problema razoável. Em Fevereiro de 1993, a National Geographic informou que cerca de dois bilhões e meio de baterias domésticas são compradas a cada ano nos Estados Unidos. Destas, mais de 90% são baterias de uso único (vulgo pilhas) que encontram o seu caminho em aterros ou incineradoras.

Page 5: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 5

Importância do Armazenamento da Energia Importância do Armazenamento da Energia

Intr

oduç

ão

Uma pilha ou bateria é um dispositivo que transforma energia química em energia eléctrica. A pilha tem três partes: os eléctrodos, o electrólito e o recipiente.

Os eléctrodos são os condutores de corrente da pilha.O electrólito é a solução que age sobre os eléctrodos.O recipiente guarda o electrólito e suporta os eléctrodos.

A pilha primária é uma pilha na qual a reacção química acaba por destruir um dos eléctrodos, normalmente o negativo. A pilha primária não pode ser recarregada.

Existem dois tipos básicos de pilhas.

A pilha secundária é uma pilha (mais conhecida com Bateria ou mesmo acumulador) na qual as acções químicas alteram os eléctrodos e o electrólito. Os eléctrodos e o electrólito podem ser restaurados à sua condição original pela recarga da pilha.

•Acção Electroquímica é o processo de conversão de energia química em energia eléctrica.

Page 6: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 6

Importância do Armazenamento da Energia Importância do Armazenamento da Energia

Intr

oduç

ão

O ânodo é o eléctrodo (pólo/terminal) negativo de uma pilha ou bateria. Fornece electrões . Ião negativo. É onde se dá “Oxidação”, isto é o material destrói-se com a reacção química .

O cátodo é o eléctrodo (pólo/terminal) positivo de uma pilha ou bateria. Recebe electrões. Ião positivo. É onde se dá a “Redução”, isto é o material ganha substância da reacção química.

As pilhas primárias não são recarregáveis , e consequentemente ficam inúteis depois da descarga. Muitas destas pilhas são “pilhas secas “, pilhas em que o electrólito não é um líquido mas uma pasta ou similar. A pilha estará activa até que os materiais dos eléctrodos se decomponha, sendo depois um perigo para a saúde pública que deve ser reciclado convenientemente. Geralmente as pilhas primárias têm um capacidade inicial e uma tensão mais elevadas dos que as pilhas secundárias (baterias recarregáveis).

O termo “bateria”, entre nós, entende-se por recarregável e pode ser a soma de uma ou mais pilhas!...

Page 7: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 7

Pilhas Primárias Pilhas Primárias

Intr

oduç

ão

Aplicações:Aparelhos portáteis.Lanternas de iluminação. Brinquedos.Memória back-up.Relógios.Aparelhos auditivos.Rádios.Implantes médicos.Sistemas de Defesa (mísseis).

Vantagens: Baratas.Convenientes.Leves.Bom prazo de armazenamento.Alta densidade de energia para

descargas baixas/moderadas.

Desvantagens:Só uma utilização.Grande quantidade a ser reciclada.Pilhas colocado em aterros têm um impacto ambiental

grave.Ciclo de vida/eficiência energética do ciclo de <2%.

Características da pilhas primárias.

Pilhas Leclanché (zinco carbono ou pilha seca)

Pilhas Alcalinas.Pilhas de Oxido de Mercúrio.Pilhas Zinco/MnO2.

Pilhas Alumínio/Ar.

Pilhas de Lítio.Pilhas de Lítio c/Cátodo liquido.Pilhas de Lítio c/Cátodo sólido.Pilhas de Lítio c/Electrólito sólido.

Pilhas Magnésio-Cloreto de Cobre

Pilhas Lítio-ferro.

Page 8: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 8

Pilhas secundárias – (Recarregáveis/Baterias) Pilhas secundárias – (Recarregáveis/Baterias)

Intr

oduç

ão

Baterias ácidas de Chumbo

Pilhas Zinco/MnO2

Pilhas/Baterias de Níquel/Cádmio

Pilhas Níquel/Metal Hidreto (NiMH)

Baterias de Iões de Lítio

Pilhas Alcalinas Manganésio recarregáveis

ETC….

A capacidade de uma bateria define a sua a capacidade energética e é expressa em ampère-hora (1 A/h = 3600 coulombs). Se uma bateria debita um ampere (1 A) de corrente (fluxo) por uma hora, tem uma capacidade de 1 A/h. Se puder fornecer 1 A por 10 horas, sua capacidade é 10 A/h.

Page 9: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 9

Tecnologias de Baterias Tecnologias de Baterias

Intr

oduç

ão

Principais Tecnologias: Chumbo-Ácido. Nickel-Cadmium. Nickel-Metal Hydride. Li-ion.

Page 10: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 10

Pilhas Primárias : Algumas características e aplicações Pilhas Primárias : Algumas características e aplicações

Intr

oduç

ão

Sistema Voltagem Nominal (V)

Capacid.Wh/kg) Vantagens Desvantagens Aplicações

Carbon/Zinc 1.50 65 Mais baratas; grande variedade de formas e tamanhos.

Baixa densidade de energia; baixa performance a baixa temperatura.

laternas; rádios; brinquedos electrónicos e jogos.

Mg/MnO2 1.60 105 Maior capacidade do que as de C/Zn; Bom prazo de validade.

Alto gaseamento na descarga; High gassing on discharge; resposta lenta.

Tranreceptores militares e aeronáuticos

Zn/Alk/MnO2 1.50 95 Maior capacidade do que C/Zn; Boa performance a baixa temperatura. Custo moderado. Musical portáteis;

calculadoras; rádios; TV

Zn/HgO 1.35 105 Alta densidade energética; descarga suave; voltagem estável

Cara. Densidade energética somente moderada.

Aparelhos auditivos; pacemakers; fotografia ; sensores/detectores militares.

Cd/HgO 0.90 45 Boa performance a baixa e alta temperatura; bom prazo de validade.

Cara; Baixa densidade energética

Zn/Ag2O 1.50 130 Alta densidade energética, muito boa performance. Cara (mas b custo efectivo.) relógios; fotografia; mísseis;

aplicações espaciais.

Zn/Air 1.50 290 Alta densidade energética; bom prazo de validade.

Dependente do ambiente; potência limitada

Relógios; Aparelhos auditivos; sinais de trânsito; vedações eléctricas.

Li/SOCl2 3.60 300 Alta densidade energética; prazo de validade longo.

Aplicações de baixo a moderado grau.

Dispositivos de Memória; dispositivos eléctricos em standby .

Li/SO2 3.00 280Alta densidade energética; prazo de validade longo. A melhor performance a baixa temperatura.

Caros sistemas pressurizados.

Fins militares e industriais especiais.

Li/MnO2 3.00 200Alta densidade energética; boa performance a baixa temperatura; bom custo efectivo.

Pequena, somente aplicações de baixo consumo.

Equipamentos eléctricos de medeia; circuitos de memória.

Page 11: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 11

Associação de Pilhas … e BateriasAssociação de Pilhas … e Baterias

Intr

oduç

ão

Page 12: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 12

Associação de Pilhas … BateriasAssociação de Pilhas … Baterias

Intr

oduç

ão

3.0 Volts

1.5 Volts

Série

Paralelo

Page 13: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 13

Associação de Pilhas … BateriasAssociação de Pilhas … Baterias

Intr

oduç

ão

3.0 Volts

1.5 Volts

3.0 Volts

2 Paralelos em Série

Page 14: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 14

História das pilhas e Baterias….História das pilhas e Baterias….

His

tória

1836 Pilha de Daniell: Zinco/Cobre

1859 Planté: Bateria recarregável de chumbo

1868 Leclanché: Pilha húmida (wet cell)

Zinco/carbono

1888 Gassner: Zinco/Carbono (Pilha seca)

1899 Junger: Bateria de níquel-cádmio.

1800 Volta :Pilha Voltaica: Zinco/Prata.

Page 15: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 15

História das pilhas e Baterias….História das pilhas e Baterias….

His

tória

1903 Thomas Edison: Bateria Níquel-Ferro1946 Neumann: NiCd selada1960s Alcalina recarregável/ NiCd1970s Pilhas de Lítio, Bateria acida de chumbo selada.1990 Pilhas Níquel/Metal Hidreto (NiMH)1991 Bateria de iões de Lítio1992 Alcalinas recarregáveis 1999 Bateria de iões de Lítio C/ Polímero.

Page 16: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 16

História das pilhas e Baterias….Cronologia

His

tória

Year Inventor Activity1600 William Gilbert (UK) Establishment of electrochemistry study1791 Luigi Galvani (Italy) Discovery of “animal electricity”1800 Alessandro Volta (Italy) Invention of the voltaic cell (zinc, copper disks)1802 William Cruickshank (UK) First electric battery capable of mass production1820 André-Marie Ampere (France) Electricity through magnetism1833 Michael Faraday (UK) Announcement of Faraday’s law1836 John F. Daniell (UK) Invention of the Daniell cell 1839 William Robert Grove (UK) Invention of the fuel cell (H2/O2)1859 Gaston Planté (France) Invention of the lead acid battery1868 Georges Leclanché (France) Invention of the Leclanché cell (carbon-zinc)1899 Waldmar Jungner (Sweden) Invention of the nickel-cadmium battery1901 Thomas A. Edison (USA) Invention of the nickel-iron battery1932 Shlecht & Ackermann (D) Invention of the sintered pole plate1947 Georg Neumann (Germany) Successfully sealing the nickel-cadmium battery1949 Lew Urry, Eveready Battery Invention of the alkaline-manganese battery

1970s Group effort Development of valve-regulated lead acid battery1990 Group effort Commercialization of nickel-metal-hydride battery1991 Sony (Japan) Commercialization of lithium-ion battery1994 Bellcore (USA) Commercialization of lithium-ion polymer1996 Moli Energy (Canada) Introduction of Li-ion with manganese cathode1996 University of Texas (USA) Identification of Li-phosphate (LiFePO4)

2002 University of Montreal, Quebec Hydro, MIT, others

Improvement of Li-phosphate, nanotechnology, commercialization.

Page 17: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 17

História das pilhas e Baterias….Cronologia

His

tória

Page 18: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 18

A Pilha de Bagdad….A Pilha de Bagdad….

His

tória

Quando em 1936, escavavam as ruínas de uma vila, Khujut Rabu, de mais de 2000 anos de antiguidade, perto de Bagdad, no Iraque, os trabalhadores descobriram um objecto desconcertante

Tratava-se de um pequeno vaso de argila dentro do qual havia um tubo feito de chapa de cobre, com um diâmetro de aproximadamente 2,5 cm. por uns 10 cm. de comprido. A base do tubo estava selada por um disco, também de cobre. Uma barra de ferro, aparentemente corroída por ácido, se projectava através de uma tampa de asfalto na parte superior.

A princípio foi catalogado como objecto de culto e colocado na secção de arqueologia religiosa do Museu de Bagdad.

Até que o arqueólogo alemão, Wilhelm Konig, que na ocasião vivia no Iraque, examinou o objecto e chegou a uma conclusão surpreendente: se o tubo havia sido preenchido com uma solução ácida, havia funcionado como uma bateria eléctrica rudimentar. ..Para galvanizar metais na joalharia?!.....

Page 19: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 19

A Pilha de Bagdad…. ComposiçãoA Pilha de Bagdad…. Composição

His

tória

Bilha de Barro

Cilindro de cobre e Estanho

Barra de Ferro

Selo de asfalto

Electrólito desconhecido

Page 20: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 20

Invenção da Bateria: ALESSANDRO VOLTA Invenção da Bateria: ALESSANDRO VOLTA

His

tória

ALESSANDRO VOLTA (1745-1827), Físico italiano, Professor de Física da Universidade de Pavia, em 1800 inventou a pilha elétrica constituída por chapas de prata e zinco separadas por discos de feltro embebidos em água salgada. Napoleão convidou-o a prosseguir as suas experiências sobre eletricidade em França, tendo-se tornado professor da Universidade de Paris.

A sua pilha era composta do seguinte modo: um disco de cobre, sobre ele um disco de feltro embebido em ácido sulfúrico diluído em água, depois um disco de zinco, sobre este, outro disco de feltro embebido em ácido sulfúrico diluído, depois outro disco de cobre, e assim sucessivamente. Esses discos eram colocados um sobre o outro de maneira a formar uma pilha. Daí se originou o nome que até hoje se conserva para esses geradores químicos.

Page 21: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 21

Invenção da Bateria: Pilha Voltaica Invenção da Bateria: Pilha Voltaica

His

tória

Voltaicpile.swf

Page 22: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 22

Invenção da Bateria: ALESSANDRO VOLTA Invenção da Bateria: ALESSANDRO VOLTA

His

tória

Potenciais de oxidação para alguns elementos metálicos e hidrogénio

Al > Al³+ + 3e- 1,71 VZn > Zn²+ + 2e- 0,76 VFe > Fe²+ + 2e- 0,41 VPb > Pb²+ + 2e- 0,13 VH2 > 2H+ + 2e- 0,00 VCu > Cu²+ + 2e- -0,34 VAg > Ag+ + e- -0,80 V

A tensão teórica de cada célula, conforme tabela e fórmula do tópico anterior, é V = 0,76 - (-0,34) = 1,1 volts

A Tensão de uma pilha: ΔEº = Pot. de oxid. do Redutor – Pot. de oxid. do oxidante

nº → Zn+2 + 2e–Cu+2 + 2 e– → Cuº

Eº = 0,76VEº = 0,34V

Znº + Cu+2 → Zn+2 + Cuº ΔEº = 1,10V

Page 23: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 23

Invenção da Bateria: ALESSANDRO VOLTA Invenção da Bateria: ALESSANDRO VOLTA

His

tória

Entretanto, a célula de Volta tem uma limitação prática: o hidrogénio formado no cátodo cria uma barreira para a passagem dos electrões. Isso se chama polarização. E a tensão da célula cai rapidamente com o uso. As células actuais (de outros tipos, naturalmente) contém substâncias que se combinam com o hidrogénio antes que ele consiga polarizar o eléctrodo.

Para que isto ocorra, é preciso uma troca de electrões, de forma que a equação anterior pode ser dada pelas duas seguintes:

Zn(s) ? Zn++(aq) + 2e- (reacção no ânodo. Perda de electrões. Oxidação).

2H+(aq) + 2e- ? H2(g) (reacção no cátodo. Ganho de electrões. Redução).

Ânodo é o eléctrodo negativo, é o eléctrodo onde ocorre oxidação, ocorre perda de electrões e tem a polaridade negativa (-).

Cátodo é o eléctrodo positivo, é o eléctrodo onde ocorre a redução, ocorre ganho de electrões e tem a polaridade positiva (+).

Page 24: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 24

Invenção da Bateria: A Célula de Volta ou célula Galvânica Simples Invenção da Bateria: A Célula de Volta ou célula Galvânica Simples

His

tória

A solução com os dois eléctrodos constitui então um gerador. Os dois eléctrodos são chamados pólos, ou terminais do gerador. Chama-se pólo negativo àquele por onde a corrente sai, e pólo positivo àquele por onde a corrente entra. Então, na pilha de Volta, o cobre é o pólo positivo, e o zinco, o negativo

A célula de Volta ou galvânica consoante se reporte Alessandro Volta ou a Luigi Galvani, é constituída por uma solução de ácido sulfúrico em água, na qual é mergulhado um eléctrodo de cobre e um de zinco. Se ligarmos o cobre ao zinco por um condutor c, passará corrente eléctrica nesse condutor, dirigida do Zinco para o Cobre, o que indica que há uma diferença de potencial entre eles.

Zinco Cobre

C

CuSO4

Zn SO4

Page 25: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 25

Invenção da Bateria: Célula voltaica/Célula Galvânica Simples Invenção da Bateria: Célula voltaica/Célula Galvânica Simples

His

tória

A massa de substancia depositada é directamente proporcional à corrente passada. A reacção termina quando o eléctrodo de Zinco se desintegrar completamente.

No lado do Cobre, os 2 electrões recebidos permite-lhe converter um ião da solução aquosa, num átomo neutro que se deposita no eléctrodo de cobre aumentando a sua massa

Á medida que um átomo de zinco cede electrões, ele transforma-se num ião positivo e vai para a solução aquosa, diminuindo a massa do eléctrodo de zinco .

Page 26: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 26

His

tória

Invenção das baterias: A Célula da Gravidade ou de Crowfoot Invenção das baterias: A Célula da Gravidade ou de Crowfoot

No século 19, antes da invenção do gerador eléctrico (o gerador não foi inventado e aperfeiçoado até 1870), estas células eram conhecidas por “células de gravidade” porque a gravidade mantém os dois sulfatos separados, e “Células de Crowfoot” devido ao formato do eléctrodo de zinco. O funcionamento era idêntico ao das células voltaicas…

Também lhe chamavam “células molhadas” (Wet Cells) em contraponto às pilhas secas modernas.

Eram extremamente comuns para o funcionamento dos telégrafos e das campainhas das portas.

Vaso de Vidro

Eléctrodo de Zinco

Eléctrodo de Cobre

Sulfato de Zinco

Sulfato de Cobre

Page 27: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 27

His

tória

Invenção das baterias: Pilha de Daniell Invenção das baterias: Pilha de Daniell

John Frederick Daniell Em 1836, a partir da célula de gravidade, construiu uma pilha com eletrodos de cobre e zinco, mas cada eletrodo ficava num recipiente individual, o que aumentava a eficiência da pilha, pois ela tinha um vaso poroso que servia de ponte entre os dois recipientes, (deixava passar somente iões) chamado de Ponte salina. Esta pilha ficou conhecida como Pilha de Daniell.

Ânodo é o eléctrodo negativo. É o eléctrodo onde ocorre “oxidação”, ocorre perda de electrões.

Cátodo é o eléctrodo positivo, é o eléctrodo onde ocorre a “redução”, ocorre ganho de electrões.

Page 28: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 28

His

tória

Bateria de DanielL: PrincípiosBateria de DanielL: Princípios

Bateria Daniell.swf

Page 29: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 29

His

tória

Pilha de Daniell : Funcionamento Pilha de Daniell : Funcionamento

SO42- SO4

2-

Zn2+ Cu2+

Ponte Salina

e eÂNODO CÁTODO

Os iões de Cu2+ depositam-se no cátodo em forma metálica e, portanto, se tornam neutros. Isso rompe o equilíbrio iónico da solução, fazendo os iões Zn2+ atravessar o vaso poroso (ponte salina) e, portanto, dar continuidade eléctrica à célula.

Com o funcionamento, a concentração do electrólito do zinco aumenta e a do cobre diminui, reduzindo a tensão. A polarização se dá pelo depósito dos iões Zn2+ no cobre.

Page 30: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 30

His

tória

Pilha de Daniell: FuncionamentoPilha de Daniell: Funcionamento

Ponte Salina

Ponte Salina - Finalidade: Permitir o escoamento de iões dum recipiente para o outro, de modo que cada solução permaneça sempre eletricamente neutra. Solução de água e sal (K CL neste caso).

SO42- SO4

2-

Desgaste da placa (corrosão).Oxidação do metal ( Zn/Zn2+).

ÂNODO

Pólo negativo ( - ).Concentra a solução

pela oxidação do metal a ião.CÁTODO

Redução do ião (Cu2+/Cu). Pólo positivo ( + ).

Aumento de massa da placa.

Diluição da solução pela redução do ião da solução.

Page 31: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 31

His

tória

Pilha de Daniel l: Reacções das PilhasPilha de Daniel l: Reacções das Pilhas

Semi-reacção de oxidação (perda de e-)

Semi-reacção de redução (ganho de e-)

Zn + Cu2+ Zn2+ + CuREACÇÃO GLOBAL DA PILHA

Sentido dos e-

Page 32: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 32

His

tória

Pilha de Daniel l: Célula Galvânica – Reacções Pilha de Daniel l: Célula Galvânica – Reacções

Galvan5.swf

Page 33: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 33

His

tória Znº → Zn+2 + 2e– ------------- Eº = 0,76V

Cu+2 + 2 e– → Cuº-------------Eº = 0,34V Znº + Cu+2 → Zn+2 + Cuº ΔEº = 1,10V

daniel_simula.swf

Simulador da Pilha de DaniellSimulador da Pilha de Daniell

Page 34: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 34

His

tória

Gaston Planté : Bateria de ChumboGaston Planté : Bateria de Chumbo

Gaston Planté ( 1834-1869): Orthez, França. As suas primeiras experiências no domínio da electricidade, levaram-

no, em 1859, à construção de uma bateria para acumular energia eléctrica.

Este seu primeiro modelo de acumulador, chamado de Planté, era constituído basicamente por duas lâminas de chumbo, separadas por tiras de borracha e enroladas como um cilindro que se emergia numa solução aquosa ácida a 10% de ácido sulfúrico.

Borracha Borracha

Folhas de Chumbo

H2SO4 + H2O

No ano seguinte Planté apresentou à Academia Real das Ciências uma bateria com nove elementos iguais ao do seu primeiro modelo numa caixa de vidro e com terminais ligados em paralelo (2,1Volts). Embora hoje se usem seis elementos em série que perfaz 12,6V, usadas como baterias de arranque nos automóveis de hoje.

Page 35: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 35

His

tória

Gaston Planté : Bateria de ChumboGaston Planté : Bateria de Chumbo

A capacidade inicial era muito limitada dado que a placa do positivo tinha pouco material activo disponível para a reacção, a força electromotriz deste acumulador, também chamado de chumbo ou ácido, era de 2,1 V.

Este modelo foi sofrendo sucessivamente melhorias ao longo dos tempos, tantos nos materiais, como nos processos da fabricação, destacando-se a figura de Camille Alphonse Faure que, em 1881, tornava o modelo de Planté mais eficiente e aplicou-o desde logo à tracção eléctrica.

Embora rudimentar, o primeiro modelo de acumulador tornou Gaston Planté reconhecidamente como o inventor da bateria recarregável, a bateria de Chumbo/ácida tal como hoje a conhecemos nos veículos motorizados.

Posteriormente, a evolução deste modelo, tornou-o num grande sucesso comercial na recém indústria de automóveis eléctricos.

Page 36: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 36

Bateria de ChumboBateria de Chumbo

É a bateria típica de 12-V usada nos automóveis . A bateria de chumbo-ácido tem seis células ligadas em série, cada uma das quais fornece cerca de 2 V. Cada célula contém duas grades de chumbo compactado com o material do eléctrodo: o ânodo é esponjoso e composto por amalgama de Pb (Chumbo) em pó , e o cátodo é composto por amalgama de pó de PbO2 (dióxido de chumbo. As grades estão imersas em uma solução electrolítica de água e ácido sulfúrico H2O +H2SO4. Folhas de fibra de vidro entre as grades evitam curto-circuito por contacto físico espontâneo. Quando descarrega as células, gera energia eléctrica como uma célula voltaica.

Bate

rias

de C

hum

bo

Page 37: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 37

Bateria de Chumbo Bateria de ChumboVantagens: Fornece um grande impulso de corrente ao motor de arranque do motor, tem

durabilidade, confiável; eficaz em baixas temperaturas. .

2. Segurança perigo: as baterias mais velhas têm uma tampa em cada célula para monitorar densidade do electrólito e repor a água perdida durante a descarga. Durante a recarga, um pouco de água pode electrolisar em H2 e O2 e, se houver ignição, os gases podem explodir e espalhar H2SO4. As baterias modernas usam uma liga de chumbo que inibe a electrólise e reduz a perda de água, são a baterias seladas.

Desvantagens: 1. Perda de capacidade: PbSO4, que é necessário na fase de recarga, para recompor as grades da

bateria durante a carga da bateria. Tensão mecânica e normal funcionamento pode desalojar PbSO4 e reduzir a capacidade da bateria. Se PbSO4 uma quantidade suficiente é perdida, a célula não pode ser recarregada.

Pb(s) + 2SO4-(aq) --> PbSO4(s) + 2e-

PbO2(s) + 4H(aq) + 2SO4-(aq) 2e- --> PbSO4(s) + 2H2O(l)

Bate

rias

de C

hum

bo

Page 38: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 38

Bate

rias

de C

hum

bo

Bateria de Chumbo: EstruturaBateria de Chumbo: Estrutura Tampa com válvula de segurança de pressão e desgasificação centralizada

Caixa e Tampa robustas

Placas Positivas

Placas Negativas

Bloco de Placas

Placa Negativa

Grelha Negativa

Placa Positiva

GrelhaPositiva

Page 39: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 39

Bate

rias

de C

hum

bo

Bateria de Chumbo: GrelhasBateria de Chumbo: Grelhas

1- Grades de Chumbo-Antimónio ou Chumbo-Cálcio.2A - Material de enchimento - Teróxido de Chumbo.2B – Material de enchimento – Chumbo esponjoso.3 – Fibra de vidro.

Nota: A solução de ácido sulfúrico diluído deve submergir ambas as placas totalmente. Notar que a fibra de vidro, ao meio , deve estar entre ambas as placas. As cores verde e púrpura são os separadores inter-células, ás quais as placas estão ligadas.

Page 40: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 4040

Bate

rias

de C

hum

bo

Bateria de Chumbo: Funcionamento - CargaBateria de Chumbo: Funcionamento - Carga

Placa Negativa = ÂnodoPbSO4 → Pb

Pb + H2SO4

H2SO4

PbSO4++[2e-] 2H+ 2H2O

H2SO4

2H2O + PbSO4

H2SO4 + + +PbO2 [2e-] 2H+

Placa Positiva = CátodoPbSO4 → PbO2

Sulfato de Chumbo →Dióxido de Chumbo

I

Sulfato de Chumbo → Chumbo

Electrólito: Ácido Sulfúrico(Água) H2O → H2SO4

Page 41: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 41

Bate

rias

de C

hum

bo

Bateria de Chumbo: Funcionamento - CargaBateria de Chumbo: Funcionamento - Carga

Durante a carga eléctrica : a corrente eléctrica fluindo ao contrário faz a sulfatação libertar o seu sulfato para a solução electrolítica. O processo faz a placa e a solução voltarem à sua composição original.

Pode se ver bolhas que são formadas de oxigénio e hidrogénio. Estes gases são expelidos pelo válvula/Vent. A água é formada pela combinação dos gases oxigénio (O2) e hidrogénio(H) = (H2O), razão pela qual só se deve completar o nível somente com água destilada.

A carga reverte o processo destrutivo da bateria que acontece quando ela descarrega. As placas e o electrólito que tinham sido transformados em sulfato e em água são restaurados em sua composição original. Se a bateria está muito ruim pode ser que ela não aceite a carga…

Page 42: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 4242

Bate

rias

de C

hum

bo

Bateria de Chumbo: Funcionamento - DescargaBateria de Chumbo: Funcionamento - Descarga

E0 = -0.356V

Placa Negativa = ÂnodoPb → PbSO4

Pb + H2SO4

H2SO4

PbSO4++[2e-] 2H+ 2H2O

H2SO4

2H2O + PbSO4

H2SO4 + + +PbO2 [2e-]2H+

E0 = +1.685V

Placa Positiva = CátodoPbO2 → PbSO4

Dióxido de Chumbo → Sulfato de Chumbo

I

Chumbo → Sulfato de Chumbo

ΔEº = Pot. de oxid. do Redutor – Pot. de oxid. do oxidante =+1.685-(-0.356)=2.041 VA Tensão duma Bateria:

Electrólito: Ácido SulfúricoH2SO4 → H2O (Água)

Page 43: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 43

• Reacção Química (descarga) Eléctrodo Negativo

Electrólito

Eléctrodo Positivo

• Geral:

Pb Pb2+ + 2e-

+ SO42- PbSO4

2H2SO4 4H+ + 2SO42-

Pb2+ + 2H2O

PbSO4

2PbSO4 + 2H2O

Baterias de chumbo… Reacções.

A voltagem nominal de cada célula é de cerca de 2.1. As células são, normalmente ligadas em série para obter voltagens mais altas , i.e. 6V, 12 V, 24 V e 48V.

Pb2+

PbO2 + 4H+ +

Pb2+ + SO42-

2e-

Pb + PbO2 + H2SO42-

Bate

rias

de C

hum

bo

Page 44: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 44

Á medida que a bateria descarrega , a concentração de ácido sulfúrico diminui.

Ao mesmo tempo, sulfato de chumbo é depositado nas placas dos eléctrodos.

Durante a carga segue-se o processo inverso, mas uma pequena parte do sulfato de chumbo fica agarrado as placas dos eléctrodos.

Em cada ciclo de carga/descarga, mais algum sulfato de chumbo é depositado nas placas dos eléctrodos, reduzindo a área de reacção, afectando negativamente a performance da bateria.

A sulfatação dos eléctrodos é um dos principais efeitos que afectam a vida útil das baterias.

Para evitar um processo acelerado de sulfatação, as baterias precisam de ser carregadas a 100% a seguir a cada ciclo de descarga, e devem ser mantidas carregada a uma voltagem flutuante maior que a voltagem nominal.

Para as baterias chumbo ácidas, e dependendo da tecnologia, a voltagem flutuante deve ser entre 2.08 V e 2.27 V/célula. Pela mesma razão , não devem descarregar a menos de 1.75 V/célula.

Baterias de chumbo…

Bate

rias

de C

hum

bo

Page 45: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 45

Bate

rias

de C

hum

bo

No processo químico há libertação de hidrogénioe e formação de Sulfatos.

Baterias de chumbo… Design.Baterias de chumbo… Design.

Pólo (+)

Ponte de

Pólos (+)Set de Placas

positivas

Pólo (-)Ponte de

Pólos (-)

Set de Placas

positivas

Outros Formatos

Reacção: Ligação Série

Page 46: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 46

Baterias de Chumbo – ManutençãoBaterias de Chumbo – Manutenção

Bate

rias

de C

hum

bo

INSTRUÇÕES DE SEGURANÇA

Não fumar, não expor a chamas, ou faíscas.

Perigo eléctrico.

O electrólito é corrosivo, no caso de quebra dos vasos/tampas.

Proteger os olhos.

Perigo.

Observar as instruções de operação.

Risco de explosão ou fogo, evitar qualquer curto-circuito. Peças metálicas sob tensão na bateria: não encostar ferramentas ou peças em cima da bateria.

Reciclar as baterias inutilizadas. Contêm chumbo.

Lavar todos os pingos de ácido nos olhos ou na pele com água limpa em abundância. Em seguida, consultar um médico. Ácido na roupa deve ser lavado com água.

Source: BCI (Battery Council International

Page 47: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 47

Bate

ria L

ecla

nché

Invenção das baterias - Bateria de Leclanché 1867 -(Wet Cell)Invenção das baterias - Bateria de Leclanché 1867 -(Wet Cell)

Georges Leclanché (1839-1882) Em 1867 inventou uma bateria primária que teria o seu nome “Leclanché”, também chamada bateria zinco/carvão, tinha uma embalagem diferente das suas antecessoras. Em vez de chumbo, ele usou zinco e uma mistura de dióxido de Manganésio (despolarizante) e carvão para os seus eléctrodos.

Ele também substituiu o ácido sulfúrico que tinha sido usado como electrólito, por uma solução de cloreto de amónio. Esta mudanças constituíram uma pilha menos tóxica e mais leve do que os modelos anteriores.

Vara de Carvão

Vara de Zinco Jarro de Vidro

Pote Poroso

MnO2+C (pó)Solução(NH4)Cl +H2O

Page 48: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 48

Invenção das baterias - Pilha de Leclanché: 1867 (Wet Cell)Invenção das baterias - Pilha de Leclanché: 1867 (Wet Cell)

Fechando o circuito, o zinco é atacado pelo cloreto de amónio, formando-se cloreto de zinco, amoníaco e hidrogénio. Em virtude desta reacção o zinco electriza-se negativamente e o líquido positivamente.

O cloreto de zinco e o amoníaco que se formam dissolvem-se no líquido; o hidrogénio atravessa o vaso poroso, sendo oxidado pelo dióxido de manganésio. Esta reacção do despolarizante sólido é muito lenta, sendo a formação do gás mais rápida que a sua oxidação. O hidrogénio não oxidado vai acumular-se e produzir uma lenta polarização parcial durante o funcionamento da pilha.

Semi-Reacções

Electrodo (signo) Proceso químico Semirreacción Potencial (V)

Ânodo (eléctrodo negativo) Oxidação do Zn Zn(s) → Zn2+(aq) + 2 e- Eº=-0,76 V

Cátodo (electrodo positivo) Redução do MnO2+2 MnO2(s) + H2O + 2 e- →

Mn2O3(s) + 2 OH-Eº=+0,95 V

Reacção no electrólito Hidrólises dos iões de amónio2 [[hidróxido|OH- + 2 NH4Cl(s)

→ 2H2O + 2 NH3 (aq) + 2 Cl-(aq)Ba

teria

Lec

lanc

Page 49: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 49

Invenção das baterias - Bateria de Leclanché 1867 -(Wet Cell)Invenção das baterias - Bateria de Leclanché 1867 -(Wet Cell)

Vara de Carvão

Vara de Zinco

Jarro de Vidro

Pote Poroso

Pó dióxido de Manganésio e granulado de Carbono

MnO2pó+C (Gr)

Solução AquosaCloreto de Amónio

(NH4)Cl +H2O

Bate

ria L

ecla

nché

Page 50: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 50

Invenção das baterias - Pilha de Leclanché: 1867 (Wet Cell)Invenção das baterias - Pilha de Leclanché: 1867 (Wet Cell)

A bateria de Leclanché foi usada extensivamente para telegrafia, sinalização e campainhas de portas, e para a maioria dos trabalhos onde a corrente fosse intermitente não fosse necessária muita atenção com a bateria.

A Bateria primária de Leclanché era muito popular , pois necessitava de pouca manutenção e sempre poderia ser reabastecida , quando esgotada. A substituição da vara de Zinco, do electrólito e mais raramente do despolarizante Dióxido de Manganésio eram possíveis!....

Um Holofote alimentado a baterias Leclanché..

Bate

ria L

ecla

nché

Page 51: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 51

Estrutura de uma pilha Zinco/Dióxido de Manganésio (Leclanché)Estrutura de uma pilha Zinco/Dióxido de Manganésio (Leclanché)

Pilh

a Le

clan

ché

Pólo PositivoInventada pelo químico francês George

Leclanché em 1867, e melhorada em 1887 por Carl Gassner, é a mais comum das baterias primárias (nonrecarregável). A pilha de zinco/dióxido de manganésio usada hoje é muito parecida com a versão original.

O electrólito é uma pasta formada pela mistura de cloreto de amónio e cloreto de zinco. O ânodo é de zinco metálico, usado, geralmente, na forma de chapa para confecção da caixa externa da pilha.

O cátodo é um bastão de grafite, geralmente cilíndrico, rodeado por uma mistura em pó de dióxido de manganésio e grafite.

O processo de descarga básico consiste na oxidação do zinco no ânodo, juntamente com a redução do Mn no cátodo:

Zn(s) + 2NH4Cl(aq) + 2OH–(aq) →Zn(NH3)2Cl2(s) + 2H2O(l) + 2e– (1)

2MnO2(s) + 2H2O(l) + 2e– →2MnOOH(s) + 2OH–(aq) (2)Zn(s) + 2MnO2(s) + 2NH4Cl(aq) →Zn(NH3)2Cl2(s) + 2MnOOH(s) (3)

Grafite (Cátodo)

Pólo Negativo (Cobertura Inferior em aço)

Lacre de Cera

Separador

Ar (Camada de Areia)

Cobertura Exterior (Polietileno)

Separação

Porosa(Papel)

Zinco

MnO2

+

Carbono

ElectrólitoNH4Cl

ZnCl2

(Cobertura Superior em aço)

Page 52: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 52

Invenção das baterias – Carl Gassner : 1887 (dry Cell)Invenção das baterias – Carl Gassner : 1887 (dry Cell)

A primeira pilha seca desenvolvida pelo engenheiro alemão Carl Gassner, era uma variante da pilha de Leclanché, e consistia de uma saída de zinco contida num recipiente, sendo o negativo da bateria. O eléctrodo positivo, era uma vara de carbono, imersa em dióxido de manganésio e um mistura negra de carbono, que ficava separada por um envoltório de saco de papel  encharcado com cloreto de amónio que actuava como electrólito. Durante o funcionamento da pilha, o zinco era consumido gradualmente pela reacção química.

A pilha do zinco-carbono: a primeira pilha seca

Ao contrário das pilhas molhadas (Wet Cell) precedentes, a pilha seca de Gassner era mais contínua, não requeria a manutenção, não derramava e podia-a ser usada em qualquer posição. Fornecia um potencial de 1.5 volts.

Era a primeira pilha conveniente para dispositivos eléctricos portáteis e começou a ser produzida em massa…. A lanterna eléctrica foi inventada no mesmo ano.

Ficaria conhecida como ainda hoje é , pela pilha de zinco-carbono ou pilha de carvão que ainda hoje e fabricada.Pi

lha

Sec

a –

“Dry

Cel

l”

Page 53: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 53

Invenção das baterias – Carl Gassner : 1887 (dry Cell)Invenção das baterias – Carl Gassner : 1887 (dry Cell)

Terminal Positivo (+)

Vara de Carvão (+)Cátodo

Ânodo de Zinco (-)

Terminal Negativo(-)

Mistura de Dióxido ManganésioMnO2+ (NH4Cl/ZnCl2)

Inventada na década de 1860, a célula comum seca, ou célula Leclanché ©, tornou-se um item doméstico. Uma lata de Zinco (ânodo) abriga uma mistura de MnO2 e Carbono e uma pasta de electrólito, consistindo de NH4Cl, ZnCl2, H2O, e amido. Grafite em pó melhora a condutividade. O cátodo é um bastão de grafite inactiva. Seus usos incluem rádios portáteis, brinquedos e lanternas. As vantagens são: baratas, seguras, disponíveis em vários tamanhos. As desvantagens são que a fuga de corrente elevada, NH3 (g) se acumula, provocando queda de tensão. Curta vida de prateleira, porque ânodo de zinco reage com iões ácidos NH4 .

Zn(s) --> 2Zn+(aq) + 2e-2MnO2(s)

2MnO2(s) + 2NH4+ (aq) + 2e --> Mn2O3(s) + 2NH3(aq) + H2O(l)Pilh

a S

eca

– “D

ry C

ell”

Page 54: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 54

Invenção das baterias – Carl Gassner : 1887 (dry Cell)Invenção das baterias – Carl Gassner : 1887 (dry Cell)

A pilha do zinco-carbono: a primeira pilha seca ZincoPapel Exterior

Cloreto de Amónio

Papel isolante

MnO2 + C (pó)

Grafite

Câmara de Expansão

Vent.

Lacre Asfalto

Gassner publicou a patente simultaneamente nos EUA e na Alemanha!....Pilh

a S

eca

– “D

ry C

ell”

Page 55: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 55

Invenção das baterias – Carl Gassner : 1887 (dry Cell)Invenção das baterias – Carl Gassner : 1887 (dry Cell)

Terminal Metálico Terminal positivo (+)

Isolamento de Plástico

Ponteiro de grafite Carbono - Eléctrodo (+)

Pasta Química

PapelEmbebido em solução de cloreto de

Amónio

Embalagem exterior Metálica

Base Metálica

(Terminal Negativo (-)

Contentor de Papel

Contentor de ZincoEléctrodo Negativo

Pilh

a S

eca

– “D

ry C

ell”

Page 56: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 56

Invenção das baterias – Carl Gassner : 1887 (dry Cell)Invenção das baterias – Carl Gassner : 1887 (dry Cell)

dry_cell.swf

Pilh

a S

eca

– “D

ry C

ell”

Page 57: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 57

Bate

ria d

e N

íque

l-Cád

mio

Invenção das baterias – Waldemar Jungner : 1899 (Bateria NiCad ventilada)Invenção das baterias – Waldemar Jungner : 1899 (Bateria NiCad ventilada)

Inventor sueco Waldemar Jungner (1869-1924) inventou a bateria de níquel-cádmio em 1899. Jungner experimentou vários materiais incluso a bateria prata-níquel. Registou várias patentes na Suécia e na Alemanha sobre bateria de ferro-níquel que trabalhavam com temperatura extremamente baixas e entrou em conflito com Thomas Edison acerca da bateria ferro-níquel.

Entretanto percebeu que a vantagem da tecnologia níquel cádmio era o custo, contra a menor eficiência na carga e formação mais acentuada de hidrogénio (desgasificação), a tecnologia de ferro-níquel, mas esta não foi totalmente abandonada.

Devido ao diferendo com Tomas Edison as baterias de Níquel-Cádmio só foram introduzidas nos Estados Unidos em 1946, altura em que foram melhoradas pelo Francês Neumann..

Em 1928, quando Humberto Nobile e os seus camaradas tomaram parte numa expedição ao pólo Norte, a única bateria que conseguia que o rádio do avião funcionasse era a bateria de Ferro-Niquel de Waldemar Jungner, foram também usadas nas bombas alemãs V1 e V2 durante a Segunda Guerra Mundial…

Page 58: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 58

Bate

ria N

íque

l-Cád

mio

Bateria Níquel-Cádmio (Vent): ComposiçãoBateria Níquel-Cádmio (Vent): Composição

Há duas variedades de Pilhas/baterias secundárias da tecnologia de Níquel-Cádmio: As “Ventiladas” e a “Seladas”. As que derivam directamente da bateria de Waldemar Jungner são as ventiladas, as “seladas foram as resultantes da melhoria introduzida pelo Francês Neumann , e que veremos mais tarde.

É constituída por uma caixa de metal que contém as células ligadas em série, para a voltagem necessária , (1,2V por célula).

As Células são feitas de material leve e resistente de (polyamide ou nylon), com múltiplas placas ligadas em conjunto para cada eléctrodo.

Um separador feito de borracha silicone actua como um isolador e uma barreira de gás, entre eléctrodos.

As Células estão mergulhadas num electrólito alcalino de uma solução aquosa a 30% Hidróxido de Potássio(KOH).

A gravidade especifica do electrólito não indica o estado de carregamento da bateria mas somente níveis de água resultantes da actuação da válvula de pressão.

A parte superior da célula contém um espaço para excesso de electrólito e libertação da pressão de ventilação através da válvula. Grandes barras de cobre banhado a níquel e grosso elos de ligação asseguram a resistência eléctrica mínima para a bateria.

Page 59: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 59

Bate

ria N

íque

l-Cád

mio

Bateria Níquel-Cádmio (Vent): ComposiçãoBateria Níquel-Cádmio (Vent): ComposiçãoA exaustão de gases através da válvula de pressão, indica que deve de haver um excesso

de agua nas células, o que também significa perda de água cujo nível deve ser verificado periodicamente dependendo dos ciclos de carga e descarga sendo portanto a manutenção variável entre alguns meses ou até um ano.

Embora sem grande perigo, pode libertar algum oxigénio/hidrogénio pelo que, em grandes quantidades não devem estar em ambientes fechados.

Vantagens da Bateria Níquel-Cádmio (Vent.)Vantagens da Bateria Níquel-Cádmio (Vent.)É recarregável, similar à célula de chumbo-ácida. Comparada com esta última, tem

vantagens como vida útil maior e maior tempo de conservação sem uso Mas o custo é também superior, mas tem efeitos de memórias se as cargas/descargas não forem a 100%.

Baixa resistência interna (menos de metade até das células de NiMH equivalentes).Altos níveis de Carga/Descarga. (Ciclos profundos).Grande Gama de temperaturas de funcionamento (-20º a +70º C).Admite longos períodos de armazenamento sem detiorização.O processo de Carga é altamente endotérmico, a bateria arrefece quando carrega, o

que possibilita cargas muito rápidas já que o aquecimento produzido na carga pelo I2R e a reacção endotérmica se contrariam um ao outro.

Cargas típicas de 2 horas ,mas podem ser aceleradas para 10 a 15 minutos.

Page 60: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 60

Bate

ria N

íque

l-Cád

mio

Bateria Níquel-Cádmio (Vent) Actual: ElementosBateria Níquel-Cádmio (Vent) Actual: Elementos

Terminais

Válvula “Vent.”

Caixa Metálica

Placas(*) Negativas(Hidróxido de Cádmio)

Cd(OH)2

Placas(*) Positivas(hidróxido de níquel

(Ni(OH)2)

Separadores(Silicone)

Electrólito AlcalinoSol. Aq 30% Hidróxido de Potássio

(KOH).

(*) Placas feitas de Polyamide ou Nylon

2NiOOH + 2H2O + Cd ↔ 2Ni(OH)2 + Cd(OH)2 (±1,30 V)Reacção global:

Mais AntigaMais Moderna

Page 61: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 61

Pilh

a La

land

e

Invenção das baterias – Thomas Edison :1883( pilha Edison-Lalande )Invenção das baterias – Thomas Edison :1883( pilha Edison-Lalande )

Esta é a primeira bateria primária Comercial (nonrecarregável) de Tomas Edison, tendo a patente do cientista francês Felix Lalande que utilizou os ingredientes pela primeira vez , em 1883, numa bateria de Óxido de Cobre, Zinco e Soda Caustica (hidróxido de sódio).

Este tipo de bateria não necessitava de nenhuma fonte de electricidade externa para ser recarregada. Bastava a substituição de algumas partes internas , para restaurar a carga a 100%

A pilha Lalande, é uma das mais eficientes e satisfatórias pilhas primária fabricadas até hoje, pela diversidade de aplicações em que foi usada.

Tinha uma construção robusta; era relativamente barata de fabricar e fácil de operar; muito fiável e alta capacidade de corrente (1A/8cc de electrólito). Foi fabricada com altas capacidades tais como 500/1000Ah. Teve muitos usos, mas foi especialmente usada para sinais automáticos nas linhas dos caminhos de ferro.

O seu interesse por baterias vinha do tempo em que era operador de telegrafo nos caminhos de ferro, nesta década que era alimentados por este tipo de bateria.

Page 62: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 62

Invenção das baterias – Thomas Edison :1883( pilha Edison-Lalande )Invenção das baterias – Thomas Edison :1883( pilha Edison-Lalande )

Pode ser fabricada de forma seca ou anti-derramamento, gelatinando a solução de Soda Caustica, com um pouco de amido, ou usando expedientes como o Óxido de Magnésio…

Jarro de Porcelana

Tampa de Porcelana

Solução de Soda Caustica(NaOH)

Placa Compressa (Oxido de Cobre - CuO)

Placas de Amalgama (Zinco - Zn)

Pilh

a La

land

e

Page 63: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 63

Bate

rias:

Lal

ande

Invenção das baterias – Thomas Edison :1883( pilha Edison-Lalande )Invenção das baterias – Thomas Edison :1883( pilha Edison-Lalande )

Page 64: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 64

Invenção das baterias – Thomas Edison :1900( Bateria alcalina de Edison ) NiFeInvenção das baterias – Thomas Edison :1900( Bateria alcalina de Edison ) NiFe

Em 1900, havia um total de 2.370 automóveis em Nova Iorque, Chicago, e Boston. 1.170 a vapor, 800 eléctricos e 400 a gasolina.

Cada espécie tinha os seus problemas: os a vapor precisavam de aquecer, eram complicados, e precisavam de reabastecer de água frequentemente, os eléctricos, silenciosos e limpos tinham o problema da autonomia e o peso e carregamento das baterias, os a gasolina eram muito poluentes, barulhentos, e com as manivelas de por a funcionar era fácil partir-se um pulso.

Thomas Edison, era a favor dos automóveis eléctricos, mas as baterias de chumbo ácidas usadas eram pouco eficientes, propensas a vazar, manchar ou corroer as peças ao redor e emitiam gases nocivos. Os vapores ácidos eram não só desagradáveis mas potencialmente explosivos, e outras características perigosas para os ocupantes do carro. As baterias eram pesadas, cerca de 100 quilos por cv/ hora. Devido ao peso, os carros eléctricos tinham grande dificuldade para subir morros. Variações de temperatura afectava o desempenho da bateria. Uma Carga dava para 20-60 km, dependendo da marca da bateria, o tipo de automóvel, e da forma e do caminho que era utilizado…

Edison comprometeu-se a inventar, desenvolver e comercializar um tipo totalmente novo de bateria. Partindo do zero, ele foi capaz de começar a fabricar a nova bateria em quatro anos. bateria de Edison foi baseada em uma combinação inteiramente nova de elementos, o níquel-alcalino, com um electrólito não-corrosivo, hidróxido de potássio (modelo semelhante ao que Inventor sueco Waldemar Jungner tinha apresentado 3 anos antes, chegando a haver problemas de patentes…)Bate

ria d

e Ed

ison

Page 65: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 65

Invenção das baterias – Thomas Edison: 1903 (Bateria alcalina de Edison ) NiFeInvenção das baterias – Thomas Edison: 1903 (Bateria alcalina de Edison ) NiFe

Não corrosiva, o seu conteúdo fechado com segurança em embalagem de aço niquelado, Edison espera que esta bateria resolvesse os problemas do carro eléctrico. As células eram muito mais leves, apenas 22Kg/CV/Hora, 233% melhor que as baterias de chumbo usadas até então…Os fabricantes e os proprietários de veículos eléctricos começaram a comprá-las em massa…

3 anos depois em 1903, Edison anunciou que o seu trabalho estava feito. Com fanfarronice substancial, Edison anunciou a nova bateria e fez reivindicações audaciosas sobre suas capacidades. O produto final contendo hidróxido de potássio como electrólito, junto com eléctrodos de ferro e níquel, que Edison garantia fiável, bem como recarregável, uma consideração importante para uma bateria de automóvel , e aumentou a autonomia entre cargas para 150 Kms.

Bate

ria d

e Ed

ison

Page 66: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 66

Bate

ria d

e Ed

ison

Thomas Edison: 1903 (Bateria alcalina de Edison ) NiFeThomas Edison: 1903 (Bateria alcalina de Edison ) NiFe

A nova bateria foi colocada à venda em 1904, mas as reclamações começaram logo a chegar; Os recipientes da bateria deixavam vazar, as células eram de desempenho irregular, contactos eléctricos falhavam, e as baterias rapidamente perdiam cerca de 30% da capacidade de energia. Edison mandou retirar as baterias do mercado, absorveu a perda financeira, e partiu, mais determinado do que nunca, para corrigir os problemas.

No entanto, a tensão produzida pela bateria alcalina de níquel era inferior; de 1,2 volts em vez de 1,5 volts para a bateria de chumbo-ácida. Logo, mais células seriam necessárias para fazer o mesmo trabalho…..

Edison fechou a fábrica durante os próximos três anos, tendo completamente redesenhado a bateria, usando materiais mais caros. O novo produto teve maior desempenho, maior qualidade e maior capacidade. Em 1910, a bateria começou a produção em massa numa fábrica em Nova Jersey, mas rapidamente se tornou uma vítima da mudança dos tempos.

Infelizmente, a introdução da bateria melhorada chegou um pouco tarde. Naquela época, o carro eléctrico não podia mais competir com a velocidade, potência, economia e gama de motores de combustão interna. Em 1910, o público em geral a preferia a pulverização catódica, nuvem de fumaça e potência bruta do motor a gasolina para o funcionamento silencioso do motor eléctrico. O rugido de um motor tornou-se um sinal de poder, prestígio e progresso. O eléctrico, suave, era associado a pessoas idosas, médicos, enfermeiras…

Page 67: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 67

Bate

ria d

e Ed

ison

Thomas Edison: 1903 (Bateria alcalina de Edison ) NiFe-EstruturaThomas Edison: 1903 (Bateria alcalina de Edison ) NiFe-Estrutura

Pólo Negativo

Pólo PositivoVálvula

Isolamento (Lateral)

Grade PositivaVeio de Ligação

Tubo Positivo(Hidrato de Nikel+Camadas em Ni)

Separador de Grade

Ponto de Suspensão

Embalagem(Em aço)

Isolamento (Barra Lateral)

Grade Negativa

Bolsa Negativa(Óxido de Ferro)

Page 68: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 68

Bate

ria d

e Ed

ison

Thomas Edison: 1903 (Bateria alcalina de Edison ) NiFe - FuncionamentoThomas Edison: 1903 (Bateria alcalina de Edison ) NiFe - Funcionamento

Nesta equação, a concentração de hidróxido de potássio (8KOH) é o mesmo se a bateria está carregada ou descarregada.

As placas positivas consistem em tubos de aço perfuradas contendo hidrato de níquel, e as placas negativas são chapas de aço perfuradas com bolsos contendo óxido de ferro. O electrólito é uma solução aquosa de potássio e hidróxido de lítio aumenta a performance da célula.

3Fe+8KOH+4H2O+6NiO2 Fe3O4+8KOH+4H2O+2Ni3O4

CargaDescarga

O método mais conveniente de determinar o estado da carga a qualquer momento é através de um medidor de ampere-hora…

As baterias de Edison foram fabricadas desde 1903 até 1972 pela “Edison Battery Storage Company” localizada em East Orange, NJ. EUA.

As Baterias de células de Níquel-ferro foram fabricadas com capacidades de 5 Ah a 1250. Actualmente só são fabricadas na China, Rússia e nos EUA pela “Zapp Batteries” de Montana.

As Baterias de níquel-ferro não têm o chumbo ou cádmio como as baterias de chumbo e das baterias de níquel-cádmio, o que faz delas uma bateria ecológica.

2 NiOOH + 2 H2O + 2 e− ↔ 2 Ni(OH)2 2 OH+ Fe + 2 OH− ↔ Fe(OH)2 + 2 e−

A equação química de carga e descarga é a seguinte:8KOH 8KOH

Page 69: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 69

Bate

ria d

e Ed

ison

Bateria alcalina de Edison - NiFe : CarregamentoBateria alcalina de Edison - NiFe : Carregamento

Page 70: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 70

Bate

ria d

e Ed

ison

Edison: 1903 (Bateria alcalina de Edison ) NiFeEdison: 1903 (Bateria alcalina de Edison ) NiFe

Em 1909 Henry Ford introduziu o modelo de carro barato “Ford T”, que fez com que o motor de combustão interna se tornasse a norma automóvel. A saída para as baterias são os veículos movidos a energia eléctrica usada em áreas urbanas para as entregas. Mesmo neste caso, no entanto, a bateria Edison não era tão forte como muitas das outras baterias no mercado. Sua característica marcante foi a sua confiabilidade, o que a tornava útil em outras áreas, tais como iluminação mineira, comboios e submarinos.

Como o vapor, o carro eléctrico foi tornado obsoleto pelos avanços da combustão interna. Mais do que isso, o eléctrico perdeu a aderência do público, que foi a sua queda final. Poucos carros eléctricos têm sido produzidos desde 1914, mais curiosidades do que sucessos comerciais. Para carros os carros eléctricos voltarem a competir num mercado aberto, só como uma crise de petróleo prolongada como a actual, eles não só devem coincidir com os seus concorrentes em tecnologia e desempenho, mas recuperar a aderência do público, também.

Os veículos eléctricos têm de ser recarregados frequentemente, e cada carga requer tempo razoável. Diminuir o tempo de carga das baterias com altos picos de corrente, em cargas repetitivas, reduz e capacidade e o tempo de vida útil destas. Neste momento, há pelo menos três designs diferentes de tomadas de ligação não havendo uma ligação estandardizada, quer dos fabricantes de carros eléctricos quer dos fornecedores de energia eléctrica…

Page 71: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 71

Pilha Seca Alcalina Zinco/Dióxido de Manganésio Pilha Seca Alcalina Zinco/Dióxido de Manganésio

Pilh

a Se

ca A

lcal

ina

A Pilha Alcalina

A pilha alcalina é um desenvolvimento da pilha seca (Dry Cell). As reacções parciais são essencialmente as mesmas, mas o electrólito é uma pasta de hidróxido de Potássio KOH (Soda caustica). O Electrólito elimina a acumulação de gases e mantém o eléctrodo de zinco (Zn).

As suas aplicações são as mesmas que das pilhas secas, no entanto não têm queda de tensão, maior durabilidade, mais segura, várias dimensões e formas. A sua principal desvantagem é o preço, pois são mais caras que as comuns pilas secas. Tipos mais usuais: AAA, AA , C e D, todas com um potencial de 1,5 V.

Zn(s) + 2OH(aq) --> ZnO(s) + H2O(l) + 2e

MnO2(s) + 2H2O(l) + 2e --> Mn(OH)2(s) + 2OH-(aq)

Page 72: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 72

Pilha Seca Alcalina Zinco/Dióxido de Manganésio Pilha Seca Alcalina Zinco/Dióxido de Manganésio

Pilh

a Se

ca A

lcal

ina

A pilha seca alcalina foi reinventado em 1957 pelo Engenheiro Canadiano Lewis Frederick Urry quando trabalhava para a empresa americana “Eveready Battery”, hoje “Energizer”, e a sua produção iniciou-se a partir de 1960.

A pilha de zinco e carbono, usada até então, tinha pouco rendimento, e estava a prejudicar as vendas. Urry apercebe-se que a criação de uma nova pilha de raiz seria mais económico em termos de custos de investimento do que tentar melhorar a tecnologia já existente, criada por Georges Leclanché em meados do século XIX.

Depois de testar variados materiais, descobre que o dióxido de manganésio e que o zinco em estado sólido funcionavam bem com uma substância alcalina como electrólito.

O principal problema disto residia no facto de a pilha não conseguir gerar potência suficiente, pelo que Urry resolve o problema com a utilização de zinco em pó, aumentando a sua rentabilidade. Transformou também a forma uma estrutura de cilindro.

Esta invenção tinha uma durabilidade muitas vezes superior à das pilhas de zinco e carbono, e as pilhas alcalinas actuais duram cerca de 40 vezes mais do que o protótipo original.

Page 73: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 73

Pilha Seca Alcalina Zinco/Dióxido de Manganésio : ComposiçãoPilha Seca Alcalina Zinco/Dióxido de Manganésio : Composição

Pilh

a Se

ca A

lcal

ina

As pilhas alcalinas são fabricadas de formas cilíndricas estandardizadas, de modo a serem intermutáveis com as pilhas de zinco/carvão comuns. Várias células podem ser interligadas de modo a formar uma “Bateria” como é o caso da pilha de 9 Volts…

A célula cilíndrica está contida num invólucro de aço que é a ligação do cátodo ()

Page 74: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 74

Pilha Seca Alcalina Zinco/Dióxido de Manganésio : FuncionamentoPilha Seca Alcalina Zinco/Dióxido de Manganésio : Funcionamento

Pilh

a Se

ca A

lcal

ina

O cátodo é alinhado com um separador, o que impede a mistura dos materiais do ânodo e do cátodo evitando um curto-circuito da célula. O separador é feito de uma camada de celulose ou um polímero sintético. O separador deve conduzir iões e permanecer estável na solução altamente alcalina do electrólito.

O Ânodo (-), é feito de pó de Zinco, o que dá mais superfície para aumentar a corrente, disperso num gel, contendo diferentemente das pilhas Zinco/Carvão (Leclanché), o electrólito hidróxido de Potássio em vez de cloreto de Amónio/Zinco.

O cátodo (+), é composto por uma pasta prensada em anéis isolados, de Dióxido da Manganésio com pó de carvão para aumentar a condutividade.

Uma pilha primária contém uma quantidade fixa de reagentes. Quando uma pilha alcalina fica descarregada através do circuito externo ( lanterna, motor, leitor mp3, etc…) Ambos os eléctrodos sofrem alterações químicas (reacções).

No Ânodo, o Zinco oxida-se para formar óxido de zinco, libertando electrões que fluem através do circuito externo para o cátodo.

No cátodo, o dióxido de Manganésio aceita este electrões Oxihidróxido de Manganésio. Isto irá continuar até que os reagentes sejam consumidos e a pilha fique descarregada….

Page 75: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 75

Pilha Seca Alcalina Zinco/Dióxido de Manganésio : EstruturaPilha Seca Alcalina Zinco/Dióxido de Manganésio : Estrutura

Pilh

a Se

ca A

lcal

ina

Terminal Negativo(Aço prateado)

Electrólito

(Hidróxido de Potássio/Água)

Cátodo(+)(Dióxido Manganésio+carvão pó)

Separador(Não tecido)

Anilha(Metal)

Película Exterior (Plástico Metalizado)

Ânodo (-)(Zinco em Pó + KHO)

Colector de Corrente(Pino em latão)

Esporão(Metal)

Cobertura interior da Célula

(Aço)

Terminal Positivo(Aço prateado)

2MnO2 (s) + H2O (l) + 2e− →Mn2O3 (s) + 2OH− (aq)

As Reacções São:Zn (s) + 2OH− (aq) → ZnO (s) + H2O (l) + 2e−

Selagem(Nylon)

Zn + 2MnO2 —> ZnO + Mn2O3 E=1.5 V

Page 76: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 76

Pilha Seca Alcalina Zinco/Dióxido de Manganésio : CaracterísticasPilha Seca Alcalina Zinco/Dióxido de Manganésio : Características

Pilh

a Se

ca A

lcal

ina

A capacidade das pilhas alcalinas é maior do que a de uma pilha do mesmo tamanho tipo Leclanché ou de cloreto de Zinco, não vertem electrólito corrosivo, e funcionam numa gama de temperaturas mais ampla. As pilhas alcalinas têm uma capacidade superior de três a cinco vezes das pilhas comuns de zinco/Carvão (Leclanché).

A voltagem nominal de uma célula de uma pilha alcalina nova é de 1.5 V. A voltagem em vazio pode variar de 1,5 a 1.65 V, dependendo das escolhas dos ingredientes. Sob carga a voltagem pode variar de 1.1 a 1.3 V. Uma pilha descarregada tem uma tensão residual de 0,8 a 1V.

Até 1989, a típica pilha alcalina continha mais de 1% de mercúrio. Em 1990, pelo menos três grandes fabricantes de pilhas domésticas começaram a fabricar e vender pilhas alcalinas contendo menos de 0,025% de mercúrio. Em 1993, os maiores fabricantes europeus, americanos e japoneses eliminaram todo o mercúrio de suas pilhas e, assim, passaram a não prejudicar o meio ambiente e a saúde.

Page 77: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 77

Pilhas recarregáveisPilhas recarregáveis

Pilh

as R

ecar

regá

veis

Há muitos tipos diferentes de pilhas recarregáveis no mundo, desde pilhas dentro de cartões híbridos, a pilhas de células redondas, todas para os seus aparelhos quotidianos. Com os tempos a mudarem, há mais e mais procura para aparelhos portáteis e sustentabilidade. As pilhas recarregáveis ajudam a ter mais liberdade e a permanecer ligado ao mundo à sua volta.

Curiosamente, as pilhas recarregáveis existem há quase tanto tempo como as pilhas regulares. A pilha de ácido chumbo de Gaston Plante (inventada em 1869) foi a primeira pilha recarregável. Agora, vai encontrar pilhas recarregáveis, em toda a sua casa. Um dos mais comuns, e também mais antigo, tipo de pilhas recarregáveis é a bateria do carro, que ainda usa muitas das tecnologias descobertas inicialmente por Plante.

Para compreender como funcionam as pilhas recarregáveis, primeiro precisa conhecer como funcionam as pilhas básicas. As recarregáveis essencialmente funcionam da mesma forma, onde a pilha completa o circuito no aparelho e os electrões fluem da célula para o aparelho criando a corrente. No entanto, diferem no facto de quando ligadas a uma fonte de energia, a descarga pára e a energia é restaurada de volta à célula.

A fonte mais comum de energia para pilhas recarregáveis é corrente AC, através de um adaptador ou carregador de pilhas.

Page 78: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 78

Pilhas recarregáveisPilhas recarregáveis

Pilh

as R

ecar

regá

veis

TIPOS DE PILHAS RECARREGÁVEISHá três tipos principais no mercado hoje:- Iões de lítio (LiOn).- Níquel Cádmio (NiCd).- Níquel metal hidreto (NiMH)

A Pilha/Bateria de iões de lítio é a mais comum, usada em dispositivos móveis, apesar de ser a mais cara, geralmente demasiado cara para os aparelhos do quotidiano. Os outros dois tipos são as que normalmente encontramos nas pilhas redondas em formatos como AA ou AAA. O níquel cádmio é de baixo custo, mas tem sido excluído para utilização do consumidor na maior parte do mundo. O níquel metal hidreto proporciona o melhor desempenho ao melhor preço. As pilhas NiMH também não sofrem do efeito de memória, como as pilhas NiCd, mas, podem perder a sua capacidade de carga ao longo do tempo.

ELIMINAÇÃO DE PILHAS DE USO GERAL & ALCALINASA reciclagem de pilhas é obrigatória na União Europeia. A partir de 26 de Setembro de 2008 todas

as pilhas, acumuladores e conjuntos de pilhas vendidos na Europa devem ser marcados com o símbolo de separação de eliminação seja na pilha ou na embalagem, dependendo do tamanho.

Lembre-se: nunca elimine as pilhas em fogo porque elas podem explodir. Aconselhamos ainda a reciclar também a embalagem.

Page 79: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 79

Pilhas/Baterias recarregáveisPilhas/Baterias recarregáveis

Pilh

as R

ecar

regá

veis

Aplicações

Alcalina recarregável: o seu limitado ciclo de vida e baixa corrente de carga são compensadas pela longa vida útil. fazendo desta pilha ideal para dispositivos de entretenimento portáteis e lanternas eléctricas.

Chumbo-Ácido: A mais económica para aplicações de maior potência, onde o peso é de pouco interesse. Chumbo-Ácido é a escolha preferida para equipamentos de hospital. cadeira de rodas motorizadas, luz de emergência e sistemas UPS.

Níquel-Cádmio: tem a densidade de energia moderada. É usada onde a longevidade, a elevada taxa de descarga e a faixa estendida de temperatura são importantes. As aplicações principais são rádios e equipamentos biomédicos. Estas baterias contêm metais tóxicos.

Ni-MH: tem uma densidade de energia mais elevada comparada á de “Níquel-Cádmio” á custa do reduzido ciclo de vida. Não há nenhum metal tóxico. As aplicações incluem telefones móveis e computadores portáteis.

Iões de Lítio: o sistema de bateria que mais rapidamente cresce. Oferece uma alta densidade de energia e um baixo peso. Um circuito de protecção é necessário para limitar a tensão e a corrente por questões de segurança. As aplicações incluem portáteis, telemóveis, automóveis eléctricos.

Iões de Lítio com Polímero: muito similar á iões de Lítio. Este sistema permite a construção com uma geometria mais fina e um simples empacotamento á custa de um encarecimento por watt horas. As aplicações principais são telefones telemóveis, portáteis e veículos eléctricos.

Ni-Zn: Pilha/Bateria de desenvolvimento recente, compete com as de Iões de Lítio, em peso, densidade energética e seguranças, nas aplicações a veículos de tracção eléctrica.

Page 80: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 80

1947 Georg Neumann – Pilha de Níquel-Cádmio (Selada)1947 Georg Neumann – Pilha de Níquel-Cádmio (Selada)

Pilh

as N

iCd

Em 1899, Waldmar Jungner da Suécia, inventou a bateria de níquel cádmio, em 1947, o inventor Francês Georg Neumann, que também inventou os microfones de condensador, obteve sucesso ao selar completamente a pilha.

Desenvolveu com sucesso a selagem desta bateria ao usar uma técnica recombinante, na qual os gases desenvolvidos pelas reacções químicas são recombinados, em vez de serem expelidos (ventilados) para a atmosfera, evitando a perda de electrólito.

Este sistema recombinante, em conjunto com o s benefícios de baixo peso e volume, levaram á larga adopção das pilhas NiCad, para aplicações electrónicas portáteis, levando ao gradual reconhecimento da tensão DC para produtos domésticos sem fios, em especial a partir dos anos de 1960,s.

  

Embora existam há muito tempo, mais de 30 anos, as pilhas recarregáveis apenas recentemente se tornaram populares ao grande público. As aplicações iniciais eram limitadas a sistemas fechados, onde o utilizador não tinha acesso e a troca, quando necessária, era realizada apenas nas oficinas.

Este é o caso das ferramentas eléctricas portáteis (aparafusadeiras, pequenas serras, berbequins, máquinas de barbear, etc) e recentemente, com o advento das câmaras digitais, as pilhas recarregáveis saíram do esconderijo e foram para as vitrinas das lojas. Actualmente disputam espaço nas lojas dos shoppings, com direito a material promocional, displays, embalagens vistosas e tudo o mais que os produtos de tiragem devem possuir para chamar a atenção na disputa da preferência.

Page 81: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 81

1947 Georg Neumann – Pilha de Níquel-Cádmio (Selada)1947 Georg Neumann – Pilha de Níquel-Cádmio (Selada)

Pilh

as N

iCd

  

Embora populares, elas ainda são bastante desconhecidas e não é difícil encontrar situações onde são usadas de modo e com tratamento incorrecto. Elas foram feitas para durar e, com a possibilidade de muitas recargas, se tornarem bastantes económicas ao usuário. São óptimas... desde que usadas correctamente. Para serem usadas correctamente é necessário que seus pontos fracos e fortes sejam conhecidos e respeitados. Se isso for feito, elas darão em troca fiabilidade e economia.

Pilha de Níquel-Cádmio (Selada) DesignPilha de Níquel-Cádmio (Selada) Design

As baterias de níquel cádmio foram originalmente concebidas com um cátodo sólido hidróxido de níquel e um ânodo Cádmio sólido. Infelizmente, o uso de um ânodo e do cátodo sólido oferece densidades de energia muito baixa, porque somente uma fracção dos componentes do eléctrodo estão disponíveis para reagirem entre si. Com o tempo, uma “nova" célula foi aprovada, dando a Ni-Cd de uma maior densidade de energia.

Cátodo: Os desenvolvimento mais recentes na criação do cátodo é chamado de "eléctrodo de espuma",

que ele realmente é. O eléctrodo espuma é feito mecanicamente por uma pasta comprimida, ou pulverizada de hidróxido de níquel em pó, junto com outros aditivos, numa célula de espuma. Quanto maior a quantidade de material activo acomodada nos poros, melhora a densidade de energia da bateria em cerca de 15% ou 20%. Porque a espuma não é um bom condutor de electrões, os aditivos, tais como cobalto e óxido de cobalto , são incluídos com o hidróxido de níquel.

Page 82: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 82

Pilh

as N

iCd

  

Pilha de Níquel-Cádmio (Selada) DesignPilha de Níquel-Cádmio (Selada) Design Ânodo:O ânodo de Ni-Cd também mudou ao longo dos anos para aumentar a densidade de energia total

da pilha Ni-Cd. Um dos processos para produzir eléctrodos de cádmio, é através de um produto chamado de “Pasted cadmium electrode“, uma mistura de hidróxido de cádmio com um aglutinante (mantendo o Cd (OH) 2 em forma de pasta) e colando-o a uma folha de substrato metálico. Electricamente, materiais condutores também são adicionados à mistura para melhorar a sua função.

Reacções:

Há três reacções distintas e diferentes que ocorrem em uma célula Ni-Cd, a reacção do ânodo a reacção do cátodo e a reacção da sobrecarga. As duas primeiras reacções estão na direcção da direita para a esquerda quando a célula está descarregando, e da esquerda para a direita quando a célula está sendo recarregada.

Cd(OH)2+ 2e1- ↔ Cd+2OH1-

Reacção do Ânodo (-):

Reacção do Cátodo (+):

Ni(OH)2 + OH1- ↔ NiOOH + H2O + e1-

Pilha de Níquel-Cádmio (Selada) FuncionamentoPilha de Níquel-Cádmio (Selada) Funcionamento

Page 83: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 83

Pilh

as N

iCd

  

Reacções:

Reacção de sobrecarga: A reacção de sobrecarga é uma relação que ocorre quando os eléctrodos de Ni-Cd estão

totalmente carregados e não pode repor mais no cátodo. Nessa reacção, o eléctrodo de cádmio tem uma parte:

4OH1- --> O2 + H2O + 2e1-

Oxigénio produzido na reacção, depois encontra seu caminho para o ânodo, e através de algumas etapas reproduz iões hidroxila, OH-1 e gera calor. O calor gerado não é uma coisa boa, mas não vai matar a bateria imediatamente.

Os danos causados pelo calor, quando acontecem, geralmente ocorrem no separador que é feito de um dos dois tipos de moléculas orgânicas: polipropileno ou poliamidas, sendo as de polipropileno as mais usadas para altas temperaturas.

Além disso, se a sobrecarga ocorre muito rapidamente ou por muito tempo, o oxigénio vai construir-se e ser forçado a sair pela válvula da ventilação, libertando juntamente água, reduzindo assim os componentes de funcionamento da célula.

Pilha de Níquel-Cádmio (Selada) FuncionamentoPilha de Níquel-Cádmio (Selada) Funcionamento

E porque os produtos da reacção são sólidos, a bateria Ni-Cd pode ser recarregada. Os hidróxidos sólidos são pegajosos, agarrar-se as entranhas da bateria, e permanecem no local. Quando a corrente eléctrica é aplicada, a reacção é reversível.

Page 84: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 84

Pilh

as N

iCd

  

Pilha de Níquel-Cádmio (Selada) CaracterísticasPilha de Níquel-Cádmio (Selada) Características

Foram as primeiras pilhas recarregáveis que apareceram e têm um voltagem nominal de 1.2 V por célula.

Comparando com as baterias de chumbo, têm o dobro da densidade energética destas.São muito mais robustas em construção e portanto menos propensas que as pilhas normais a

perder electrólito.Têm uma resistência interna extremamente baixa. Mantêm a tensão praticamente constante

durante quase 90% do ciclo de descarga.

Em princípio seria suficiente carregar a bateria/pilha a um décimo da capacidade durante 12 horas, mas no momento inicial, a bateria não armazena toda a energia que lhe é fornecida. A energia inicial é utilizada para reconstruir os eléctrodos e produzir gás.

Se se exceder o tempo de carga, entra em sobrecarga e transforma a energia fornecida em calor.Evitar baixas temperaturas para o processo de carga, não curto-circuitar e evitar pedir correntes

muito elevadas.Carregar as pilhas/baterias novas antes de usa-las.Não descarregar uma pilha de NiCd completamente, pois não poderá voltar a carregar-se.

Page 85: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 85

Pilh

as N

iCd

  

Pilha de Níquel-Cádmio (Selada) Efeito MemóriaPilha de Níquel-Cádmio (Selada) Efeito Memória

O efeito memória acontece quando resíduos de carga na pilha induzem a formação de pequenos blocos de cádmio. A melhor maneira de evitar o problema é não fazer recargas quando a bateria está parcialmente descarregada. É melhor esperar até a pilha "ficar fraca" e você não conseguir mais utilizá-la em seu aparelho para então recarregá-la.

As baterias de Níquel Cádmio podem sofrer de um problema chamado "efeito memória". Quando isso ocorre, a pilha deixa de ser carregada totalmente, por a sua composição química dar sinal de que a carga está completa.

Para entender melhor, imagine que uma pilha tem um efeito memória que atinge 10% de sua capacidade. Isso indica que sua carga será de 90%, pois a pilha indicará que os 10% restantes já estão carregados.

As pilhas NiCd devem ser depositadas nos colectores de lixo selectivo, pois o Cádmio é um metal altamente poluente e seu uso vem sendo banido em vários países. Tudo indica que este tipo de pilha deve desaparecer.

Page 86: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 86

Pilh

as N

iCd

  

Pilha de Níquel-Cádmio (Selada) EstruturaPilha de Níquel-Cádmio (Selada) Estrutura

Uma pilha NiCad consiste basicamente de uma película metálica de níquel com óxido/hidróxido de Níquel como eléctrodo positivo, uma película metálica de cádmio com hidróxido de cádmio e uma película separadora isolante e porosa embebida num electrólito de hidróxido de potássio (potassa cáustica).

As duas películas metálicas são isoladas pela película separadora, prensadas e enroladas dentro de um tubo de aço niquelado. Uma mola de ventilação é montada na extremidade do terminal positivo, a fim de libertar o electrólito e/ou gases, em caso de sobrepressão devido à sobrecarga.

Page 87: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 87

Pilh

as N

iCd

Pilhas Recarregáveis Níquel-Cádmio: Estrutura Pilhas Recarregáveis Níquel-Cádmio: Estrutura

2NiOOH + 2H2O + Cd ↔ 2Ni(OH)2 + Cd(OH)2 (±1,20 V)Reacção global:

Terminal Positivo +(Aço niquelado)

Colector Positivo(soldado ao terminal +)

Anel de isolamento

Embalagem exterior (Aço niquelado)

Electrólito(Solução KHO)

Ventilação(Mecanismo)

Colectores de corrente

Ânodo (-)(Cádmio)

Separadores

Cátodo (+)(Níquel)

Terminal Negativo (-)(Aço niquelado)

Page 88: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 88

Pilh

as N

iCd

Pilhas Recarregáveis Níquel-Cádmio Estrutura Alternativa (Cylindrical)Pilhas Recarregáveis Níquel-Cádmio Estrutura Alternativa (Cylindrical)

2NiOOH + 2H2O + Cd ↔ 2Ni(OH)2 + Cd(OH)2 (±1,20 V)Reacção global:

Terminal Positivo +(Aço niquelado) Anel de isolamento

Ventilação(Mecanismo)

Barra Colectora (+)

Cátodo (+)(Níquel)

Separadores(Porosos)

Ânodo (-)(Cádmio)

Barra colectora (-)Embalagem exterior (-)

(Aço niquelado)

Page 89: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 89

Baterias de Níkel/CádmioBaterias de Níkel/Cádmio

Pilh

as/B

ater

ias

NiC

d  

As bateria de níquel-cádmio tem a semi-reação no ânodo que oxida cádmio num electrólito (NaOH ou KOH) de base, enquanto o níquel (III) como NiO (OH) é reduzido no cátodo.

Desvantagens: A eliminação de cádmio tóxico , efeito de memória.

Usos: Máquinas de barbear sem fio, câmaras fotográficas · e ferramentas eléctricas. Vantagens: Leve.

2NiO(OH)(s) + 2H2O(l) + 2e- --> 2Ni(OH)2(s) + 2OH-(aq)

Cd(s) + 2OH-(aq) --> Cd(OH)2(s) + 2e-

Page 90: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 90

Pilha Alcalina Dióxido de Manganésio Recarregável Pilha Alcalina Dióxido de Manganésio Recarregável

Pilh

a Al

calin

a R

ecar

regá

vel

Rechargeable Alkaline Manganese: RAM

A ideia de recarregar pilhas alcalinas não é nova. Apesar de não ser aprovado pelos fabricantes, as baterias alcalinas ordinárias têm sido recarregadas pelos utilizadores ao longo dos anos. Recarregar estas pilhas só é eficaz, se forem recarregadas a menos de 50% da sua capacidade total.

O número de recargas depende unicamente da profundidade de descarga e é limitado a alguns ciclos na melhor das hipóteses. A cada recarga, o valor da capacidade da célula vai sendo reduzido. Há um aviso e advertência. Carregar baterias alcalinas comuns pode gerar gás hidrogénio, que pode levar à explosão. Não é prudente carregar pilhas alcalinas comuns sem supervisão.

No caso das pilhas primárias, uma vez a pilha descarregada, significa que toda a energia química armazenada foi convertida em energia eléctrica, a pilha deita-se fora para um pilhão, a fim de ser reciclada.

As pilhas primárias não estão preparadas para recarga. As reacções químicas numa pilha primária não são reversíveis de uma maneira segura, fiável e eficiente .

Page 91: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 91

Pilha Alcalina Dióxido de Manganésio Recarregável Pilha Alcalina Dióxido de Manganésio Recarregável

Pilh

a Al

calin

a Re

carr

egáv

el

Rechargeable Alkaline Manganese: RAM

A pilha Alcalina Recarregável, introduzida em 1992, é uma pilha alcalina de Zinco/Dióxido Mn redesenhada, para substituir as pilhas descartáveis…

São aplicados aditivos ao ânodo e ao cátodo, para facilitarem a reacção química inversa durante o processo de carga; é usado um separador especial que permite o processo de carga evitando curto circuitos internos, e catalisadores no cátodo que recombinam os excesso de hidrogénio produzido durante o uso, para manter a pressão baixa dentro da pilha.

Ao considerar a pilha alcalina reutilizável, é preciso perceber que a energia inicial é um pouco menor do que o da alcalina padrão. Cada recarga posterior faz com que a capacidade vá diminuindo. Só serão económicas se não forem totalmente descarregadas e forem recarregadas com frequência.

Além disso, uma pilha alcalina recarregável não pode ser utilizada para equipamentos que utilizam alta corrente (câmaras digitais, flashes, etc.) É inadequada para o carregamento rápido e precisa ser recarregada em carregadores projectados especificamente para o efeito. Caso contrário, poderá permitir escapar electrólito corrosivo e danificar o carregador.

Page 92: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 92

Pilha Alcalina Dióxido de Manganésio Recarregável Pilha Alcalina Dióxido de Manganésio Recarregável

Pilh

a Al

calin

a R

ecar

regá

vel

Rechargeable Alkaline Manganese: RAM

Vantagens:Baratas – Podem ser usadas directamente em substituição das pilhas não recarregáveis normais.São mais económicas que as pilhas não recarregáveis - permitem várias recargas.Descarga de armazenamento lenta - pode estar armazenada até 10 anos.Amiga do ambiente - não usa metais tóxicos e são menos descartáveis.Sem manutenção e sem efeito de memória.

Limitações:Capacidade de corrente limitada (400 mA) - adequada para aplicações comerciais ligeiras como

aparelhos de entretenimento doméstico portátil, lanternas, Etc…Ciclo de vida limitado - para obter melhores resultados, recarregue a pilha antes de ficar

demasiado em baixo.

As pilhas alcalinas recarregáveis , têm uma performance menor que as vulgares pilhas alcalinas, mas podem ser recarregadas cerca de 20 vezes.

Page 93: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 93

Pilhas Recarregáveis Níquel/Hidreto Metálico (Ni-MH)Pilhas Recarregáveis Níquel/Hidreto Metálico (Ni-MH)

Pilh

as N

i-MH

Stan Ovshinsky: Engenheiro inventor americano, após anos de desenvolvimento, ganhou uma patente em 1994 para uma bateria/Pilha recarregável com alta densidade de armazenamento de energia, favorável ao meio ambiente e livre de manutenção. Embora esteja longe de estar sozinho na busca para a bateria do carro eléctrico perfeito, a bateria de Níquel e metal-hidreto (NiMH) de Ovshinsky , quando comparada com as antecessoras níquel-cádmio e baterias de Chumbo, é duas vezes mais poderosa, sem os problemas de corrosão fadiga e memória destas e podem ser recarregadas durante 3 anos.

Isto também permite que se possa utilizar uma maior quantidade de material activo para o eléctrodo positivo, o que resulta em uma maior capacidade (+30%) no tempo de descarga para esta bateria. A maioria das características operacionais das baterias seladas de níquel-hidreto metálico são similares às das baterias de níquel-cádmio.

É uma tecnologia relativamente nova que apresenta características operacionais similares às da bateria de níquel cádmio. Sua principal diferença consiste no uso de hidrogénio(*) absorvido em uma liga, na forma de hidreto metálico, como material activo no eléctrodo negativo, ao invés de cádmio utilizado nas baterias de níquel cádmio. O eléctrodo de hidreto metálico apresenta uma maior densidade de energia que um eléctrodo de cádmio, portanto a massa de material activo para o eléctrodo negativo usado em uma bateria de níquel-hidreto metálico pode ser menor que a usada em baterias de níquel cádmio.

(*)No final de 1960, os cientistas descobriram que algumas ligas metálicas tinham a capacidade de armazenar átomos de hidrogénio até cerca de mil vezes o seu volume. Estas ligas metálicas são denominadas hidretos e normalmente são baseadas em compostos como LiNi5 ou ZrNi2. Nos sistemas projectados corruptamente, hidretos pode fornecer um dissipador de armazenamento de hidrogénio que pode reagir reversivelmente na química das células de uma bateria.

Page 94: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 94

Pilh

as N

i-MH

Cátodo (+): NiOOH + H2O + e–→ Ni(OH)2 + OH–

Ânodo (-): (1/x) MHx + OH–→ (1/x) M + H2O + e–

O ião hidreto H- seria um material de cátodo ideal, excepto pelo fato de que a sua oxidação do produto H2 que é um gás. A descoberta de que certos compostos, tais como LiNi5 ZrNi2 que podem actuar como "esponjas de hidrogénio" tornou prática o uso de hidretos metálicos como um material de cátodo. Uma peculiaridade de Ni-MH células é que recarregá-las é um processo exotérmico, de modo que a correcta dissipação de calor deve ser tida em conta. Estas baterias são amplamente utilizadas em telefones celulares, computadores e ferramentas eléctricas portáteis. As reacções dos eléctrodos ocorrem num electrólito KOH concentrado:

Pilhas Recarregáveis Níquel/Hidreto Metálico (Ni-MH)Pilhas Recarregáveis Níquel/Hidreto Metálico (Ni-MH)

Page 95: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 95

Pilhas Recarregáveis Níquel/Hidreto Metálico (Ni-MH)Pilhas Recarregáveis Níquel/Hidreto Metálico (Ni-MH)

Pilh

as N

i-MH

As similaridades no que diz respeito à tensão (Volts) da célula, à pressão característica e aos métodos de controle de carga sugerem que o sistema Ni-MH deverá continuar tomando uma boa fracção do mercado de outras pilhas recarregáveis no futuro próximo.

As Pilhas Ni-MH são usadas em aplicações de alta intensidade (máquinas fotográficas digitais , flashes), duram mais e mantêm a tensão constante durante mais tempo da sua descarga.

Page 96: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 96

Pilhas Recarregáveis (Ni-MH) - FuncionamentoPilhas Recarregáveis (Ni-MH) - Funcionamento

Pilh

as N

i-MH

Reacções:Há também três reacções distintas e diferentes que ocorrem numa pilha de Ni-MH, assim como

na pilha de Ni-Cd. As três reacções são: a reacção do ânodo, a reacção do cátodo e a reacção sobrecarga.

Reacção do Ânodo:

Hidreto + H2O + e1- ↔ Hidreto[H] + OH1-

Reacção do Cátodo:

Ni(OH)2 + OH1- ↔ NiOOH + H2O + e1-

A reacção de sobrecarga é muito parecida com a reacção da sobrecarga de Ni-Cd. O primeiro passo é o mesmo, e envolve também o ânodo.

4OH1- --> O2 + H2O + 2e1-

O Oxigénio produzido na reacção, depois, encontra seu caminho para o ânodo, e através de algumas etapas reproduz iões hidroxila, OH1- e gera calor. O Oxigeno produzido também vai fazer a mesma coisa na pilha Ni-MH, como na pilha Ni-Cd, também não é uma coisa boa para as pilhas Ni-MH.

1,2 Volts

Page 97: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 97

Pilhas Recarregáveis (Ni-MH) - FuncionamentoPilhas Recarregáveis (Ni-MH) - Funcionamento

Pilh

as N

i-MH

Por último, mas não menos importante, ainda outro primo das Ni-Cd está sendo desenvolvido, a pilha de níquel-zinco, que se diz ter uma densidade de energia ainda maior do que Ni-MH. A bateria Ni-Zn precisa de desenvolvimentos antes de comercializável, já que não aceitam tantas recargas como as 1000 das pilhas de Ni-MH.

Em geral, as pilhas à base de Níquel são excelentes para aplicações que requerem a capacidade de usar baterias recarregáveis, com pouco tempo de recarga, sobreviver a condições não ideais, e débitos de corrente elevados. É a melhor pilha recarregável.

A possibilidade de avanço na Ni-MH é inevitável, porque um meio confiável de armazenamento de hidrogénio ainda precisa de ser encontrado, e assim que esse obstáculo for ultrapassado, a pilha Ni-MH tem uma boa hipótese de banir as pilhas Ni-Cd da indústria das recarregáveis e também competir no mercado dos HEV’s.

Sumário:

As Baterias recarregáveis NI-MH estão sendo batidas pelas pilhas de iões de lítio, ainda embora estas não joguem no mesmo campeonato, pois têm maior densidade de energia, mas um preço muito superior, estando destinadas mais para fontes de energia de automóveis eléctricos (EV’s). ..

Page 98: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 98

Pilh

as N

i-MH

Reacção Geral: NiOOH+ MH Ni(OH)2+M (1,2V)

Pólo Negativo

Pólo PositivoIsolamento

Saída de gases

Cátodo +(NiOOH)

Separador

Ânodo –(MH)

Pólo Negativo

Revestimento exterior(Polietileno)

MH: Hidreto MetálicoM: Liga absorvente de Hidrogénio

Pilhas Recarregáveis (Ni-MH) - (Cylindrical) EstruturaPilhas Recarregáveis (Ni-MH) - (Cylindrical) Estrutura

Outro Formato : Telemóvel

Page 99: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 99

Pilh

as N

i-MH

Reacção Geral: NiOOH+ MH Ni(OH)2+M (1,2V)

Pilhas Recarregáveis (Ni-MH) - (Prismatic) EstruturaPilhas Recarregáveis (Ni-MH) - (Prismatic) Estrutura

Saída de gasesTerminal Negativo

Terminal Positivo

Eléctrodo Negativo

Eléctrodo Positivo

Separador

Barra Positiva

A bateria de níquel metal hidreto (NiMH) é parte integrante de um híbrido. A bateria de lítio tem o potencial de eclipsar a bateria NiMH, mas ainda não está pronta para a estreia . As baterias de iões de lítio não cumprem ainda o teste de tolerância e abuso de sobrecarga, num veículo eléctrico, sem incidências catastróficas para o veículo.

MH: Hidreto MetálicoM: Liga absorvente de Hidrogénio

Revestimento Exterior

Page 100: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 100

Pilhas recarregáveis USBPilhas recarregáveis USB

Pilh

a U

SB R

ecar

regá

vel

Foi introduzida recentemente no mercado a pilha recarregável USB. Não é mais do que uma pilha recarregável de NiMH AA , que usa os +5V disponíveis de qualquer porta USB , para carregar a pilha.

À primeira vista, parecem pilhas AA tradicionais. É o interior que marca a diferença: por baixo da pequena tampa verde, no pólo positivo, está a ficha USB para ligar ao computador e carregar.

As pilhas têm uma pequena luz a indicar o estado do carregamento. Esta pisca ao atingir 90% e apaga-se quando estão carregadas, o que demora cerca de 5 horas, de início, e aumenta com o número de carregamentos. Também pode usar um carregador normal, desde que não seja dos rápidos, mas junte mais 2 horas à operação.

Por vezes, é difícil verificar o estado do carregamento, já que a luz está muito próxima da ligação USB e pode ficar tapada. Além disso, pode ter alguma dificuldade em colocar duas pilhas a carregar em portas USB lado a lado, quando a distância entre elas é reduzida.

Em alternativa, use uma hub (multiplicador de portas USB).

Page 101: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 101

Pilhas recarregáveis USBPilhas recarregáveis USB

Pilh

a U

SB R

ecar

regá

vel

O facto de dispensar carregador é ecologicamente positivo: é menos um equipamento eléctrico. Mas há o risco de gastar mais em energia se, por exemplo, ligar o computador só para carregar as pilhas. Aproveite para fazê-lo enquanto trabalha ou joga.

Alguns portáteis recentes, permitem manter o carregamento através das portas USB, mesmo quando desligados, opção bastante interessante.

Os testes a estas pilhas recarregáveis mostram que paga mais do que pelas alcalinas, mas economiza durante a vida. O investimento compensa a partir da vigésima utilização. .. Pois o preço de duas destas pilhas é semelhante ao preço de 4 pilhas recarregáveis mais o carregador!...

Apesar de o fabricante destacar a redução de resíduos no ambiente, todas as pilhas incluem metais pesados e outras substâncias nocivas. Também estas devem ser colocadas no pilhão em fim de vida. O impacto é menor pela possibilidade de reutilizar as pilhas, em vez de comprar umas novas, mas esta característica é comum nas recarregáveis.

Atenção: durante e após o carregamento as pilhas aquecem bastante, tal como as recarregáveis tradicionais. Não queimam, mas convém deixar arrefecer antes de usar num aparelho.

como são de hidreto metálico, as pilhas recarregáveis podem perder a carga com o tempo. Pode ser um incómodo se ficar a meio de um jogo de consola, mas é pior no caso de um alarme de incêndio ou medidor de tensão.

Page 102: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 102

Pilh

a/Ba

teria

s N

i-Zn

O Dr. James J. Drumm inventou a “Drumm Traction Battery” (bateria alcalina de zinco-nikel) que foi usada com sucesso para mover um comboio suburbano na Irlanda (1932-1942).

A bateria de Drumm, que foi objecto de patentes em todos os principais países do mundo, é uma bateria alcalina e os metais que entram na sua construção são o aço inoxidável e de níquel puro. A sua resistência mecânica é, portanto, bastante satisfatória. O sistema da placa-positiva consiste de hidróxido de níquel misturado com flocos níquel. Este eléctrodo foi primeiramente desenvolvido por Edison.

A placa negativa é uma grade de gaze de níquel, e o electrólito é uma solução de óxido de zinco em hidróxido de potássio (zincato potássio). Durante a carga, a grade de níquel é revestida de zinco, e durante a descarga o zinco dissolve-se facilmente no hidróxido de potássio.

A Placa positiva desintegrava-se com a vibração. O peso da bateria em relação à sua saída é muito elevado sobrecarregando demasiado o

veículo. Têm uma baixa taxa de carga e descarga. Ciclo de vida das baterias relativamente curto (4 anos). Todos esses factores prejudicam fortemente a utilidade da bateria de chumbo para fins de

tracção.

Naquela altura, as baterias disponíveis eram, além das baterias de Niquel-Ferro de Edison, as baterias de chumbo-ácidas, que não eram as melhores para sistemas de Tracção, porque:

Pilhas/Baterias Recarregáveis Ni-ZnPilhas/Baterias Recarregáveis Ni-Zn

Page 103: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 103

Pilhas recarregáveis Ni-ZnPilhas recarregáveis Ni-Zn

Pilh

as/B

ater

ias

Ni-Z

n

As reacções na célula Drumm são:

2Ni(OH)2(s) + Zn(OH)2(s) < -> 2Ni(OH)3(s) + Zn(s)

< -descarga

Carga ->

Efectivamente, o sistema negativo é de zinco/hidróxido de zinco. A reacção acima permite umas taxas rápidas de carga e descarga - uma grande vantagem sobre a célula Edison de ferro-níquel, visto que o hidróxido férrico é insolúvel no hidróxido de potássio.

A voltagem da célula Drumm é de 1,85 volts e, mesmo com taxas altas de descarga é cerca de 40% superior ao de outras pilhas alcalinas do tipo Edison Ni / Fe.

A principal consequência da sua alta tensão e baixa resistência interna, é que esta bateria pode ser carregada e descarregada várias vezes ao dia. Ao contrário do acumulador de chumbo, a capacidade amperes-hora da célula Drumm é independente da taxa de descarga. Assim, esta célula vai apresentar 600 amperes continuamente por 1 hora, ou 900 amperes por 40 minutos ou 200 amperes por 3 horas.

As células de Drumm lidam com estas cargas de maneira bastante confortável e sem nenhum sinal de deterioração. Outra característica da bateria Drumm é que não pode ser danificado de alguma forma por frequentes sobrecargas ou altas descargas.

O electrólito é relativamente barato e pode ser alterado ou renovado a um custo muito pequeno.

Page 104: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 104

Pilh

as/B

ater

ias

Ni-Z

n

Pilhas Recarregáveis Níquel/Zinco (Ni-Zn) Pilhas Recarregáveis Níquel/Zinco (Ni-Zn) No entanto, com o começo da Segunda Guerra Mundial e a escassez de produtos, tudo

parou. A bateria de Drumm foi abandonada, pois os sistema de combustão eram mais baratos.

Além disso, as baterias sofriam de um ciclo de vida curto, devido a curto-circuitos que se deviam ao crescimento de dendrito, causado pela alta solubilidade do óxido de zinco, um produto da descarga do ânodo de Zinco, no electrólito alcalino. Além da formação de dendrite, da solubilidade do óxido de zinco podia resultar em mudança de forma e densificação no ânodo, com repetidos ciclos de Carga/Descarga.

Recentemente, uma empresa americana (PowerGenix) conseguiu resolver o problema e comercializa actualmente pilhas/Baterias que competem no mercado especialmente em máquinas ferramentas portáteis e veículos de tracção eléctrica, e onde são necessárias altas descarga e densidades energéticas.

Com uma fórmula patenteada do electrólito, que reduz a solubilidade do óxido de Zinco, prevenindo os curtos causados pelo dendritos e as alterações de forma do ânodo.

Melhor ainda é que estas baterias podem ser produzidas na mesma cadeia de produção das pilhas Ni-MH, poupando assim grandes investimentos.

Page 105: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 105

Pilh

as/B

ater

ias

Ni-Z

n

Pilhas Recarregáveis Níquel/Zinco (Ni-Zn) Características Pilhas Recarregáveis Níquel/Zinco (Ni-Zn) Características

De realçar que a capacidade da bateria se devem aos materiais usados no cátodo e no ânodo, que não contêm quaisquer materiais pesados. Os Packs de baterias de Ni-ZN são facilmente integrados nos sistemas híbridos de Controlo das baterias de Ni-MH existentes, pois a curva de carga é semelhante.

Com uma densidade energética que pode competir com algumas químicas de Iões de Lítio, as Ni-ZN não têm os perigos de segurança térmicos destas, pois usam um electrólito inorgânico (KOH), sendo que a Ni-ZN é metade do preço da tecnologia do Lítio.

A tecnologia de Ni-Zn oferece uma densidade energética do que as baterias de NiMH usadas hoje em dia HEV, proporcionando a mesma energia até numa bateria 40% menor e mais leve, muito atractiva para aplicações dinâmicas em veículos eléctricos.

As soluções de baterias de Ni-ZN para os HEV’s, são menos dispendiosas do que as de NIMH, porque leva menos 35% de células, e os materiais utilizados na bateria de Ni-Zn são menos caros do que os utilizados numa bateria de níquel-hidreto metálico.

Os Rigorosos sistemas de segurança de controlo de potencia e processos de fabricação exigidas pelas baterias de iões de lítio não são necessárias para uma bateria de Ni-Zn, fazendo com que o custo por watt hora de seja metade do de uma bateria de iões de Lítio.

Os materiais utilizados numa bateria de Ni-Zn não são inflamáveis, portanto, não podem explodir, tornando-a intrinsecamente mais segura que uma bateria de iões de Lítio.

Page 106: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 106

Pilh

as/B

ater

ias

Ni-Z

n

Pilhas Recarregáveis Níquel/Zinco (Ni-Zn) Toyota Prius Pilhas Recarregáveis Níquel/Zinco (Ni-Zn) Toyota Prius

Page 107: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 107

Pilh

as/B

ater

ias

Ni-Z

n

Pilhas Recarregáveis Níquel-Zinc: Densidade Energética Pilhas Recarregáveis Níquel-Zinc: Densidade Energética

Page 108: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 108

Pilh

as/B

ater

ias

Ni-Z

n

Pilhas Recarregáveis Níquel-Zinc: Preço What/Hora Pilhas Recarregáveis Níquel-Zinc: Preço What/Hora

Page 109: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 109

Pilh

as/B

ater

ias

Ni-Z

n

Pilhas Recarregáveis Níquel-Zinc: Estrutura (Cylindrical) Pilhas Recarregáveis Níquel-Zinc: Estrutura (Cylindrical)

H2O + Zn + 2NiOOH = ZnO +2Ni(OH)2 (1,74 V)Reacção global:

Terminal Positivo +(Aço niquelado)

Colector Positivo(soldado ao terminal +)

Anel de isolamento

Embalagem exterior (Aço niquelado)

Electrólito(Solução KHO)

Ventilação(Mecanismo)

Colectores de corrente

Ânodo (-)(Zinco)

Separadores

Cátodo (+)(Níquel)

Terminal Negativo (-)(Aço niquelado)

Page 110: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 110

Pilh

as/B

ater

ias

Ni-Z

n

Pilhas Recarregáveis Níquel-Zinc: Estrutura Disponibilidades Pilhas Recarregáveis Níquel-Zinc: Estrutura Disponibilidades

Page 111: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 111

Pilh

as/B

ater

ias

Ni-Z

n

Ventilação(Mecanismo)

Eléctrodos

Pilhas Recarregáveis Níquel-Zinc: Tracção (Prismatic)Pilhas Recarregáveis Níquel-Zinc: Tracção (Prismatic)

Page 112: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 112

Pilh

as/B

ater

ias

Ni-Z

n

Pilhas/Baterias Recarregáveis Níquel-Zinc: VantagensPilhas/Baterias Recarregáveis Níquel-Zinc: Vantagens

Bateria de Chumbo é pesada.Pilha NiMH é menos energética.Pilha NiMH é mais cara.Bateria de Lítio é mais cara.Bateria de Lítio tem limitações.NiZn é abundante.NiZn é barato..NiZn é 100% amigo do ambiente.1200 Ciclos profundos.

Page 113: Pilhas e Baterias

Mobilidade Eléctrica

13-04-2023 Por : Luís Timóteo 113

BibliografiasBibliografias

http://wwwgoldchem-batt.webstarts.com/introduction_to_how_batteries_work.html

http://www.windsun.com/Batteries/Battery_FAQ.htm

http://www.magnet.fsu.edu/education/tutorials/museum/plantebattery.html

http://www.thelivingmoon.com/43ancients/02files/Ancient_Electricity_01.html

http://www.mpoweruk.com/cell_construction.htm

http://www.eoearth.org/article/Leclanché,_Georges

http://en.wikipedia.org/wiki/Alessandro_Volta

http://www.kids.esdb.bg/daniell.html

http://coloradocollege.edu/dept/ev/courses/EV212/Block5_2002/Battery.html

http://einhornpress.com/electric.aspx

http://www.alcadhistory.co.uk/technology.html

http://www.neumann.com/?lang=en&id=about_us_history_part_1

http://www.automobilemag.com/green/news/0811_powergenix_nizn_new_battery_technology/index.html