outro fluxograma

158
DEPTº DE ENGENHARIA AMBIENTAL - DEA UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MESTRADO PROFISSIONAL EM GERENCIAMENTO E TECNOLOGIAS AMBIENTAIS NO PROCESSO PRODUTIVO SALVADOR 2004 MARIA HELENA DEL GRANDE RACIONALIZAÇÃO DO USO DE ÁGUA NA INDÚSTRIA DE CELULOSE O CASO BAHIA PULP

Upload: eliane-f-souza

Post on 26-Jul-2015

167 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Outro Fluxograma

DEPTº DE ENGENHARIA AMBIENTAL - DEA

UNIVERSIDADE FEDERAL DA BAHIAESCOLA POLITÉCNICA

MESTRADO PROFISSIONAL EMGERENCIAMENTO E TECNOLOGIAS

AMBIENTAIS NO PROCESSO PRODUTIVO

SALVADOR 2004

MARIA HELENA DEL GRANDE

RACIONALIZAÇÃO DO USO DE ÁGUA NA INDÚSTRIA DE CELULOSE

O CASO BAHIA PULP

Page 2: Outro Fluxograma

MARIA HELENA DEL GRANDE

RACIONALIZAÇÃO DO USO DE ÁGUA NA INDÚSTRIA DE CELULOSE:

O CASO BAHIA PULP

Dissertação apresentada ao curso de Mestrado Profissional em Gerenciamento e Tecnologias Ambientais no Processo Produtivo, Escola Politécnica, Universidade Federal da Bahia, como requisito parcial para obtenção do grau de Mestre. Orientador: Prof. Dr. Emerson Andrade Sales

Salvador 2004

Page 3: Outro Fluxograma

D3527r Del Grande, Maria Helena Racionalização do uso de água na indústria de celulose: o caso

Bahia Pulp./ Maria Helena Del Grande. --- Salvador-Ba, 2004. 156p. il.; color.

Orientador: Prof. Dr. Emerson Andrade Sales Dissertação (Mestrado em Gerenciamento e Tecnologias

Ambientais no Processo Produtivo) - Universidade Federal da Bahia. Escola Politécnica, 2004.

1.Água – Racionalização 2. Água – Reutilização 3. Indústria de

Celulose – Aspecto ambiental – Bahia. I. Universidade Federal da Bahia. Escola Politécnica. II. Sales, Emerson Andrade III. Bahia Pulp. I.Titulo

CDD 333.91

Page 4: Outro Fluxograma

A

Dilvio, meu pai, exemplo de honestidade, retidão, otimismo e perseverança.

Ivone, minha mãe, a alegria e efusividade em pessoa.

Juntos, uma combinação do que há de melhor para se aprender e viver.

Page 5: Outro Fluxograma

AGRADECIMENTOS

Ao Prof. Emerson Andrade Sales, pelo incentivo, prontidão e competente orientação na

condução deste trabalho.

A Klabin Bacell, pelo co-patrocínio e pelo fornecimento de dados.

Ao colega Alberto Ferreira Lima, pelo apoio e valiosa contribuição com sugestões e

recomendações.

A todos os colegas da Bahia Pulp que contribuíram com informações, dados e suporte técnico,

em especial a Antonio Francisco Anunciação, Eduardo César Tonelli, Élvio Paulo Brasil, José

Figueiredo Rocha, Paulo Homero Figueiredo, Rafael Olímpio F. Araújo e Shirlei de Araújo

Cerqueira.

Aos colegas da ex-Klabin Bacell e ex-Klabin Riocell, que igualmente contribuíram, em

especial a Alexandre de Araújo Santana e Moacir José Sauer.

Page 6: Outro Fluxograma

RESUMO

O presente trabalho apresenta, discute e avalia alternativas para o reuso da água na indústria de celulose, com destaque para o estudo de caso de uma indústria de celulose solúvel com tecnologia de branqueamento TCF, Bahia Pulp S/A. São apresentados conceitos que apóiam a gestão ambiental na indústria, tais como sistema de gestão ambiental baseado na norma ISO 14001, produção mais limpa e produção limpa, e oportunidades de melhoria na gestão ambiental, como tecnologias limpas, fechamento de circuitos e redução de efluentes na fonte.

A metodologia utilizada no estudo de caso envolveu o levantamento físico do sistema de efluentes orgânicos, a elaboração do balanço de águas, reuniões e entrevistas com operadores de produção e estudo de oportunidades.

Uma proposta de implementação dessas oportunidades, baseada no levantamento de dados realizado em 2003, é apresentada, discutida e avaliada. Da análise de resultados, conclui-se que a aplicação dos conceitos citados acima e a metodologia utilizada propiciaram a identificação de soluções com custos inferiores a R$200.000,00 e retorno sobre o investimento menor que um ano (ambos estimados), a implantação de um sistema de monitoramento contínuo qualitativo e quantitativo dos principais contribuintes ao efluente final e o aumento da conscientização ambiental, os quais contribuirão para a melhoria da gestão ambiental da Bahia Pulp S/A.

Palavras-chave: Água – Racionalização; Água – Reutilização; Indústria de Celulose – Aspecto Ambiental – Bahia

Page 7: Outro Fluxograma

ABSTRACT

This thesis presents, discusses and evaluates alternatives for water reuse in the pulp industry, emphasizing a case study of a dissolving pulp mill that uses TCF bleaching technology, Bahia Pulp S/A. It presents different concepts that sustain the environmental management in industry such as environmental management system based on the ISO 14001 standards, cleaner production and clean production, and suggestions for improving the environmental management such as clean technologies, water systems closure and effluents reduction in the source.

The methodology applied to the case study included a physical survey of the organic effluents system, development of a water balance, meetings and interviews with production operators and a study of water savings.

A proposal to implement these opportunities, based on a data survey realized in 2003, is presented, discussed and evaluated. From the results analysis it is concluded that the application of the concepts above mentioned and the assumed methodology led to the identification of technical solutions with costs lower than US$70.000 and return over investment lower than one year (both estimated), the implementation of a continuous qualitative and quantitative monitoring system of the major contributors to the final effluent, and the increase on the environmental consciousness, which will contribute for improving the environmental management in Bahia Pulp S/A.

Keywords: Water – Rationalization; Water – Reutilization; Pulp Industry – Environmental Aspect – Bahia

Page 8: Outro Fluxograma

LISTA DE FIGURAS

Figura 1 – Esquema Simplificado do Branqueamento .......................................................................................... 21 Figura 2 – Fases de Um Estágio de Branqueamento ............................................................................................. 23 Figura 3 – Fluxograma de Processo Geral Simplificado ....................................................................................... 30 Figura 4 – Manuseio de Madeira........................................................................................................................... 32 Figura 5 – Cozimento, Lavagem e Depuração Não Branqueada........................................................................... 39 Figura 6 – Deslignificação com Oxigênio ............................................................................................................. 43 Figura 7 – Branqueamento .................................................................................................................................... 46 Figura 8 – Depuração Branqueada e Secagem ...................................................................................................... 50 Figura 9 – Evaporação e Caldeira de Recuperação ............................................................................................... 57 Figura 10 – Caldeira de Força e Turbogerador...................................................................................................... 60 Figura 11 – Caustificação e Forno de Cal ............................................................................................................. 64 Figura 12 – Preparo de Produtos Químicos – I...................................................................................................... 67 Figura 13 – Preparo de Produtos Químicos – II .................................................................................................... 68 Figura 14 – Consumo de Água Industrial – Volumétrico (m3/h)........................................................................... 72 Figura 15 – Consumo de Água Industrial – Específico (m3/tsa) ........................................................................... 72 Figura 16 – Vazão de Efluentes – Volumétrica (m3/h).......................................................................................... 73 Figura 17 – Vazão de Efluentes – Específica (m3/tsa)........................................................................................... 74 Figura 18 – Balanço de Águas da Evaporação (m3/h) ........................................................................................... 96 Figura 19 – Balanço de Águas do Pátio de Madeira (m3/h) .................................................................................. 97 Figura 20 – Situação Atual do Consumo de Água no Pátio de Madeira (m3/h) .................................................... 99 Figura 21 – Alternativa 1 – Reuso da Água de Selagem no Pátio de Madeira (m3/h) ......................................... 100 Figura 22 – Alternativa 2 – Reuso da Água Branca no Pátio de Madeira (m3/h) ................................................ 101 Figura 23 – Balanço de Águas do Branqueamento (m3/h) .................................................................................. 103 Figura 24 – Variações da Temperatura da polpa na Torre do estágio ácido e da Alvura da polpa após o estágio

com ozônio – Valores instantâneos ............................................................................................................. 107 Figura 25 – Variações da Temperatura da polpa na Torre do estágio ácido e da Alvura da polpa após o estágio

com ozônio – Valores médios ..................................................................................................................... 107 Figura 26 – Balanço de Águas da Secagem (m3/h) ............................................................................................. 108 Figura 27 – Situação Atual do Circuito de Água de Selagem (m3/h) .................................................................. 110 Figura 28 – Alternativa 3 – Fechamento do Circuito de Água de Selagem (m3/h) ............................................. 111

Page 9: Outro Fluxograma

LISTA DE TABELAS

Tabela 1 – Notação dos Estágios de Branqueamento ............................................................................................ 22 Tabela 2 – Consumo dos Principais Insumos Químicos........................................................................................ 28 Tabela 3 – Capacidade dos Poços de Água ........................................................................................................... 71 Tabela 4 – Características do Efluente Orgânico da Bahia Pulp ........................................................................... 75 Tabela 5 – Pontos de Medição de Efluentes Orgânicos Setoriais.......................................................................... 93

Page 10: Outro Fluxograma

LISTA DE ABREVIATURAS E SIGLAS

ABIQUIM Associação Brasileira das Indústrias Químicas

ABNT Associação Brasileira de Normas Técnicas

ADTB “Air Dry Ton Bleached”

ADMT “Air Dry Metric Ton”

ADT “Air Dry Ton”

AOX “Adsorbable Organic Compounds” (Compostos halógenos orgânicos adsorvíveis)

CETREL CETREL S.A EMPRESA DE PROTEÇÃO AMBIENTAL; empresa que processa os efluentes e resíduos industriais gerados pelas indústrias do Pólo Petroquímico de Camaçari

COPEC Complexo Petroquímico de Camaçari

COPENER COPENER FLORESTAL LTDA.; empresa adquirida pela Bahia Pulp, com a qual a Klabin Bacell tinha contrato estabelecido de compra e venda de madeira em pé de eucalipto

DBO Demanda Bioquímica de Oxigênio

DCM Solúveis em Dicloro Metano

DQO Demanda Química de Oxigênio

ECF “Elemental Chlorine Free

EMAS “Eco-Management and Audit Scheme”

PI “Plant Information System”; sistema de informações industriais que disponibiliza dados históricos e em tempo real de variáveis de processo e resultados de laboratório

SGA Sistema de Gestão Ambiental

TCF “Totally Chlorine Free”

TSA Tonelada Seca ao Ar

Page 11: Outro Fluxograma

SUMÁRIO

LISTA DE FIGURAS LISTA DE TABELAS LISTA DE ABREVIATURAS E SIGLAS SUMÁRIO 1 INTRODUÇÃO............................................................................................................................................. 11 2 OBJETIVOS.................................................................................................................................................. 14 3 ESTADO DA ARTE ..................................................................................................................................... 15

3.1 O PROCESSO DE FABRICAÇÃO DE CELULOSE........................................................................... 15 3.1.1 A Matéria-Prima Madeira.............................................................................................................. 15 3.1.2 Tecnologia e Química do Processo Kraft ...................................................................................... 17 3.1.3 Branqueamento.............................................................................................................................. 20 3.1.4 Redução da Poluição no Branqueamento ...................................................................................... 25 3.1.5 Redução da Poluição em outras Fontes Poluidoras ....................................................................... 26

3.2 O PROCESSO DE FABRICAÇÃO DA BAHIA PULP ....................................................................... 27 3.2.1 A Indústria Bahia Pulp .................................................................................................................. 27 3.2.2 Manuseio de Madeira .................................................................................................................... 31 3.2.3 Cozimento...................................................................................................................................... 34 3.2.4 Lavagem e Depuração Não Branqueada........................................................................................ 37 3.2.5 Deslignificação com Oxigênio ...................................................................................................... 42 3.2.6 Branqueamento.............................................................................................................................. 45 3.2.7 Depuração Branqueada.................................................................................................................. 48 3.2.8 Secagem, Linha de Fardos e Linha de Bobinas ............................................................................. 52 3.2.9 Evaporação .................................................................................................................................... 56 3.2.10 Recuperação e Utilidades .............................................................................................................. 59 3.2.11 Caustificação e Forno de Cal......................................................................................................... 62 3.2.12 Preparo de Produtos Químicos ...................................................................................................... 66 3.2.13 Captação e Tratamento de Água Bruta .......................................................................................... 71 3.2.14 Tratamento de Efluentes ................................................................................................................ 73

3.3 GESTÃO AMBIENTAL....................................................................................................................... 76 3.3.1 Sistema de Gestão Ambiental: ISO 14001 .................................................................................... 77 3.3.2 Produção Mais Limpa.................................................................................................................... 78 3.3.3 Produção Limpa............................................................................................................................. 78

3.4 TECNOLOGIAS LIMPAS ADOTADAS NA BAHIA PULP.............................................................. 79 3.5 FECHAMENTO DE CIRCUITOS NA INDÚSTRIA DE CELULOSE............................................... 82 3.6 REDUÇÃO NA GERAÇÃO DE EFLUENTES ................................................................................... 85 3.7 DISPOSIÇÃO DE EFLUENTES NO SOLO........................................................................................ 86

4 METODOLOGIA.......................................................................................................................................... 88 4.1 LEVANTAMENTO FÍSICO DO SISTEMA DE EFLUENTES ORGÂNICOS .................................. 89 4.2 BALANÇO DE ÁGUAS....................................................................................................................... 90 4.3 ANÁLISES QUÍMICAS E FÍSICO-QUÍMICAS ................................................................................. 91 4.4 ESTUDO DE OPORTUNIDADES....................................................................................................... 92

5 RESULTADOS E DISCUSSÃO................................................................................................................... 93 5.1 LEVANTAMENTO FÍSICO DO SISTEMA DE EFLUENTES ORGÂNICOS .................................. 93 5.2 BALANÇO DE ÁGUAS....................................................................................................................... 94

5.2.1 Evaporação .................................................................................................................................... 95 5.2.2 Pátio de Madeira............................................................................................................................ 97 5.2.3 Branqueamento............................................................................................................................ 102 5.2.4 Secagem....................................................................................................................................... 108 5.2.5 Água de Selagem......................................................................................................................... 109

5.3 MELHORIAS NO SISTEMA DE ÁGUAS E EFLUENTES ............................................................. 112 6 CONCLUSÕES E PERSPECTIVAS.......................................................................................................... 115 REFERÊNCIAS .................................................................................................................................................. 117 GLOSSÁRIO ...................................................................................................................................................... 121 APÊNDICE A – Balanço de Águas – Volumétrico (m3/h) ................................................................................. 127 APÊNDICE B – Balanço de Águas – Específico (m3/tsa) .................................................................................. 131 ANEXO A – Plano de Qualidade das Águas....................................................................................................... 135 ANEXO B – Levantamento de Melhorias no Sistema de Águas e Efluentes...................................................... 139 ANEXO C – Telas de Monitoramento das Águas e Efluentes ............................................................................ 153

Page 12: Outro Fluxograma

11

1 INTRODUÇÃO

A água é um recurso natural fundamental para a manutenção da vida no planeta

Terra e para o funcionamento dos demais ciclos e funções naturais. A sua disponibilidade

afeta diretamente a população humana, cujo crescimento exponencial vem promovendo uma

enorme demanda, seja na produção de alimentos, na produção de energia, na saúde humana,

nas atividades industriais, e outros (TUNDISI, 2004, p.4).

O desenvolvimento industrial tem gerado vários impactos sobre o recurso natural

água, reduzindo sua disponibilidade, devido à captação de água de rios e extração do subsolo,

e degradando sua qualidade, devido à poluição.

A indústria de celulose faz uso extensivo de água, elemento essencial para o

processamento da madeira e meio para transporte da polpa celulósica (bombeamento) entre os

diversos estágios do processo. O volume e as características dos efluentes gerados pela

indústria de celulose variam e dependem do processo de fabricação, do tipo de madeira e dos

equipamentos utilizados (SIMONS, 1994).

As questões básicas relativas às águas foram inseridas na Constituição Federal de

1998, na qual todos os corpos d’água passaram a ser de domínio público, sendo considerados

como bens do Estado ou da União.

A lei 9.433/97, sobre a gestão dos recursos hídricos no Brasil, está embasada em

princípios de âmbito mundial, os quais consideram: a bacia hidrográfica a unidade de

planejamento e gestão dos recursos hídricos; igual acesso ao uso deste recurso por todos os

setores usuários de água; a água como um bem finito e vulnerável; e a gestão dos recursos

hídricos descentralizada e participativa.

A cobrança pelo uso da água nas bacias hidrográficas já está ocorrendo em alguns

estados, e será introduzida em todas as bacias hidrográficas do país. Diante desse fato, várias

indústrias passaram a investir em programas de racionalização e reuso da água, além de

reavaliarem a captação de recursos hídricos.

Page 13: Outro Fluxograma

12

A Bahia Pulp1 era originalmente uma fábrica de celulose para papel, que utilizava

o sisal como matéria-prima, tendo sido desativada e suas operações paralisadas em 1985.

Após um projeto de reforma, reiniciou suas atividades em janeiro de 1996, para produzir

celulose solúvel a partir de madeira de eucalipto, destinada principalmente ao mercado

externo. Alternativamente, a Bahia Pulp pode produzir celulose para papel, ajustando-se

condições de processo.

No projeto da Bahia Pulp foram adotadas as mais modernas tecnologias da época,

como, por exemplo, seqüências de branqueamento isentas de cloro e compostos clorados, as

quais promovem redução no volume de efluentes gerado em relação aos processos que ainda

utilizam compostos clorados. Essas seqüências de branqueamento, que empregam oxigênio,

ozônio e peróxido de hidrogênio, denominadas seqüências TCF (“Totally Chlorine Free”),

permitem que o material orgânico dissolvido na reação de deslignificação possa ser enviado

ao ciclo de recuperação para ser recuperado, e não mais descartado como ocorre com o

efluente de indústrias que ainda utilizam compostos clorados (RELATÓRIO..., 2000).

A celulose solúvel, também chamada celulose para dissolução, é uma celulose

especial destinada a conversões químicas, como, por exemplo, o “rayon”, para aplicações

têxteis, o celofane e os derivados celulósicos, como acetato e nitrocelulose (PETER e LIMA,

1996). Esses produtos estão presentes no nosso dia-a-dia, em tecidos, produtos higiênicos

(fraldas, absorventes), embalagens (celofane), tecidos especiais (tencell, lyocell), pneus,

invólucros de alimentos (salsichas, linguiças, frios), filtros de cigarros, explosivos, aditivos

para tintas, plásticos moldados (cabos de ferramentas), filmes fotográficos, cápsulas de

comprimidos, carga nos comprimidos, espessantes (sorvetes, maionese), retardante de

cristalização para congelados, ligantes para pasta de dentes, agentes protetores para cremes, e

outros.

Cada uma dessas aplicações requer especificações diferentes: pureza, viscosidade,

alvura, densidade, teor de cinza.

Os requisitos principais para a celulose solúvel são a alta pureza e o alto conteúdo

de celulose uniforme com grau de polimerização constante, significando, em outras palavras,

ter um baixo conteúdo de hemiceluloses, lignina, cinzas e extrativos (PETER e LIMA, 1996).

1 Bahia Pulp S/A é a nova razão social da Klabin Bacell S/A, adquirida pelo grupo asiático RGM International em 2003.

Page 14: Outro Fluxograma

13

A matéria-prima utilizada pela Bahia Pulp é a madeira de eucalipto. O produto

final é a celulose solúvel, comercializada em fardos, que são folhas de celulose sobrepostas e

prensadas, embaladas e amarradas com arame, com peso entre 150 e 250 kg por fardo, ou em

bobinas, que são rolos de folha de celulose, com peso variando de 300 a 1500 kg

(RELATÓRIO..., 2000).

A água que abastece a Bahia Pulp é captada do aqüífero de São Sebastião a partir

de oito poços. O volume específico de água consumida atualmente é de 54 m3/tsa, equivalente

a 668 m3/h, e encontra-se acima da faixa de 30 a 50 m3/tsa de água consumida pela indústria

de celulose na União Européia, conforme divulgado pela literatura do setor. A nível mundial,

as melhores tecnologias podem levar a um consumo específico muito próximo de 20 m3/tsa.

Os efluentes das diferentes etapas do processo da Bahia Pulp são segregados em

efluente orgânico e efluente inorgânico. O efluente orgânico é neutralizado, e encaminhado

para a Estação de Tratamento de Efluentes Líquidos da CETREL, por onde passa por

tratamento biológico com lodo ativado para remoção de DBO e DQO, não passando por

tratamentos primário e secundário dentro dos limites da fábrica. O efluente inorgânico não

contaminado, que recebe drenagens pluviais e purgas de caldeiras, é igualmente encaminhado

para a Estação de Tratamento de Efluentes Líquidos da CETREL.

O volume específico de efluente orgânico gerado pela Bahia Pulp atualmente é de

47 m3/tsa, equivalente a 586 m3/h.

Antecipando-se à cobrança pelo uso da água, e assumindo como premissa que as

tecnologias atualmente implantadas na Bahia Pulp não são suficientes para reduzir o consumo

de água industrial e a geração de efluente orgânico, outras formas para conseguí-lo são

buscadas, prioritariamente através do reuso.

Page 15: Outro Fluxograma

14

2 OBJETIVOS

O presente trabalho objetiva identificar formas de reduzir a captação de água e a

geração de efluentes da unidade fabril da Bahia Pulp, mantendo a qualidade da celulose

produzida e aplicando os conceitos de tecnologias limpas, ou seja, uma abordagem de

controle preventivo da poluição (“pollution prevention”).

Dentre as várias técnicas de produção mais limpa, ou seja, a redução do poluente

na fonte, o reuso ou reciclo interno e externo e os tratamentos de fim-de-tubo, o reuso dessas

águas pode ser uma alternativa atrativa e facilitada no caso da Bahia Pulp, devido à

inexistência de compostos organoclorados em seu efluente, em função da tecnologia TCF. Por

outro lado, é necessário investigar as possíveis conseqüências desse reuso, como, por

exemplo, o aumento da temperatura das correntes líquidas e o aumento da concentração de

substâncias estranhas ao processo (contaminantes), que podem requerer um maior consumo

de reagentes e gerar impactos negativos na qualidade e propriedades do produto final, isto é,

nos parâmetros de especificação exigidos pelos clientes (RELATÓRIO..., 2000).

Os objetivos específicos são:

- Realizar um balanço de águas do processo;

- Propor alternativas para a redução do consumo de água industrial, com conseqüente

redução na geração de efluentes.

Page 16: Outro Fluxograma

15

3 ESTADO DA ARTE

3.1 O PROCESSO DE FABRICAÇÃO DE CELULOSE

3.1.1 A Matéria-Prima Madeira

As madeiras usualmente utilizadas na fabricação de celulose são de coníferas e de

folhosas. A madeira de conífera é uma madeira macia, e por isso também chamada de

“softwood”. Sua fibra é longa, medindo de 3 a 6 mm de comprimento, dando mais resistência

mecânica à folha. As madeiras de folhosas (árvores que perdem as folhas) são mais duras e

por isso também chamadas de “hardwood”. Sua fibra é curta, medindo em média 1 mm de

comprimento. É considerada um vegetal mais evoluído, crescendo mais rápido e de maneira

mais eficiente. O eucalipto, a madeira mais utilizada para produção de celulose no Brasil, está

entre as folhosas, e o tempo de corte é de 6 a 8 anos, enquanto que o das coníferas é de 40 a

50 anos (INSTITUTO..., 1988; COLODETTE e outros, 2002).

A madeira é composta por muitos componentes químicos, sendo que mais de

5.000 deles já foram identificados; desses, 4.000 são terpenos e terpenóides, isto é, extrativos.

A análise elementar da madeira mostra que ela é constituída de carbono (~50%), oxigênio

(~44%), hidrogênio (~6%), nitrogênio (~0,4%) e inorgânicos (~0,4%). As classes de

compostos presentes são os carboidratos, substâncias fenólicas, terpenos e terpenóides, ácidos

alifáticos, álcoóis, proteínas, constituintes inorgânicos e outros (COLODETTE e outros,

2002).

Na composição geral da madeira participam polissacarídeos, entre eles a celulose

(em torno de 50% do total em peso) e as hemiceluloses (em torno de 20%), sendo as xilanas

predominantemente presentes nas folhosas e as glicomanas predominantemente presentes nas

coníferas; participam ainda as ligninas (de 15 a 35%) , os extrativos e os constituintes

inorgânicos (até 10%) (COLODETTE e outros, 2002).

O objetivo de uma fábrica de celulose, do ponto de vista químico, é isolar a

celulose dos outros componentes da madeira. Porém essa passa a ser uma tarefa difícil, pois as

macromoléculas, de alto peso molecular, são difíceis de serem isoladas sem alterações

Page 17: Outro Fluxograma

16

significativas na sua estrutura, e o comportamento químico da madeira não é dedutível pela

natureza individual dos seus componentes (COLODETTE e outros, 2002).

A celulose é um polímero de cadeia linear, constituído por um único tipo de

unidade de açúcar (glucose) insolúvel em solventes orgânicos, água, ácidos e álcalis diluídos,

a temperatura ambiente. Tem uma função estrutural, conferindo uma resistência à tração à

madeira (COLODETTE e outros, 2002). É o componente da madeira que interessa ao

processo de fabricação de celulose solúvel.

As hemiceluloses correspondem a 20~30% do peso da madeira. Diferem da

celulose, por serem constituídas por diferentes tipos de unidades de açúcares e ácidos, além de

serem polímeros ramificados e de cadeia mais curta. Apresentam-se associadas à lignina e à

celulose, e também têm função estrutural, dando resistência à tração à madeira

(COLODETTE e outros, 2002). São componentes que não interessam ao processo de

fabricação de celulose solúvel, e sim ao de celulose para papel.

A lignina é um polímero aromático, heterogêneo, ramificado e amorfo,

completamente diferente da celulose. Não possui nenhuma unidade repetidora definida. Tem

várias funções: aumenta a rigidez da parede celular e reduz sua permeabilidade à água, pois é

hidrofóbica, cimenta as células umas às outras, protege a madeira contra microorganismos e

aumenta a resistência da planta à compressão, permitindo seu crescimento vertical

(COLODETTE e outros, 2002).

Os extrativos são componentes da madeira não pertencentes à parede celular; são

extraíveis em água e/ou solventes orgânicos neutros. Influenciam nas propriedades físicas da

madeira, tais como cheiro, cor, resistência a microorganismos, etc. Geram subprodutos de alto

valor comercial, como a terebentina, o breu, a borracha, os taninos, etc. Têm efeitos negativos

no processo de fabricação de celulose, pois dificultam o cozimento e o branqueamento da

madeira, e dão origem ao “pitch”, pintas no papel, etc. Têm várias funções: como material de

reserva (ácidos graxos, gorduras, ceras, amido, açúcares, etc.); como material de proteção

(terpenos, polifenóis, etc.); e como hormônios vegetais (terpenóides, a saber fitosterol e

sistosterol). Classificam-se em compostos alifáticos, terpenos e terpenóides (praticamente

ausentes nas madeiras de folhosas) e compostos fenólicos (COLODETTE e outros, 2002).

Os constituintes inorgânicos são as chamadas “cinzas” da madeira: Na, K, Ca,

Mg, Fe, Mn, Cu, SiO2 e silicatos, etc. Cerca de 5% está presente na casca da madeira. Causam

Page 18: Outro Fluxograma

17

vários efeitos negativos: Mn, Fe, Cu, Co e Zn afetam o branqueamento com perda de

viscosidade e reversão de alvura; Ca, Al, Si, Ba, Mg, Mn provocam incrustações na caldeira

de recuperação, nos evaporadores e lavadores; K, Cl, Cr causam corrosão e entupimentos na

caldeira de recuperação; P e N, como nutrientes, prejudicam o tratamento de efluentes; Cd,

Cu, Ni, As, Hg, Zn, Cr causam toxicidade (COLODETTE e outros, 2002).

3.1.2 Tecnologia e Química do Processo Kraft

Uma fábrica de celulose com processo Kraft é constituída basicamente de 3

linhas: linha de Fibras – recepção de madeira, polpação, lavagem, branqueamento, secagem e

expedição; linha de Recuperação – evaporação, caldeira de recuperação, caustificação e forno

de cal; linha de Utilidades – tratamento de água e efluente, produção de químicos, vapor,

energia e ar comprimido (COLODETTE e outros, 2002).

O processo Kraft tem como vantagens o uso de praticamente qualquer madeira, a

obtenção de uma celulose de alta resistência, e um eficiente sistema de recuperação dos

reagentes; como desvantagens, o baixo rendimento (cerca de 40 a 45% para madeira de

coníferas e de 45 a 54% para madeira de folhosas), o alto custo de investimento, e a poluição

odorífera (devida à formação de mercaptanas) (COLODETTE e outros, 2002).

A madeira é o item de maior custo na produção de celulose (COLODETTE e

outros, 2002).

O eucalipto foi trazido da Austrália para o Brasil no início do século XX, para

suprir as necessidades de lenha do transporte ferroviário da época. Somente quatro das cerca

de 600 espécies de eucalipto se desenvolveram bem no Brasil: grandis, saligna, urophylla,

viminalis. Entre os híbridos, o urograndis se adequou muito bem à fabricação de celulose

(INSTITUTO..., 1988).

Para a produção de celulose é desejável uma madeira sem extrativos. A casca, por

conter alto teor de extrativos, é removida. Por isso, a primeira operação em uma fábrica de

celulose é o descascamento da madeira ( INSTITUTO..., 1988).

Page 19: Outro Fluxograma

18

A madeira é descascada também pelos seguintes motivos: o teor de fibras boas na

casca é baixo, levando a um baixo rendimento; o consumo de reagentes na polpação e no

branqueamento é maior; os extrativos da casca causam “pitch” e espuma; a lavagem e a

depuração são mais difíceis; incrustações e células escuras da casca causam maior sujeira e

menor alvura na polpa; as propriedades de resistência da polpa ficam prejudicadas

(COLODETTE e outros, 2002).

As cascas podem ser utilizadas para fertilização do solo na própria floresta, ou

para fins energéticos, quando queimadas em uma caldeira de biomassa (poder calorífico da

casca do eucalipto é de cerca de 4.000 kcal/kg) (COLODETTE e outros, 2002).

A madeira descascada, na forma de toras, é então picada no picador de toras, e

transformada em cavacos (INSTITUTO..., 1988).

O tamanho dos cavacos é muito importante na polpação, isto é, na separação das

fibras. A espessura é a dimensão crítica nos processos alcalinos, pois controla a uniformidade

da reação de cozimento. As dimensões ideais são 20 mm de comprimento e 4 mm de

espessura, sendo aceitáveis cavacos com 10 a 30 mm de comprimento e 2 a 8 mm de

espessura. Cavacos super-dimensionados, finos e palitos devem ser minimizados. Por isso, os

cavacos produzidos são classificados, separando-se os cavacos aceitos através de peneiras

vibratórias com perfurações ou em peneiras especiais para classificação por espessura.

Cavacos de dimensões não adequadas causam polpação não uniforme, aumento de rejeitos,

aumento do custo de produção, problemas de entupimento, e outros (COLODETTE e outros,

2002).

Os nós dos cavacos também devem ser separados, pois são a parte mais dura da

madeira, rica em lignina (COLODETTE e outros, 2002).

Os cavacos de madeira são aquecidos em um vaso de pressão, conhecido como

digestor, com licor de cozimento, consistindo de uma solução aquosa de hidróxido de sódio

(NaOH) e sulfeto de sódio (Na2S), reagentes ativos, conhecida como licor branco. Parte do

licor do cozimento anterior, o licor negro, contendo constituintes de madeira dissolvidos, é

usado como diluente para assegurar uma boa circulação, sem introduzir uma quantidade extra

de água. Para fins de controle de processo, controla-se a relação madeira/licor, a concentração

de licor, a umidade dos cavacos, e outras variáveis (INSTITUTO..., 1988).

Page 20: Outro Fluxograma

19

No processo de cozimento “batch”, ou descontínuo, o aquecimento é feito

conforme um programa pré-estabelecido, no qual a temperatura é elevada gradualmente até

atingir um determinado valor, e mantida durante um certo intervalo de tempo. Após o período

de cozimento, a válvula no fundo do digestor é aberta, e a pressão de alívio na descarga do

digestor desdobra os cavacos em fibras individuais, formando a polpa (INSTITUTO..., 1988).

No processo de cozimento contínuo, os cavacos e licor são alimentados

continuamente no digestor e atravessam zonas de temperatura crescente até atingir a zona de

cozimento, onde a temperatura é mantida constante. Os cavacos atravessam essa zona, até

serem descarregados continuamente do fundo do digestor (INSTITUTO..., 1988).

A depuração de polpa não branqueada é a área da fábrica onde a polpa produzida

no digestor é peneirada mecanicamente, para eliminar constituintes indesejáveis, com perda

mínima de fibras boas. Entre os constituintes indesejáveis existem os fibrosos, como cavacos

não cozidos, palitos e nós, e os não fibrosos, como pedras, areia, argamassa de tanques e

azulejos, porcas, parafusos, pedaços de chapas, ferrugem de encanamentos, etc

(COLODETTE e outros, 2002). A polpa não branqueada, também chamada polpa marrom,

passa por depuradores, seguindo para os estágios seguintes da depuração, e os nós separados

são lavados e armazenados em silos.

A polpa não branqueada depurada é lavada, para promover a máxima remoção de

materiais orgânicos dissolvidos da madeira e inorgânicos (solúveis) do licor de cozimento,

com uma quantidade mínima de água limpa ou recirculada de processo (COLODETTE e

outros, 2002).

A evaporação é a área da fábrica onde o licor preto fraco, resíduo do cozimento,

lavagem e depuração, isento de fibras, é concentrado até um teor de sólidos totais, que

permita sua queima na caldeira de recuperação. Atualmente, instalações modernas permitem

concentrar o licor preto até 80% de sólidos totais (COLODETTE e outros, 2002).

Na caldeira de recuperação, o licor preto concentrado, rico em matéria orgânica, é

queimado para produzir vapor de baixa, média e alta pressão e energia elétrica para o

processo. Além disso, a caldeira de recuperação atua como um reator, produzindo licor verde,

composto por carbonato de sódio (Na2CO3) e sulfeto de sódio (Na2S), recuperando assim

grande parte dos sais de sódio, e destruindo a matéria orgânica dissolvida da madeira

(COLODETTE e outros, 2002).

Page 21: Outro Fluxograma

20

Na caustificação é produzido o licor branco, solução aquosa de hidróxido de sódio

(NaOH) e sulfeto de sódio (Na2S), contendo quantidade mínima de compostos químicos

inertes ao processo de polpação (COLODETTE e outros, 2002), que é reutilizado no

cozimento.

Na reação de caustificação, a cal (CaO) é apagada com água no extintor de cal e

reage com o carbonato de sódio (Na2CO3) do licor verde para produzir o hidróxido de sódio

(NaOH), e o carbonato de cálcio (CaCO3), chamado de lama de cal. A reação com o

carbonato de sódio (Na2CO3) ocorre simultaneamente e prossegue nos caustificadores

(INSTITUTO..., 1988) .

As reações principais no processo acima descrito são:

CaO(s) + H2O(aq) → Ca(OH)2 (s) (extinção)

Na2CO3 (aq) + Ca(OH)2 (s) ↔ 2 NaOH(aq) + CaCO3 (s) (caustificação)

A lama de cal produzida na caustificação é calcinada no forno de cal, para ser

reutilizada no processo como cal recuperada, com mínimo uso de energia (COLODETTE e

outros, 2002).

A reação de calcinação é:

CaCO3 + calor → CaO + CO2 (calcinação)

3.1.3 Branqueamento

O objetivo do branqueamento é branquear e limpar a polpa através da remoção de

substâncias que absorvem luz (COLODETTE e outros, 2002). Esse objetivo é mais facilmente

obtido, quando se utiliza uma combinação de reagentes em vários estágios, alternando-se

processos oxidativos com processos de solubilização em álcalis (INSTITUTO..., 1988).

O esquema simplificado do processo de branqueamento é mostrado na Figura 1, a

seguir.

Page 22: Outro Fluxograma

21

Figura 1 – Esquema Simplificado do Branqueamento Fonte: COLODETTE e outros, 2002

Em relação aos componentes da polpa, no caso de celulose para papel, é desejável

que a celulose e as hemiceluloses sejam preservadas; a lignina, que confere cor, seja removida

ou descolorida; os extrativos sejam dissolvidos e removidos; e as partículas (“shives”) sejam

eliminadas e/ou descoloridas (COLODETTE e outros, 2002).

A eficiência do branqueamento é medida pelas propriedades ópticas da polpa,

relacionadas com a absorção ou reflexão da luz: cor, alvura, opacidade e reversão

(INSTITUTO..., 1988).

Em polpas químicas, o branqueamento dá-se por remoção de cromóforos, que são

os compostos que conferem a cor escura à polpa. Os grupos cromóforos originam-se da

lignina modificada e produtos da degradação da lignina, de carboidratos (ácidos

hexenurônicos, carbonilas, etc.), extrativos da madeira (ácidos resinosos, ácidos graxos,

polifenóis, etc.) e íons metálicos (Fe, Cu, Mn, etc.) (COLODETTE e outros, 2002).

Em polpas mecânicas e semi-químicas, o branqueamento dá-se por modificação

de cromóforos. O ganho em alvura é pequeno e por vezes temporário (COLODETTE e

outros, 2002).

Cada estágio do branqueamento é identificado por uma notação característica,

apresentada na Tabela 1.

BRANQUEAMENTO

Gases p/ lavador Reagentes

VaporÁgua

Polpa Não Branqueada

Polpa Branqueada

Efluente p/ Recuperação

Efluente p/ ETE

Page 23: Outro Fluxograma

22

Tabela 1 – Notação dos Estágios de Branqueamento

Estágio Notação Reagente Cloração C Cloro (Cl2) gasoso ou água de cloro Cloração-Dioxidação (Adição sequencial)

D/C C/D

Cloro (Cl2) seguido de dióxido de cloro (ClO2) sem lavagem intermediária

Cloração-Dioxidação (Adição simultânea)

(D+C) Mistura de cloro (Cl2) e dióxido de cloro (ClO2)

Extração alcalina E Solução de hidróxido de sódio (NaOH) Extração alcalina com oxigênio

EO Hidróxido de sódio (NaOH) e oxigênio (O2)

Extração alcalina com hipoclorito

EH Hidróxido de sódio (NaOH) e hipoclorito de sódio (NaClO)

Extração alcalina com peróxido

EP Hidróxido de sódio (NaOH) e peróxido de hidrogênio (H2O2)

Hipoclorito H Hipoclorito de sódio (NaClO) ou de cálcio Ca(ClO)2

Dióxido D Solução aquosa de dióxido de cloro (ClO2) Peróxido P Solução de peróxido de hidrogênio (H2O2) Oxigênio (pré-branqueamento)

O Gás oxigênio (O2) e hidróxido de sódio (NaOH)

Ozônio Z Gás ozônio (O3) (2-15% em oxigênio) Dióxido de cloro/ozônio

DZ Dióxido de cloro seguido de ozônio sem lavagem intermediária

Lavagem ácida A Ácido Sulfúrico (H2SO4) Fontes: INSTITUTO..., 1988; COLODETTE e outros, 2002

O branqueamento é efetuado em torres, em seqüências de dois a nove estágios.

Cada estágio consiste na mistura da polpa com reagentes químicos e vapor, na reação dessa

mistura e na lavagem da polpa após a reação, conforme mostrado na Figura 2. Geralmente a

polpa é lavada após cada estágio, para remover o material já oxidado e expor novas

superfícies à ação do oxidante, reduzindo assim o consumo de reagentes. O sistema de

lavagem é em contracorrente, para economizar água, energia e reagentes; água fresca e/ou

água da máquina de secagem, somente são usadas no último estágio. Quanto menor o número

de estágios, menor é o consumo de água (COLODETTE e outros, 2002).

Page 24: Outro Fluxograma

23

Figura 2 – Fases de Um Estágio de Branqueamento Fonte: COLODETTE e outros, 2002

A sequência de branqueamento pode ser dividida em duas fases: a primeira fase é

o pré-branqueamento ou deslignificação, e a segunda fase é o alvejamento ou branqueamento

propriamente dito (INSTITUTO..., 1988).

Nos processos que ainda utilizam cloro, a cloração é geralmente o primeiro

estágio das sequências de branqueamento. O cloro reage rapidamente com a lignina,

formando a clorolignina, uma substância colorida, parcialmente solúvel em água e facilmente

removida por extração com álcali (soda) (INSTITUTO..., 1988).

O cloro, enquanto agente de branqueamento, foi largamente utilizado, devido ao

seu baixo custo em relação a outras substâncias similares, mas vem sendo gradativamente

substituído por outros oxidantes, devido ao impacto ambiental causado pela contaminação dos

recursos naturais com os compostos organoclorados formados.

O dióxido de cloro, por sua vez, teve seu uso generalizado para polpas celulósicas

com alvura elevada e boas propriedades mecânicas. É capaz de reagir seletivamente com a

lignina e extrativos, causando pouco ou nenhum dano aos carboidratos, através de um

processo econômico, mantendo a estabilidade da alvura, e causando menor impacto sobre o

meio ambiente. Embora ainda ocorra a formação de organoclorados, estes são em quantidade

consideravelmente menor do que quando se utiliza o cloro molecular.

A oxidação com hipoclorito foi usada inicialmente como estágio único de

branqueamento, posteriormente em estágios intermediários ou finais das sequências de

branqueamento (INSTITUTO..., 1988), e praticamente não é mais utilizada devido à

formação de clorofórmios.

Mistura Reação Lavagem Mistura Polpa lavada de estágios anteriores

Polpa lavada p/ estágios posteriores

Vapor Reagente químico

Água

Efluente

Page 25: Outro Fluxograma

24

A lavagem ácida tem por objetivo remover os íons metálicos, provenientes da

madeira, água, equipamentos e impurezas dos reagentes, destruir o agente branqueador

residual e criar condições de pH favoráveis à estabilidade da alvura; não branqueia como os

demais estágios.

A deslignificação com oxigênio ou pré-branqueamento com oxigênio em um

estágio remove cerca de 50% da lignina residual, promovendo uma grande redução da carga

de poluentes, indicada principalmente pela diminuição global da cor e menor demanda

bioquímica de oxigênio (DBO) dos efluentes. Essa etapa foi projetada para beneficiar o meio

ambiente e para reduzir o consumo de reagentes (COLODETTE e outros, 2002). O material

orgânico dissolvido no tratamento com oxigênio pode ser enviado para o ciclo de

recuperação, sendo queimado na caldeira de recuperação, onde se transforma em energia, o

que não ocorre no caso dos derivados clorados, que não podendo ser queimados na caldeira de

recuperação, transformam-se em resíduos poluentes hídricos. Sob o aspecto energético, a

fabricação do oxigênio requer apenas a oitava parte da energia necessária para a preparação

de quantidade equivalente de cloro (INSTITUTO..., 1988).

O ozônio é um agente oxidante limpo, pois não gera resíduos, apenas oxigênio e

água. Sua principal finalidade é favorecer a deslignificação. Sua desvantagem é a

possibilidade de ocorrência de degradação da polpa, quando usado em altas dosagens.

O peróxido de hidrogênio permite atingir níveis de alvura aceitos pelo mercado,

porém para alvuras altas é necessário utilizar o ozônio em estágio anterior ao peróxido,

reduzindo então o consumo deste.

A extração alcalina tem por objetivo remover os componentes coloridos da polpa

parcialmente branqueada, solubilizando-os em álcalis após o tratamento oxidante

(INSTITUTO..., 1988).

Ao final do branqueamento, parte dos íons terá sido removida pelas sucessivas

lavagens, mas parte ainda permanecerá no interior das fibras ou como precipitado. Então o

dióxido de enxofre (SO2) é utilizado, na proporção de 1%, para baixar o pH entre 2,5 e 3,5, e

promover uma eficiente redução do teor de cinzas, metais e agente branqueador residual

(INSTITUTO..., 1988).

Page 26: Outro Fluxograma

25

3.1.4 Redução da Poluição no Branqueamento

A planta de branqueamento é considerada a maior fonte de poluição de águas da

indústria de celulose. Quando presentes, cloretos e organoclorados, aliados ao baixo teor de

sólidos, tornam inviável o envio deste efluente ao ciclo de recuperação (INSTITUTO...,

1988).

Os parâmetros adotados para caracterização dos efluentes do branqueamento são

genéricos: volume, DBO, DQO, cor, sólidos dissolvidos, sólidos suspensos, AOX/EOX, pH,

temperatura, toxicidade e dioxinas (INSTITUTO..., 1988).

Algumas mudanças de tecnologia podem reduzir sensivelmente a formação de

cloretos e derivados clorados da lignina e dos carboidratos, como a deslignificação com

oxigênio, que reduz em cerca de 50% a quantidade de lignina a ser clorada, a deslignificação

com dióxido de cloro, que favorece as reações de oxidação e fragmentação da lignina, sem

substituição de cloro no anel aromático, reduzindo a toxicidade (o dióxido de cloro é muito

seletivo, e forma AOX em pequena quantidade; não forma dioxinas), o branqueamento com

ozônio, e o estágio ácido (INSTITUTO..., 1988).

A direção atual das mudanças é na adoção da deslignificação estendida,

deslignificação com oxigênio, redução do uso do cloro, aumento do uso do dióxido de cloro,

aumento do uso do peróxido, e desenvolvimento de sistemas de fechamento de circuitos.

O reuso dos efluentes é outra forma de reduzir a carga poluidora, e pode ser

realizado através da recirculação dos filtrados. A recirculação traz como efeitos desfavoráveis

a elevação da temperatura média nos estágios do branqueamento, riscos de maior corrosão da

instalação e aumento do teor de matéria orgânica nos filtrados recirculados, com maior

consumo de produtos químicos para manter o mesmo grau de branqueamento (INSTITUTO...,

1988).

A DBO e DQO dependem fortemente do No. Kappa, ou seja, da matéria orgânica.

Se essa matéria orgânica puder ser retida antes do branqueamento, seus valores serão bem

menores nos filtrados do branqueamento.

Page 27: Outro Fluxograma

26

A cor decresce com o aumento da substituição de cloro por dióxido de cloro de 50

a 80%, e em até 80% com a adoção de deslignificação com oxigênio. Já a substituição de

dióxido de cloro por ozônio no primeiro estágio do branqueamento reduz a cor drasticamente.

A substituição de cloro por dióxido de cloro reduz linearmente AOX. Já o

processo TCF apresenta valores de AOX desprezíveis.

3.1.5 Redução da Poluição em outras Fontes Poluidoras

O descascamento a seco da madeira praticamente não gera poluente. Já o

descascamento a úmido gera efluente líquido com baixa coloração, valores de pH em torno de

7, sólidos suspensos e sólidos dissolvidos, sendo que a quantidade de sólidos dissolvidos vai

depender da espécie da madeira, do tamanho das partículas de casca e do tempo de contato

destas partículas com a água (INSTITUTO..., 1988).

A lavagem das toras, que tem por objetivo remover areia e terra, gera efluente

com sólidos em suspensão, DBO e DQO. Reutiliza-se esse efluente na própria lavagem, após

passar por caixa de areia ou desarenadores, ou é encaminhado para a Estação de Tratamento

de Efluentes (COLODETTE e outros, 2002) .

Os efluentes gerados pela recuperação do licor de cozimento, que passa pela

lavagem, evaporação, caldeira de recuperação, e caustificação, dependem do grau de

eficiência dessa recuperação (INSTITUTO..., 1988). A sua composição orgânica contribui

para a DQO e para a DBO do efluente geral da fábrica.

Os efluentes gerados pelas áreas da lavagem, depuração não branqueada,

evaporação, caldeira de recuperação, caustificação e forno de cal constituem-se dos derrames

e respingos, que normalmente recirculam ou são recolhidos em canaletas e encaminhados para

a Estação de Tratamento de Efluentes (COLODETTE e outros, 2002).

Na área da evaporação são gerados condensados, que, a depender de sua

qualidade, retornam para o tanque de água de alimentação da caldeira (condensado primário),

ou são coletados e destilados em coluna de destilação com vapor, para remoção de metanol e

Page 28: Outro Fluxograma

27

de gases não condensáveis (condensados secundários contaminados com metanol e compostos

orgânicos à base de enxofre) (COLODETTE e outros, 2002).

3.2 O PROCESSO DE FABRICAÇÃO DA BAHIA PULP

3.2.1 A Indústria Bahia Pulp

Trata-se de uma fábrica localizada na Área Industrial Norte do Complexo

Petroquímico de Camaçari – COPEC, Município de Camaçari, Bahia, que iniciou suas

atividades da planta industrial em 16 de janeiro de 1996, após uma desativação em 1985 e

posterior reforma, objetivando a produção de celulose solúvel pelo processo kraft com

branqueamento isento de compostos de cloro (RELATÓRIO..., 2000).

Produz celulose solúvel destinada à exportação, podendo produzir celulose para a

produção de papel com ajustes das condições de processo (RELATÓRIO..., 2000).

A matéria-prima utilizada é madeira de eucalipto, proveniente de reflorestamentos

de propriedade da COPENER (RELATÓRIO..., 2000), adquirida pela Bahia Pulp em 2003.

Os principais produtos químicos, reagentes de processo e insumos e seus

respectivos consumos são apresentados na Tabela 2.

Page 29: Outro Fluxograma

28

Tabela 2 – Consumo dos Principais Insumos Químicos

CONSUMO DOS PRINCIPAIS INSUMOS QUÍMICOS

Sulfato de Sódio 10 t/d

Hidróxido de Sódio a 50 % 6 t/d

Dióxido de Enxofre 0,4 t/d

Cal 30 t/d

Peróxido de Hidrogênio a 60 % 3 t/d

EDTA2 a 40% (base 100%) zero a 0,7 t/d

Eliminox3 3 kg/d

Triact 18004 14 kg/d

Fosfato Trissódico 13 kg/d

Dispersante Nalco 7280 8 kg/d

Ácido Sulfúrico a 98 % 6,6 t/d

Sulfato de Magnésio 1,1 t/d

Oxigênio5 4,6 t/d

Ozônio6 1,4 t/d

Antiespumante 220 kg/d

Aditivos ao produto7 Zero a 220 kg/d

Fonte: RELATÓRIO..., 2000

A capacidade de produção da fábrica é de 115.000 t/ano de celulose solúvel

branqueada “seca ao ar” ou de 150.000 t/ano de celulose para papel branqueada “seca ao ar”,

ou seja, com 10 % de umidade (RELATÓRIO..., 2000).

2 EDTA é a abreviatura de Ácido Etilenodiamino Tetracético (sequestrante de íons). 3 Eliminox é o nome comercial de um produto seqüestrador de oxigênio utilizado na água de alimentação de caldeira. 4 Triact 1800 é o nome comercial de um produto composto de três aminas, utilizado para corrigir o pH do condensado de processo que retorna para o tanque de água de alimentação de caldeira. 5 Produzido na própria unidade. 6 Produzido na própria unidade. 7 Quando solicitado pelo cliente.

Page 30: Outro Fluxograma

29

O projeto de reforma da Bahia Pulp incorporou algumas tecnologias de processo,

com vantagens ambientais sobre os processos tradicionais, descritas a seguir (RELATÓRIO...,

2000).

O cozimento da madeira é efetuado com elevado grau de deslignificação

(deslignificação estendida), levando a uma maior remoção de lignina da madeira desde o

início do processo de fabricação, em comparação com os processos tradicionais

(RELATÓRIO..., 2000).

A deslignificação com oxigênio complementa a retirada da lignina remanescente,

antes da polpa passar para os estágios de branqueamento. O filtrado, contendo a lignina

removida nesse estágio, é conduzido, em contra corrente, através dos estágios de lavagem e

depuração de polpa não branqueada que antecedem a deslignificação com oxigênio, até

chegar nos digestores, ao final do cozimento. Dos digestores, é concentrado nos evaporadores

de múltiplos efeitos, e queimado na caldeira de recuperação, de maneira que quase toda

lignina removida antes do branqueamento é queimada na caldeira de recuperação

(RELATÓRIO..., 2000).

Nessas condições, o residual de lignina que acompanha a polpa para o

branqueamento é muito pequeno. Complementarmente, a utilização de produtos alvejantes

como o ozônio e o peróxido de hidrogênio permite obter baixos níveis de DBO, DQO, e cor

no efluente (RELATÓRIO..., 2000).

O processo de branqueamento totalmente isento de cloro, designado como TCF

(“Total Chlorine Free”), foi um dos maiores avanços tecnológicos do setor em termos

ambientais nas últimas décadas, por reduzir os parâmetros normais dos efluentes líquidos e

não gerar compostos organoclorados. A celulose produzida é igualmente isenta da presença

de organoclorados, bem como os produtos derivados do processamento dessa celulose

(RELATÓRIO..., 2000).

As emissões atmosféricas são controladas através de precipitadores eletrostáticos

na caldeira de recuperação e no forno de cal. O odor é controlado através de um sistema de

coleta e queima de gases não condensáveis de alta e baixa concentração (RELATÓRIO...,

2000).

Pode-se ter uma visão geral do processo industrial através do Fluxograma de

Processo Geral Simplificado na Figura 3.

Page 31: Outro Fluxograma

30

Figura 3 – Fluxograma de Processo Geral Simplificado Fonte: RELATÓRIO..., 2000

Page 32: Outro Fluxograma

31

A seguir são descritas as características principais das etapas do processo de

fabricação de celulose solúvel na Bahia Pulp.

3.2.2 Manuseio de Madeira

A área do manuseio de madeira recebe e processa toda a madeira sem casca que

chega da floresta. Esta área compreende as seções do pátio de estocagem de madeira,

preparação de cavacos, estocagem de cavacos e transporte de cavacos para os digestores.

A Figura 4 mostra o fluxograma simplificado do Manuseio de Madeira.

Page 33: Outro Fluxograma

32

Figura 4 – Manuseio de Madeira

Fonte: RELATÓRIO..., 2000

Page 34: Outro Fluxograma

33

O pátio de estocagem de madeira abrange o recebimento, controle e estocagem

das toras de madeira sem casca, que são encaminhadas para alimentação do picador ou para as

pilhas de estocagem, cuja finalidade é assegurar a operação contínua da fábrica.

A preparação de cavacos compreende os sistemas de recepção, transporte,

lavagem de toras, picagem, peneiramento, repicagem de rejeitos, transporte de cavacos para a

pilha e transporte de finos e resíduos sólidos. A madeira descarregada dos caminhões passa

por uma estação de lavagem, onde as toras são lavadas com água, para remoção de impurezas,

tais como resíduos de casca, areia, etc. A água residual proveniente da lavagem segue para um

tanque de decantação, onde as partículas sedimentadas são removidas e a água é recirculada

para a lavagem de toras.

Após a lavagem, as toras seguem para o picador, para serem transformadas em

cavacos, classificados em: cavacos aceitos, finos e rejeitos de maiores dimensões. Os cavacos

aceitos vão formar a pilha de cavacos, com capacidade de aproximadamente 36.500 m³ de

cavacos, correspondente a cerca de oito dias de consumo nos digestores, e os finos são

segregados para posterior disposição. Os rejeitos de maiores dimensões são repicados e

descarregados na própria peneira. Os cavacos aceitos são retirados da pilha e conduzidos até

um silo de estocagem intermediário, de onde são transportados aos digestores.

Caracterização dos Efluentes do Manuseio de Madeira

Os efluentes desta área correspondem à água de lavagem de toras e dos chuveiros

do transportador de corrente de recebimento de toras. As águas servidas da estação de

lavagem são encaminhadas ao tanque de decantação, de onde são novamente bombeadas para

a estação de lavagem. A areia é removida manualmente e o transbordo desta caixa é

encaminhado para o sistema de efluentes orgânicos da Bahia Pulp.

São apresentados a seguir os dados extraídos do RELATÓRIO..., 2000.

A vazão total de efluentes da área corresponde a 15,0 m³/h, sendo:

- Água de lavagem de toras e dos chuveiros do transportador de corrente – 12,0 m³/h

- Águas de lavagem de pisos – 3,0 m³/h

Page 35: Outro Fluxograma

34

A contribuição de sólidos suspensos desses efluentes corresponde em média a

0,06 kg/t produto. Nestas condições, a contribuição diária desses efluentes em termos de

sólidos suspensos, considerando-se produção de celulose de 350 t/d e vazão de efluentes de 15

m³/h, é de:

- Concentração de sólidos suspensos – 56 mg/l

- Carga diária de sólidos suspensos – 20 kg/d

- Contribuição específica – 0,06 kg SS/t produto

A contribuição de DBO5 desses efluentes corresponde a 0,3 kg DBO5/t produto.

Nestas condições, a contribuição diária desses efluentes é de:

- Concentração de DBO5 – 292 mg/l

- Carga diária de DBO5 – 105 kg/d

- Contribuição específica – 0,3 kg DBO5/t produto

3.2.3 Cozimento

O cozimento é do tipo “kraft”, realizado em bateladas, em três digestores, com

deslocamento de licor e com pré-hidrólise em fase vapor, processo denominado “Enerbatch”

da empresa VOEST ALPINE. Esse processo permite:

- obter elevado grau de deslignificação final (baixo Número Kappa), contribuindo para um

menor consumo de produtos químicos no branqueamento, e, assim, reduzindo a carga de

efluentes;

- reaproveitar o calor do licor preto deslocado dos digestores no aquecimento do licor

branco, gerando licor branco quente, e no aquecimento de água, gerando água quente.

O conceito do processo “Enerbatch” para produção de polpa solúvel inclui a

seguinte sequência de operações:

Page 36: Outro Fluxograma

35

- carregamento dos cavacos de madeira com compactação por vapor;

- pré-hidrólise com aquecimento com vapor direto;

- neutralização dos hidrolisados e carga de reagentes;

- aquecimento e cozimento;

- deslocamento frio com lavagem;

- descarga da polpa a baixa temperatura.

O carregamento de cavacos é realizado através de correias transportadoras e

roscas distribuidoras para os digestores, onde são compactados através de um dispositivo

chamado “Svenson”, que provoca o direcionamento dos cavacos para a lateral do digestor,

com extração de ar. Nos digestores, os cavacos são aquecidos com vapor até uma temperatura

de 170 º C e pré-hidrolisados (RELATÓRIO..., 2000). A Figura 5 mostra os 3 digestores no

fluxograma simplificado do Cozimento, Lavagem e Depuração Não Branqueada.

A pré-hidrólise consiste em tratar a madeira com água, a alta temperatura, com o

objetivo de solubilizar as hemiceluloses, os extrativos da madeira e alguma lignina. A etapa

da pré-hidrólise é necessária à produção de celulose solúvel; para a produção de polpa para

papel, esta etapa é substituída pela impregnação de cavacos (RELATÓRIO..., 2000). Os

fatores importantes na remoção desses materiais são a hidrólise e a formação do ácido acético,

que dão ao meio um pH de 3,0 a 4,5, intensificados com o aumento da temperatura e do

tempo de permanência. Utiliza-se o “Fator P”, modelo desenvolvido a partir da equação de

Arrehenius que expressa tempo e temperatura numa única variável, para medir o grau de pré-

hidrólise (INSTITUTO..., 1988).

Após esta operação, os cavacos são neutralizados por deslocamento do líquido da

pré-hidrólise com licor branco e licor preto quente. Em seguida ocorre a alimentação de álcali

(licor preto e licor branco) para a etapa seguinte, que é o cozimento kraft (RELATÓRIO...,

2000). Todos os ácidos existentes no digestor devem ser neutralizados.

Na fase de cozimento ocorre a deslignificação dos cavacos com a circulação dos

licores de cozimento, os quais homogeneízam a distribuição de álcali dentro do digestor. O

aquecimento é realizado pela injeção direta de vapor. Utiliza-se o “Fator H” para controlar o

Page 37: Outro Fluxograma

36

final da fase do cozimento, que ocorre quando ele ultrapassar um valor pré-estabelecido na

receita tecnológica.

O cálculo do “Fator H”, para qualquer cozimento, consiste na determinação da

área sob a curva de velocidade relativa da reação em função do tempo. Cozimentos com

diferentes combinações de tempos e temperaturas (representados por um mesmo “Fator H”),

mas tendo constantes as demais condições, devem produzir polpas com teor de lignina e

rendimento semelhantes (INSTITUTO..., 1988).

No final do ciclo de cozimento, inicia-se o deslocamento frio: o filtrado originado

na operação de lavagem é bombeado ao fundo e topo do digestor e o licor preto quente

residual é, desta maneira, deslocado do digestor, passando através de uma peneira. Esta etapa

promove a extração dos compostos de lignina dissolvidos no cozimento, ao mesmo tempo em

que a polpa é resfriada a temperaturas inferiores a 100 ºC, promovendo uma diminuição dos

gases mal cheirosos no tanque de descarga, reduzindo impactos ambientais. Na descarga, o

digestor é esvaziado através de bomba centrífuga, que envia a polpa para o tanque de

descarga, através de diluição, a uma consistência de 5 a 6%.

Os gases não condensáveis resultantes do cozimento são coletados e queimados

em um incinerador.

Para o preparo do licor branco quente, o licor branco é aquecido continuamente,

através de trocas de calor, com licor neutralizado de cozimentos anteriores (RELATÓRIO...,

2000).

Parte do licor preto extraído do digestor é resfriado, gerando água quente, sendo

filtrado para reter fibras, e conduzido para a evaporação, onde é concentrado e, em seguida,

utilizado como combustível na caldeira de recuperação (RELATÓRIO..., 2000).

O Número Kappa, que representa o grau de deslignificação da polpa, é de

aproximadamente 6 a 10, após o cozimento (RELATÓRIO..., 2000).

Page 38: Outro Fluxograma

37

Caracterização dos Efluentes do Cozimento

Esta área não apresenta efluentes de processo, sendo os únicos efluentes

originados por operações não intrínsecas ao processo (RELATÓRIO..., 2000).

Os dados apresentados a seguir foram extraídos do RELATÓRIO..., 2000:

- Águas de selagem – 7,5 m³/h

- Águas de limpeza – 4,0 m³/h

- Purga de instrumentos – 2,5 m³/h

Como decorrência de perdas acidentais de pequena monta, bem como de limpeza

de equipamentos da área, verifica-se alguma contribuição em termos de sólidos suspensos e

DBO5. Esses valores, extraídos do RELATÓRIO..., 2000, foram estimados e, para uma vazão

de efluentes de 14 m³/h em média, correspondem a:

- Concentração de sólidos suspensos – 179 mg/l

- Carga diária de sólidos suspensos – 60 kg/d

- Contribuição específica de SS – 0,17 kg SS/t produto

- Concentração de DBO5 – 1.370 mg/l

- Carga diária de DBO5 – 460 kg DBO5/d

- Contribuição específica de DBO5 – 1,31 kg DBO5/t produto

3.2.4 Lavagem e Depuração Não Branqueada

A lavagem e depuração não branqueada têm por objetivo obter uma polpa com o

mínimo de impurezas possível, removendo os nós e palitos da mesma. Este processo realiza-

se pela combinação de uma série de etapas, assim resumidas (RELATÓRIO..., 2000):

Page 39: Outro Fluxograma

38

Lavagem

- Separação de nós

- Lavagem de nós (para recuperação de fibras)

- Lavagem intermediária da polpa

Depuração Não Branqueada

- Primeiro estágio de depuração pressurizada

- Segundo estágio de depuração pressurizada

- Terceiro estágio de depuração pressurizada

- Quarto estágio de depuração pressurizada

- Lavagem final e engrossamento da polpa

O fluxograma simplificado da Lavagem e Depuração Não Branqueada é

apresentado na Figura 5, em conjunto com o do Cozimento.

Page 40: Outro Fluxograma

39

Figura 5 – Cozimento, Lavagem e Depuração Não Branqueada Fonte: RELATÓRIO..., 2000

Page 41: Outro Fluxograma

40

A polpa proveniente do tanque de descarga é bombeada para o separador de nós

pressurizado, cujo “aceito” (parte não rejeitada) é diluído e enviado ao primeiro estágio de

lavagem. O separador de nós tem por objetivo separar do fluxo principal a fração de cavacos

mal cozidos (nós), para posterior retirada (RELATÓRIO..., 2000).

O rejeito do separador de nós é enviado a um lavador, onde as fibras são

separadas dos nós. As fibras separadas no lavador são encaminhadas à alimentação do filtro

lavador. O sistema de separação e lavagem de nós é totalmente fechado para evitar a

introdução de ar no sistema, o qual prejudica a eficiência da lavagem (RELATÓRIO..., 2000).

O “aceito” do separador de nós é enviado ao primeiro e segundo estágios de

lavagem, sendo o filtrado produzido nesta operação conduzido a um tanque de filtrado para

reutilização (RELATÓRIO..., 2000).

A lavagem da celulose é feita em dois filtros lavadores em contra corrente com

licor recuperado, ou seja, com o filtrado do terceiro estágio de lavagem que antecede a

deslignificação. A polpa que sai do segundo estágio de lavagem é armazenada no tanque de

polpa e daí bombeada para o primeiro estágio de depuração pressurizado (RELATÓRIO...,

2000).

O “aceito” deste estágio segue para o lavador-engrossador (terceiro estágio de

lavagem), e daí a polpa lavada é enviada para a deslignificação com oxigênio. O licor de

lavagem utilizado neste lavador é proveniente do primeiro estágio de lavagem após a

deslignificação (RELATÓRIO..., 2000).

Os rejeitos do depurador primário são diluídos e enviados ao depurador

secundário. A fração aceita da depuração secundária retorna para a alimentação do depurador

primário, enquanto o rejeito é enviado ao terceiro estágio de depuração pressurizada

(RELATÓRIO..., 2000).

O “aceito” da depuração terciária retorna para a alimentação da depuração

secundária, enquanto que o rejeito é enviado ao quarto estágio de depuração pressurizada (não

representado na Figura 5) . O aceito da depuração quaternária retorna para a alimentação da

depuração terciária.

O líquido necessário à diluição da polpa e rejeito nos vários estágios de depuração

corresponde aos filtrados provenientes do último filtro lavador-engrossador, resultando numa

Page 42: Outro Fluxograma

41

depuração com circuito de água fechado, em que o único despejo são os rejeitos. Cabe aqui

salientar que os processos de cozimento e de depuração adotados permitem mínima perda de

fibras.

Os nós do lavador de nós e os rejeitos da depuração quartenária são enviados a

uma rosca desaguadora para posterior disposição em aterro industrial (RELATÓRIO..., 2000).

O filtrado utilizado na diluição do rejeito da depuração quaternária é recuperado.

A eficiência da lavagem, do ponto de vista do processo, é importante para

possibilitar um melhor resultado na deslignificação. A polpa lavada e depurada é transferida

para a deslignificação (RELATÓRIO..., 2000).

Caracterização dos Efluentes da Lavagem e Depuração Não Branqueada

A depuração apresenta circuito de águas fechado e as perdas da lavagem (material

não removido) são transferidas juntamente com a polpa para a área seguinte, ou seja, para a

deslignificação. Os efluentes de processo da área de lavagem e da depuração não branqueada

consistem nos rejeitos da separação de nós e nos rejeitos da depuração, conduzidos para uma

prensa desaguadora (ou “taster”), totalizando uma vazão de 15 m³/h (RELATÓRIO..., 2000).

Os demais efluentes decorrem de operações não intrínsecas ao processo, ou seja,

águas de selagem de bombas e agitadores e águas de limpeza. Esses efluentes totalizam uma

vazão de 5 m³/h. A carga média de DBO5 que acompanha os efluentes desta área está baseada

em dados de indústrias similares. A contribuição em termos de sólidos suspensos corresponde

aos rejeitos não capturados na prensa desaguadora. A carga de sólidos suspensos e DBO5 após

a prensa desaguadora é da ordem de 1,9 kg DBO5 /t produto e 1,8 kg/t produto,

respectivamente (RELATÓRIO..., 2000).

Nessas condições, os dados referentes à contribuição desta área, extraídos do

RELATÓRIO..., 2000, são:

- Vazão de efluentes – 20 m³/h

- Concentração de sólidos suspensos – 630 mg/l

- Carga diária de sólidos suspensos – 302 kg/d

Page 43: Outro Fluxograma

42

- Carga específica de sólidos suspensos – 0,87 kg/t produto

- Concentração de DBO5 – 1.370 mg/l

- Carga diária de DBO5 – 658 kg DBO5/d

- Carga específica de DBO5 – 1,9 kg DBO5/t produto

3.2.5 Deslignificação com Oxigênio

A deslignificação com oxigênio tem como objetivo principal estender o processo

de remoção de lignina residual, recuperando a matéria orgânica dissolvida através do circuito

de recuperação (RELATÓRIO..., 2000), conforme o fluxograma simplificado apresentado na

Figura 6.

Este processo promove uma redução substancial da carga de DBO5, DQO e cor

que chega ao branqueamento, bem como no consumo de produtos químicos, portanto uma

redução do impacto ambiental e redução de custos.

Compreende a oxidação de licor branco, a deslignificação com oxigênio em dois

estágios, e a pós-lavagem em filtros lavadores a vácuo convencionais.

Page 44: Outro Fluxograma

43

Figura 6 – Deslignificação com Oxigênio Fonte: RELATÓRIO..., 2000

Page 45: Outro Fluxograma

44

A deslignificação com oxigênio ocorre em meio alcalino, a aproximadamente

100° C, com adição de licor branco oxidado, oxigênio, vapor de baixa e de média pressão. O

vapor de baixa pressão é adicionado à polpa em um misturador, e essa é alimentada ao tanque

de bombeamento (RELATÓRIO..., 2000).

Uma parte do licor branco utilizado no cozimento, proveniente da caustificação, é

enviada para o reator de oxidação de licor branco, para ser oxidado e reduzir a concentração

de sulfeto de sódio (Na2S), segundo a reação química:

2 Na2S + H2O + 2 O2 → 2 NaOH + Na2S2O3

A deslignificação ocorre em média consistência, aproximadamente 10%. O licor

branco oxidado, ou o hidróxido de sódio (NaOH) na sua falta, é misturado à polpa antes da

adição de oxigênio gasoso. É também adicionado sulfato de magnésio (MgSO4), cuja função é

tornar o processo mais seletivo e proteger a integridade das fibras de celulose.

A lavagem após a deslignificação tem por objetivo remover e recuperar a matéria

orgânica dissolvida nos reatores. Esta lavagem é realizada em contra corrente em três filtros

lavadores em série. No último filtro é utilizado filtrado do estágio Z do branqueamento. O

filtrado do primeiro estágio é enviado ao lavador-engrossador da depuração de polpa não

branqueada. A polpa deslignificada, após o segundo filtro lavador, é estocada em torre de alta

consistência, sendo em seguida transferida para um terceiro filtro lavador que antecede a área

do branqueamento (RELATÓRIO..., 2000).

As cargas de álcali e de oxigênio utilizadas são dependentes do número Kappa

(grau de deslignificação) e da viscosidade final desejada.

Características dos Efluentes da Deslignificação por Oxigênio

Os efluentes desta área caracterizam-se por efluentes não intrínsecos ao processo,

provenientes de água de selagem de bombas e águas de limpeza, e praticamente não

apresentam cargas de DBO5 e sólidos suspensos.

A vazão de efluentes da área corresponde a 8,0 m³/h, conforme dados extraídos do

RELATÓRIO..., 2000, sendo:

- Água de selagem – 5,5 m³/h

Page 46: Outro Fluxograma

45

- Água de limpeza – 2,5 m³/h

3.2.6 Branqueamento

O objetivo do branqueamento é remover a lignina residual da polpa, que não foi

removida nos processos de cozimento e deslignificação com oxigênio, além de branquear a

polpa.

O branqueamento consiste de três estágios: A, Z e P, onde A é o tratamento ácido

com ácido sulfúrico, que tem por finalidade remover metais pesados, Z é o estágio com

ozônio a média consistência, em misturadores, e P é o estágio com peróxido de hidrogênio.

Após cada etapa do branqueamento, a polpa é lavada em filtros lavadores para

remover os produtos químicos gerados nas reações.

O fluxograma simplificado do Branqueamento pode ser visto na Figura 7.

Page 47: Outro Fluxograma

46

Figura 7 – Branqueamento Fonte: RELATÓRIO..., 2000

Page 48: Outro Fluxograma

47

A polpa é lavada com filtrado do estágio Z no terceiro lavador de pós-lavagem da

deslignificação (Figura 6), sendo em seguida diluída a 5% de consistência com os filtrados

dos estágios A e Z. Ácido sulfúrico é adicionado ao licor de diluição. A polpa é então

alimentada à torre do estágio A (Figura 7).

No fundo da torre, a polpa é diluída com filtrado do estágio A e bombeada para o

lavador. Neste filtro a polpa é lavada com água morna.

A polpa do lavador do estágio A é transferida através de uma bomba de média

consistência para o estágio Z. No repolpador, adiciona-se H2SO4. Ozônio é misturado à polpa

em dois misturadores dinâmicos em série e a polpa é enviada a um tanque de descarga.

A reação do ozônio com a polpa ocorre nos misturadores e na tubulação de

transferência para o tanque de descarga.

Os gases liberados do tanque de descarga, constituídos basicamente de oxigênio

com residual de ozônio e vapor d’água, passam por um lavador para remoção de fibras, e em

seguida vão para a destruição do ozônio residual e reaproveitamento do oxigênio.

Do fundo do tanque de descarga, a polpa é bombeada por meio de uma bomba de

média consistência (de 10 a 12%) para a torre Q, e, em seguida, bombeada para o filtro

lavador do estágio Z e lavada com filtrado do estágio P.

A polpa é então aquecida em um misturador de vapor e através de uma bomba de

média consistência enviada para a torre do estágio P. Soda cáustica (NaOH) é adicionada no

repolpador e o peróxido de hidrogênio (H2O2) é adicionado diretamente na sucção da bomba.

A polpa é descarregada do topo da torre e enviada para um filtro lavador, onde é

lavada com água branca proveniente da secagem de polpa, ou com água morna proveniente do

Tanque de Água Morna, na falta de água branca. Deste filtro lavador (estágio P), a polpa é

enviada para as torres de estocagem de polpa branqueada, tendo sido feito ajuste prévio de pH

com SO2.

Caracterização dos Efluentes do Branqueamento

Os efluentes da área do branqueamento são constituídos de efluentes de processo

e efluentes não intrínsecos ao processo. Os efluentes de processo apresentam carga de DBO5 e

Page 49: Outro Fluxograma

48

sólidos suspensos, e aqueles não intrínsecos ao processo decorrem de operações como

lavagem de pisos e selagem de equipamentos.

O efluente de processo é o filtrado resultante da lavagem de polpa do estágio de

acidificação (estágio A).

Os dados apresentados a seguir foram extraídos do RELATÓRIO..., 2000.

O efluente de processo é:

- Filtrado do branqueamento – 220 m³/h

e os efluentes não intrínsecos ao processo são:

- Água de limpeza – 22 m³/h

- Águas de selagem diversas e resfriamento – 8 m³/h

A carga de sólidos que acompanha esses efluentes, para uma vazão de efluentes

de 250 m³/h, corresponde a:

- Concentração de sólidos suspensos – 87 mg/l

- Carga diária de sólidos suspensos – 520 kg/d

- Carga específica de sólidos suspensos – 1,5 kg/t produto

A carga de DBO5 desses efluentes corresponde a:

- Concentração de DBO5 – 280 mg/l

- Carga diária de DBO5 – 1.680 kg/d

- Carga específica de DBO5 – 4,8 kg/t produto

3.2.7 Depuração Branqueada

A depuração branqueada tem por objetivo remover as impurezas da mesma, a fim

de atingir o alto grau de pureza exigido para a celulose solúvel (RELATÓRIO..., 2000).

Page 50: Outro Fluxograma

49

O fluxograma simplificado da Depuração Branqueada pode ser visto na Figura 8,

em conjunto com a área da Secagem.

Page 51: Outro Fluxograma

50

Figura 8 – Depuração Branqueada e Secagem Fonte: RELATÓRIO..., 2000

Page 52: Outro Fluxograma

51

A celulose branqueada procedente do branqueamento é armazenada em torres de

estocagem de alta consistência (em torno de 12%), e diluída na parte inferior com a água de

retorno proveniente da Máquina de Secagem, sendo posteriormente bombeada para o tanque

da máquina (RELATÓRIO..., 2000).

Do tanque da máquina, a celulose é bombeada para a sucção da bomba de mistura,

localizada no circuito principal da máquina denominado de "Approach Flow", que tem por

objetivo fornecer uma massa de celulose limpa e isenta de contaminantes, na vazão e

consistência requeridas pela caixa de entrada da máquina (RELATÓRIO..., 2000).

Na sucção da bomba de mistura, a celulose proveniente do tanque da máquina é

diluída para uma concentração de 0,5 a 0,8% aproximadamente, com água branca recuperada

da própria máquina de desaguamento (RELATÓRIO..., 2000).

A celulose assim diluída passa por um depurador pressurizado, que contém

internamente uma peneira. Este estágio protege os cones dos depuradores pressurizados

centrífugos e reversos, instalados em sequência, contra entupimentos. Um dispositivo

acoplado ao depurador pressurizado permite que as descargas intermitentes dos rejeitos sejam

conduzidas para a prensa desaguadora (ou “taster”) da Linha de Fibras, que separa sólidos de

líquidos (RELATÓRIO..., 2000).

Os depuradores centrífugos eliminam, com elevada eficiência, impurezas com

peso específico maior que o da fibra de celulose, tais como sílica, e os depuradores

centrífugos reversos, engrossam a massa para a consistência requerida (RELATÓRIO...,

2000).

O sistema de depuradores centrífugos é composto de um primeiro estágio, cujo

aceito é enviado à máquina de secagem, e mais cinco estágios, em que o aceito vai para o

estágio precedente e o rejeito para o estágio posterior, até ser eliminado no último estágio para

a prensa desaguadora (RELATÓRIO..., 2000).

Page 53: Outro Fluxograma

52

3.2.8 Secagem, Linha de Fardos e Linha de Bobinas

O fluxograma simplificado da Secagem pode ser visto na Figura 8, em conjunto

com o da Depuração Branqueada.

A celulose limpa e isenta de impurezas é transferida, com vazão e consistência

controladas, para a caixa de entrada, pelo sistema de "Approach Flow".

A máquina de secagem é composta de uma seção de desaguamento da celulose,

uma seção de prensa da folha de celulose formada, e uma seção de secagem.

A caixa de entrada libera um fluxo homogêneo de celulose sobre a formadora de

tela dupla, onde ocorre a drenagem de água, proporcionando a formação da folha de celulose.

A folha de celulose sai da formadora de tela dupla a uma consistência de aproximadamente

30% e, após passar pelas seções das prensas feltradas, alcança uma consistência de 48 a 50%

como resultado da extração mecânica da água.

A água extraída da formadora de tela, com fibras de celulose em suspensão, é

utilizada para diluição do sistema de depuração, retornando assim ao sistema.

Os chuveiros de alta pressão das telas e filtros e os de baixa pressão dos filtros são

alimentados com água quente, entre 70 e 75oC.

A água dos chuveiros e das prensas é recolhida no tanque de água de retorno, e

utilizada para os chuveiros de baixa pressão das telas; o excesso é armazenado na torre de

água branca. A água desta torre é utilizada para a diluição das quebras nos desagregadores,

diluição do tanque de alta consistência, e para a lavagem de celulose no branqueamento.

Após as seções das prensas, a folha é introduzida em uma bateria de 83 cilindros

secadores, e, em contato com os cilindros, sofre uma secagem progressiva, atingindo 90 a

95% de teor seco.

Para melhor eficiência da secagem da celulose, os cilindros secadores estão

instalados sob uma capota. O ar saturado com vapor é retirado da capota por meio de

exaustores, e insuflado ar quente na capota por meio de ventiladores.

Page 54: Outro Fluxograma

53

A folha seca, na saída dos cilindros secadores, é direcionada para uma cortadeira,

onde é cortada em folhas de formato padronizado, que são empilhadas em um transportador

móvel na saída da cortadeira.

Alternativamente, a folha seca pode ser direcionada para uma enroladeira, onde

são produzidos rolos jumbos. Esses rolos são cortados em bobinas, podendo ser ou não

embalados em uma linha de produção específica para este fim.

As águas de resfriamento são coletadas no tanque de água morna e são enviadas

para a torre de resfriamento.

Linha de Fardos

As pilhas de folhas provenientes da cortadeira são enviadas para uma linha de

fardos composta de:

- Transportadores de correntes fixos

- Transportadores de correntes giratórias

- Mesa giradora

- Balança de fardos

- Prensa de fardos

- Encapadeira

- Amarradeiras

- Dobradeira

- Tombador de fardos

- Empilhador

- Balança da Unidade de Fardos

- Transportador de correntes angular

- Unitizadora

Page 55: Outro Fluxograma

54

- Transportador de correntes de saída

Na linha de fardos, as pilhas de folhas são primeiramente pesadas e prensadas,

formando o fardo, que é amarrado com arame e encapado automaticamente.

Em seguida, os fardos de 200 kg são empilhados em pilhas de quatro fardos. Cada

pilha de quatro fardos é enviado à unitizadora, onde aguarda a pilha seguinte, para serem

ambas amarradas, formando uma unidade de oito fardos.

As unidades de fardos, pesando em média 1,6 t, são transferidas para a área de

estocagem por meio de empilhadeiras.

Linha de Bobinas

A folha de celulose pode ser enrolada em rolos-jumbos, pesando

aproximadamente 7 t cada um, que são desenrolados e rebobinados em formatos específicos

para cada cliente, em uma linha composta de:

- Enroladeira;

- Ponte rolante;

- Alimentação e descarga manual de estangas;

- Carro transportador de rolos-jumbos;

- Monovia;

- Cavalete de estocagem;

- Desenroladeira;

- Rebobinadeira;

- Transportadores;

- Balança de bobinas;

- Enroladeira semi-automática de bobinas;

- Empilhador de bobinas.

Page 56: Outro Fluxograma

55

A formação do rolo-jumbo é controlada pelo seu diâmetro. Uma vez na

rebobinadeira, o rolo-jumbo é desenrolado e transformado em bobinas, que são

posteriormente embaladas, e dispostas em pilhas de três bobinas na área de estocagem.

Caracterização dos Efluentes da Depuração Branqueada, Secagem, Linha de Fardos e Linha

de Bobinas

Os efluentes das áreas de depuração branqueada, secagem e linha de fardos e linha

de bobinas são constituídos de efluentes de processo e efluentes não intrínsecos ao processo.

Os efluentes de processo apresentam carga de DBO5 e sólidos suspensos, e são encaminhados

para a prensa desaguadora. Os efluentes não intrínsecos ao processo decorrem de operações

como resfriamento e selagem, e praticamente não apresentam cargas de DBO5 e sólidos

suspensos.

Os dados apresentados a seguir foram extraídos do RELATÓRIO..., 2000.

Os efluentes de processo são:

- Rejeitos da depuração pressurizada e centrífuga – 44 m³/h

Os efluentes não intrínsecos ao processo são:

- Águas de limpeza – 5 m³/h

- Águas de selagem diversas – 5 m³/h

A carga de sólidos suspensos após a prensa desaguadora, para uma vazão de

efluentes de 54 m³/h, corresponde a:

- Concentração média de sólidos suspensos – 79 mg/l

- Carga diária de sólidos suspensos – 102 kg/d

- Carga específica de sólidos suspensos – 0,29 kg/t produto

A carga de DBO5 desses efluentes após a prensa desaguadora, para uma vazão de

efluentes de 54 m³/h, corresponde a:

- Concentração de DBO5 – 280 mg/l

Page 57: Outro Fluxograma

56

- Carga diária de DBO5 – 363 kg DBO5/d

- Carga específica de DBO5 – 1,0 kg DBO5/t produto

Essa carga de DBO5 decorre dos efluentes procedentes da depuração pressurizada

e centrífuga da celulose branqueada.

3.2.9 Evaporação

A evaporação do licor preto do cozimento é feita em um sistema de evaporação de

múltiplos efeitos, com seis efeitos, mostrado no fluxograma simplificado da Evaporação e

Caldeira de Recuperação, na Figura 9.

Page 58: Outro Fluxograma

57

Figura 9 – Evaporação e Caldeira de Recuperação Fonte: RELATÓRIO..., 2000

Page 59: Outro Fluxograma

58

O licor preto fraco é concentrado desde 19% até 72% de concentração de sólidos.

A água de resfriamento dos condensadores de superfície é recirculada através da torre de

resfriamento. Os gases não condensáveis (TRS) da evaporação são coletados antes de serem

queimados no incinerador. Os condensados contaminados da evaporação e os condensados

provenientes do sistema de coleta de gases são encaminhados ao sistema de destilação

“stripping” (depuração de condensados) para eliminação de álcool e TRS.

Caracterização dos Efluentes da Evaporação

Os dados apresentados a seguir foram extraídos do RELATÓRIO..., 2000.

Os efluentes desta área são efluentes não intrínsecos ao processo, decorrem

principalmente de operações de selagem e limpeza, e correspondem a:

- Águas de selagem – 15,0 m³/h

- Águas de lavagem – 13,0 m³/h

A área de evaporação de licor dispõe de um sistema de coleta e recuperação de

perdas, que promove a reintegração das perdas de licor preto para o processo através do

tanque de estocagem de licor preto fraco. Esse sistema também permite receber perdas

eventuais provenientes da área da caldeira de recuperação.

Como esta área processa licor preto, poderá contribuir com a carga de DBO5 no

efluente final, decorrente de vazamentos. Por se tratarem de perdas bastante diluídas, sua

recuperação provocaria um desbalanceamento na evaporação devido à introdução de grandes

volumes de água.

Assim, a DBO5 global dos efluentes da evaporação foi avaliada com base em

levantamentos da operação de fábricas similares e, para uma vazão de efluentes de 28,0 m³/h,

em média correspondem a:

- Concentração de DBO5 – 180,0 mg/l

- Carga diária de DBO5 – 121,0 kg DBO5/d

- Carga específica de DBO5 – 0,35 kg DBO5/ t produto

Page 60: Outro Fluxograma

59

Os efluentes desta área praticamente não apresentam carga de sólidos suspensos.

3.2.10 Recuperação e Utilidades

Caldeira de Recuperação

A caldeira de recuperação para a queima dos sólidos do licor preto é do tipo baixo

nível de odor, circulação natural, dois balões e fornalha. Os gases de combustão passam por

um precipitador eletrostático de elevada eficiência, para captação do material particulado

arrastado.

O fluxograma simplificado da Caldeira de Recuperação pode ser visto na Figura

9, em conjunto com o da Evaporação.

As características típicas do licor preto, a partir da análise elementar dos sólidos

secos, são:

- Carbono 32,3%

- Hidrogênio 3,2%

- Enxofre 4,2%

- Oxigênio + Nitrogênio 41,9%

- Sódio e Potássio 18,4%

Total 100,0%

Sistema de Água de Alimentação

O sistema de água de alimentação da caldeira é formado pelo retorno do

condensado de processo e água desmineralizada de reposição, estocados no tanque de água de

alimentação.

Page 61: Outro Fluxograma

60

A água de reposição é água fresca da fábrica, tratada em um sistema de

desmineralização, do tipo osmose reversa. Após o tratamento de desmineralização, o pH da

água é corrigido com Triact 1800, e a água é desaerada com Eliminox para a eliminação do

oxigênio residual, antes de ser alimentada à caldeira.

Caldeira de Força

A caldeira de força, com capacidade inferior à da caldeira de recuperação, tem

função auxiliar na geração de vapor, para suprir a demanda da fábrica. Queima gás natural e

não gera material particulado.

O fluxograma simplificado da Caldeira de Força pode ser visto na Figura 10.

Figura 10 – Caldeira de Força e Turbogerador

TURBO GERADOR

VAPOR MP (12 kgf/cm2)

VAPOR BP (4,5 kgf/cm2)

ENERGIA ELÉTRICA

VAPOR DA CALDEIRA DE RECUPERAÇÃO

CH

AM

INÉ

VENTILADOR

GÁS NATURAL

CALDEIRA DE FORÇA

VAPOR

TURBO GERADOR

VAPOR MP (12 kgf/cm2)

VAPOR BP (4,5 kgf/cm2)

ENERGIA ELÉTRICA

VAPOR DA CALDEIRA DE RECUPERAÇÃO

CH

AM

INÉ

CH

AM

INÉ

VENTILADOR

GÁS NATURAL

CALDEIRA DE FORÇA

VAPOR

Page 62: Outro Fluxograma

61

Turbogerador

O vapor gerado nas caldeiras de recuperação e de força passa em uma turbina do

tipo contra-pressão com extração, acoplada a um gerador de energia elétrica, mostrados na

Figura 10. O vapor extraído em dois níveis de pressão (4,5 e 12,0 kgf/cm² abs) é utilizado no

processo de fabricação de celulose.

Compressores

O ar de serviço e ar para instrumentação é suprido por meio de quatro

compressores (sendo dois de reserva) tipo pistão. O ar para instrumentação passa através de

um sistema de secagem antes de ser distribuído.

Caracterização dos Efluentes da Recuperação e Utilidades

Os dados apresentados a seguir foram extraídos do RELATÓRIO..., 2000.

Os efluentes de processo desta área decorrem da planta de desmineralização. A

contribuição destes efluentes é de 22 m³/h em média.

Os efluentes da área não intrínsecos ao processo correspondem às águas de

resfriamento, selagem e limpeza de equipamentos e da área de operação.

A vazão média de efluentes decorrentes de operações de selagem e limpeza é de

20 m³/h.

A maior vazão de efluentes desta área é constituída por águas de resfriamento,

cuja vazão média é de 54 m³/h.

Os principais equipamentos e sistemas que são resfriados com água fresca são:

- Mancais dos ventiladores da caldeira de recuperação;

- Resfriadores dos amostradores;

- Sistema de lubrificação da turbina;

- Sistema de resfriamento de ar do gerador;

Page 63: Outro Fluxograma

62

- Sistema de lubrificação das bombas de alimentação das caldeiras;

- Compressores;

- Reposição do circuito de água de resfriamento das bicas de fundido da caldeira de

recuperação.

As águas de resfriamento do sistema de lubrificação da turbina, bem como do

sistema de resfriamento do óleo dos compressores, são enviadas para a torre de resfriamento,

e o restante (54 m³/h) é lançado nas canaletas de efluentes.

Em resumo, os efluentes desta área são:

- Efluentes da desmineralização – 22 m³/h

- Águas de selagem e limpeza – 20 m³/h

- Águas de resfriamento – 54 m³/h

Esses efluentes praticamente não apresentam sólidos em suspensão, por se

tratarem de águas de resfriamento.

A carga de DBO5 que acompanha estes efluentes decorre das operações de

limpeza da área. O valor médio estimado, para uma vazão de 96 m³/h, corresponde a:

- Concentração de DBO5 média – 130 mg/l

- Carga diária de DBO5 – 299 kg DBO5/d

- Carga específica de DBO5 – 0,85 kg DBO5/ t produto.

3.2.11 Caustificação e Forno de Cal

Caustificação

O licor verde proveniente do tanque de dissolução da caldeira de recuperação é

enviado para a caustificação, para sua transformação em licor branco forte. A caustificação é

constituída de tanque de homogeneização de licor verde, clarificador de licor verde, extintor

Page 64: Outro Fluxograma

63

de cal, caustificadores e filtro pressurizado de licor branco e lama de cal, de acordo com o

fluxograma simplificado apresentado na Figura 11.

Page 65: Outro Fluxograma

64

Figura 11 – Caustificação e Forno de Cal

Fonte: RELATÓRIO..., 2000

Page 66: Outro Fluxograma

65

O licor verde, com elevada concentração de carbonato de sódio, advindo do

tanque de dissolução da caldeira de recuperação, reage com a cal, gerada no forno de cal,

formando a lama de cal.

Forno de Cal

A lama de cal é secada em um filtro pré-camada através de uma bomba de vácuo,

e enviada ao forno de cal para ser calcinada.

Os gases do forno de cal passam por um precipitador eletrostático de alta

eficiência para a captação do pó.

O fluxograma simplificado do Forno de Cal pode ser visto na Figura 11, em

conjunto com o da Caustificação.

Caracterização dos Efluentes da Caustificação e Forno de Cal

Esta área praticamente não apresenta efluentes de processo. Os efluentes não

intrínsecos ao processo correspondem às águas de selagem das bombas centrífugas da área,

bem como as águas de resfriamento e limpeza.

Os dados apresentados a seguir foram extraídos do RELATÓRIO..., 2000.

A vazão de efluentes é, em média, 35 m³/h:

- Águas de selagem e limpeza – 30 m³/h

- Águas de resfriamento e limpeza – 5 m³/h

A carga de DBO5 que acompanha esses efluentes é decorrente de perdas e da

utilização de condensados da evaporação de licor preto no processo de caustificação, uma vez

que todo o processamento nesta área é de origem inorgânica.

A carga de DBO5 estimada, para uma vazão de efluentes de 35 m³/h, corresponde

a:

- Concentração de DBO5 – 250 mg/l

Page 67: Outro Fluxograma

66

- Carga diária de DBO5 – 210 kg DBO5/d

- Carga específica de DBO5 – 0,6 kg DBO5/t produto

Os efluentes desta área arrastam sólidos em suspensão, decorrentes das perdas de

cal e lama de cal, para os coletores de efluentes.

A fim de diminuir a carga de sólidos suspensos que acompanham os efluentes

desta área, esses são enviados para um poço de coleta, de onde são bombeados para um

tanque de derrames, para serem recuperados para o processo.

A contribuição de sólidos suspensos estimada para uma vazão de efluentes de 35

m³/h é de:

- Concentração de sólidos suspensos – 760 mg/l

- Carga diária de sólidos suspensos – 638 kg/d

- Carga específica de sólidos suspensos – 1,8 kg/t produto

3.2.12 Preparo de Produtos Químicos

Esta área compreende os seguintes sistemas:

- Geração de oxigênio e ozônio

- Recebimento, estocagem e manuseio de químicos: soda cáustica, ácido sulfúrico,

peróxido de hidrogênio, sulfato de magnésio, dióxido de enxofre.

As Figuras 12 e 13 apresentam fluxogramas simplificados dessas áreas.

Page 68: Outro Fluxograma

67

Figura 12 – Preparo de Produtos Químicos – I

Fonte: RELATÓRIO..., 2000

Page 69: Outro Fluxograma

68

Figura 13 – Preparo de Produtos Químicos – II Fonte: RELATÓRIO..., 2000

Page 70: Outro Fluxograma

69

Geração de Oxigênio

O oxigênio é obtido a partir do ar, através do sistema PSA (Pressure Swing

Adsorption), constituído por compressor de ar e torres de adsorção, preenchidas com zeolito

sintético, que operam como peneira molecular.

Esse sistema opera em ciclos repetidos, constituídos por dois estágios básicos:

adsorção e regeneração. Durante o estágio de adsorção, o ar é alimentado com alta pressão a uma

das torres de adsorção, até que o adsorvente (zeolito) esteja parcialmente carregado com

impurezas (principalmente nitrogênio e CO2). Então a segunda torre de adsorção é alimentada

com ar, e ocorre a regeneração da primeira torre.

A regeneração se dá através da despressurização da torre até pressão atmosférica, da

purga das impurezas com oxigênio e da repressurização da torre para torná-la disponível para o

próximo ciclo de adsorção.

Devido às colunas de adsorção, o fluxo de oxigênio é praticamente contínuo. O

oxigênio assim produzido é utilizado para a produção de ozônio.

É mantido um estoque estratégico de oxigênio fornecido por terceiros, suficiente para

o consumo de cerca de 24 horas. Este estoque é armazenado em tanque criogênico, para o caso de

eventual falha na planta de geração de oxigênio.

Geração de Ozônio

O ozônio é produzido a partir de oxigênio. A geração de ozônio ocorre entre dois

eletrodos que são separados por um dielétrico (vidro). Através da aplicação de corrente em média

voltagem aos eletrodos, parte das moléculas de oxigênio é convertida em moléculas de ozônio.

O gerador de ozônio consiste basicamente num grande número de pares de eletrodos,

determinados em função da quantidade de ozônio a ser gerada (kg O3/h), da concentração de

ozônio, suprimento de energia, etc. Grande parte da energia empregada na geração de ozônio é

convertida em calor, e o sistema é refrigerado com água gelada em circuito fechado.

Page 71: Outro Fluxograma

70

A corrente de oxigênio contendo ozônio (10 - 12%) é pressurizada e alimentada aos

misturadores de ozônio do branqueamento (estágio Z). Os gases extraídos do tanque de descarga

do estágio Z, basicamente constituídos de oxigênio com residual de ozônio e vapor d’água

passam por um destruidor de ozônio, que elimina o residual de ozônio remanescente no fluxo

gasoso, sendo em seguida comprimido, para então ser alimentado na deslignificação com

oxigênio e oxidação de licor branco.

Recebimento, Estocagem e Manuseio de Produtos Químicos

Estes insumos são adquiridos de terceiros. Para cada produto estão previstos tanques

de estocagem com sistemas de descarga e dosagem para os diversos pontos de aplicação no

processo.

Caracterização dos Efluentes da Área de Recebimento, Estocagem e Manuseio de Produtos

Químicos

Os dados apresentados a seguir foram extraídos do RELATÓRIO..., 2000.

Os efluentes desta área caracterizam-se por efluentes não intrínsecos ao processo,

provenientes de água de selagem e águas de limpeza, e praticamente não apresentam cargas de

DBO5 e sólidos suspensos.

A vazão de efluentes da área corresponde a 7 m³/h, sendo:

- Água de selagem – 4 m³/h

- Água de limpeza – 3 m³/h

Page 72: Outro Fluxograma

71

3.2.13 Captação e Tratamento de Água Bruta

A água necessária para o abastecimento da fábrica é proveniente de oito poços

profundos, e captada através de bombas centrífugas verticais. As capacidades dos poços são

apresentadas na Tabela 3, a seguir.

Tabela 3 – Capacidade dos Poços de Água

POÇOS CAPACIDADE

Poço n° 1 60,0 m³/h

Poço n° 2 65,5 m³/h

Poço n° 3 102,0 m³/h

Poço n° 4 102,0 m³/h

Poço n° 5 146,5 m³/h

Poço n° 6 144,0 m³/h

Poço n° 7 120,0 m³/h

Poço n° 8 144,0 m³/h

TOTAL 884,0 m³/h

Fonte: RELATÓRIO..., 2000

Dos poços, a água bruta, de caráter ácido, é bombeada para um tanque de chegada,

onde é neutralizada com soda, e transferida por gravidade para o reservatório de água industrial,

com capacidade de 1.200 m³.

Os consumos de água para uso industrial, volumétrico e específico, conforme dados

extraídos do RELATÓRIO..., 2000, são mostrados nas Figuras 14 e 15.

Page 73: Outro Fluxograma

72

Figura 14 – Consumo de Água Industrial – Volumétrico (m3/h) Fonte: RELATÓRIO..., 2000

Figura 15 – Consumo de Água Industrial – Específico (m3/tsa) Fonte: RELATÓRIO..., 2000

CONSUMO DE ÁGUA INDUSTRIAL (máximo) Volumétrico (m3/h)

15

12

22

8

262

138

9

29

8333

Manuseio de madeira

Cozimento

Lavagem e Depuração Não branqueada

Deslignif icação

Branqueamento

Depuração e Secagem

Preparo de Produtos Químicos

Evaporação

Recuperação e Utilidades

Caustif icação e Forno de Cal

CONSUMO DE ÁGUA INDUSTRIAL (máximo) Específ ico (m3/tsa)

1

0,8

1,5

0,5

18

9,5

0,6

2

5,7

2,3Manuseio de madeira

Cozimento

Lavagem e Depuração Não branqueada

Deslignif icação

Branqueamento

Depuração e Secagem

Preparo de Produtos Químicos

Evaporação

Recuperação e Utilidades

Caustif icação e Forno de Cal

Page 74: Outro Fluxograma

73

3.2.14 Tratamento de Efluentes

As vazões de efluentes gerados, volumétricas e específicas, por área produtiva,

conforme dados extraídos do RELATÓRIO..., 2000, são apresentadas nas Figuras 16 e 17.

Figura 16 – Vazão de Efluentes – Volumétrica (m3/h) Fonte: RELATÓRIO..., 2000

VAZÃO DE EFLUENTES (máxima) Volumétrica (m3/h)

15

14

20

8

25054

7

28

96

35Manuseio de madeira

Cozimento

Lavagem e Depuração Não branqueada

Deslignif icação

Branqueamento

Depuração e Secagem

Preparo de Produtos Químicos

Evaporação

Recuperação e Utilidades

Caustif icação e Forno de Cal

Page 75: Outro Fluxograma

74

Figura 17 – Vazão de Efluentes – Específica (m3/tsa) Fonte: RELATÓRIO..., 2000

Demais características do efluente industrial orgânico, conforme dados extraídos do

RELATÓRIO..., 2000, são apresentados na Tabela 4 a seguir.

VAZÃO DE EFLUENTES (máxima) Específ ica (m3/tsa)

1 1 1,4

0,5

17,13,7

0,5

1,9

6,6

2,4Manuseio de madeira

Cozimento

Lavagem e Depuração Não branqueada

Deslignif icação

Branqueamento

Depuração e Secagem

Preparo de Produtos Químicos

Evaporação

Recuperação e Utilidades

Caustif icação e Forno de Cal

Page 76: Outro Fluxograma

75

Tabela 4 – Características do Efluente Orgânico da Bahia Pulp

Características do Efluente Orgânico

Vazão (máxima) 527 m3/h

Vazão específica 36,1 m3/tsa

11,1 kg/tsa

3.896 kg/d

DBO5 (máxima)

0,31 g/l

4,69 kg/tsa

1.642 kg/d

Sólidos Suspensos

(máximo)

0,13 g/l

75,0 kg Pt/tsa

26.250 kg/d

Cor

(máxima)

2,1 g/l

pH 3 a 5

Fonte: RELATÓRIO..., 2000

Os efluentes líquidos gerados na depuração de polpa não branqueada e branqueada

são inicialmente conduzidos a uma prensa desaguadora de rejeitos (ou “taster”), próxima às áreas

geradoras.

Os efluentes totais gerados pelas diversas áreas produtoras são reunidos e passam por

uma neutralização em um tanque construído para esse fim e por uma grade, para retenção de

possíveis materiais sólidos graúdos, como pedaços de madeira ou restos de embalagens.

A neutralização é feita por meio da adição soda cáustica e ácido sulfúrico. Após a

correção de pH, os efluentes passam por um medidor de vazão tipo calha Parshall.

O efluente total neutralizado é enviado para a Estação de Tratamento de Efluentes

Orgânicos da CETREL, para tratamento e disposição final.

Page 77: Outro Fluxograma

76

3.3 GESTÃO AMBIENTAL

A gestão ambiental, seja através da Norma ISO 14001, ou da Prevenção da Poluição,

ou da Produção Mais Limpa, ou da Produção Limpa, contribui para a melhoria na conduta

ambiental das empresas, mas são diferentes quanto a seus objetivos e métodos. A certificação

pela Norma ISO 14001 não implica na adoção de tecnologias limpas ou tecnologias mais limpas,

assim como essas duas últimas não implicam no atendimento aos requisitos da Norma

(FURTADO, SILVA e MARGARIDO, 2001).

A gestão ambiental pode basear-se em abordagens diferentes. A abordagem

“Comando e Controle” (C&C) baseia-se no estabelecimento de dispositivos e exigências legais

(Comando) e de mecanismos de garantia de seu cumprimento (Controle). Assim, são

estabelecidos normas e padrões ambientais, como, por exemplo, padrões de emissão e de

qualidade ambiental, cujo atendimento é fiscalizado, e às não conformidades detectadas são

aplicadas multas e/ou sanções administrativas. No Brasil, as normas e padrões ambientais têm

considerado os efeitos ambientais de curto prazo, em geral, contribuindo para a adoção de

tecnologias de fim-de-tubo (ANDRADE, MARINHO e KIPERSTOK, 2001).

A abordagem da “Auto-regulação” baseia-se no estabelecimento de iniciativas

voluntárias, sendo influenciadas por mercado, imagem, custos, antecipação da legislação,

comprometimento de pessoas, etc., como, por exemplo, o rótulo EMAS, o Programa Atuação

Responsável, a Norma ISO 14001, que não são necessariamente objetos de regulação

governamental. Essa abordagem pode levar a mudanças culturais de longo prazo, mas sozinha

não garante a prevenção da poluição e nem a produção limpa; é necessário que a “Auto-

regulação” junte-se a outros instrumentos (ANDRADE, MARINHO e KIPERSTOK, 2001).

No Brasil, em termos legais, surgiu um outro tipo de abordagem, os Instrumentos

Econômicos, que tratam das questões de poluição nas atividades produtivas. Cita-se como o

exemplo mais conhecido a taxação pelo uso dos recursos ambientais, que tem como base o

princípio do usuário-pagador (ANDRADE, MARINHO e KIPERSTOK, 2001).

Page 78: Outro Fluxograma

77

3.3.1 Sistema de Gestão Ambiental: ISO 14001

A maneira mais adequada de se implantar um sistema de gestão ambiental nas

empresas atualmente é através da adequação às Normas ISO 14001 e 14004 da ABNT. Existem

outras propostas, como, por exemplo, o Programa Atuação Responsável, proposto pela

ABIQUIM aos seus associados, ou o rótulo EMAS, uma regulação de eco-gestão e auditoria da

União Européia, que são alternativamente adotados por motivos diversos, por exemplo, ramo da

empresa, país de origem, estratégia mercadológica, etc (FURTADO, SILVA e MARGARIDO,

2001).

A Norma ISO 14001 provê os elementos de um Sistema de Gestão Ambiental

integrado aos demais objetivos de uma organização ou suas partes, sejam elas quais forem,

independentemente de condições geográficas, culturais e sociais. Ela requer a busca pela

melhoria contínua, tendo como conseqüência esperada a superação dos padrões legislativos e de

mercado vigentes (FURTADO, SILVA e MARGARIDO, 2001).

O bom resultado da implementação de um Sistema de Gestão Ambiental baseado na

Norma ISO 14001 depende do comprometimento de todos os níveis e funções da organização, e

em particular da Alta Administração. A auditoria é a principal ferramenta para avaliação do

estágio de atendimento ao Sistema de Gestão Ambiental, que inclui a legislação e os critérios

definidos internamente na organização, e para a tomada de decisões de gestão e negócios

(FURTADO, SILVA e MARGARIDO, 2001).

Os elementos e princípios de um Sistema de Gestão Ambiental estão definidos na

Norma ISO 14004, e são:

- Princípio 1 – Comprometimento e Política, que estabelece o comprometimento e a liderança

da Alta Administração;

- Princípio 2 – Planejamento, que identifica os aspectos ambientais e avalia os impactos

ambientais associados, identifica os requisitos legais e outros requisitos, define critérios

internos de desempenho, define objetivos e metas ambientais e estabelece um programa de

gestão ambiental;

Page 79: Outro Fluxograma

78

- Princípio 3 – Implementação, que estabelece a implementação através do desenvolvimento da

capacitação de recursos humanos e de ações de apoio necessárias ao atendimento da política,

objetivos e metas ambientais;

- Princípio 4 – Medição e Avaliação, que estabelece a medição e o monitoramento, as ações

corretivas e preventivas, os registros do sistema e a gestão da informação;

- Princípio 5 – Análise Crítica e Melhoria, que estabelece a análise crítica do sistema e sua

melhoria contínua (DONAIRE, 1999).

Embora a certificação pela Norma ISO 14001 requeira da empresa o compromisso de

melhoria contínua, acaba privilegiando o atendimento à legislação e os tratamentos de fim-de-

tubo (FURTADO, SILVA e MARGARIDO, 2001).

3.3.2 Produção Mais Limpa

A Produção Mais Limpa implica na prevenção de geração de resíduos na fonte, na

exploração sustentável de fontes de matérias-primas, na economia de água e energia e no uso de

indicadores ambientais para a indústria. Implica na mudança de comportamento da empresa

quanto ao processo, produto, embalagens, descarte, destinação, manejo de lixo industrial e restos

de produtos, e na mudança de comportamento dos consumidores (FURTADO, SILVA e

MARGARIDO, 2001).

3.3.3 Produção Limpa

A Produção Limpa vai além da Produção Mais Limpa, requerendo maior

compromisso na reorientação de processos e produtos, trabalhando na precaução, isto é, na menor

utilização de matérias-primas, na não geração de produtos com indícios ou suspeitas de geração

de danos ao meio ambiente, tendo uma visão holística do produto e processo (análise do ciclo de

Page 80: Outro Fluxograma

79

vida), e garantindo o direito de acesso público a informações sobre riscos ambientais de

processos e produtos (FURTADO, SILVA e MARGARIDO, 2001). Está um passo à frente em

relação à adoção de medidas de fim-de-tubo, e mais próxima do conceito de desenvolvimento

sustentável.

Assim, a Produção Limpa é um conceito que, uma vez integrado aos mecanismos

complementares de Comando & Controle, Auto-regulação e Instrumentos Econômicos, fomenta

o desenvolvimento de métodos e tecnologias eco-eficientes, dando como retorno ganhos

ambientais, econômicos e sociais.

3.4 TECNOLOGIAS LIMPAS ADOTADAS NA BAHIA PULP

As tecnologias de processo adotadas pela Bahia Pulp em seu projeto de reforma, que

permitiram ganhos ambientais, foram:

- polpação estendida (cozimento com Número Kappa reduzido, de 6 a 10);

- deslignificação com oxigênio em dois estágios (com Número Kappa de 2 a 3);

- branqueamento utilizando ozônio e peróxido de hidrogênio, isto é, isento de compostos de

cloro;

- recirculação dos filtrados em contracorrente;

- utilização de água morna no cozimento e no branqueamento, e de água quente, proveniente da

etapa de cozimento, na secagem e caustificação;

- utilização de água branca, proveniente da máquina de secagem, no branqueamento;

- recirculação de água branca na depuração branqueada;

- recirculação de água de lavagem no pátio de madeira;

Page 81: Outro Fluxograma

80

- segregação e depuração do condensado resultante da evaporação do licor preto e sistema de

reuso de condensados secundários.

- sistema de coleta, estocagem e retorno de derrames e vazamentos em todas as áreas de

manipulação de licor preto.

A polpação estendida promove uma maior deslignificação da polpa, isto é, uma maior

remoção de lignina, ainda no cozimento, antes da etapa de branqueamento. Assim, ocorre uma

conseqüente redução no consumo de químicos e na quantidade de estágios de lavagem,

significando um menor consumo de água.

A deslignificação com oxigênio, conforme já dito anteriormente, contribui para a

qualidade dos efluentes e para a recuperação de material orgânico dissolvido no ciclo de

recuperação, onde transforma-se em energia ao invés de poluente (como é o caso dos derivados

clorados).

O branqueamento com ozônio e peróxido de hidrogênio não gera compostos

organoclorados.

Além das recirculações internas no branqueamento em contra-corrente, no pré-

branqueamento ocorre o aproveitamento parcial do filtrado ácido para diluição da polpa não

branqueada e sua transferência para a torre do estágio ácido, isto é, para o branqueamento

propriamente dito.

Parte da água morna gerada na caldeira de recuperação e na área de utilidades em

operações de resfriamento, é utilizada no branqueamento, na lavagem do estágio ácido, e a outra

parte é utilizada para resfriar os licores do cozimento (licor preto fraco), gerando água quente.

Essa água quente é reutilizada na secagem, para promover melhor drenabilidade e obter mais

uniformidade na formação da folha de celulose, e na caustificação, nos chuveiros do filtro de

lama e para lavagem dos ecofiltros, e a parte não consumida retorna para a torre de resfriamento.

A água branca proveniente da extração de água da formadora e prensas é conduzida

ao tanque de água branca, de onde é bombeada à torre de água branca. Parte da água branca é

reutilizada na diluição da polpa alimentada ao sistema de depuração branqueada, o que permite a

recuperação de fibras existentes na água branca. A água branca é ainda utilizada na diluição da

Page 82: Outro Fluxograma

81

polpa que alimenta o tanque das máquinas secadoras e na lavagem do último estágio do

branqueamento.

As águas servidas da depuração da celulose branqueada são recuperadas e reutilizadas

para diluição e transferência da celulose branqueada, da torre de estocagem para a depuração.

A água de lavagem de toras do pátio de madeira é encaminhada para uma bacia de

decantação de sólidos, principalmente areia, sendo que parte dela recircula e é complementada

com água industrial, retornando para a operação de lavagem.

O reaproveitamento dos condensados da evaporação do licor preto, associado ao

tratamento da parcela de maior carga orgânica, na depuração de condensados (“stripping”),

permite a recuperação de água, e reduz a contribuição da carga orgânica e o nível de odor devido

a esses condensados. O reaproveitamento dos condensados se dá pela sua utilização na lavagem

da polpa não branqueada e na caustificação.

Os condensados da evaporação do licor preto são reutilizados no filtro de lama de cal,

juntamente com água quente recuperada do processo, e no filtro de dregs.

Os condensados contaminados são coletados e destilados em coluna de destilação

com vapor, para remoção de metanol e de gases não condensáveis, sendo posteriormente

estocados e reutilizados.

Os derrames e vazamentos de licor preto são estocados em poços e sua qualidade é

controlada através da medição de condutividade, sendo desviados para diferentes fins (reuso ou

descarte para efluentes) conforme esse controle.

Uma tecnologia que não foi adotada no projeto de reforma da Bahia Pulp foi o uso de

prensas lavadoras no lugar dos filtros de tambor à vácuo existentes, devido exclusivamente ao

custo de aquisição e montagem, a qual propiciaria menor consumo de água na lavagem e no

branqueamento.

Page 83: Outro Fluxograma

82

3.5 FECHAMENTO DE CIRCUITOS NA INDÚSTRIA DE CELULOSE

A indústria de celulose tem seguido a tendência mundial de outras indústrias

químicas de fechar circuitos, isto é, retornar os resíduos sólidos, os efluentes líquidos e as

emissões gasosas para o processo, através do reaproveitamento da água e dos químicos que

acompanham esses resíduos em geral (REEVE e SILVA, 2000).

O reciclo de materiais no processo Kraft já é largamente utilizado na recuperação

química e regeneração de insumos, através das operações de evaporação e queima do licor preto,

geração de licor verde, caustificação e regeneração de cal, e no extensivo reuso da água (REEVE

e SILVA, 2000).

O conceito de circuito fechado recai sobre o maior ou menor grau de reuso ou reciclo

praticado, e, no caso de processo Kraft especificamente, sobre o reuso ou reciclo dos efluentes

dos estágios do branqueamento após a deslignificação com oxigênio (REEVE e SILVA, 2000).

O conceito de recuperação dos efluentes do branqueamento foi descrito pela primeira

vez por Rapson, em 1967, com o objetivo de reduzir a poluição da água devida ao processo Kraft.

A lavagem em contracorrente nos estágios do branqueamento reduziria o seu efluente, o qual

seria usado na lavagem da polpa marrom. O material orgânico dissolvido seria queimado na

caldeira de recuperação. Os químicos utilizados seriam recuperados através da sua captura nos

gases de queima em um precipitador eletrostático. O condensado da evaporação do licor preto

seria limpo e reutilizado na lavagem do branqueamento. Os conceitos citados acima levariam à

eliminação da poluição da água, economia em calor, eliminação dos tratamentos primário e

secundário dos efluentes, ainda associados à redução nos custos de operação e no consumo de

água fresca e à possibilidade de instalar uma fábrica de celulose em local com pouca

disponibilidade de água e sem um corpo receptor de água (REEVE e SILVA, 2000).

Em 1974 iniciou-se o projeto da primeira aplicação comercial de recuperação de

efluentes do branqueamento e de químicos, e em 1977 o sistema partiu, na Great Lakes Forest

Products Company (Bowater Canada Inc.) em Thunder Bay, Ontário. As dificuldades técnicas

Page 84: Outro Fluxograma

83

foram muitas e os custos bem maiores que o esperado, levando ao encerramento das operações de

recuperação em 1985 (REEVE e SILVA, 2000).

Embora a Bahia Pulp tenha optado por tecnologias de processo modernas, disponíveis

durante a fase de projeto, cujo nível de poluição era reduzido em relação às fábricas em operação,

o fechamento de circuitos esbarrou na necessidade de purga de parte dos sólidos suspensos e

dissolvidos gerados nos estágios de branqueamento, sem a qual aumentaria o consumo de

reagentes, podendo ainda afetar negativamente a qualidade e propriedades da celulose produzida.

Uma das dificuldades a ser superada no fechamento de circuitos são os elementos

estranhos ao processo, que entram aleatoriamente e de maneira inevitável no processo, com a

madeira, químicos e água, e se acumulam, podendo causar corrosão, formação de incrustações e

depósitos, além de problemas operacionais (REEVE e SILVA, 2000).

Os agentes do branqueamento nos processos TCF e ECF, o peróxido de hidrogênio e

o ozônio, têm sua eficiência prejudicada ou reduzida por compostos estranhos ao processo, como

o ferro e o manganês principalmente, que catalisam a decomposição do peróxido. Daí um estágio

de remoção de metais ser mandatório para que o estágio com peróxido seja eficiente (REEVE e

SILVA, 2000; SACON, VENTURA e HEINRICH, 1995).

A madeira é a principal fonte de potássio e de cálcio, além do solo ser um grande

contribuinte de metais, como o alumínio, sílicio, ferro, cálcio e magnésio. Íons cloretos entram no

sistema com a madeira. O alumínio, ferro e silício que acompanham as toras, também por causa

do transporte rodoviário, podem ter suas concentrações reduzidas pela lavagem de toras, o que já

não ocorre com o cálcio, magnésio, cloro e potássio, por serem integrantes da madeira (REEVE

e SILVA, 2000; SACON, VENTURA e HEINRICH, 1995).

O sulfato de magnésio, utilizado na deslignificação com o objetivo de reduzir perdas

por viscosidade, também é uma importante fonte de magnésio no processo (SACON, VENTURA

e HEINRICH, 1995).

Page 85: Outro Fluxograma

84

Materiais Inerentes ao Processo:

O sódio e o enxofre entram no sistema com o licor de cozimento (Na2S e NaOH),

com a adição de licor branco oxidado na deslignificação com oxigênio e com a adição de soda

cáustica no estágio com peróxido de hidrogênio.

A reposição desses elementos é feita pela adição de sulfato de sódio (Na2SO4) ao

licor preto no tanque de mistura, para depois ser queimado na caldeira de recuperação.

Materiais Estranhos ao Processo:

Elementos como alumínio, magnésio, silício, ferro, manganês, potássio, fósforo e

íons cloretos, estranhos ao processo e presentes nas correntes líquidas, podem vir a acumular-se,

quando se busca cada vez mais fechar circuitos de água, em particular quando se retorna purgas

para o processo (SACON, VENTURA e HEINRICH, 1995).

Esses elementos são costumeiramente divididos em solúveis em álcali e insolúveis

em álcali.

Os elementos solúveis em álcali, o potássio e os íons cloretos, são principalmente

oriundos da madeira, podendo os íons cloretos entrar no sistema como contaminantes em

químicos e na água. A polpa e os efluentes são as purgas naturais desses elementos, além do pó

do precipitador eletrostático da caldeira de recuperação. O aumento de sua concentração pode

causar obstruções na caldeira de recuperação, com consequente perda de sua eficiência.

Os elementos insolúveis em álcali, cálcio, magnésio, manganês, ferro, e outros, são

principalmente oriundos da madeira e do sulfato de magnésio, sendo os dregs, grits e efluentes do

branqueamento as purgas principais. O reuso dos filtrados do branqueamento aumenta a retenção

desses elementos. E o aumento da concentração desses elementos pode resultar na perda do poder

oxidativo dos reagentes no branqueamento e no aparecimento de incrustações e depósitos.

Page 86: Outro Fluxograma

85

Sólidos Suspensos

Os sólidos suspensos são formados por partículas finas oriundas de material fibroso e

materiais estranhos ao processo. O seu acúmulo pode reduzir a drenagem nos filtros e na máquina

de secagem, aumentar a sujeira, causar entupimentos e reduzir a vida útil de telas e de feltros na

máquina de secagem, aumentar as incrustações e depósitos, causar o entupimento de chuveiros de

alta pressão, e aumentar a necessidade de aditivos químicos.

Sólidos Dissolvidos:

Os sólidos dissolvidos são formados por resíduos do processo, materiais estranhos ao

processo e microorganismos. O seu acúmulo pode aumentar a corrosão, aumentar a formação de

espuma, causar odor, aumentar depósitos tipo “pitch”, aumentar as incrustações e depósitos,

aumentar o crescimento de microorganismos e presença de limo, e aumentar a necessidade de

aditivos químicos.

Temperatura:

Com o fechamento dos circuitos, ocorre o aumento de temperatura das correntes,

podendo causar diminuição da capacidade das bombas de vácuo, aumento no crescimento de

certos microorganismos e necessidade de resfriamento de efluentes antes da descarga.

3.6 REDUÇÃO NA GERAÇÃO DE EFLUENTES

Dada a natureza do processo “kraft”, entende-se que a redução na geração de

efluentes pode ser obtida a partir das seguintes técnicas:

Page 87: Outro Fluxograma

86

- Reuso – aproveitamento do efluente diretamente no mesmo processo ou em outro processo

que requeira menor nível de qualidade da água, sem a necessidade de adequar suas

características;

- Reciclo – aproveitamento do resíduo no processo, a partir de alguma modificação das suas

características para atender aos requisitos do processo;

- Prevenção de perdas – implementação de boas práticas operacionais, que levem à redução na

geração de efluentes;

- Segregação de correntes – segregação de correntes com características físicas e químicas

diferentes, para facilitar os processos de separação e retorno ao processo.

No caso de reuso e reciclo, que podem ser internos ou externos ao processo, dá-se

preferência pelas alternativas de reuso e reciclo internos, o mais próximo possível do processo

que o gerou.

No caso da prevenção de perdas através de boas práticas operacionais, entende-se por

boas práticas operacionais (COLODETTE e outros, 2002):

- treinamento e conscientização de pessoas, bem como programas de incentivo à redução no

consumo de água e na geração de efluentes;

- controle adequado de perdas, evitando e reduzindo vazamentos e transbordos;

- programações de produção e de manutenção adequadas, visando à minimização de perdas;

- contabilização dos custos de tratamento dos efluentes gerados e sua apropriação nas áreas

geradoras.

3.7 DISPOSIÇÃO DE EFLUENTES NO SOLO

A disposição de efluentes industriais no solo vem sendo usada como método

alternativo de descarte de resíduos em corpos de água, e praticado por alguns municípios e

Page 88: Outro Fluxograma

87

indústrias por várias décadas. A indústria de celulose tem considerando a disposição no solo

como uma alternativa no gerenciamento de seus efluentes (REZENDE, MATOS e SILVA, 2000).

Em relação aos efluentes da indústria de celulose, existe um número considerável de

pesquisas sendo realizadas, inclusive em escala real. Essas pesquisas têm se concentrado

principalmente nos aspectos de produtividade das culturas irrigadas, e menos no comportamento

dos compostos orgânicos tóxicos dos efluentes no solo. Além disso, os impactos ambientais

decorrentes da aplicação do efluente por períodos mais longos ainda não estão totalmente

entendidos (REZENDE, MATOS e SILVA, 2000).

Os efluentes das fábricas de celulose contêm nutrientes (incluindo nitrogênio, fósforo,

cálcio, magnésio e metais), que podem ser fertilizantes para plantas, matéria orgânica, que pode

atuar como condicionadora do solo, e também diversos constituintes indesejáveis. Por isso, os

impactos ambientais devem ser avaliados, principalmente quanto à acumulação de sais, nutrientes

e outros elementos introduzidos no meio por aplicação prolongada dos resíduos (REZENDE,

MATOS e SILVA, 2000).

O processo de disposição de efluente no solo demanda planejamento e gerenciamento

com o mesmo grau de atenção e importância dado a qualquer outro processo operacional

(REZENDE, MATOS e SILVA, 2000).

Page 89: Outro Fluxograma

88

4 METODOLOGIA

A metodologia utilizada envolveu pesquisa bibliográfica e documental, levantamento

de campo, tratamento de dados, reuniões com operadores de produção e estudo de oportunidades.

A estratégia utilizada foi investigar o estado da arte em termos de tecnologias que

contribuem para um menor consumo de águas e uma menor geração de efluentes da indústria de

celulose, conhecer a instalação física do sistema de efluentes da fábrica, e construir o balanço de

águas, para gerar uma base de interpretação para o estudo de oportunidades.

Foram consultados documentos de engenharia da fábrica.

Foram realizadas entrevistas e reuniões com os operadores de produção da fábrica

diretamente envolvidos com as atividades de operação e controle de processo, devido ao

conhecimento específico do processo de suas áreas, incluindo as águas consumidas e os efluentes

gerados, e as condições de processo, normais ou anormais. Nessas reuniões foram anotados

pontos de investigação e sugestões para redução do volume de efluentes e para o reuso de águas,

bem como oportunidades de melhoria ambiental em geral.

Foi realizado levantamento físico do sistema de efluentes orgânicos da fábrica, em

conjunto com os operadores de produção de cada área. O sistema de efluentes inorgânicos,

constituído basicamente de águas pluviais, não foi objeto de estudo desse trabalho, devido ao seu

baixo volume, em torno de 3,2% do efluente total gerado, considerando-se valores médios do

período de 1998 a 2002.

Foi construído o balanço de águas da fábrica, o qual permitiu quantificar os consumos

de água no processo de fabricação da Bahia Pulp e seus descartes, e identificar as perdas.

O balanço de águas foi considerado essencial na formação da base de dados para

análise do problema e estudo de oportunidades, que é o objetivo final deste trabalho, e que

consiste na análise crítica do balanço de águas, identificando pontos com potencial de reuso e

reciclo entre as várias unidades operacionais, realizando a combinação entre fontes e

consumidores de águas de várias qualidades, visando à redução no consumo de água e

conseqüente minimização na geração de efluentes.

Page 90: Outro Fluxograma

89

4.1 LEVANTAMENTO FÍSICO DO SISTEMA DE EFLUENTES ORGÂNICOS

Para o levantamento físico do sistema de efluentes orgânicos, a área fabril foi

dividida em 5 grandes áreas de processo:

- Pátio de Madeira;

- Linha de Fibras;

- Secagem;

- Caustificação e Forno de Cal;

- Evaporação, Caldeira de Recuperação e Utilidades.

Foram consultados os desenhos de infra-estrutura subterrânea. Os circuitos de águas,

divididos em água potável, águas pluviais, água de incêndio, água gelada, efluente alcalino,

efluente ácido, efluente oleoso, efluente neutralizado e esgoto sanitário, foram localizados, mas

apenas os circuitos de efluente alcalino, efluente ácido e efluente oleoso foram acompanhados,

sempre quando possível em conjunto com os operadores de produção de cada área. As canaletas e

tubulações, em sua maioria de concreto armado, foram seguidas, e as caixas de concreto abertas,

para serem identificadas e marcadas nos desenhos de infra-estrutura subterrânea. Os circuitos de

efluentes alcalino e ácido, por serem os circuitos representativos do sistema de efluentes

orgânicos da fábrica, que se misturam no Tanque de Neutralização de Efluentes, foram marcados

nos desenhos de infra-estrutura subterrânea, em cores diferentes, e transferidos para o desenho de

“lay-out” geral da fábrica.

Os circuitos do esgoto sanitário e da água potável, embora orgânicos, não foram

considerados nesse levantamento, pois seus volumes são pequenos, e em sua maioria juntam-se

ao efluente já neutralizado na saída da fábrica, após o Tanque de Neutralização.

Page 91: Outro Fluxograma

90

4.2 BALANÇO DE ÁGUAS

Foram usados, como base para o início do trabalho, o balanço de águas existente,

elaborado na ocasião do projeto de reforma da fábrica, em 1995, e os fluxogramas de processo

existentes. O levantamento de dados foi dividido conforme áreas de processo: Secagem, Linha de

Fibras, Pátio de Madeira e Recuperação e Utilidades.

O primeiro passo foi a identificação de todas as linhas de águas e efluentes nos

fluxogramas de processo, e os medidores de vazão existentes. Desses medidores, foram

levantados seus tags, e através da função “average”, de cálculo da média ponderada no tempo,

disponibilizada pelo sistema PI, foram calculadas as vazões médias para o período de estudo.

O segundo passo foi a definição das medições de vazão adicionais necessárias,

quando, na sua ausência, não era possível fechar o balanço. Os pontos assim definidos foram

medidos com um medidor de vazão portátil, tipo ultrassônico, para medição de fluidos líquidos,

modelo Uniflow 994P4GLSB-3, série U1097, fabricante Controlotron.

Antes do início das medições propriamente ditas, o medidor de vazão ultrassônico foi

validado, através da verificação e comparação de sua leitura com valores lidos a partir de

instrumentos confiáveis, como placa de orifício e medidor magnético de vazão, “on line”, em 4

pontos diferentes. Essa etapa serviu também como treinamento de pessoal para realização das

medições.

O correto uso do medidor ultrassônico requer dados de engenharia de cada ponto a

ser medido, que são digitados manualmente na unidade eletrônica: diâmetro da linha, espessura

da linha, material da linha, tipo de fluido e temperatura do fluido. Esses dados foram previamente

levantados a partir dos fluxogramas de processo e índices de linhas.

Em cada ponto foram realizadas várias medições, sendo considerada a média

aritmética das mesmas.

Nos pontos cujas condições físicas não permitiram o uso do medidor ultrassônico

portátil, seja por diâmetro da linha menor que o mínimo permitido pelo instrumento, ou por falha

Page 92: Outro Fluxograma

91

na detecção do sinal ultrassônico, foram realizadas medições com cubagem, isto é, medindo-se o

tempo necessário para encher um recipiente de volume conhecido. Foram utilizados volumes e

cronômetros aferidos, cedidos pelo Laboratório de Qualidade Industrial da Bahia Pulp.

Os cálculos por balanço foram utilizados quando necessário e possível estabelecer-se

a equação de balanço (somatório das entradas = somatório das saídas) com uma incógnita.

Ainda compuseram o balanço de águas valores por amostragem e valores estimados.

Em relação aos valores por amostragem, foram pesquisados e consultados relatórios de serviços

de amostragem, realizados em pontos pré-determinados, como, por exemplo, a amostragem dos

gases das chaminés e a amostragem dos resíduos sólidos, para obter-se os valores de água e

vapor.

Nos pontos em que nenhum dos recursos descritos anteriormente pôde ser aplicado,

foram estimados valores, baseados na experiência e observação dos operadores.

O terceiro passo foi a elaboração e construção do balanço na forma de diagrama de

blocos.

4.3 ANÁLISES QUÍMICAS E FÍSICO-QUÍMICAS

Foi analisado o Plano de Qualidade das Águas, mostrado no Anexo A, que faz parte

do Sistema de Qualidade e Meio Ambiente da Bahia Pulp, documento nº IO.LQP.007 revisão 2, e

concluiu-se ser suficiente para os estudos preliminares.

Foram planejadas análises químicas e físico-químicas adicionais referentes a

pequenas vazões de efluentes descartadas diretamente para o sistema de efluentes orgânicos, tais

como águas de selagem, purgas, transbordos, etc. Essas análises complementaram o mapeamento

de efluentes, para permitir aplicar as técnicas de segregação de correntes e reuso e/ou reciclo.

Page 93: Outro Fluxograma

92

4.4 ESTUDO DE OPORTUNIDADES

Foram consideradas e levantadas alternativas simples, de baixo custo, e avaliadas

técnica e economicamente.

A avaliação técnica consistiu na verificação da adequação necessária dos

equipamentos e instalações existentes, na influência na produtividade e qualidade do produto

final, na análise de problemas potenciais e nas alterações dos aspectos e impactos ambientais.

A avaliação econômica consistiu na preparação de orçamento para implementação

das alternativas, e cálculo de retorno sobre o investimento.

Page 94: Outro Fluxograma

93

5 RESULTADOS E DISCUSSÃO

5.1 LEVANTAMENTO FÍSICO DO SISTEMA DE EFLUENTES ORGÂNICOS

A partir do levantamento físico dos efluentes alcalino e ácido, complementado com as

análises químicas e físico-químicas, obteve-se uma visão geral da contribuição das áreas ao

efluente orgânico final.

Decidiu-se então pela implantação de sistemas de medição de vazão e de pH e/ou

condutividade setoriais, conforme a contribuição e característica do efluente de cada área, nos

pontos indicados na Tabela 5 abaixo:

Tabela 5 – Pontos de Medição de Efluentes Orgânicos Setoriais

Ponto Contribuintes Medições Vazão estimada Característica

1 Pátio de Madeira8, Cozimento, Lavagem e Depuração Não Branqueada

Vazão e condutividade

100 m3/h Alcalino

2 Recuperação e Utilidades Vazão e condutividade

250 m3/h Alcalino

3 Branqueamento Vazão e pH 150 m3/h Ácido

4 Secagem Vazão e pH 150 m3/h Ácido

Foi sugerida a adoção de sistemas de medição contínua, transmitindo sinais para o

Sistema de Controle Digital SDCD, os quais poderão ser monitorados pelos operadores de

produção, e poderão gerar alarmes de processo.

8 A característica do efluente do Pátio de Madeira é de ácido fraco, porém devido ao seu encaminhamento físico foi associado aos efluentes do Cozimento, Lavagem e Depuração Não Branqueada, de caráter alcalino.

Page 95: Outro Fluxograma

94

Esses sistemas de medição foram inclusos no “Projeto de Condicionamento

Ambiental da Bahia Pulp” e já foram adquiridos; serão montados e instalados durante a parada

geral da fábrica, planejada para ocorrer em Setembro de 2004, e não antes disso, devido às

dificuldades em transpor, desviar ou armazenar o volume de efluentes nesses pontos para a

realização dos serviços com a fábrica em operação.

Após a implantação do sistema de medição de efluentes setoriais será possível

conhecer “em tempo real” a contribuição quantitativa e qualitativa de cada um dos 4 pontos

medidos, contribuindo para a melhoria da gestão ambiental dos efluentes.

5.2 BALANÇO DE ÁGUAS

Os balanços de águas obtidos, volumétrico (m3/h) e específico (m3/tsa), são

apresentados nos Apêndices A e B. Para fins de conciliação de dados, dadas as diferentes

precisões dos dados utilizados, considerou-se como aceitável uma diferença de até 10% entre a

somatória das entradas e a somatória das saídas de cada área de processo, entendendo-se essa

precisão ser suficiente para estimar-se os efeitos de estratégias alternativas na racionalização do

uso da água.

O balanço de águas é apresentado na forma de diagrama de blocos, mostrando as

várias áreas de processo e os circuitos das águas, diferenciados por cores. Estão indicados os

consumos de água industrial, água de selagem, água potável, água de incêndio, água morna e

água quente, os efluentes gerados e as perdas. A origem desses dados, seja ela através de cálculo

da vazão média, cálculo por balanço, medição local ou dado estimado, também está diferenciada

por cores. Foram considerados a água entrando no sistema com a madeira e saindo com a

celulose, o conteúdo de água nos licores, a água saindo como vapor pelas chaminés da Caldeira

de Recuperação, do Forno de Cal, do Incinerador e do Tanque de Dissolução, o vapor consumido

diretamente no processo, nas áreas de Cozimento, Deslignificação e Branqueamento e a água

saindo com os resíduos. Não foram consideradas as águas para limpeza e lavagem de pisos.

Page 96: Outro Fluxograma

95

Para o cálculo das vazões médias foi considerado o período de 1° de abril de 2003 a

1° de julho de 2003, durante o qual também foram realizadas as medições locais com o medidor

ultrassônico e as medições locais através de cubagem. Esse período foi considerado válido para

fins do estabelecimento do balanço, devido à sua representatividade em termos de produção, que

no período considerado foi de 299,5 tsa/dia, enquanto a produção diária média no ano de 2003 foi

de 291,8 tsa/dia.

Os trabalhos de medição de vazão com o medidor ultrassônico não foram concluídos

conforme planejado, devido à pane no equipamento. Algumas medições ficaram pendentes, que

seriam utilizadas para confirmação dos valores obtidos e para obtenção de novos valores.

A análise geral do balanço demonstrou a necessidade de ajustes no balanço da Torre

de Resfriamento e circuitos de Água Industrial, Água Quente e Água Morna, e nos balanços do

Branqueamento e da Secagem (interdependentes). Esses ajustes foram realizados através de

valores estimados e valores calculados por balanço de massa, podendo vir a ser validados em

uma segunda etapa de detalhamento do balanço, através de novas medições.

As oportunidades de redução no consumo de água e geração de efluentes,

vislumbradas a partir do balanço, são discutidas a seguir. Permanece válida a mesma simbologia

de cores utilizada no balanço de águas quanto à natureza dos dados apresentados (verde = cálculo

da vazão média pelo sistema PI; amarelo = medição local; cinza = cálculo por balanço; rosa =

valor estimado).

5.2.1 Evaporação

A Evaporação consome 12,5 m3/h de água de selagem e 1.207,9 m3/h de água de

resfriamento, que retornam para a Torre de Resfriamento, conforme pode ser visto na Figura 18 e

no balanço de águas no Apêndice A; recebe 140,0 m3/h de água contida no licor preto fraco

proveniente do cozimento, e gera 11,9 m3/h de água contida no licor preto forte para os

aspersores da Caldeira de Recuperação, e mais 113 m3/h de condensado contaminado e

condensado não contaminado, dos quais aproximadamente 29 m3/h são reutilizados na

Page 97: Outro Fluxograma

96

Caustificação e os demais 84 m3/h são encaminhados para o Sistema de Efluentes Orgânicos,

com temperatura em torno de 80°C. Perde ainda 1,2 m3/h na forma de vapor e descarta 6,6 m3/h

de água de selagem para o Sistema de Efluentes Orgânicos.

Figura 18 – Balanço de Águas da Evaporação (m3/h)

Algumas alternativas para o reuso do condensado, sem tratamento prévio, foram

avaliadas, considerando-se potenciais consumidores:

- Filtro de lama de cal: a lama de cal é lavada com água quente, para remoção da soda nela

contida, e posterior descarte; a especificação de pH para a lama é de 2,0 a 12,5;

atualmente, a lama descartada tem apresentado pH sempre muito próximo do limite

máximo, caracterizando uma lama com alto teor de soda; o reuso do condensado

contaminado (com soda ou licor) promoveria o aumento do conteúdo de soda e

consequente aumento de pH, não mostrando-se portanto uma alternativa viável;

- Pátio de Madeira: consome em média 55 m3/h de água industrial e 15 m3/h de água quente

para lavagem de toras; o reuso desse condensado na lavagem de toras, geraria emissões de

odor, e possível risco de segurança aos operadores da área, devido ao conteúdo de H2S

presente no condensado contaminado, não sendo também uma alternativa viável.

0,0 11,912,5 113,0

140,0 1207,91,2

1207,9 6,6

1360,4 -19,7 1340,7

Evaporação

Água no L.P.Forte

Condensado

Água Quente

Vapor

Efluente

Água Selagem

Água no L.P.Fraco

Água Resfriam.

Água no L.P.Forte

Condensado

Água Quente

Vapor

Efluente

Água Selagem

Água no L.P.Fraco

Água Resfriam.

Legenda:X cálculo por balanço (entrada = saída)Y cálculo da vazão média pelo PI (de 01/4 a 01/7/03)Z medição local (cubagem, ultrassônico, amostragem)T estimado

Page 98: Outro Fluxograma

97

A segregação da corrente de condensado contaminado da corrente de condensado não

contaminado, um conceito de tecnologia mais limpa, é a primeira operação necessária à

viabilização de reuso desse efluente.

A partir desse conceito, encontra-se em fase de elaboração e projeto modificações nas

instalações industriais atuais, para segregar o condensado do 4° Efeito da Evaporação, que é

contaminado, e acaba contaminando os condensados dos 5° e 6° Efeitos, que são limpos. Uma

vez segregado, o condensado não contaminado dos 5° e 6° Efeitos serão reutilizados como

condensado de processo, sendo enviados para o Tanque de Estocagem de Condensado de

Processo, e não mais descartados para efluente.

5.2.2 Pátio de Madeira

O Pátio de Madeira consome 55 m3/h de água industrial e 15 m3/h de água quente

para lavagem de toras, e descarta para o Sistema de Efluentes Orgânicos toda a água consumida,

isto é, aproximadamente 70 m3/h, como pode ser visto na Figura 19.

Figura 19 – Balanço de Águas do Pátio de Madeira (m3/h)

Legenda:X cálculo por balanço (entrada = saída)Z medição local (cubagem, ultrassônico, amostragem)T estimado

Água na serragem

Efluente

Água Industrial

Água Quente

54,5 0,215,8 70,1

70,3 0,0 70,3

Pátio de Madeira

Page 99: Outro Fluxograma

98

A alternativa de reuso da água de lavagem de toras no próprio Pátio de Madeira

demandaria a instalação de um sistema de filtragem e remoção de sólidos (cascas, areia, lascas de

madeira e outras sujeiras), que não foi avaliada devido ao custo do investimento (maior que

R$300.000,00).

Procurou-se então identificar uma água oriunda de outro processo, com qualidade

adequada ao uso no Pátio de Madeira, porém de qualidade inferior à utilizada atualmente (água

industrial), com conseqüente redução na captação de água e na geração de efluentes.

Foram identificadas duas alternativas de reuso de águas descartadas para o Sistema de

Efluentes Orgânicos: água de selagem e água branca, em substituição à água industrial, como

pode ser visto nas Figuras 21 e 22, comparadas com a situação atual mostrada na Figura 20.

Page 100: Outro Fluxograma

99

Figura 20 – Situação Atual do Consumo de Água no Pátio de Madeira (m3/h)

Legenda:X cálculo por balanço (entrada = saída)Y cálculo da vazão média pelo PI (de 01/4 a 01/7/03)Z medição local (cubagem, ultrassônico, amostragem)T estimado

á.industrial, á.resfriamentoá.quenteefluenteá.contida no vapor

468,2 54,515,8

80,6 100,0

329,4 1853,4 222,4 48,1

668,4 3,7

194,2 96,6 36,8

97,6

6,0

Pátio de Madeira

Outros Usos

ÁguaIndustrial

Reservatório de Água Industrial

Águade Selagem Fábrica

Osmose

Outros Usos

Secagem

Torre Resfriam. ÁguaQuente

Page 101: Outro Fluxograma

100

Figura 21 – Alternativa 1 – Reuso da Água de Selagem no Pátio de Madeira (m3/h)

A Alternativa 1 representará uma redução de 36,8 m3/h na captação de água. Sua

aplicação demandará custos em modificações da instalação física, que incluem a instalação de um

reservatório para armazenar a água de selagem descartada, um sistema de controle da qualidade

dessa água (condutivímetro) para controlar possíveis contaminações e novas tubulações. A água

de selagem é uma água de qualidade idêntica à água industrial, podendo por isso ser reutilizada

para fins mais nobres do que para a lavagem de toras, como será discutido na Alternativa 3; por

este motivo, esta alternativa não recebeu prioridade até o momento.

Alternativa 1 - Reuso da Água de Selagem no Pátio de Madeira

431,417,715,8

631,6 3,7

194,296,6 36,8

97,6

6,0

Pátio de Madeira

Outros Usos

ÁguaIndustrial

Reservatório de Água Industrial

Águade Selagem Fábrica

Osmose

Outros Usos

ÁguaQuente

Legenda:X cálculo por balanço (entrada = saída)Y cálculo da vazão média pelo PI (de 01/4 a 01/7/03)Z medição local (cubagem, ultrassônico, amostragem)

á.industrial, á.resfriamentoá.quente

Page 102: Outro Fluxograma

101

Figura 22 – Alternativa 2 – Reuso da Água Branca no Pátio de Madeira (m3/h)

A Alternativa 2 representará uma redução de 70,3 m3/h na captação de água. A água

branca tem caráter ácido, com pH em torno de 5, e contém fibras. A possível incorporação de

fibras à madeira picada não causaria problemas ao processo, porém poderia causar entupimento

nos chuveiros; já o caráter ácido da água branca poderia causar problemas de corrosão aos

equipamentos e instalações do Pátio de Madeira, em sua maioria de aço-carbono. Essas duas

questões serão estudadas pela Engenharia de fábrica, que analisará o risco de entupimento e a

Alternativa 2 - Reuso de água branca no Pátio de Madeira

398,0 70,30,00,0

80,6 29,7

329,4 1869,2238,1 48,1

598,1 3,7

194,2

6,0

Pátio de Madeira

Outros Usos

ÁguaIndustrial

Reservatório de Água Industrial

Águade Selagem

Outros Usos

Secagem

Torre Resfriam.ÁguaQuente

Legenda:X cálculo por balanço (entrada = saída)Y cálculo da vazão média pelo PI (de 01/4 a 01/7/03)Z medição local (cubagem, ultrassônico, amostragem)T estimado

á.industrial, á.resfriamentoá.quenteefluenteá.contida no vapor

Page 103: Outro Fluxograma

102

compatibilidade desse e outros materiais utilizados no Pátio de Madeira com a água branca. A

análise final poderá considerar a substituição futura de parte dos materiais das instalações e

equipamentos do Pátio de Madeira ou a neutralização dessa água branca com condensado, cujo

caráter é básico e parte dele também é descartada para o Sistema de Efluentes Orgânicos.

Um ponto de atenção é a capacidade da Torre de Resfriamento de absorver os 15,8

m3/h de água quente, que retornarão para a mesma.

Um outro ponto de atenção é a possível formação e dispersão de vapor de água sobre

os chuveiros e estação de lavagem de toras, com o uso da água branca ou da mistura de água

branca e condensado, cuja temperatura é superior a 60 °C, para não prejudicar a operação visual

do Pátio de Madeira.

A redução de 70,3 m3/h na captação de água industrial equivale a uma economia de

R$ 185.000,00 por ano no custo de captação de água:

70,3 m3/h x 24h x R$ 0,31/m3 x 355 dias = R$ 185.676,00/ano

No orçamento para o encaminhamento da água branca da Secagem até o Pátio de

Madeira foram considerados uma bomba e tubulações com diâmetro de 6” e comprimento de 300

m, com custo estimado em R$ 105.000,00. Considerando-se a economia anual de R$ 185.676,00,

chega-se a um retorno sobre o investimento de aproximadamente 7 meses:

ROI = R$ 105.000,00 / R$ 185.676,00 = 0,6 ano = 7 meses

Essa alternativa será detalhada pela Engenharia de fábrica e implantada em 2005.

5.2.3 Branqueamento

O Branqueamento gera em média 120 m3/h de efluentes, além de eventuais perdas e

transbordos, conforme pode ser visto na Figura 23.

Page 104: Outro Fluxograma

103

Figura 23 – Balanço de Águas do Branqueamento (m3/h)

As principais entradas do Branqueamento são:

- água morna para chuveiros do filtro lavador do estágio ácido (151,7 m3/h), que é o estágio

“aberto” do Branqueamento, com descarte do filtrado para o Sistema de Efluentes

Orgânicos, para fins de purga dos íons metálicos;

- água branca para chuveiros do filtro lavador do estágio com peróxido de hidrogênio

(116,3 m3/h);

- água contida na polpa (103,3 m3/h).

As entradas menores são:

- água contida na solução de sulfato de magnésio MgSO4 (0,2 m3/h);

- água de selagem (4,3 m3/h);

Legenda:X cálculo por balanço (entrada = saída)Y cálculo da vazão média pelo PI (de 01/4 a 01/7/03)Z medição local (cubagem, ultrassônico, amostragem)T estimado

Filtrado p/ lavagem em contra-corrente

Filtrado do estágio ácido (efluente)

Água na polpa

Água Morna

Solução MgSO4

Água Branca

Água de Selagem

Solução SO2

0,20,0 149,1

151,70 123,1

4,32,2

116,33,8 132,0

103,3

381,8 22,5 404,2

Branqueamento

Vapor de processo

Água na polpa

Page 105: Outro Fluxograma

104

- água contida na solução de dióxido de enxofre SO2 (2,2 m3/h);

- vapor de baixa pressão consumido no processo (3,8 m3/h).

As saídas do Branqueamento são respectivamente:

- filtrado para lavagem da polpa em contracorrente, nos estágios do branqueamento,

deslignificação e lavagem, originado da água branca utilizada nos chuveiros do filtro

lavador do estágio com peróxido e na diluição do repolpador do filtro lavador do estágio

ácido (149 m3/h);

- filtrado do estágio ácido (123 m3/h), que contém íons metálicos, e por isso inibe seu

reaproveitamento, sendo descartado no Sistema de Efluentes Orgânicos;

- água incorporada à polpa (132 m3/h), na entrada das torres de armazenamento de polpa

branqueada.

A alternativa considerada no branqueamento para a redução de volume de efluentes

da fábrica é a substituição da água morna pelo excedente de água branca, integral ou

parcialmente.

Essa alternativa foi testada em 1997, com o objetivo de reduzir o volume de efluentes

da fábrica, reutilizando-se a água branca, que em condições normais é descartada para o Sistema

de Efluentes Orgânicos através do transbordo da Torre de Água Branca, no filtro do estágio ácido

do Branqueamento, que é um estágio “aberto”, isto é, que descarta o filtrado para o Sistema de

Efluentes Orgânicos.

O uso de água branca no estágio ácido teve início em 29 de agosto de 1997 e a

eficiência do estágio com ozônio foi monitorada de 19 de agosto a 22 de setembro de 1997 em

relação à alvura e viscosidade. As possíveis conseqüências da substituição da água fresca por

água branca consideradas foram: aumento da carga orgânica medida através da DBO, aumento da

carga de inorgânicos, medida através da concentração de metais e SiO2, que poderiam ser

arrastados para o estágio com peróxido, e aumento da temperatura, que causaria uma

decomposição mais rápida do ozônio.

Os resultados desse teste foram:

Page 106: Outro Fluxograma

105

- A temperatura aumentou de 43° até 55°C;

- O uso da água branca não mostrou impacto significativo no consumo de ozônio;

- A alvura obtida depois do estágio com ozônio diminuiu.

A conclusão do teste foi que “o uso da água branca tem impacto sobre a eficiência do

Branqueamento, devido à transferência de carga orgânica e inorgânica. Para a produção de

celulose com alto grau de alvura é recomendado o uso de água fresca. Em sendo utilizada água

branca, as concentrações de orgânicos, SiO2 e metais de transição deverão ser constantemente

monitoradas. No caso de contaminação da água branca com Ferro, haverá redução na eficiência

do estágio com peróxido e o controle de processo ficará muito prejudicado”, conforme relatório

interno da Bahia Pulp “Short Note: Analysis of Ozone Stage Performance using White Water on

the A-Stage Washer” (1997).

Devido às modificações de processo e à introdução de várias especificações de

produto (especialidades) ocorridas desde então, decidiu-se pela realização de novo teste, de curta

duração, para substituição da água morna pela água branca no filtro do estágio ácido. O primeiro

dia do teste, 16 de junho de 2003, foi usado para o teste “em branco”; no segundo dia, foi feita a

substituição, que deveria ter sido mantida por 48 horas, mas que acabou sendo interrompida após

10 horas de teste, em função de uma alteração não planejada de produção, e não devido ao teste

em si.

O resultado da análise da alvura da polpa e o acompanhamento da temperatura da

polpa, no período de 16 a 18 de junho de 2003, mostrados nas Figuras 24 e 25, permitiram

observar as seguintes ocorrências:

- aumento da temperatura de 46° até 57°C;

- diminuição da alvura após o estágio com ozônio, conforme observa-se na Figura 24.

Na Figura 25, são mostrados valores médios da temperatura e alvura da polpa, cujas

tendências são coerentes com o esperado e observado na Figura 24, e também valores médios das

vazões de água industrial e de efluentes orgânicos. A vazão de água industrial diminuiu,

conforme esperado, mas a vazão de efluente orgânico aumentou, diferente do esperado e

Page 107: Outro Fluxograma

106

inconsistente com a redução no consumo de água industrial. Em relação à variação nas vazões,

pode ter ocorrido algum distúrbio operacional em outra área, não detectado e/ou não relatado na

ocasião. Uma análise correta da variação nas vazões dependerá de medições da vazão do efluente

local, o que será possível após a implantação dos sistemas de medição de vazão e pH e/ou

condutividade dos efluentes setoriais prevista para Setembro de 2004.

Planeja-se a realização de novo teste, de maior duração, após a implantação dos

sistemas de medição de vazão e pH e/ou condutividade dos efluentes, e a verificação de possível

redução no consumo de ácido sulfúrico nos estágios ácido e com ozônio, em função do caráter

ácido da água branca, cujo pH, em torno de 4,0, é bem menor que o pH da água industrial, em

torno de 8,0.

Page 108: Outro Fluxograma

107

Figura 24 – Variações da Temperatura da polpa na Torre do estágio ácido e da Alvura da polpa após o estágio com ozônio – Valores instantâneos

Pena Vermelha – Temperatura da polpa na Torre do estágio ácido (valores instantâneos) Pena Azul – Alvura da polpa após estágio com ozônio (valores instantâneos)

Figura 25 – Variações da Temperatura da polpa na Torre do estágio ácido e da Alvura da polpa após o estágio com ozônio – Valores médios

Pena Vermelha – Temperatura da polpa na Torre do estágio ácido (valores médios) Pena Azul – Alvura da polpa após estágio com ozônio (valores médios) Pena Verde – Vazão de efluente orgânico total da fábrica (valores médios) Pena Marrom – Vazão de água industrial consumida pela fábrica (valores médios)

Teste Agua Branca - Valores Instantâneos

POLPA TORRE ESTAGIO A Alvura polpa Sd.est.ozonio16-Jun-03 00:00:00 20-Jun-03 00:00:004,00 Day(s)

271TI3410.PV

% 271ALV239C.LC

% ISO

48,

50,

52,

54,

56,

46,

58,

72,

86,49,055

82,6

271TI3410.PV

% 271ALV239C.LC

% ISO

Teste Agua Branca - Valores Médios

TEMP POLPA EST. AALVURA POLPA SAIDA O3VAZAO EFL ORGANICOVAZAO AGUA INDUSTRIAL

16-Jun-03 00:00:00 20-Jun-03 00:00:004,00 Day(s)

271TI3410.MEDDIA

271ALV239C.MEDDIA

811FI0811.MEDDIA

802FI2303.MEDDIA

47

48

49

50

51

46

52

76

85

560

760

420

52048,6396

84,7000

685,045

502,435

271TI3410.MEDDIA

271ALV239C.MEDDIA

811FI0811.MEDDIA

802FI2303.MEDDIA

Page 109: Outro Fluxograma

108

5.2.4 Secagem

A Secagem gera em torno de 100 m3/h (valor estimado) de água branca em excesso,

não reutilizada no processo, que transborda de maneira intermitente da Torre de Água Branca

para o Sistema de Efluentes Orgânicos. Esse valor foi estimado, a partir da percepção das pessoas

que operam e controlam o processo da área.

Figura 26 – Balanço de Águas da Secagem (m3/h)

As entradas da Secagem são respectivamente:

- água contida na solução de dióxido de enxofre SO2 (1,2 m3/h);

- água quente proveniente dos resfriadores do Cozimento (26,3 m3/h);

- água industrial (80,6 m3/h) para abastecimento do tanque de água fresca da Secagem;

- água de selagem (16,6 m3/h);

Água branca p/ estágio P

Umidade da celulose

Água morna

Água Quente

Solução SO2

Água Industrial

Água de Selagem

Água na polpa

Vapor

Excedente de água branca

1,2 116,326,3 11,480,6 1,116,6 100,0132,0 32,50

256,7 4,6 261,3

Secagem

Legenda:X cálculo por balanço (entrada = saída)Y cálculo da vazão média pelo PI (de 01/4 a 01/7/03)Z medição local (cubagem, ultrassônico, amostragem)T estimado

Page 110: Outro Fluxograma

109

- água incorporada à polpa (132 m3/h), na entrada das torres de armazenamento de polpa

branqueada.

As saídas da Secagem são respectivamente:

- água branca para chuveiros do filtro 3450 (116,3 m3/h), que é o estágio com peróxido de

hidrogênio do Branqueamento;

- água perdida na forma de vapor (11,4 m3/h) nos cilindros secadores para que a celulose

final tenha a umidade especificada;

- água contida na celulose (produto final) na forma de umidade (1,1 m3/h);

- excedente de água branca (100 m3/h) que transborda da Torre de Água Branca (valor

estimado);

- água morna (32,5 m3/h) gerada pelo resfriamento de vários equipamentos.

A partir da análise do balanço, avaliou-se as alternativas de reutilização do excedente

de água branca no Pátio de Madeira ou no filtro do estágio ácido do Branqueamento, ambos já

discutidos anteriormente.

5.2.5 Água de Selagem

O consumo total de água no circuito de água de selagem é de 194,2 m3/h, sendo que

97,6 m3/h são desmineralizados na planta de osmose reversa, para uso nas turbo-bombas e na

Caldeira de Recuperação.

A outra parte da água desse circuito, 96,6 m3/h, é consumida como água de selagem

nos selos mecânicos das bombas, para refrigeração e limpeza das partes rotativas e estacionárias

do selo. A maioria das bombas da Bahia Pulp são de fabricação antiga, pois foram reaproveitadas

da fábrica original, e usam selos mecânicos. Os tipos de selo dependem do produto e da

aplicação. Os mais utilizados na Bahia Pulp são os selos de dupla vedação, nos quais a água de

Page 111: Outro Fluxograma

110

refrigeração não se mistura com o produto bombeado, sendo descartada para a canaleta de

efluente, e os selos simples de fole, nos quais a água é incorporada ao processo.

Para o levantamento de dados do balanço, apurou-se a quantidade de água de selagem

descartada para a canaleta de efluente, através de cubagem, obtendo-se 36,8 m3/h.

Algumas alternativas foram identificadas para reuso da água de selagem descartada

para efluente:

- reuso como própria água de selagem através de fechamento de circuito;

- reuso na Torre de Resfriamento, para complementação da reposição de água industrial;

- reuso no Pátio de Madeira, para complementação da água industrial (alternativa discutida

no item do Pátio de Madeira).

Figura 27 – Situação Atual do Circuito de Água de Selagem (m3/h)

Situação Atual

468,254,5

668,4 489,4

194,296,6 36,8

97,6

Pátio de Madeira

Torre Resfriamento

ÁguaIndustrial

Reservatório de Água Industrial

Águade Selagem Fábrica

Osmose

Legenda:X cálculo por balanço (entrada = saída)Y cálculo da vazão média pelo PI (de 01/4 a 01/7/03)Z medição local (cubagem, ultrassônico, amostragem)

á.industrial, á.resfriamentoefluente

Page 112: Outro Fluxograma

111

Figura 28 – Alternativa 3 – Fechamento do Circuito de Água de Selagem (m3/h)

O projeto de fechamento de circuito da água de selagem inclui a instalação de:

- sistema de coleta da água de selagem descartada para efluente;

- tanques de armazenamento de água de selagem descartada pelas áreas de processo,

conforme proximidade física e similaridade de processo;

- sistemas de controle da qualidade da água com medidores de pH, condutivímetros e

desvio automático;

- tanque de armazenamento de água de selagem coletada, adequada para uso, com um

sistema de filtragem;

- bomba e tubulação até a linha principal de distribuição de água de selagem existente, após

o ponto de consumo pela planta de Osmose Reversa.

Alternativa 3 - Fechamento do circuito de água de selagem

468,254,5

631,6 489,4

157,459,8 36,8

97,6

Pátio de Madeira

Torre Resfriamento

ÁguaIndustrial

Reservatório de Água Industrial

Águade Selagem Fábrica

Osmose

Legenda:X cálculo por balanço (entrada = saída)Y cálculo da vazão média pelo PI (de 01/4 a 01/7/03)Z medição local (cubagem, ultrassônico, amostragem)

á.industrial, á.resfriamentoefluente

Page 113: Outro Fluxograma

112

A redução de 36,8 m3/h na captação de água industrial e na geração de efluentes

equivale a uma economia de R$ 172.445,00 por ano nos custos variáveis:

36,8 m3/h x 24h x (R$ 0,31/ m3 + R$ 0,24/ m3) x 355 dias = R$ 172.445,00 / ano

No orçamento para a implantação dessa alternativa, foram considerados um tanque de

armazenamento, duas bombas, um sistema de controle de pH e condutividade, e tubulações, com

custo estimado em R$ 141.000,00. Considerando-se a economia anual de R$ 172.445,00, chega-

se a um retorno sobre o investimento de aproximadamente 10 meses:

ROI = R$ 141.000,00 / R$ 172.445,00 = 0,8 ano = 10 meses

A alternativa para reuso da água de selagem na Torre de Resfriamento é idêntica à

alternativa para fechamento de circuito, implicando na necessidade da mesma infra-estrutura, na

mesma redução na captação de água e na geração de efluente, e no mesmo retorno sobre o

investimento.

A empresa decidiu-se pelo fechamento do circuito de água de selagem, que será

implantado em 2005.

5.3 MELHORIAS NO SISTEMA DE ÁGUAS E EFLUENTES

As entrevistas e reuniões com os operadores de produção motivaram a formação de

uma equipe de trabalho voltada para a melhoria nos sistemas de águas e efluentes da fábrica. Essa

equipe identificou vários itens de melhoria, tomando por base levantamentos de campo,

experiência de trabalho e dados do balanço de águas. Esses itens são apresentados no Anexo B, e

resumidos e discutidos abaixo.

Page 114: Outro Fluxograma

113

Itens de Manutenção

Foram identificadas várias necessidades de intervenção de manutenção para sanar

vazamentos em válvulas, gaxetas de bombas, agitadores, costado de tanques e tubulações

danificados. Foi solicitada avaliação quanto à possibilidade de fechar ou reduzir a vazão de água

de selagem para equipamentos parados. Foi apontada a necessidade de serviços de manutenção

no sistema de “dregs” e no sistema de dessuperaquecimento dos coletores de vapor, como

limpeza nos chuveiros e nas linhas de resfriamento, e eliminação de vazamentos em válvulas,

para conter o desvio de água de resfriamento e condensados para o Sistema de Efluentes

Orgânicos.

Itens de Procedimento

Foi sugerido o monitoramento contínuo da vazão de água de selagem de

equipamentos, o qual será incluso no procedimento de monitoramento da lubrificação mecânica

desses equipamentos.

Itens de Melhoria

No Pátio de Madeira, foram sugeridas a instalação de sistema de controle de vazão de

água industrial e água quente, usadas para a lavagem de toras, e a reinstalação da peneira estática,

para reduzir a contaminação da água de lavagem descartada.

Na Secagem, foram sugeridas:

- Reativação do sistema de recirculação de água de selagem do canal de vácuo, evitando o

consumo de 37,6 m3/h de água industrial;

- Instalação de sistema de recirculação de água para refrigeração das unidades hidráulicas

em substituição ao sistema atual, que consome aproximadamente 80 m3/h de água

industrial e que é encaminhada para a Torre de Resfriamento com temperatura média de

32 °C (a temperatura da água na saída da Torre de Resfriamento varia de 29° a 32°C);

Page 115: Outro Fluxograma

114

- Redução no consumo de água industrial para refrigeração dos trocadores de calor das

unidades hidráulicas da linha de fardos, monitorando a temperatura de saída da água

industrial;

- Reuso da água de refrigeração do rolo nº 30 e unidade hidráulica das prensas como água

fresca, devido à sua baixa temperatura (aproximadamente 32 °C);

- Reuso da água de refrigeração do tambor da enroladeira, descartada como efluente, para

alimentação no repolpador.

Nas áreas da Caustificação, Forno de Cal e Caldeira de Recuperação foram sugeridos

sistemas de recirculação de água fresca para bombas, substituição de água fresca por água quente

ou condensado, recuperação de condensados descartados para o tanque de condensados ou tanque

de água morna.

Na área de Utilidades foi sugerido o reaproveitamento da água dos resfriadores de

amostras das Caldeiras de Recuperação e de Força, direcionando-a para o Tanque de Água

Morna, o reaproveitamento da água do medidor de pH de água industrial, o reaproveitamento da

água de selagem das bombas de alimentação das caldeiras para o Tanque Intermediário da

Osmose, o reaproveitamento dos condensados dos purgadores das linhas de vapor do

Turbogerador para o Tanque de Condensado, todos descartados para o Sistema de Efluentes

Orgânicos com vazão estimada em 4 m3/h. Também foi sugerido o reaproveitamento das águas

de descarga contínua da Caldeira de Força e Caldeira de Recuperação e do condensado da

sopragem na Caldeira de Recuperação para o Tanque de Água Morna, com volume estimado em

3 m3/h.

Na planta de Osmose Reversa para tratamento de água de caldeira, foi implantada

uma modificação, que reduziu em 10 m3/h o consumo de água industrial, utilizando-se o rejeito

do 2º passo da Osmose no 1º passo em substituição à água industrial, ao invés de encaminhá-lo

para o Tanque de Água Morna.

Page 116: Outro Fluxograma

115

6 CONCLUSÕES E PERSPECTIVAS

O levantamento físico do Sistema de Efluentes Orgânicos propiciou uma visão geral

da contribuição de cada área ao efluente final. Essa visão levou à identificação dos pontos nos

quais será implantado um monitoramento contínuo da vazão e da qualidade dos efluentes

setoriais, para melhoria da gestão ambiental dos efluentes da Bahia Pulp.

O balanço de águas construído gerou uma visão detalhada dos consumos e perdas de

água e geração de efluentes nos processos e operações da fábrica, constituindo-se em um

conjunto de dados e informações imprescindível para a identificação de várias oportunidades de

racionalização do uso da água, dentre as quais destacam-se:

♦ Lavagem das toras de madeira com o excedente de água branca da Secagem (ROI = 7

meses; economia de 70 m3/h);

♦ Fechamento do circuito de água de selagem (ROI = 10 meses; economia de 37 m3/h).

O balanço de águas está implantado no servidor de arquivos da Bahia Pulp, em

formato eletrônico, conectado ao sistema PI, podendo ser atualizado para qualquer período

desejado, desde que consideradas válidas as medições locais e os dados obtidos por balanço no

período de 1° de abril a 1° de julho de 2003, os quais estão sinalizados no programa.

As reuniões e entrevistas com os operadores de produção motivaram o seu maior

envolvimento com o uso racional da água, identificando várias oportunidades de conservação das

águas e reuso de efluentes. Este processo participativo permitiu o melhor conhecimento da

interação entre as áreas, identificando impactos de certas operações sobre as demais, em relação

ao consumo de água e geração de efluentes, e que culminou com a implantação de telas no

sistema PI, para monitoramento das condições operacionais de cada área em relação às águas e

efluentes e para monitoramento do efluente final, apresentadas no Anexo C. Houve um claro

aumento da conscientização dos operadores de produção em relação ao meio ambiente e uso dos

recursos naturais, demonstrando ser essa experiência uma possível ferramenta de gestão

ambiental.

Page 117: Outro Fluxograma

116

Como perspectivas são sugeridas:

♦ Aprofundamento do estudo para reuso e/ou reciclo do efluente do estágio ácido do

branqueamento (aproximadamente 120 m3/h);

♦ Avaliação do impacto da pureza dos insumos químicos na qualidade do efluente e do

produto final, com consequente alteração de especificação desses insumos;

♦ Avaliação do Custo de Tratamento de Efluentes para a CETREL decorrente da alteração

na carga do efluente final com o maior fechamento de circuitos;

♦ Definição de limites máximos de contaminantes em todas as operações, para maximizar o

reuso das águas;

♦ Identificação de condições de processo e campanhas de produção que geram volumes e

características de efluentes diferenciados;

♦ Disposição de efluentes no solo.

Page 118: Outro Fluxograma

117

REFERÊNCIAS

ALMEIDA, Karina Moita. Tratamento do efluente alcalino do branqueamento da polpa de

celulose pelo processo de separação por membranas. 2002. 84f. Dissertação (Mestrado em

Engenharia Química) – Departamento de Engenharia Química, Universidade Federal do Rio

Grande do Sul, Porto Alegre.

ANDRADE, J. C. S.; MARINHO, M. M. O.; KIPERSTOK, A. Uma Política Nacional de Meio

Ambiente focada na Produção Limpa: Elementos para Discussão. Revista Análise e Dados,

Salvador, v.10 , n.4 , p.326-332, mar.2001.

BROOKS,T.R. et al. “Bleach plant closeup and conversion to TCF: a case study using mill data

and computer simulation.” TAPPI Journal, [S.I.], v.77, n.11, p.87-91, Nov.1994.

COLODETTE, J.L. et al. Apostila do Curso Tecnologia de Fabricação de Celulose e seus

Impactos Ambientais – Fundamentos e Tendências. Salvador: Universidade Federal de Viçosa,

Departamento de Engenharia Florestal, Laboratório de Celulose e Papel, 2002.

CORAZZA, Rosana Icassatti. Inovação tecnológica e demandas ambientais: Notas sobre o

caso da indústria brasileira de papel e celulose. 1996. 151f. Dissertação (Mestrado em Política

Científica e Tecnológica) – Instituto de Geociências, Universidade Estadual de Campinas,

Campinas.

DONAIRE, D. Programas de Gestão Ambiental, In:______. Gestão Ambiental na Empresa.

São Paulo: Atlas, 1999, p.108-119.

FURTADO, J. S.; SILVA, E.R.; MARGARIDO, A.C. Estratégias de Gestão Ambiental e os

Negócios da Empresa. Disponível em <http://www.vanzolini.com.br>. 2001.

H.A.SIMONS LTD.; NLK CONSULTANTS INC.; SANDWELL INC. Water use Reduction in

the Pulp and Paper Industry. 1st ed. Vancouver: Canadian Pulp and Paper Association, 1994.

INSTITUTO de Pesquisas Tecnológicas do Estado de São Paulo. Celulose e Papel – Tecnologia

de fabricação da pasta celulósica. 2.ed. São Paulo: IPT: SENAI, 1988. v.1

Page 119: Outro Fluxograma

118

JAPPINEN, H.; IMARAM,V. The approach to effluent-free pulp and paper mills in Thailand.

Jaakko Poyry Client Magazine, [S.I.], Feb.1994.

KINSTEY, R.B. “Water, water everywhere, but does it need to be that way?”. TAPPI Journal,

[S.I.], v.79, n.12, p.47-51, Dec.1996.

LIMA, A.F.et al. Disposição ao solo do efluente líquido da indústria de celulose. In:

CONGRESSO ANUAL DE CELULOSE E PAPEL DA ABTCP, 24., 1991, São Paulo. Anais...

São Paulo: ABTCP, 1991. p.1021-1035.

LIMA, A.F. et al. Tecnologia de osmose reversa para tratamento de efluentes hídricos de uma

fábrica de celulose kraft branqueada. In: CONGRESSO ANUAL DE CELULOSE E PAPEL DA

ABTCP, 26., 1993, São Paulo. Anais… São Paulo: ABTCP, 1993. p.545-563.

MCCUBBIN, N.; CARTWRIGHT, G.; BODIEN, D. EPA Regulatory Development: Report on

visit to Bacell SA Camacari Brazil prepared for EPA. [S.I.], 2001. Não publicado.

NOLASCO, M.A.; PIRES, E.C.; SPRINGER, A.M. Aspectos ambientais relacionados aos

efluentes líquidos das indústrias de Celulose e Papel: O estado da arte. Engenharia Sanitária e

Ambiental, v.6, n.1 e n.2, p.17-22, jan./mar.2001 e abr./jun.2001.

PARKER, D.; ANDERSON, M. Effluent reduction through process optimization. In: TAPPI

ENGINEERING/PROCESS AND PRODUCT QUALITY CONFERENCE PROCEEDINGS,

1999, Anaheim. Anais eletrônicos... Anaheim: TAPPI Press, 1999. p.503-512.

PETER, W.; LIMA, A. F. Bacell: A new Dissolving Pulp Mill with latest Technology. In: NON-

CHLORINE BLEACHING CONFERENCE, 1996, Orlando. Anais… [S.I.:s.n.], 1996.

PINHO, M.N. et al. Water recovery from bleached pulp effluents. TAPPI Journal, [S.I.], v.79,

n.12, p.117-124, Dec.1996.

PFROMM, P.H. Membrane-based separations for low-effluent pulping and papermaking. TAPPI

Journal, [S.I.], v.79, n.12, p.14, Dec.1996.

Page 120: Outro Fluxograma

119

PIOTTO, Zeila Chittolina. Eco-eficiência na indústria de celulose e papel – Estudo de caso.

2003. 357f. Tese (Doutorado em Engenharia Hidráulica e Sanitária) – Escola Politécnica,

Universidade de São Paulo, São Paulo.

RATNIEKS, E. et al. Gerenciamento de recursos hídricos na indústria. Caso Klabin Riocell. In:

DIÁLOGO INTERAMERICANO DE GERENCIAMENTO DE ÁGUAS, 4., [2001 ou 2002],

[S.I.]. Anais... [S.I.:s.n.], [2001 ou 2002].

REEVE, D. ;SILVA, C.M. Closed cycle systems for manufacture of bleached chemical wood

pulp. In:______. Manufacture of Chemical Wood Pulp. Ed.1. [S.I.:s.n.], [entre 1997 e 2001].

v.B, Chapter 22, p.440-473.

RELATÓRIO Técnico para a Renovação da Licença de Operação da Klabin Bacell9 – Revisão 0.

Camaçari, 2000. Não publicado.

REZENDE, A.A.P.; MATOS, A.T.; SILVA,C.M. Utilização do efluente de indústria de celulose

e papel em irrigação – Uma revisão. In: CONGRESSO INTERNACIONAL DE CELULOSE E

PAPEL ABTCP-TAPPI, 2000, São Paulo. Anais eletrônicos... São Paulo: ABTCP, 2000.

SACON, V.; VENTURA, J.W.; HEINRICH, F. Balanço de metais e não metais numa fábrica de

celulose Kraft – Um conceito para circuito fechado. In: CONGRESSO ANUAL DE CELULOSE

E PAPEL DA ABTCP, 28., 1995, São Paulo. Anais... São Paulo: ABTCP, 1995.

SILVA, M.R.; PEIXOTO, M.A.L.; COLODETTE, J.L. A mill experience using acid and ozone

stage for Eucalyptus pulp bleaching – A system closure vision.”. In: BRAZILIAN SYMPOSIUM

ON THE CHEMISTRY OF LIGNINS AND OTHER WOOD COMPONENTS, 7., 2001, Belo

Horizonte. Anais… [S.I.:s.n.], 2001, p.257-266.

TUNDISI, J.G. Gerenciamento integrado de recursos hídricos: Novas perspectivas. Instituto

Brasil PNUMA – Informativo do Comitê Brasileiro do Programa das Nações Unidas para o

Meio Ambiente, Rio de Janeiro, n.75, p.4, dez.2003/jan.2004.

9 Klabin Bacell é a razão social anterior da Bahia Pulp S/A.

Page 121: Outro Fluxograma

120

VENERANDA, N. Tratamento de efluentes na indústria de papel e celulose. Revista da ANAVE

– Associação Nacional dos Profissionais de Venda em Celulose, Papel e Derivados, São Paulo:

RPA Editorial Ltda, n.102, p.12-18, mar./abr.2002.

site http://www.ipetrans.hpg.ig.com.br/estudo_de_caso_dioxina.htm, consultado em 30/12/2003.

Page 122: Outro Fluxograma

121

GLOSSÁRIO

“Air Dry Ton Bleached” – Unidade em tonelada utilizada para indicar produção de celulose

branqueada

Álcali Ativo – Concentração do licor branco, NaOH + Na2S (expresso em g(NaOH)/l ou

g(Na2O)/l) (INSTITUTO..., 1988).

Álcali Efetivo – Concentração do licor branco, NaOH + ½Na2S (expresso em g(NaOH)/l ou

g(Na2O)/l) (INSTITUTO..., 1988).

Álcali Total – Concentração do licor branco, NaOH + Na2S + Na2CO3 + ½Na2S (expresso em

g(NaOH)/l ou g(Na2O)/l); usado para medir a eficiência da caustificação (INSTITUTO..., 1988).

Alvura – Propriedade óptica usada para avaliar a qualidade da polpa após o branqueamento, a

qual mede o fator de reflectância difusa no azul, isto é, a quantidade de luz refletida pela

superfície da polpa (INSTITUTO..., 1988).

Carga de Álcali – Parâmetro de controle do processo de cozimento de cavacos; relação álcali /

madeira, calculada através da expressão (álcali efetivo)*100/(peso da madeira 100% seca).

Celulose seca ao ar – Celulose com 10% de umidade; 1 tsa (ton seca ao ar) equivale a 900 kg de

polpa acrescida de 100 kg.

Consistência – Quantidade de massa seca (em g) em 100 ml de suspensão.

DBO – Demanda Bioquímica de Oxigênio; “quantidade de oxigênio dissolvido na água e

utilizado pelos microorganismos na oxidação bioquímica da matéria orgânica. É o parâmetro

mais empregado para medir a poluição, normalmente utilizando-se a demanda bioquímica de

cinco dias (DBO5)” (Amarílio Pereira de Souza, informação pessoal, 1986) (no Brasil e nos

Estados Unidos) ou sete dias (países da Europa); “expressa geralmente em miligramas de

oxigênio por litro” (Carvalho, 1981).

DCM – Análise que mede a quantidade de resinas, ácidos graxos e outros extrativos na madeira,

solúveis em Dicloro Metano.

Page 123: Outro Fluxograma

122

Dioxina – Família de substâncias químicas altamente tóxicas que contém carbono, hidrogênio e

cloro. A dioxina não é produzida deliberadamente, porém é um subproduto não intencional de

processos industriais, em que se utiliza ou queima gás cloro na presença de materiais orgânicos.

As fontes primeiras de geração de dioxinas são os incineradores de lixo hospitalar e doméstico, e

as fontes adicionais incluem processos industriais, que empregam cloro na fabricação de produtos

como a resina plástica PVC (polivinil cloreto), agrotóxicos e celulose branqueada com cloro.

DQO – “Medida da capacidade de consumo de oxigênio pela matéria orgânica presente na água

ou água residuária; expressa como a quantidade de oxigênio consumido pela oxidação química,

no teste específico. Normalmente, usa-se como oxidante o dicromato de potássio. Não diferencia

a matéria orgânica estável e assim não pode ser necessariamente correlacionada com a demanda

bioquímica de oxigênio” (ACIESP, 1980). Como vantagem sobre a DBO, este método permite

uma medida rápida do teor de material redutor, principalmente orgânico, presente nas águas

(INSTITUTO..., 1988).

“Dregs” – Vocabulário em inglês, que signifca sedimentos, resíduos, depósitos; utilizado para

indicar material inerte não solubilizado no licor verde, de composição genérica R2O3, onde o

elemento R usualmente é Al ou Fe.

ECF – Tecnologia de branqueamento de celulose sem o uso de cloro elementar (Cl2 ou Cl-).

Espuma – Espuma originada a partir da saponificação dos ácidos graxos presentes no licor preto

com a soda cáustica.

EOX – Medida aproximada do organoclorado no efluente, que possui o potencial de

bioacumulação (extraíveis por solventes não polares) (COLODETTE e outros, 2002).

FSC – Selo de certificação de florestas reflorestadas.

“Grits” – Vocabulário em inglês, que significa granulado/particulado grosseiro , utilizado para

indicar a impureza da cal (CaO) que não reage com o licor verde na reação de caustificação, que

ocorre no apagador de cal:

Na2CO3 + Na2S + 2CaO + H2O → 2NaOH + Na2S + CaCO3 + CaO

Page 124: Outro Fluxograma

123

“Kraft” – Vocabulário em alemão, que significa forte, utilizado para indicar o processamento

químico da madeira, com reposição de Na2SO4, que resulta em uma celulose de resistência mais

elevada, desenvolvido originalmente na Alemanha, em 1879 (COLODETTE e outros, 2002).

Licor branco – Nome aplicado ao licor obtido pela caustificação do licor verde, para uso no

digestor (INSTITUTO..., 1988).

Licor negro – Nome aplicado ao licor recuperado dos digestores até o ponto de sua queima na

caldeira (INSTITUTO..., 1988).

Licor verde – Nome aplicado ao licor obtido pela dissolução dos reagentes recuperados em água

e licor fraco, preparatório para a caustificação (INSTITUTO..., 1988).

Número Kappa – Medida do teor de lignina residual na polpa, obtida pela quantidade de KMnO4

que reage com a lignina residual após a etapa de cozimento, informando o grau de deslignificação

da polpa analisada (COLODETTE e outros, 2002).

OX – Compostos organoclorados retidos na polpa após branqueamento; típico de substâncias

sólidas; seu teor é medido em ppm ou mg/kg (COLODETTE e outros, 2002).

Pentosanas – Método analítico que determina uma das frações das hemiceluloses presentes na

amostra.

“Pitch” – Vocabulário em inglês, que significa substância resinosa preta ou marrom escura,

aderente, obtida da destilação do alcatrão ou terebentina, usada para selar fissuras em barcos;

utilizado para indicar o resultado da reação da resina da madeira (extrativos) com metais

(impurezas), que se acumula em equipamentos, podendo depositar na folha de celulose, formando

manchas e contaminando-a.

Polpação – Processo de cozimento dos cavacos, que resulta em licor e cavacos cozidos.

Reversão – Propriedade óptica usada para medir a estabilidade da alvura da polpa branqueada

(INSTITUTO..., 1988).

Page 125: Outro Fluxograma

124

Seletividade – Relação entre o ataque preferencial do oxidante à lignina e aos carbohidratos; é

geralmente quantificada pela medida da viscosidade da polpa ou a perda em rendimento

(INSTITUTO..., 1988), através da relação Viscosidade/No. Kappa.

“Smelt” – Vocabulário em inglês, que significa fundido; utilizado para indicar a camada de

fundido que se forma no fundo da fornalha da caldeira de recuperação, resíduo da reação de

queima do licor preto.

Sólidos dissolvidos – Diferença obtida quando se subtrai os sólidos suspensos dos sólidos totais

(INSTITUTO..., 1988).

Sólidos sedimentáveis – Material sólido que se sedimenta no fundo de um cone transparente

denominado Cone de Imhoff, em condições pré-fixadas (INSTITUTO..., 1988).

Sólidos suspensos – Resíduo que é retido em uma membrana filtrante de porosidade de 1 µm.

(INSTITUTO..., 1988)

Sólidos totais – Resíduo obtido da evaporação de uma amostra a (105 ± 3 ºC) (INSTITUTO...,

1988).

Sulfidez – Porcentagem de Na2S no álcali ativo, ambos expressos em NaOH ou Na2O

(INSTITUTO..., 1988).

TCF – Tecnologia de branqueamento de celulose sem o uso de cloro.

Teor de lignina residual – Propriedade usada para avaliar a intensidade da deslignificação nos

estágios de pré-branqueamento, e indicar a quantidade de reagentes de branqueamento necessária

nos estágios posteriores (INSTITUTO..., 1988); pode ser estimado, multiplicando-se o Número

Kappa pelo fator 0,165 (PIOTTO, 2003).

Teor seco – Quantidade de massa seca do constituinte em 100 g de massa total, expressa em %.

Umidade – Quantidade de água em 100 g de massa total, encontrada através do cálculo (100 –

Teor Seco), expressa em %.

Viscosidade – Análise que mede a viscosidade de uma solução de pasta celulósica dissolvida em

um solvente; permite conhecer o grau de degradação da fibra de celulose sofrida durante as

Page 126: Outro Fluxograma

125

etapas de deslignificação e branqueamento; está relacionada com o tamanho e configuração das

moléculas e, sob condições experimentais apropriadas, diretamente com a massa molecular média

da amostra.

Page 127: Outro Fluxograma
Page 128: Outro Fluxograma

APÊNDICE A – Balanço de Águas – Volumétrico (m3/h)

Page 129: Outro Fluxograma
Page 130: Outro Fluxograma

468,2x x

y y

7,1 7,1r r

0,0 5,88,4 1,821,3 0,828,8 44,0

z z97,6 76,7

21,0

86,244,0 52,075,8 86,20,7 78,311,9 2,20,0 t

0,0 11,912,5 113,0 84,2

140,0 1207,91,2

1207,9 6,6

668,4350,0 350,0

222,4 48,11349,7 0,0 (purga)

(make-up) 169,41853,4

54,5 0,215,8 70,1

14,9 1,20,0 140,04,5 3,7

172,1 172,199,619,6

149,1

152,5

149,14,3 0,520,1 4,3

149,1 20,1

103,3

8,87,9 3,451,5 51,50,3

149,1 149,10,5

103,3

7,7 7,7s s

103,3

0,23,80,0 149,1

151,7 perdas (transbordos)0 123,1

4,32,2

116,3

132,03,4

1,2 116,326,3 11,480,6 1,116,6 100,0

32,50

194,2 194,2

2,9 2,9 2,9

3,1 3,1 3,1586,7

á.industrial, á.resfriamentoLegenda: á.selagem

X cálculo por balanço (entrada = saída) á.quenteY cálculo da vazão média pelo PI (de 01/4 a 01/7/03) á.mornaZ medição local (cubagem, ultrassônico, amostragem) efluenteT estimado á.contida no vapor

Grandezas em m3/h á.contida na madeira, celulose e resíduosá.contida no filtrado, licor

APÊNDICE A - Balanço de Águas - Volumétrico (m 3/h)

Pátio de Madeira

Caldeira de Recuperação

Compressores

Turbogerador

Evaporação

Cozimento

Lavagem e Depuração

Deslignificação

Branqueamento

Planta de Ozônio

Secagem

Caustificação e Forno de Cal

Águados Poços

Bacia de Água

Reservatório de Água Fresca

ÁguaIndustrial

Preparação MgSO4

Diluição SO2

Água Morna

Água Quente

Águade Selagem

ÁguaPotável

ÁguaIncêndio

Fábrica(Chuv. de olhos, bebed.,

sanitários, refeitório)

Fábrica

Vapor

Efluente Orgânico

Umidade da Madeira

Vapor

Umidade celulose

Torre de Resfriamento

Turbo-bombas

Osmose

Água Gelada

Resíduos

Resíduos

Resíduos

Vapor

Vapor

Vapor

Vapor

Licor Branco

Vapor de Processo

Page 131: Outro Fluxograma
Page 132: Outro Fluxograma

APÊNDICE B – Balanço de Águas – Específico (m3/tsa)

Page 133: Outro Fluxograma
Page 134: Outro Fluxograma

37,7x x

y y

0,6 0,6r r

0,0 0,50,7 0,11,7 0,12,3 3,5z z

7,8 6,11,7

6,93,5 4,26,1 6,90,1 6,31,0 0,20,0 t

0,0 1,01,0 9,0 6,711,2 96,6

0,196,6 0,5

53,728,0 28,0

17,8 3,8108,0 0,0 (purga)

(make-up) 13,6148,3

4,4 0,01,3 5,6

1,2 0,10,0 11,20,4 0,313,8 13,88,01,611,9

12,2

11,90,3 0,01,6 0,311,9 1,6

8,3

0,70,6 0,34,1 4,10,011,9 11,9

0,08,3

0,6 0,6s s

8,3

0,00,30,0 11,912,1 perdas (transbordos)

0 9,80,30,29,3

10,60,3

0,1 9,32,1 0,96,4 0,11,3 8,0

2,60

15,5 15,5

0,2 0,2 0,2

0,2 0,2 0,246,9

á.industrial, á.resfriamentoLegenda: á.selagem

X cálculo por balanço (entrada = saída) á.quenteY cálculo da vazão média pelo PI (de 01/4 a 01/7/2003) á.mornaZ medição local (cubagem, ultrassônico, amostragem) efluenteT estimado á.contida no vapor

Grandezas em m3/tsa á.contida na madeira, celulose e resíduosá.contida no filtrado, licor

Obs.: Base p/ cálculo (produção média de 01/4 a 01/7/2003) = 299,5 tsa/dia = 12,5 tsa/h

APÊNDICE B - Balanço de Águas - Específico (m3/tsa)

Pátio de Madeira

Caldeira de Recuperação

Compressores

Turbogerador

Evaporação

Cozimento

Lavagem e Depuração

Deslignificação

Branqueamento

Planta de Ozônio

Secagem

Caustificação e Forno de Cal

Águados Poços

Bacia de Água

Reservatóriode Água Fresca

ÁguaIndustrial

Preparação MgSO4

Diluição SO2

Água Morna

Água Quente

Águade Selagem

ÁguaPotável

ÁguaIncêndio

Fábrica(Chuv. de olhos, bebed.,

sanitários, refeitório)

Fábrica

Vapor

Efluente Orgânico

Umidade da Madeira

Vapor

Umidade celulose

Torre de Resfriamento

Turbo-bombas

Osmose

Água Gelada

Resíduos

Resíduos

Resíduos

Vapor

Vapor

Vapor

Vapor

Licor Branco

Vapor de Processo

Page 135: Outro Fluxograma
Page 136: Outro Fluxograma

ANEXO A – Plano de Qualidade das Águas

Page 137: Outro Fluxograma
Page 138: Outro Fluxograma

137

Produto Ponto de Amostragem Característica Unidade Valor

Objetivo Classe da

Característica Freqüência

pH - 6 - 8

Condutividade µS/cm 100 - 200

Alcalinidade ppm CaCO3

≤ 40

Dureza Cálcio ppm Ca 7 – 10

Dureza Magnésio ppm Mg ≤ 3

Ferro Total ppm Fe ≤ 0,04

Água Industrial Tanque de

Água Industrial

Sílica ppm SiO2 10 - 15

Monitorada 1 por semana

pH - 7 – 8

Condutividade µS/cm ≤ 0,5

Ferro Total ppm Fe ≤ 0,03 Águas

de processo Torre de

Resfriamento

Sílica ppm SiO2 ≤ 0,02

Monitorada 1 por semana

pH - 7 – 8

Condutividade µS/cm ≤ 0,5 1 por turno

Ferro Total ppm Fe ≤ 0,03 Água

Desmineralizada

Tanque de Água

Desmineralizada

Sílica ppm SiO2 ≤ 0,02

Monitorada

1 por dia

pH - 8,5 – 9,0

Condutividade µS/cm ≤ 20 1 por turno

Alcalinidade Total

ppm CaCO3

≤ 10

Dureza Cálcio ppm Ca ≤ 0,1

Dureza Magnésio ppm Mg ≤ 0,1

Ferro Total ppm Fe ≤ 0,03

Sílica ppm SiO2 ≤ 0,02

Eliminox ppm 0,8 – 1,2

1 por dia (1)

Sódio ppm Na ≤ 1

Água de Alimentação das

Caldeiras

Tanque de Água de

Alimentação das Caldeiras

Potássio ppm K ≤ 1

Monitorada

2 por semana

Page 139: Outro Fluxograma

138

Produto Ponto de Amostragem Característica Unidade Valor

Objetivo Classe da

Característica Freqüência

pH - 9,4 – 10 Condutividade µS/cm ≤ 200

1 por turno

Alcalinidade Total

Alcalinidade OH

ppm CaCO3

≤ 100

Dureza Cálcio ppm Ca ≤ 0,05 Dureza

Magnésio ppm Mg ≤ 0,05

Ferro Total ppm Fe ≤ 0,03 Eliminox ppm 0,8 – 1,2

1 por dia (1)

Sílica ppm SiO2 ≤ 8,0

Água da descarga contínua

Tubulão Inferior das Caldeiras

Fosfato ppm PO4 5 - 15

Monitorada

1 por dia

Condutividade µS/cm ≤200 1 por dia Água de refrigeração Tq. 702M7665

pH - 9,5 – 10,5 Monitorada

(07 X 15) Obs. (1) – Exceto sábados, domingos e feriados Fonte: Plano de Qualidade da Recuperação e Utilidades da Bahia Pulp – revisão 2 – Documento Nº IO.LQP.007 emitido em 30/06/2003

Page 140: Outro Fluxograma

ANEXO B – Levantamento de Melhorias no Sistema de Águas e Efluentes

Page 141: Outro Fluxograma

140

Page 142: Outro Fluxograma

141

LEVANTAMENTO DAS CONDIÇÕES DOS EFLUENTES SETORIAIS E DO CONSUMO DE ÁGUA. Participantes: Adilson Pereira da Encarnação, Caio Vinícius B. Santos, Itamar de Lima Souza, Rafael Olimpio F. Araújo, Orlando C. R. da Silva. Período: 15/12/2003 até 19/12/2003

GERAL Item Situação Atual Sugestão Status Serviço

1 Efluente inorgânico (bomba B0809) é jogado no orgânico aumentando os custos do orgânico.

Manutenção e regularização do sistema do efluente inorgânico.

Avaliação de Investimento

Feito Relatório e Levantamentos das condições do Efluente

2 Hoje a água de selagem utiliza-se água fresca, e depois é jogado no efluente.

Usar água de selagem setorial, usando o produto de cada área especifica. (condensado/ água branca)

Avaliação de Investimento

Necessário avaliar junto com a manutenção a possibilidade deste uso

3 Hoje a água de selagem utiliza-se água fresca, e depois é jogado no efluente. (ou incorporado ao sistema).

Usar água de selagem setorial. (circular água de selagem por um circuito fechado).

Avaliação de Investimento

Verificar qual o projeto de utilização da água de selagem é viável

4 Águas pluviais são jogadas no orgânico pela bomba B0809, pagando os custos desta água. Águas pluviais são descontadas no calculo da vazão do inorgânico.

Manutenção no sistema do efluente inorgânico

Avaliação de Investimento

Feito Relatório e Levantamentos das condições do Efluente

5 Não existe medição setorial nas áreas.

Instalação de vertedouros padronizados e com marcação de vazão através de pintura nos vertedouros.

Necessário aguardar o projeto de medição setorial

6 Boil-out da secagem lança para o efluente orgânico uma carga alta de soda, que acaba provocando variações no pH do orgânico

Utilizar o tanque reserva da água gelada da utilidades para absorve esta carga e depois soltá-la lentamente no sistema orgânico.

Verificar a necessidade com a coordenação da Secagem juntamente com a Recuperação

Page 143: Outro Fluxograma

142

LINHA DE FIBRAS Item Situação Atual Sugestão Status Serviço

1 Filtro de água quente para secagem está dando passagem e o descarte

está direcionado para o inorgânico.

Reparar válvula que está dando passagem e direcionar o descarte para o efluente orgânico.

OK

2 Bombas de água quente liberando grande quantidade de água pela gaxeta. 201B1904/1905.

Reajustar gaxeta das bombas. PENDENTE Nota 13641/1642 de 19/12/03

3 Bombas de água morna liberando grande quantidade de água pela gaxeta. 201B1901/1903.

Reajustar gaxeta das bombas. PENDENTE Nota 13599/13640 de 19/12/03

4 Água de selagem para os equipamentos da linha de fibras.

Monitoramento contínuo da vazão de água de selagem (pode ser feito junto com o monitoramento da lubrificação-mecânica);

PENDENTE Precisa de estudo junto a manutenção p/ viabilizar.

5 Sistema de recuperação de água de selagem está direcionado para canaleta.

Reaproveitar água de selagem para limpeza na área e refrigeração dos trocadores de calor 201AC1506 e 201CI1585 (e trocadores dos amostradores) ou para reutilização na própria selagem de baixa do processo. (Utilizar água somente nos estágios de polpa marron).

PENDENTE Precisa de estudo p/ viabilização junto à coordenação de produção e qualidade.

6 Água de selagem das bombas de recirculação abertas.(201BXX05). Com bombas paradas.

Avaliar possibilidade de fechar ou reduzir água de selagem das bombas.

Em andamento Fechado água de selagem

7 Água de selagem das bombas de filtrado da deslignificação não tem coletor para recuperação.

Instalar coletor direcionando para o existente.

PENDENTE Depende do estudo de viabilização do uso da água de retorno da selagem

8 Não existe coletor para recuperação de água de selagem do branqueamento e ozônio.

Instalar coletor direcionando para o existente.

PENDENTE Depende do estudo de viabilização do uso da água de retorno da selagem (Investimento)

9 Efluentes das canaletas estão sem controle.

Instalar medidor de vazão para canaletas, com identificação de vazão (normal/anormal).

PENDENTE Precisa avaliar melhor local para instalação (Investimento)

Page 144: Outro Fluxograma

143

LINHA DE FIBRAS Item Situação Atual Sugestão Status Serviço

10 Testar utilização de água branca no 1º chuveiro de lavagem do filtro 271M3427 em produção standard.

Já existe sistema pronto para teste, avaliar possibilidade de utilização da torre ‘Q’ como um segundo estágio ácido para remoção dos metais provenientes da água branca.

PENDENTE Depende de estudo envolvendo a operação e qualidade.

11 Encontradas fibras na caixa do efluente inorgânico, proveniente do branqueamento.

Instalar contenção próxima aos misturadores de ozônio para reter fibras na área de processo.

PENDENTE Precisa de estudo local, pela manutenção, para realização do da melhoria. (Investimento)

12 Taster com ralo direcionado para efluente orgânico (Possível contaminação de fibras)

Criar contenção na área do taster direcionado para canaleta interna da área.

PENDENTE Precisa de estudo local, pela manutenção, para realização do da melhoria. (Investimento)

Page 145: Outro Fluxograma

144

PÁTIO DE MADEIRA Item Situação Atual Sugestão Status Serviço

1 Utilização de água de serviço para lubrificação do transportador 102M0305 e mesa dosadora de toras

Testar utilização de água branca nestes pontos

PENDENTE Precisa de estudo principalmente da manutenção devido acides da água. (Investimento)

2 Utilização de água quente na estação de lavagem de toras.

Testar utilização de água branca nestes pontos

PENDENTE Idem item 1

3 Utilização de água de serviço nas sucções das Bombas (102B0346 / 0347) de água da bacia de decantação.

Reavaliar sistema de recirculação da água para reduzir contaminação da bacia que acarreta obstrução nas sucções das bombas. (Reinstalação da peneira estática)

PENDENTE Precisa de estudo entre operação e manutenção para viabilizar reinstalação do equipamento (Investimento)

4 Utilização de água fresca e quente sem controle.

Instalar sistema de controle. PENDENTE Precisa avaliar melhor local para instalação do instrumento (Investimento)

Page 146: Outro Fluxograma

145

SECAGEMItem Situação Atual Sugestão Status Serviço

1 Água fresca para refrigeração - O sistema atual utiliza cerca de 80m³/h de água fresca vindo da utilidades e após o uso a temperatura sai com aproximadamente 32ºC.

Instalar sistema de recirculação de água utilizada para refrigeração das unidades hidráulicas. Com o sistema de recirculação essa água passaria a ter um tempo de permanência maior diminuindo o consumo e envio para torre de resfriamento.

PENDENTE Precisa de estudo entre operação e manutenção para instalação (Investimento)

2 Redução de consumo da água fresca para refrigeração

Foi reduzida toda a água para os trocadores de calor das unidades hidráulicas da linha de fardos. Está em teste a possibilidade de menor consumo.

Concluída fazendo acompanhamento

3 Canal de vácuo - No projeto original o sistema de selagem das bombas de vácuo 291B4597 e 291B4598. Existe um sistema de recirculação recirculando a água com controle de temperatura evitando consumo de água fresca com vazão de aproximadamente 37,63m³/h.

Reativar sistema de recirculação de água de selagem do canal de vácuo. Obs. Redução de pressão da selagem da bomba de vácuo.

Cobrar do planejamento para atualizar instalação conforme projeto original desenho Nº BVSFA1091-370-00 Nota 13634

4 Para aumentar a temperatura da água branca é necessário utilizar água quente proveniente do cozimento, aumentando o consumo e gerando efluente.

Instalar serpentina no interior do silo de água branca, com purgador na saída e direcionada para utilidades, utilizar vapor para aquecimento da água branca ao invés de utilizar água quente vindo da linha de fibras.

PENDENTE Precisa de estudo entre operação e manutenção para instalação (Investimento)

Reduzido vazão de água quente para o silo

5 Condensador - Condensador- Com a sugestão de recircular água para as unidades hidráulicas, instalar linha individual no retorno do condensador para o tanque de água morna.

PENDENTE Precisa de estudo entre operação e manutenção para instalação (Investimento)

6 Retorno de refrigeração do rolo nº 30 e unidade hidráulica das prensas para o tanque de água morna.

Relocar linhas de retorno do trocador de calor da unidade hidráulica das prensas e rolo nº 30 e 36 atualmente está indo para tanque de água morna transferir para tanque de água fresca temperatura 32ºC.

Foi gerado Nota nº 13800.

Page 147: Outro Fluxograma

146

SECAGEMItem Situação Atual Sugestão Status Serviço

7 Refrigeração do tambor da enroladeira -

Relocar água utilizada para refrigeração do tambor da enroladeira. Atualmente vai para canaleta, colocar para dentro do pulper 291M4536.

Obs: Evitar aumento de efluente e a água entra no processo.

Foi reduzido e fazendo acompanhamento

8 Contaminação do condensado proveniente da água fresca.

Eliminar by-pass de condensado para aquecimento do óleo na unidade hidráulica do Breaker Stack.

Nota 13801 aguardando

9 Água de selagem das bombas e agitadores.

Instalar dispositivo de coleta para recuperar água e transferir para o tanque de selagem dos separadores 291-M-4546. Obs. A altura do 291M4546 é igual a 1,20 metros, o coletor a ser instalado tem que estar superior ao nível do tanque. (descendo por gravidade). Todas as bombas e agitadores estão sendo reguladas as vazões de água de selagem em conjunto com a manutenção.

PENDENTE Precisa de estudo entre operação e manutenção para instalação.

10 Tanque de rejeito da depuração com transbordo para a canaleta. Devido problema no taster ou volume alto para controle de contaminantes.

Aumentar a capacidade da bomba de envio para o taster – 272B4078 / ou manter operação constante no taster.

PENDENTE Precisa de estudo entre operação e manutenção para instalação.

11 Bombas de envio de condensado para utilidades com vazamento pela gaxeta 291-B-4577/78/79/80/ 81.

Substituição das gaxetas e inspeção diária.

Notas 14869, 14880, 14881, 14882, 14883.

Page 148: Outro Fluxograma

147

CAUSTIFICAÇÃO Item Situação Atual Sugestão Status Serviço

1 Vários equipamentos parados com água de selagem aberta. 721B5202 / 721B52223 / 721B5224 / entre outras.

Monitoramento continuo da vazão de água de selagem (pode ser feito junto com o monitoramento da lubrificação-mecânica);

Sendo feito teste – Necessário melhor acompanhamento juntamente com a manutenção

2 Na área do sistema de dregs, existe constante desvio de água de resfriamento para canaleta, aumentando a necessidade de make-up da torre de resfriamento e redução da utilização do condensado da evaporação.

Manutenção no sistema de dregs (limpeza, modificação dos chuveiros), e modificações nas linhas do sistema de resfriamento.

Em andamento – Aguardando disponibilidade de liberação do equipamento

3 Água de selagem é coletada em tubulação e descartada no efluente orgânico.

Utilizar condensado da evaporação para realizar a selagem das bombas da área e eliminar tubulação de envio para o orgânico.

Avaliação de Investimentos / Verificar outras idéias em relação ao efluente

4 É utilizada água fresca para a bomba de vácuo do sistema de dregs.

Criar sistema de recirculação para a bomba de vácuo, reduzindo assim o consumo de água fresca. O controle teria indicadores de temperatura.

Avaliação de Investimentos / fazer SP para fechar o circuito

5 É utilizada água fresca na bomba 721B5201.

Verificar possibilidade de utilização de água quente na bomba

Avaliação de Investimentos / fazer SP

Page 149: Outro Fluxograma

148

FORNO DE CAL Item Situação Atual Sugestão Status Serviço

1 Selagem da coifa utiliza água fresca para limpeza da calha.

Utilizar condensado da evaporação no lugar da água fresca.

Verificar junto com a manutenção a possibilidade de uso

2 Parte dos mancais de apoio do forno são refrigerados com água fresca.

Viabilizar estudo para utilizar condensado da evaporação

Verificar junto com a manutenção a possibilidade de uso

3 É utilizada água fresca para a bomba de vácuo do filtro de lama.

Criar sistema de recirculação para a bomba de vácuo, reduzindo assim o consumo de água fresca. O controle teria indicadores de temperatura.

Avaliação de Investimentos / fazer SP para fechar o circuito e estudo juntamente com a manutenção

Page 150: Outro Fluxograma

149

CALDEIRA DE RECUPERAÇÃO Item Situação Atual Sugestão Status Serviço

1 É utilizada água morna no lavador de gases do tanque de mistura, lançando para a canaleta.

Usar condensado da evaporação para o lavador de gases do tanque de mistura e direcioná-lo para o tanque de dissolução.

Não é viável utilizar condensado –geração de TRS

Eliminar este item

2 É utilizada água fresca no lavador de gases do GNC de baixa

Usar condensado no lavador de gases no GNC de baixa.

Não é viável utilizar condensado –geração de TRS

Eliminar este item

3 É utilizado licor branco fraco nos chuveiros e que acaba entupindo os chuveiros.

Colocar condensado no chuveiro do tanque de dissolução.

Aguardar resultado da limpeza do tq. De licor branco fraco.

4 Costado do tanque de dissolução está danificado, jogando a água do chuveiro para a canaleta.

Recuperar costado do tanque de dissolução

Item para a parada geral

5 Água de selagem dos agitadores do tanque de dissolução está sendo jogada nas canaletas.

Sanar vazamento de água de selagem dos agitadores do tanque de dissolução.

Reabrir nota- e verificar situação junto com a manutenção

6 Água de selagem das bombas vai para a canaleta, e quando a bomba recupera acaba jogando água limpa para os tanques de licor preto fraco.

Instalar coletores de água de selagem nas bombas 702B7843 / 702B7844 /702B7857 e direcioná-lo para o efluente.

Avaliação de investimento – Plano geral da água de selagem

7 Condensado dos purgadores dos sopradores, vão para as canaletas e para o efluente. Jogando água quente para o efluente

Recuperar o condensado dos purgadores dos sopradores, jogar para o tanque de condensado..

Avaliar investimento Verificar SP – Projeto Acumulador de Vapor

8 Condensado da descarga continua da caldeira, vai para as canaletas e para o efluente. Jogando água quente para o efluente.

Recuperar o condensado da descarga continua da caldeira, jogar para o tanque de água morna.

Verificar OS e SP existente – Projeto Acumulador de Vapor

9 Hoje a selagem é feita com água fresca, e é jogada no efluente.

Verificar possibilidade de utilizar condensado para selagem das bombas

Avaliação de Investimento -SP – Estudo com a manutenção

10 PSV do sistema de sopragem abre constantemente.

Ajustar válvula de controle de pressão da linha.

Em andamento. Acompanhar junto com a manutenção

Page 151: Outro Fluxograma

150

EVAPORAÇÃO Item Situação Atual Sugestão Status Serviço

1 Hoje se utiliza duas bombas do tanque de condensador de superfície e mesmo assim o tanque fica com nível alto, necessitando abrir by pass para o efluente.

Colocar bomba com maior capacidade no tanque de condensado do condensador de superfície.

Verificar situação em conjunto com a manutenção

2 Hoje a selagem é feita com água fresca e é jogada no efluente.

Verificar possibilidade de retornar com condensado para selagem das bombas

Acompanhar os testes e quais projetos serão aprovados para a água de selagem

3 O condensado do 06º efeito fica alinhado direto para o efluente.

Alinhar o condensado do 6º efeito direto para o tanque de condensado de processo.

Serviço Concluído OK

4 Problemas no sistema de tratamento de condensado - tendo que sempre desviar o condensado para o efluente.

Condensado da coluna de stripper.

Sugestão foi modificada – Melhorar sistema de recebimento de condensado contaminado

Reduzir limite de condutividade do condensado enviado – 500 – 600 mS/cm

5 Tubulações de coleta de recuperação das águas de selagem estão danificadas, e enchendo as canaletas da evaporação.

Recuperar tubulações de coleta do sistema de recuperação das águas de selagem da área.

Em andamento Concluído parcialmente- Verificar junto com a manutenção

Page 152: Outro Fluxograma

151

UTILIDADES Item Situação Atual Sugestão Status Serviço

1 Phmetro da água industrial joga a água no efluente.

Relocar phmetro da água industrial para eliminar este desperdício.

Em estudo Verificar junto com a instrumentação a viabilidade

2 Vazamento na gaxeta da bomba da água industrial. 802B2324

Manutenção na bomba 802B2324

Nota =

3 Água dos resfriadores de amostra da caldeira de força está indo para o efluente orgânico.

Direcionar os resfriadores de amostra da caldeira de força para a área dos coletores e direcionar a água para o tanque de água morna.

Existe SP e PS para este item

4 Selagem das bombas da água gelada utiliza-se água fresca

Utilizar auto-selagem nas bombas para evitar efluente.

Nota – verificar junto com a manutenção

5 Vapor do tanque de descarga continua da caldeira de força vai para a atmosfera.

Direcionar fluxo de vapor do tanque da descarga continua para o desaerador.

Projeto - Acumulador de Vapor

6 Água dos resfriadores de amostra da caldeira recuperação é jogada no efluente.

Direcionar os resfriadores de amostra da caldeira de recuperação para a área dos coletores e direcionar a água para o tanque de água morna.

Igual ao item 3

7 Hoje se joga muito vapor fora pela blow–out dos coletores.

Utilizar água desmi (antes de ir para o tanque de alimentação) para condensar o vapor das blow-out dos coletores. Irá gerar mais energia e economizar água.

Projeto – Acumulador de vapor

8 Válvulas manuais e pneumáticas do sistema de dessuperaquecimento dos coletores estão dando passagem e com dificuldade de controle da temperatura do vapor. Jogando muita água nas linhas de vapor e sendo necessário deixar os drenos dos coletores abertos para evitar água no licor preto forte. Gerando efluente.

Realizar manutenção no sistema de dessuperaquecimento do sistema de coletores de vapor.

Parada geral

9 A água de selagem das bombas de alimentação das caldeiras estão indo para o efluente. (utiliza-se água desmi)

Direcionar a água de selagem das bombas de alimentação das caldeiras para o tanque intermediário da osmose

Existe PS – Verificar junto com a manutenção

10 Jogamos o rejeito da osmose para o tanque de água morna e utilizamos água fresca.

Utilizar o rejeito do 02º passo para o 01º passo. Deixando de utilizar 10m³/h de água fresca.

Concluído Serviço concluído conforme sugestão.

Page 153: Outro Fluxograma

152

UTILIDADES Item Situação Atual Sugestão Status Serviço

11 Jogamos os condensados dos purgadores das linhas de vapor e do TG-02 para a canaleta;

Reutilizar os condensados dos purgadores das linhas de vapor do TG-02 dos coletores para o tanque de condensado

Projeto – Acumulador de vapor

VARIAVEIS DE MONITORAMENTO: UTILIDADES

- Tanque de água morna (705LC6734.PV); - Tanque de água industrial (802LI2301.PV); - Torre de Resfriamento (700LC7008.PV)

CAUSTIFICAÇÃO / FORNO

- Poço de coleta (721LI5318.PV); - Bomba do Tq. Ácido Sulfâmico (721B5214.PV); qdo ligada indica lavagem dos eco-filtros (solicitação

posterior de Zóia) EFLUENTE

- Bomba do efluente inorgânico (811B0809.PV) - Vazão de efluente orgânico (811FI0811.PV) - Temperatura do efluente orgânico (811TI0821.PV)

CALDEIRA DE RECUPERAÇÃO

- Poço de coleta (702LI7723.PV); EVAPORAÇÃO

- Poço de coleta; - Tanque de condensado de processo (701LI7520.PV) - Tanque de condensado contaminado (814LC8702.PV)

LINHA DE FIBRAS

- Tanque de água morna (201LC1901.PV) - Tanque de água quente (201LC1903.PV) - Poço de Coleta (202LI2160 // 202AI2106.PV) - Tanque de filtrado -M3420 (271LC3403.PV)

SECAGEM

- Torre de água branca (291LC4410.PV); - Água quente para o silo (291TC4710.MV); - Tanque de Retorno (272LC4428.PV); - Temperatura da calha (291TI4710.PV); - Transbordo do Tq. Selagem das pernas barométricas

OUTRAS MELHORIAS:

- Tela no PI (monitoramento de dados atuais e históricos – modelo tela de performance da fábrica – definir condições de alerta para cada variável);

- Criar tela de grupo no SDCD (monitoramento das condições das áreas);

Page 154: Outro Fluxograma

ANEXO C – Telas de Monitoramento das Águas e Efluentes

Page 155: Outro Fluxograma
Page 156: Outro Fluxograma

155

Utilidades

TANQUE DE AGUA MORNA DESC.DE AGUA P/ FABRICA NIVEL BACIA AGUA

16-Mar-04 17:01:36 17-Mar-04 17:01:3624,00 Hour(s)

705LC6734.PV

% 802LI2301.PV

% 700LC7008.PV

%

40,

60,

80,

10,

110,55,392

101,33

85,816

705LC6734.PV

% 802LI2301.PV

% 700LC7008.PV

%

Efluentes

VAZAO EFL ORGANICO TEMP EFL ORGANICO PH EFLUENTE ORGAN TQ NEUTR

16-Mar-04 17:01:36 17-Mar-04 17:01:3624,00 Hour(s)

811FI0811.PV

m3/h 811TI0821.PV

oC 811AC0810.PV

pH

500,

600,

700,

350,

850,

54,9

55,8

56,7

53,5

58,0

4,80

6,40

8,00

3,00

11,00584,4

57,7

7,04

811FI0811.PV

m3/h 811TI0821.PV

oC 811AC0810.PV

pH

ALERTA

RETORNA

MONITORAMENTO DE EFLUENTES

PRINCIPAIS CONTRIBUINTES

EFLUENTE FINAL

UTILIDADES

ORGÂNICO INORGÂNICO

CAUSTIFICAÇÃ CALDEIRA RECU

EVAPORAÇÃ LINHA DE FIBRA SECAGEM

Page 157: Outro Fluxograma

156

PARÂMETROS DE MONITORAMENTO

UTILIDADES

NORMAL

Nível do Tq. Água Morna =

Nível do Tq. Água Industrial =

Nível da Torre Resfriamento =

< 96% e

< 100% e

< 94%

55

100

86

ALERTA

CRÍTICO

Nível do Tq. Água Morna =

Nível do Tq. Água Industrial =

Nível da Torre Resfriamento =

Nível do Tq. Água Morna =

Nível do Tq. Água Industrial =

Nível da Torre Resfriamento =

55

55

100

100

86

86

> 100% ou

> 108% ou

> 98% ou

> 96% e < 100% ou

> 100% e < 108% ou

> 94% e < 98%

RETORN

VAZAO EFL ORGANICO TEMP EFL ORGANICO Limite maximo temperaturaPH EFLUENTE ORGAN TQ NEUTRTORRE 4540 AGUA BRANCA Água de Retorno da Caixa

18-Mar-04 01:20:36 1924,00 Hour(s)

400,

450,

500,

550,

600,

350,

650,

50,0

70,0

50

65

2,

11,

70,

115,

50,

70,

Page 158: Outro Fluxograma

UFBA UNIVERSIDADE FEDERAL DA BAHIA

ESCOLA POLITÉCNICA

DEPTº DE ENGENHARIA AMBIENTAL - DEA

MESTRADO PROFISSIONAL EM GERENCIAMENTO E TECNOLOGIAS

AMBIENTAIS NO PROCESSO PRODUTIVO

Rua Aristides Novis, 02, 4º andar, Federação, Salvador BA CEP: 40.210-630

Tels: (71) 235-4436 / 203-9798 Fax: (71) 203-9892

E-mail: [email protected] Home page: http://www.teclim.ufba.br