perfis de anomalias magnÉticas produzidos por … · ariaçãov da declinação magnética...

38

Upload: vungoc

Post on 30-Nov-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

UNIVERSIDADE FEDERAL DA BAHIA

INSTITUTO DE GEOCIÊNCIAS

CURSO DE GRADUAÇÃO EM GEOFÍSICA

GEO213 � TRABALHO DE GRADUAÇÃO

PERFIS DE ANOMALIAS MAGNÉTICAS

PRODUZIDOS POR

MODELOS PARAMETRIZADOS COM

BARRAS DIPOLARES INCLINADAS

MATEUS AQUINO PEDREIRA RABELO

SALVADOR � BAHIA

Fevereiro � 2014

Per�s de Anomalia Magnética produzidos por

Modelos Parametrizados com Barras Dipolares Inclinadas

por

Mateus Aquino Pedreira Rabelo

Orientador: Prof. Dr. Wilson Mouzer Figueiró

GEO213 � TRABALHO DE GRADUAÇÃO

Departamento de Geofísica

do

Instituto de Geociências

da

Universidade Federal da Bahia

Comissão Examinadora

Dr. Wilson M. Figueiró

Dra. Jacira Cristina de Freitas Lucas

Dra. Alanna Costa Dutra

Data da aprovação: 20/02/2014

Dedico este trabalho aos meus pais,

Antonio Aquino e Maria Milza,

ao meu irmão, Rodrigo Aquino, e

aos meus avós, Hélio e Antonia

Alexandrina,

que sempre me apoiaram na minha

caminhada.

RESUMO

A proposta desse trabalho é fazer modelagem magnética considerando modelos de distribui-

ções de susceptibilidade magnética de rochas parametrizado por barras dipolares inclinadas.

Assim, foram gerados per�s das componentes verticais e horizontais do campo magnético na

superfície para cinco modelos distintos.

Nessa modelagem, as barras possuem diferentes comprimentos, visando proporcionar o me-

lhor ajuste às irregularidades das diferentes regiões rochosas. Entretanto, todas possuem

a mesma espessura e inclinação �xada em 45 graus. À cada região dos modelos foi atri-

buído um contraste de susceptibilidade magnética e com base na teoria magnética clássica,

foram calculados per�s de anomalias magnéticas verticais e horizontais com o somatório das

contribuições individuais de cada barra dipolar.

A interpretação dos per�s foi feita levando-se em conta, para cada região do modelo, as

seguintes propriedades das barras dipolares que a cobre: sua profundidade, seu tamanho, e

seu contraste de susceptibilidade magnética.

O desenvolvimento dessa modelagem tem como objetivo sua aplicação futura na resolução de

problemas inversos, utilizando dados coletados em campo ou sintéticos computacionalmente

gerados. Assim, considerando-se as barras com inclinação �xa, a propriedade a ser estimada

seria a susceptibilidade magnética das regiões rochosas em subsuperfície, assim como suas

dimensões geométricas.

Esse trabalho visa dar uma resposta a seguinte questão: É possível realizar modelagem

magnética de modo satisfatório usando campos de contrastes de susceptibilidades magnéticas

parametrizados por barras dipolares inclinadas?

iii

ABSTRACT

The proposal of this work is to do magnetic modeling considering models of magnetic sus-

ceptibility distribution in rocks parameterized by inclined dipolar bars. Therefore, it was

generated pro�les of the vertical and horizontal components of the magnetic �eld on the

surface, for �ve distinct models.

In such modeling, the bars have di�erent lengths, aiming to provide the best adjustment to

the irregularities of the di�erent rock regions. However, all bars have the same thickness

and the slope angle of all bars, for all models, was 45 degrees. For each model region was

attributed a magnetic susceptibility contrast, based on the classical magnetic theory. At

last, the pro�les of vertical and horizontal magnetic anomalies were generated from the sum

of the individual contribution of each dipolar bar.

The pro�les interpretation was made taking into account, for each model region, the following

properties, its: depth, shape, size, and susceptibility magnetic contrast.

The development of this modeling aims a future application for solving inverse problems

using collected data during �eld acquisition or synthetic one computationally generated.

Thus, considering bars parameterization with �xed inclination, the property to be estimated

would be the magnetic susceptibility of rock regions in subsurface, and theirs geometric

dimensions.

This work aims to give an answer to the following question: Is it possible to make satis-

factorily magnetic modeling using magnetic susceptibility contrasts �elds parameterized by

inclined dipole bars?

iv

ÍNDICE

RESUMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ÍNDICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÍNDICE DE FIGURAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CAPÍTULO 1 Fundamentos Teóricos . . . . . . . . . . . . . . . . . . . . . 3

1.1 Magnetização das Rochas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Física do Levantamento Magnético . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Contraste de Susceptibilidade Magnética . . . . . . . . . . . . . . . . . . . . 9

CAPÍTULO 2 Metodologia . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

CAPÍTULO 3 Resultados Numéricos e Interpretação . . . . . . . . . . . 13

3.1 Modelo com Alto Estrutural e Contraste Lateral de Susceptibilidade (M1) . . 13

3.2 Modelo com Interface Inclinada e com Variação Lateral de Susceptibilidade

(M2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Modelo Esquemático com Camadas Inclinadas e com Elevado Contraste de

Susceptibilidade (M3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Modelo Realístico com Camadas Mergulhantes e com Elevado Contraste La-

teral de Susceptibilidade (M4) . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Modelo Falhado e com Dobras (M5) . . . . . . . . . . . . . . . . . . . . . . . 25

CAPÍTULO 4 Conclusões . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Agradecimentos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v

ÍNDICE DE FIGURAS

1.1 Representação esquemática dos momentos magnéticos dentro de um material

(Lowrie, 1997). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 O momento magnético do anel devido à corrente induzida é tal que se opõe

ao movimento do imã em barra. Este está se movendo em direção ao anel,

logo, o momento magnético induzido repele o imã (Tipler & Mosca, 2009). . 4

1.3 Representação do alinhamento dos momentos magnéticos de diferentes tipos

de materiais quando submetidos à ação de um campo externo (Retirado e

modi�cado de Sbaraini, 2012). . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Tabela de susceptibilidade magnética para algumas rochas e minerais (Telford

et al., 1976). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Fluxo magnético de uma barra magnética. . . . . . . . . . . . . . . . . . . . 7

1.6 Modelo com uma intrusão rochosa envolvida por rochas de naturezas diversas

(em geral, sedimentares) e esboço de um per�l �ctício de anomalia magnética

produzido pelo modelo como um todo. . . . . . . . . . . . . . . . . . . . . . 9

1.7 Modelo com uma intrusão rochosa parametrizado por contrastes de suscep-

tibilidades magnéticas com per�l �ctício de anomalia magnética deslocado

verticalmente para baixo relativamente àquele mostrado na Figura 1.6. . . . 10

2.1 Ilustração geométrica das variáveis que participam da Eq. (2.3). . . . . . . . 12

3.1 Representação grá�ca do modelo M1, na qual observa-se uma elevação da

camada granítica no trecho 6, 0 km < x < 12, 0 km e um contraste basáltico

para x no intervalo (21, 0; 24, 0) km. . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Per�l da componente vertical da anomalia magnética, Z, na superfície, para

o caso do modelo M1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Per�l da componente horizontal da anomalia magnética, H, na superfície,

para o caso do modelo M1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Representação grá�ca do modelo M2, na qual observa-se uma variação lateral

de susceptibilidades com presença de interface inclinada. . . . . . . . . . . . 17

3.5 Per�l da componente vertical da anomalia magnética, Z, na superfície produ-

zido pelo modelo M2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Per�l da componente horizontal da anomalia magnética, H, na superfície cau-

sado pelo modelo M2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.7 Representação grá�ca do modelo M3. . . . . . . . . . . . . . . . . . . . . . . 20

vi

3.8 Per�l da componente vertical da anomalia magnética, Z, na superfície causado

pelo modelo M3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.9 Per�l da componente horizontal da anomalia magnética, H, na superfície cau-

sado pelo modelo M3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.10 Representação grá�ca do modelo M4. . . . . . . . . . . . . . . . . . . . . . . 23

3.11 Per�l da componente vertical da anomalia magnética, Z, na superfície produ-

zido pelo medelo M4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.12 Per�l da componente horizontal da anomalia magnética, H, na superfície pro-

duzido pelo modelo M4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.13 Representação grá�ca do modelo M5. . . . . . . . . . . . . . . . . . . . . . . 25

3.14 Per�l da componente vertical da anomalia magnética, Z, na superfície causado

por M5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.15 Per�l da componente horizontal da anomalia magnética, H, na superfície cau-

sado por M5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii

INTRODUÇÃO

Os métodos geofísicos potenciais são ferramentas de suma importância na exploração mineral,

utilizados para a localização e delimitação de corpos litológicos. A velocidade e praticidade

desses métodos torna-os extremamente atraente na busca de informações sobre possíveis

depósitos minerais potencialmente interessantes para a exploração.

O Método Magnético, à semelhança do Método Gravimétrico, tem seus fundamentos emba-

sados na Teoria do Potencial. Os dois são muito semelhantes do ponto de vista da teoria; a

principal diferença (que torna o Método Magnético mais complexo) é o caráter dipolar do

campo magnético, em contraste com o caráter monopolar do campo gravitacional (Luiz &

da Costa e Silva, 1995).

O método magnético tem como base o estudo das variações locais do campo magnético

terrestre, devido à existência de rochas contendo minerais magnéticos em subsuperfície. Essas

rochas magnetizam-se de acordo com a sua susceptibilidade magnética, que está diretamente

ligada à concentração e distribuição dos minerais magnéticos presentes, criando assim uma

identidade magnética para cada tipo de rocha.

As primeiras medidas utilizando o método magnético foram realizadas na Suécia, em 1640,

com o intuito de detectar depósitos de ferro. Essas medidas eram realizadas observando-se a

variação da declinação magnética utilizando-se bússolas náuticas. Posteriormente o método

foi aperfeiçoado com a construção de magnetômetros, instrumentos capazes de medir com

precisão a intensidade do campo magnético e de suas componentes verticais e horizontais.

A partir do estudo de minerais magnéticos, podem-se encontrar minerais não magnéticos

muito importantes economicamente, como por exemplo: calcopirita, galena, asbesto e cal-

cocita. Outra aplicação desse método se dá na investigação de estruturas geológicas, como

dobras e falhas, que podem conter depósitos de hidrocarbonetos.

Nesse trabalho é feita uma modelagem magnética das componentes vertical e horizontal

do campo magnético na superfície, provenientes de modelos de camadas rochosas situadas

sob uma camada de rochas sedimentares, parametrizado por barras dipolares inclinadas de

diferentes tamanhos. Todas as barras possuem a mesma espessura e inclinação de 45 graus

em cada modelo. Trabalha-se com contrastes de susceptibilidade magnética como parâmetro

do modelo, pois estes são os dados de anomalia magnética com os quais se busca fazer

modelagem.

Buscou-se, na modelagem magnética, con�rmar a possibilidade de parametrização do campo

1

2

de contrastes de susceptibilidades magnéticas com barras dipolares inclinadas.

É apresentado no primeiro capítulo, o embasamento teórico necessário para o desenvolvi-

mento desse trabalho.

CAPÍTULO 1

Fundamentos Teóricos

Toda a matéria é magnética, em maior ou menor grau (Salazar, 2010). Devido ao movi-

mento dos elétrons em torno dos átomos, estes adquirem um momento angular associado,

que chamamos de spin, fazendo com que os átomos se comportem como pequenos dipolos

magnéticos. Quando um campo magnético externo é inserido, há uma perturbação nesses

dipolos, que tende a alinhá-los na mesma direção do campo externo. Essa perturbação vai

depender da condição inicial na qual os elétrons se dispunham, o que de�nirá também o tipo

de material permeado.

Figura 1.1: Representação esquemática dos momentos magnéticos dentro de um

material (Lowrie, 1997).

Em geral, os materiais podem ser classi�cados em diamagnéticos, paramagnéticos ou ferro-

magnéticos dependendo da sua resposta diante da aplicação de um campo magnético externo.

Estas respostas estão associadas ao spin dos átomos e aos movimentos orbitais de seus elé-

trons.

Materiais Diamagnéticos

Em seus experimentos, Michael Faraday descobriu que um pequeno pedaço de bismuto,

quando colocado perto do polo de um ímã era repelido por ele. Essas substâncias foram

chamadas por ele de diamagnéticas.

3

4

Quando imersos em um campo magnético externo, materiais diamagnéticos tendem a apre-

sentar uma indução magnética contrária ao campo externo e de pequena intensidade (Blakely,

1995). Esse fenômeno é semelhante ao descrito pela Lei de Lenz, que diz que o sentido da

corrente induzida em um circuito é tal que ela produz uma variação de �uxo magnético que

se opõe ao �uxo que a criou.

Figura 1.2: O momento magnético do anel devido à corrente induzida é tal que se

opõe ao movimento do imã em barra. Este está se movendo em direção

ao anel, logo, o momento magnético induzido repele o imã (Tipler &

Mosca, 2009).

A susceptibilidade magnética desses materiais é negativa e ao retirarmos o campo externo a

magnetização volta a zero.

Materiais Paramagnéticos

Na presença de um campo magnético externo, tendem a apresentar um campo induzido na

mesma direção, esse campo por sua vez, tem fraca intensidade, tendendo a elevar pouco o

campo aplicado. Ao retirarmos o campo externo a magnetização volta a zero.

A susceptibilidade magnética desses materiais é fraca e positiva.

Todas as substâncias deveriam apresentar características paramagnéticas, já que todas têm

elétrons. A razão para que o efeito apareça somente em algumas substâncias é que, na

maioria dos átomos e moléculas, os elétrons são agrupados em pares com spins de senti-

dos opostos, produzindo momentos magnéticos que se cancelam, deixando somente o efeito

diamagnético. O paramagnetismo pode, então, estar basicamente associado aos materiais

que têm número ímpar de elétrons, embora existam estruturas eletrônicas que possibilitam

características paramagnéticas mesmo quando o número de elétrons é par (Luiz & da Costa

e Silva, 1995).

Materiais Ferromagnéticos

Em alguns metais, há uma interação de troca entre os elétrons vizinhos dos átomos devido a

5

sua grande proximidade na rede cristalina. Esta interação de troca gera um campo magnético

dentro do material, alinhando os momentos magnéticos atômicos e produzindo uma mag-

netização espontânea. Estes materiais reagem fortemente à presença de campos externos,

alinhando seus momentos com o campo, gerando assim uma magnetização induzida forte,

que permanece mesmo após a retirada do campo, ao contrário dos materiais diamagnéticos

e paramagnéticos. Essa magnetização é chamada de Magnetização Remanescente.

Claramente, essas substâncias possuem susceptibilidade magnética alta e positiva. Diferente

dos materiais diamagnéticos e paramagnéticos, a susceptibilidade desses materiais não é

constante, dependem da intensidade do campo magnético externo aplicado.

Figura 1.3: Representação do alinhamento dos momentos magnéticos de diferentes

tipos de materiais quando submetidos à ação de um campo externo

(Retirado e modi�cado de Sbaraini, 2012).

1.1 Magnetização das Rochas

A magnetização nas rochas é resultado da presença de minerais magnéticos na sua composi-

ção, e é dividida em: magnetização induzida e magnetização remanescente. A magnetização

remanescente é adquirida na formação das rochas ou através de alguns processos geológicos

ao longo da sua história. A magnetização induzida natural de uma rocha é fruto da ação do

campo magnético terrestre à temperatura ambiente.

Os valores medidos na prospecção mineral resultam dos dois tipos de magnetização. Durante

a interpretação, podem ocorrer erros ao se presumir que a magnetização é apenas induzida,

embora, os dois tipos de magnetização estejam presentes.

Cada tipo de rocha é identi�cada a partir da sua susceptibilidade magnética, que depende

6

da quantidade e da distribuição de minerais magnéticos na sua composição. A Figura 1.4

apresenta uma tabela com os valores da susceptibilidade magnética de algumas rochas e

minerais, que serão utilizadas nesse trabalho.

Figura 1.4: Tabela de susceptibilidade magnética para algumas rochas e minerais

(Telford et al., 1976).

7

1.2 Física do Levantamento Magnético

Nas vizinhanças de uma barra magnética desenvolve-se um �uxo magnético que �ui de uma

extremidade para a outra. Esse �uxo pode ser mapeado a partir das direções dadas por

uma pequena agulha de bússola suspensa dentro dele. Os pontos dentro do magneto para

onde o �uxo converge são conhecidos como polos do magneto. De modo similar, uma barra

magnética livremente suspensa alinha-se ao �uxo do campo magnético da Terra. O polo

do magneto que tende a apontar na direção do polo norte da Terra é chamado de norte

magnético ou polo positivo, e é balanceado por um sul magnético, ou polo negativo, de força

idêntica, na extremidade oposta do magneto (Kearey et al., 2009).

Figura 1.5: Fluxo magnético de uma barra magnética.

Supondo-se a existência de polos magnéticos isolados de intensidades p1 e p2, a força ~F que

se estabelece entre eles, que estão separados por uma distância r, é expressa por:

~F =p1p2µr2

~r, (1.1)

onde µ é a permeabilidade magnética do meio em que os polos magnéticos se encontram e ~r

é o vetor unitário que tem a direção da reta que une tais polos.

O momento de um dipolo magnético com polos de intensidade +p e -p e separados por uma

distância 2L é dado por:

~m = 2Lp~r (1.2)

8

cuja direção do vetor unitário ~r é do polo negativo para o positivo.

Sabendo que o campo magnético ~T é de�nido como a força magnética ~F provocada por

um polo de intensidade p2 na presença de um outro com intensidade p1, dividido por p2,

escreve-se:

~T =~F

p2=

p1µr2

, (1.3)

considerando-se a intensidade de p2 fraca o su�ciente para não perturbar o campo ~T devido

a p1.

Ao ser submetido à aplicação de um campo magnético externo ~T , uma magnetização é

induzida no material. Essa magnetização induzida ~M , é proporcional ao campo externo

aplicado, e pode ser expressa pela relação:

~M = k~T , (1.4)

onde a constante de proporcionalidade k, é a susceptibilidade magnética do material.

Podemos perceber a partir dessa relação que materiais com maior susceptibilidade magnética

têm a tendência a se magnetizarem mais fortemente. Essa é uma característica de suma

importância no estudo do método magnético.

A susceptibilidade magnética é adimensional tanto no sistema SI como no CGS mas, devido

a padronização do SI, nesse sistema, ela é maior do que no CGS por um fator de 4π, ou seja:

kSI = 4πkcgs. (1.5)

A intensidade da magnetização induzida ~M , também pode ser de�nida como o momento de

dipolo por unidade de volume do material, assim, ela pode ser escrita como:

~M =~m

V. (1.6)

Como o campo indução magnética ~B está relacionado diretamente ao campo magnético

externo ~T , pode-se escrever:

~B = µ~T , (1.7)

onde a constante de proporcionalidade µ, é a permeabilidade magnética do material.

9

No sistema CGS a permeabilidade magnética está relacionada com a susceptibilidade mag-

nética pela expressão:

µ = 1 + 4πk. (1.8)

Assim, o campo de indução magnética pode ser escrito como:

~B = ~T + 4π ~M = (1 + 4πk) ~T = µ~T . (1.9)

A unidade do campo indução magnética no sistema CGS é o gauss e no SI é o nanotesla

(nT) e a relação entre essas unidades é:

1 gauss = 105 nT. (1.10)

1.3 Contraste de Susceptibilidade Magnética

Nesse estudo, trabalhou-se com contrastes de susceptibilidade magnética, em vez de trabalhar

com a própria susceptibilidade das rochas. Essa proposta teve como objetivo simpli�car os

cálculos e evidenciar apenas a anomalia magnética produzida pelo conjunto de rochas de

interesse.

Considere o modelo mostrado na Figura 1.6.

Figura 1.6: Modelo com uma intrusão rochosa envolvida por rochas de naturezas

diversas (em geral, sedimentares) e esboço de um per�l �ctício de ano-

malia magnética produzido pelo modelo como um todo.

Nesse modelo, observamos uma região rochosa com susceptibilidade kR, envolto por rochas de

naturezas diversas (em geral, sedimentares) de susceptibilidade k0. Ao considerar o modelo

10

como um todo, encontra-se di�culdades, pois, para gerar o per�l magnético na superfície,

deve-se considerar as rochas circundantes. A �m de subtrair o efeito indesejado causado

por tais rochas nas anomalias magnéticas trabalha-se com contraste de susceptibilidade,

subtraindo-se todas as susceptibilidades magnéticas presentes no modelo da susceptibilidade

média das rochas circundantes. Tem-se então, o modelo e a situação mostrada na Figura

1.7.

Figura 1.7: Modelo com uma intrusão rochosa parametrizado por contrastes de

susceptibilidades magnéticas com per�l �ctício de anomalia magnética

deslocado verticalmente para baixo relativamente àquele mostrado na

Figura 1.6.

CAPÍTULO 2

Metodologia

Para calcular a componente vertical da anomalia magnética causada por uma barra dipolar

inclinada usamos a formula (Telford et al., 1976):

Z =

(|~m|r5

)[(2z2c − x2

)senθ − 3xzccosθ

], (2.1)

onde θ é o ângulo de inclinação da barra, zc é a profundidade do centro da barra relativamente

à superfície, r é a distância do centro do dipolo à posição x na superfície de observação e

|~m| = 2pL é o módulo do momento magnético de uma barra dipolar (sendo p a intensidade

do polo magnético e 2L o comprimento da barra). Nesse caso, considera-se que o centro do

dipolo tem coordenada horizontal xc = 0.

Utilizando as relações, |~m| = 2Lp,∣∣∣ ~M ∣∣∣ = |~m| /V e

∣∣∣ ~M ∣∣∣ = k∣∣∣~T ∣∣∣, pode-se escrever:

p =|~m|2L

=

∣∣∣ ~M ∣∣∣V2L

= kd2∣∣∣~T ∣∣∣ , (2.2)

considerando-se o volume V da barra igual a 2L.d2, onde d é a espessura da barra.

Assim, temos que a anomalia magnética vertical é dada por:

Z(x) =2L.∆k.d2.

∣∣∣~T ∣∣∣r5

[(2z2c − x2

)senθ − 3xzccosθ

](2.3)

onde ∆k = k − k0 é o contraste de susceptibilidade magnética entre a barra dipolar (k) e o

meio no qual ela está encaixada (k0).

Na Eq. (2.3), as distâncias L, d, r, zc e x são dadas em metros, e utilizou-se os valores de

susceptibilidade no sistema SI. A intensidade do campo magnético terrestre no local,∣∣∣~T ∣∣∣, foi

considerado igual a∣∣∣~T ∣∣∣ = 5× 104 nT .

Os elementos da Eq. (2.3) podem ser visualizados na Figura 2.1.

Generalizando a Eq. (2.3) para um número N de barras, obtem-se:

11

12

Figura 2.1: Ilustração geométrica das variáveis que participam da Eq. (2.3).

Z(x) = 2.d2.∣∣∣~T ∣∣∣ N∑

i=1

Li.∆ki.{[

2z2ci − (x− xci)2]senθ − 3 (x− xci) zcicosθ

}[(x− xci)2 + z2ci

] 52

, (2.4)

onde, (xci, zci) representa as coordenadas do centro da i-ésima barra, Li é o seu semi-

comprimento e ∆ki é seu contraste de susceptibilidade.

Para o cálculo da componente horizontal do campo magnético, utilizamos a seguinte fórmula

(Telford et al., 1976):

H =

(|~m|r5

)[(2x2 − z2c

)cosθ − 3xzcsenθ

]. (2.5)

Por processos análogos aos anteriores, chegamos à fórmula da anomalia magnética horizontal

na posição x da superfície, para um número N de barras:

H(x) = 2.d2.∣∣∣~T ∣∣∣ N∑

i=1

Li.∆ki.{[

2 (x− xci)2 − z2ci]cosθ − 3 (x− xci) zcisenθ

}[(x− xci)2 + z2ci

] 52

. (2.6)

CAPÍTULO 3

Resultados Numéricos e Interpretação

Cinco modelos foram propostos para esta modelagem. Buscou-se apresentar modelos tão

próximos quanto possível da realidade. Em todos eles, as barras possuem um ângulo �xo de

45 graus (pois considera-se que a inclinação magnética terrestre do local seja de 45◦ ) e as

regiões rochosas que são parametrizadas estão a uma determinada profundidade, cobertas

por rochas sedimentares. A espessura das barras é mantida constante em cada modelo e o

seu tamanho varia para adaptar-se às regiões rochosas de interesse.

A parametrização dos modelos foi estendida para os dois lados, com o objetivo de atenuar

os efeitos de borda.

3.1 Modelo com Alto Estrutural e Contraste Lateral de Suscepti-

bilidade (M1)

O modelo MI possui uma camada de granito com um alto estrutural e com um contraste

lateral basáltico, disposta sob uma camada super�cial de rochas sedimentares tal como

mostrado na Figura 3.1. Nesse modelo, considera-se que as rochas sedimentares são are-

nitos (karenito = 0, 4× 10−3). Os contrastes de susceptibilidade utilizados para o granito e

o basalto foram, ∆kg = 2, 1 × 10−3 e ∆kb = 69, 6 × 10−3, respectivamente. No trecho

6, 0 km < x < 12, 0 km a profundidade da camada de granito diminui, pois nele a dita

camada se eleva. Utilizou-se 86 barras com espessura de aproximadamente 505,0 m para

cada barra.

13

14

Figura 3.1: Representação grá�ca do modelo M1, na qual observa-se uma elevação

da camada granítica no trecho 6, 0 km < x < 12, 0 km e um contraste

basáltico para x no intervalo (21, 0; 24, 0) km.

Os per�s das componentes vertical e horizontal da anomalia magnética, parametrizados por

barras dipolares inclinadas, são mostrados nas Figuras 3.2 e 3.3.

Figura 3.2: Per�l da componente vertical da anomalia magnética, Z, na superfície,

para o caso do modelo M1.

15

Figura 3.3: Per�l da componente horizontal da anomalia magnética, H, na super-

fície, para o caso do modelo M1.

Nos dois per�s, pode-se observar um pequeno pico em aproximadamente, x = 6, 0km. Ele

é devido à elevação da camada de granito no trecho de 6,0 km a 12,0 km. Pois, nele, tal

camada aproxima-se da superfície, fazendo com que haja o aumento da intensidade da ano-

malia. Mais a direita do per�l da componente vertical, em aproximadamente, x = 22, 0km,

pode-se observar um máximo. Como esperado, este pico ocorre devido a in�uencia da ca-

mada de basalto, que possui o contraste de susceptibilidade magnética muito maior do que

o da camada de granito, ocasionando no aumento da intensidade da anomalia magnética

observada na superfície.

Pode-se veri�car também, no per�l da componente horizontal da anomalia, em torno da

posição x = 22, 0km, uma intensidade muito pequena e negativa, o que nos indica duas

coisas: nessa região a anomalia magnética é quase vertical (o que está em concordância com

a anomalia vertical) e está apontando no sentido da direita para a esquerda, enquanto o

vetor anomalia vertical é grande e aponta de baixo para cima. Essas variações observadas

neste per�l, são respostas à presença da região basáltica.

Ainda no per�l da componente horizontal, à aproximadamente 24,0 km, temos um mínimo

de intensidade negativa, que ocorre devido à três fatores: à direção desta componente que

continua da direita pra a esquerda; ao campo total nessa região está próximo da horizon-

tal (corresponde à zero na componente vertical da anomalia); e à mudança de litologia (na

sequência: granito-basalto-granito) o que faz com que a magnitude do campo anômalo di-

minua. Após esse mínimo, a intensidade da componente horizontal começa a diminuir em

módulo, como esperado após a mudança litológica.

16

Na distância x = 25km, no per�l da componente vertical, podemos observar um comporta-

mento análogo ao descrito no caso horizontal.

Observa-se que: as pequenas anomalias que se apresentam na parte esquerda dos per�s

correspondem ao alto granítico presente no modelo, o trecho que apresenta anomalias mais

intensas é o que corresponde à intrusão basáltica na camada granítica, e a elevação graní-

tica causa uma in�uencia na anomalia magnética visivelmente inferior àquela causada pelo

contraste basáltico.

17

3.2 Modelo com Interface Inclinada e com Variação Lateral de Sus-

ceptibilidade (M2)

O modeloM2 é caracterizado pela presença de uma interface inclinada e pela variação lateral

de susceptibilidade (Figura 3.4). Nele apresentam-se cinco regiões rochosas, discriminadas

de A a E. As camadas B e E embora tenham o mesmo contraste de susceptibilidade, podem

não ser constituidas pelo mesmo tipo de rochas. A profundidade das regiões não varia, e

acima delas existe uma camada de rochas sedimentares com espessura de 1 km.

Figura 3.4: Representação grá�ca do modelo M2, na qual observa-se uma variação

lateral de susceptibilidades com presença de interface inclinada.

As regiões presentes no modelo M2 podem, em termos geológicos, ser consideradas como

constituídas dos seguintes tipos de rochas: vulcânica (A), amianto (B) e serpentinita com

variados graus de carbonatização (C: alto, D: moderado e E: baixo).

Foram usadas 68 barras nesse modelo, com espessura de aproximadamente 180,0 m.

As Figuras 3.5 e 3.6 mostram os per�s de anomalia magnética vertical e horizontal, respec-

tivamente, causados pelo modelo M2.

18

Figura 3.5: Per�l da componente vertical da anomalia magnética, Z, na superfície

produzido pelo modelo M2.

Figura 3.6: Per�l da componente horizontal da anomalia magnética, H, na superfí-

cie causado pelo modelo M2.

A medida que x cresce, nos dois per�s, pode-se perceber que a intensidade do campo magné-

tico anômalo cresce, chegando a um valor máximo e depois começa a decrescer. Esse primeiro

máximo ocorre devido à in�uência da região B, pois esta possui o contraste de susceptibili-

dade magnética muito maior do que aaquelas das regiões vizinhas A e C. Após esse máximo,

a intensidade do campo decresce, chegando a um valor mínimo. Isso ocorre devido à presença

da região C, pois seu contraste de susceptibilidade magnética é quase cinco vezes menor do

19

que o da região B. Continuando-se com o crescimento de x, visualiza-se mais dois máximos

nos dois per�s, resultado da mudança da região C para a D, e da D para a E. Novamente,

esses máximos ocorrem devido ao caráter crescente dos contrastes de susceptibilidade que se

observa na seguência C, D e E de regiões do modelo M2.

Após o terceiro máximo, a intensidade do campo começa a decrescer. Esse comportamento

já era previsto, pois a partir dessa distância, apenas a região E in�uencia no per�l. Assim,

espera-se que o valor da intensidade do campo decresça até determinado valor e em seguida

�que constante.

20

3.3 Modelo Esquemático com Camadas Inclinadas e com Elevado

Contraste de Susceptibilidade (M3)

O modelo M3 é constituído por cinco rochas distintas: Granito (∆Kg = 2, 1× 10−3), Xisto

(∆Kx = 1, 0× 10−3), An�bolito (∆Ka = 0, 3× 10−3), Minério rico em Ilmenita (∆KI = 1799, 6× 10−3)

e Peridotito (∆Kp = 149, 6× 10−3), disposta sob uma camada de rochas sedimentares (que

consideramos como sendo um arenito, karenito = 0, 4×10−3) com espessura de 1km. Trata-se

de um modelo esquemático constituido por camadas inclinadas com elevado contraste de sus-

ceptibilidade (Figura 3.7). Nesse modelo utilizou-se 231 barras com espessura aproximada

de 490,0 m.

Figura 3.7: Representação grá�ca do modelo M3.

As Figuras 3.8 e 3.9 mostram os per�s de anomalia magnética vertical e horizontal, respec-

tivamente, causados pelo modelo M3.

21

Figura 3.8: Per�l da componente vertical da anomalia magnética, Z, na superfície

causado pelo modelo M3.

Figura 3.9: Per�l da componente horizontal da anomalia magnética, H, na superfí-

cie causado pelo modelo M3.

Analisando os dois per�s, podemos perceber uma despresível in�uência das camadas de

granito, xisto e an�bolito. Isso acontece porque seus contrastes de susceptibilidade são muito

pequenos quando comparados com os da camada de minério de ilmenita e de peridotito.

Podemos visualizar três picos em cada per�l, sendo que no per�l da componente vertical, o

primeiro pico é bem suave e encontra-se, aproximadamente na posição x = 16, 0 km (este,

assemelha-se mais a um ponto de in�exão do que realmente um máximo). O primeiro pico,

22

em ambos os per�s, ocorre devido à mudança de litologia, da camada de an�bolito para a

camada de minério de ilmenita. À medida que x cresce, o comprimento das barras dipolares

na camada de minério de ilmenita vai aumentando até atingir um valor máximo, gerando

assim o segundo máximo.

A direita do segundo máximo (ainda analisando os dois per�s), pode-se observar um mínimo

de intensidade, que ocorre porque a camada de minério rico em ilmenita se torna cada vez

mais profunda. Outro fator que contribui para a diminuição da intensidade é a mudança do

tipo de litologia (pois, o contraste de susceptibilidade do peridotito é muito menor).

À medida que a espessura da camada de peridotito vai aumentando, a intensidade do campo

cresce, gerando o terceiro máximo.

23

3.4 Modelo Realístico com Camadas Mergulhantes e com Elevado

Contraste Lateral de Susceptibilidade (M4)

O modelo M4 possui exatamente as mesmas camadas rochosas do modelo M3, no entanto

variou-se a forma (a geometria) e a espessura dessas camadas, buscando uma melhor apro-

ximação de situações reais. Também consideramos para esse modelo, que as rochas sedi-

mentares sobre as camadas são arenitos. Foram utilizadas 229 barras, com espessura de

aproximadamente 490,0m.

Figura 3.10: Representação grá�ca do modelo M4.

As Figuras 3.11 e 3.12 mostram os per�s de anomalia magnética vertical e horizontal, res-

pectivamente, causados pelo modelo M4.

Figura 3.11: Per�l da componente vertical da anomalia magnética, Z, na superfície

produzido pelo medelo M4.

24

Figura 3.12: Per�l da componente horizontal da anomalia magnética, H, na super-

fície produzido pelo modelo M4.

Novamente, o minério rico em ilmenita e o peridotito têm total domínio sobre o comporta-

mento dos per�s, nos impedindo de ver a in�uência das camadas de granito, xisto e an�bolito.

O primeiro máximo visualizado nos dois per�s ocorre em resposta à camada de minério de

ilmenita. À medida que x cresce, a espessura dessa camada aumenta, até atingir um valor

máximo, gerando assim o primeiro pico.

Podemos perceber que o primeiro máximo no per�l da componente horizontal da anomalia

magnética encontra-se em x ∼= 16, 0 km. Até este ponto, no per�l da componente vertical,

não se detecta qualquer efeito, portanto, no intervalo considerado, a anomalia magnética

total é praticamente horizontal.

Em x ∼= 18, 0 km, encontra-se o primeiro máximo no per�l da componente vertical. Depois

dele, pode-se perceber que a intensidade cai para um mínimo. Isso ocorre porque a camada

de minério de ilmenita vai �cando mais estreita e cada vez mais profunda. Após o primeiro

mínimo, a intensidade aumenta novamente até atingir um valor máximo, que é resultado do

alargamento das camadas de minério de ilmenita e da in�uência da camada de peridotito.

Aumentando-se x, no modelo M4, pode-se perceber que as duas camadas se estreitam no-

vamente, fazendo com que a intensidade do campo total se reduza, produzindo um segundo

mínimo nos per�s. Em seguida as duas camadas se tornam cada vez mais largas, aumentando

a intensidade do campo magnético.

25

3.5 Modelo Falhado e com Dobras (M5)

Ainda buscando aproximar-se cada vez mais da realidade, foi proposto um modelo de uma

sinclinal e uma anticlinal com uma falha vertical. As rochas presentes neste modelo são:

Xisto (∆Kx = 1, 0× 10−3) e An�bolito (∆Ka = 0, 3× 10−3). As rochas sedimentares pre-

sentes no modelo são arenitos (karenito = 0, 4× 10−3). Utilizou-se 53 barras com espessura

aproximada de 505,0 m.

Figura 3.13: Representação grá�ca do modelo M5.

Na Figura 3.13 pode-se visualizar perfeitamente uma dobra geológica falhada. Esta falha é

do tipo vertical e está localizada na posição x = 18, 0 km.

As Figuras 3.14 e 3.15 exibem os per�s vertical e horizontal da anomalia magnética causado

por M5, respectivamente.

26

Figura 3.14: Per�l da componente vertical da anomalia magnética, Z, na superfície

causado por M5.

Figura 3.15: Per�l da componente horizontal da anomalia magnética, H, na super-

fície causado por M5.

Pode-se observar um pico em x ∼= 5, 0 km nos dois per�s. Este máximo é o efeito do

grande comprimento das barras dipolares magnetizadas que estão parametrizando a camada

de xisto. Outro fator que contribui para este máximo é o a�oramento desta camada. Logo

após o primeiro pico, podemos perceber que a intensidade cai drasticamente nos dois per�s,

chegando a �car negativa. Isso ocorre devido ao �vazio magnético� existente entre as camadas

de xisto e an�bolito (pois o contraste de susceptibilidade do arenito é zero).

27

Logo após o mínimo, a intensidade do campo magnético aumenta um pouco, por conta da

camada de an�bolito e depois �ca praticamente constante e próxima de zero.

Em x ∼= 20, 0 km no per�l da componente vertical e de x ∼= 17, 5 km no per�l da componente

horizontal, temos um pequeno pico, que é a resposta devido ao aparecimento da camada de

xisto que forma a anticlinal.

No per�l da componente horizontal, em x ∼= 5, 5 km, visualiza-se um pequeno pico, o qual,

não foi possível interpretar.

É importante destacar que a falha geológica não afetou o comportamento dos per�s.

CAPÍTULO 4

Conclusões

No presente trabalho foi possível observar a in�uência de alguns parâmetros na anomalia do

campo magnético com modelos parametrizados por barras dipolares inclinadas. Os parâme-

tros observados foram: os de caráter geométrico (profundidades, espessuras, e formas que

estão relacionados às dimensões das barras) das camadas e a variação da litologia, à qual

está associada a distribuição de susceptibilidades magnéticas.

As variações na profundidade das camadas provocam mudanças na intensidade das com-

ponentes das anomalias magnéticas. Quanto mais próximas da superfície as camadas se

encontram, maior é o valor da intensidade das anomalias causadas por elas. O inverso

também é verdade: camadas mais profundas in�uenciam menos na intensidade do campo.

Variações na espessura das camadas e, consequentemente no comprimento das barras, in�u-

enciam diretamente na magnitude do campo.

Os efeitos da mudança do tipo de litologia puderam ser detectados em todos os per�s. A

mudança de contraste de susceptibilidade ocasionou o aparecimento de máximos e mínimos

locais nos per�s estudados. Em determinados per�s, no entanto, algumas camadas com

grande contraste de susceptibilidade magnética nos impediu de detectar camadas com baixo

contraste de susceptibilidade.

É importante destacar também, que a falha geológica presente em um dos modelos estudados,

não afetou o comportamento dos per�s. Assim, pode-se propor para um trabalho futuro,

o estudo da anomalia magnética associada a falhas geológicas, utilizando barras dipolares

inclinadas.

Quanto à pergunta relativa à possibilidade de parametrização do campo de contrastes de

susceptibilidades magnéticas usando barras dipolares inclinadas, esse trabalho mostrou que

pode-se dar a ela uma resposta a�rmativa.

Os resultados desse trabalho foram bastante satisfatórios e validaram os princípios da Teoria

Magnética Clássica.

28

Agradecimentos

Agradeço a Deus em primeiro lugar, pela força e coragem necessária para alcançar os meus

objetivos.

À minha família, à minha namorada e aos meus amigos de longa data pelo apoio.

A todos os amigos que �z durante o curso.

Aos professores, que foram tão importantes na minha vida acadêmica, especialmente meu

orientador, Wilson Figueiró, pela paciência e disponibilidade.

À Ana d'O que sempre esteve me ajudando.

29

Referências Bibliográ�cas

Blakely, R. J. (1995) Potential Theory in Gravity & Magnetic Applications, Cambridge Un.

Press, Cambridge.

Kearey et al. (2009) Geofísica de Exploração, Editora O�cina de Textos, São Paulo, Brasil.

Lowrie, W. (1997) Fundamentals of Geophysics. Cambridge University Press.

Luiz, J. G. & da Costa e Silva, L. M. (1995) Geofísica de Prospecção, Editora Cejup, Belém.

Salazar, C. A. (2010) Anisotropia de Susceptibilidade Magnética dos Plútons Ribeirão Branco,

Sguário e Capão Bonito e implicações Tectônicas para a Faixa Ribeira (Domínio Apiaí, SP).

Tese de Doutoramento, Universidade de São Paulo, São Paulo, Brasil.

Santos, J. C. (2008) Modelagem Magnética com Embasamento Rochoso Parametrizado por

Barras Dipolares Inclinadas. Monogra�a, Universidade Federal da Bahia, Salvador, Brasil.

Sbaraini, S. (2012) Dados de Anisotropia de Susceptibilidade Magnética na Modelagem

Tridimensional do Maciço Sienítico Piquiri. Monogra�a, Universidade Federal do Rio Grande

do Sul, Porto Alegre, Brasil.

Telford, W. M.; Geldart, L. P.; Sheri�, R. E. & Keys, D. A. (1976) Applied Geophysics,

Cambridge Un. Press, Cambridge.

Tipler, P. A. & Mosca, G. (2009) Física para Cientistas e Engenheiros. Volume 2, Editora

LTC.

30