obtenÇÃo do concreto auto- adensÁvel utilizando

144
EDVALDO MONTEIRO LISBÔA OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO RESÍDUO DO BENEFICIAMENTO DO MÁRMORE E GRANITO E ESTUDO DE PROPRIEDADES MECÂNICAS Dissertação apresentada ao Programa de Pós- Graduação em Engenharia Civil da Universidade Federal de Alagoas como requisito parcial para obtenção do título de Mestre em Engenharia Civil MACEIÓ 2004

Upload: dodiep

Post on 05-Feb-2017

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

EDVALDO MONTEIRO LISBÔA

OBTENÇÃO DO CONCRETO AUTO-

ADENSÁVEL UTILIZANDO RESÍDUO DO

BENEFICIAMENTO DO MÁRMORE E

GRANITO E ESTUDO DE PROPRIEDADES

MECÂNICAS

Dissertação apresentada ao Programa de Pós-

Graduação em Engenharia Civil da Universidade

Federal de Alagoas como requisito parcial para

obtenção do título de Mestre em Engenharia Civil

MACEIÓ

2004

Page 2: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

EDVALDO MONTEIRO LISBÔA

OBTENÇÃO DO CONCRETO AUTO-

ADENSÁVEL UTILIZANDO RESÍDUO DO

BENEFICIAMENTO DO MÁRMORE E

GRANITO E ESTUDO DE PROPRIEDADES

MECÂNICAS

Dissertação apresentada ao Programa de Pós-

Graduação em Engenharia Civil da Universidade

Federal de Alagoas como requisito parcial para

obtenção do título de Mestre em Engenharia Civil

Área de concentração: Estruturas

Orientador: Prof. Dr. Flávio Barboza de Lima

Co-orientador: Prof. Dr. Paulo César Correia

Gomes

MACEIÓ

2004

Page 3: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Lisbôa, Edvaldo Monteiro

Obtenção do Concreto Auto-Adensável Utilizando Resíduo do Beneficiamento

do Mármore e Granito e Estudo de Propriedades Mecânicas. Maceió, 2004.

121p.

Dissertação (Mestrado) – Universidade Federal de Alagoas. Programa de Pós-

Graduação em Engenharia Civil.

1. Resíduo 2. Concreto auto-adensável 3. Pasta 4. Estado fresco. I.

Universidade Federal de Alagoas. Centro de Tecnologia. Programa de Pós-

Graduação em Engenharia Civil.

Page 4: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Dedico este trabalho a meu Pai (in memorian), a minha Mãe Maria de Lourdes, a minha Esposa Alba Helena, a

meu Filho Bruno, a meus Irmãos e a todos que contribuíram para o desenvolvimento do mesmo.

Page 5: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Agradecimentos

Aos orientadores Prof. Dr. Flávio Barboza de Lima e Prof. Dr. Paulo César Correia

Gomes, pela dedicação demonstrada, pelos conhecimentos transmitidos, pelas críticas

construtivas, pela revisão do texto, que foram decisivos para elaboração e conclusão desta

Dissertação. A Profa. Dra. Aline da Silva Ramos Barboza pelo incentivo, apoio e valiosas

orientações. Ao Coordenador do Mestrado Prof. Dr. Severino Pereira Cavalcanti Marques

pelo grande apoio.

Aos Professores Abel Galindo Marques e Dilze Codá dos Santos Cavalcanti Marques,

pela indicação para o Mestrado e a todos os Professores que ministraram as matérias pelos

relevantes conhecimentos transmitidos.

A todos os Colegas de Mestrado, que de uma forma ou de outra contribuíram para o

sucesso dessa caminhada, e em especial ao Colega Antônio Carlos dos Santos, pela grande

contribuição e companheirismo.

A todos os funcionários do Núcleo de Pesquisa Tecnológica, pela ajuda indispensável

para o desenvolvimento da pesquisa; em especial a Secretária Girley Vespaziano da Silva pelo

relevante apoio e os técnicos Alexandre Nascimento de Lima e Valdemir Gomes de Farias

pela ajuda participativa na maior parte dos experimentos.

Aos, então, formandos Jonathas Judá Lima Tenório e Rodrigo de Melo Lameiras pela

participação na etapa de caracterização dos materiais. Ao aluno bolsista Alexandre Rodrigues

de Barros e ao colega de Mestrado Diogo Jatobá de Holanda Cavalcanti, pela fundamental

ajuda na parte experimental deste trabalho.

Ao Laboratório de Engenharia Química da Universidade Federal de Alagoas na pessoa

da Professora Seleude Wanderley da Nóbrega, pela participação nos ensaios de caracterização

do resíduo.

A todos que direta ou indiretamente contribuíram para a realização deste trabalho.

A DEUS pela presença constante, permitindo o início, o desenvolvimento e conclusão

dessa longa caminhada.

Page 6: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Créditos

A elaboração deste trabalho foi possível devido ao apoio de instituições e empresas,

através de sugestões e apoio técnico financeiro. Assim são dignos de crédito:

Universidade Federal de Alagoas

- Centro de Tecnologia

- Núcleo de Pesquisa Tecnológica

- Departamento de Engenharia Estrutural

Universidade Federal de Campina Grande,

através do Prof. José Avelino Freire.

Britex Minerações Ltda

através do Engº Rafael Piatti.

Cimento Poty S. A.

através do Sr. Moraes.

IMCREL – Irmãos Moreira Extração Mineral Ltda,

através do Sr. Edenir.

INDARC – Indústria de Artefatos de Concreto Ltda

através do Engº Gilberto.

Marmogran Mármores e Granitos,

através do Engº José Fernandes.

MBT – Master Builders Technologies

Através do Sr. Paulo Trocoli.

FAPEAL – Através da concessão do Projeto de Pesquisa Nº 2003229073-3 do Prof. Paulo

César Correia Gomes.

Page 7: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Sumário

Agradecimentos .............................................................................................. vi

Lista de Figuras .............................................................................................. xi

Lista de Tabelas ........................................................................................... xiv

Lista de Símbolos .......................................................................................... xvi

Lista de Abreviaturas ................................................................................... xxi

Resumo ........................................................................................................ xxiii

Abstract ....................................................................................................... xxiv

Capítulo 1 ..........................................................................................................1

1. Introdução ..................................................................................................1

1.1 CONSIDERAÇÕES INICIAIS ............................................................1

1.2 RELEVÂNCIA DO TEMA .................................................................2

1.3 OBJETIVOS .........................................................................................3

1.4 ESTRUTURA DA DISSERTAÇÃO ...................................................3

Capítulo 2 ..........................................................................................................5

2. Revisão bibliográfica .................................................................................5

2.1 INTRODUÇÃO ....................................................................................5

2.2 VANTAGENS E DESVANTAGENS .................................................5

2.3 APLICAÇÕES E INDICAÇÕE DE USO ............................................6

2.4 PROPRIEDADES DE FLUXO ............................................................7

2.5 PROPORÇÕES DE MISTURAS .........................................................8

2.6 MÉTODOS DE DOSAGENS ............................................................11

2.6.1 Método de Okamura .................................................................12

2.6.2 Método de Petersson et al. ......................................................15

Page 8: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

2.6.3 Método de EFNARC .................................................................19

2.6.4 Método de Gomes .....................................................................25

2.7 RESÍDUO DO BENEFICIAMENTO DO MÁRMORE

E GRANITO .......................................................................................32

2.7.1 Considerações gerais ..............................................................32

2.7.2 Geração do resíduo ..................................................................33

2.7.3 Trabalhos com RBMG ..............................................................39

Capítulo 3 ........................................................................................................43

3. Materiais e métodos .................................................................................43

3.1 INTRODUÇÃO ..................................................................................43

3.2 CARACTERIZAÇÃO DOS MATERIAIS ........................................43

3.2.1 Cimento .....................................................................................43

3.2.2 Agregados .................................................................................43

3.2.3 Adições minerais ......................................................................48

3.2.4 Aditivo químico ............ ............................................................54

3.2.5 Água ...........................................................................................55

3.3 MÉTODOS DE ENSAIOS .................................................................56

3.3.1 Pasta .........................................................................................56

3.3.2 Argamassa ................................................................................58

3.3.3 Determinação do esqueleto granular .......................................59

3.3.4 Concreto auto-adensável ..........................................................61

Capítulo 4 ........................................................................................................70

4. Composição e produção das misturas ...................................................70

4.1 INTRODUÇÃO ..................................................................................70

4.2 PASTA ...............................................................................................70

4.3 ARGAMASSA ...................................................................................71

4.4 CONCRETO ........................................................................................73

Page 9: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Capítulo 5 ........................................................................................................77

5. Apresentação e análise dos resultados ...................................................77

5.1 INTRODUÇÃO ..................................................................................77

5.2 ENSAIOS DAS MISTURAS COM RBMG ......................................77

5.2.1 Pasta .........................................................................................77

5.2.2 Argamassa ................................................................................80

5.2.3 Concreto ...................................................................................85

5.3 ENSAIOS DAS MISTURAS COM RBMB E SÍLICA ATIVA .......98

5.3.1 Pasta .........................................................................................98

5.3.2 Argamassa ............................................................................... 99

5.3.3 Concreto .................................................................................100

Capítulo 6 ......................................................................................................111

6. Considerações finais ..............................................................................111

6.1 COSIDERAÇÕES GERAIS ............................................................111

6.2 COSIDERAÇÕES ESPECÍFICAS ..................................................112

6.2.1 Quanto à caracterização dos materiais .................................112

6.2.2 Comportamento de fluxo das pastas e argamassas ................112

6.2.3 Desenvolvimento dos concretos .............................................113

6.3 SUGESTÕES PARA FUTURAS PESQUISAS ..............................114

Referências bibliográficas.............................................................................116

Page 10: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Lista de Figuras

Figura 2.1 – Forma para alcançar o auto-adensamento .................................................... 13 Figura 2.2 – Método de dosagem para o concreto auto-adensável proposto por

Okamura et. al.............................................................................................. 14 Figura 2.3 – Método de dosagem para a argamassa do CAA ......................................... 15 Figura 2.4 – Processo simplificado para a dosagem da mistura de CAA ....................... 16 Figura 2.5 – Diagrama que descreve o método de dosagem (Gomes, 2002) .................. 27 Figura 2.6 – Determinação da dosagem de superplastificante ......................................... 29 Figura 2.7 – Aparato e ilustração do ensaio de mini-slump para otimização do filler na

pasta ............................................................................................................. 30 Figura 2.8 – Blocos de pedras graníticas em dimensões padronizadas ............................ 33 Figura 2.9 – Resíduo na forma de polpa abrasiva chamada de lama ............................... 34 Figura 2.10 – Vistas dos teares na operação de corte dos blocos ..................................... 34 Figura 2.11 – Amostra da granalha, material constituinte do processo de corte do bloco

de granito ................................................................................................... 35 Figura 2.12 – Processo de polimento das chapas brutas .................................................. 36 Figura 2.13 – Destino do resíduo no processo de polimento das chapas ......................... 37 Figura 2.14 – (a) Lagoa em sua fase madura. (b) Detalhe da camada corrosiva

provocada pela presença da granalha ........................................................ 38 Figura 2.15 – Corte das chapas polidas para comercialização ......................................... 38 Figura 2.16 – Vistas de uma Indústria Beneficiadora de Mármore e Granito .................. 39 Figura 3.1 – Curvas granulométricas da brita12,5 e da areia média ................................ 47 Figura 3.2 – Limites granulométricos para areia média de acordo com a NBR 7211/83 48 Figura 3.3 – Coleta do resíduo utilizado nessa pesquisa .................................................. 49 Figura 3.4 – Etapa de pré-secagem e estocagem do resíduo ........................................... 50 Figura 3.5 – Resíduo estocado em bandejas ao ar livre, abrigado para secagem ............. 50 Figura 3.6 – (a) Apiloamento ; (b) Peneiramento do resíduo .......................................... 51 Figura 3.7 – Resíduo processado e seco, em forma de pó ............................................... 51 Figura 3.8 – Resultado da análise térmica diferencial (ATD) .......................................... 53 Figura 3.9 – Resultado da análise termogravimétrica (ATG) .......................................... 53 Figura 3.10 – (a) Cone de Marsh, (b) Mini-slump ........................................................... 56 Figura 3.11 – Tronco de cone da mesa de consistência ................................................... 59 Figura 3.12 – (a) Cone de Abrams; (b) Detalhes dos círculos na chapa ......................... 62 Figura 3.13 – Detalhes do Funil V ................................................................................... 63 Figura 3.14 – Caixa L ....................................................................................................... 64 Figura 3.15 – Detalhes do Tubo em U ............................................................................. 65 Figura 3.16 – Máquina Universal EMIC DL 30000 ....................................................... 67 Figura 3.17 – Ensaio para estimativa das resistências dos concretos aos 7 dias de idade 67 Figura 3.18 – Prensa Amsler de 200 tf ............................................................................. 68 Figura 3.19 – Ensaio de resistência à compressão de corpo-de-prova 10cm x 20cm aos

28 dias de idade ......................................................................................... 68

Page 11: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 3.20 – Ensaios de Resistência à compressão (a,b), Módulo de deformação (c,d), em corpos-de-prova 15cm x 30cm aos 28 dias .......................................... 69

Figura 3.21 – Ensaio de Resistência à tração na compressão diametral em corpo-de-prova de 15cm x 30cm aos 28 dias ............................................................ 69

Figura 4.1 – (a) Argamassadeira, (b) Balança eletrônica digital ...................................... 71 Figura 4.2 – (a) Balança eletrônica digital, (b) Argamassadeira de 80 litros ................... 73 Figura 4.3 – Misturador basculante de 400 litros de capacidade ................................ 76 Figura 5.1 – Curvas de ensaios de pasta com a/c=0,50; r/c=0,5 e r/c=0,6; (a) no cone

de Marsh; (b) no Mini-Slump ...................................................................... 78 Figura 5.2 – Evolução da pasta com r/c = 0,50, (a) sp/c = 0,15%, (b) ponto de

saturação com sp/c = 0,25%, (c) início de segregação com sp/c = 0,30%, (d) sp/c = 0,35% ......................................................................................... 80

Figura 5.3 – Curvas de ensaio de argamassa com r/c=0,50 e r/c=0,60; (a) no cone de Marsh; (b) no Tronco de cone de consistência ............................................ 81

Figura 5.4 – Colocação (a) do agregado, (b) da água de absorção do agregado, (c) dos materiais finos, (d) da água de amassamento, (e) do superplastificante com a água restante; (f) os dois minutos finais de funcionamento ............. 82

Figura 5.5 – Seqüência de descarregamento da argamassadeira ...................................... 83 Figura 5.6 – Pé de mesa pré-moldado com argamassa auto-adensável ............................ 84 Figura 5.7 – Preenchimento de um tijolo cerâmico utilizado em alvenaria estrutural e

de corpos-de-prova cilíndricos .................................................................... 84 Figura 5.8 – Esqueleto granular, (a) equipamentos, (b) uma das pesagens ..................... 86 Figura 5.9 – Determinação da quantidade ótima dos componentes do esqueleto

granular, 47,5% de areia e 52,5 de brita ...................................................... 86 Figura 5.10 – Espalhamento do concreto com sp/c = 0,25% ........................................... 87 Figura 5.11 – Espalhamento do concreto com sp/c = 0,35% ........................................... 88 Figura 5.12 – Espalhamento do concreto CR40 ............................................................... 89 Figura 5.13 – Ensaio na Caixa L para o concreto CR40 .................................................. 90 Figura 5.14 – Espalhamento do concreto CR42 ............................................................... 91 Figura 5.15 – Ensaio na Caixa L do concreto CR42 ....................................................... 92 Figura 5.16 – Espalhamento do concreto C42C ............................................................... 93

Figura 5.17 – Ensaio no Funil V do concreto CR42C ..................................................... 94

Figura 5.18 – Ensaio na Caixa L do concreto CR42C ..................................................... 94 Figura 5.19 – Seqüência do ensaio no Tubo U do concreto CR42C ................................ 95 Figura 5.20 – Curvas de ensaio de pasta com r/c=0,5 e sf/c=0,03; (a) no cone de

Marsh; (b) no Mini-Slump ......................................................................... 98 Figura 5.21 – Curvas de argamassas com 3% de sílica ativa, (a) no Cone de Marsh

(b) no Tronco de cone da mesa de consistência ........................................ 99 Figura 5.22 – Argamassas com 3% de sílica ativa, (a ) sp/c=0,375%, (b) sp/c=0,40%

no ponto de saturação, (c) sp/c = 0,425% .................................................. 100 Figura 5.23 – Espalhamento para o concreto CRS38 ....................................................... 101 Figura 5.24 – Espalhamento para o concreto CRS40 ....................................................... 102 Figura 5.25 – Espalhamento para concreto CRS42 .......................................................... 102 Figura 5.26 – Espalhamento do concreto CRS42, diâmetro médio 67cm e T50 = 2,81s.. 103 Figura 5.27 – Ensaio da Caixa L do concreto CRS42 ...................................................... 103 Figura 5.28 – Espalhamento do concreto CRS42C .......................................................... 104

Page 12: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 5.29 – Ensaio no Funil V do concreto CRS42C ................................................... 105 Figura 5.30 – Ensaio da Caixa L do concreto CRS42C ................................................... 106 Figura 5.31 – Ensaio do Tubo U do concreto CRS42C ................................................... 107 Figura 5.32 – Superfície interna de corpos-de-prova 15cm x 30cm, (a) sem sílica ativa (b) com sílica ativa 110

Page 13: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Lista de Tabelas

Tabela 2.1 – Faixa de valores para os parâmetros dos testes de caracterização das propriedades de fluxo adotados pela EFNARC (2002) ............................... 8

Tabela 2.2 – Faixa de valores para proporções de misturas de CAA ............................... 9 Tabela 2.3 – Misturas de concreto auto-adensáveis ......................................................... 10 Tabela 2.4 – Faixa dos parâmetros que asseguraram o auto-adensamento dos

concretos ...................................................................................................... 31 Tabela 2.5 – Resultados obtidos por Gonçalves et al.,2003; na utilização de RBMG

em concreto convencional ........................................................................... 40 Tabela 2.6 – Resultados de Resistência à compressão e Módulo de deformação

estática, em argamassas com RBMG, encontrados por CRUZ, D. F. M. et al., 2003 ....................................................................................................... 41

Tabela 2.7 – Resultados de Resistência à compressão e Módulo de deformação estática, em argamassas com RBMG, sem granalha, encontrados por TENÓRIO, J. J. L., 2004 ............................................................................. 42

Tabela 2.8 – Resultados de Resistência à compressão e Módulo de deformação estática, em concretos convencionais com RBMG, sem granalha, encontrados por LAMEIRAS, R. M., 2004 ................................................ 42

Tabela 3.1 – Tabela 1 – Limites granulométricos de agregado miúdo ............................ 44 Tabela 3.2 – Tabela 2 – Limites granulométricos de agregado graúdo .......................... 45 Tabela 3.3 – Caracterização dos agregados ...................................................................... 46 Tabela 3.4 - Composição granulométrica da brita e areia utilizada ................................ 47 Tabela 3.5 – Características do resíduo usado ................................................................. 52 Tabela 3.6 – Análise química do RBMG utilizado na pesquisa e os utilizados por

Neves (2002) ............................................................................................... 52 Tabela 3.7 – Características da sílica ativa utilizada, nessa pesquisa, fornecida pelo

fabricante ..................................................................................................... 54 Tabela 3.8 – Comparação da sílica ativa com outros materiais com relação à finura ..... 54 Tabela 3.9 – Propriedades do Superplastificantes utilizado na pesquisa ........................ 55 Tabela 4.1 – Equações utilizadas para o cálculo da dosagem em massa dos materiais

componentes do CAA ................................................................................. 75 Tabela 5.1 – Argamassas produzidas em argamassadeiras diferentes ............................. 82 Tabela 5.2 – Dosagem, Resistência à compressão e Módulo de Deformação da

argamassa aos 28 dias ................................................................................. 85 Tabela 5.3 – Composição do concreto ............................................................................. 87 Tabela 5.4 – Dosagens do concreto sp/c = 0,35% e os resultados dos ensaios no estado

fresco ...........................................................................................................

89 Tabela 5.5 – Dosagem e resultados dos ensaios no estado fresco do concreto CR42C ... 93 Tabela 5.6 – Parâmetros de ensaios do CAA no fresco recomendados por alguns

autores .........................................................................................................

96 Tabela 5.7 – Resultados dos ensaios no estado endurecido dos CR42 e CR42C ............ 97 Tabela 5.8 – Dosagens e resultados dos ensaios dos concretos com 38% , 40% e 42%

de pasta, 3% de sílica ativa e sp/c = 0,40% ................................................

101 Tabela 5.9 – Dosagem e resultados dos ensaios do concreto CRS42C ........................... 104

Page 14: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Tabela 5.10 – Resultados dos ensaios no estado endurecido do concreto CRS42C ....... 108 Tabela 5.11 – Resumo dos resultados dos ensaios nos concretos no estado endurecido 109

Page 15: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Lista de Símbolos

% Percentagem

?a Massa específica da água

?ab Densidade absoluta específica da mistura de areia e brita no ensaio do esqueleto granular

?ar Massa específica da areia

?br Massa específica da brita

?c Massa específica do cimento

?r Massa específica do RBMG

?sf Massa específica da sílica ativa

?sp Massa específica do superplastificante líquido

? u Massa unitária da mistura de areia e brita no ensaio do esqueleto granular

< Menor

± Mais ou menos

? Somatório

= Menor ou igual

= Maior ou igual

a/c Relação água/cimento

Aar (%) Absorção da areia em percentagem

Abr (%) Absorção da brita em percentagem

Al2O3 Óxido de alumínio

c Espaçamento entre as armaduras

C Massa de cimento

Ca(OH)2 Hidróxido de cálcio

Page 16: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

CaO Óxido de cálcio

cm Centímetro

cm²/g Centímetro quadrado por grama

d Diâmetro do orifício inferior do Cone de Marsh

D (%) Percentual do desvio em relação à média

Ec Módulo de deformação estática

f/c Relação fíler/cimento

fc Resistência à compressão

Fe2O3 Óxido de ferro

ftD Resistência à tração na compressão diametral

g Grama

g/cm³ Gramas por centímetro cúbico

g/ml Grama por mililitro

H2/H1 Relação entre as alturas do concreto no final e no início da parte horizontal da caixa L após o repouso do concreto no ensaio

Har (%) Umidade da areia em percentagem

Hbr (%) Umidade da brita em percentagem

K2O Óxido de potássio

kg Quilograma

kg/m³ Quilogramas por metro cúbico

log T Logaritmo do tempo T

m Metro

m²/kg Metro quadrado por quilograma

m³ Metro cúbico

MgO Óxido de magnésio

Mi Dimensões da peneira superior do agregado do grupo i

Page 17: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Mi-l Dimensões da peneira inferior do agregado do grupo i

ml Mililitro

mm Milímetro

MPa Mega Pascal

Na2O Óxido de sódio

nabi Volume de agregado bloqueado do grupo i pelo volume total de concreto da mistura

nsbi Relação de volume bloqueado de agregado do grupo de tamanho i pelo volume total de concreto

nsi Relação de volume de agregado do grupo de tamanho i pelo volume total de concreto

º Graus

ºC Graus centígrados

Pa Massa de água

Pac Massa de água adicionada corrigida

Par Massa de areia

Parc Massa de areia corrigida

Pasp Massa de água contida no superplastificante

Pbr Massa de brita

Pbrc Massa de brita corrigida

Pr Massa de RBMG

Psf Massa da sílica ativa

Psp Massa de superplastificante sólido

Pspl Massa do superplastificante líquido

Pt Massa total da mistura de areia e brita no ensaio do esqueleto granular

r/c Relação RBMG/cimento

r0 Diâmetro interno inferior do tronco de cone da mesa de consistência

Page 18: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

(10cm)

RB Razão de bloqueio no ensaio da Caixa L (igual a H2/H1)

rm Média de duas medidas perpendiculares do diâmetro do fluxo máximo do tronco de cone da mesa de consistência

Rm Velocidade relativa da argamassa no Funil V para argamassa

rpm Rotações por minuto

RS Relação de segregação no ensaio do Tubo U

s Segundo

sf/c Relação sílica ativa/cimento

SiO Monóxido de silício

SiO2 Óxido de silício

sp/c Relação superplastificante sólido/cimento

sp/f Relação superplastificante sólido/finos

t Tempo medido, em segundos, para o fluxo total da argamassa ou do concreto através do Funil V

T Tempo de esvaziamento do cone de Marsh em segundos

T115 Tempo para a pasta alcançar um diâmetro de 115mm no ensaio mini-slump

T50 Tempo para o concreto alcançar um diâmetro de 50cm no ensaio de espalhamento

tf Tonelada força

TL20 Tempo para o concreto percorrer 20cm na parte horizontal da Caixa L

TL40 Tempo para o concreto percorrer 40cm na parte horizontal da Caixa L

Tsp (%) Teor de sólido do superplastificante em percentagem

V Volume de pasta ou argamassa que é introduzido no Cone de Marsh no ensaio

v Volume de pasta ou argamassa que é medido seu tempo de fluxo no Cone de Marsh

V (%) Volume de vazios da mistura de areia e brita em percentual no ensaio do esqueleto granular

Page 19: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Va/Vf Relação entre o volume de água e volume de materiais finos

Vabi Volume de agregado bloqueado do grupo i

Vag Volume de agregado

Var Volume de areia

Varg Volume de argamassa

Vbr Volume de brita

Vc Volume de concreto

Vp Volume de pasta

Vt Volume total de areia mais brita no ensaio do esqueleto granular

µm Micrometro

?m Área relativa de fluxo da argamassa no tronco de cone de consistência

Page 20: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Lista de Abreviaturas

ABNT Associação Brasileira de Normas Técnicas

ACI American Concrete Institute

AL Estado de Alagoas

ASTM American Society for Testing and Materials

ATD Análise Térmica Diferencial

ATG Análise Termogravimétrica

CAA Concreto Auto-Adensável

CADAR Concreto Auto-Adensável de Alta Resistência

CP II-F Cimento Portland composto com filler

CP Corpo-de-Prova

EFNARC European Federation of National Trade Associations

EN European Norma

LAM Laboratório de Análises Minerais da Universidade de Campina Grande/Paraíba

LEMA Laboratório de Estruturas e Materiais do NPT/UFAL

NBR NM Norma Brasileira Registrada - Norma Mercosul

NBR Norma Brasileira Registrada

NPT Núcleo de Pesquisa Tecnológica

PF Perda ao Fogo

RBCM Resíduo de Blocos Cerâmicos Moídos

RBMG Resíduo do Beneficiamento do Mármore e Granito

RILEM International Union of Testing and Research

SCC Self-Compacting Concrete

Page 21: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

TCC Trabalho de Conclusão de Curso

UFAL Universidade Federal de Alagoas

UFCG Universidade Federal de Campina Grande

Page 22: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Resumo

LISBOA, E. M. (2004) Obtenção do Concreto Auto-Adensável Utilizando Resíduo do

Beneficiamento do Mármore e Granito e Estudo de Propriedades Mecânicas. Dissertação

(Mestrado em Engenharia) – Programa de Pós-Graduação em Engenharia Civil, UFAL,

Maceió, 2004.

O Concreto Auto-Adensável (CAA) necessita de uma alta quantidade de finos em sua

composição para atender suas propriedades no estado fresco. No contexto dos materiais finos

se apresenta o Resíduo do Beneficiamento do Mármore e Granito (RBMG), o qual foi

escolhido para compor a dosagem do CAA nessa pesquisa. Esta foi uma forma de contribuir

com o avanço tecnológico e desenvolvimento sustentável do concreto. Utilizando a

Metodologia de Gomes (2002) para obtenção do CAA, foi desenvolvido o estudo da pasta

através dos ensaios no Cone de Marsh e no Mini-slump e o estudo da argamassa usando os

ensaios no Cone de Marsh e no Tronco de cone da mesa de consistência, todos, no sentido de

se obter o percentual ótimo de superplastificante e uma quantidade adequada do RBMG na

composição da mistura. A partir de parâmetros obtidos no estudo da pasta e argamassa foi

dado segmento a uma aplicação prática de preenchimento de peças pré-moldadas, sem a

utilização de nenhum tipo de vibração mecânica, com argamassa auto-adensável. Em

seguida, através do estudo da composição do esqueleto granular foi obtida a relação ótima

entre o agregado miúdo e graúdo. O estudo do concreto foi desenvolvido utilizando os ensaios

de Espalhamento, Funil V, Caixa L e Tubo em U, para os testes de suas propriedades no

estado fresco, tais como: capacidade de preenchimento, capacidade de passagem por

obstáculos e resistência à segregação. Neste estudo foram obtidos dois Concretos Auto-

Adensáveis, um usando apenas o RBMG e outro com 3% de sílica ativa; neste foi verificado

algumas melhoras na viscosidade e na coesão da mistura. Para ambos concretos foram

moldados corpos-de-prova cilíndricos de 10cm x 20cm e 15cm x 30cm para estudo da

resistência à compressão aos 7 dias e aos 28 dias; módulo de deformação estática e

resistência à tração na compressão diametral aos 28 dias. Os resultados dos ensaios realizados

indicaram pela viabilidade técnica da utilização do RBMG na produção de CAA.

Palavras-chave: resíduo; concreto auto-adensável; pasta; estado fresco.

Page 23: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Abstract

LISBOA, E. M. (2004) Obtaining of the Self Compacting-Concrete using Residue of the

Improvement of the Marble and Granite and Study of Mechanical Properties. Dissertation

(Master's degree in Engineering) - Program of Masters degree in Civil Engineering, UFAL,

Maceió, 2004.

The Self-Compacting Concrete (SCC) it needs of the high amount of fine in your composition

to assist your properties in the fresh state. In the context of the fine materials if show the

Residue of the Improvement of the Marble and Granite (RBMG), which was chosen to

compose the dosagem of CAA in that research. This was a form of contributing with the

technological progress and maintainable development of the concrete. Using Gomes'

Methodology (2002) for obtaining of SCC, the study of the paste was developed through the

rehearsals in the Cone of Marsh and in the Mini-slump and the study of the mortar using the

rehearsals in the Cone of Marsh and in the cone log of the consistence table, all, in the sense

of obtaining the percentile great of superplasticizer and an appropriate amount of RBMG in

the composition of the mixture. Starting from parameters obtained in the study of the paste

and mortar was given segment to a practical application of completion of premolded pieces,

without the use of any type of mechanical vibration, with self-compacting mortar. Soon after,

through the study of the composition of the granular skeleton it was obtained the great

relationship among the small and great aggregate. The study of the concrete was developed

using the rehearsals of Slump-flow, V Funnel, L Box and U Pipe, for the tests of your

properties in the fresh state, such as: filling ability, passing ability and segregation resistance.

In this study they were obtained two Self Compacting Concrete, a just using RBMG and other

with 3% of sílica fume; in this it was verified some improvements in the viscosity and in the

cohesion of the mixture. For both concretes they were moulded cylindrical specimens of

10cm x 20cm and 15cm x 30cm for study of the resistance to the compression to the 7 days

and the 28 days; module of static deformation and resistance to the traction in the diametrical

compression to the 28 days. The results of the accomplished rehearsals indicated for the

technical viability of the use of RBMG in the production of SCC.

Keywords: residue; self-compacting concrete; paste; been fresh.

Page 24: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Capítulo 1

Introdução

1.1 Considerações iniciais

Entende-se por Concreto Auto-Adensável (CAA), o concreto capaz de preencher os

espaços vazios das formas e se auto-adensar apenas sobre o efeito da gravidade e de sua

própria capacidade de fluxo. O CAA é caracterizado pela grande capacidade de fluxo sem

perda da estabilidade. A capacidade de se auto-adensar é obtida com o equilíbrio entre alta

fluidez com grande mobilidade e moderada viscosidade e coesão entre as partículas do

concreto fresco. A alta fluidez é alcançada com a utilização de Aditivos Superplastificantes de

última geração e a moderada viscosidade e coesão entre suas partículas é conseguida com o

incremento de um percentual adequado de adição mineral de granulometria muito fina. Além

disto, um alto volume de pasta, um menor diâmetro característico máximo do agregado

graúdo, são importantes para obtenção de CAA. O concreto para ser considerado Auto-

Adensável tem que satisfazer determinadas propriedades no estado fresco, preencher todos os

espaços das formas sobre o efeito apenas do seu próprio peso; passar entre obstáculos sem

sofrer bloqueio, preenchendo todos os espaços das formas, mesmo os mais confinados pela

concentração de armaduras e manter a estabilidade, sem sofrer segregação de seus

componentes, até o momento pós-lançamento. Deve atender os mesmos requisitos de

resistência e durabilidade dos concretos convencional e de alto desempenho (Skarendahl,

2000, Petersson, 2000; EFNARC, 2002; Gomes, 2002; Rooney, 2002).

O Concreto Auto-Adensável foi desenvolvido na Universidade de Tokyo, no Japão,

em 1986, com seu primeiro protótipo obtido em 1988 (Gomes, 2002). O desenvolvimento do

CAA no Japão se fez necessário, devido à dificuldade de se executar estruturas com formas

complexas e altas taxas de armaduras sem prejudicar a qualidade e durabilidade do concreto.

Havia, também, uma preocupação com o meio ambiente, a eliminação de parte da poluição

sonora, que seria obtida com a ausência do uso de vibradores mecânicos, como também, a

Page 25: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

solução de dois outros problemas que era a redução de custos e de prazos de execução, que

seria conseguida com a diminuição do número de trabalhadores e melhor trabalhabilidade do

concreto, respectivamente, durante o processo de aplicação. Essas preocupações atingiram aos

países da Europa e hoje, já conseguiram atingir todo o Mundo, inclusive o Brasil.

Inúmeras pesquisas sobre CAA vêm se desenvolvendo com o objetivo de obter o

mesmo, com diferentes materiais, conhecer seu comportamento, melhorar suas propriedades e

verificar sua aplicabilidade em diferentes elementos estruturais. Propostas de novos

equipamentos de ensaios são desenvolvidas com intuito de melhor caracterizar suas

propriedades, principalmente no estado fresco.

A partir dos anos 90 surgiram vários métodos de dosagem de CAA, dentre eles: o de

Ouchi et al. (1996) e Okamura (1997), Sedran et al. (1996), Petersson et al. (1996) e Billberg

(1999), EFNARC (2001) e Gomes e Gettu (2002).

1.2. Relevância do tema

A utilização de resíduo na industria da construção civil constitui não apenas uma

resposta racional na melhora da gestão ambiental de atividade industrial, se não também uma

necessidade, como se tem assumido em boa parte da indústria da construção em países como,

por exemplo, Holanda e Japão. Atualmente, o uso de resíduos industriais, como, por exemplo,

os provenientes das indústrias metalúrgicas e termoelétricas, como componente do concreto

tem crescido em todo mundo. Seu uso geralmente proporciona ao concreto melhores

desempenhos no estado fresco e endurecido. Nesse contexto, se apresenta o resíduo da

indústria de beneficiamento de mármore e granito (RBMG).

Em cálculo feito conjuntamente com o Engº José Fernandes, proprietário de uma

empresa de beneficiamento de mármore e granito, estimou-se que em Maceió, no ano de

2004, são geradas aproximadamente 1600 toneladas do resíduo por mês. Segundo o Engº

Alan Barros Coelho, responsável técnico de uma empresa produtora de concreto usinado, no

ano de 2004, na cidade de Maceió, são aplicados, em média, 8000m3 de concreto, onde

6000m3 são usinados e 2000m3 produzidos na própria obra. Admitindo-se a massa média de

cimento de 400kg/m3 de concreto e a utilização do resíduo num percentual de 20% sobre a

massa de cimento por metro cúbico de concreto (80kg), seriam consumidas apenas 640

toneladas do resíduo por mês, restando ainda, 960 toneladas para serem utilizados em

argamassas, produtos cerâmicos, etc. Neste trabalho apresenta-se uma alternativa de

aproveitamento, utilizando alta dosagem de RBMG em concretos auto-adensáve is uma vez

Page 26: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

que, tais materiais podem ser obtidos com um alto volume de finos. Desta forma está sendo

dada uma contribuição para o avanço tecnológico e desenvolvimento sustentável do concreto.

1.3. Objetivos

No âmbito geral, este trabalho tem como objetivo principal obter o Concreto Auto-

Adensável, utilizando o Resíduo do Beneficiamento do Mármore e Granito.

Para a realização da pesquisa, foram estabelecidas como objetivos específicos às metas

a serem atingidas para obtenção do CAA. O método experimental utilizado no estudo foi

baseado na Metodologia de Gomes usada para obtenção de concreto auto-adensável de alta

resistência (CADAR). Tais objetivos são: caracterizar os materiais utilizados, obter as

dosagens adequadas dos materiais componentes da pasta e argamassa, encontrar os

percentuais ótimos dos agregados miúdo e graúdo na composição do esqueleto granular, obter

os percentuais adequados de pasta e de agregados na dosagem do CAA, avaliar suas

propriedades no estado fresco e estudar suas propriedades mecânicas, tais como, Resistência à

compressão, Módulo de deformação estática e Resistência à tração na compressão diametral.

1.4 Estrutura da dissertação

Os diferentes capítulos da dissertação são brevemente descritos da forma a seguir. A

dissertação é composta de 06 capítulos. O primeiro capítulo retrata uma pequena introdução,

relevância do tema, objetivos e apresentação do trabalho.

No Capítulo 2, está apresentada uma Revisão bibliográfica do Concreto Auto-

Adensável, tratando de suas vantagens e desvantagens, aplicações, de suas propriedades no

estado fresco, das proporções dos materiais componentes das misturas, da descrição de

alguns métodos de dosagem e alguns fundamentos sobre o resíduo utilizado na pesquisa.

O Capítulo 3 apresenta os Materiais e Métodos. Descreve a metodologia utilizada para

a caracterização dos materiais e seus resultados, como também os métodos de ensaios para o

estudo da pasta, da argamassa, do esqueleto granular e das propriedades do concreto no estado

fresco. Apresenta também os métodos do estudo do concreto com relação às propriedades

mecânicas no estado endurecido.

No capítulo 4 apresentam-se a metodologia utilizada para a composição e produção

das misturas de pasta, argamassa e CAA.

Page 27: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

No Capítulo 5, estão apresentados todos os resultados da pesquisa em suas fases,

desde o estudo das pastas, argamassas e esqueleto granular; estudo das propriedades no estado

fresco, para obtenção do CAA com RBMG e com RBMG mais sílica ativa e estudo das

propriedades mecânicas do concreto no estado endurecido; todas as etapas foram

acompanhadas de análises e comparações dos resultados encontrados.

No capítulo 06 são feitas as Considerações finais sobre os resultados obtidos no

trabalho, e em seguida, apresentam-se recomendações para futuras pesquisas.

Finalizando, apresentam-se as referências bibliográficas.

Page 28: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Capítulo 2

Revisão bibliográfica

2.1. Introdução

Okamura propôs estudos iniciais sobre CAA no sentido de se obter estruturas mais

duráveis e de maior confiabilidade, tendo em vista que o Japão teve severas experiências de

problemas de durabilidade nas construções, devido ao reduzido número de trabalhadores

preparados na vibração mecânica do concreto. O Concreto Auto Adensável foi à solução

encontrada para se obter estruturas duráveis, sem a necessidade de mão de obra qualificada

em adensamento mecânico. A falta desses tipos de trabalhadores não foi à única causa dos

problemas de durabilidade. A baixa trabalhabilidade dos concretos também dificultava o

adensamento dos mesmos em elementos estruturais com formas complexas e com alta taxa de

armaduras (Billberg, 1999). Na Suécia, projetos e pesquisas sobre CAA tiveram início a partir dos anos 90.

Estudos sobre a utilização de diferentes tipos de fíleres e critérios de bloqueio para agregados

britados e seixos, em ensaios na Caixa L, foram significativos (Van, 1994; Tangtermsirikul et

al., 1995; Peterson et al., 1996). A pesquisa da reologia do concreto e da pasta de cimento

começou em 1992 e serviu de base para o método de dosagem de Petersson et al. (1996).

2.2. Vantagens e desvantagens

O concreto auto-adensável tem como principais vantagens: redução do custo de

aplicação por metro cúbico de concreto, garantia de excelente acabamento em concreto

aparente; permite bombeamento em grandes distâncias horizontais e verticais; otimização de

mão-de-obra; maior rapidez na execução da obra; melhoria nas condições de segurança na

obra; eliminação do ruído provocado pelo vibrador; eliminação da necessidade de

espalhamento e de vibração; aumento das possibilidades de trabalho com formas de pequenas

Page 29: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

dimensões; redução do custo final da obra em comparação ao sistema de concretagem

convencional (Camargos, 2002).

Constantes pesquisas estão sendo desenvolvidas com novos materiais no sentido de

obter o CAA, de forma que o mesmo se tornará cada vez mais viável, mas apresenta algumas

desvantagens possíveis de ser contornadas; são as seguintes: não é fácil de ser obtido,

precisando de mão de obra especializada para sua confecção, controle tecnológico e

aplicação; tem maior necessidade de controle, durante sua aplicação, do que o concreto

convencional; necessita de cuidados especiais com o transporte, para evitar a segregação;

apresenta menor tempo disponível para aplicação em relação ao concreto convencional.

2.3. Aplicações e indicações de uso

Billberg (1999), cita o Japão como o País pioneiro no estudo de métodos científicos do

CAA. Em função disso, as primeiras obras de vulto tiveram início neste País, logo em seguida

se estendendo para a Suécia e vários outros Países da Europa. Atualmente, tendo se estendido

pelo Mundo inteiro, inclusive no Brasil.

No Japão, na construção da ponte Akashi Kaikyo, foram utilizados 500.000 m³ de

CAA, em seus dois blocos de ancoragem. Com a utilização do CAA, se conseguiu uma

diminuição no tempo dessa obra de aproximadamente três meses.

Também no Japão, o CAA foi muito aplicado em várias construções de túneis, tendo

se destacado um com três metros de diâmetro e um quilômetro de comprimento, construído

em Yokohama. Nessa obra, foram utilizadas duas camadas de aço protendido, tendo sido

aplicado 40 m³ de concreto (Takeuchi et. al., 1994 apud Gomes).

Utilizado, também no Japão, na execução de grandes tanques para gases liquefeitos, a

exemplo do construído em Ozaka. O tipo de fino utilizado foi o fíler calcário e o agregado

graúdo com diâmetro máximo de 20 mm. O espalhamento em torno de 65 cm. Com o uso do

CAA, houve redução de quatro meses no tempo previsto para execução da obra, e, o número

de trabalhadores que era de 150 pôde ser reduzido para 50 (Peterson, Rilem 2000).

Três pontes foram construídas na Suécia, a primeira delas no início de 1998, foi a

primeira ponte fora do Japão onde a estrutura inteira foi executada em CAA (Billberg, 1999).

Tem crescido acentuadamente o uso do CAA em obras de reparos. Numa ponte em

UK, foi usado o CAA, tendo atingido aos sete dias uma resistência à compressão média de 60

MPa (McLeish, 1996 apud Gomes, 2002). Na Suíça, também foi utilizado o CAA na

Page 30: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

recuperação de uma ponte, onde a resistência à compressão média atingiu 40 MPa aos 28 dias

(Campion e Jost, 2000 apud Gomes, 2002).

Houve outras aplicações do CAA, em viadutos e torres no Japão, em pontes na Suécia,

em diversas estruturas na Tailândia, em túneis na Suíça, pontes na Coréia, etc.

O CAA também tem sido bastante utilizado em elementos pré-fabricados,

principalmente naqueles com grande concentração de armaduras, onde o concreto

convencional tem certa dificuldade de preencher seus vazios.

As principais indicações de uso do CAA são: Fundações executadas por hélice

contínua; paredes, vigas e colunas; paredes diafragma; estações; reservatórios de água e

piscinas; pisos contrapisos, lajes, pilares, muros, painéis; obras com acabamento em concreto

aparente; obras de concreto em locais de difícil acesso; em peças pequenas, com muitos

detalhes ou com formatos não convencionais, onde seja difícil a utilização de vibradores e em

formas de peças com grande concentração de ferragens (Camargos, 2002).

2.4. Propriedades de fluxo

A capacidade de preencher formas, a capacidade de fluir bem entre obstáculos sem

sofrer bloqueio dos seus componentes, principalmente do agregado graúdo, e a estabilidade

ou resistência à segregação, são consideradas propriedades do CAA no estado fresco. Essas

propriedades são verificadas através de ensaios específicos. Tais ensaios não se aplicam ao

concreto convencional, pois o mesmo não apresenta as mesmas características do CAA no

estado fresco.

A capacidade de preencher formas ou a capacidade de fluxo, é comandada pela alta

fluidez e alta coesão da mistura. Já a capacidade de fluir bem entre os obstáculos é

comandada pela moderada viscosidade da pasta e da argamassa e pelas propriedades dos

agregados, principalmente, o tamanho máximo do agregado graúdo. A estabilidade ou

resistência à segregação requer providências no sentido de se manter a consolidação e a

uniformidade da mistura durante seu transporte. Os mecanismos que comandam essa

propriedade são a viscosidade e a coesão da mistura (Gomes, 2002).

Essas propriedades são caracterizadas usando técnicas recentemente desenvolvidas,

através de equipamentos de ensaios específicos para o CAA. Dentre os vários tipos de ensaios

existentes, os mais utilizados são: Para caracterizar a capacidade de fluxo são recomendados

os ensaios de Espalhamento, Funil V e Orimet. Para a capacidade de passagem por obstáculos

Page 31: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

são recomendados o Orimet com anel de armaduras, a Caixa L, a Caixa em U e a Caixa de

preenchimento. Já para caracterização da resistência à segregação são adotados os ensaios

GTM e Funil V. Na tabela 2.1 estão apresentadas as faixas de valores típicas para o CAA

adotadas pela EFNARC 1.

Tabela 2.1 – Faixa de valores para os parâmetros dos testes de caracterização das propriedades de fluxo adotados pela EFNARC (2002).

Faixas típicas dos parâmetros Propriedades

Ensaios

Unidade Mínimo Máximo

Espalhamento Cone Abrams mm 650 800 T50cm Cone Abrams seg. 2 5 Funil V seg. 6 12

Capacidade de preenchimento

de formas Orimet seg. 0 5 Caixa em L (h2/h1) 0,8 1,0 Caixa em U (h2-h1) mm 0 30 Caixa de preenchimento % 90 100

Capacidade de passagem por

obstáculos Orimet c/ anel de armaduras mm 0 10 GTM % 0 15 Resistência à

segregação Funil V em T5 minutos seg. 0 +3

Devido à carência de equipamentos de ensaio para caracterizar a resistência à

segregação do CAA, alguns equipamentos foram criados e usados em recentes pesquisas, tais

como o Tubo U de Gomes, 2002; a Coluna de Rooney, 2002; através deles, foram obtidos

resultados mais concretos, nas análises de tal característica.

2.5. Proporções de misturas

A alta capacidade de fluxo, boa estabilidade e baixo bloqueio do CAA fresco são

características obtidas com alta fluidez, e moderada viscosidade e coesão. Essas

características estão diretamente ligadas aos seus componentes e as suas proporções na

mistura. A moderada viscosidade e coesão que deverá existir na pasta e argamassa para evitar

a segregação dos agregados e para diminuir o atrito entre o agregado graúdo justificam a alta

1 EFNARC é uma Federação Européia dedicada as especialidades de produtos químicos para construções e sistemas estruturais em concreto. Foi fundada em Março de 1989 com o nome de European Federation of National Trade Associations (EFNARC), representando os produtores e aplicadores de produtos especiais para edifícios.

Page 32: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

dosagem de finos do CAA. O alto volume de pasta é necessário para garantir sua fluidez

mantendo a estabilidade do concreto. Como uma alta dosagem de cimento gera uma grande

quantidade de calor, é recomendável usar pozolanas e fíleres substituindo parte do cimento

(Gomes, 2002).

Na tabela 2.2 estão apresentados algumas proporções de misturas de CAA, com níveis

de resistência à compressão usual e de alta resistência.

Na tabela 2.3 apresentam-se dosagens de misturas de CAA elaboradas por alguns

autores, com suas respectivas resistências à compressão.

Tabela 2.2 – Faixa de valores para proporções de misturas de CAA.

Proporções da mistura de CAA (1 m³) CAA (*) CADAR (**) Volume de pasta (%) 35 – 40 38 – 45 Massa de finos (kg/m³) 400 – 650 605 – 735 Cimento (kg/m³) 200 – 400 430 – 480 Massa de água (kg/m³) 150 – 180 170 – 185 Rel. água/finos (massa) 0,25 – 0,40 0,25 – 0,29 Rel. água/(finos+ag.miúdo) (massa) 0,12 – 0,14 0,11 – 0,14 Volume de agregado graúdo (%) 30 – 35 26 – 31 Rel. agregado graúdo/concreto (massa)-(%) 32 – 40 29 – 35 Massa de agregado graúdo (kg/m³) 750 – 920 695 – 835 Rel. agregado graúdo/agregados (volume) 0,44 – 0,64 0,47 – 0,50 Tamanho do agregado graúdo (mm) 10 – 20 12 Rel. agregado miúdo/argamassa (volume)-(%) 40 – 50 39 – 45 Massa de agregado miúdo (kg/m³) 710 – 900 740 – 790

(*) Domone e Chai, 1996; Skarendahl e Peterson, 2000; Saak et al., 2001; Su et al. 2001; (**) Gomes, 2002.

Fazendo uma análise comparativa entre CAA de resistência convencional e CAA de

alta resistência, através dos parâmetros apresentados na tabela 2.2, observa-se que o CAA de

alta resistência apresenta um maior volume de pasta, maior massa de finos, menor relação

água/finos e conseqüentemente menor massa de agregados, que são características usuais

também no concreto convencional, para o alcance de alta resistência.

Page 33: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Tabela 2.3 – Misturas de concreto auto-adensáveis.

Autores Misturas (kg/m³)

Su (2001)

Marquardt et al.

(2001)

Fornasier et al.

(2001)

Gomes et al. (2001)

Gomes (2002)

Araújo (2003)

Tutikian et al.

(2004) Cimento 300 300 370 478 458 350 205 Sílica ativa - - - 47,8 - - - RBCM - - - - - 154 - Metacaulim - - - - - - 88 Cinza volante 148 212 - - 275 - - Escória 63 - - - - - - Fíler Calcário - - 240 143 - - - Areia 928 571 762 739 744 836 793 Agreg. graúdo 326 (8mm) - 963 10 mm 795 - 12 mm - - - 767 696 - - 12,5 mm - - 840 - - - - 16 mm - 734 - - - - - 20 mm 718 - - - - - - Superplastificante 8,8 19 3,4 (*) 17,2 8,2 11,7 5,1 Modif. Viscosidade - 15 0,4 (*) - - - - Rel a/c 0,57 0,48 0,47 0,40 0,40 0,56 1,16 Rel água/finos 0,40 0,28 0,28 0,29 0,25 0,39 0,81

Resistência à compressão (MPa) 7 dias - - - 61,7 - 33 14,53 28 dias 41 67 47,6 - 68,2 35,1 15,45

(*) Aditivo sólido (kg)

Observa-se nas misturas de CAA, apresentadas na tabela 2.3, a presença usual de

materiais finos, tais como: sílica ativa, resíduo de bloco cerâmico moído (RBCM),

metacaulim, cinza volante, escória e fíler calcário. Para a obtenção de CAA de alta resistência

é comum a utilização da combinação de cimento mais cinza volante ou cimento com fíler

calcário, acrescido de um percentual de sílica ativa (Gomes et al., 2001-2002).

No presente trabalho, os materiais finos utilizados em combinação com o cimento

foram RBMG e sílica ativa; com relação a este primeiro é apresentado um breve estudo no

item 2.7.

Na tabela 2.3, também, é observado o uso indispensável nos CAA dos

superplastificantes de grande poder redutor de água, principalmente aqueles de nova geração,

tal como policarboxílicos e outros copolímeros (Bilberg, et al., 1996 apud Gomes, 2002). Em

substituição aos fíleres minerais, freqüentemente são usados agentes modificadores de

Page 34: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

viscosidade que são solúveis em água, baseados nos polissacarídeos e celulose (Sakata, et al.,

1996; Khayat e Guizani, 1997; Khayat eYahia, 1997; Miura et al., 1998 apud Gomes, 2002).

ARAÚJO, J. L. (2003) em seu trabalho “Considerações sobre concreto auto-adensável

e uma aplicação com materiais locais” utilizou, independentemente, o resíduo obtido por

moagem e peneiramento de tijolos de barro que se quebram durante seu processo de

fabricação (tabela 2.3) e o pó calcário obtido da moagem de pedra calcária, como adições

minerais na obtenção de concretos auto-adensáveis. Foram determinadas suas resistências à

compressão e executadas análises comparativas de custo/resistência entre os dois CAA e um

concreto convencional C30 de referência, onde os resultados apresentaram os seguintes

valores: R$5,60/MPa; R$8,56/MPa e R$6,51/MPa; respectivamente.

TUTIKIAN, B. F. et al. (2004) através da pesquisa Comparação da curva de dosagem,

resistência à tração, consumo de materiais e custo dos concretos auto-adensáveis com

metacaulim e fíler calcário; utilizaram o método de dosagem proposto por Tutikian, onde se

produziram dois tipos de CAA, um com metacaulim (tabela 2.3) e outro com fíler calcário,

donde observou-se que nas primeiras idades o CAA com fíler calcário apresentou

desempenho superior, mas o CAA com metacaulim teve um expressivo ganho de resistência à

compressão nas idades posteriores, obtendo melhores relação custo/resistência.

2.6. Métodos de dosagens

Os métodos de dosagem do CAA diferem muito dos utilizados para os concretos

convencionais, mas também são empíricos. No CAA as dosagens das misturas são

comandadas pelas propriedades de fluxo no estado fresco.

A partir do desenvolvimento do CAA no Japão surgiram diversos métodos de

dosagens. Neste trabalho descrevem-se os métodos de Okamura, Petersson e Billberg,

EFNARC e Gomes.

Nos métodos de dosagens apresentam-se ensaios característicos com pastas,

argamassas e com o concreto no estado fresco. Os estudos das pastas são executados através

dos ensaios no Cone de Marsh e no Mini-slump, ambos descritos no item 3.3.1. As

argamassas são estudadas através dos ensaios no Cone de Marsh e no Tronco de cone da mesa

de consistência, descritos no item 3.3.2. Já os estudos dos concretos, através da verificação de

suas propriedades no estado fresco, são desenvolvidos através dos ensaios de Espalhamento,

Funil V, Caixa L e Tubo U, todos descritos no item 3.3.4.

Page 35: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

2.6.1. Método de Okamura

Segundo Gomes (2002), os primeiros procedimentos de um método de dosagem de

misturas para o CAA, foram propostos por Ouchi et al. (1996) e Okamura (1997).

Em princípio, pensava-se que seria fácil se obter esse novo concreto, porque o

concreto submerso já estava em uso na prática. O concreto submerso era lançado em baixo d’

água e a segregação era inibida simplesmente adicionando-se uma grande quantidade de

agente modificador de viscosidade, constituído de um polímero solúvel em água, que impedia

que as partículas de cimento fossem arrastadas pela água circunvizinha. Porém, chegou-se a

conclusão que o mesmo concreto submerso não era aplicável às estruturas expostas ao ar, por

duas razões: a grande quantidade de ar incorporado não podia ser eliminada por causa da alta

viscosidade, como também, a grande dificuldade de adensamento do concreto nas regiões

confinadas das barras de armaduras. A partir destas conclusões, deu-se início as pesquisas

para eliminação dessas características, no sentido de obter o CAA.

Através de experimentos chegou-se a conclusão que para o concreto fluir suavemente

entre obstáculos era necessário que a tensão de cisalhamento na pasta, fosse pequena o

bastante para permitir tal deslocamento relativo entre as partículas dos agregados. Os

resultados experimentais indicaram que a tensão de cisalhamento necessária para um grande

deslocamento relativo dependia da relação água-cimento da pasta (a/c). Em função disso foi

encontrado um valor ótimo para a relação água /cimento, de forma a minimizar a tensão de

cisalhamento. Mas, quando se adequava o valor para a relação água-cimento melhorando a

capacidade de fluxo da pasta de cimento, ocorria em paralelo uma diminuição na viscosidade,

que era um fator negativo em função da diminuição da resistência à segregação do concreto.

De forma que ficou clara a necessidade da presença de um aditivo superplastificante para que

a auto-adensamento fosse conseguido sem a ocorrência de segregação. Com a presença do

superplastificante a pasta apresentava aumento na capacidade de fluir com apenas uma

pequena diminuição paralela da viscosidade. Foi observado também que a causa do bloqueio

no fluxo do concreto numa pequena seção transversal, era o contato direto entre as partículas

do agregado, de forma que se o contato entre as partículas do agregado graúdo excedesse a

um certo limite, o bloqueio do concreto ocorria, mesmo, apesar da moderada viscosidade da

argamassa. Então a quantidade máxima de agregado graúdo foi limitada em 50% do volume

total de agregados. Semelhantemente, se a quantidade de agregado miúdo excedesse a um

certo limite, o contato direto entre as partículas de areia provocava uma diminuição na

Page 36: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

deformabilidade do concreto, apesar da moderada viscosidade da pasta. Da mesma forma que

o agregado graúdo, o volume do agregado miúdo também foi limitado. O limite de volume do

agregado miúdo foi de 40% do volume da argamassa. A partir desse ponto, foram

desenvolvidas pesquisas para se obter a combinação ótima entre a relação água-cimento e

superplastificante, com a quantidade fixa de agregados, para se obter o auto-adensamento do

concreto.

A relação água-cimento, em volume, foi assumida entre 0,9 e 1,0 dependendo das

propriedades do cimento utilizado. A dosagem de superplastificante e o valor final da relação

água-cimento eram determinados de forma que assegurasse o grau de auto-adensamento

desejado do concreto.

A forma para alcançar o auto-adensamento do concreto nesse método, controlando a

proporção da mistura, está resumido na figura 2.1.

Figura 2.1 – Forma para alcançar o auto-adensamento.

Neste método considera-se que o concreto consiste de duas fases: argamassa e

agregado graúdo. Desta forma o efeito do superplastificante, no equilíbrio entre a capacidade

de fluir e viscosidade da argamassa do CAA, foi estudado quantitativamente. O método

proposto por Okamura et al. para obtenção do concreto auto-adensável está resumido na

figura 2.2.

Auto-adensamento

Alta Deformabilidade

Alta resistência à segregação

Limitado volume de agregado

Reduzida relação água / finos

Inibindo colisão entre partículas do agregado

Page 37: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 2.2 – Método de dosagem para o concreto auto-adensável

proposto por Okamura et. al.

No método de teste das propriedades da argamassa os índices que expressavam a

capacidade de fluxo e a viscosidade foram definidos como ?m = (rm2 – r0

2) / r02 e Rm = 10 / t,

respectivamente. Onde ?m é a Área relativa de fluxo obtida através do ensaio da argamassa no

Tronco de cone de consistência, Rm é a Velocidade relativa de fluxo obtida no ensaio da

argamassa no Funil V para argamassa, rm é a média de duas medidas perpendiculares do

diâmetro do fluxo máximo do tronco de cone, r0 = 10cm é o diâmetro interno inferior do

tronco de cone, t era o tempo medido, em segundos, para o fluxo total da argamassa através

do Funil V para argamassas. Grande valor de ?m indicava alta capacidade de fluxo e baixo

valor de Rm, indicava alta viscosidade. Argamassas com valores de ?m = 5 e Rm = 1, foram

consideradas bastante apropriadas para se obter o concreto auto-adensável. Foi descoberto

também que a relação entre a dosagem de superplastificante e seus efeitos eram totalmente

diferentes, dependendo do tipo de finos e do superplastificante utilizados. Sendo sp/f a relação

entre a massa de superplastificante e a massa de finos e Va/Vf a relação entre o volume de

água e volume de materiais finos, na figura 2.3 apresenta-se o método de dosagem proposto

para a argamassa do CAA.

Domone e Jin (1999) apud Gomes, 2002, apresentaram sugestões para Gm = 8

correspondentes a diâmetros de espalhamento = 300 mm e Rm de 1 a 5, correspondentes a

tempos de fluxo de 2 s. a 10 s.. Já, os valores de Gm entre 3 e 7, correspondentes a diâmetros

de espalhamento da argamassa de 200 mm a 283 mm e valores de Rm entre 1 e 2,

correspondentes aos tempos de fluxo de 5 s. a 10 s., foram adotados para o CAA por

Edamatsu et. al. (1999) apud Gomes 2002.

Quantidade de agregado graúdo: 50% do vol. Sólido de agregado

Argamassa

Quantidade do agregado miúdo: 40% do volume de argamassa

Capacidade de Fluir e Viscosidade

Dosagem de Superplastificante Relação água/finos

Page 38: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 2.3 – Método de dosagem para a argamassa do CAA.

2.6.2. Método de Petersson et al.

Petersson et. al. (1996), propuseram um procedimento que consiste na determinação

de um certo esqueleto granular e um mínimo volume de pasta que garanta boa

trabalhabilidade do CAA, para boa passagem no ensaio Caixa L e um adequado valor no

ensaio de Espalhamento. As quantidades de superplastificantes, água e finos (partículas < 250

µm), são ajustadas para alcançar a resistência a compressão desejada, para obter a necessária

viscosidade e uma baixa tensão de escoamento, compatíveis para um comportamento de auto-

adensamento do concreto (Gomes, 2002).

Para se produzir um concreto que preenchesse totalmente os vazios das fôrmas,

inclusive os cantos, sem sofrer bloqueio das armaduras e sem sofrer segregação do agregado

graúdo, ou seja, para se produzir um CAA, era necessário o uso de aditivos superplastificantes

para criar alta mobilidade; e eliminar a segregação utilizando um grande volume de materiais

finos ou adicionando agentes modificadores de viscosidade. A característica do concreto de

passar entre as barras das armaduras de aço é controlada pelas propriedades reológicas da

argamassa e o volume do agregado graúdo.

Nesse método de dosagem foi calculada a mínima quantidade de pasta para um certo

espaço livre entre as armaduras. Foi usado fíler para criar o conteúdo de pasta necessário. O

bloqueio do concreto foi pesquisado através de ensaios na Caixa L. Foram feitos testes com

Primeiro Estágio

Atribuir valores para

sp/f e Va/Vf

Ensaiar a Argamassa

Segundo Estágio

Capacidade de fluir: ?m Viscosidade: Rm

Modificar sp/f e Va/Vf até ?m = 5 e Rm = 1 serem alcançados

Page 39: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

agregados com diâmetros máximos diferentes. Nesses ensaios a quantidade de pasta foi

mantida constante. Foi estudada também a possibilidade de substituir um percentual de fíler

da mistura por um agente modificador de viscosidade. O Método de dosagem estabeleceu a

quantidade necessária de pasta que devia ser usada para evitar o bloqueio. Ao mesmo tempo

que as pesquisas do bloque io, também foram estudadas, através do ensaio de Espalhamento

com o Cone de Abrams, as condições das superfícies, tais como molhadas, secas ou úmidas.

O Método para a Dosagem da Mistura de CAA está esboçado na figura 2.4.

Figura 2.4 – Processo simplificado para a dosagem da mistura de CAA.

Os Critérios de Construção são determinados através dos parâmetros especiais

particulares de cada projeto. Alguns deles podem ser: resistência do concreto, resistência

inicial do concreto, durabilidade e espaçamento entre as armaduras. Para dada resistência de

projeto do concreto é especificada a relação água/cimento, adequada para a relação normal

entre a resistência do concreto e a relação água/cimento. A resistência inicial do concreto é

função da relação água/cimento e do tipo de cimento especial especificado. Para atender os

critérios de durabilidade são necessários o uso de tipos de cimentos especiais, de agentes

incorporadores de ar e outros tipos de especificações de acordo com o caso específico. No

concreto convencional o procedimento normal dos critérios de construção é dar as

Critérios de construção

Quantidade mínima de pasta

Critérios de bloqueio

Volume de pasta

CAA

Argamassa

Cimento Superplastificante e fíler Agente de viscosidade

Page 40: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

especificações, para a dosagem da mistura, excluindo a abertura entre as armaduras. No CAA

essa informação é necessária e obrigatória.

O passo seguinte é achar o volume de pasta mínimo da mistura entre o agregado

miúdo e o graúdo. Isso é feito medindo a quantidade de vazios para as diferentes relações

entre os agregados miúdo e graúdo. A relação entre os agregados miúdo e graúdo não afeta

apenas a quantidade de vazios, mas também a área total de superfície de agregados. O volume

de pasta mínimo deve ocupar todo o espaço vazio entre os agregados e cobrir também toda a

superfície das partículas de agregado. Duas diferentes misturas de agregados miúdo e graúdo

podem ter diferentes áreas de superfície, mesmo se eles tiverem o mesmo volume sólido. Uma

maior superfície de agregado requer maior cobertura de volume de pasta para dar a mesma

deformabilidade.

Segundo os autores nesta pesquisa foram utilizados dois tipos de agregados graúdos,

um de 0mm-16mm e outro de 8mm-16mm. Ambos eram meio lamelares. Foram usados

também dois tipos de areia, ambas de 0mm-8mm. Tanto as areias como as britas eram do tipo

fluvial.

Quanto aos critérios de bloqueio foi estudado o mecanismo da fluência da argamassa

por entre os vazios e do vazio da areia no bloqueio da argamassa fresca. Foi chegada a

conclusão que o risco de bloqueio pode ser computado pela adição linear do efeito de cada

tamanho de areia. Foi proposta uma equação: Risco de Bloqueio = ? ( nsi / nsbi ) = 1. Onde nsi

é a relação de volume de agregado do grupo de tamanho i (pelo volume total de concreto) e

nsbi é a relação de volume bloqueado de agregado do grupo de tamanho i (pelo volume

total de concreto). A areia era definida como partículas maiores que 1/10 dos vazios

aproximadamente. Partículas menores que esse tamanho, incluindo os finos, têm diferentes

papéis no bloqueio que a areia.

No estudo do risco de bloqueio dos agregados se chegou a uma relação nabi / c/Daf.

Onde nabi = Vabi / Vt; Vabi = Volume de agregado bloqueado do grupo i; Vt = Volume total

de concreto da mistura; c = Espaço vazio entre as armaduras e Daf = Mi-l + 3/4.(Mi – Mi-l).

Mi e Mi-l são as dimensões da peneira superior e inferior do agregado do grupo i. Desta forma,

pode-se calcular a quantidade máxima permissível de agregado para não causar bloqueio e o

volume de pasta médio mínimo, correspondente para a relação entre o agregado graúdo e o

agregado total de acordo com o critério de bloqueio. Nesse método além de se obter o volume

Page 41: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

de pasta mínimo no ponto da relação ideal entre os agregados graúdo e miúdo, estuda-se

também o volume de pasta ideal em função do espaço livre entre as armaduras.

Os estudos do uso dos diferentes tipos de cimentos e filers, em pastas e argamassas

para o CAA foram executados através da utilização de Viscosímetros. A quantidade de

superplastificante para os diversos tipos de misturas foi calculada através de percentuais em

cima da massa de finos, enquanto que a quantidade dos agentes modificadores de viscosidade

utilizados foi encontrada através de percentuais em cima da massa de água. Nesse estudo foi

observado que as pastas de cimento com fileres apresentaram resultados muito melhores que

as pastas com apenas cimento, quanto aos requisitos ideais para o CAA. Permitiu-se chegar

também a conclusão que era necessária uma quantidade de finos no intervalo de 500kg/m³ -

525kg/m³ de concreto, para se alcançar boas propriedades reológicas sem qualquer

segregação. Podem ser encontradas as quantidades adequadas de Superplastificantes e

Agentes modificadores de viscosidade, para o CAA, através de testes da argamassa no

Viscosímetro de pasta.

No concreto foram utilizados os testes de Espalhamento e Caixa L para os diversos

tipos de misturas. Os critérios adotados para o Espalhamento eram entre 670 mm e 720 mm.

Na Caixa L o que se devia alcançar era uma profundidade de esvaziamento da parte vertical

da caixa, maior que 490 mm.

O estudo das diversas misturas de concreto permitiu a elaboração de curvas, para cada

tamanho de abertura entre as armaduras, do volume de pasta por m³ de concreto (em litros)

versos relação brita / total de agregado (em massa), onde nos pontos da curva e acima da

curva não ocorreu bloqueio. Desta forma essas curvas fornecem o volume de pasta que deve

ter o concreto para cada tipo de abertura entre armaduras e para cada relação brita/agregado,

para que não ocorra bloqueio.

Também foi pesquisado o bloqueio do CAA com diferentes tamanhos máximos de

agregados graúdos. O volume de pasta foi mantido constante em 377,2 litros. A consistência

foi medida nos ensaios de Espalhamento, tendo dado entre 650 mm e 725 mm. Quando foram

feitas as medições no Espalhamento, foram estabelecidas três condições para a superfície.

Seca, úmida e molhada. No procedimento convencional nos projetos, são usadas à condição

de superfície úmida. Foi comprovada uma tendência do espalhamento crescer com o

crescimento da umidade na superfície. Foram feitas diferentes considerações nas caixas L

usadas, comparados com a normal de três barras. Caixas L com diferentes números de barras

Page 42: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

(mais de três barras), menor abertura entre as paredes e entre as armaduras. Todos esses

fatores influenciam no comportamento do bloqueio. O número de barras das armaduras é de

grande influência, principalmente quando a largura da caixa é constante. Observou-se que o

bloqueio é mais acentuado quando são usadas mais de 3 barras de armaduras. A

recomendação é manter a quantidade de armaduras constante (3 barras) e usar 1,4 vezes da

abertura entre as barras, para a abertura entre barras e parede da caixa, pelo fato do efeito de

parede ser maior do que o efeito de barra.

Também foram feitas pesquisas da redução da quantidade de fíler e a substituição

desse fíler por um agente modificador de viscosidade. O espalhamento decresce mais

rapidamente seu valor quando a quantidade de agente modificador de viscosidade é

aumentada. Mostrou-se também que nas misturas em que foram usados agentes modificadores

de viscosidade a trabalhabilidade diminuiu antes do tempo, comparada a misturas só com

fíler. Esta é uma dificuldade ao usar o agente modificador de viscosidade para o CAA. Nos

resultados dos testes na Caixa L verificou-se que nas misturas onde foram substituídos mais

de 10% de fíler por agente modificador de viscosidade, ocorreu bloqueio. Desta forma

concluiu-se que o uso do agente modificador de viscosidade só pode substituir uma

quantidade de fíler, da mistura, de no máximo 10%. Os resultados também indicaram que

depois de um longo tempo, apenas a mistura sem agente modificador de viscosidade é que

não causa severo bloqueio.

2.6.3. Método de EFNARC

Como o uso do CAA, tem crescido de forma acentuada, em vários países da

Comunidade Européia, tem sido implantados diversos programas de pesquisas relacionados

com o uso e aplicação do CAA. Estas especificações e diretrizes mostradas a seguir, refletem

a larga experiência prática da EFNARC sobre o CAA. Sua elaboração foi baseada nas mais

recentes pesquisas, como também na abundância de experiências vividas pelos sócios da

EFNARC por toda a Europa. Mas, a própria EFNARC reconhece que esta é uma tecnologia

que ainda se encontra em estado de evolução e vários avanços adicionais podem impor

modificações ou extensões nas exigências desta Especificação. O Comitê Técnico responsável

continuará monitorando o progresso neste campo e deverá atualizar o documento a intervalos

regulares. De forma que, a própria EFNARC, sugere avaliações de sua especificação, por

parte dos usuários, para serem levadas em conta na próxima revisão do referido documento. A

Page 43: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Especificação da EFNARC define exigências específicas para o material do CAA, sua

composição e sua aplicação. Seus anexos, também, incluem uma grande riqueza de conselhos

úteis a pesquisadores, a projetistas, fabricantes de concreto, empresas construtoras, etc.

Conceitos essenciais

No sentido de melhor compreender as peculiaridades do CAA, algumas definições são

essenciais, no entender da EFNARC, tais como: - Adições são materiais inorgânicos de

granulometria muito fina, usado em concreto no sentido de melhorar suas propriedades ou

alcançar propriedades especiais. Admite dois tipos de adições inorgânicas: Tipo I - adições

quase inertes, que são os fílers de agregados e os pigmentos; Tipo II - pozolânicas ou adições

hidráulicas latentes, que são as cinzas volantes, a sílica ativa e a escória granulada de alto

forno. – Aditivos são materiais adicionados ao concreto durante seu processo de mistura, em

quantidade pequena em relação à massa de cimento, com a finalidade de modificar as

propriedades frescas ou endurecidas do concreto. – Binder é a combinação do cimento com

outros materiais cimentícios no CAA. - Habilidade de Preenchimento é a capacidade do CAA

de fluir, preenchendo completamente todos os espaços das formas sob o efeito do seu próprio

peso. - Habilidade de Passagem é a capacidade do CAA de fluir entre pequenas aberturas,

como os espaços entre as barras de aço das armaduras, sem sofrer segregação ou bloqueio. -

Estabilidade ou Resistência a Segregação é a capacidade do concreto de permanecer com sua

composição homogênea durante o tempo de transporte e aplicação. - Argamassa é a fração do

concreto composta da pasta mais o agregado menor que 4 mm. - Finos é o material de

tamanho de partícula menor que 0,125 mm. Deverão estar inclusos nesse material as frações

de areia com esses tamanhos. – Pasta é a fração do concreto composta de finos mais água e ar.

- Tensão de escoamento do material é o valor da tensão cisalhante que deverá ocorrer no

material, para se dar inicio ao processo de fluxo do mesmo. - Viscosidade é uma medida da

resistência de um material para fluir, devido à fricção interna entre suas partículas e é a razão

de ampliação da tensão de cisalhamento do material. - Trabalhabilidade é a medida de

facilidade pela qual, o concreto fresco pode ser aplicado e adensado, ou seja, uma complexa

combinação de aspectos como, fluidez, coesão, transportabilidade, compactabilidade e

viscosidade. - Bloqueio acontece quando o concreto não puder fluir por uma determinada

abertura (ou orifício) devido ao engrenamento entre as partículas do agregado. - Concreto

Auto-Adensável é aquele que tem o poder de fluir sob o efeito de seu próprio peso,

Page 44: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

preenchendo completamente as formas, até mesmo na presença de armaduras densas, sem a

necessidade de qualquer vibração, e ainda assim, mantendo sua homogeneidade.

Exigências sobre os materiais constituintes

Os materiais constituintes do CAA deverão obedecer às exigências da EN 206-1

Especificação, desempenho, produção e conformidade do concreto. Os materiais são

considerados adequados para o uso em concreto, quando não contiverem ingredientes

prejudiciais, em tais quantidades, que possam prejudicar a qualidade, a durabilidade, ou

provocar corrosão nas armaduras.

Os cimentos utilizados devem satisfazer as exigências da EN 197-1 Composição,

especificações e critérios de conformidade do Cimento. A seleção do tipo do cimento

dependerá das exigências globais para o concreto, como resistência, durabilidade, etc.

Cimentos contendo mais de 10% de C3A podem causar problemas de baixa trabalhabilidade.

A quantidade típica de cimento é na faixa entre 350kg/m³ – 450kg/m³. Mais de 500kg / m³

poderá ser perigoso, e aumentar a retração. O uso de menos de 350 kg/m³ só poderá ser

satisfatório com a inclusão de outro material cimentício, tais como cinza volante, pozolanas,

etc.

Os agregados devem atender as exigências da EN 12620 Agregados para concreto.

Seu tamanho máximo dependerá do tipo particular de aplicação do concreto, mas é

normalmente limitado a 20 mm. Suas partículas menores que 0,125 mm devem ser

consideradas fazendo parte do conteúdo de finos e serão muito importantes no

comportamento reológico do CAA. Seu percentual de umidade deverá ser controlado de perto

e levado em conta para se produzir CAA de qualidade constante. Todas as areias sem agentes

nocivos são satisfatórias para o uso no CAA. Ambos os tipos, tanto a britada como a

arredondada natural, podem ser usadas. Podem ser usadas tanto as quartzosas como as

calcárias. Uma quantia mínima de finos deve ser estabelecida (presentes nos materiais

cimentícios e na própria areia) para evitar a segregação. Todos os tipos de agregados graúdos

são satisfa tórios. O tamanho máximo normal é geralmente entre 16mm – 20mm, mas

partículas de tamanho até 40 mm ou mais já foram usadas em CAA. A homogeneidade de

graduação granulométrica é de vital importância. Relativa às características geométricas dos

agregados, os laminares tendem a melhorar a resistência por causa dos engrenamentos das

partículas angulares, mas os arredondados melhoram o fluxo por causa do baixo atrito interno

Page 45: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

entre as partículas. As aberturas entre as armaduras são quem melhor decidem sobre o

tamanho máximo adequado do agregado graúdo, pois a compatibilidade entre esses tamanhos,

é um dos fatores preponderantes na diminuição do atrito interno entre as partículas e na

melhora da capacidade de fluir do concreto.

A água utilizada no CAA deve atender as exigências da EN 1008 Água para concreto.

Os aditivos utilizados no CAA deverão atender as exigências da EN 934-2. O uso do

superplastificante apropriado é essencial para promover a trabalhabilidade necessária. Os

aditivos mais importantes são os superplastificantes, redutores de água de alta gama, usados

com uma redução de água maior que 20%.

Outros tipos de aditivos podem ser necessários, como agentes modificadores de

viscosidade, para melhorar a estabilidade; aditivos incorporadores de ar, para diminuir as

tensões de congelamento e descongelamento dos concretos em regiões de baixa temperatura;

aditivos retardadores de pega, etc. O uso de um Agente modificador de viscosidade aumenta

as condições de controle da segregação, quando a quantidade de finos é limitada. Esse aditivo

ajuda a melhorar a homogeneidade e reduz a tendência à segregação. Na EN 934-2

Definições e exigências para aditivos de concreto; não constam as especificações para os

agentes modificadores de viscosidade, mas a aplicação do mesmo, deverá atender as

exigências estabelecidas nos ensaios específicos do CAA.

As adições semi- inertes (Tipo I), que são os fílers de agregados e os pigmentos, têm

suas especificações regidas, respectivamente, pela EN 12620 Agregados para concreto e EN

12878 Pigmentos para coloração de edifícios baseado em materiais no cimento. As adições

Tipo II (pozolânicas ou hidráulicas latentes), que são as cinzas volantes, sílica ativa; têm suas

especificações regidas, respectivamente, pela EN 450 Definições, exigências e controle de

qualidade de cinzas volantes para concreto e EN 13263 Definições, exigências e controle de

conformidade em sílica ativa para concreto. Devido às exigências reológicas especiais do

CAA, ambas as adições, as inertes e reativas, são usadas para melhorar e manter a

trabalhabilidade, como também regular a quantidade de cimento, reduzindo o calor de

hidratação. As adições tipo II podem melhorar significativamente a durabilidade do concreto.

As adições típicas são a cinza volante, a sílica ativa, a escória granulada de alto forno, o fíler

de vidro moído, o pó de pedra e o pigmento. Como pó de pedra, podem ser usadas pedras

calcárias, dolomíticas ou graníticas finamente trituradas, em frações de partículas menores

que 0,125 mm. As dolomíticas podem vir a apresentar riscos de durabilidade do concreto,

Page 46: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

devido à reação álcali-carbono. A cinza volante é um bom material inorgânico com

propriedades pozolânicas que pode ser acrescentado ao CAA para melhorar suas

propriedades. A sílica ativa é capaz de promover uma melhoria das condições reológicas do

concreto, bem como uma melhora na durabilidade e em suas propriedades químicas e

mecânicas. A escória granulada de alto forno é um material latente hidráulico granular fino,

que pode ser adicionado ao concreto para melhorar suas propriedades reológicas. O fíler de

vidro moído é geralmente obtido através da moagem de vidro reciclado, em partículas

menores que 0,1 mm e a área de superfície específica maior que 2500 cm² / g., onde partículas

maiores podem causar reação álcali-sílica.

Os tipos de fibras comumente usadas no CAA são as de aço ou de polímeros. Suas

especificações ainda se encontram em fase de elaboração. Podem ser usadas para melhorar as

propriedades do CAA como também do concreto convencional. As fibras de aço são

normalmente usadas no CAA, para aumentar os parâmetros das características mecânicas de

resistência a flexão e tenacidade. As fibras de polímeros são usadas geralmente para reduzir a

segregação e a retração plástica, ou aumentar a resistência ao fogo.

Exigências sobre o CAA

O CAA deverá ser projetado de forma que atenda as exigências da EN 206, relativas a

densidade, ao aumento progressivo de resistência, a resistência final e a durabilidade. Devido

ao grande conteúdo de finos, o CAA pode apresentar mais retração plástica ou deformação

lenta que os concretos convencionais, de forma que esses aspectos devem ser levados em

consideração. O conhecimento atual desses aspectos ainda é muito limitado, ou seja, é uma

área que requer muita pesquisa. Deverá, também, ser tomado um cuidado especial para

começar o processo de cura do concreto assim que possível. O nível de fluidez do CAA é

governado, principalmente, pela dosagem de superplastificante, mas uma grande quantidade

do mesmo pode conduzir ao risco de segregação e bloqueio. A tendência de segregação e

bloqueio pode ser controlada pelo uso de uma quantia suficiente de finos (< 0,125 mm) ou um

aditivo controlador do nível de Viscosidade. De forma que, durante o processo de aplicação,

suas características no estado fresco precisam ser controladas, usando preferivelmente, de

forma cuidadosa, dois tipos diferentes de testes. O tempo durante o qual o CAA mantém suas

propriedades reológicas, é muito importante, no sentido de obter bons resultados, durante o

processo de aplicação do mesmo. Este tempo pode ser ajustado através da escolha correta do

Page 47: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

superplastificante ou do uso combinado de aditivos retardadores. Cada aditivo tem seu efeito

em função do tempo, portanto, eles podem ser usados de acordo com o tipo de cimento e a

cronometragem do transporte e da colocação. A trabalhabilidade do CAA pode ser

caracterizada pelas propriedades de capacidade de preenchimento, capacidade de passagem

por obstáculos e resistência a segregação. Uma mistura de concreto só pode ser classificada

como Concreto Auto-Adensável se todas as exigências, provenientes de resultados de ensaios,

para essas três características, forem totalmente atendidas.

Métodos de ensaios

Foram desenvolvidos muitos métodos de ensaios diferentes na tentativa de caracterizar

as propriedades do CAA no estado fresco. Mas, nenhum único ensaio ou combinações de

ensaios, alcançou aprovação universal, e alguns deles têm seus partidários. Semelhantemente,

ainda não foi descoberto nenhum único ensaio, que fosse capaz de caracterizar todos os

aspectos da trabalhabilidade, assim cada dosagem de mistura deverá ser submetida a mais de

um ensaio para caracterizar os diferentes parâmetros de trabalhabilidade. Na tabela 2.1, já

foram listados alguns ensaios alternativos adotados pela EFNARC para os diferentes

parâmetros de trabalhabilidade.

Composição das misturas

A composição do CAA deverá satisfazer a todos os critérios de desempenho em

ambos os estados, tanto fresco, como endurecido. Seus requisitos no estado endurecido devem

atender as exigências da EN 206.

Na fase de projeto da mistura, é muito útil considerar as proporções relativas dos

componentes fundamentais, por volume, em lugar de massa. Em seguida, modificações serão

necessárias no sentido de satisfaze r valores da resistência requerida e outras condições de

desempenho, também estabelecidas em projeto.

As quantidades e proporções típicas para se obter o Concreto Auto-Adensável são as

seguintes: - relação água/finos (em volume) de 0,80 a 1,10; - o volume de ar geralmente é

fixado em torno de 2 %; - quantidade total de finos de 160 litros a 240 litros (400 kg/m³ - 600

kg/m³); - quantidade de agregado graúdo, que tem o tamanho mínimo de suas partículas maior

que 4 mm, é normalmente de 28% a 35% do volume da mistura; - a relação água/cimento é

selecionada se baseando nas exigências da EN 206, mas normalmente a quantidade de água

Page 48: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

não excede a 200 litros/m³; a quantidade de areia, que são todas as partículas com tamanho

mínimo maior que 0,125 mm e tamanho máximo menor que 4 mm, deverá ser balanceada de

acordo com os volumes dos outros componentes da mistura, mas seu volume ótimo na

argamassa, varia entre 40 % e 50 %, e o percentual exato é função das propriedades da pasta.

É aconselhável se projetar à mistura do concreto para atender suas propriedades frescas

específicas, apesar das variações antecipadas das características da matéria-prima a ser

utilizada. Algumas variações na umidade dos agregados já devem ser esperadas. De forma

que, os aditivos agentes modificadores de viscosidade devem ser usados como ferramenta

compensadora de qualquer variação na composição granulométrica da areia e no percentual

de umidade dos agregados.

Para a determinação ótima da relação volumétrica de água/finos e dosagem de

superplastificante são executados testes do tronco de cone de consistência e do funil V, na

argamassa, com a relação volumétrica água/finos, variando na faixa de 0,8 a 0,9. O

superplastificante é usado para equilibrar as características reológicas da argamassa. A

quantidade de areia na argamassa permanece a mesma determinada anteriormente. O objetivo

é atingir resultados para o espalhamento de 24 cm a 26 cm e no funil V de 7s. a 11s..

Caso ocorra comprovação em laboratório do não atendimento, por parte da mistura,

dos requisitos pré-estabelecidos ou de alguma propriedade no estado fresco, deverá ser

procedido ajuste na composição, seguindo as seguintes orientações: - usar tipos adicionais ou

diferentes de fíleres (se disponível); - modificar as proporções da areia ou do agregado

graúdo; - usar aditivo agente modificador de viscosidade, caso já não tenha sido incluso na

mistura; - ajustar a dosagem do superplastificante e (ou) do aditivo agente de viscosidade; -

usar um outro tipo, do superplastificante e (ou) do aditivo agente modificador de viscosidade,

mais compatível com os materiais locais; - ajustar a dosagem de aditivo para modificar o

conteúdo de água, e conseqüentemente a relação água/finos. Uma vez atendidas todas as

exigências, a mistura está adequada para ser aplicada nas formas das peças do projeto.

2.6.4. Método de Gomes

O método apresenta um procedimento de caráter experimental para obtenção da

dosagem do concreto auto-adensável de alta resistência. Esse procedimento constitui uma

extensão do desenvolvido por Toralles et. al. 1996-1998, para concretos de alta resistência, no

sentido de incorporar critérios de dosagem, relativo aos concretos auto-adensáveis.

Page 49: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Os critérios de otimização adotados na aplicação dos procedimentos, vêm

acompanhados por uma resistência mínima a compressão e por um cumprimento de diferentes

requisitos de auto-adensamento no estado fresco, tudo isso com uma quantidade mínima de

superplastificante e cimento. Apresentam-se, também, detalhes de procedimentos de ensaios

utilizados para a caracterização do estado fresco do CAA.

Princípios do método

O procedimento proposto por Gomes, nesse estudo, foi fundamentado na otimização

separada da composição da pasta e do esqueleto granular de agregados. A pasta é constituída

por cimento e sílica ativa (no caso de concreto de alta resistência), fíler, água e

superplastificante, enquanto que o esqueleto granular é definido pela relação ótima entre

agregado miúdo e agregado graúdo, que proporcione uma máxima densidade em seco e sem

compactação.

No método são designadas as relações água/cimento, sílica ativa/cimento,

superplastificante sólido/cimento e fíler/cimento, respectivamente por: a/c, sf/c, sp/c e f/c. No

caso de um concreto de alta resistência, a dosagem de sílica ativa ou microssílica ou fumo de

sílica deverá ser fixado em 10 % em massa de cimento, levando em consideração que este é

um percentual ótimo para um concreto de alta resistência em termos de benefícios e custo.

A relação água/finos deverá ser fixada, a principio, no limite superior de 0,4 para em

seguida ir sendo diminuída, até se atingir a resistência requerida para o concreto. Quanto ao

esqueleto granular, deverá ser adotado um tamanho característico máximo para o agregado =

20 mm.

Neste estudo Gomes utilizou um cimento de alta resistência inicial; foi utilizado

juntamente com uma sílica ativa com baixa demanda de água, um superplastificante

copolímero de última geração, um fíler com tamanho máximo das partículas em torno de

80µm e baixa demanda de água e agregados com baixo coeficiente de absorção.

A figura 2.5 mostra uma seqüência do método de dosagem de Gomes para o CAA de

alta resistência.

Page 50: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 2.5 – Diagrama que descreve o método de dosagem (Gomes, 2002).

SELEÇÃO DOS MATERIAIS

Definição de requisitos

Otimização da pasta Otimização do esqueleto granular

Tipo de cimento e de superplastificante

Tipo de fíler mineral e relação f/c

a/c: 0,35 a 0,40 Tipos de agregados Limite de tamanho máximo

Dosagem saturação superplastificante

(sp/c) para cada (f/c)

Testes cone de Marsh

Relação areia/agregado

Massa unitária

f/c ótima Testes mini-slump

COMPOSIÇÃO DA PASTA

ESQUELETO GRANULAR

Testes no concreto variando volume de pasta

VOLUME DE PASTA

CADAR

Page 51: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Definição da composição da pasta

A composição da pasta é definida pela quantidade de cimento e das relações a/c, sp/c,

sf/c e f/c. Como já foi exposto anteriormente, para um concreto de alta resistência, é fixado, a

principio, a relação água/finos = 0,4 (limite superior) e a relação sf/c = 0,1 (10 % da massa do

cimento). E, em função disso, os parâmetros a serem determinados neste caso são as relações

sp/c e f/c.

A dosagem de superplastificante é determinada através de ensaios do cone de Marsh,

com abertura de saída de 8 mm de diâmetro conforme figura 2.6, de acordo com as

recomendações da EN 445 (Norma Européia – Grautes para bainhas de protendidos. Métodos

de Ensaio, 1996). Tal procedimento consistia em introduzir 1 litro de pasta no cone e medir o

tempo (T) que passa, para 500 ml de pasta fluir completamente pela abertura inferior do cone.

Este tempo de fluxo se apresenta como um parâmetro inverso da fluidez da pasta. Variando a

relação sp/c se obtém uma curva log T versos sp/c, conforme mostra a figura 2.6. A

quantidade de cimento, água e fíler foram fixadas, anteriormente, a variável é a quantidade

sólida de superplastificante. O gráfico log T versos sp/c é utilizado para a definição do ponto

de saturação de superplastificante, que constitui a percentagem ótima de aditivo para a pasta

utilizada. O ponto de saturação significa a relação sp/c para a qual um incremento da dosagem

de superplastificante não provoca nenhuma melhora significante na fluidez da pasta. E é

determinado como sendo a relação de sp/c, correspondente a um ângulo interno de 140º ± 10º

na curva log T versos sp/c, conforme figura 2.6. Mas, a dosagem de superplastificante

correspondente ao ponto, de saturação, depende da relação f/c da pasta, das quais devem ser

realizados ensaios para distintos valores da relação citada, de forma que podem ser adotados

valores de 0,1 a 0,5 para f / c.

Page 52: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 2.6 – Determinação da dosagem de superplastificante.

A dosagem ótima de fíler é obtida através de ensaios de mini-slump. O equipamento

utilizado, nesses ensaios, foi o proposto por Kantro, 1980, que consiste de um molde em

forma de tronco de cone, como mostra a figura 2.7. No ensaio se mede o diâmetro da extensão

final, em paralelo com o tempo gasto para se alcançar um diâmetro de 115 mm, denominado

de T115. Os ensaios são realizados com diferentes relações f/c, cada uma com sua dosagem de

superplastificante, correspondente ao ponto de saturação, já determinada, anteriormente, com

ensaios do cone de Marsh, já citados anteriormente. A relação f/c ótima, da pasta, é aquela

que apresenta um diâmetro de extensão final de 180 ± 10 mm e um tempo T115 no intervalo de

2 a 3,5 s. Os ensaios das pastas com o cone de Marsh e o mini-slump permitem obter as

respectivas relações de sp/c e f/c, que geram misturas de concreto, com fluidez máxima, sem

segregação e com alto nível de coesão interna, coesão essa, que não prejudique

significativamente a fluidez do material.

Flui

dez

Tem

po d

e fl

uxo

(s)

Page 53: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 2.7 – Aparato e ilustração do ensaio de mini-slump para otimização do fíler na pasta.

Definição do esqueleto granular

A relação areia/brita é determinada, segundo um critério de máxima densidade em

seco e sem compactação, no sentido de ser obtida uma mínima quantidade de vazios entre os

dois materiais. Esse ensaio segue as orientações da norma ASTM C29/C29M, porém é feita

uma adaptação pelo fato da não compactação dos materiais. O ensaio consiste em preencher

um recipiente com 5 litros de uma mistura seca com uma certa relação areia/brita. A partir dos

dados dos dois materiais, densidades e peso de cada componente, obtêm-se a massa unitária e

o volume de vazios de cada mistura. O ensaio é realizado para varias relações entre os

componentes, até se chegar a conclusão de qual relação entre eles, apresenta maior densidade

e menor volume de vazios.

Otimização do volume de pasta

Após terem sido determinadas as relações ótimas de sp/c e f/c para a pasta e a relação

areia/brita, segundo o critério de maior densidade com menor volume de vazio, se faz

necessária a obtenção do volume de pasta ótimo para satisfazer as condições de resistência e

auto-adensamento exigidos pelo concreto. Em função de tais parâmetros pré-estabelecidos,

são fabricados concretos com diferentes quantidades ótimas de pasta, em função de cada tipo

de aplicação. A quantidade mínima de pasta deve preencher os vazios do esqueleto granular,

proporcionando a característica de auto-adensamento no estado fresco e a resistência a

compressão desejada no estado endurecido. Desta forma, os concretos devem ser submetidos

aos diversos ensaios no estado fresco, no sentido de satisfazer as faixas de parâmetros, que

confiram sua característica de auto-adensamento. Os parâmetros que conferem o auto-

Page 54: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

adensamento são estabelecidos através de ensaios, de acordo com os critérios de capacidade

de preenchimento, capacidade de passagem entre armaduras e estabilidade ou ausência de

segregação. Para o estabelecimento dos parâmetros da capacidade de preenchimento são

utilizados os ensaios de Espalhamento (cone de Abrams) e Funil V, para os parâmetros da

capacidade de passagem por armaduras é usada a Caixa L e finalmente para os parâmetros de

ausência de segregação é utilizado o ensaio do Tubo em U. Na tabela 2.4, a seguir, estão

apresentados os parâmetros estabelecidos para o atendimento dos tais critérios citados acima.

Tabela 2.4 – Faixa dos parâmetros que asseguraram o auto-adensamento dos concretos.

Propriedades Ensaios Parâmetros Faixa ideal Capacidade Slump-flow Extensão final do fluxo 60 a 75 cm

de T50 5 ± 2 s. Preenchimento Funil V Tempo total de fluxo 10 ± 3 s.

Capacidade TL20 1 ± 0,5 s. de Caixa L TL40 1,5s. a 3s.

Passagem RB = H2 / H1 = 80 Estabilidade Tubo em U Relação de Segregação = 90

Os ensaios de Espalhamento consistem em preencher cones de Abrams de concreto

sem compactar, em seguida levanta-los, lentamente, deixando o concreto se estender em

forma quase circular. As médias de duas medidas perpendiculares dos concretos espraiados

resultam nos valores dos parâmetros extensão final do fluxo. E os tempos medidos em

segundos, para os concretos alcançarem um diâmetro de 50 cm, são chamados de T50.

Os ensaios do Funil V consistem em medir os tempos que amostras de

aproximadamente 10 litros de concreto passam para fluir totalmente através do orifício

inferior do funil, onde tal seção deverá ter uma dimensão mínima de 3 vezes o tamanho

máximo do agregado; e para os CAA suas dimensões deverão variar de 6,5cm a 7,5 cm.

Para estabelecer os parâmetros de capacidade de passagem por armaduras são

utilizados ensaios com a Caixa L, que consiste em preencher o cômodo vertical da caixa com

a amostra de concreto de aproximadamente 12 litros e após a abertura da porta da caixa são

medidos os parâmetros TL20, TL40 e H2 / H1, que são respectivamente, o tempo para o concreto

em fluxo alcançar um comprimento horizontal de 20 cm, 40 cm e a relação final entre as

alturas do concreto no final do trecho horizontal e a altura do concreto remanescente do trecho

vertical da caixa.

Page 55: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Os parâmetros de ausência de segregação dos concretos são estabelecidos através de

ensaios com o tubo em U, de 16 cm de diâmetro. Os ensaios consistem em fazer fluir

amostras de concreto sem sofrer compactação, através do tubo e após algum tempo, quando

os concretos já se encontram em estado de semi-endurecimento, são cortados, em cada caso,

três fatias de 10 cm de espessura (a primeira no início do tubo de entrada, a segunda no início

do trecho horizontal e a terceira no final do trecho horizontal do tubo). Após a retirada das

argamassas através de processos de lavagem das fatias sobre peneiras de 5 mm, são pesados

os agregados de cada conjunto de três fatias. As Relações de Segregação (RS), são obtidas

dividindo a massa dos agregados existentes, após a lavagem e enxugamento com papel toalha;

da segunda fatia pela primeira fatia, o mesmo com a terceira fatia pela primeira fatia. O menor

valor das duas relações é a Relação de Segregação, que deve ser maior ou igual a 0,90.

2.7. Resíduo do beneficiamento do mármore e granito

2.7.1. Considerações gerais

A industria de mineração e beneficiamento de granitos é uma das áreas promissoras

de negócios do setor mineral, apresentando um crescimento médio na produção mundial

estimado em 6% a. a, nos últimos dez anos, e com uma comercialização de materiais brutos e

produtos acabados/semi-acabados que movimenta em torno de US$ 6 bilhões/ano, no

mercado internacional. O Brasil possui grandes reservas de mármores e granitos com os mais

variados aspectos estéticos. Dentre os estados produtores destacam-se o Espírito Santo, Minas

Gerais, São Paulo, Mato Grosso do Sul, Rio de Janeiro, Bahia, Ceará e Paraíba (Filho e

Rodrigues, 1999 apud Neves, 2002).

As indústrias beneficiadoras de granitos têm como principal atividade sua serragem e

polimento para produção de rochas ornamentais, que são utilizadas na indústria da construção

civil. O sistema de desdobramento de blocos de rochas para produção de chapas gera uma

quantidade significativa de resíduos na forma de lama (polpa abrasiva). Tal material é

proveniente da polpa utilizada nos teares, cujos objetivos são: lubrificar e resfriar as lâminas,

evitar sua oxidação de modo a impedir o aparecimento de manchas nas chapas. Essa polpa é

geralmente, constituída de água, granalha e cal moída. Costuma-se utilizar outros materiais

tais como: calcário moído, escória de alto forno, etc., em substituição à cal (Silva, 1998 apud

Neves, 2002).

Page 56: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Nos últimos quinze anos, essas indústrias vêm sendo citadas pelos ambientalistas

como fontes de contaminação e / ou poluição do meio ambiente, devido à enorme quantidade

de resíduos gerados e freqüentemente lançados diretamente nos ecossistemas, sem um

processo de tratamento para eliminar ou reduzir os constituintes presentes (Neves, 2002, p.1).

A eliminação dos resíduos industriais gerados por empresas mineradoras é um dos

grandes desafios deste século. Em todo o mundo vêm sendo desenvolvidas pesquisas sobre

reciclagem de resíduos.

2.7.2 Geração do resíduo

As empresas mineradoras de rochas ornamentais causam impactos ambientais em três

diferentes etapas. Primeiro, grandes problemas hidrológicos, gerados pelo desmatamento na

fase da pesquisa mineral. Em seguida, a geração de elevada quantidade de resíduos gerada

pela obtenção dos blocos com dimensões padronizadas em 2,40m (Larg.) x 2,90m (Comp.) x

1,70m (Alt.) ou 1,70m (Larg.) x 2,90m (Comp.) x 1,70m (Alt.), ou ainda; 0,90m (Larg.) x

2,90m (Comp.) x 1,70m (Alt.); dimensões estas adequadas ao tamanho do tear utilizado pela

empresa da figura 2.8. Os volumes dos blocos variam de 4,4m3 a 11,8m3. E por fim, a

produção do resíduo na forma de polpa abrasiva chamada de lama (Figura 2.9), gerada pelo

beneficiamento resultante da ação dos teares (Figura 2.10).

Figura 2.8 – Blocos de pedras graníticas em dimensões padronizadas.

Page 57: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 2.9 – Resíduo na forma de polpa abrasiva chamada de lama.

O corte dos blocos no beneficiamento da ação dos teares (Figura 2.10) transformando-

os em chapas é a etapa de maior geração do resíduo. Esta fase é conhecida como

desdobramento ou serragem do bloco de granito.

Figura 2.10 – Vistas dos teares na operação de corte dos blocos.

Page 58: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Os teares são equipamentos robustos, constituídos por quatro colunas, que sustentam

quadros que realizam movimentos pendulares. Nesses quadros, são dispostas lâminas de aço,

na direção sentido longitudinal do equipamento; paralelas umas às outras. As citadas lâminas

são de aço carbono, de alta dureza e boa resistência mecânica, para melhor resistir aos

esforços de tração e abrasão (Senai, 1993 apud Neves, 2002).

A mistura abrasiva é bombeada sobre o (s) bloco (s) de modo homogêneo e contínuo,

em todas as lâminas (cerca de 100 lâminas constituem os teares, atualmente). Em geral, estes

sistemas são constituídos de distribuidores multibraços, cada qual com bicos para a aspersão

do fluido abrasivo (Anônimo, 1998 apud Neves, 2002).

A polpa utilizada nos teares é geralmente constituída de água, granalha e cal moída ou

calcário moído ou escória de alto forno, etc, como já citado anteriormente. A granalha

(Figura 2.11), tem função abrasiva no processo de corte.

No processo de serragem pode-se perder até 30% dos blocos, na forma de costaneiras

e lamas abrasivas. Outras perdas costumam ocorrer causadas por quebra de placas, falhas de

empilhamento, defeitos de corte, uso de polpa abrasiva de composição inadequada, lâminas de

corte pouco tensionadas e blocos fraturados. Deve-se ressaltar que, durante a manufatura de

ladrilhos, pode-se atingir perdas da ordem de 10%. Finalmente, estima-se que quando da

aplicação de pedras ornamentais na construção civil, as perdas podem alcançar a cifra de até

30%, sem mencionar os rejeitos do polimento. Deve-se esclarecer que os percentuais acima

não são cumulativos (Neves, 2002).

Figura 2.11 – Amostra da granalha, material constituinte do processo

de corte do bloco de granito.

Page 59: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Após o processo de corte e obtenção de chapas brutas, as mesmas são submetidas aos

processos de acabamento para obtenção do produto final. O processo seguinte ao corte é o

polimento da superfície superior (Figura 2.12). Nesta fase a quantidade de resíduo gerado é

muito menor que no processo de corte e tem a característica particular de ser desprovido de

granalha.

Figura 2.12 – Processo de polimento das chapas brutas.

Durante o processo de polimento, o resíduo gerado segue através de canaletas de

concreto para tanques cheios d’água (Figura 2.13). Quando os tanques se encontram

relativamente cheios, o resíduo sem granalha, juntamente com a água, é bombeado para as

lagoas se misturando com o resíduo do corte, com granalha.

(a)

(b)

(c) (d)

Page 60: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 2.13 – Destino do resíduo no processo de polimento das chapas.

As lagoas que já atingiram seus níveis máximos de armazenamento, sofrem um

processo de evaporação da água, de forma que o resíduo fica acumulado em camadas úmidas

(Figura 2.14 – a). Na superfície se forma uma camada de resíduo com acentuado processo de

corrosão da granalha (Figura 2.14 – b). Na figura 2.15 mostra-se os cortes das chapas em

várias formas e tamanhos para comercialização. Essa é a fase do beneficiamento de menor

percentual de geração de resíduo. Na figura 2.16 apresenta-se vistas de uma indústria

beneficiadora de mármore e granito para comercialização.

(a) (b)

(c) (d)

Page 61: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 2.14 – (a) Lagoa em sua fase madura. (b) Detalhe da camada

corrosiva provocada pela presença da granalha.

Figura 2.15 – Corte das chapas polidas para comercialização.

(a) (b)

Page 62: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 2.16 – Vistas de uma Indústria Beneficiadora de Mármore e Granito.

2.7.3. Trabalhos com RBMG

Neste item apresentam-se alguns trabalhos recentes utilizando resíduos em produtos

cerâmicos, argamassas, concretos convencionais e concretos auto-adensáveis.

NEVES, G. A., 2002 em seu trabalho Reciclagem de resíduos da serragem de granitos

para uso como matéria-prima cerâmica; pesquisou a aplicação do mesmo na substituição de

Page 63: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

parte de materiais não plásticos. Segundo ele, esses resíduos têm em sua constituição um

elevado percentual de quartzo, feldspato, mica e calcário, e apresentam-se na forma de pó

com granulometria muito fina (diâmetro médio equivalente abaixo de 20 µm) que facilita a

sua utilização em composições para produtos cerâmicos. Utilizou cinco tipos do resíduo, de

cinco regiões diferentes, visando sua aplicação em Cerâmica vermelha (blocos cerâmicos e

telhas), revestimentos cerâmicos e grês sanitários.

GONÇALVES, J. P. et al., 2003 no trabalho Utilização de resíduos sólidos industriais

e urbanos para produção de concretos; utilizaram, individualmente, três tipos de resíduos

sólidos (escória de cobre finamente moída, RBMG e resíduo de construção e demolição), os

dois primeiros como adições minerais e o último como agregado, em concretos

convencionais. Os resultados obtidos, quando utilizado o RBMG, para resistência a

compressão axial e resistência à tração na compressão diametral dos concretos aos 28 dias, em

corpos-de-prova cilíndricos de 10cm x 20cm, estão apresentados na tabela 2.5.

Tabela 2.5 – Resultados obtidos por Gonçalves et al.,2003; na utilização de RBMG em concreto convencional.

Composição em massa (kg/m3) Mistura a/c Cimento Ag. miúdo Ag. graúdo

fc (MPa)

ftD (MPa)

0,40 480 638 1114 31,10 4,40 0,55 347 763 1110 21,40 3,40

REF.

0,70 271 832 1103 18,10 2,50 0,40 491 550 1139 35,40 4,50 0,55 360 706 1148 23,60 3,70

RBMG 10%

0,70 277 773 1125 19,00 2,80 0,40 505 460 1151 35,80 4,20 0,55 364 615 1147 26,30 3,30

RBMG 20%

0,70 284 707 1136 20,90 2,60

O Departamento de Engenharia Estrutural, através do Núcleo de Pesquisas

Tecnológicas do Centro de Tecnologia da Universidade Federal de Alagoas vem a algum

tempo investindo em pesquisas de reciclagem de resíduos sólidos. E, como o resíduo do

beneficiamento do mármore e granito também está se tornando um problema grave de

agressão ao meio ambiente, no Brasil e em particular em Maceió, o mesmo foi escolhido

como elemento de pesquisas no sentido de estudar seu aproveitamento em argamassas e

concretos conforme os trabalhos:

Page 64: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

CRUZ, D. F. M. et al., 2003 no Estudo das propriedades mecânicas de argamassas

produzidas utilizando-se resíduo do corte de mármore e granito; utilizaram quatro tipos de

RBMG como adição mineral em argamassas, dois de cada Empresa beneficiadora, e todos

com massas específicas diferentes, M1-3.178kg/m³, M2-2.974kg/m³, G1-2.861kg/m³ e G2-

2.812kg/m³. A dosagem de referência em massa foi 1:3:0,48 (cimento:areia:água). Os

percentuais de substituição em volume, do agregado miúdo pelo resíduo foram: 5%, 10%,

15% e 20%. Entre outros parâmetros obtidos, foi feita uma análise comparativa das

propriedades mecânicas de Resistência à compressão e Módulo de deformação estática, aos 7

dias e 28 dias, para os resíduos M1 e G1, através de corpos-de-prova cilíndricos de 5cm x

10cm, conforme resultados apresentados na tabela 2.6.

Tabela 2.6 – Resultados de Resistência à compressão e Módulo de deformação estática, em argamassas com RBMG, encontrados por CRUZ, D. F. M. et al., 2003.

Resist. à compressão (MPa) Módul. Deform. Estática (GPa) Tempo (dias)

RBMG Ref. 5% 10% 15% 20% Ref. 5% 10% 15% 20%

M1 23,7 23,89 18,95 24,93 23,93 24,21 24,21 21,70 7 G1

19,1 19,2 15,47 22,51 24,88

22,48 23,45 23,21 22,78 21,09

M1 31,4 32,66 32,94 31,11 27,95 27,67 26,02 24,58 28 G1

21,1 23,8 23,16 24,63 29,84

23,94 26,96 25,42 23,34 24,16

TENÓRIO, J. J. L., 2004 no trabalho Desenvolvimento de argamassa através da

utilização do resíduo do beneficiamento de chapas de granito; utilizou o resíduo do polimento

e corte de mármore e granito, sem granalha, como adição mineral, na produção de

argamassas, substituindo por resíduo, percentuais de 5% e 10% sobre o volume de cimento e

5% e 10% sobre o volume de areia. A massa específica encontrada para o resíduo utilizado foi

2.670kg/m³. A dosagem de referência foi 1:3:0,60 (cimento:areia:água). Foram feitas análises

comparativas de índice de consistência, resistência à compressão, módulo de deformação,

absorção por imersão, índice de vazios e massa específica real, entre as quatro argamassas e

com a de referência sem resíduo. Os resultados da Resistência à compressão aos 7dias, 28

dias e 56 dias e Módulo de deformação estática aos 28 dias, através de corpos-de-prova

cilíndricos de 5cm x 10cm, estão apresentados na tabela 2.7.

LAMEIRAS, R. M., 2004 no trabalho Desenvolvimento de concretos através da

utilização do resíduo do beneficiamento de chapas de granito; utilizou o resíduo do polimento

e corte do granito, sem granalha, como adição mineral, na produção de dez concretos

Page 65: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

convencionais, nos quais foram utilizados dois tipos de brita (brita 00 e brita 01) e dois tipos

de relação água/cimento (0,45 e 0,65). Para cada relação água/cimento o resíduo substituiu

5% e 10% do volume de cimento e 5%, 10% e 30% do volume de areia. A massa específica

encontrada para o resíduo utilizado foi 2.670kg/m³. As dosagens dos concretos em massa, na

seqüência cimento:areia:brita 00:brita 01, foram: para a relação a/c=0,45 (1:1,37:1,26:1,26) e

para a/c=0,65 (1:2,36:1,82:1,82). O vo lume de água se manteve constante em 195 litros. Foi

feita uma análise comparativa de consistência, massa específica no estado fresco, resistência à

compressão, módulo de deformação, absorção por imersão, índice de vazios e massa

específica, entre os dez concretos e seus respectivos concretos de referência. Os resultados da

Resistência à compressão aos 7dias, 28 dias e 56 dias e Módulo de deformação estática há 28

dias, para a/c=0,45 e a/c=0,65; obtidos através de corpos-de-prova cilíndricos de 10cm x

20cm, estão apresentados na tabela 2.8.

Tabela 2.7 – Resultados de Resistência à compressão e Módulo de deformação estática, em argamassas com RBMG, sem granalha, encontrados por TENÓRIO, J. J. L., 2004.

Resistência à compressão (MPa) Tempo (dias) Ref. 5% CIM 10% CIM 5% AR 10% AR

7 15,86 15,20 15,11 17,50 19,31 28 20,27 19,79 19,17 22,23 24,23 56 22,95 20,84 20,77 23,16 24,96 Módulo de Deformação Estática (Mpa)

28 20.270 19.790 19.170 22.230 24.230

Tabela 2.8 – Resultados de Resistência à compressão e Módulo de deformação estática, em concretos convencionais com RBMG, sem

granalha, encontrados por LAMEIRAS, R. M., 2004.

Resistência à compressão (MPa) Tempo (dias) a/c Ref. 5% CIM 10% CIM 5% AR 10% AR 30% AR

7 33,71 31,80 26,44 35,30 35,74 31,37 28 43,97 39,64 40,15 45,04 43,77 40,17 56

0,45

46,92 44,44 43,29 46,66 45,96 44,40 7 19,04 17,41 15,13 18,27 20,42 20,85 28 23,16 21,68 19,57 23,11 25,61 29,28 56

0,65

25,78 22,25 20,41 25,49 28,26 29,56 Módulo de Deformação Estática (MPa)

0,45 13.875 13.529 13.738 13.924 13.509 11.866

28 0,65 13.051 12.027 12.458 12.596 12.910 12.257

Page 66: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Capitulo 3

Materiais e métodos

3.1. Introdução

Neste Capítulo, apresenta-se a caracterização de todos os materiais utilizados nessa

pesquisa, bem como os métodos de ensaios utilizados no estudo da pasta, da argamassa, da

composição do esqueleto granular, dos testes das propriedades do concreto no estado fresco,

para a obtenção do CAA, cujos procedimentos e métodos de ensaios foram baseados no

Método de Gomes (2002). Além dos ensaios usados para obtenção das propriedades

mecânicas no estado endurecido.

A obtenção do Concreto Auto-Adensável é um desafio para qualquer pesquisador,

tendo em vista a difícil tarefa de se conseguir atender a todos os parâmetros exigidos pelas

suas propriedades no estado fresco, utilizando materiais de comportamento totalmente

desconhecido no concreto, como é o caso do resíduo do granito.

A experimentação foi desenvolvida no Laboratório de Estruturas e Materiais (LEMA)

do NPT do Centro de Tecnologia da UFAL.

3.2. Caracterização dos materiais

3.2.1. Cimento

O cimento utilizado nesta pesquisa foi o CP II-F-32, de acordo com a norma NBR

11578, cuja densidade adotada foi de 3150 kg/m³. Tal cimento é encontrado com facilidade no

mercado local e bastante usado na região. A relação a/c, para determinação da pasta de

consistência normal, também foi determinada de acordo com a norma NBR NM 43, cujo

valor foi de 0,32.

Page 67: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

3.2.2. Agregados

O agregado miúdo utilizado foi a areia natural quartzoza comercializada no mercado

de Maceió, proveniente do Município de Murici/Al., extraída do Rio Mundau.

Suas características físicas determinadas foram massa especifica (NBR NM 52/2003),

absorção (NBR NM 30/2001), massa unitária em estado solto (NM 45/2002), composição

granulométrica (granulometria, dimensão máxima característica e módulo de finura), teor de

materiais pulverulentos (NBR NM 46/2003) e impurezas orgânicas (NBR NM 49/2001). As

amostras utilizadas nesses ensaios foram obtidas seguindo a metodologia das normas NBR

NM 26 (2001) Agregados – Amostragem e NBR NM 27 (2001) Agregados - Redução de

amostras de campo para ensaio de laboratório.

A granulometria foi determinada segundo a NBR NM 248 (2003) Determinação da

composição granulométrica. O agregado miúdo, normalmente, deverá cumprir os limites de

somente uma das zonas indicadas na tabela 3.1 (Tabela 1 da NBR 7211/1983 – Agregado para

concreto).

Tabela 3.1 – Tabela 1 – Limites granulométricos de agregado miúdo.

Porcentagem, em peso, retida acumulada na peneira ABNT, para a Peneira ABNT (mm)

Zona 1 (muito fina)

Zona 2 (fina)

Zona 3 (média)

Zona 4 (grossa)

9,5 0 0 0 0 6,3 0 a 3 0 a 7 0 a 7 0 a 7 4,8 0 a 5 (A) 0 a 10 0 a 11 0 a 12 2,4 0 a 5 (A) 0 a 15 (A) 0 a 25 (A) 5 (A) a 40 1,2 0 a 10 (A) 0 a 25 (A) 10 (A) a 45 (A) 30 (A) a 70 0,6 0 a 20 21 a 40 41 a 65 66 a 85 0,3 50 a 85 (A) 60 (A) a 88 (A) 70 (A) a 92 (A) 80 (A) a 95 0,15 85 (B) a 100 90 (B) a 100 90 (B) a 100 90 (B) a 100

(A) Pode haver uma tolerância de até um máximo de 5 unidades de porcento em um só dos limites marcados com a letra A ou distribuídos em vários deles.

(B) Para agregado miúdo resultante de britamento este limite poderá ser 80.

fonte: NBR 7211/1983 – Agregado para concreto.

O agregado graúdo utilizado foi a pedra britada de origem granítica vendida no

mercado de Maceió como brita 0, proveniente de uma jazida e pedreira localizada no

Page 68: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Município de Rio Largo/Al. O uso da brita 0 foi em atendimento as referências em CAA que

indicam o uso de menores diâmetros máximos característicos de agregado graúdo.

Suas características físicas determinadas foram massa especifica e absorção (NBR NM

53/2003), massa unitária em estado solto (NM 45/2002), massa unitária em estado

compactado e seco (NBR 7810/1983), composição granulométrica (granulometria, dimensão

máxima característica e módulo de finura), teor de materiais pulverulentos (NBR NM

46/2003), e índice de forma (NBR 7809/1983). As amostras utilizadas nesses ensaios foram

obtidas seguindo a metodologia das normas NBR NM 26 (2001) Agregados – Amostragem e

NBR NM 27 (2001) Agregados - Redução de amostras de campo para ensaio de laboratório.

A granulometria foi determinada segundo a NBR NM 248 (2003) Agregados -

Determinação da composição granulométrica. Os requisitos granulométricos do agregado

graduado são os indicados na tabela 3.2 (Tabela 2 da NBR 7211/1983 – Agregado para

concreto, para a graduação respectiva). Na tabela 3.3 apresentam-se os parâmetros de

caracterização dos agregados graúdo e miúdo utilizados.

Tabela 3.2 – Tabela 2 – Limites granulométricos de agregado graúdo.

Porcentagem retida acumulada, em peso, nas peneiras de abertura nominal, em mm de

Graduação

76 64 50 38 32 25 0 - - - - - - 1 - - - - - 0 2 - - - - 0 0 – 25 3 - - 0 0 – 30 75 – 100 87 - 100 4 0 0 - 30 75 - 100 90 - 100 95 – 100 -

5 (A) - - - - - - 19 12,5 9,5 6,3 4,8 2,4 0 - 0 0 – 10 - 80 – 100 95 – 100 1 0 – 10 - 80 – 100 92 – 100 95 – 100 - 2 75 – 100 90 – 100 95 – 100 - - - 3 95 – 100 - - - - - 4 - - - - - -

5 (A) - - - - - -

(A) Para determinadas obras ou concretos, o consumidor poderá pactuar com o produtor o fornecimento de agregados cuja variabilidade em suas características difira dos limites indicados nessa tabela.

fonte: NBR 7211/1983 – Agregado para concreto.

Page 69: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Tabela 3.3 – Caracterização dos agregados.

Observa-se na tabela 3.3 que as massas específicas dos agregados utilizados

apresentaram valores próximos dos encontrados normalmente na literatura. A brita apresentou

uma absorção intermediária, comparada com os valores de 0,7% e 1,1% das britas utilizadas

por Gomes, 2002; já a areia apresentou valor bem menor do que os 2,8% e 2,4% das duas

areias utilizadas pelo mesmo. Nem a areia nem a brita ultrapassaram os limites máximos em

percentagem de massa de materiais pulverulentos nos agregados, permitidos pela NBR 7211.

Os limites máximos para a areia e para a brita são respectivamente 5% e 1%. A areia quando

submetida ao ensaio de impurezas orgânicas não apresentou uma solução mais escura do que

a padrão, tendo em vista que se fosse mais escura, a utilização, do agregado miúdo no

concreto, ficaria condicionada ao resultado dos ensaios de qualidade da areia da NBR 7221.

O índice de forma dos grãos da brita apresentou bom resultado, visto que tal resultado não

deve ser superior a 3, quando determinado pela NBR 7809, através de duas medidas.

É verificado na tabela 3.3 que o agregado miúdo utilizado se enquadra como areia

média, de acordo com a tabela 3.1 (tabela 1 da NBR – 7211/83), e seu diâmetro característico

máximo é de 2,4mm. Já o agregado graúdo, não se enquadra nas faixas estabelecidas pelas

normas brasileiras, nem como brita 0, nem como brita 1 de acordo com a tabela 3.2 (tabela 2

da NBR – 7211/83). Em função disso a brita utilizada foi chamada de 12,5mm. Na tabela 3.4

a seguir apresentam-se as composições granulométricas da areia e da brita respectivamente.

Ensaios Brita Areia Massa específica (g/cm³) 2,650 2,611 Massa unitária-estado solto (g/cm³) 1,381 1,449 Massa unitária-estado compat. (g/cm³) 1,456 -

Absorção (%) 0,82 0,60

Teor de materiais pulverulentos (%) 0,59 1,32 Impurezas orgânicas húmicas (ppm) - 250

Índice de forma 2,21 -

Índices granulométricos Diâmetro característico máximo (mm) 12,5 2,4

Graduação granulométrica Não se enquadra Média

Módulo de finura 6,105 2,492

Page 70: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Tabela 3.4 – Composição granulométrica da brita e areia utilizada.

Na figura 3.1 estão apresentados os gráficos das composições granulométricas da brita

12,5 e da areia média utilizada, e na figura 3.2 os limites de enquadramento da areia como

média, de acordo com a NBR 7211/83.

Figura 3.1 – Curvas granulométricas da brita12,5 e da areia média.

0

20

40

60

80

100

120

0,1 1 10 100Peneiras

% P

assa

ndo

Areia média Brita 12,5

Peneiras (mm) % Retida % Retido acumul. % Retida % Retido acumul.12,5 0,4 0,4 - -9,5 22 22,4 - -6,3 51,7 74,1 - -4,8 17,5 91,6 1,1 1,12,4 7 98,6 3,4 4,51,2 0,5 99,1 10,8 15,30,6 0,3 99,4 28,2 43,50,3 0,2 99,6 43,5 870,15 0,2 99,8 10,8 97,8

fundo 0,2 100,0 2,2 100,0Total 100,0 - 100,0 -

Brita Areia

Page 71: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

0

10

20

30

40

50

60

70

80

90

100

110

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10Abertura das peneiras

% R

etid

o ac

umul

ado

areia média Lim. Inf. Lim. Sup.

Figura 3.2 – Limites granulométricos para areia média de acordo com a NBR 7211/83.

3.2.3. Adições minerais

Resíduo

Para a caracterização do RBMG foi consultada a NBR 10004 (Resíduos sólidos.

Classificação).

A caracterização física do resíduo incluiu pasta de consistência normal, massa

específica real e análise granulométrica, através do Método Laser. Já a caracterização

mineralógica, incluiu análise química, análise térmica diferencial (ATD) e análise

termogravimétrica (ATG). A caracterização ambiental não foi realizada.

A determinação da massa específica real, foi realizada segundo o método do

picnômetro de Hélio, de acordo com a NBR 6508 (Grãos de solos que passam na peneira de

4,8mm. Determinação da massa específica). O ensaio de determinação da pasta de

consistência normal do resíduo, foi realizado segundo indicações da NBR NM 43 (Cimento

Portland. Determinação da pasta de consistência normal). Esses ensaios foram realizados no

Laboratório de Solos do Núcleo de Pesquisa Tecnológica (NPT), do Centro de Tecnologia da

Universidade Federal de Alagoas. A análise granulométrica foi realizada no Laboratório de

Engenharia Química da UFAL.

Page 72: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

As análises, química, de ATD e ATG, foram realizadas no Laboratório de Análises

Minerais (LAM), do Centro de Ciências e Tecnologia da Universidade Federal de Campina

Grande (UFCG).

Coleta e preparação do RBMG

Apresenta-se o momento em que o resíduo do corte e polimento do granito, utilizado

nessa pesquisa, foi coletado (Figura 3.3). Não se trata de uma operação fácil, pois o meio de

transporte tem que ficar fora da lagoa e o material estando muito úmido, torna-se muito

pesado.

Figura 3.3 – Coleta do resíduo utilizado na pesquisa.

O resíduo coletado na lagoa da Indústria Beneficiadora, foi transportado para o

Laboratório em tonéis de 200 litros. Chegando ao local, o mesmo foi despejado sobre lonas e

submetido a um processo de pré-secagem ao sol (Figura 3.4 – a e b) e estocado abrigado de

volta nos tonéis (Figura 3.4 – c e d).

Page 73: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 3.4 – Etapa de pré-secagem e estocagem do resíduo.

O resíduo utilizado nos ensaios, foi colocado em bandejas (Figura 3.5), ao ar livre, em

local abrigado, até se tornar suficientemente seco para ser submetido à etapa seguinte de seu

processamento.

Figura 3.5 – Resíduo estocado, em bandejas ao ar livre, abrigado para secagem.

(a) (b)

(d) (c)

Page 74: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

O resíduo seco foi apiloado (Figura 3.6-a) e em seguida submetido ao processo de

peneiramento numa peneira de 0,60 mm (Figura 3.6-b). Após todo esse processamento o

resíduo em pó foi estocado em baldes fechado, estando pronto para ser aplicado (Figura 3.7).

Figura 3.6 – (a) Apiloamento ; (b) Peneiramento do resíduo.

Figura 3.7 – Resíduo processado e seco, em forma de pó.

Resultados dos ensaios

Após todo o processo de coleta e preparação do resíduo, foram coletadas amostras do

e submetidas aos ensaios de caracterização. Na tabela 3.5 estão apresentados os resultados de

Granulometria a Laser, densidade e ensaio de Vicat.

(a)

(b)

Page 75: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Tabela 3.5 – Características do resíduo usado.

Propriedade RBMG Tipo Inerte Material retido na peneira de 600? m 0,74% Granulometria (Método Laser) % passante (? m)

3 32 45 63 88 100 150

(%)

10,29 61,36 70,80 78,79 85,46 87,45 92,94

Densidade (g/cm³) 2,812 Relação a/r para consistência normal, medida no ensaio de VICAT.

0,34

A título de comparação, a análise química está apresentada na tabela 3.6, juntamente

com a análise de 05 resíduos semelhantes, pesquisados por Neves (2002), vindos de

diferentes localidades da região Nordeste. O RBMG, utilizado nessa pesquisa, foi proveniente

de jazidas dos Estados de Alagoas, Bahia, Ceará, Pernambuco, Rio Grande do Norte e

Espírito Santo. Os resíduos utilizados por Neves (2002) são provenientes de: R-01 são dos

Municípios de Sumé, Picuí, Serra Branca e Pocinho no estado da Paraíba; o R-02 é do

Município de Cabaceiras - PB; o R-03 são dos Municípios de Taperoá e Baraúnas no Estado

da Paraíba, o R-04 é do Município de Belo Jardim no Estado de Pernambuco; os R-05 são dos

Municípios de Alcântara, Forquilha e Irauçuba no Estado do Ceará (Neves,2002).

Tabela 3.6 – Análise química do RBMG utilizado na pesquisa e os utilizados por Neves (2002).

Amostra

PF (%)

SiO2 (%)

Fe2O3 (%)

Al2O3 (%)

CaO (%)

MgO (%)

Na2O (%)

K2O (%)

RBMG 2,14 56,89 9,58 15,08 5,88 traços 1,45 1,68 R-01 4,44 59,61 5,98 11,77 4,48 traços 2,70 3,63 R-02 2,93 88,91 traços 6,40 traços traços 0,14 0,06 R-03 2,57 60,20 6,30 13,80 6,02 traços 3,38 3,63 R-04 0,78 65,01 7,62 13,86 3,64 traços 2,38 3,63 R-05 6,10 54,75 8,38 12,90 8,40 traços 4,05 3,03

PF - Perda ao Fogo

Page 76: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

De acordo com os resultados apresentados na tabela 3.6, destaca-se de forma

predominante a presença de SiO 2, ocupando mais de 50% da composição dos resíduos.

Nas figuras 3.8 e 3.9 apresentam-se os resultados dos ensaios de ATD e ATG,

respectivamente.

Figura 3.8 – Resultado da análise térmica diferencial (ATD).

A amostra de resíduo submetida a análise térmica diferencial apresentou pico

endotérmico de pequena intensidade 120ºC correspondente a presença de água livre, pico

endotérmico de pequena intensidade 570ºC correspondente a presença de quartzo e pico

endotérmico de pequena intensidade 846ºC correspondente a presença de carbono.

Figura 3.9 – Resultado da análise termogravimétrica (ATG).

-8

-4

0

4

8

12

16

0 200 400 600 800 1000 1200

Temperatura (ºC)

Dt (

ºC)

-0,50

0,51

1,52

2,53

3,54

0 200 400 600 800 1000 1200Temperatura (ºC)

Dm

(%)

Page 77: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

A amostra de resíduo submetida à análise termogravimétrica apresentou perda de

massa total de 3,63% correspondente a perda de água livre e decomposição do carbono.

Sílica ativa

A sílica ativa foi utilizada nessa pesquisa como adição mineral, num percentual de 3%

sobre a massa de cimento, segundo a experiência de Gomes, 2002; no sentido de dar uma

maior rigidez ou coesão à segunda mistura de CAA obtida. Na tabela 3.7 estão apresentadas

as características da sílica utilizada, conforme dados fornecidos pelo próprio fabricante. Na

tabela 3.8 o fabricante apresenta uma comparação da sílica ativa com outros materiais com

relação à finura.

Tabela 3.7 – Características da sílica ativa utilizada, nessa pesquisa, fornecida pelo fabricante.

Massa específica (kg/m³) 2220 Superfície específica (m²/kg) 20.000 Formato da partícula esférico Diâmetro médio (micro-metro) 0,2 Teor de SiO2 mín. 85% Umidade máx. 3% Equivalente alcalino em Na2O máx. 0,5%

Tabela 3.8 – Comparação da sílica ativa com outros materiais com relação à finura.

Material Finura (m²/kg) Sílica ativa 20.000 Fumaça de cigarro 10.000 Cinza volante 400 a 700 Escória de alto forno moída 500 Cimento Portland 300 a 500

3.2.4. Aditivo químico

Nesta pesquisa, nos estudos da pasta, da argamassa e do concreto, foi utilizado um

aditivo superplastificante do tipo policarboxílico. Na tabela 3.9 estão apresentadas suas

propriedades de acordo com informações fornecidas pelo fabricante.

Page 78: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Tabela 3.9 – Propriedades do superplastificante utilizado na pesquisa.

Fabricante MBT Nome Glenium 51 Propriedade SPC Base Química Policarboxilatos Densidade (g/cm³) 1,067 – 1,107 Teor de sólido (%) 28,5 – 31,5 Aspecto Líquido viscoso Cor Marrom Viscosidade (cps) 95 a 160 PH 5 a 7

3.2.5. Água

A água foi utilizada, em todas as fases do trabalho, da forma natural diretamente da

rede d’água da concessionária local.

Page 79: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

3.3. Métodos de ensaios

Neste item apresentam-se os métodos de ensaios utilizados nos estudos da pasta, da

argamassa, da composição do esqueleto granular, das propriedades do concreto no estado

fresco para a obtenção do CAA e de suas propriedades mecânicas no estado endurecido.

3.3.1. Pasta

Os métodos utilizados para o estudo de comportamento de fluxo da pasta foram o

Cone de Marsh e o Mini-Slump (Figura 3.10).

Figura 3.10 – (a) Cone de Marsh, (b) Mini-slump.

Ensaio no Cone de Marsh

Devido a importante função do superplastificante no concreto, a seleção e os critérios

de dosagem do superplastificante são fundamentais para determinar a composição do

concreto. Do ponto de vista prático, melhor é determinar esses parâmetros no concreto, e nas

condições locais das construções. Porém, isso implica em significante mão de obra, material e

tempo. Por outro lado, tais testes não explicam a fundamental ação do superplastificante com

respeito às interações físicas e químicas. Com essa razão vários métodos baseados em testes

de pasta e argamassa têm sido desenvolvidos para determinar a dosagem ótima de

superplastificante no concreto. Todavia, ajustes finais no concreto são necessários após os

testes em pasta e em argamassa (Gomes, 2002).

O ensaio no cone de Marsh tem sido usado previamente para avaliar a fluidez e a

dosagem ótima de superplastificante nas pastas e argamassas. O procedimento foi similar ao

ASTM C 939 (1987), usado para teste de fluidez de graute.

(a) (b)

Page 80: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Os aparatos utilizados no ensaio são: o cone de Marsh, um beaker graduado de

1000ml, uma proveta graduada de 500ml, um cronômetro e os recipientes para acomodar os

componentes da mistura antes do ensaio.

O Cone de Marsh consiste de um cone oco de metal invertido, aberto no topo e tem

uma abertura no fundo, onde é fixado um bocal removível de 8 mm de diâmetro (d),

adequado para pasta, ou o de 12 mm adequado para argamassa. No interior do cone é

colocado um volume de material (V) e em seguida é medido o tempo gasto para um volume

(v) fluir através do orifício inferior do mesmo. Na literatura o diâmetro (d) do bocal do cone

varia de 5 mm a 12,5 mm e o volume (V) inicial utilizado varia de 800 a 2000 ml (Gomes,

2002). Segundo Gomes (2002), Toralles-Carbonari et al. (1996) usou um cone com d = 8 mm,

no teste de performance da pasta com volumes V = 800 ml e v = 200 ml; De Larrard et al.

(1997) usou um cone de d = 12,5 mm, no teste de performance da argamassa com volumes

V = 1000 ml e v = 500ml; e Aïtcin (1998) usou um cone de d = 5 mm em testes de pastas,

com volumes V = 1200 ml e v = 500 ml.

Nos ensaios da pasta deste trabalho, no Cone de Marsh, foi utilizado d = 8 mm, V =

1000 ml, v = 500 ml, os mesmos parâmetros utilizados por Gomes, 2002.

Através de alguns ensaios no Cone de Marsh, para cada pasta, obtêm-se uma curva de

tempo de fluxo, onde a variável é o percentual de superplastificante sólido. Esta curva é

usada para determinação da dosagem ótima do superplastificante. Esta dosagem, conhecida

como ponto de saturação, é definida como a dosagem de superplastificante além da qual o

tempo de fluxo não diminui consideravelmente (De Larrard, 1990; Agulló et al. 1999). Essa

curva deve apresentar o ponto ótimo da dosagem de superplastificante bem definido, com

ângulo interno da curva no ponto de saturação dentro do estabelecido por Gomes (2002), isto

é, 140º ? 10º.

Ensaio no Mini-slump

Nas pastas também é utilizado o ensaio no Mini-slump proposto por Kantro, (1980).

Este ensaio consiste em preencher o Mini-slump com pasta e depois levantar deixando a pasta

se espalhar livremente em uma base. Nesse ensaio é verificada a capacidade de espalhamento

das pastas já ensaiadas no cone de Marsh através da média entre dois diâmetros finais

perpendiculares, sem utilizar nenhum método de compactação.

Page 81: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Nestes ensaios, a média dos diâmetros de espalhamento da pasta tende a aumentar com

o aumento da dosagem de superplastificante na mistura, de forma que a partir de uma certa

dosagem, o diâmetro deixa de sofrer aumento considerável e a pasta tende a apresentar sinais

de segregação. Nessa dosagem citada se encontra o ponto de saturação do superplastificante,

no qual deve ser verificado que seu diâmetro de espalhamento, atenda ao estabelecido por

Gomes et al. (2002); de 180mm ? 10mm, para pastas recomendadas para concreto auto-

adensável.

Como foi visto no método de Gomes, neste mesmo ensaio também é medido o tempo

para a pasta atingir um diâmetro de espalhamento de 115 mm, chamado de T115. Parâmetro

este, que juntamente com o diâmetro final de espalhamento no Mini-slump, servem para

determinar a dosagem ótima da adição mineral (fíler) em pasta adequada para CAA. Nesta

pesquisa esse parâmetro não foi considerado, uma vez que as dosagens de fíler foram fixadas,

adotando como filosofia do trabalho um alto volume de resíduo. Apenas o espalhamento foi

levado em consideração para analise da fluidez da pasta.

Os aparatos utilizados neste ensaio são: o mini-slump, uma base de vidro, um beaker,

uma trena e recipientes para acomodar os componentes da mistura antes do ensaio.

3.3.2. Argamassa

O estudo da argamassa é feito através de ensaios no Cone de Marsh, já apresentado na

figura 3.10, e no Tronco de cone da mesa de consistência (figura 3.11), ambos utilizados por

Gomes (2002). Para a argamassa o diâmetro do orifício do bocal inferior passa a ser de 12

mm. Os ensaios no Cone de Marsh, com argamassas, da mesma forma que nas pastas, têm a

finalidade de determinar o ponto de saturação do superplastificante, utilizando procedimentos

semelhantes. Na curva obtida nos ensaios no Cone de Marsh com argamassas, para cada

percentual de resíduo utilizado, fazendo variar o percentual de superplastificante sólido na

mistura, o ponto de saturação é aquele a partir do qual o tempo de fluxo não sofre variações

consideráveis. Os ensaios da argamassa no Tronco de cone da mesa de consistência têm a

finalidade de verificar a capacidade de fluir da argamassa, medindo os diâmetros de

espalhamento. Edmatsu et al. (1999) apud Gomes, 2002 sugere para esse ensaio, um diâmetro

final de espalhamento de 200 mm a 283 mm. Domone e Jin (1999) apud Gomes, 2002

sugerem um dF = 300 mm Nesse ensaio também é observado que logo em seguida do ponto

Page 82: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

de saturação, obtido no Cone de Marsh, a argamassa espalhada, começa a apresentar os

primeiros sinais de segregação.

Figura 3.11 – Tronco de cone da mesa de consistência.

3.3.3. Determinação do esqueleto granular

As propriedades necessárias para o Concreto Auto-Adensável limitam o tamanho do

agregado graúdo e o volume de agregados que deve ser usado (Okamura, 1997; Billberg,

1999; Khayat, 1999). Normalmente o tamanho máximo do agregado é limitado a 20mm para

permitir alto fluxo sem problemas de segregação. O volume de agregado no concreto auto-

adensável, especialmente o do agregado graúdo, deve ser menor que no concreto

convencional, também pelas mesmas razões. Além disso, um menor volume de agregado

diminui o atrito entre os grãos durante o movimento entre eles, assegurando uma maior

velocidade de fluxo (Gomes, 2002).

A combinação ótima entre os agregados é obtida através de vários procedimentos de

mistura, sem nenhum tipo de compactação, no sentido de se obter o ponto de maior massa

unitária da mistura e o menor volume de vazios entre eles (Helene e Terzian, 1992; Peterson

et al., 1996; Gomes, 2002).

O procedimento de obtenção de uma relação ótima entre os agregados começa a partir

do momento dos procedimentos de ensaios para obtenção de informações, de forma, textura,

densidade, granulometria, etc, dos agregados envolvidos na mistura. O menor volume de

Page 83: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

vazios encontrado na composição ótima do esqueleto granular é uma referência no próximo

passo do procedimento de dosagem da mistura, onde o volume de pasta final é obtido nos

ensaios que caracterizam as propriedades do concreto no estado fresco (Gomes, 2002).

Nesse trabalho, a areia e a brita, secas, foram misturadas manualmente, partindo de

uma massa de 25 kg de brita e 0 kg de areia, fazendo variar a relação entre elas. Em cada

relação, preenchendo um recipiente de 15 litros sem nenhum tipo de compactação. Em cada

uma dessas relações os materiais eram misturados três vezes, com três preenchimentos do

recipiente e três obtenções de massa unitária. A massa unitária de cada relação entre a areia e

a brita era a média entre as três massas obtidas da mistura. Para cada massa unitária obtida era

obtido também o volume de vazios entre os componentes da mistura. Estabelecendo que ? u é

a massa unitária da mistura, Pt é a massa total da mistura e Vt o volume total do recipiente

preenchido. O cálculo da massa unitária é regido pela equação ? u = Pt/Vt. Em seguida,

estabelecendo que ?ar é a massa específica da areia, ?br a massa específica da brita e ?ab a

densidade absoluta específica da mistura. Temos que a densidade absoluta específica da

mistura foi obtida através da equação 3.1 e o volume de vazios da mistura V(%), em

percentagem foi obtido através da equação 3.2.

? ? ? ?100

%% britaareia brarab

????

??? (3.1)

100(%) ??

?ab

uabV?

?? (3.2)

Para cada relação entre areia e brita obtém-se um V(%). Então, é plotado num gráfico

V(%) x % de areia, obtendo-se uma curva, onde o ponto mínimo da mesma corresponde aos

percentuais ótimos entre a areia e a brita. E o volume de vazios correspondente a este ponto é

o menor volume de pasta que deverá ter o concreto.

Page 84: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

3.3.4. Concreto auto-adensável

Testes das propriedades do CAA no estado fresco

Neste trabalho foram escolhidos quatro ensaios para o estudo e determinação das

propriedades do CAA no estado fresco. São eles: Teste de espalhamento, Funil V, Caixa L e

Tubo U. A seguir uma descrição de cada ensaio será apresentado.

Espalhamento

Esse ensaio é um dos mais utilizados pelos pesquisadores para verificação da

propriedade do CAA de preenchimento de fôrmas no estado fresco, dentre eles; Gomes

(2002), Rooney (2002), Araújo (2003), Tutikian et al. (2004).

Este método de teste avalia o grau de deformabilidade da mistura de CAA fresco,

através de sua velocidade de deformação e do diâmetro de espalhamento da amostra

deformada sob o efeito do seu próprio peso (Takada, 2000).

Os principais equipamentos utilizados nesse ensaio são: Cone de Abrams (Figura

3.12-a), de acordo com a NBR NM 67, chapa de aço de 1m x 1m (Figura 3.12-b) e um

cronômetro com precisão de 0,1s. A chapa de aço de 2 mm de espessura tem dois círculos

centralizados demarcados, um de 20cm de diâmetro para centralização do cone e outro de

50cm de diâmetro para medição do tempo que o concreto leva para atingir esse diâmetro,

ambos círculos devem estar claramente visíveis para facilitar as medições.

O ensaio de espalhamento seguiu a seguinte seqüência: 1- Colocar a chapa numa

superfície horizontal e nivelada; 2- Umedecer a chapa; 3- Encher rapidamente o cone de

concreto; 4- Levantar o cone verticalmente após 15 segundos do seu preenchimento e

simultaneamente ligar o cronômetro registrando o tempo, em segundos, que o concreto

alcança o diâmetro de 500mm (T50); 5- Após o concreto atingir o repouso, efetuar duas

medidas perpendiculares do diâmetro final, onde o valor final do espalhamento é o resultado

da média entre os dois valores (Bilberg, 1999).

Page 85: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 3.12 – (a) Cone de Abrams; (b) Detalhes dos círculos na chapa.

A EFNARC (2002), recomenda para o CAA, no espalhamento final um valor entre

650mm e 800mm e para o T50 de 2s. a 5s.

Funil V

Esse método de ensaio foi desenvolvido na Universidade de Tokyo. Consiste em

medir o tempo para um certo volume de concreto (aproximadamente 10 litros), fluir

totalmente por um funil (Ozawa, et al., 1994 apud Gomes, 2002). Esse teste é capaz de

fornecer boa indicação da viscosidade da mistura, pode também ser indicativo da segregação.

Um baixo tempo de esvaziamento do funil é favorável com respeito à capacidade de fluxo e

um alto tempo significa alta viscosidade, com tendência a sofrer bloqueio e segregação

(Gomes, 2002). Neste trabalho este teste foi utilizado para avaliar a propriedade do estado

fresco de capacidade de preenchimento de formas do concreto.

Nessa pesquisa foi utilizado o Funil V (Figura 3.13), recomendado por Gomes (2002),

de orifício de descarga de 6,5cm x 7,5cm. O Funil V é composto de dois trechos de dimensões

e formas diferentes; o trecho superior de seção transversal interna variável com altura de

45cm, apresenta uma seção superior interna de 51,5cm x 7,5cm e inferior de 6,5cm x 7,5cm; e

o trecho inferior de seção transversal interna retangular constante, com altura de 15cm,

prossegue até seu final com as dimensões de 6,5cm x 7,5cm. O orifício de descarga do funil

deverá ser equipado com uma tampa a prova de passagem de água.

Os aparatos utilizados neste ensaio são: Funil V; um recipiente de capacidade de 5

litros para derramar a amostra a ser colocada no funil; um recipiente tipo bandeja de

Page 86: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

capacidade de 12 litros para receber a amostra derramada de dentro do funil; um cronômetro

de precisão de 0,1 segundo para medir o tempo de esvaziamento total do funil.

Figura 3.13 – Detalhes do Funil V.

O ensaio do Funil V seguiu a seguinte seqüência: 1- Molhar o interior do Funil em V,

limpando com um pano molhado; 2- Colocar o funil com seu fundo fechado apontando para o

recipiente receptor da amostra; 3- Nivelar a superfície de topo do funil; 4- Introduzir a

amostra de concreto no Funil sem exercer sobre o mesmo nenhum tipo de compactação por

socamento ou vibração mecânica, deixando a superfície de concreto nivelada, retirando o

excedente; 5- Após 15 segundos, abrir rapidamente a tampa do orifício inferior do funil e

simultaneamente ligar o cronômetro registrando o tempo (em segundos) de esvaziamento total

do Funil (Takada, 2000).

A EFNARC (2002) recomenda para o CAA, um intervalo de 6s. a 12s., para o tempo

de esvaziamento total do funil.

Caixa L

O Ensaio da Caixa em L (Figura 3.14), foi utilizado por Peterson et al. (1996), por

Gomes (2002), Rooney (2002), Araújo (2003), Tutikian et al. (2004).

O teste é usado para a avaliação da propriedade no estado fresco de capacidade de

passagem do CAA entre as aberturas das armaduras (Gomes, 2002).

Segundo Petersson, 2000, o teste da Caixa L, também pode ser utilizado para avaliar

as propriedades de capacidade de preencher fôrmas e resistência à segregação do CAA.

Page 87: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 3.14 – Caixa L.

A Caixa L é confeccionada com uma parte vertical ligada com uma horizontal, na base

da vertical é feita uma abertura que é colocada uma porta e barras de aço, por onde o concreto

deve passar. As barras de aço são de 10mm e as aberturas entre as barras são 42 mm, podendo

ser mudados para outros tamanhos de aberturas. A parte vertical da Caixa em L com

dimensões de 0,60 m x 0,20 m x 0,10 m (altura x largura x profundidade), deverá ser

preenchida com 12,7 litros de concreto. Os 12 litros do volume vertical da caixa com 0,7

litro extra atrás do portão, somam um total de 12,7 litros. A parte horizontal da Caixa L tem

dimensões internas de 70cm x 20cm x 15cm (comprimento x largura x profundidade).

Os aparatos utilizados neste ensaio são: Caixa L, recipiente para o preenchimento da

parte vertical da caixa com concreto, dois cronômetros de precisão de 0,1 segundo para medir

os tempos TL20 e TL40 e uma trena para efetuar as medidas das alturas H1 e H2 do concreto na

parte horizontal da caixa após o repouso do mesmo.

O ensaio da Caixa L seguiu a seguinte seqüência: 1- Colocar a caixa L sobre uma

superfície nivelada; 2- Limpar e umedecer as superfícies internas da Caixa; 3- Preencher com

concreto a parte superior da Caixa, sem utilizar nenhum tipo de adensamento, deixando a

superfície do concreto nivelado, retirando o excedente; 4- Após 15 segundos, levantar

rapidamente a porta e simultaneamente ligar os dois cronômetros registrando em segundos os

tempos para o concreto atingir na horizontal as marcas de 20 cm e 40 cm, TL20 e TL40,

respectivamente; 5- Logo após o concreto atingir seu estado de repouso, medir com uma trena

suas alturas H1 e H2, no início e final da parte horizontal da Caixa L, respectivamente.

Tanto o bloqueio como a estabilidade do concreto, podem ser detectados visualmente.

Se o concreto formar uma camada elevada atrás das armaduras, significa que o mesmo sofreu

bloqueio e segregação. Usualmente é apresentado no bloqueio o agregado graúdo reunido

Page 88: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

entre as barras das armaduras. Se o agregado graúdo se apresentar bem distribuído ao longo

da superfície do concreto até o final da parte horizontal da caixa, significa que o mesmo pode

ser considerado estável (Petersson, 2000).

Rooney e Bartos, 2000, recomendam para os parâmetros obtidos nos ensaios do CAA

na Caixa L, para TL20 =2s., para TL40 =4s. e para H2/H1 = 0,80.

Tubo U

Nessa pesquisa para a avaliação dos CAA quanto à propriedade de resistência à

segregação, foi utilizado o Teste do Tubo U (Figura 3.15) usado por Gomes (2002).

Figura 3.15 – Detalhes do Tubo em U.

O equipamento Tubo U consiste de três segmentos de tubo e dois joelhos de PVC-S de

150mm, cortados em meia cana e mantidos juntos através de fixação longitudinal com fitas

adesivas e com abraçadeiras transversais, de forma que, após o ensaio, as partes sejam

separadas sem provocar destruição do concreto nele colocado. A segregação é avaliada como

o grau de não uniformidade na quantidade de agregado graúdo, nas diferentes partes do tubo.

São utilizados, nesse teste, aproximadamente 32 litros de concreto.

Os aparatos utilizados neste ensaio são: Recipientes para encher o Tubo U de concreto,

Tubo U, base de madeira do Tubo U, instrumentos cortantes para retirar as amostras, três

bandejas para receber as amostras, peneira de 5mm, sistema de água com mangueira para

lavagem das amostras, papel toalha para enxugar as britas das amostras e uma balança.

O ensaio do Tubo U (U Pipe Test) seguiu a seguinte seqüência: 1- Nivelar e aprumar o

Tubo U com o auxilio de uma base em forma de caixa de madeira; 2- Introduzir o concreto

em queda livre de uma altura de 80 cm, de forma que o mesmo preencha a fôrma de Tubo U,

Page 89: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

completamente, até sua extremidade oposta sem nenhuma compactação; 3- Manter o Tubo U

na vertical durante um período de aproximadamente três horas até o concreto endurecer

parcialmente, ficando rijo o bastante para se manter com a forma, mas não totalmente

endurecido; 4- Colocar o Tubo U na horizontal e remover a meia cana superior do mesmo;

5- Extrair as três amostras cilíndricas de 10 cm de espessura, a primeira corresponde aos

primeiros 10cm da extremidade de entrada do concreto, a segunda e a terceira amostras são

extraídas, no sentido de fluxo do concreto, no início e no final do trecho horizontal do tubo,

respectivamente; 6- Lavar as três amostras, separadamente, sobre uma peneira de 5 mm para

remover a argamassa e se obter o agregado graúdo limpo; 7- Enxugar as superfícies das britas

provenientes das três amostras com papel-toalha e determinar suas massas separadamente.

A massa da amostra 01 serve como referência. Calculam-se as razões da massa da

amostra 02 sobre a massa da amostra 01 e a massa da amostra 03 sobre a massa da amostra

01. A Razão de Segregação (RS) é tomada como o menor dos dois valores. A segregação é

considerada desprezível se RS = 0,90 (Gomes,2002).

Propriedades mecânicas do CAA no estado endurecido

Após passar pelos testes no estado fresco o CAA através de corpos-de-prova

cilíndricos foi submetido a ensaios no estado endurecido, no sentido de estudar suas

propriedades mecânicas de Resistência à compressão, Módulo de deformação estática e

Resistência à tração na compressão diametral, seguindo as orientações estabelecidas nas

Normas Brasileiras, NBR-5739/1994, NBR-8522/2003 e NBR-7222/1994, respectivamente.

Para os concretos testados apenas ao teste de espalhamento no estado fresco, foram moldados

apenas corpos-de-prova cilíndricos de 10cm x 20cm para ser submetido a ensaio de

compressão aos 7 dias de idade. Esses testes aos 7 dias tinham como objetivo se ter uma idéia

de resistência à compressão da dosagem estabelecida que até então tinha valor totalmente

desconhecido, como também para se fazer uma projeção para os 28 dias de idade. Para os

concretos submetidos aos ensaios no estado fresco de espalhamento e Caixa L foram

moldados corpos-de-prova cilíndricos de 10cm x 20cm, para serem submetidos a ensaios de

compressão aos 7 dias e aos 28 dias. Já para os concretos submetidos a todos os ensaios

estabelecidos para o estado fresco, foram moldados corpos-de-prova cilíndricos de 10cm x

20cm para serem submetidos a testes de compressão aos 28 dias, bem como corpos-de-prova

cilíndricos de 15cm x 30cm para serem submetidos a testes para o estabelecimento de valores

Page 90: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

das três propriedades mecânicas de Resistência à compressão, Módulo de deformação estática

e Resistência à tração na compressão diametral, aos 28 dias.

Os ensaios de Resistência à compressão nos corpos de prova cilíndricos de 10cm x

20cm, aos 7 dias, foram executados na Máquina Universal (Figura 3.16), marca EMIC DL

30000, de 30tf.

Figura 3.16 – Máquina Universal EMIC DL 30000.

Apresenta-se na figura 3.17 um corpo-de-prova de 10cm x 20cm em posição de ensaio

de ruptura, aos 7 dias, para obtenção da propriedade mecânica de resistência à compressão

dos concretos no estado endurecido, no sentido de se obter estimativas das resistências dos

mesmos.

Figura 3.17 – Ensaio para estimativa das resistências dos concretos

aos 7 dias de idade.

(a) (b)

Page 91: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Os ensaios no estado endurecido da propriedade mecânica de resistência à compressão

em corpos-de-prova cilíndricos de 10cm x 20cm, aos 7 dias, foram executados na Máquina

Universal marca Emic e todos os ensaios em corpos-de-prova cilíndricos de 10cm x 20cm e

15cm x 30cm, para estudo das propriedades mecânicas de Resistência à compressão, Módulo

de deformação estática e Resistência à tração na compressão diametral, aos 28 dias foram

executados na Prensa AMSLER de 200 tf (Figura 3.18), tendo em vista que a carga máxima

da máquina Emic era menor que a carga de ruptura, aos 28 dias, dos concretos estudados.

Figura 3.18 – Prensa Amsler de 200 tf.

Na figura 3.19 apresenta-se a execução de um dos ensaios de Resistência à

compressão em corpos-de-prova cilíndricos de 10cm x 20cm aos 28 dias.

Figura 3.19 – Ensaio de resistência à compressão de corpo-de-prova

10cm x 20cm aos 28 dias de idade.

(a) (b)

Page 92: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Ensaios de Resistência à compressão e de Módulo de deformação em corpos-de-prova

de 15cm x 30cm são apresentados nas figuras 3.20 (a,b) e 3.20 (c,d), respectivamente.

Figura 3.20 – Ensaios de Resistência à compressão (a,b), Módulo de

deformação (c,d), em corpos-de-prova 15cm x 30cm aos 28 dias.

Na figura 3.21, está apresentado um ensaio de Resistência à tração na compressão

diametral em corpo-de-prova de 15cm x 30cm.

Figura 3.21 – Ensaio de Resistência à tração na compressão diametral

em corpo-de-prova de 15cm x 30cm aos 28 dias.

(a)

(d)

(b)

(c)

Page 93: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Capitulo 4

Composição e produção das misturas

4.1. Introdução

Neste capítulo apresentam-se os métodos de obtenção das composições da pasta, da

argamassa e do concreto, bem como a descrição detalhada da produção dos mesmos.

4.2. Pasta

Na dosagem dos materiais componentes da pasta foram estabelecidos os seguintes

parâmetros: massa de cimento = C (g), massa de água = Pa (g), massa de resíduo = Pr (g),

massa da sílica ativa = Psf (g), massa de superplastificante sólido = Psp (g), massa do

superplastificante líquido = Pspl (g), massa de água contida no superplastificante = Pasp (g),

massa de água adicionada corrigida = Pac (g), relação água/cimento = a/c, resíduo/cimento =

r/c, sílica ativa/cimento = sf/c e superplastificante sólido/cimento = sp/c, teor de sólido do

superplastificante = Tsp (%), densidade do superplastificante líquido = ?sp (g/ml), densidade da

água = ?a (g/ml), densidade do cimento = ?c (g/ml), densidade do resíduo = ?r (g/ml),

densidade da sílica ativa = ?sf (g/ml) e o volume de pasta = Vp (ml). Todos os materiais foram

trabalhados em massa, desta forma, as equações utilizadas na obtenção das dosagens dos

materiais no estudo da pasta são: Pa = (a/c).C; Pf = (f/c).C; Psf = (sf/c).C (quando utilizada);

Psp = (sp/c).C; Pspl = Psp/(Tsp/100) e Pasp = Psp.[(100/Tsp)-1]. A massa de água real adicionada

aos outros componentes é corrigida, subtraindo-se a parcela de água já contida no

superplastificante. Então, a massa de água corrigida é: Pac = Pa – Pasp. O volume de pasta nos

ensaios foi obtido através da equação 4.1:

a

asp

sp

spl

sf

sf

r

r

a

a

cp

PPPPPCV

????????????

(4.1)

Page 94: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Nas pastas, em que é utilizado apenas o resíduo, o termo referente à sílica ativa, não

faz parte da equação 4.1.

As pastas foram produzidas numa argamassadeira, marca EMIC AG-5, com

capacidade de 5 litros e duas velocidades, 125 ± 10 rpm (alta) e 62 ± 5 rpm (baixa). As

massas dos materiais componentes foram estabelecidas numa balança eletrônica digital, marca

Marte, de precisão de 0,1g. Esses equipamentos estão apresentados na figura 4.1.

Figura 4.1 – (a) Argamassadeira, (b) Balança eletrônica digital.

Para pastas foi usada a seguinte seqüência em sua produção: o cimento, o RBMG, a

sílica ativa (quando utilizada) e a quantidade fixa de água (correspondente a a/c = 0,40) foi

misturada em baixa velocidade em dois períodos de 1 minuto, com 30 segundos de intervalo,

após cada período, para o procedimento de limpeza da cuba; em seguida, o superplastificante

e o restante da água (a/c = 0,10), abatendo-se a água já contida no superplastificante, foram

adicionados e misturados por 30 segundos em baixa velocidade e por 2 minutos em alta

velocidade. Somando um tempo total de mistura de 4,5 minutos.

4.3. Argamassa

Nas dosagens das argamassas são acrescidos os seguintes parâmetros em relação à

pasta: massa da areia = Par (g), massa corrigida da areia = Parc, absorção da areia = Aar (%),

umidade da areia = Har (%), densidade da areia = ?ar (g/ml), volume de areia = Var (ml),

volume de argamassa = Varg (ml). Nas argamassas todos os materiais também foram

trabalhados em massa. As equações complementares para o estudo da argamassa são:

Par = 2.C; Varg = Var + Vp. Na argamassa, a água adicionada aos demais componentes, sofre as

(a) (b)

Page 95: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

correções, da água já contida no superplastificante, da água de absorção da areia e da água do

percentual de umidade da areia. Por sua vez, a areia quando trabalhada úmida, sua massa

sofre a correção equivalente à massa da umidade. A equações 4.2 e 4.3 são da massa da água

corrigida e da massa de areia corrigida, respectivamente. O volume de argamassa nos ensaios,

foi obtido através da equação 4.4. Estabelecendo um volume para a argamassa, na equação

3.4, acha-se a massa de cimento e em seguida as massas dos demais componentes em função

da massa de cimento. Nas argamassas, em que é utilizado apenas o resíduo, o termo referente

à sílica ativa, não faz parte da equação 4.4.

? ?100

arararaspaac

HAPPPP

????? (4.2)

)100

1( arararc

HPP ??? (4.3)

a

asp

sp

spl

sf

sf

r

r

a

a

car

PPPPPCCV

?????????????

??

2arg (4.4)

Na produção das argamassas para os ensaios no Cone de Marsh e no Tronco de cone

da mesa de consistência foi utilizada a mesma argamassadeira e balança das pastas. Para as

argamassas, a areia seca é misturada junto com o cimento, o RBMG e a sílica ativa (quando

utilizada), seguindo os mesmos procedimentos utilizados para a pasta, com a diferença de que

a água de absorção da areia é adicionada à mistura.

Na produção da argamassa para a aplicação prática, as massas dos materiais foram

obtidas na balança eletrônica digital Filizola (Figura 4.2-a), e para a mistura dos referidos

materiais usou-se uma argamassadeira Betomac, modelo M80, de 80 litros de capacidade

(Figura 4.2-b). Nesse caso as unidades utilizadas nas equações fo ram kg e m³.

Page 96: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 4.2 – (a) Balança eletrônica digital, (b) Argamassadeira de 80 litros.

A argamassa produzida na argamassadeira de 80 litros obedece a seguinte seqüência

de execução: após a colocação da areia e sua respectiva água de absorção a máquina é

colocada em funcionamento durante 30 segundos; em seguida colocam-se os materiais finos,

o cimento e o RBMG e a máquina funciona por 1 minuto, parando durante 30 segundos para

se efetuar a limpeza dos materiais que colam internamente nas paredes da argamassadeira;

logo após coloca-se a água referente a 80% da relação a/c funcionando durante mais 1

minuto, parando novamente durante 30 segundos para nova limpeza das paredes e por último

coloca-se o superplastificante juntamente com a água restante, abatida da água do

superplastificante e da umidade da areia, executando a mistura dos materias durante os 2

minutos finais, que ao todo somam 4,5 minutos de funcionamento.

4.4. Concreto

A dosagem de todos os componentes do concreto torna-se muito simples, haja vista, os

estudos anteriores da pasta, da argamassa e da composição do esqueleto granular. As relações

a/c, r/c, sf/c (quando utilizada), sp/c e os percentuais de areia e brita, são estabelecidas

previamente. O teor de sólido do superplastificante e as massas específicas, de todos os

componentes, são conhecidos. A partir de um volume de pasta estabelecido, obtém-se a

massa de cimento por metro cúbico de concreto, através da equação 4.5. Como as massas de

água, RBMG, sílica ativa e superplastificante são função da massa de cimento, são obtidas

também através das equações já apresentadas na composição da pasta.

(a) (b)

Page 97: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

a

sp

sp

sp

sfrac

p

Tcsp

Tcsp

csf

cr

ca

VC

??????

??

???

???

??

?????

???

??

????

?????

???

??

????

?1100100

1

(4.5)

Estabelecendo os parâmetros a seguir: volume de concreto = Vc, volume de agregado

= Vag, volume de brita = Vbr, massa de brita = Pbr, massa de brita corrigida = Pbrc, massa

específica da brita = ?br, absorção da brita = Abr (%) e umidade da brita = Hbr (%). O volume

de agregado é determinado pela equação Vag = Vc - Vp. Os volumes de areia e brita, são

encontrados pelas equações, Var = (%areia/100) .Vag e Vbr = (%brita/100) .Vag,

respectivamente. As massas de areia e brita, ficam conhecidas através das equações,

Par = Var/?ar e Pbr = Vbr/?br, respectivamente. Desta forma as dosagens de todos os

componentes do concreto ficam determinadas em massa. Em função da presença de água no

superplastificante, na areia e na brita, a massa de água real adicionada à mistura é calculada

através da equação 4.6. As correções das massas de areia e brita em função da umidade dos

materiais, são apresentadas pelas equações 4.7 e 4.8, respectivamente. Para o concreto, por se

trabalhar com volumes maiores, em todas as equações envolvidas deve-se trabalhar com as

unidades de massa e vo lume, em kg e m³, respectivamente. Para um melhor entendimento,

apresenta-se adiante a tabela 4.1 com toda a seqüência de dosagem dos componentes do

concreto.

1001001

100 brbrbr

ararar

spspac

HAP

HAP

TPC

ca

P?

???

?????

????

?????? (4.6)

??

???

????

1001 ar

ararc

HPP (4.7)

??

???

????

1001 br

brbrc

HPP (4.8)

Page 98: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Tabela 4.1 – Equações utilizadas para o cálculo da dosagem em massa dos materiais componentes do CAA.

Dosagem dos componentes de 1 m³ de concreto (kg/m³) Composição volumétrica Var + Vbr + Vp = 1 m³ Parâmetros pré-estabelecidos a/c, r/c, sf/c, sp/c, Tsp(%), Vp, Vag, Var, Vbr

Massa de água Pa = (a/c) . C Massa de RBMG Pr = (r/c) . C Massa de sílica ativa Psf = (sf/c) . C Massa de superplast. sólido Psp = (sp/c) . C Massa de superplast. líquido Pspl = [(sp/c).100/Tsp] . C Massa de água no superplast. Pasp = (sp/c) . [(100/Tsp) – 1] . C Massa de cimento: C= Vp / {(1/?c) + (a/c)/?a + (r/c)/?r + (sf/c)/?sf + [(sp/c).100/Tsp]/?sp - (sp/c)[(100/Tsp)-1]/?a} Volume da areia Var = (%areia/100).Vag Volume da brita Vbr = (%brita/100).Vag Massa de areia Par = Var/?ar Massa de brita Pbr = Vbr/?br Massa de água corrigida Pac = {(a/c).C – Psp[(100/Tsp) – 1] + Par(Aar – Har)/100 +

Pbr(Abr – Hbr)/100} Massa de areia corrigida Parc = Par.[1 + (Har/100)] Massa de brita corrigida Pbrc = Pbr.[1 + (Hbr/100)]

A partir da dosagem de 1m³ de concreto já elaborada em massa, multiplicando o

volume de concreto que se quer obter pela dosagem de cada componente obtém os valores,

também em massa, para o volume de mistura desejada. Todos os concretos dessa pesquisa

foram executados em um misturador basculante com uma capacidade de 400 litros, conforme

figura 4.3. As misturas seguem a seguinte seqüência de execução: primeiramente, a areia, a

brita e a água de absorção dos agregados são misturados juntos por 30 s.; em seguida, o

cimento, e o fíler, são adicionados aos agregados e misturados por mais 30 s.; em terceiro

lugar a água que corresponde a uma relação fixa de a/c=0,40 é colocada e tudo misturado por

11/2 minutos e por último são adicionados o superplastificante e a água restante (subtraída as

correções) e misturados durante 2 minutos. O tempo total de mistura é de 4 1/2 minutos que

são necessários para assegurar uma mistura homogênea (Gomes, 2002).

Page 99: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 4.3 – Misturador basculante de 400 litros de capacidade.

Page 100: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Capitulo 5

Apresentação e análise dos resultados

5.1. Introdução

Neste capítulo apresentam-se e analisam-se os resultados dos ensaios em pasta,

argamassa e concreto no estado fresco e de algumas propriedades mecânicas no estado

endurecido, além da obtenção do esqueleto granular. Nessa seqüência, são apresentadas as

etapas de obtenção do CAA utilizando o RBMG e sílica ativa como adição mineral.

Os ensaios foram realizados a uma temperatura de 29ºC ? 3ºC e a umidade do ar de

76% ? 12%.

5.2 Ensaios das misturas com RBMG

5.2.1. Pasta

Na figura 5.1 (a), apresentam-se às curvas das pastas com 50% e 60% de RBMG dos

ensaios no Cone de Marsh e na figura 5.1 (b) as curvas com os mesmos percentuais para os

ensaios no Mini-slump.

Page 101: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 5.1 – Curvas de ensaios de pastas com a/c=0,50; r/c=0,50 e r/c=0,60; (a) no cone de Marsh; (b) no Mini-Slump.

Observa–se na figura 5.1 (a) que as pastas apresentaram os pontos ótimos da dosagem

de superplastificante bem definidos, com ângulos internos da curva no ponto de saturação

dentro do estabelecido por Gomes (2002), isto é, 140º ? 10º. Para pasta com r/c = 0,50, a

dosagem ótima ocorreu em sp/c = 0,25% com ângulo de 148,03º, e para pasta com r/c =

0,60, a dosagem ótima ocorreu em sp/c = 0,30 com ângulo de 134,41º. Nessas curvas

verifica-se que os tempos de fluxo aumentam com o aumento do percentual de resíduo na

pasta para mesma dosagem de superplastificante. E que o ponto de saturação é modificado

com o aumento de finos. Na figura 5.1 (b), observa-se ainda que as pastas com r/c = 0,50 e

ponto de saturação sp/c = 0,25% e r/c = 0,60 e ponto de saturação sp/c = 0,30%, obtiveram

nesses pontos de saturação, diâmetros de espalhamentos de 188,5mm e 177,0mm,

satisfazendo também ao estabelecido por Gomes et al. (2002); de 180mm ? 10mm, para

pastas recomendadas para concreto auto-adensável.

Foi observado que na pasta em estudo, com relação a/c = 0,5; um pequeno aumento na

dosagem de superplastificante apresentava um elevado acréscimo na velocidade de fluxo e

com perda rápida da estabilidade após o ponto de saturação do superplastificante.

1,20

1,25

1,30

1,35

1,40

1,45

0,1 0,2 0,3 0,4 0,5 0,6sp/c (%)

Tem

po d

e fl

uxo

- lo

g T

(s)

r/c=0,50 r/c=0,60

130

140150160170

180

190200

210

0,1 0,3 0,5 0,7sp/c (%)

Esp

alha

men

to f

inal

(m

m)

r/c=0,50 r/c=0,60

(a) (b)

Page 102: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Esse comportamento de baixa coesão do RBMG, provocando altas velocidades de

fluxo, se estendeu às argamassas e ao CAA obtidos. Para dar mais coesão à mistura foram

usados 3% de sílica ativa.

Os ensaios das pastas no Mini-Slump mostraram também uma tendência semelhante

ao Cone de Marsh. Isto é, no ponto de saturação do superplastificante foram satisfeitas as

condições estabelecidas pelo método. Nesses ensaios, a princípio as pastas apresentaram

pequenos diâmetros de espalhamento, para pequenos percentuais de superplastificante. No

ponto de saturação ocorreu um diâmetro dentro do intervalo estabelecido pelo método. Após o

ponto de saturação não ocorreram aumentos consideráveis de diâmetro e a partir desse ponto,

surgiram sinais de princípio de segregação. Na figura 5.2 apresenta-se uma seqüência da

evolução dos espalhamentos das pastas para o ensaio com r/c = 0,50. Na figura 5.2 (a) uma

pasta com pequena quantidade de superplastificante, sp/c = 0,15% atingindo baixo diâmetro,

no valor de 135mm. Em 5.2 (b) mostra a pasta no ponto de saturação do superplastificante,

com sp/c = 0,25% e um diâmetro de espalhamento de 188,5mm. A pasta em 5.2 (c) começou

a apresentar sinais de segregação com sp/c = 0,30% e com espalhamento de 200,5mm. Em

5.2 (d), com sp/c = 0,35%, a segregação apresentou ligeira progressão e ocorreu uma

diminuição no espalhamento para 197mm. Esse comportamento mostra que os ensaios no

Cone de Marsh e o Mini-Slump se complementam na identificação do ponto de saturação do

superplastificante na pasta. Após o ponto de saturação o aumento de superplastificante não

causa diminuição significativa no tempo de fluxo no Cone de Marsh, nem aumento

significativo no espalhamento no Mini-slump, e geralmente começa a apresentar os primeiros

sinais de segregação.

Page 103: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 5.2 – Evolução da pasta com r/c = 0,50, (a) sp/c = 0,15%, (b) ponto de saturação com

sp/c = 0,25%, (c) início de segregação com sp/c = 0,30%, (d) sp/c = 0,35%.

5.2.2. Argamassa

O estudo da argamassa foi executado, através dos ensaios no Cone de Marsh, com

bocal inferior removível de 12mm, e no Tronco de cone da mesa de consistência. Foram

ensaiadas apenas duas dosagens, uma com r/c = 0,50 e outra com r/c = 0,60; as duas relações

que já foram estudadas na pasta. A relação areia/cimento = 2, foi estabelecida e mantida

constante em todos os ensaios com argamassa. A relação água/cimento = 0,50 também

permaneceu constante.

Observa-se visualmente que as argamassas têm um comportamento mais regular do

que as pastas, mas quando expostas ao ar atmosférico perdem água por evaporação numa

velocidade muito maior.

Na figura 5.3 (a) apresentam-se curvas com os resultados dos ensaios no Cone de

Marsh e na figura 5.3 (b) as curvas obtidas nos ensaios no Tronco de cone da mesa de

consistência, em ambos os casos para 50% e 60% de RBMG.

(a) (b)

(c) (d)

Page 104: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 5.3 – Curvas de ensaio de argamassa com r/c=0,50 e r/c=0,60; (a) no cone de Marsh; (b) no Tronco de cone de consistência.

Os pontos de saturação do superplastificante nas argamassas, em ambos os casos, não

coincidiram com os das pastas, tiveram percentuais superiores. No entanto, a argamassa com

o ponto de saturação das pastas já apresentavam diâmetros de espalhamento elevados

caracterizando uma alta fluidez e sem sinal de segregação.

Nos ensaios no Cone de Marsh (figura 5.3a) o ponto de saturação ocorreu nas

dosagens de sp/c = 0,35% e sp/c = 0,40% para as argamassas com r/c = 0,50 e r/c = 0,60,

respectivamente. Nas duas situações, ocorreu um valor de 0,10% maior do que os pontos de

saturação das pastas. Nessas curvas, também foi verificado que os tempos de fluxo aumentam

com o aumento do percentual de resíduo na argamassa para mesma dosagem de

superplastificante. E que o ponto de saturação é modificado com o aumento de finos.

Nos ensaios no Tronco de cone da mesa de consistência (figura 5.3b), similar ao

Mini-Slump para pasta, o diâmetro de espalhamento da argamassa após o ponto de saturação

não aumentou consideravelmente, para ambas argamassas. Observa-se que as argamassas

com r/c = 0,50 e ponto de saturação sp/c = 0,35 e r/c = 0,60 e ponto de saturação sp/c = 0,40,

obtiveram nesses pontos de saturação, diâmetros de espalhamentos de 372,5mm e 377,0mm,

respectivamente, atendendo ao diâmetro de espalhamento = 30 sugerido por Chai (1998).

1,400

1,500

1,600

1,700

1,800

1,900

0,15 0,25 0,35 0,45 0,55sp/c (%)

Tem

po d

e fl

uxo

- lo

g T

(s)

50% RBMG 60% RBMG

150

180

210

240

270

300

330

360

390

0,15 0,25 0,35 0,45 0,55sp/c (%)

Esp

alha

men

to (

mm

)

50% RBMG 60% RBMG

(a) (b)

Page 105: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Aplicação prática da argamassa com RBMG

Para a aplicação a argamassa utilizada foi: relação areia/cimento = 2, r/c = 0,50 e

sp/c=0,25, ponto de saturação da pasta. A argamassa foi produzida na argamassadeira de 80

litros, conforme procedimento já descrito, para produção de 30 litros. E os ensaios do cone de

Marsh e do tronco de cone da mesa de consistência, foram executados, e comparados com os

já obtidos anteriormente na argamassa produzida na argamassadeira de 5 litros, para a

produção de 2 litros, conforme valores mostrados na tabela 5.1. A figura 5.4 mostra a

seqüência completa da produção da argamassa na misturadora de 80 litros.

Tabela 5.1 – Argamassas produzidas em argamassadeiras diferentes.

Ensaio Argamassadeira de 5 l. Argamassadeira de 80 l. Tempo de fluxo no Cone de Marsh (s) 38,6 39,2 Diâmetro final no tronco de cone da mesa de consistência (mm) 270 265

Na tabela 5.1, verifica-se que os valores encontrados nos ensaios são bastante

próximos para ambos volumes de argamassa.

Figura 5.4 – Colocação (a) do agregado, (b) da água de absorção do agregado, (c) dos materia is finos, (d) da água de amassamento, (e) do superplastificante com a

água restante; (f) os dois minutos finais de funcionamento.

(a) (b) (c)

(d) (e) (f)

Page 106: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Na figura 5.5, apresenta-se o descarregamento da argamassadeira logo após a

conclusão do processo de mistura da argamassa.

Figura 5.5 – Seqüência de descarregamento da argamassadeira.

Na figura 5.5, observa-se o alto fluxo da argamassa, caracterizando o auto-

adensamento da mesma na fôrma retangular, sem a utilização de nenhuma vibração mecânica.

Com essa argamassa foram preenchidas duas peças estruturais. A primeira, um pé de

mesa, curvo, pré-moldado (Figura 5.6), contendo armaduras de aço no interior da fôrma. A

segunda, um tijolo cerâmico (Figura 5.7–a,b), utilizado em alvenaria estrutural. O

preenchimento dessas peças foi executado com argamassa sem a utilização de nenhum

método de vibração, apenas sob o efeito do próprio peso das mesmas, no sentido de verificar a

capacidade de preenchimento da argamassa em fôrmas confinadas e com obstáculos.

Também, foram moldados com a mesma argamassa corpos-de-prova cilíndricos de

5 cm x 10 cm (Figura 5.7), para ensaio de resistência à compressão e módulo de deformação

Page 107: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

estática. Na tabela 5.2 são apresentadas, as dosagens da argamassa, os resultados da

resistência à compressão e módulo de deformação aos 28 dias.

Figura 5.6 – Pé de mesa pré-moldado com argamassa auto-adensável.

Figura 5.7 – (a) Preenchimento do um tijolo cerâmico estrutural; (b) vista da outra face do

tijolo preenchido; (c) corpos-de-prova cilíndricos de 5cm x 10cm.

(a) (b) (c)

Page 108: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Tabela 5.2 – Dosagem, Resistência à compressão e Módulo de Deformação da argamassa aos 28 dias.

D (%) – Desvio em relação à média.

Os resultados foram próximos aos encontrados em trabalhos anteriores (Cruz et al.,

2003), que utilizou o mesmo resíduo e obteve resistência à compressão média de 32,94 MPa e

um módulo de deformação médio de 26020 MPa, aos 28 dias, usando relações areia/cimento

= 2,55, r/c = 0,54, a/c = 0,48.

5.2.3. Concreto

Para determinação da mistura de concreto são usadas as dosagens definidas nas etapas

de pasta e argamassa, para os finos, aditivo e água. E para a dosagem de agregados é feita a

determinação do esquele to granular. Como as etapas da pasta e argamassa foram já

apresentadas, a seguir é apresentada a do esqueleto granular.

Determinação do esqueleto granular do concreto

A determinação dos percentuais adequados, entre os agregados, graúdo e miúdo, foi

obtida encontrando-se as massas unitárias para as diversas combinações de percentuais dos

dois agregados, fazendo cada um variar de 0% a 100%. Na combinação onde se encontra a

maior massa unitária, nesse ponto, fica determinado tais percentuais de agregados, o menor

volume de vazios das diversas combinações, e conseqüentemente, o menor volume de pasta

da mistura de concreto.

Na figura 5.8 (a), estão apresentados os equipamentos utilizados durante a execução

do ensaio, tais como, balança, recipiente metálico cilíndrico de 15 litros, lona plástica, pás,

etc. E na figura 5.8 (b) o momento de uma das diversas pesagens durante a realização do

mesmo.

Dosagem da Argamassa

(kg/m³) CP Resistência à compressão

(MPa)

D (%)

CP Módulo de Deformação

(MPa)

D (%)

Cimento 567 1 43,3 +0,7 1 26332 -1,2 RBMG (r/c=0,50) 283,5 2 45,6 +6,1 Água (a/c=0,50) 280,2 3 38,3 -10,9 2 27005 +1,3 Superplastific. (sp/c=0,25%) 4,73 4 43,4 +0,9 Areia (ar/c=2) 1134 5 44,8 +4,2 3 26642 -0,1 Densidade (kg/m³) 2269 6 42,8 -0,5 Média 43,0 26660

Page 109: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

A relação encontrada para o menor volume de vazios entre a areia (2,4mm) e a brita

(12,5mm), foi de 47,5% e 52,5%, respectivamente, conforme mostra a figura 5.9. No

trabalho, foi adotado sobre o volume total de agregados no concreto, o percentual de 48%

para a areia e 52% para a brita.

Figura 5.8 – Esqueleto granular, (a) equipamentos, (b) uma das pesagens.

Figura 5.9 – Determinação da quantidade ótima dos componentes do esqueleto granular, 47,5% de areia e 52,5 de brita.

32

34

36

38

40

42

44

46

48

50

0 10 20 30 40 50 60 70 80 90 100

Areia (%)

Qua

ntid

ade

de V

azio

s (%

)

Page 110: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Propriedades no estado fresco

Após os estudos da pasta, da argamassa e da composição do esqueleto granular, deu-se

início ao estudo das misturas de concreto, no sentido de se obter uma dosagem que atendesse

as propriedades do CAA no estado fresco, utilizando o RBMG como aditivo mineral.

A tabela 5.3 mostra a composição do concreto utilizado e a dosagem dos

componentes. Neste concreto a dosagem de superplastificante foi aquela correspondente ao

ponto de saturação da pasta. O percentual de 38% para o ponto de partida no volume de pasta,

foi baseado num percentual médio entre 35% e 40% recomendado pelos autores na tabela 2.2,

para CAA convencional.

O ensaio de espalhamento desse concreto está apresentado na figura 5.10.

Tabela 5.3 – Composição do concreto.

Dosagem de concreto (kg/m³) Volume de pasta (%) 38 Relação areia/brita em massa 0,9 Cimento 380 RBMG (r/c = 0,50) 190 Água (a/c = 0,50) 190 Superplastificante (sp/c = 0,25%) 3,2 Areia (Var/Vag = 48%) 777 Brita (Vbr/Vag = 52%) 854

Figura 5.10 – Espalhamento do concreto com sp/c = 0,25%.

(a) (b)

Page 111: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Na figura 5.10, verifica-se que no ensaio de espalhamento o concreto não apresentou

alta fluidez. Para isto seria necessário elevar o volume de pasta ou alterar algum componente

na mistura. Como a primeira opção eleva consideravelmente o custo da mistura, escolheu-se a

segunda opção produzindo um concreto com a dosagem de superplastificante no ponto de

saturação da argamassa, visto que a mesma apresentou uma alta fluidez, sem segregação. A

composição do concreto é a mesma da tabela 5.3, alterando a dosagem de superplastificante

para sp/c = 0,35%.

O resultado do ensaio de Espalhamento desse concreto é mostrado na figura 5.11.

Figura 5.11 – Espalhamento do concreto com sp/c = 0,35%.

O diâmetro médio alcançado foi de 48cm, não apresentando a medida mínima de

50cm, admitida por Rooney, 2002; para CAA. Também, na figura 5.11, é observado a

ausência de pasta e / ou argamassa na superfície do concreto envolvendo o agregado graúdo.

Devido a esta ausência foi produzidos concreto com 40% e 42% de volume de pasta. A tabela

5.4 mostra a composição das misturas.

Para ambos concretos foram executados os ensaios de Espalhamento e Caixa L, os

resultados são mostrados na tabela 5.4. O ensaio de Espalhamento do CR40 é mostrado na

figura 5.12.

(a) (b)

Page 112: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Tabela 5.4 – Dosagens do concreto sp/c = 0,35% e os resultados dos ensaios no estado fresco.

Dosagem do concreto (kg/m³) CR40 CR42 Volume de pasta (%) 40 42 Relação areia/brita em massa 0,9 0,9 Cimento 401 421 RBMG (r/c = 0,50) 201 211 Água (a/c = 0,50) 201 211 Superplastificante (sp/c = 0,35) 4,7 4,9 Areia (Var/Vag = 48%) 752 727 Brita (Vbr/Vag = 52%) 827 799

Ensaios no estado fresco Esplahamento (cm) 61 78 T50 (s) 4,0 0,91 TL20 (s) 1,79 0,94 Caixa L TL40 (s) 3,00 1,87 RB=H2/H1 0,56 0,81

Figura 5.12 – Espalhamento do concreto CR40.

O concreto atingiu um diâmetro médio de 61cm e T50 = 4s., atendendo a Gomes,

2002; que estabelece as fa ixas de, 60cm a 75cm e 3s. a 7s., respectivamente. E na figura 5.13

é mostrado o ensaio na Caixa L do concreto CR40.

(a) (b)

Page 113: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 5.13 – Ensaio na Caixa L para o concreto CR40.

Já no ensaio da Caixa L, esse concreto não atingiu os parâmetros exigidos para CAA,

a razão de bloqueio só atingiu um valor RB = 0,56, muito abaixo dos 0,80 mínimo permitido

para CAA (EFNARC, 2002). Na figura 5.13 (b,c,d), foi observado fortes sinais de bloqueio e

(c) (d)

(f) (e)

(a) (b)

Page 114: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

a inclinação do concreto na caixa (Figura 5.13-e,f), mostrando que o mesmo não alcançou a

propriedade de passar entre os obstáculos.

Já os parâmetros TL20 = 1,79s. e TL40 = 3s., atenderam aos valores que estão

relacionados com a fluidez estabelecidos por Rooney e Bartos, 2002; que são = 2s. e = 4s.,

respectivamente. Desta forma o CR40 só não atendeu a RB na caixa L, relacionado com a

habilidade do concreto passar entre obstáculos.

Para o concreto CR42 no ensaio de espalhamento, figura 5.14, foi medido um

diâmetro médio de 78 cm, apresentando muita rapidez no espalhamento e um T50 = 0,91s.

Quanto ao diâmetro médio, atende a EFNARC, 2002; que estabelece valo res entre 65cm e

80cm, mas ficou abaixo quanto ao T50 que é de 2s. a 5s.. Fato que pode estar relacionado com

a diminuição da coesão da mistura. Mas, a alta velocidade de fluxo não chegou a provocar

nenhum sinal de segregação no espalhamento.

No ensaio da Caixa L (Figura 5.15), o concreto CR42, praticamente, não apresentou

bloqueio; uma boa distribuição do agregado graúdo e a linha quase nivelada do concreto na

parte horizontal da caixa (Figura 5.15-c,d), foram observados. Os parâmetros atingidos foram:

TL20 = 0,94s, TL40 = 1,87s e uma RB = 0,81. Tendo atendido aos parâmetros estabelecidos por

Roony e Bartos, 2002 ( =2, =4 e =0,80, respectivamente).

Figura 5.14 – Espalhamento do concreto CR42.

Page 115: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 5.15 – Ensaio na Caixa L do concreto CR42.

Em termos práticos (Gomes, 2002), verificou-se que o ensaio de bloqueio é mais

decisivo na hora de selecionar um CAA. Portanto, o concreto CR42 foi confeccionado

novamente, denominado CR42C, com a mesma composição para submete- lo aos ensaios:

Espalhamento, Funil V, Caixa L e Tubo em U, no sentido de verificar se tal concreto atende a

outras propriedades no estado fresco. Na tabela 5.5 é mostrado o resultado de cada ensaio. E

nas figuras 5.16; 5.17; 5.18; 5.19 são apresentados os ensaios de espalhamento, Funil V,

Caixa L e Tubo U, respectivamente.

(a) (b)

(c) (d)

Page 116: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Tabela 5.5 – Dosagem e resultados dos ensaios no estado fresco do concreto CR42C.

Figura 5.16 – Espalhamento do concreto CR42C com sp/c = 0,35%.

No ensaio de espalhamento o diâmetro médio e T50(s) foram semelhantes aos

encontrados anteriormente e sem sofrer sinais de segregação.

Dosagem do concreto (kg/m³) Volume de pasta (%) 42 Relação areia/brita em massa 0,9 Cimento 421 RBMG (r/c = 0,50) 211 Água (a/c = 0,50) 211 Superplastificante (sp/c = 0,35%) 4,9 Areia (Var/Vag = 48%) 727 Brita (Vbr/Vag = 52%) 799

Ensaios no estado fresco Espalhamento (cm) 77 T50 (s) 0,81 Funil V (s) 6,00

TL20 (s) 0,75 TL40 (s) 1,00

Caixa L

RB=H2/H1 0,98 Tubo em U (RS) 0,92

Page 117: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 5.17 – Ensaio no Funil V do concreto CR42C.

No ensaio do Funil V o tempo de esvaziamento foi de 6s tendo satisfeito a faixa

admitida pela EFNARC, 2002; que é de 6s a 12s..

Figura 5.18 – Ensaio na Caixa L do concreto CR42C.

No ensaio da Caixa L (Figuras 5.18) os resultados foram novamente próximos ao

encontrado no CR42, onde é percebida uma diminuição na velocidade de fluxo. O bloqueio

com RB = 0,98 onde houve uma melhora. Os resultados atendeu as condições admitidas por

Bartos e Grauers, 1999 (<1s., <2s. e = 0,80, respectivamente) O concreto fluiu bem, sem

apresentar bloqueio, apresentou boa distribuição do agregado graúdo e ficou praticamente

nivelado na parte horizontal da caixa (Figura 5.18).

(a)

(d)

(c) (b)

(f) (e)

Page 118: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

No ensaio no Tubo U o qual é verificada a resistência a segregação do concreto. A

razão de segregação encontrada, foi de RS = 0,92, desta forma o mesmo atendeu ao limite

admissível para a propriedade de resistência à segregação, acima de 0,90 (Gomes, 2002).

Figura 5.19 – Seqüência do ensaio no Tubo U do concreto CR42C.

Na tabela 5.6 são apresentados os parâmetros de ensaios do CAA no estado fresco,

recomendados por alguns autores.

(c)

(f)

(e) (d)

(g) (h)

(a) (b)

(j) (l)

(k)

(i)

Page 119: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Tabela 5.6 – Parâmetros de ensaios do CAA no fresco recomendados por alguns autores.

Autores Ensaios Bartos e Grauers

1999 Rooney e Bartos

2002 EFNARC

2002 Gomes 2002

Espalhamento (mm) - 500-750 650-800 600-750 T50 (s) - 2-7 2-5 3-7 Funil V (s) - - 6-12 7-13 TL20 (s) <1,0 =2 - 0,5-1,5 Caixa L TL40 (s) <2,0 =4 - 1,5-3 RB =0,80 =0,80 0,80-1,00 =0,80 Tubo U RS - - - =0,90

Comparando os valores apresentados nas tabelas 5.5 e 5.6, observa-se que os

resultados encontrados para as propriedades no estado fresco do CR42, se enquadram dentro

de um intervalo recomendado pelos autores, exceto o T50 do ensaio de espalhamento, que foi

inferior. Fato que pode estar relacionado com o tipo de adição mineral e a relação a/c,

utilizados na composição do concreto.

Propriedades no estado endurecido

Nas tabelas 5.7 estão apresentados os ensaios das propriedades mecânicas de

Resistência à compressão (fc), módulo de deformação estática (Ec) e Resistência à tração na

compressão diametral (ftD), para os concretos (CR42 e CR42C).

Para o concreto CR42, foram moldados 08 C.P. de 10cm x 20cm, para ensaiados de

resistência à compressão, 04 para 07 dias e 04 para 28 dias. Para o concreto CR42C, 06 C.P.

10cm x 20cm e 03 C.P. 15cm x 30cm, para o ensaio de resistência à compressão aos 28 dias.

Page 120: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Tabela 5.7 – Resultados dos ensaios no estado endurecido dos CR42 e CR42C.

Resistência à compressão (fc – MPa) – C.P. cilíndricos de 10cm x 20cm 7 dias 28 dias CR42 CR42 CR42C

Nº C.P. fc D (%)

Nº C.P. fc D (%) fc D (%) 1 29,8 -2,6 1 35,6 -8,5 36,5 -2,1 2 31,0 +1,3 2 38,3 -1,5 37,1 -0,5 3 30,7 +0,3 3 40,4 +3,9 37,4 +0,3 4 31,0 +1,3 4 41,4 +6,4 37,4 +0,3 - - - 5 - - 37,8 +1,3 - - - 6 - - 37,3 0,0

Média 30,6 Média 38,9 37,3 Ensaios aos 28 dias (MPa) – CR42C – C.P. cilíndricos de 15cm x 30cm

Resistência à compressão Módulo de deformação estática

Tração na compressão diametral

Nº C.P. fc D (%) Ec D (%) ftD D (%) 1 35,1 -0,6 39038 +16,6 2,64 -3,3 2 35,1 -0,6 35981 +7,5 2,69 -1,5 3 35,7 +1,1 29568 -11,7 2,86 +4,8 4 - - 28715 -14,2 - - 5 - - 34130 +1,9 - -

Média 35,3 33486 2,73

Observa-se na tabela 5.7, que o concreto CR42 apresentou uma resistência à

compressão, a 28 dias; 27,12% maior que a 7 dias, em C.P. 10cm x 20cm. Já o CR42C

apresentou um aumento na resistência à compressão, a 28 dias, de 5,7% nos C.P. 10cm x

20cm em relação aos C.P. 15cm x 30cm.

No CR42C, a resistência à tração na compressão diametral, apresentou um valor de

7,73% da resistência à compressão, em C.P. 15cm x 30cm.

Page 121: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

5.3. Ensaios das misturas com RBMG e sílica ativa

5.3.1. Pasta

Na tentativa de diminuir a alta velocidade de fluxo do concreto CR42 obtido com 50%

de RBMG, resolveu-se adicionar 3% de sílica ativa. A escolha desse percentual foi baseada

num percentual pequeno médio, entre 1% e 5%, apenas para dar mais coesão à mistura. Na

figura 5.20, estão apresentadas os gráficos das curvas dos ensaios no Cone de Marsh e no

Mini-Slump de pasta com r/c = 50% e sf/c = 3%.

Figura 5.20 – Curvas de ensaio de pasta com r/c=0,5 e sf/c=0,03; (a) no cone de Marsh; (b) no Mini-Slump.

No ensaio de Cone de Marsh, figura 5.20a, observa-se que a presença da sílica ativa

elevou a dosagem do superplastificante aumentando o ponto de saturação em relação a pasta

com apenas resíduo, que passou de sp/c=0,25% para 0,30%, com ângulo interno, nesse ponto

da curva, igual a 147,27º; atendendo o intervalo estabelecido por Gomes (2002), isto é, 140º

? 10º. No Mini-Slump, figura 5.20b, é observado que a presença da sílica ativa na pasta

diminuiu o diâmetro de espalhamento para 187mm na dosagem de superplastificante sp/c =

0,30%. Tal diâmetro satisfaz ao intervalo estabelecido por Gomes (2002), de 180mm?10mm.

1,04

1,06

1,08

1,1

1,12

1,14

1,16

1,18

1,2

0,100 0,200 0,300 0,400 0,500

sp/c (%)

Tem

po d

e flu

xo -

log

T(s)

50%r 3%sf

100110120130140150160170180190200

0,10 0,20 0,30 0,40 0,50sp/c(%)

Espa

lham

ento

fina

l (m

m)

50%r 3%sf

(a) (b)

Page 122: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

5.3.2. Argamassa

Na argamassa os resultados nos ensaios do Cone de Marsh e no Tronco de Cone com a

adição de 3% de sílica ativa, são mostrados na figura 5.21.

Figura 5.21 – Curvas de argamassas com 3% de sílica ativa, (a ) no Cone de Marsh (b) no Tronco de cone da mesa de consistência.

A presença da sílica ativa melhorou desempenho da mistura, apresentando maior

coesão e mais estabilidade. Mas, com a presença de 3% da sílica ativa, material muito fino,

houve uma maior necessidade de superplastificante sólido, de forma que o ponto de saturação

dessa argamassa, encontrado no ensaio do Cone de Marsh, passou para sp/c = 0,40%;

ocorrendo um acréscimo de 0,05% de superplastificante a mais que a argamassa sem sílica.

Os ensaios no Tronco de cone da mesa de consistência, figura 5.21b, mostraram

também uma diminuição no diâmetro final para as mesmas dosagens de superplastificante na

argamassa sem sílica ativa.

Na figura 5.22 estão apresentados três resultados dos ensaios no Tronco de cone de

consistência; antes do ponto de saturação, sp/c = 0,375%, no ponto de saturação, sp/c = 0,40%

e após o ponto de saturação, sp/c = 0,425%.

1,40

1,45

1,50

1,55

1,60

1,65

1,70

0,200 0,300 0,400 0,500sp/c (%)

Tem

po d

e fl

uxo

- lo

g T

(s)

50%r 3%sf

90

150

210

270

330

0,10 0,20 0,30 0,40 0,50sp/c (%)

Esp

alha

men

to f

inal

(m

m)

50%r 3%sf

(a) (b)

Page 123: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 5.22 – Argamassas com 3% de sílica ativa, (a ) sp/c=0,375%, (b) sp/c=0,40% no ponto de saturação, (c) sp/c = 0,425%.

Antes do ponto de saturação, sp/c=0,375%, o diâmetro da argamassa foi de 286,5mm

com boa aparência e estabilidade. No ponto de saturação, sp/c=0,40%, já encontrado no Cone

de Marsh, apresentou um diâmetro de 313,0mm com ótima aparência e excelente estabilidade.

Já no ponto de sp/c = 0,425%, logo após o ponto de saturação, a argamassa apresentou

diâmetro de 355,0mm e ligeiro sinal de segregação nas bordas.

Com o acréscimo de 3% de sílica ativa, tanto na pasta como na argamassa, verificou-

se uma acentuada melhora da coesão da mistura e diminuição da velocidade de fluxo,

atingindo-se o objetivo que se desejava alcançar.

5.3.3. Concreto

Em função do estudo da pasta e da argamassa com o acréscimo do percentual de 3%

de Sílica ativa, o concreto foi produzido com a seguinte composição da pasta: sf/c = 0,03;

r/c = 0,50; a/c = 0,50 e sp/c = 0,40%. Esta dosagem de superplastificante é o ponto de

saturação encontrado na argamassa, foi utilizado seguindo o procedimento visto

anteriormente. Para o esqueleto granular foi adotada a relação areia/brita = 1 (em volume),

50% do volume de agregado total para cada componente (areia e brita). Esta relação foi usada

considerando sua proximidade com a relação anterior (areia 48% e brita 52%), vista na figura

5.9 e com o percentual recomendado por Okamura, 1997, para CAA.

Os primeiros concretos produzidos com esta composição estão mostrados na tabela

5.8. Tais concretos recebem a denominação CRSN (C - concreto, R – resíduo, S – sílica e N –

número do volume de pasta). Para estes concretos foi realizado o ensaio de espalhamento

como é visto na tabela 5.8 e mostrado nas figuras 5.23; 5.24 e 5.25.

(a) (b) (c)

Page 124: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Tabela 5.8 – Dosagens e resultados dos ensaios dos concretos com 38%, 40% e 42% de pasta, 3% de sílica ativa e sp/c = 0,40%.

Dosagens dos concretos (kg/m³) CRS38 CRS40 CRS42 Volume de pasta (%) 38 40 42 Relação areia/brita em massa 0,98 0,98 0,98 Cimento 376 395 415 Sílica ativa (sf/c = 0,03) 11,3 11,9 12,5 RBMG (r/c = 0,50) 188 198 208 Água (a/c = 0,50) 188 198 208 Superplastificante (sp/c = 0,40%) 5,0 5,3 5,5 Areia (Var/Vag = 50%) 809 783 757 Brita (Vbr/Vag = 50%) 822 795 769

Ensaio no estado fresco Espalhamento (cm) - 54 66 T50 (s) - 10,20 3,00

Figura 5.23 – Espalhamento para o concreto CRS38.

No teste de espalhamento é visto que o concreto CRS38 apresenta um comportamento

de concreto convencional, com baixo espalhamento. Já o concreto CRS40 o diâmetro médio

alcançado foi de 54cm (figura 5.24), cujo valor está dentro do intervalo proposto por Rooney

e Bartos, 2002 (tabela 5.6), porém o tempo de 10,2s. foi considerado muito acima dos limites

máximos apresentados pelos autores (tabela 5.6). Além disto, visualmente foi verificada uma

carência de pasta.

(a) (b)

Page 125: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 5.24 – Espalhamento para o concreto CRS40.

No concreto CRS42, figura 5.25, o diâmetro médio de 66cm e T50 = 3s., obtidos atenderam aos parâmetros recomendados pelos autores da tabela 5.6.

Figura 5.25 – Espalhamento para concreto CRS42.

No concreto CRS42, foram moldados 05 corpos-de-prova cilíndricos de 10cm x 20cm,

para serem ensaiados a compressão aos 7 dias no sentido de se obter uma estimativa da

resistência à compressão aos 28 dias.

O CRS42, que alcançou os parâmetros estabelecidos para o ensaio de espalhamento

foi novamente produzido e realizado os ensaios de Espalhamento e Caixa L, para verificação

do parâmetro de bloqueio. Nas figuras 5.26 e 5.27 são mostrados os ensaios de Espalhamento

e Caixa L. No ensaio de espalhamento os resultados do diâmetro médio e T50 não variaram

consideravelmente em relação aos valores anteriores. No ensaio de verificação da capacidade

de passar entre bloqueios, na Caixa L, foram obtidos os valores TL20 = 0,84s., TL40 = 2,00s. e

RB = 0,81. Esses valores atenderam aos recomendados por Gomes, 2002; TL20 de 0,5s. a

1,5s., TL40 de 1,5s. a 3,0s. e RB maior que 0,80.

(a) (b)

(a)

(b)

Page 126: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 5.26 – Espalhamento do concreto CRS42, diâmetro médio

67cm e T50 = 2,81s.

Figura 5.27 – Ensaio da Caixa L do concreto CRS42.

Na Caixa L, foi verificada ausência de sinais de bloqueio, boa distribuição do

agregado graúdo e ausência de segregação. O concreto CRS42 como atendeu aos valores

sugeridos pelos autores na literatura, nos ensaios de Espalhamento e Caixa L, foi novamente

(a) (b)

(c)

(d)

(b) (a)

Page 127: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

produzido, sendo denominado CRS42C, para análise nos outros ensaios e verificação do

atendimento as demais propriedades no estado fresco. Os resultados são mostrados na tabela

5.9. E nas figuras 5.28; 5.29; 5.30 e 5.31 são mostradas a execução dos ensaios de

espalhamento, Funil V, Caixa L e Tubo U, respectivamente. Além disto, foi confeccionado

C.P. para estudo das propriedades no estado endurecido, mostrado na tabela 5.10.

Tabela 5.9 – Dosagem e resultados dos ensaios do concreto CRS42C.

Dosagens dos concretos (kg/m³) Volume de pasta (%) 42 Relação areia/brita em massa 0,98 Cimento 415 Sílica ativa (sf/c = 0,03) 12,5 RBMG (r/c = 0,50) 208 Água (a/c = 0,50) 208 Superplastificante (sp/c = 0,40%) 5,5 Areia (Var/Vag = 50%) 757 Brita (Vbr/Vag = 50%) 769

Ensaios no estado fresco CRS42C Espalhamento (cm) 69 T50 (s) 3,1 Funil V (s) 8,22

TL20 (s) 1,06 TL40 (s) 2,21

Caixa L

RB=H2/H1 0,89 Tubo em U (RS) 0,93

Figura 5.28 – Espalhamento do concreto CRS42C.

Page 128: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

No ensaio de Espalhamento (Figura 5.28) foi obtido um diâmetro médio de 69cm e

T50 = 3,1s., atendendo aos critérios estabelecidos pelos autores na tabela 5.6.

No ensaio do Funil V, figura 5.29, o completo esvaziamento ocorrido num tempo de

8,22s, atendeu os intervalos, recomendados pelos autores na tabela 5.6, satisfazendo a

propriedade do CAA no estado fresco, de alta fluidez sobre o efeito apenas da gravidade.

Figura 5.29 – Ensaio no Funil V do concreto CRS42C.

No ensaio da Caixa L, figura 5.30, tabela 5.9, assim como o ensaio do Tubo U, figura

5.31, os resultados obtidos também satisfizeram aos intervalos dos parâmetros do CAA

estabelecidos pelos autores na tabela 5.6, propriedades no estado fresco de fluir bem vencendo

obstáculos e de resistência à segregação, respectivamente. Estas propriedades no estado fresco

caracterizam a capacidade do concreto de vencer obstáculos e se manter estável sem

segregação.

(c)

(b)

(d)

(a)

Page 129: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 5.30 – Ensaio da Caixa L do concreto CRS42C.

(c) (d)

(b) (a)

Page 130: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 5.31 – Ensaio do Tubo U do concreto CRS42C.

(a) (b)

(c) (d)

(e) (f)

(g)

(h)

Page 131: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Propriedades no estado endurecido

Na tabela 5.10 estão apresentados os ensaios das propriedades mecânicas de

Resistência à compressão (fc), módulo de deformação estática (Ec), Resistência à tração na

compressão diametral (ftD), do concreto CRS42C.

Tabela 5.10 – Resultados dos ensaios no estado endurecido do concreto CRS42C.

Resistência à compressão (fc – MPa) – C.P. cilíndricos de 10cm x 20cm (28 dias) C.P. 1 2 3 4

fc 39,5 42,4 40,8 41,9 D (%) -4,1 +2,9 -1,0 +1,7

Média – 41,2 Ensaios aos 28 dias (MPa) – C.P. cilíndricos de 15cm x 30cm

Resistência à compressão Módulo de deformação estática

Tração na compressão diametral

Nº CP fc D (%) Ec D (%) ftD D (%) 1 35,8 -3,5 40342 +12,2 3,16 +3,9 2 38,4 +3,5 36121 +0,5 2,73 -10,2 3 37,0 -0,3 31377 -12,7 3,24 +6,6 4 37,0 -0,3 - - - -

Média 37,1 35947 3,04

O CRS42C apresentou um aumento na resistência à compressão, a 28 dias, de 11,1%

nos C.P. 10cm x 20cm em relação aos C.P. 15cm x 30cm.

No CRS42C, a resistência à tração na compressão diametral, apresentou um valor de

8,19% da resistência à compressão, em C.P. 15cm x 30cm.

Análise dos resultados

A seguir apresentam-se algumas análises comparativas entre os CAA CR42C e

CRS42C.

As massas específicas dos concretos CR42C e CRS42C, somando as dosagens dos

materiais componentes, apresentaram valores de 2370kg/m³ e 2371kg/m³, respectivamente.

Tomando como base às massas dos corpos-de-prova de 15cm x 30cm utilizados para os

ensaios de Resistência à compressão, foram calculadas as massas unitárias dos referidos

concretos. A média das massas dos 3 C.P. do concreto CR42C foi de 12,23 kg e a média das

massas dos 4 C.P. do concreto CRS42C, 12,24 kg. Dividindo esses resultados encontrados

Page 132: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

pelo volume de um corpo-de-prova foram encontradas massas unitárias de 2308 kg/m³ e 2309

kg/m³, respectivamente. Esses resultados encontrados, abaixo dos 2400 kg/m³, são comuns em

CAA. As diferenças entre as massas específicas e as massas unitárias foram de 2,7%;

correspondente ao volume de vazios do concreto no estado endurecido. Nesse volume de

vazios está a perda de água e o ar incorporado. A EFNARC, 2002 recomenda um valor de 2%

para o volume de ar incorporado na dosagem de um metro cúbico de CAA.

Comparando a Resistência à compressão aos 28 dias entre corpos-de-prova cilíndricos

de 10cm x 20cm e 15cm x 30cm, foi observado que para o concreto CR42C a resistência

obtida para os corpos-de-prova 10cm x 20cm foi 5,7% maior e para o concreto CRS42C, a

mesma comparação apresentou um valor 11,1% maior. Esses resultados foram esperados,

porque a resistência à compressão em corpos-de-prova de 10cm x 20cm geralmente é maior

do que a resistência à compressão em corpos de prova 15cm x 30cm.

A resistência à tração na compressão diametral alcançou um valor de 7,73% da

Resistência à compressão no concreto CR42C e de 8,19% da Resistência à compressão do

concreto CRS42C. O concreto com sílica ativa, apesar de ter em sua dosagem, por m³, uma

menor dosagem de cimento, apresentou maior resistência, tanto na Resistência à compressão

(37,1MPa contra 35,3MPa) como na resistência a tração (3,04MPa contra 2,73MPa).

Para fins de comparação, na tabela 5.11 apresenta-se um resumo dos resultados dos

ensaios no estado endurecido, de Resistência à compressão, Módulo de deformação estática e

Resistência à tração na compressão diametral, para os concretos CR42C e CRS42C.

Tabela 5.11 – Resumo dos resultados dos ensaios nos concretos no estado endurecido.

Ensaios (MPa) –28 dias CR42C CRS42C Resistência à compressão (C.P. 10cmx20cm) 37,3 (6C.P.) 41,2 (4C.P.)

C.P. 15cm x 30cm Resistência à compressão 35,3 (3C.P.) 37,1 (4C.P.) Módulo de deformação estática 33486 (5C.P.) 35947 (3C.P.) Resistência à tração na compressão diametral 2,73 (3C.P.) 3,04 (3C.P.)

Na figura 5.32 estão apresentadas as superfícies internas de corpos de prova 15cm x

30cm que foram submetidos a ensaio de resistência à tração na compressão diametral dos dois

concretos, CR42C e CRS42C.

Page 133: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Figura 5.32 – Superfície interna de corpos-de-prova 15cm x 30cm,

(a) CR42C , (b) CRS42C.

Observando suas superfícies internas conclui-se que as mesmas apresentam boa

distribuição dos agregados internamente.

Page 134: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Capitulo 6

Considerações Finais

Nesse capítulo apresentam-se as considerações a respeito dos objetivos gerais sobre os

quais foram desenvolvidos os trabalhos, em seguida as considerações específicas a respeito de

cada fase da pesquisa e encerra-se com sugestões, para futuros estudos, no sentido da solução

de continuidade, dando mais amplitude ao tema abordado neste trabalho.

6.1. Considerações gerais

O objetivo de obter concreto com propriedades auto-adensável, utilizando o resíduo

RBMG, como um fíler mineral, foi atingido.

O concreto sem sílica ativa, apresentou em alguns ensaios uma velocidade de fluxo

alta, comparada com os parâmetros apresentados por alguns autores para CAA. Isto se

considerou estar relacionado com uma baixa coesão da mistura. Porém, apresentou resultados

satisfatórios em relação às propriedades de passar entre obstáculos e de resistência à

segregação. Também, verificou-se uma facilidade no preenchimento de fôrmas onde o

concreto fluía sem apresentar instabilidade.

Com o incremento de 3% de sílica ativa no concreto, o mesmo passou a atender

melhor os parâmetros das propriedades exigidas no estado fresco, tanto em relação a

velocidade como as demais propriedades, isto é, o concreto melhorou na capacidade de

preencher formas, na capacidade de passar entre as armaduras e na resistência à segregação,

mostrando uma maior estabilidade da mistura.

As melhoras nas propriedades utilizando a sílica ativa, mesmo em uma percentagem

pequena, demonstrou o potencial do mineral como fíler pozolânica, pois a coesão da mistura

foi melhorada e as resistências foram elevadas. No entanto, o fíler RBMG, também teve uma

influência considerável para se alcançar CAA.

Page 135: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

No estado endurecido, os concretos, com e sem sílica ativa, apresentaram uma boa

uniformidade de massa de seus corpos-de-prova cilíndricos, tanto nos de 10cm x 20cm como

nos de 15cm x 30cm, sendo uma forte característica de uniformidade das misturas, ou seja,

fortes indícios de ausência de segregação. Os dois concretos também apresentaram, através da

visualização das superfícies internas de corpos-de-prova submetidos aos ensaios de resistência

à tração na compressão diametral, boa distribuição dos agregados, tanto graúdo como miúdo.

Foi observada também, uma baixa presença de grandes vazios provocados pela presença de

bolhas de ar incorporado.

Os dois concretos apresentaram bons resultados nas propriedades mecânicas

estudadas. Com um consumo de cimento na ordem de 415kg a 420kg, um baixo percentual

de superplastificante e menor consumo de agregados em função do maior volume de pasta;

foram obtidas resistências à compressão na ordem de 35 MPa a 37 MPa, em corpos-de-prova

de 15cm x 30cm e na ordem de 37 MPa a 41MPa em corpos-de-prova de 10cm x 20cm.

Onde os melhores resultados obtidos foram no CAA com 3% de sílica ativa.

6.2. Considerações específicas

Nestas considerações apresentam-se todas as considerações relevantes no que tange as

fases do desenvolvimento dessa pesquisa.

6.2.1. Quanto à caracterização dos materiais

O agregado miúdo ou areia natural quartzosa, utilizado, apresentou nos ensaios de

caracterização bons parâmetros, inclusive se enquadrando dentro das Normas Brasileiras,

como areia média. Já o agregado graúdo ou pedra britada granítica, ou simplesmente brita

granítica, utilizada, no que se refere a granulometria, não se enquadra em nenhuma das faixas

estabelecidas pelas Normas Brasileiras para esse tipo de material. Os percentuais de absorção

dos agregados foram levados em consideração na elaboração das dosagens dos concretos.

6.2.2. Comportamento de fluxo das pastas e argamassas

As curvas obtidas nos ensaios do Cone de Marsh e do Mini-Slump foram importantes

para determinar a dosagem ótima do superplastificante, isto é, o ponto de saturação e medir à

capacidade de fluir de ambos materiais.

Page 136: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Desde o início a intenção era utilizar um valor alto de resíduo, de forma que entre os

percentuais de r/c=50% e r/c=60% foi escolhido para o concreto o de 50%, em função de ter

maior velocidade de fluxo. Para os percentuais de 50% e 60% de resíduo, nos ensaios no

Cone de Marsh, imediatamente após o ponto de saturação do superplastificante, a velocidade

de fluxo não apresentava mais crescimento significativo. No Mini-slump estas pastas também

não apresentavam crescimento significativo de diâmetro, após o ponto de saturação já obtido

no Cone de Marsh, e quando acontecia do diâmetro crescer mais um pouco do que a lógica,

esse crescimento vinha acompanhado de alto grau de segregação. A pasta com acréscimo de

3% de sílica ativa foi estudada, apenas, com 50% de RBMG. Apresentou bons resultados,

com diminuição da velocidade de fluxo e melhora da estabilidade causada pelo aumento da

coesão provocada pela presença da sílica. O ponto de saturação dessa pasta sofreu um

acréscimo de 0,05% de superplastificante.

O estudo das argamassas sem sílica ativa, através dos ensaios no Cone de Marsh com

orifício inferior de 12mm e no Tronco de cone da mesa de consistência, foram realizados

para percentuais de 50% e 60% de resíduo. Apresentaram resultados compatíveis,

apresentando os pontos de saturação do superplastificante, nos dois casos, 0,10% a mais do

que nas respectivas pastas. Na aplicação prática da argamassa com 50% de RBMG e

sp/c=0,25%; a mesma apresentou boa eficiência no preenchimento de ambas as peças, tanto

no bloco de alvenaria estrutural como no pé de mesa pré-moldado. A argamassa acrescida de

3% de sílica ativa também só foi estudada para o percentual de 50% de RBMG, apresentando

diminuição da velocidade de fluxo, através da melhora de coesão das partículas e um

acréscimo de 0,05% de superplastificante em relação à mesma argamassa sem sílica.

6.2.3. Desenvolvimento dos concretos

No ponto de partida do concreto, utilizando 50% de RBMG e o ponto de saturação do

superplastificante da pasta de 0,25%, com um volume de 38% de pasta, o mesmo não

apresentou alta fluidez. Desta forma, observou-se que para isto teria que se elevar muito o

volume de pasta, onde elevaria os custos do concreto; ou modificar a dosagem de algum

componente da mistura. A segunda opção foi escolhida, alterando o percentual do

superplastificante, passando a utilizar o ponto de saturação da argamassa, visto que em seu

ponto de saturação a mesma apresentou alta fluidez sem segregação. Na seqüência foram

obtidos CAA sem e com sílica ativa, em ambos os casos com um volume de pasta de 42% e

Page 137: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

percentuais de superplastificante equivalentes aos pontos de saturação encontrados nas

argamassas, de 0,35% e 0,40%, respectivamente. O concreto com sílica ativa, teve um

comportamento geral melhor do que o sem sílica ativa, tanto no estado fresco como no estado

endurecido, onde mesmo com alguns quilos a menos de cimento por metro cúbico de

concreto, atingiu maiores parâmetros para as propriedades mecânicas estudadas.

A Metodologia de Gomes, 2002, utilizada para obtenção de concretos de alta

resistência auto-adensável, mostrou-se simples, objetiva e eficiente. No estudo foram usados

os parâmetros do método relacionados à determinação da dosagem ótima do superplastificante

e a fluidez das pastas e argamassas. Na obtenção dos concretos auto-adensáveis foi usado à

dosagem ótima do superplastificante obtida na argamassa, já que o obtido na pasta não

proporcionou ao concreto um comportamento satisfatório, quando utilizado um volume de

pasta razoável para CAA.

Diante de tudo isso, observou-se que o uso do RBMG em CAA é possível,

necessitando apenas de um volume maior de pesquisas, levando em consideração outros

aspectos.

6.3. Sugestões para futuras pesquisas

Após a utilização do RBMG como adição mineral, com sucesso na composição do

CAA, conseguindo atender suas características no estado fresco e chegar a bons resultados no

estado endurecido, essa pesquisa necessita de prosseguimento. Desta forma apresentam-se

sugestões para solução de continuidade deste trabalho:

- Estudar se o efeito fíler do Resíduo no concreto é melhorado utilizando diâmetros da

ordem de 100? m.

- Estudar a variação das propriedades estudadas, através de ensaios de avaliação das

propriedades no estado fresco ao longo do tempo.

- Melhorar a viscosidade e a coesão do CAA com RBMG, obtido neste trabalho,

utilizando um percentual de agente modificador de viscosidade ao invés de percentual

de sílica ativa.

- Trabalhar com Viscosímetro para análise das pastas e argamassas.

- Estudar o comportamento do CAA, trabalhando com relações água cimento de 0,30 a

0,50; fazendo variar também as massas de cimento e RBMG obtendo curvas de

resistência desse concreto em função desses parâmetros.

Page 138: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

- Trabalhando com relações água/cimento com valores menores que 0,50; estudar o

comportamento desse resíduo com percentuais de 50% ou mais, sobre a massa do

cimento, em CAA de alta resistência.

- Aplicar as dosagens de CAA encontradas neste trabalho em peças pré-fabricadas

fazendo um estudo de custos reais comparando com a fabricação das mesmas peças

em concreto convencional de mesma resistência.

- Estudar outras propriedades desse CAA obtido, no estado endurecido, tais como

absorção, permeabilidade, retração, deformação lenta e outras propriedades

mecânicas.

- Fazer avaliação de custos dos CAA estudados, comparando com concretos

convencionais de referência.

Page 139: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Referências bibliográficas

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7211 (1983) Agregado para concreto. Rio de Janeiro.

______ NBR 10004 (1987) Resíduos sólidos. Classificação. Rio de Janeiro.

______ NBR 11578 (1991) Cimento Portland composto. Especificação. Rio de Janeiro.

______ NBR 13956 (1997) Sílica ativa para uso em cimento Portland, concreto, argamassas e pasta de cimento Portland - Especificação. Rio de Janeiro.

______ NBR 5738 (1994) Moldagem e cura de corpos-de-prova cilíndricos ou prismáticos de concreto. Método de ensaio. Rio de Janeiro.

______ NBR 5739 (1994) Concreto. Ensaio de compressão de corpos-de-prova cilíndricos. Rio de Janeiro.

______ NBR 6156 (1983) Máquina de ensaio de tração e compressão. Verificação. Método de ensaio. Rio de Janeiro.

______ NBR 6508 (1984) Grãos de solos que passam na peneira de 4,8mm. Determinação da massa específica. Rio de Janeiro.

______ NBR 7221 (1987) Agregados. Ensaio de qualidade de agregado miúdo. Rio de Janeiro.

______ NBR 7222 (1994) Argamassa e concreto. Determinação da resistência à tração por compressão diametral de corpos-de-prova cilíndricos. Rio de Janeiro.

______ NBR 7809 (1983) Agregado graúdo. Determinação do índice de forma pelo método do paquímetro. Rio de Janeiro.

______ NBR 7810 (1983) Agregados em estado compactado seco. Determinação da massa unitária. Rio de Janeiro.

______ NBR 8522 (2003) Concreto - Determinação dos módulos estáticos de elasticidade e de deformação e da curva tensão-deformação. Rio de Janeiro.

______ NBR 9479 (1996) Câmaras úmidas para cura de corpos-de-prova de cimento e concreto. Especificação. Rio de Janeiro.

______ NBR NM 248 (2003) Determinação da composição granulométrica.

______ NBR NM 26 (2001) Agregados – Amostragem.

Page 140: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

______ NBR NM 27 (2001) Agregados - Redução de amostras de campo para ensaio de laboratório.

______ NBR NM 30 (2001) Agregado miúdo - Determinação da absorção de água.

______ NBR NM 43 (2003) Cimento Portland. Determinação da pasta de consistência normal.

______ NBR NM 46 (2003) Determinação do material fino que passa através da peneira 75 micrometro, por lavagem.

______ NBR NM 49 (2001) Agregado fino - Determinação de impurezas orgânicas.

______ NBR NM 52 (2003) Agregado miúdo - Determinação de massa específica e massa específica aparente.

______ NBR NM 53 (2003) Agregado graúdo – Determinação de massa específica, massa específica aparente e absorção de água.

______ NBR NM 67 (1998) Concreto. Determinação da consistência pelo abatimento do tronco de cone.

______ NM 45 (2002) Agregados - Determinação da massa unitária e dos espaços vazios.

NM – ISO – 3610-1 (1996) Peneiras de ensaio. – Requisitos técnicos e verificação – Parte 1 – Peneiras de ensaio com tela de tecido metálico.

AGULLÓ, L.; TORALLES-CARBONARI, B.; GETTU, R.; AGUADO, A. (1999) Fluidity of Cement Pastes with Mineral Admixtures and Superplasticizer – A study on the Marsh cone test. Materials and Structures, v. 32, p. 479-485.

ANONIMO. (1998) O desenvolvimento da tecnologia de serragem do granito. Rochas de Qualidade, São Paulo, v.19, n. 98, p. 18-27.

ARAÚJO, J. L (2003) Considerações sobre concreto auto-adensável e uma aplicação com materiais locais. Dissertaçaõ (Mestrado em Engenharia) – Curso de Pós-Graduação em Engenharia Civil. Universidade Federal de Pernambuco, Recife.

ARAÚJO, J. L.; BARBOSA, N. P.; DOS SANTOS, S. B.; REGIS, P. A. (2003) Concreto auto-adensável com materiais locais no Nordeste. In: 45º Congresso Brasileiro do Concreto. CD-ROM, Vitória.

ASTM C 939 (1987) Standard Test Method for Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method).

ASTM C29/29M (1992) Standard Test Method for Unit Weight and Voids in Aggregate.

BARTOS, P. J. M.; GRAUERS, M. (1999) Self-Compacting Concrete. Concrete, v.33, n. 4, p. 9-13.

Page 141: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

BILLBERG, P. (1999) Self-Compacting Concrete for Civil Engineering Structures – The Swedish Experience. In: S. C. C. R. I. 1-77. Stockholm.

BILLBERG, P.; PETERSSON, Ö; NORBERG, J. (1996) New Generation of Superplasticizers. In: International Rilem Conference on Production Methods and Workability of Concrete. P. J. M. Bartos, D. L. Marrs and D. J. Cleand (editores), E & fn Spon, p 295-306.

CAMARGOS, U. A. (2002) Concreto Auto-Adensável e Autonivelante. Téchne, São Paulo, n. 59, p. 04-05, fevereiro 2002.

CAMPION, M. J.; JOST, P. (2000) Self-Compacting Concrete, Expanding the Possibilities of Concrete Design and Placement. Concrete International, v. 22, n.4, p. 31-34.

CRUZ, D. F. M.; LAMEIRAS, R. M. (2003) Estudo das propriedades mecânicas de argamassas produzidas utilizando-se resíduo do corte de mármore e granito. In:Vi Seminário Desenvolvimento Sustentável e a Reciclagem na Construção Civil – Materiais Reciclados e suas Aplicações. Ibracon – 2003.

DE LARRARD, F. (1990) A Method for Proportioning High-Strength Concrete Mixtures. Cement, Concrete and Aggregates, v. 12, p. 47-52.

DOMONE, P. L.; CHAI, H, W. (1996) Design Testing of Self-Compacting Concrete. In: International Rilem Conference on Production Methods and Workability of Concrete, P.J.M. Bartos, D.L. Marrs e D.J. Ceand (editores), E & FN Spon, 223-252.

DOMONE, P. L.; JIN, J. (1999) Properties of Mortar for Self-Compacting Concrete. First International Rilem Symposium on Self-Compacting Concrete, p. 109-120, 1999, Stockholm, Sweden. A. Skarendahl and Ö. Petersson (editores) , E & FN Spon.

EDAMATSU, H.; NISHIDA, N.; OUCHI, M. (1999) A Rational Mix-Design Method for Self-Compacting Concrete Considering Interaction Between Coarse Aggregate and Mortar Particles. In: 1st International Rilem Symposium on Self-Compacting Concrete, p. 309-320, 1999, Stockolm, Sweden. A. Skarendahl and Ö. Petersson (editores) , E & FN Spon.

EFNARC (2001) Specificacion and Guidelines for Self-Compacting Concrete. EFNARC.

EFNARC (2002) Specificacion and Guidelines for Self-Compacting Concrete. EFNARC.

EN 1008 Água para concreto.

EN 12350-1 Teste do concreto fresco: Parte 1: Amostragem.

EN 12350-2 Teste do concreto fresco: Parte 2: Teste de abatimento.

EN 12620 Agregados para concreto.

EN 12878 Pigmentos para coloração de edifícios baseado em materiais no cimento.

EN 13263 Definições, exigências e controle de conformidade em sílica fumo para concreto.

Page 142: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

EN 197-1 Composição, especificações e critérios de conformidade do Cimento.

EN 206-1 Especificação desempenho, produção e conformidade do Concreto.

EN 445 Grautes para Bainhas de Protendido. Métodos de Ensaio. CEN, 12p. 1996.

EN 450 Definições, exigências e controle de qualidade de cinzas volantes para concreto.

EN 934-2 Definições e exigências para aditivos de concreto.

FILHO, C. D.; RODRIGUES, E. P. (1999) Quadro setorial brasileiro das rochas ornamentais e de revestimento de mármores e granitos. Rochas de Qualidade, v. 27, n. 147, p. 86-104.

FORNASIER, G.; FAVA, C.; ZITZER, L. (2001) Self-Compacting Concrete in Argentina: The First Experience. In: The Second International Symposium on Self-Compacting Concrete, 309-318. 2001, Tokyo. Anais ... Tokyo: The University of Tokyo.

GOMES, P. C. C. (2002) Optimization and Characterization of High-Strength Self-Compacting Concrete. Tese (Doutorado em Engenharia Civil) – Curso de Pós-Graduação em Engenharia Civil, Universitat Politècnica de Catalunya, Barcelona.

GOMES, P. C. C.; GETTU, R.; AGULLÓ, L.; BERBARD, CAMILO. (2001) Experimental Optimization of High-Strength Self-Compacting Concrete. In: The Second International Symposium on Self-Compacting Concrete, 377., 2001, Tokyo. Anais... Tokyo: University of Tokyo.

GONÇALVES, J. P.; MOURA, W. A.; LEITE, M. B. (2003) Utilização de resíduos sólidos industriais e urbanos para produção de concretos. Engenharia, Ciência e Tecnologia. v. 06, n. 3, p. 17 – 30, maio/junho - 2003.

HELENE, P. (1998) Origem e aplicações do concreto auto-adensável e execução de lajes sem contrapiso. Téchne, São Paulo, n. 33, p. 30-31, março/abril 1998.

HELENE, P.; TERZIAN, P. (1992) Manual de dosagem e controle do concreto. Brasília: Pini.

KANTRO, D. L. (1980) Influence of Water Reducing Admixtures on Properties of Cement Pastes – A miniature slump test. Cement Concrete Aggregates, v. 2, p. 95-102.

KHAYAT, K. H. (1999) Workability, Testing, and Performance of Self-Consolidating. ACI Materials Journal, v. 94, n. 4, p. 346-353.

KHAYAT, K. H.; GUIZANI, Z. (1997) Use of Viscosity-Modifying Admixture to Enhance Stability of Fluid Concrete, ACI Materials Journal, v. 94, n.4, p. 332-340.

KHAYAT, K. H.; YAHIA, A. (1997) Effect of Welan Gum-High-Range Water Reducer Combinations on Rheology of Cement Grout, ACI Materials Journal, v. 94, n. 4, p. 365-372.

Page 143: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

LAMEIRAS, R. M. (2004) Desenvolvimento de concretos através da utilização do resíduo do beneficiamento de chapas de granito (RBCG). Monografia (TCC em Engenharia Civil) - Curso de Graduação em Engenharia Civil, Universidade Federal de Alagoas, Maceió.

MARQUARDT, I.; VALA, J.; DIEDERICHS, U. (2001) Optimization of Self-Compacting Concrete Mixes. In: The Second International Symposium on Self-Compacting Concrete, 295-302. 2001, Tokyo. Anais ... Tokyo: The University of Tokyo.

MCLEISH, A. (1996) Flowable Concrete for Structural Repaisrs. In: International Rilem Conference on Production Methods and Workability of Concrete. P. J. M. Bartos, D. L. Marrs and D. J. Cleand (editores), E & fn Spon, p 515-522.

MIURA, Y.; KINOSHITA, M.; INOUE, K.; SAKAI, K. (1998) Properties of Self-Compacting Concrete Using a New Superplasticizer. Concrete Under Several Conditions 2, K. Sakai, N. Banthia and O. E. Gjorv (editores), E & FN Spon, p. 2007-2017.

NEVES, G. de A. (2002) Reciclagem de Resíduos da Serragem de Granitos para uso como Matéria-Prima Cerâmica. Tese (Doutorado em Engenharia) – Curso de Pós-Graduação em Engenharia de Processos. Universidade Federal de Campina Grande, Campina Grande.

NEVILLE, A. M. (1997) Propriedades do concreto. São Paulo: Pini.

OKAMURA, H. (1997) Self-Compacting High-Performance Concrete. Concrete International, v. 19, n. 7, p. 50-54.

OUCHI, M.; OZAWA, K.; OKAMURA, H. (1996) Development of a simple Self-Compactability Testing Method for Acceptance at Job Site. In: First International Conference on Concrete Structure.

PETERSSON, Ö. (2000) Design of Self-Compacting Concrete, Properties of the Fresh Concrete. In: Proceedings Seminar on Self-Compacting Concrete, 15-20. Malmö/Copenhagen.

PETERSSON, Ö.; BILLBERG, P. (1999) Investigation on Blocking of Self-Compacting Concrete with Different Maximum Aggregate Size and Use of Viscosity Agent Instead of Filler. In: 1ST International Rilem Symposium on Self-Compacting Concrete. 333., 1999, Stockholm. Anais ... Stockholm: Swedish Cement and Concrete Research Institute.

PETERSSON, Ö.; BILLBERG, P.; VAN, B. K. (1996) A Model for Self-Compacting Concrete. In: International Rilem Conference on Production Methods And Workability Of Concrete, P.J.M. Bartos, D.L. Marrs e D.J. Cleand (editores), E & FN Spon, 483-492.

ROONEY, M. J. (2002) Assessment of the Properties of Fresh Self-Compacting Concrete with Reference to Aggregate Segregation. Tese (Doutorado). University of Paisley/USA.

SAAK, W. A.; JENNINGS, H. M.; SHAH, S. P. (2001) New Methodology for Designing Self-Compacting Concrete, ACI Materials Journal, v. 94, n.6, p. 429-439.

SAKATA, N.; MARUYAMA, K.; MINAMI, M. (1996) Basic Properties and Effects of Welan Gun on Self-Consolidating Concrete. In: International Rilem Conference on

Page 144: OBTENÇÃO DO CONCRETO AUTO- ADENSÁVEL UTILIZANDO

Production Methods and Workability of Concrete. P. J. M. Bartos, D. L. Marrs and D. J. Cleand (editores), E & fn Spon, p 237-253.

SEDRAN, T.; DE LARRARD, F.; HOURST, F.; CONTAMINES, C. (1996) Mix Design of Self-Compacting Concrete. In: International Rilem Conference on Production Methods and Workability of Concrete. P.J.M. Bartos, D.L. Marrs and D. J. Cleand (editores), E & fn Spon, p 439-450.

SENAI (1993) – Serviço Nacional de Aprendizagem Industrial. Departamento Regional do Espírito Santo. Processo de produção em serrarias de mármore e granito. Rocha de Qualidade, v. 25,n. 112, p. 118-122.

SILVA, S. A. (1998) Caracterização do resíduo da serragem de blocos de granitos. Estudo do potencial de aplicação na fabricação de argamassas de assentamento e de tijolos de solo-cimento. Dissertação (Mestrado em Engenharia Ambiental) – Universidade Federal do Espírito Santo, Vitória/ES.

SKARENDAHL, A. (2000) State-of-the-art of Self-Compacting Concrete. In: Proceedings Seminar On Self-Compacting Concrete. Malmö/Copenhagen.

SKARENDAHL, A; PETERSSON, Ö. (2000) Self-compacting concrete State-of-the-Art. In: Report of RILEM Tecnical Committee 174-SCC Self-Compacting Concrete. RILEM Publications.

SU, N., HSU, K.; CHAI, H. (2001) A simple Mix Design Method for Self-Compacting Concrete. Cement and Concrete Research, n. 31, p. 1799-1807.

TAKEUCHI, H.; HIGUCHI, M.; NANNI, A. (1994) Application of Flowable Concrete in a Tunnel Lining. Concrete International, v.16, n. 4, p.26-29.

TENÓRIO, J. J. L. (2004) Desenvolvimento de argamassa através da utilização do resíduo do beneficiamento de chapas de granito (RBCG). Monografia (TCC em Engenharia Civil) - Curso de Graduação em Engenharia Civil, Universidade Federal de Alagoas, Maceió.

TORALLES-CARBONARI, B. M.; GETTU, R.; AGULLÓ, A.; ACEÑA, V. (1999) A Synthetic Approach for the Experimental Optimization of High Strength Concrete. 4th International Symposium on Utilization of High Strength/Higt Performance Concrete, p. 161-167, 1996, Paris. F. De Larrard and R. Lacroix, Laboratoire Central des Ponts e Chaussées (editores).

TUTIKIAN, B. F.; MOLIN, D. C. C. D.; CREMONINI, R. A.; KUHN, R. O.; BRESCOVIT, S. J. (2004) Comparação da curva de dosagem, resistência à tração, consumo de materiais e custo dos concretos auto-adensáveis com metacaulim e fíler calcário. In: 46º Congresso Brasileiro do Concreto, II 431-II 442, 2004. Florianópolis. CD-ROM, Florianópolis: IBRACON, 2004.