mef 110808224140-phpapp01

302
Mecânica dos Fluidos Aula 1 – Definição de Mecânica dos Fluidos, Sistema de Unidades Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Upload: robson-souza

Post on 29-Dec-2014

5.430 views

Category:

Documents


6 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 1 – Definição de Mecânica dos Fluidos, Sistema de Unidades

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 2: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Apresentação do Curso e da Bibliografia.

Definição de Mecânica dos Fluidos.

Conceitos Fundamentais.

Sistema de Unidades.

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 3: Mef 110808224140-phpapp01

Conteúdo do Curso

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Definição de Mecânica dos Fluidos, Conceitos Fundamentais e Sistema Internacional de Unidades

Propriedades dos Fluidos, Massa Específica, Peso Específico e Peso Específico Relativo

Estática dos Fluidos, Definição de Pressão Estática Teorema de Stevin e Princípio de Pascal Manômetros e Manometria Flutuação e Empuxo Cinemática dos Fluidos, Definição de Vazão Volumétrica, Vazão em Massa e Vazão

em Peso Escoamento Laminar e Turbulento, Cálculo do Número de Reynolds Equação da Continuidade para Regime Permanente Equação da Energia para Fluido Ideal Equação da Energia na Presença de uma Máquina Equação da Energia para Fluido Real - Estudo da Perda de Carga Instalações de Recalque - Uma Entrada, Uma Saída Instalações de Recalque - Várias Entradas, Várias Saídas Curvas Características da Bomba e da Instalação Associação de Bombas

Mecânica dos Fluidos

Page 4: Mef 110808224140-phpapp01

Bibliografia

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

BRUNETTI, Franco. Mecânica dos fluidos. São Paulo: Pearson, 2005. 410 p.

WHITE, Frank M. Mecânica dos fluidos. 4. ed. Rio de janeiro: McGraw-Hill, c1999. 570 p.

POTTER, Merle C.; WIGGERT, D. C.; HONDZO, Midhat. Mecânica dos fluidos. São Paulo: Pioneira ThomsonLearning, 2004. 688 p.

FOX, Robert W.; MCDONALD, Alan T. Introdução àmecânica dos fluidos. 4. ed. Rio de Janeiro: LTC - Livros Técnicos e Científicos, c1998. 662 p.

Mecânica dos Fluidos

Page 5: Mef 110808224140-phpapp01

Definição de Mecânica dos Fluidos

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

A mecânica dos fluidos é o ramo da mecânica que estuda o comportamento físico dos fluidos e suas propriedades. Os aspectos teóricos e práticos da mecânica dos fluidos são de fundamental importância para a solução de diversos problemas encontrados habitualmente na engenharia, sendo suas principais aplicações destinadas ao estudo de escoamentos de líquidos e gases, máquinas hidráulicas, aplicações de pneumática e hidráulica industrial, sistemas de ventilação e ar condicionado além de diversas aplicações na área de aerodinâmica voltada para a indústria aeroespacial.

O estudo da mecânica dos fluidos é dividido basicamente em dois ramos, a estática dos fluidos e a dinâmica dos fluidos. A estática dos fluidos trata das propriedades e leis físicas que regem o comportamento dos fluidos livre da ação de forças externas, ou seja, nesta situação o fluido se encontra em repouso ou então com deslocamento em velocidade constante, já a dinâmica dos fluidos é responsável pelo estudo e comportamento dos fluidos em regime de movimento acelerado no qual se faz presente a ação de forças externas responsáveis pelo transporte de massa.

Dessa forma, pode-se perceber que o estudo da mecânica dos fluidos estárelacionado a muitos processos industriais presentes na engenharia e sua compreensão representa um dos pontos fundamentais para a solução de problemas geralmente encontrados nos processos industriais.

Mecânica dos Fluidos

Page 6: Mef 110808224140-phpapp01

Definição de Fluido

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Um fluido é caracterizado como uma substância que se deforma continuamente quando submetida a uma tensão de cisalhamento, não importando o quão pequena possa ser essa tensão. Os fluidos incluem os líquidos, os gases, os plasmas e, de certa maneira, os sólidos plásticos. A principal característica dos fluidos estárelacionada a propriedade de não resistir a deformação e apresentam a capacidade de fluir, ou seja, possuem a habilidade de tomar a forma de seus recipientes. Esta propriedade é proveniente da sua incapacidade de suportar uma tensão de cisalhamento em equilíbrio estático.

Os fluidos podem ser classificados como: Fluido Newtoniano ou Fluido Não Newtoniano. Esta classificação está associada àcaracterização da tensão, como linear ou não-linear no que diz respeito à dependência desta tensão com relação à deformação e àsua derivada.

Mecânica dos Fluidos

Page 7: Mef 110808224140-phpapp01

Divisão dos Fluidos

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Os fluidos também são divididos em líquidos e gases, os líquidos formam uma superfície livre, isto é, quando em repouso apresentam uma superfície estacionária não determinada pelo recipiente que contém o líquido. Os gases apresentam a propriedade de se expandirem livremente quando não confinados (ou contidos) por um recipiente, não formando portanto uma superfície livre.A superfície livre característica dos líquidos é uma propriedade da presença de tensão interna e atração/repulsão entre as moléculas do fluido, bem como da relação entre as tensões internas do líquido com o fluido ou sólido que o limita.

Um fluido que apresenta resistência à redução de volume próprio édenominado fluido incompressível, enquanto o fluido que responde com uma redução de seu volume próprio ao ser submetido a ação de uma força édenominado fluido compressível.

Mecânica dos Fluidos

Page 8: Mef 110808224140-phpapp01

Unidades de Medida

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Antes de iniciar o estudo de qualquer disciplina técnica, é importante entender alguns conceitos básicos e fundamentais. Percebe-se que muitos alunos acabam não avançando nos estudos, e por isso não aprendem direito a disciplina em estudo, por não terem contato com estes conceitos. Nesta primeira aula serão estudadas as unidades e a importância do Sistema Internacional de Unidades (SI).

No nosso dia-a-dia expressamos quantidades ou grandezas em termos de outras unidades que nos servem de padrão. Um bom exemplo é quando vamos à padaria e compramos 2 litros de leite ou 400g de queijo. Na Física éde extrema importância a utilização correta das unidades de medida.

Existe mais de uma unidade para a mesma grandeza, por exemplo, 1metro éo mesmo que 100 centímetros ou 0,001 quilômetro. Em alguns países é mais comum a utilização de graus Fahrenheit (°F) ao invés de graus Celsius (°C) como no Brasil. Isso porque, como não existia um padrão para as unidades, cada pesquisador ou profissional utilizava o padrão que considerava melhor.

Mecânica dos Fluidos

Page 9: Mef 110808224140-phpapp01

Sistema Internacional de Unidades

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Como diferentes pesquisadores utilizavam unidades de medida diferentes, existia um grande problema nas comunicações internacionais.

Como poderia haver um acordo quando não se falava a mesma língua? Para resolver este problema, a Conferência Geral de Pesos e Medidas (CGPM) criou o Sistema Internacional de Unidades (SI).

O Sistema Internacional de Unidades (SI) é um conjunto de definições, ou sistema de unidades, que tem como objetivo uniformizar as medições. Na 14ª CGPM foi acordado que no Sistema Internacional teríamos apenas uma unidade para cada grandeza. No Sistema Internacional de Unidades (SI) existem sete unidades básicas que podem ser utilizadas para derivar todas as outras.

Mecânica dos Fluidos

Page 10: Mef 110808224140-phpapp01

Unidades Básicas do Sistema Internacional (SI)

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

cdcandelaIntensidade luminosa

molmoleQuantidade de substância

KkelvinTemperatura termodinâmica

AampèreIntensidade de corrente elétrica

ssegundoTempo

kgquilogramaMassa

mmetroComprimento

SímboloNomeGrandeza

Mecânica dos Fluidos

Page 11: Mef 110808224140-phpapp01

Resumo das Unidades Básicas

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Unidade de comprimento - O metro é o comprimento do trajeto percorrido pela luz no vácuo, durante um intervalo de 1 / 299 792 458 do segundo.

Unidade de massa - O quilograma é a unidade de massa; é igual à massa do protótipo internacional do quilograma.

Unidade de tempo - O segundo é a duração de 9 192 631 770 períodos da radiação correspondente à transição entre os dois níveis hiperfinos do estado fundamental do átomo de césio 133.

Unidade de intensidade de corrente elétrica - O ampere é a intensidade de uma corrente constante que, mantida em dois condutores paralelos, retilíneos, de comprimento infinito, de seção circular desprezível e colocados à distância de 1 metro um do outro no vácuo, produziria entre estes condutores uma força igual a 2 x 10-7 newton por metro de comprimento.

Unidade de temperatura termodinâmica - O kelvin, unidade de temperatura termodinâmica, é a fração 1/273,16 da temperatura termodinâmica do ponto triplo da água.

Unidade de quantidade de matéria - O mole é a quantidade de matéria de um sistema contendo tantas entidades elementares quantos os átomos que existem em 0,012 quilograma de carbono 12. Quando se utiliza o mole, as entidades elementares devem ser especificadas e podem ser átomos, moléculas, íons, elétrons, outras partículas ou agrupamentos especificados de tais partículas.

Unidade de intensidade luminosa - A candela é a intensidade luminosa, numa dada direção, de uma fonte que emite uma radiação monocromática de freqüência 540x1012 hertz e cuja intensidade energética nessa direção é 1 / 683 watt por esterorradiano.

Mecânica dos Fluidos

Page 12: Mef 110808224140-phpapp01

Unidades Suplementares (Ângulos)

Unidade de ângulo plano - O radiano (rad) é o ângulo plano compreendido entre dois raios de um círculo que, sobre a circunferência deste círculo, interceptam um arco cujo comprimento é igual ao do raio.

Unidade de ângulo sólido - O esterorradiano (sr) é o ângulo sólido que, tendo seu vértice no centro de uma esfera, intercepta sobre a superfície desta esfera um área igual a de um quadrado que tem por lado o raio da esfera.

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

m2.m-2 = 1sresterorradianoÂngulo sólido

m.m-1 = 1radradianoÂngulo plano

Unidades do SISímboloNomeGrandeza

Mecânica dos Fluidos

Page 13: Mef 110808224140-phpapp01

Unidades Derivadas do (SI)

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

As unidades derivadas do SI são definidas de forma que sejam coerentes com as unidades básicas e suplementares, ou seja, são definidas por expressões algébricas sob a forma de produtos de potências das unidades básicas do SI e/ou suplementares, com um fator numérico igual a 1.Várias unidades derivadas no SI são expressas diretamente a partir das unidades básicas e suplementares, enquanto que outras recebem uma denominação especial (Nome) e um símbolo particular.

Se uma dada unidade derivada no SI puder ser expressa de várias formas equivalentes utilizando, quer nomes de unidades básicas/suplementares, quer nomes especiais de outras unidades derivadas SI, admite-se o emprego preferencial de certas combinações ou de certos nomes especiais, com a finalidade de facilitar a distinção entre grandezas que tenham as mesmas dimensões. Por exemplo, o 'hertz' é preferível em lugar do 'segundo elevado á potência menos um'; para o momento de uma força, o 'newton.metro' tem preferência sobre o joule.

Mecânica dos Fluidos

Page 14: Mef 110808224140-phpapp01

Tabela de Unidades Derivadas

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

rad/s2radiano por segundo ao quadradoAceleração angular

rad/sradiano por segundoVelocidade angular

kg/m3quilograma por metro cúbicomassa específica

m-1metro á potencia menos umNúmero de ondas

m/s2metro por segundo ao quadradoAceleração

m/smetro por segundoVelocidade

m3metro cúbicoVolume

m2metro quadradoSuperfície

SímboloNomeGrandeza

Mecânica dos Fluidos

Page 15: Mef 110808224140-phpapp01

Resumo das Unidades DerivadasAula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Unidade de velocidade - Um metro por segundo (m/s ou m s-1) é a velocidade de um corpo que, com movimento uniforme, percorre, o comprimento de um metro em 1 segundo.

Unidade de aceleração - Um metro por segundo quadrado (m/s2ou m s-2) é a aceleração de um corpo, animado de movimento uniformemente variado, cuja velocidade varia, a cada segundo, de 1 m/s.

Unidade de número de ondas - Um metro á potência menos um(m-1) é o número de ondas de uma radiação monocromática cujo comprimento de onda é igual a 1 metro.

Unidade de velocidade angular - Um radiano por segundo (rad/s ou rad s-1) é a velocidade de um corpo que, com uma rotação uniforme ao redor de um eixo fixo, gira em 1 segundo, 1 radiano.

Unidade de aceleração angular - Um radiano por segundo quadrado (rad/s2 ou rad s-2) é a aceleração angular de um corpo animado de uma rotação uniformemente variada, ao redor de um eixo fixo, cuja velocidade angular, varia de 1 radiano por segundo,em 1 segundo.

Mecânica dos Fluidos

Page 16: Mef 110808224140-phpapp01

Unidades Derivadas com Nomes e Símbolos Especiais

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

m2 kg s-2 A-2Wb A-1HhenryIndutância

kg s-2 A1Wb m2TteslaIndução magnética

m2 kg s-2 A-1V sWbweberFluxo magnético

m-2 kg-1 s4 A2C V-1FfaradCapacitância elétrica

m2 kg s-3 A-2V A-1ΩohmResistência elétrica

m2 kg s-3 A-1W A-1VvoltPotencial elétricoforça eletromotriz

s ACcoulombQuantidade de eletricidadecarga elétrica

m2 kg s-3J s-1WwattPotência

m2 kg s-2N mJjouleEnergia, trabalho,Quantidade de calor

m-1 kg s-2N m-2PapascalPressão

m kg s-2NnewtonForça

s-1HzhertzFreqüência

Expressão em unidades básicas SI

Expressão em outras unidades SI

SímboloNomeGrandeza

Mecânica dos Fluidos

Page 17: Mef 110808224140-phpapp01

Resumo das Unidades

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Unidade de freqüência - Um hertz (Hz) é a freqüência de um fenômeno periódico cujo período é de 1 segundo.

Unidade de intensidade de força - Um newton (N) é a intensidade de uma força que, aplicada a um corpo que tem uma massa de 1 quilograma, lhe comunica uma aceleração de 1 metro por segundo quadrado.

Unidade de pressão - Um pascal (Pa) é a pressão uniforme que, exercida sobre uma superfície plana de área 1 metro quadrado, aplica perpendicularmente a esta superfície uma força total de intensidade 1 newton.

Unidade de Energia, trabalho, Quantidade de calor - Um joule (J) é o trabalho realizado por uma força de intensidade 1 newton, cujo ponto de aplicação se desloca de 1 metro na direção da força.

Unidade de potência, fluxo radiante - Um watt (W) é a potência que dá lugar a uma produção de Energia igual a 1 joule por segundo.

Unidade de Quantidade de carga elétrica - Um coulomb (C) é a quantidade de carga transportada em 1 segundo por uma corrente elétrica de intensidade igual a 1 ampère.

Unidade de potencial elétrico, força eletromotriz - Um volt (V) é a diferencia de potencial elétrico que existe entre dois pontos de um condutor elétrico que transporta uma corrente de intensidade constante de 1 ampère quando a potencia dissipada entre estes pontos é igual a 1 watt.

Unidade de resistência elétrica - Um ohm (W) é a resistência elétrica que existe entre dois pontos de um condutor quando uma diferença de potencial constante de 1 volt aplicada entre estes dois pontos produz, nesse condutor, uma corrente de intensidade 1 ampère. (não há força eletromotriz no condutor).

Mecânica dos Fluidos

Page 18: Mef 110808224140-phpapp01

Resumo das Unidades

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Unidade de capacitância elétrica - Um farad (F) é a capacitância de um capacitor elétrico que entre suas armaduras aparece uma diferença de potencial elétrico de 1 volt, quando armazena uma quantidade de carga igual a 1 coulomb.

Unidade de fluxo magnético - Um weber (Wb) é o fluxo magnético que, ao atravessar um circuito de uma só espira produz na mesma uma força eletromotriz de 1 volt, quando se anula esse fluxo em um segundo por decaimento uniforme.

Unidade de indução magnética - Um tesla (T) é a indução magnética uniforme que, distribuída normalmente sobre una superfície de área 1 metro quadrado, produz através desta superfície um fluxo magnético total de 1 weber.

Unidade de indutância - Um henry (H) é a indutância elétrica de um circuito fechado no qual se produz uma força eletromotriz de 1 volt, quando a corrente elétrica que percorre o circuito varia uniformemente á razão de um ampère por segundo.

Mecânica dos Fluidos

Page 19: Mef 110808224140-phpapp01

Unidades Derivadas Usando Aquelas que tem Nomes Especiais no (SI)

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

m kg s-3 A-1V/mvolt por metroIntensidade de campo elétrico

m kg s-3 K-1W/(m K)watt por metro kelvinCondutividade térmica

m2 s-2 K-1J/(kg K)joule por quilograma. kelvinCapacidade térmica específica

m2 kg s-2 K-1J/Kjoule por kelvinEntropia

m-1 kg s-1Pa spascal segundoViscosidade dinâmica

Expressão em unidades básicas SI

SímboloNomeGrandeza

Mecânica dos Fluidos

Page 20: Mef 110808224140-phpapp01

Resumo das Unidades

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Unidade de viscosidade dinâmica - Um pascal segundo (Pa s) é a viscosidade dinâmica de um fluido homogêneo, no qual, o movimento retilíneo e uniforme de uma superfície plana de 1 metro quadrado, da lugar a uma força resistente de intensidade 1 newton, quando há uma diferença de velocidade de 1 metro por segundo entre dois planos paralelos separados por 1 metro de distância.

Unidade de entropia - Um joule por kelvin (J/K) é o aumento de entropia de um sistema que recebe uma quantidade de calor de 1 joule, na temperatura termodinâmica constante de 1 kelvin, sempre que no sistema no tenha lugar nenhuma transformação irreversível.

Unidade de capacidade térmica específica (calor específico) - Um joule por quilograma kelvin (J/(kg K) é a capacidade térmica específica de um corpo homogêneo com massa de 1 quilograma, no qual a adição de uma quantidade de calor de um joule, produz uma elevação de temperatura termodinâmica de 1 kelvin.

Unidade de condutividade térmica - Um watt por metro kelvin (W/ m.K) é a condutividade térmica de um corpo homogêneo isótropo, no qual uma diferença de temperatura de 1 kelvin entre dois planos paralelos, de área 1 metro quadrado e distantes 1 metro, produz entre estes planos um fluxo térmico de 1 watt.

Unidade de intensidade de campo elétrico - Um volt por metro (V/m) é a intensidade de um campo elétrico, que aplica uma força de intensidade 1 newton sobre um corpo eletrizado com quantidade de carga de 1 coulomb.

Mecânica dos Fluidos

Page 21: Mef 110808224140-phpapp01

Prefixos no Sistema Internacional

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

dadeka101

hhecto102

kquilo103

Mmega106

Ggiga109

Ttera1012

Ppeta1015

Eexa1018

Zzetta1021

Yyotta1024

SímboloNomeFator

yyocto10-24

zzepto10-21

aatto10-18

ffemto10-15

ppico10-12

nnano10-9

µmicro10-6

mmilli10-3

ccenti10-2

ddeci10-1

Símbolo NomeFator

Mecânica dos Fluidos

Page 22: Mef 110808224140-phpapp01

Tabela de Conversão de Unidades

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

15280633601,60916091609001 milha terrestre (mi)

0,00018941123,0480,304830,481 pé (ft)

0,000015780,0833310,00002540,02542,541 polegada (in)

0,6214 328139370110001000001 quilômetro (km)

0,00062143,28139,30,00111001 metro (m)

0,0000062140,03280,39370,000010,0111 centímetro (cm)

miftin kmmcm

TABELA DE CONVERSÃO DE UNIDADES: COMPRIMENTO

Mecânica dos Fluidos

Page 23: Mef 110808224140-phpapp01

Tabela de Conversão de Unidades

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

12000320005,465x102962,16907,29072001 ton

0,00051162,732x10260,031080,4536453,61 libra (lb)

0,000031250,062511,708x10250,0019430,0283528,351 onça

1,829x10-303,66x10-275,855x10-2611,137x10-281,66x10-271,66x10-241 u.m.a.

0,0160932,17514,88,789x1027114,59145901 slug

0,0011022,20535,276,024x10260,06852110001quilograma (Kg)

0,0000011020,0022050,035276,024x10230,000068520,00111 grama (g)

tonlbonçau.m.a.slugKgg

TABELA DE CONVERSÃO DE UNIDADES: MASSA

Mecânica dos Fluidos

Page 24: Mef 110808224140-phpapp01

Tabela de Conversão de Unidades

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

10,0069446,4520,00064521 polegada quadrada(in²)

14419290,09291 pé quadrado(ft²)

0,15500,00107610,00011 centímetro quadrado(cm²)

155010,761000011 metro quadrado(m²)

in²ft²cm²m²

TABELA DE CONVERSÃO DE UNIDADES: ÁREA

Mecânica dos Fluidos

Page 25: Mef 110808224140-phpapp01

Tabela de Conversão de Unidades

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

10,00057870,0163916,390,000016391 polegada cúbica(in³)

1728128,32283200,028321 pé cúbico(ft³)

61,020,03531110000,0011 litro(l)

0,061020,000035310,00110,0000011 centímetro cúbico(cm³)

6102035,311000100000011 metro cúbico(m³)

in³ft³lcm³m³

TABELA DE CONVERSÃO DE UNIDADES: VOLUME

Mecânica dos Fluidos

Page 26: Mef 110808224140-phpapp01

Tabela de Conversão de Unidades

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

ºF=32+1,8.ºC K=273+ºC R=460+ºFTemperatura

1TR=3.024kcal/h=200Btu/min=12.000Btu/hPotência

1kW=102kgm/s=1,36HP=1,34BHP=3.413Btu/hPotência

1kgm=9,8J 1Btu=0,252kcalEnergia

1kWh=860kcal 1kcal=3,97BtuEnergia

1bar=100kPa=1,02atm=29,5polHgPressão

1atm=1,033kgf/cm²=14,7lbf/pol²(PSI)Pressão

1kg=2,2 lb 1lb=0,45kg 1 onça=28,35gMassa

1galão(USA)=3,8litros 1galão(GB)=4,5 litrosVolume

1m³=35,3pés³=1.000litrosVolume

1m²=10,76pés²=1.550pol²Área

1m=3,281pés=39,37polComprimento

TABELA DE CONVERSÃO DE UNIDADES: VÁRIOS

Mecânica dos Fluidos

Page 27: Mef 110808224140-phpapp01

Próxima Aula

Propriedades dos Fluidos.

Massa Específica.

Peso Específico.

Peso Específico Relativo.

Aula 1 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 28: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 2 – Propriedades dos Fluidos

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 29: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Propriedades dos Fluidos.

Massa Específica.

Peso Específico.

Peso Específico Relativo.

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 30: Mef 110808224140-phpapp01

Alfabeto Grego

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 31: Mef 110808224140-phpapp01

Propriedades dos Fluidos

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Algumas propriedades são fundamentais para a análise de um fluido e representam a base para o estudo da mecânica dos fluidos, essas propriedades são específicas para cada tipo de substância avaliada e são muito importantes para uma correta avaliação dos problemas comumente encontrados na indústria. Dentre essas propriedades podem-se citar: a massa específica, o peso específico e o peso

específico relativo.

Mecânica dos Fluidos

Page 32: Mef 110808224140-phpapp01

Massa Específica

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Representa a relação entre a massa de uma determinada substância e o volume ocupado por ela. A massa específica pode ser quantificada através da aplicação da equação a seguir.

onde, ρ é a massa específica, m representa a massa da substância e V o volume por ela ocupado.

No Sistema Internacional de Unidades (SI), a massa é quantificada em kg e o volume em m³, assim, a unidade de massa específica ékg/m³.

V

m=ρ

Mecânica dos Fluidos

Page 33: Mef 110808224140-phpapp01

Peso Específico

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

É a relação entre o peso de um fluido e volume ocupado, seu valor pode ser obtido pela aplicação da equação a seguir

Como o peso é definido pelo princípio fundamental da dinâmica (2ª Lei de Newton) por , a equação pode ser reescrita do seguinte modo:

A partir da análise das equações é possível verificar que existe uma relação entre a massa específica de um fluido e o seu peso específico, e assim, pode-se escrever que:

onde, γ é o peso específico do fluido, W é o peso do fluido e g representa a aceleração da gravidade, em unidades do (SI), o peso é dado em N, a aceleração da gravidade em m/s² e o peso específico em N/m³.

V

W=γ

V

gm ⋅=γ

g⋅= ργ

Mecânica dos Fluidos

Page 34: Mef 110808224140-phpapp01

Peso Específico Relativo

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Representa a relação entre o peso específico do fluido em estudo e o peso específico da água.

Em condições de atmosfera padrão o peso específico da água é10000N/m³, e como o peso específico relativo é a relação entre dois pesos específicos, o mesmo é um número adimensional, ou seja não contempla unidades.

OH

r

γγ =

Mecânica dos Fluidos

Page 35: Mef 110808224140-phpapp01

Tabela de Propriedades dos Fluidos

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

0,7917910791Acetona

0,7897890789Etanol

0,8208200820Querosene

0,8508500850Petróleo bruto

0,8808800880Óleo lubrificante

13,613600013600Mercúrio

0,7207200720Gasolina

0,8798790879Benzeno

1,025102501025Água do mar

1100001000Água

Peso específico Relativo - γr

Peso Específico - γ (N/m³)Massa Específica - ρ (kg/m³)Líquido

Mecânica dos Fluidos

Page 36: Mef 110808224140-phpapp01

Exercício 1

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Sabendo-se que 1500kg de massa de uma determinada substância ocupa um volume de 2m³, determine a massa específica, o peso específico e o peso específico relativo dessa substância. Dados: γH2O = 10000N/m³, g = 10m/s².

Mecânica dos Fluidos

Page 37: Mef 110808224140-phpapp01

Solução do Exercício 1

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

V

m=ρ

2

1500=ρ

750=ρ

Massa Específica:

kg/m³

Peso Específico:

g⋅= ργ

10750 ⋅=γ

7500=γ N/m³

Peso Específico Relativo:

OH

r

γγ =

10000

7500=rγ

75,0=rγ

Mecânica dos Fluidos

Page 38: Mef 110808224140-phpapp01

Exercício 2

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) Um reservatório cilíndrico possui diâmetro de base igual a 2m e altura de 4m, sabendo-se que o mesmo estátotalmente preenchido com gasolina (ver propriedades na Tabela), determine a massa de gasolina presente no reservatório.

Mecânica dos Fluidos

Page 39: Mef 110808224140-phpapp01

Solução do Exercício 2

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

hAV b ⋅= hd

V ⋅⋅

=4

2π4

4

22

⋅⋅

V 56,12=V

Volume do Reservatório

Massa Específica

720=ρ kg/m³ (obtido na tabela de propriedades dos fluidos)

Vm ⋅= ρ 56,12720 ⋅=m 78,9047=mV

m=ρ kg

Mecânica dos Fluidos

Page 40: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) A massa específica de uma determinada substância é igual a 740kg/m³, determine o volume ocupado por uma massa de 500kg dessa substância.

Mecânica dos Fluidos

Page 41: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) Sabe-se que 400kg de um líquido ocupa um reservatório com volume de 1500 litros, determine sua massa específica, seu peso específico e o peso específico relativo. Dados: γH2O = 10000N/m³, g = 10m/s², 1000 litros = 1m³.

Mecânica dos Fluidos

Page 42: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

3) Determine a massa de mercúrio presente em uma garrafa de 2 litros. (Ver propriedades do mercúrio na Tabela). Dados: g = 10m/s², 1000 litros = 1m³.

Mecânica dos Fluidos

Page 43: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

4) Um reservatório cúbico com 2m de aresta estácompletamente cheio de óleo lubrificante (ver propriedaes na Tabela). Determine a massa de óleo quando apenas ¾ do tanque estiver ocupado. Dados: γH2O = 10000N/m³, g = 10m/s².

Mecânica dos Fluidos

Page 44: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

5) Sabendo-se que o peso específico relativo de um determinado óleo é igual a 0,8, determine seu peso específico em N/m³. Dados: γH2O = 10000N/m³, g = 10m/s².

Mecânica dos Fluidos

Page 45: Mef 110808224140-phpapp01

Próxima Aula

Estática dos Fluidos.

Definição de Pressão Estática.

Unidades de Pressão.

Conversão de Unidades de Pressão.

Aula 2 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 46: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 3 – Estática dos Fluidos, Definição de Pressão

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 47: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Estática dos Fluidos.

Definição de Pressão Estática.

Unidades de Pressão.

Conversão de Unidades de Pressão.

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 48: Mef 110808224140-phpapp01

Estática dos Fluidos

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

A estática dos fluidos é a ramificação da mecânica dos fluidos que estuda o comportamento de um fluido em uma condição de equilíbrio estático, ao longo dessa aula são apresentados os conceitos fundamentais para a quantificação e solução de problemas relacionados àpressão estática e escalas de pressão.

Page 49: Mef 110808224140-phpapp01

Definição de Pressão

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

A pressão média aplicada sobre uma superfície pode ser definida pela relação entre a força aplicada e a área dessa superfície e pode ser numericamente calculada pela aplicação da equação a seguir.

Mecânica dos Fluidos

A

FP =

Page 50: Mef 110808224140-phpapp01

Unidade de Pressão no Sistema Internacional

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Como a força aplicada é dada em Newtons [N] e a área em metro ao quadrado [m²], o resultado dimensional será o quociente entre essas duas unidades, portanto a unidade básica de pressão no sistema internacional de unidades (SI) é N/m² (Newton por metro ao quadrado).

A unidade N/m² também é usualmente chamada de Pascal (Pa), portanto é muito comum na indústria se utilizar a unidade Pa e os seus múltiplos kPa (quilo pascal) e MPa (mega pascal). Desse modo, as seguintes relações são aplicáveis:

1N/m² = 1Pa

1kPa = 1000Pa = 10³Pa

1MPa = 1000000Pa = 106Pa

Mecânica dos Fluidos

Page 51: Mef 110808224140-phpapp01

Outras Unidades de Pressão

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Na prática industrial, muitas outras unidades para a especificação da pressão também são utilizadas, essas unidades são comuns nos mostradores dos manômetros industriais e as mais comuns são: atm, mmHg, kgf/cm², bar, psi e mca. A especificação de cada uma dessas unidades está apresentada a seguir.

atm (atmosfera) mmHg (milímetro de mercúrio) kgf/cm² (quilograma força por centímetro ao quadrado) bar (nomenclatura usual para pressão barométrica) psi (libra por polegada ao quadrado) mca (metro de coluna d’água)

Mecânica dos Fluidos

Page 52: Mef 110808224140-phpapp01

Tabela de Conversão de Unidades de Pressão

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Dentre as unidades definidas de pressão, tem-se um destaque maior para a atm (atmosfera) que teoricamente representa a pressão necessária para se elevar em 760mm uma coluna de mercúrio, assim, a partir dessa definição, a seguinte tabela para a conversão entre unidades de pressão pode ser utilizada.

1atm = 760mmHg

1atm = 760mmHg = 101230Pa

1atm = 760mmHg = 101230Pa = 1,0330 kgf/cm²

1atm = 760mmHg = 101230Pa = 1,0330 kgf/cm² = 1,01bar

1atm = 760mmHg = 101230Pa = 1,0330 kgf/cm² = 1,01bar = 14,7psi

1atm = 760mmHg = 101230Pa = 1,0330 kgf/cm² = 1,01bar = 14,7psi = 10,33mca

Page 53: Mef 110808224140-phpapp01

Pressão Atmosférica e Barômetro de Torricelli

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Sabe-se que o ar atmosférico exerce uma pressão sobre tudo que existe na superfície da Terra. A medida dessa pressão foi realizada por um discípulo de Galileu chamado Evangelista Torricelli, em 1643.

Para executar a medição, Torricelli tomou um tubo longo de vidro, fechado em uma das pontas, e encheu-o até a borda com mercúrio. Depois tampou a ponta aberta e, invertendo o tubo, mergulhou essa ponta em uma bacia com mercúrio. Soltando a ponta aberta notou que a coluna de mercúrio descia até um determinado nível e estacionava quando alcançava uma altura de cerca de 760 milímetros.

Acima do mercúrio, Torricelli logo percebeu que havia vácuo e que o peso do mercúrio dentro do tubo estava em equilíbrio estático com a força que a pressão do ar exercia sobre a superfície livre de mercúrio na bacia, assim, definiu que a pressão atmosférica local era capaz de elevar uma coluna de mercúrio em 760mm, definindo desse modo a pressão atmosférica padrão.

O mercúrio foi utilizado na experiência devido a sua elevada densidade, se o líquido fosse água, a coluna deveria ter mais de 10 metros de altura para haver equilíbrio, pois a água é cerca de 14 vezes mais leve que o mercúrio.

Page 54: Mef 110808224140-phpapp01

O Barômetro de Torricelli

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Dessa forma, Torricelli concluiu que essas variações mostravam que a pressão atmosférica podia variar e suas flutuações eram medidas pela variação na altura da coluna de mercúrio. Torricelli não apenas demonstrou a existência da pressão do ar, mas inventou o aparelho capaz de realizar sua medida, o barômetro como pode se observar na figura.

Page 55: Mef 110808224140-phpapp01

Exercício 1

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Uma placa circular com diâmetro igual a 0,5m possui um peso de 200N, determine em Pa a pressão exercida por essa placa quando a mesma estiver apoiada sobre o solo.

Mecânica dos Fluidos

Page 56: Mef 110808224140-phpapp01

Solução do Exercício 1

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Área da Placa:

m2

Determinação da Pressão:

N/m2

Mecânica dos Fluidos

4

2dA

⋅=π

4

5,0 2⋅=π

A

19625,0=A

A

FP =

19625,0

200=P

1,1019=P

Pa1,1019=P

Page 57: Mef 110808224140-phpapp01

Exercício 2

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) Determine o peso em N de uma placa retangular de área igual a 2m² de forma a produzir uma pressão de 5000Pa.

Mecânica dos Fluidos

Page 58: Mef 110808224140-phpapp01

Solução do Exercício 2

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Cálculo do Peso:

Mecânica dos Fluidos

A

FP =

APF ⋅=

25000 ⋅=F 10000=F N

A Força calculada corresponde ao peso

da placa

Page 59: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Uma caixa d'água de área de base 1,2m X 0.5 m e altura de 1 m pesa 1000N que pressão ela exerce sobre o solo?

a) Quando estiver vazia b) Quando estiver cheia com água Dados: γH2O = 10000N/m³, g = 10m/s².

Mecânica dos Fluidos

Page 60: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) Uma placa circular com diâmetro igual a 1m possui um peso de 500N, determine em Pa a pressão exercida por essa placa quando a mesma estiver apoiada sobre o solo.

Mecânica dos Fluidos

Page 61: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

3) Converta as unidades de pressão para o sistema indicado. (utilize os fatores de conversão apresentados na tabela).

a) converter 20psi em Pa.

b) converter 3000mmHg em Pa.

c) converter 200kPa em kgf/cm².

d) converter 30kgf/cm² em psi.

e) converter 5bar em Pa.

f) converter 25mca em kgf/cm².

g) converter 500mmHg em bar.

h) converter 10psi em mmHg.

i) converter 80000Pa em mca.

j) converter 18mca em mmHg.

Mecânica dos Fluidos

Page 62: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

4) Converta as unidades de pressão para o sistema indicado. (utilize os fatores de conversão apresentados na tabela).

a) converter 2atm em Pa. b) converter 3000mmHg em psi. c) converter 30psi em bar. d) converter 5mca em kgf/cm². e) converter 8bar em Pa. f) converter 10psi em Pa.

Mecânica dos Fluidos

Page 63: Mef 110808224140-phpapp01

Próxima Aula

Teorema de Stevin.

Princípio de Pascal.

Aula 3 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 64: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 4 – Teorema de Stevin e Princípio de Pascal

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 65: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Teorema de Stevin.

Princípio de Pascal.

Aula 4 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 66: Mef 110808224140-phpapp01

Teorema de Stevin

Aula 4 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

O teorema de Stevin também é conhecido por teorema fundamental da hidrostática e sua definição é de grande importância para a determinação da pressão atuante em qualquer ponto de uma coluna de líquido.

O teorema de Stevin diz que “A diferença de pressão entre dois pontos de um fluido em repouso é igual ao produto do peso específico do fluido pela diferença de cota entre os dois pontos avaliados”, matematicamente essa relação pode ser escrita do seguinte modo:

hP ∆⋅=∆ γ

Page 67: Mef 110808224140-phpapp01

Aplicação do Teorema de Stevin

Aula 4 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Avaliando-se a figura, épossível observar que o teorema de Stevin permite a determinação da pressão atuante em qualquer ponto de um fluido em repouso e que a diferença de cotas ∆h é dada pela diferença entre a cota do ponto B e a cota do ponto A medidas a partir da superfície livre do líquido, assim, pode-se escrever que:

Mecânica dos Fluidos

hgP ∆⋅⋅=∆ ρ

AB hhh −=∆)( ABAB hhgPPP −⋅⋅=−=∆ ρ

Page 68: Mef 110808224140-phpapp01

Exercício 1

Aula 4 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Um reservatório aberto em sua superfície possui 8m de profundidade e contém água, determine a pressão hidrostática no fundo do mesmo.

Dados: γH2O = 10000N/m³, g = 10m/s².

Mecânica dos Fluidos

Page 69: Mef 110808224140-phpapp01

Solução do Exercício 1

Aula 4 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Determinação da Pressão:

Mecânica dos Fluidos

Pa

hgP ⋅⋅= ρ

hP ⋅= γ

810000 ⋅=P

80000=P

Page 70: Mef 110808224140-phpapp01

Princípio de Pascal

Aula 4 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

O Principio de Pascal representa uma das mais significativas contribuições práticas para a mecânica dos fluidos no que tange a problemas que envolvem a transmissão e a ampliação de forças através da pressão aplicada a um fluido.

O seu enunciado diz que: “quando um ponto de um líquido em equilíbrio sofre uma variação de pressão, todos os outros pontos também sofrem a mesma variação”.

Mecânica dos Fluidos

Page 71: Mef 110808224140-phpapp01

Aplicações do Princípio de Pascal

Aula 4 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Pascal, físico e matemático francês, descobriu que, ao se aplicar uma pressão em um ponto qualquer de um líquido em equilíbrio, essa pressão se transmite a todos os demais pontos do líquido, bem como às paredes do recipiente.

Essa propriedade dos líquidos, expressa pela lei de Pascal, é utilizada em diversos dispositivos, tanto para amplificar forças como para transmiti-las de um ponto a outro. Um exemplo disso é a prensa hidráulica e os freios hidráulicos dos automóveis.

Mecânica dos Fluidos

Page 72: Mef 110808224140-phpapp01

Elevador HidráulicoAula 4 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Os elevadores para veículos automotores, utilizados em postos de serviço e oficinas, por exemplo, baseiam-se nos princípios da prensa hidráulica. Ela é constituída de dois cilindros de seções diferentes. Em cada um, desliza um pistão. Um tubo comunica ambos os cilindros desde a base. A prensa hidráulica permite equilibrar uma força muito grande a partir da aplicação de uma força pequena. Isso é possível porque as pressões sobre as duas superfícies são iguais (Pressão = Força / Área). Assim, a grande força resistente (F2) que age na superfície maior éequilibrada por uma pequena força motora (F1) aplicada sobre a superfície menor (F2/A2 = F1/A1) como pode se observar na figura. 2

2

1

1

A

F

A

F=

Page 73: Mef 110808224140-phpapp01

Exercício 2

Aula 4 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) Na figura apresentada a seguir, os êmbolos Ae B possuem áreas de 80cm² e 20cm²respectivamente. Despreze os pesos dos êmbolos e considere o sistema em equilíbrio estático. Sabendo-se que a massa do corpo colocado em A é igual a 100kg, determine a massa do corpo colocado em B.

Mecânica dos Fluidos

Page 74: Mef 110808224140-phpapp01

Solução do Exercício 2

Aula 4 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Força atuante em A:

Mecânica dos Fluidos

B

B

A

A

A

F

A

F=gmF AA ⋅=

10100 ⋅=AF

1000=AF2080

1000 BF=

80

201000 ⋅=BF

250=BF

gmF BB ⋅=

g

Fm BB =

10

250=Bm

25=Bm

N

Força atuante em B:

N

Massa em B:

kg

Page 75: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 4 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Qual a pressão, em kgf/cm2, no fundo de um reservatório que contém água, com 3m de profundidade? Faça o mesmo cálculo para um reservatório que contém gasolina (peso específico relativo = 0,72).

Mecânica dos Fluidos

Page 76: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 4 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) O nível de água contida em uma caixa d’água aberta à atmosfera se encontra 10m acima do nível de uma torneira, determine a pressão de saída da água na torneira.

Dados: γH2O = 10000N/m³, g = 10m/s².

Mecânica dos Fluidos

Page 77: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 4 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

3) As áreas dos pistões do dispositivo hidráulico mostrado na figura mantêm a relação 50:2. Verifica-se que um peso P colocado sobre o pistão maior é equilibrado por uma força de 30N no pistão menor, sem que o nível de fluido nas duas colunas se altere. Aplicando-se o principio de Pascal determine o valor do peso P.

Mecânica dos Fluidos

Page 78: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 4 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

4) A prensa hidráulica mostrada na figura está em equilíbrio. Sabendo-se que os êmbolos possuem uma relação de áreas de 5:2, determine a intensidade da força F.

Mecânica dos Fluidos

Page 79: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 4 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

5) Na prensa hidráulica mostrada na figura, os diâmetros dos tubos 1 e 2 são, respectivamente, 4cm e 20cm. Sendo o peso do carro igual a 10000N, determine:

a) a força que deve ser aplicada no tubo 1 para equilibrar o carro.

b) o deslocamento do nível de óleo no tubo 1, quando o carro sobe 20cm.

Mecânica dos Fluidos

Page 80: Mef 110808224140-phpapp01

Próxima Aula

Manômetros.

Manometria.

Aula 4 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 81: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 5 – Manômetros e Manometria

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 82: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Manômetros.

Manometria.

Aula 5 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 83: Mef 110808224140-phpapp01

Definição de Manômetro

Aula 5 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

O manômetro é o instrumento utilizado na mecânica dos fluidos para se efetuar a medição da pressão, no setor industrial existem diversos tipos e aplicações para os

manômetros.

Page 84: Mef 110808224140-phpapp01

Tipos de Manômetros

Aula 5 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

a) Manômetros utilitários: Recomendo para compressores de ar, equipamentos pneumáticos, linhas de ar, de gases, de líquidos e instalações em geral.

b) Manômetros industriais: São manômetros de construção robusta, com mecanismo reforçado e recursos para ajuste. São aplicados como componentes de quase todos os tipos de equipamentos industriais.

c) Manômetros herméticos ou com glicerina: São manômetros de construção robusta, com mecanismo reforçado e recursos para ajuste. Com a caixa estanque, pode ser enchida com líquido amortecedor (glicerina ou silicone). Adaptam-se especialmente às instalações submetidas a vibrações ou pulsações da linha quando preenchida com líquido amortecedor.

d) Manômetros de aço inoxidável: São manômetros totalmente feitos de aço inoxidável, caixa estanque, à prova de tempo, para aplicações nas indústrias petroquímicas, papel e celulose, alimentares, nos produtos corrosivos, nas usinas e outras que exijam durabilidade, precisão e qualidade.

e) Manômetros petroquímicos: São manômetros de processo em caixa de aço inoxidável, fenol, alumínio fundido e nylon, com componentes em aço inoxidável, estanque, a prova de tempo, para aplicação nas indústrias petroquímicas, químicas, alimentícias, equipamentos industriais e outras que exijam durabilidade, precisão e qualidade.

Mecânica dos Fluidos

Page 85: Mef 110808224140-phpapp01

Tipos de Manômetros

Aula 5 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

f) Manômetros de baixa pressão (mmca): São manômetros capsular de latão ou de aço inox, para medir pressões baixas, aplicadas nos equipamentos de respiração artificial, ventilação e ar condicionado, teste de vazamentos, queimadores, secadores, etc. Recomenda-se não operar diretamente com líquidos, pois estes alteram seu funcionamento.

g) Manômetros de teste: Os manômetros de teste são aparelhos de precisão destinados a aferições e calibração de outros manômetros. Recomenda-se que o instrumento padrão seja pelo menos quatro vezes mais preciso que o instrumento em teste.

h) Manômetros sanitários: Os manômetros com selo sanitário, são construídos totalmente de aço inoxidável para aplicações em indústrias alimentícias, químicas e farmacêuticas e nos locais onde se requerem facilidade de desmontagem para a limpeza e inspeção. A superfície plana da membrana corrugada de aço inoxidável evita a incrustação dos produtos.

i) Manômetros de mostrador quadrado para painel: Os manômetros de mostrador quadrado são aparelhos especialmente concebidos para montagem embutida em painéis.

j) Manômetros para freon: Os manômetros destinados especialmente à indústria de refrigeração, utilizam o Freon 11, 12, 13, 22, 114 e 502. Os mostradores desses manômetros possuem uma escala de equivalência em temperatura e pressão.

Mecânica dos Fluidos

Page 86: Mef 110808224140-phpapp01

Tipos de Manômetros

Aula 5 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

k) Manômetros para amônia (NH3): São manômetros totalmente de aço inoxidável ou partes em contato com o processo em aço inox para trabalhar com gás de amônia. Os mostradores desses manômetros possuem uma escalade equivalência em temperatura e pressão.

l) Manômetros de dupla ação: São manômetros construídos especialmente para indicar as pressões no cilindro e no sistema de freios pneumáticos de locomotivas ou poderá ser usado para fins industriais. O manômetro compõe-se na realidade de dois sistemas independentes em que os eixos dos ponteiros são coaxiais para indicar duas pressões.

m) Manômetros diferencial: O elemento elástico deste aparelho é composto de um conjunto de 2 foles ou tubo -bourdon em aço inoxidável, recebendo de um lado, a pressão alta, e do outro a baixa pressão. O deslocamento relativo do conjunto dos foles ou tubo - bourdon movimenta o mecanismo e o ponteiro indicará diretamente a pressão diferencial.

n) Manômetros com contato elétrico: São projetados para serem adaptados aos manômetros para ligar, desligar, acionar alarmes ou manter a pressão dentro de uma faixa.

o) Manômetros com selo de diafragma: Os selos de diafragma são utilizados nos manômetros para separar e proteger o instrumento de medição do processo. Aplicadas nas instalações em que o material do processo seja corrosivo, altamente viscoso, temperatura excessiva, material tóxico ou perigoso, materiais em suspensão, etc.

p) Manômetros com transmissão mecânica: Os manômetros com transmissão mecânica (MEC) funcionam sem o tubo - bourdon, o elemento sensor é a própria membrana. Recomendado para trabalhar com substâncias pastosas, líquidas e gases, e nas temperaturas excessivas onde o fluído não entra em contato com o instrumento. As vantagens dos manômetros com transmissão mecânica em relação aos outros, incluem uma menor sensibilidade aos efeitos de choque e vibrações e os efeitos de temperaturas são reduzidos além de facilidade de manutenção.

q) Manômetros digitais: Podem ser utilizados em sistemas de controle de processos, sistemas pneumáticos, sistemas hidráulicos, refrigeração, instrumentação, compressores, bombas, controle de vazão e medição de nível.

r) Manômetro de mercúrio: Utilizado em diversos processos, sua principal característica é a utilização de fluidos manométricos como por exemplo mercúrio.

Mecânica dos Fluidos

Page 87: Mef 110808224140-phpapp01

Determinação da Pressão

Aula 5 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Para se determinar a pressão do ponto A em função das várias alturas das colunas presentes na figura aplica-se o teorema de Stevinem cada um dos trechos preenchidos com o mesmo fluido.

Mecânica dos Fluidos

APP =1 APhP +⋅= 112 γ

APhgP +⋅⋅= 112 ρ

112 hgPPA ⋅⋅−= ρ

32 PP = APhgPP +⋅⋅== 1132 ρ

113 hgPPA ⋅⋅−= ρ

2234 hPP ⋅−= γ 2234 hgPP ⋅⋅−= ρ

22114 hgPhgP A ⋅⋅−+⋅⋅= ρρ

APhghg +⋅⋅−⋅⋅= 22110 ρρ

1122 hghgPA ⋅⋅−⋅⋅= ρρ

Ponto 2:

Ponto 3:

Ponto 4:

Page 88: Mef 110808224140-phpapp01

Exercício 1

Aula 5 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) No manômetro diferencial mostrado na figura, o fluido A é água, Bé óleo e o fluido manométrico é mercúrio. Sendo h1 = 25cm, h2 = 100cm, h3 = 80cm e h4 = 10cm, determine qual é a diferença de pressão entre os pontos A e B.

Dados: γh20 = 10000N/m³, γHg = 136000N/m³, γóleo = 8000N/m³.

Mecânica dos Fluidos

água

óleo

mercúrio

Page 89: Mef 110808224140-phpapp01

Solução do Exercício 1

Aula 5 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Ponto 1:

Mecânica dos Fluidos

Pa

água

óleo

mercúrio

água

óleo

mercúrio

(1)

(2) (3)

121 hPP ohA ⋅+= γ

212 hPP Hg ⋅+= γ

2122 hhPP HgohA ⋅+⋅+= γγ

23 PP =

2123 hhPP HgohA ⋅+⋅+= γγ

33 hPP óleoB ⋅−= γ

3212 hhhPP óleoHgohAB ⋅−⋅+⋅+= γγγ

3212 hhhPP óleoHgohAB ⋅−⋅+⋅=− γγγ

8,08000113600025,010000 ⋅−⋅+⋅=− AB PP

132100=− AB PP

Ponto 2:

Diferença de pressão:

Ponto 3:

Mesmo fluido e nível

Page 90: Mef 110808224140-phpapp01

Exercício 2

Aula 5 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) O tubo A da figura contém tetracloreto de carbono com peso específico relativo de 1,6 e o tanque B contém uma solução salina com peso específico relativo da 1,15. Determine a pressão do ar no tanque B sabendo-se que a pressão no tubo A é igual a 1,72bar.

Mecânica dos Fluidos

Page 91: Mef 110808224140-phpapp01

Solução do Exercício 2

Aula 5 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Pressão em A:

Mecânica dos Fluidos

N/m³

Peso específico:

Pa

Determinação da Pressão:

Pa

(1) (2)

(3)(4)

(5)

9,01 ⋅−= TCAPP γ

9,01600068,1723911 ⋅−=P

68,1579911 =P

12 PP =

68,1579912 =P

9,023 ⋅+= SSPP γ

9,01150068,1579913 ⋅+=P

68,1683413 =P

34 PP =

68,1683414 =P

22,145 ⋅−= SSPP γ

22,11150068,1683415 ⋅−=P

68,1543115 =P

01,1

10123072,1 ⋅=AP

68,172391=AP

ohrTCTC 2γγγ ⋅=

100006,1 ⋅=TCγ

16000=TCγ

ohrSSSS 2γγγ ⋅=

1000015,1 ⋅=SSγ

11500=SSγ

1,01bar = 101230Pa

1,72bar = PA

Tetracloreto:

Solução Salina:

N/m³

Ponto 1:

Ponto 2:

Pa

Mesmo fluido e nível

Ponto 3:

Ponto 4:

Ponto 5:

Pa

Pa

Pa

Mesmo fluido e nível

Page 92: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 5 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) O manômetro em U mostrado na figura contém óleo, mercúrio e água. Utilizando os valores indicados, determine a diferença de pressões entre os pontos A e B.

Dados: γh20 = 10000N/m³, γHg = 136000N/m³, γóleo = 8000N/m³.

Mecânica dos Fluidos

Page 93: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 5 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) A pressão da água numa torneira fechada (A) é de 0,28 kgf/cm2. Se a diferença de nível entre (A) e o fundo da caixa é de 2m, Calcular:

a) a altura da água (H) na caixa. b) a pressão no ponto (B), situado 3m abaixo de (A).

Mecânica dos Fluidos

Page 94: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 5 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

3) Um manômetro diferencial de mercúrio (massa específica 13600kg/m3)é utilizado como indicador do nível de uma caixa d'água, conforme ilustra a figura abaixo. Qual o nível da água na caixa (hl) sabendo-se que h2 = 15m e h3 = 1,3m.

Mecânica dos Fluidos

Page 95: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 5 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

4) Qual o peso específico do líquido (B) do esquema abaixo:

Mecânica dos Fluidos

Page 96: Mef 110808224140-phpapp01

Próxima Aula

Solução de Exercícios - Manometria.

Manômetros em U.

Manômetros Diferenciais.

Aula 5 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 97: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 6 – Manômetros

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 98: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Solução de Exercícios - Manometria.

Manômetros em U.

Manômetros Diferenciais.

Aula 6 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 99: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 6 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Na figura abaixo, o tubo A contém óleo (γr = 0,80) e o tubo B, água. Calcular as pressões em A e em B.

Mecânica dos Fluidos

Page 100: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 6 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) A figura abaixo apresenta esquematicamente um manômetro diferencial. Pede-se a diferença de pressões entre os pontos A e B em Pascal, conhecendo-se os seguintes dados de peso específico relativo e alturas:

Peso específico relativo: γr l = γr 5 = 1; γr 2 = 13,6; γr 3 = 0,8; γr 4 = 1,2. Alturas: z1 = 1,0 m; z2 = 2,0 m; z3 = 2,5 m; z4 = 5,0 m; z5 = 6,0 m.

Mecânica dos Fluidos

Page 101: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 6 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

3) Um tubo em “U”, cujas extremidades se abrem na atmosfera, estácheio de mercúrio na base. Num ramo, uma coluna d’água eleva-se 750mm acima do mercúrio, no outro, uma coluna de óleo (peso específico relativo = 0,80) tem 450mm acima do mercúrio. Qual a diferença de altura entre as superfícies livres de água e óleo?

Mecânica dos Fluidos

Page 102: Mef 110808224140-phpapp01

Próxima Aula

Flutuação e Empuxo.

Aula 6 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 103: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 7 – Flutuação e Empuxo

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 104: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Flutuação e Empuxo.

Solução de Exercícios.

Aula 7 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 105: Mef 110808224140-phpapp01

Definição de Empuxo

Aula 7 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Quando se mergulha um corpo em um líquido, seu peso aparente diminui, chegando às vezes a parecer totalmente anulado (quando o corpo flutua). Esse fato se deve à existência de uma força vertical de baixo para cima, exercida no corpo pelo líquido, a qual recebe o nome de empuxo.

O empuxo se deve à diferença das pressões exercidas pelo fluido nas superfícies inferior e superior do corpo. Sendo as forças aplicadas pelo fluido na parte inferior maiores que as exercidas na parte superior, a resultante dessas forças fornece uma força vertical de

baixo para cima, que é o empuxo.

Mecânica dos Fluidos

Page 106: Mef 110808224140-phpapp01

Princípio de Arquimedes

Aula 7 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

A teoria para obtenção da força de empuxo estádiretamente relacionada ao Princípio de Arquimedes que diz:

“Todo corpo imerso, total ou parcialmente, num fluido em equilíbrio, dentro de um campo gravitacional, fica sob a ação de uma força vertical, com sentido ascendente, aplicada pelo fluido. Esta força é denominada empuxo (E), cuja intensidade é igual ao peso do líquido deslocado pelo corpo.”

Mecânica dos Fluidos

Page 107: Mef 110808224140-phpapp01

Demonstração do Princípio de Arquimedes

Aula 7 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

O Princípio de Arquimedes permite calcular a força que um fluido (líquido ou gás) exerce sobre um sólido nele mergulhado.

Para entender o Princípio de Arquimedes, imagine a seguinte situação: um copo totalmente cheio d’água e uma esfera de chumbo. Se colocarmos a esfera na superfície da água, ela vai afundar e provocar o extravasamento de uma certa quantidade de água. A força que a água exerce sobre a esfera terá direção vertical, sentido para cima e módulo igual ao do peso da água que foi deslocada como mostra a figura.

Mecânica dos Fluidos

Page 108: Mef 110808224140-phpapp01

Exemplo de Aplicação

Aula 7 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Um exemplo clássico da aplicação do Princípio de Arquimedes são os movimentos de um submarino. Quando o mesmo estiver flutuando na superfície, o seu peso terá a mesma intensidade do empuxo recebido. Para que o submarino afunde, deve-se aumentar o seu peso, o que se consegue armazenando água em reservatórios adequados em seu interior. Controlando a quantidade de água em seus reservatórios, é possível ajustar o peso do submarino para o valor desejado, a figura mostra as duas situações acima citadas.

Mecânica dos Fluidos

Page 109: Mef 110808224140-phpapp01

Flutuação do Submarino

Aula 7 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Para que o submarino volte a flutuar, a água deve ser expulsa de seus reservatórios para reduzir o peso do submarino e fazer com que

o empuxo se torne maior que o peso.

Mecânica dos Fluidos

Page 110: Mef 110808224140-phpapp01

Formulação Matemática do Empuxo

Aula 7 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Como citado, o Princípio de Aquimedes diz que o empuxo é igual ao peso do líquido deslocado, portanto, pode-se escrever que:

Na equação apresentada, E representa o empuxo e mL a massa do líquido deslocado. Essa mesma equação pode ser reescrita utilizando-se considerações de massa específica, pois como visto anteriormente , portanto, , assim:

Nesta equação, ρL representa a massa específica do líquido e VL o volume de líquido deslocado. Pela análise realizada é possível perceber que o empuxo será tento maior quanto maior for o volume de líquido deslocado e quanto maior for a densidade deste líquido.

Mecânica dos Fluidos

gmE L ⋅=LWE =

gVE LL ⋅⋅= ρ

gVE cL ⋅⋅= ρ gVP cc ⋅⋅= ρ

Vm=ρ

LLL Vm ⋅= ρ

Page 111: Mef 110808224140-phpapp01

Considerações sobre o Empuxo

Aula 7 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Três importantes considerações podem ser feitas com relação ao empuxo:

a) se ρL < ρc, tem-se E < P e, neste caso, o corpo afundará no líquido.

b) se ρL = ρc, tem-se E = P e, neste caso, o corpo ficará em equilíbrio quando estiver totalmente mergulhado no líquido.

c) se ρL > ρc, tem-se E > P e, neste caso, o corpo permaneceráboiando na superfície do líquido.

Dessa forma, é possível se determinar quando um sólido flutuará ou afundará em um líquido, simplesmente conhecendo o valor de sua massa específica.

Mecânica dos Fluidos

Page 112: Mef 110808224140-phpapp01

Exercício 1

Aula 7 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Um objeto com massa de 10kg e volume de 0,002m³ estátotalmente imerso dentro de um reservatório de água (ρH2O = 1000kg/m³), determine:

a) Qual é o valor do peso do objeto? (utilize g = 10m/s²) b) Qual é a intensidade da força de empuxo que a água exerce sobre

o objeto? c) Qual o valor do peso aparente do objeto quando imerso na água?

Mecânica dos Fluidos

Page 113: Mef 110808224140-phpapp01

Solução do Exercício 1

Aula 7 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

a) Peso do Corpo:

Mecânica dos Fluidos

N

b) Empuxo:

gmPc ⋅=

1010 ⋅=cP

100=cP

cVgE ⋅⋅= ρ

002,0101000 ⋅⋅=E

20=E

EPP cA −=

20100−=AP

80=AP

c) Peso Aparente:

N

N

Pc

E

Page 114: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 7 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Um bloco cúbico de madeira com peso específico γ = 6500N/m³, com 20 cm de aresta, flutua na água (ρH2O = 1000kg/m³). Determine a altura do cubo que permanece dentro da água.

2) Um bloco pesa 50N no ar e 40N na água. Determine a massa específica do material do bloco. Dados: ρH2O = 1000kg/m³ e g = 10m/s².

3) Um corpo com volume de 2,0m³ e massa 3000kg encontra-se totalmente imerso na água, cuja massa específica é (ρH2O = 1000kg/m³). Determine a força de empuxo sobre o corpo.

Mecânica dos Fluidos

Page 115: Mef 110808224140-phpapp01

Próxima Aula

Cinemática dos Fluidos.

Definição de Vazão Volumétrica.

Vazão em Massa e Vazão em Peso.

Aula 7 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 116: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 8 – Introdução a Cinemática dos Fluidos

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 117: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Cinemática dos Fluidos.

Definição de Vazão Volumétrica.

Vazão em Massa e Vazão em Peso.

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 118: Mef 110808224140-phpapp01

Definição

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

A cinemática dos fluidos é a ramificação da mecânica dos fluidos que estuda o comportamento de um fluido em uma

condição movimento.

Mecânica dos Fluidos

Page 119: Mef 110808224140-phpapp01

Vazão Volumétrica

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Em hidráulica ou em mecânica dos fluidos, define-se vazão como a relação entre o volume e o tempo.

A vazão pode ser determinada a partir do escoamento de um fluido através de determinada seção transversal de um conduto livre (canal, rio ou tubulação aberta) ou de um conduto forçado (tubulação com pressão positiva ou negativa).

Isto significa que a vazão representa a rapidez com a qual um volume escoa.

As unidades de medida adotadas são geralmente o m³/s, m³/h, l/h ou o l/s.

Mecânica dos Fluidos

Page 120: Mef 110808224140-phpapp01

Cálculo da Vazão Volumétrica

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

A forma mais simples para se calcular a vazão volumétrica éapresentada a seguir na equação mostrada.

Qv representa a vazão volumétrica, V é o volume e t o intervalo de tempo para se encher o reservatório.

Mecânica dos Fluidos

t

VQv =

Page 121: Mef 110808224140-phpapp01

Método Experimental Um exemplo clássico para a medição de vazão é a realização do

cálculo a partir do enchimento completo de um reservatório através da água que escoa por uma torneira aberta como mostra a figura.

Considere que ao mesmo tempo em que a torneira é aberta um cronômetro é acionado. Supondo que o cronômetro foi desligado assim que o balde ficou completamente cheio marcando um tempo t, uma vez conhecido o volume V do balde e o tempo t para seu completo enchimento, a equação é facilmente aplicável resultando na vazão volumétrica desejada.

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

t

VQv =

Page 122: Mef 110808224140-phpapp01

Relação entre Área e Velocidade

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Uma outra forma matemática de se determinar a vazão volumétrica éatravés do produto entre a área da seção transversal do conduto e a velocidade do escoamento neste conduto como pode ser observado na figura a seguir.

Mecânica dos Fluidos

Pela análise da figura, é possível observar que o volume do cilindro tracejado é dado por:

Substituindo essa equação na equação de vazão volumétrica, pode-se escrever que:

A partir dos conceitos básicos de cinemática aplicados em Física, sabe-se que a relação d/t é a velocidade do escoamento, portanto, pode-se escrever a vazão volumétrica da seguinte forma:

Qv representa a vazão volumétrica, v é a velocidade do escoamento e A é a área da seção transversal da tubulação.

AdV ⋅=

t

AdQv

⋅=

AvQv ⋅=

Page 123: Mef 110808224140-phpapp01

Relações Importantes

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1m³=1000litros

1h=3600s

1min=60s

Área da seção transversal circular:

Mecânica dos Fluidos

4

2dA

⋅=π

14,3=π

Page 124: Mef 110808224140-phpapp01

Vazão em Massa e em Peso

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

De modo análogo à definição da vazão volumétrica é possível se definir as vazões em massa e em peso de um fluido, essas vazões possuem importância fundamental quando se deseja realizar medições em função da massa e do peso de uma substância.

Mecânica dos Fluidos

Page 125: Mef 110808224140-phpapp01

Vazão em Massa

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Vazão em Massa: A vazão em massa é caracterizada pela massa do fluido que escoa em um determinado intervalo de tempo, dessa forma tem-se que:

Onde m representa a massa do fluido. Como definido anteriormente, sabe-se que ρ = m/V, portanto, a massa pode

ser escrita do seguinte modo:

Assim, pode-se escrever que:

Portanto, para se obter a vazão em massa basta multiplicar a vazão em volume pela massa específica do fluido em estudo, o que também pode ser expresso em função da velocidade do escoamento e da área da seção do seguinte modo:

As unidades usuais para a vazão em massa são o kg/s ou então o kg/h.

Mecânica dos Fluidos

t

mQm =

Vm ⋅= ρt

VQm

⋅=ρ

vm QQ ⋅= ρ AvQm ⋅⋅= ρ

Page 126: Mef 110808224140-phpapp01

Vazão em PesoAula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Vazão em Peso: A vazão em peso se caracteriza pelo peso do fluido que escoa emum determinado intervalo de tempo, assim, tem-se que:

Sabe-se que o peso é dado pela relação , como a massa é , pode-se escrever que:

Assim, pode-se escrever que:

Portanto, para se obter a vazão em massa basta multiplicar a vazão em volume pelo peso específico do fluido em estudo, o que também pode ser expresso em função da velocidade do escoamento e da área da seção do seguinte modo:

As unidades usuais para a vazão em massa são o N/s ou então o N/h.

Mecânica dos Fluidos

t

WQW =

gmW ⋅= Vm ⋅= ρ

gVW ⋅⋅= ρ

t

VQW

⋅=γ

vW QQ ⋅= γ

AvQW ⋅⋅= γ

Page 127: Mef 110808224140-phpapp01

Exercício 1

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Calcular o tempo que levará para encher um tambor de 214 litros, sabendo-se que a velocidade de escoamento do líquido é de 0,3m/s e o diâmetro do tubo conectado ao tambor é igual a 30mm.

Mecânica dos Fluidos

Page 128: Mef 110808224140-phpapp01

Solução do Exercício 1

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

min

m³/s

AvQv ⋅=

4

2dvQv

⋅⋅=π

4

03,03,0

2⋅⋅=π

vQ

00021,0=vQ

21,0=vQ

t

VQv =

vQ

Vt =

21,0

214=t

22,1014=t

9,16=t

Cálculo da vazão volumétrica: Cálculo do tempo:

l/s

s

Page 129: Mef 110808224140-phpapp01

Exercício 2

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) Calcular o diâmetro de uma tubulação, sabendo-se que pela mesma, escoa água a uma velocidade de 6m/s. A tubulação estáconectada a um tanque com volume de 12000 litros e leva 1 hora, 5 minutos e 49 segundos para enchê-lo totalmente.

Mecânica dos Fluidos

Page 130: Mef 110808224140-phpapp01

Solução do Exercício 2

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

mm³/s

s3949=t

t

VQv =

3949

12=vQ

00303,0=vQ

AvQv ⋅=

4

2dvQv

⋅⋅=π

24 dvQv ⋅⋅=⋅ π

π⋅

⋅=v

Qd v42

π⋅

⋅=

v

Qd v4

π⋅

⋅=

6

00303,04d

0254,0=d

4,25=d

Cálculo da vazão volumétrica:

Cálculo do tempo em segundos: Cálculo do diâmetro:

1h=3600s

5min=300s

t=3600+300+49

mm

Page 131: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Uma mangueira é conectada em um tanque com capacidade de 10000 litros. O tempo gasto para encher totalmente o tanque é de 500 minutos. Calcule a vazão volumétrica máxima da mangueira.

2) Calcular a vazão volumétrica de um fluido que escoa por uma tubulação com uma velocidade média de 1,4 m/s, sabendo-se que o diâmetro interno da seção da tubulação é igual a 5cm.

Mecânica dos Fluidos

Page 132: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

3) Calcular o volume de um reservatório, sabendo-se que a vazão de escoamento de um líquido é igual a 5 l/s. Para encher o reservatório totalmente são necessárias 2 horas.

4) No entamboramento de um determinado produto são utilizados tambores de 214 litros. Para encher um tambor levam-se 20 min. Calcule: a) A vazão volumétrica da tubulação utilizada para encher os tambores.b) O diâmetro da tubulação, em milímetros, sabendo-se que a velocidade de escoamento é de 5 m/s.c) A produção após 24 horas, desconsiderando-se o tempo de deslocamento dos tambores.

Mecânica dos Fluidos

Page 133: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

5) Um determinado líquido é descarregado de um tanque cúbico de 5m de aresta por um tubo de 5cm de diâmetro. A vazão no tubo é 10 l/s, determinar: a) a velocidade do fluído no tubo.b) o tempo que o nível do líquido levará para descer 20cm.

6) Calcule a vazão em massa de um produto que escoa por uma tubulação de 0,3m de diâmetro, sendo que a velocidade de escoamento é igual a 1,0m/s. Dados: massa específica do produto = 1200kg/m³

7) Baseado no exercício anterior, calcule o tempo necessário para carregar um tanque com 500 toneladas do produto.

Mecânica dos Fluidos

Page 134: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

8) A vazão volumétrica de um determinado fluído é igual a 10 l/s. Determine a vazão mássica desse fluído, sabendo-se que a massa específica do fluído é 800 kg/m3.

9) Um tambor de 214 litros é enchido com óleo de peso específico relativo 0,8, sabendo-se que para isso é necessário 15 min. Calcule: a) A vazão em peso da tubulação utilizada para encher o tambor. b) O peso de cada tambor cheio, sendo que somente o tambor vaziopesa 100N c) Quantos tambores um caminhão pode carregar, sabendo-se que o peso máximo que ele suporta é 15 toneladas.

Mecânica dos Fluidos

Page 135: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

10) Os reservatórios I e II da figura abaixo, são cúbicos. Eles são cheios pelas tubulações, respectivamente em 100s e 500s. Determinar a velocidade da água na seção A indicada, sabendo-se

que o diâmetro da tubulação é 1m.

Mecânica dos Fluidos

Page 136: Mef 110808224140-phpapp01

Próxima Aula

Avaliação 1.

Aula 8 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 137: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 9 – Avaliação 1

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 138: Mef 110808224140-phpapp01

Avaliação 1 Matéria da Prova:

Aula 1 - Definição de Mecânica dos Fluidos, Conceitos Fundamentais e Sistema Internacional de Unidades

Aula 2 - Propriedades dos Fluidos, Massa Específica, Peso Específico e Peso Específico Relativo

Aula 3 - Estática dos Fluidos, Definição de Pressão Estática Aula 4 - Teorema de Stevin e Princípio de Pascal Aula 5 - Manômetros e Manometria Aula 6 - Manometria, Manômetros em U e Manômetros Diferenciais Aula 7 - Flutuação e Empuxo Aula 8 - Cinemática dos Fluidos, Definição de Vazão Volumétrica,

Vazão em Massa e Vazão em Peso

Aula 9 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 139: Mef 110808224140-phpapp01

Próxima Aula

Escoamento Laminar e Turbulento

Cálculo do Número de Reynolds

Aula 9 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 140: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 10 – Escoamento Laminar e Turbulento

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 141: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Escoamento Laminar e Turbulento.

Cálculo do Número de Reynolds.

Aula 10 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 142: Mef 110808224140-phpapp01

Escoamento Laminar

Aula 10 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Ocorre quando as partículas de um fluido movem-se ao longo de trajetórias bem definidas, apresentando lâminas ou camadas (daí o nome laminar) cada uma delas preservando sua característica no meio. No escoamento laminar a viscosidade age no fluido no sentido de amortecer a tendência de surgimento da turbulência. Este escoamento ocorre geralmente a baixas velocidades e em fluídos que apresentem grande viscosidade.

Mecânica dos Fluidos

Page 143: Mef 110808224140-phpapp01

Escoamento Turbulento

Aula 10 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Ocorre quando as partículas de um fluido não movem-se ao longo de trajetórias bem definidas, ou seja as partículas descrevem trajetórias irregulares, com movimento aleatório, produzindo uma transferência de quantidade de movimento entre regiões de massa líquida. Este escoamento é comum na água, cuja a viscosidade e relativamente baixa.

Mecânica dos Fluidos

Page 144: Mef 110808224140-phpapp01

Visualização de Escoamentos Laminar e Turbulento em Tubos Fechados

Aula 10 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 145: Mef 110808224140-phpapp01

Número de Reynolds

Aula 10 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

O número de Reynolds (abreviado como Re) éum número adimensional usado em mecânica dos fluídos para o cálculo do regime de escoamento de determinado fluido dentro de um tubo ou sobre uma superfície. É utilizado, por exemplo, em projetos de tubulações industriais e asas de aviões. O seu nome vem de OsborneReynolds, um físico e engenheiro irlandês. O seu significado físico é um quociente entre as forças de inércia e as forças de viscosidade.

Mecânica dos Fluidos

Page 146: Mef 110808224140-phpapp01

Número de Reynolds em Tubos

Aula 10 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Re<2000 – Escoamento Laminar. 2000<Re<2400 – Escoamento de Transição. Re>2400 – Escoamento Turbulento.

ρ = massa específica do fluido µ = viscosidade dinâmica do fluido v = velocidade do escoamento D = diâmetro da tubulação

Mecânica dos Fluidos

µ

ρ DvRe

⋅⋅=

Page 147: Mef 110808224140-phpapp01

Tabelas de Viscosidade Dinâmica

Aula 10 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

21,2 × 10−6xenônio

17,4 × 10−6ar

8,4 × 10−6hidrogênio

viscosidade (Pa·s)gases

30 × 10−3ácido sulfúrico

17,0 × 10−3mercúrio

1,0030 × 10−3água

0,64 × 10−3benzeno

0,597 × 10−3metanol

0,326 × 10−3acetona

0,248 × 10−3álcool etílico

viscosidade (Pa·s)Líquidos a 20°C

Page 148: Mef 110808224140-phpapp01

Importância do Número de Reynolds

Aula 10 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

A importância fundamental do número de Reynolds é a possibilidade de se avaliar a estabilidade do fluxo podendo obter uma indicação se o escoamento flui de forma laminar ou turbulenta. O número de Reynolds constitui a base do comportamento de sistemas reais, pelo uso de modelos reduzidos. Um exemplo comum é o túnel aerodinâmico onde se medem forças desta natureza em modelos de asas de aviões. Pode-se dizer que dois sistemas são dinamicamente semelhantes se o número de Reynolds, for o mesmo para ambos.

Page 149: Mef 110808224140-phpapp01

Exemplo de Escoamento laminar e Turbulento em um Ensaio de Túnel de Vento

Aula 10 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Laminar Turbulento

Page 150: Mef 110808224140-phpapp01

Número de Reynolds em Perfis Aerodinâmicos

Aula 10 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Para aplicações em perfis aerodinâmicos, o número de Reynolds pode ser expresso em função da corda média aerodinâmica do perfil da seguinte forma.

onde: v representa a velocidade do escoamento, ρ é a densidade do ar, µ a viscosidade dinâmica do ar e a corda média aerodinâmica do perfil.

Mecânica dos Fluidos

c

µ

ρ cvRe

⋅⋅=

Page 151: Mef 110808224140-phpapp01

Fluxo Turbulento em Perfis Aerodinâmicos

Aula 10 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

A determinação do número de Reynolds representa um fator muito importante para a escolha e análise adequada das características aerodinâmicas de um perfil aerodinâmico, pois a eficiência de um perfil em gerar sustentação e arrasto está intimamente relacionada ao número de Reynolds obtido. Geralmente no estudo do escoamento sobre asas de aviões o fluxo se torna turbulento para números de Reynolds da ordem de 1x107, sendo que abaixo desse valor geralmente o fluxo é laminar.

Mecânica dos Fluidos

Page 152: Mef 110808224140-phpapp01

Exercício 1

Aula 10 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Calcular o número de Reynolds e identificar se o escoamento élaminar ou turbulento sabendo-se que em uma tubulação com

diâmetro de 4cm escoa água com uma velocidade de 0,05m/s.

Mecânica dos Fluidos

Solução do Exercício:

Viscosidade Dinâmica da água:

µ = 1,0030 × 10−3 Ns/m²

µ

ρ DvRe

⋅⋅=

310003,1

04,005,01000−⋅

⋅⋅=eR

1994=eR Escoamento Laminar

Page 153: Mef 110808224140-phpapp01

Exercício 2

Aula 10 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) Determine o número de Reynolds para uma aeronave em escala reduzida sabendo-se que a velocidade de deslocamento é v = 16 m/s para um vôo realizado em condições de atmosfera padrão ao nível do mar (ρ = 1,225 kg/m³). Considere m e µ = 1,7894x10-5 kg/ms.

Mecânica dos Fluidos

Solução do Exercício:

35,0=c

µ

ρ cvRe

⋅⋅=

5107894,1

35,016225,1−⋅

⋅⋅=eR

510833,3 ⋅=eR

Page 154: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 10 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Calcular o número de Reynolds e identificar se o escoamento élaminar ou turbulento sabendo-se que em uma tubulação com diâmetro de 4cm escoa água com uma velocidade de 0,2m/s.

2) Um determinado líquido, com kg/m³, escoa por uma tubulação de diâmetro 3cm com uma velocidade de 0,1m/s, sabendo-se que o número de Reynolds é 9544,35. Determine qual a viscosidade dinâmica do líquido.

Obs: Para solução dos exercícios ver propriedades nas tabelas das aulas 2 e 10.

Mecânica dos Fluidos

00,1200=ρ

Page 155: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 10 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

3) Acetona escoa por uma tubulação em regime laminar com um número de Reynolds de 1800. Determine a máxima velocidade do escoamento permissível em um tubo com 2cm de diâmetro de forma que esse número de Reynolds não seja ultrapassado.

4) Benzeno escoa por uma tubulação em regime turbulento com um número de Reynolds de 5000. Determine o diâmetro do tubo em mm sabendo-se que a velocidade do escoamento é de 0,2m/s.

Obs: Para solução dos exercícios ver propriedades nas tabelas das aulas 2 e 10.

Mecânica dos Fluidos

Page 156: Mef 110808224140-phpapp01

Próxima Aula

Equação da Continuidade para Regime Permanente.

Aula 10 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 157: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 11 – Equação da Continuidade para Regime Permanente

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 158: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Equação da Continuidade para Regime Permanente.

Aula 11 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 159: Mef 110808224140-phpapp01

Regime Permanente

Aula 11 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Para que um escoamento seja permanente, é necessário que não ocorra nenhuma variação de propriedade, em nenhum ponto

do fluido com o tempo.

Mecânica dos Fluidos

Page 160: Mef 110808224140-phpapp01

Equação da Continuidade

Aula 11 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

A equação da continuidade relaciona a vazão em massa na entrada e na saída de um sistema.

Para o caso de fluido incompressível, a massa específica é a mesma tanto na entrada quanto na saída, portanto:

A equação apresentada mostra que as velocidades são inversamente proporcionais as áreas, ou seja, uma redução de área corresponde a um aumento de velocidade e vice-versa.

Mecânica dos Fluidos

21 mm QQ = 222111 AvAv ⋅⋅=⋅⋅ ρρ

21 ρρ = 2211 AvAv ⋅=⋅

Page 161: Mef 110808224140-phpapp01

Exercício 1

Aula 11 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Para a tubulação mostrada na figura, calcule a vazão em massa, em peso e em volume e determine a velocidade na seção (2) sabendo-se que A1 = 10cm² e A2 = 5cm².

Dados: ρ = 1000kg/m³ e v1 = 1m/s.

Mecânica dos Fluidos

(1)

(2)

v1 v2

Page 162: Mef 110808224140-phpapp01

Solução do Exercício 1

Aula 11 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

2211 AvAv ⋅=⋅

5101 2 ⋅=⋅ v

5

102 =v

22 =v

Aplicação da Equação da Continuidade entre os pontos (1) e (2).

m/s

Page 163: Mef 110808224140-phpapp01

Exercício 2

Aula 11 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) Um tubo despeja água em um reservatório com uma vazão de 20 l/s e um outro tubo despeja um líquido de massa específica igual a 800kg/m³ com uma vazão de 10 l/s. A mistura formada édescarregada por um tubo da área igual a 30cm². Determinar a massa específica da mistura no tubo de descarga e calcule também qual é a velocidade de saída.

Mecânica dos Fluidos

(mistura)

(líquido)(água)

(1) (2)

(3)

Page 164: Mef 110808224140-phpapp01

Solução do Exercício 2

Aula 11 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

321 mmm QQQ =+

)()()( 333222111 AvAvAv ⋅⋅=⋅⋅+⋅⋅ ρρρ

AvQv ⋅=

)()()( 332211 vvv QQQ ⋅=⋅+⋅ ρρρ

02,01 =vQ

01,02 =vQ

321 vvv QQQ =+

301,002,0 vQ=+

03,03 =vQ

)()()( 332211 vvv QQQ ⋅=⋅+⋅ ρρρ

)03,0()01,0800()02,01000( 3 ⋅=⋅+⋅ ρ

03,0

)01,0800()02,01000(3

⋅+⋅=ρ

03,0

8203

+=ρ

03,0

283 =ρ

33,9333 =ρ

Equação da continuidade:

Vazão volumétrica:

Pode-se escrever que:

Vazão volumétrica (entrada):

Vazão volumétrica (saída):

Massa específica (mistura):

kg/m³

Page 165: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 11 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Água é descarregada de um tanque cúbico com 3m de aresta por um tubo de 3cm de diâmetro. A vazão no tubo é de 7 l/s. Determine a velocidade de descida da superfície livre da água do tanque e calcule quanto tempo o nível da água levará para descer 15cm. Calcule também a velocidade de descida da água na tubulação.

2) Um determinado líquido escoa por uma tubulação com uma vazão de 5 l/s. Calcule a vazão em massa e em peso sabendo-se que ρ = 1350kg/m³ e g = 10m/s².

Mecânica dos Fluidos

Page 166: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 11 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

3) Água escoa na tubulação mostrada com velocidade de 2m/s na seção (1). Sabendo-se que a área da seção (2) é o dobro da área da

seção (1), determine a velocidade do escoamento na seção (2).

Mecânica dos Fluidos

(1)

(2)

v1 v2

Page 167: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 11 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

4) Calcule o diâmetro de uma tubulação sabendo-se que pela mesma escoa água com uma velocidade de 0,8m/s com uma vazão de 3 l/s.

5) Sabe-se que para se encher o tanque de 20m³ mostrado são necessários 1h e 10min, considerando que o diâmetro do tubo é igual a 10cm, calcule a velocidade de saída do escoamento pelo tubo.

Mecânica dos Fluidos

20m³

Page 168: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 11 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

6) Determine a velocidade do fluido nas seções (2) e (3) da tubulação mostrada na figura.

Dados: v1 = 3m/s, d1 = 0,5m, d2 = 0,3m e d3 = 0,2m.

Mecânica dos Fluidos

(2)

(1)

(3)

v2 v3v1

Page 169: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 11 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

7) Para a tubulação mostrada determine: a) A vazão e a velocidade no ponto (3). b) A velocidade no ponto (4). Dados: v1 = 1m/s, v2 = 2m/s, d1 = 0,2m, d2 = 0,1m, d3 = 0,25m e d4 =

0,15m.

Mecânica dos Fluidos

(2)

(1)

(3) (4)v2

v1

v3 v4

Qv2

Qv1

Page 170: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 11 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

8) Sabendo-se que Q1 = 2Q2 e que a vazão de saida do sistema é 10 l/s, determine a massa específica da mistura formada e calcule o diâmetro da tubulação de saída em (mm) sabendo-se que a velocidade de saída é 2m/s.

Dados: ρ1 = 790kg/m³ e ρ2 = 420kg/m³.

Mecânica dos Fluidos

(ρ3)

(ρ2)(ρ1)

(1) (2)

(3)

Page 171: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 11 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

9) Água é descarregada do reservatório (1) para os reservatórios (2) e (3). Sabendo-se que Qv2 = 3/4Qv3 e que Qv1 = 10l/s, determine:

a) O tempo necessário para se encher completamente os reservatórios (2) e (3).

b) Determine os diâmetros das tubulações (2) e (3) sabendo-se que a velocidade de saída é v2 = 1m/s e v3 = 1,5m/s.

Dado: ρ = 1000kg/m³.

Mecânica dos Fluidos

(3)(2)

(1)

V3 = 20m³V2 = 10m³

Page 172: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 11 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

10) O motor a jato de um avião queima 1kg/s de combustível quando a aeronave voa a 200m/s de velocidade. Sabendo-se que ρar=1,2kg/m³ e ρg=0,5kg/m³ (gases na seção de saída) e que as áreas das seções transversais da turbina são A1 = 0,3m² e A2 = 0,2m²,

determine a velocidade dos gases na seção de saída.

Mecânica dos Fluidos

(3)(1)

(2)

combustível

ar

Saída dos gases

Page 173: Mef 110808224140-phpapp01

Próxima Aula

Equação da Energia para Fluido Ideal.

Aula 11 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 174: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 12 – Equação da Energia Para Fluido Ideal

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 175: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Equação da Energia para Fluido Ideal.

Aula 12 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 176: Mef 110808224140-phpapp01

Energia Associada a um Fluido

Aula 12 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

a) Energia Potencial: É o estado de energia do sistema devido a sua posição no campo da gravidade em relação a um plano horizontal de referência.

b) Energia Cinética: É o estado de energia determinado pelo movimento do fluido.

c) Energia de Pressão: Corresponde ao trabalho potencial das forças de pressão que atuam no escoamento do fluido.

Mecânica dos Fluidos

Page 177: Mef 110808224140-phpapp01

Equação de Bernoulli

Aula 12 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Hipóteses de Simplificação: Regime permanente. Sem a presença de máquina (bomba/turbina). Sem perdas por atrito. Fluido incompressível. Sem trocas de calor. Propriedades uniformes nas seções.

Mecânica dos Fluidos

Page 178: Mef 110808224140-phpapp01

Equação de Bernoulli

Aula 12 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Z2

Z1

v1

v2

P1

P2

ref

21 HH = 2

222

1

211

22z

g

vPz

g

vP+

⋅+=+

⋅+

γγ

Page 179: Mef 110808224140-phpapp01

Exercício 1

Aula 12 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Determine a velocidade do jato de líquido na saída do reservatório de grandes dimensões mostrado na figura.

Dados: ρh20 = 1000kg/m³ e g = 10m/s².

Mecânica dos Fluidos

H=5m

v

1

(1)

(2)

ref

Aberto, nível constante

Page 180: Mef 110808224140-phpapp01

Solução do Exercício 1

Aula 12 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Aplicação da Equação da Energia entre os pontos (1) e (2).

2

222

1

211

22z

g

vPz

g

vP+

⋅+=+

⋅+

γγ

2

222

1

211

22z

g

vPz

g

vP+

⋅+=+

⋅+

γγ

Hg

v=

⋅2

21

Hgv ⋅⋅= 221

Hgv ⋅⋅= 21

51021 ⋅⋅=v

1001 =v

101 =v

H=5m

v

1

(1)

(2)

ref

Aberto, nível constante

m/s

Page 181: Mef 110808224140-phpapp01

Exercício 2

Aula 12 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) Água escoa em regime permanente através do tubo de Venturimostrado. Considere no trecho mostrado que as perdas são desprezíveis. A área da seção (1) é 20cm² e a da seção (2) é 10cm². Um manômetro de mercúrio é instalado entre as seções (1) e (2) e indica o desnível mostrado. Determine a vazão de água que escoa pelo tubo.

Mecânica dos Fluidos

h=10cm

(2)(1)

H2O

Hg

(A)

(B) (C)

(D)

Page 182: Mef 110808224140-phpapp01

Solução do Exercício 2

Aula 12 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

1PPA =

( ) 120 PhP HB +⋅= γ

BC PP =

( ) 120 PhP HC +⋅= γ

( ) 120)( PhhP HHgD +⋅+⋅−= γγ

( ) 1202 )( PhhPP HHgD +⋅+⋅−== γγ

( ) 1202 )( PhhP HHg +⋅+⋅−= γγ

2120 )( PPh HHg −=−⋅ γγ

)( 2021 HHghPP γγ −⋅=−

Ponto (A)

Ponto (B)

Ponto (C)

Diferença de pressão

Ponto (D)

Equação Manométrica

(I)

Page 183: Mef 110808224140-phpapp01

Solução do Exercício 2

Aula 12 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Equação de Bernoulli

2

222

1

211

22z

g

vPz

g

vP+

⋅+=+

⋅+

γγ

g

vP

g

vP

OHOH ⋅+=

⋅+

22

22

2

22

1

2

1

γγ

g

vvPP

OH ⋅

−=

2

21

22

2

21

γ

g

vvh

OH

HHg

−=

−⋅

2

)( 21

22

2

20

γ

γγ

2010000

)10000136000(1,0 21

22 vv −

=−⋅

2026,1

21

22 vv −

=

2,2521

22 =− vv

(II)

Substituir (I) em (II)

(III)

Page 184: Mef 110808224140-phpapp01

Solução do Exercício 2

Aula 12 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Equação da Continuidade Substituir (IV) em (III)

2211 AvAv ⋅=⋅

1020 21 ⋅=⋅ vv

21

10

20v

v=

12 2 vv ⋅=

21

21 )2(2,25 vv −⋅=

21

2142,25 vv −⋅=2

132,25 v⋅=

213

2,25v=

146,8 v=

9,21 =v

11 AvQv ⋅=410209,2 −⋅⋅=vQ

0058,0=vQ

8,5=vQ

Cálculo da Vazão:

(IV) m/s

m³/s

litros/s

Page 185: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 12 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Determine a altura da coluna da água no reservatório de grandes dimensões mostrado na figura.

Dados: ρh20 = 1000kg/m³ e g = 10m/s².

Mecânica dos Fluidos

H

v1=8m/s(1)

(2)

ref

Aberto, nível constante

Page 186: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 12 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) Água escoa em regime permanente através do tubo de Venturimostrado. Considere no trecho mostrado que as perdas são desprezíveis. Sabendo-se que A1 = 2,5A2 e que d1 = 10cm. Determine

a vazão de água que escoa pelo tubo.

Mecânica dos Fluidos

h=20cm

(2)(1)

H2O

Hg

(A)

(B) (C)

(D)

Page 187: Mef 110808224140-phpapp01

Próxima Aula

Equação da Energia na Presença de uma Máquina.

Aula 12 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 188: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 13 – Equação da Energia na Presença de uma Máquina

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 189: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Equação da Energia na Presença de uma Máquina.

Aula 13 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 190: Mef 110808224140-phpapp01

Definição de Máquina na Instalação

Aula 13 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

A máquina em uma instalação hidráulica édefinida como qualquer dispositivo que quando introduzido no escoamento forneça ou retire energia do escoamento, na forma de trabalho.

Para o estudo desse curso a máquina ou será uma bomba ou será uma turbina.

Mecânica dos Fluidos

Page 191: Mef 110808224140-phpapp01

Equação da Energia na Presença de uma Máquina

Aula 13 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Z2

Z1

v1

v2

P1

P2

ref

M

21 HHH M =+ 2

222

1

211

22z

g

vPHz

g

vPM +

⋅+=++

⋅+

γγ

Page 192: Mef 110808224140-phpapp01

Potência de uma Bomba

Aula 13 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Se a máquina for uma bomba, ela fornece energia ao escoamento.

A potência de uma bomba é calculada pela equação apresentada a seguir.

NB é a potência da bomba. HB = é a carga manométrica da bomba. ηB é o rendimento da bomba.

Mecânica dos Fluidos

B

BB

HQN

η

γ ⋅⋅=

Page 193: Mef 110808224140-phpapp01

Potência de uma Turbina

Se a máquina for uma turbina, ela retira energia do escoamento.

A potência de uma turbina é calculada pela equação apresentada a seguir.

NT é a potência da turbina. HT = é a carga manométrica da turbina. ηT é o rendimento da turbina.

Aula 13 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

TTT HQN ηγ ⋅⋅⋅=

Page 194: Mef 110808224140-phpapp01

Exercício 1

Aula 13 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Determine a potência de uma bomba com rendimento de 75% pela qual escoa água com uma vazão de 12 litros/s.

Dados: HB = 20m, 1cv = 736,5W, ρh20 = 1000kg/m³ e g = 10m/s².

Mecânica dos Fluidos

B

BB

HQN

η

γ ⋅⋅=

75,0

20101210000 3 ⋅⋅⋅=

BN

3200=BN W

5,736

3200=BN

34,4=BN cv

Cálculo da Potência:

Page 195: Mef 110808224140-phpapp01

Exercício 2

Aula 13 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) O reservatório mostrado na figura possui nível constante e fornece água com uma vazão de 10 litros/s para o tanque B. Verificar se amáquina é uma bomba ou uma turbina e calcule sua potência sabendo-se que η = 75%.

Dados: γH2O = 10000N/m³, Atubos = 10cm², g = 10m/s².

Mecânica dos Fluidos

M

A

B

ref

(1)

(2)

5m

20m

Page 196: Mef 110808224140-phpapp01

Solução do Exercício 2

Aula 13 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

AvQ ⋅=A

Qv =

4

3

1010

1010−

⋅=v 10=v

21 HHH M =+

2

222

1

211

22z

g

vPHz

g

vPM +

⋅+=++

⋅+

γγ

12

22

2zz

g

vH M −+

⋅=

20520

102

−+=MH

10−=MH

TTT HQN ηγ ⋅⋅⋅=

75,010101010000 3 ⋅⋅⋅⋅= −

TN

750=TN

5,736

750=TN

01,1=TN

2

222

1

211

22z

g

vPHz

g

vPM +

⋅+=++

⋅+

γγ

Cálculo da Velocidade:

Carga Manométrica da Máquina: Potência da Turbina:

m

W

cv

m/s

Page 197: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 13 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Determine a potência de uma turbina pela qual escoa água com uma vazão de 1200 litros/s.

Dados: HT = 30m, η = 90%, ρh20 = 1000kg/m³ e g = 10m/s².

Mecânica dos Fluidos

Page 198: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 13 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) O reservatório mostrado na figura possui nível constante e fornece água com uma vazão de 15 litros/s para o tanque B. Verificar se amáquina é uma bomba ou uma turbina e calcule sua potência sabendo-se que η = 75%.

Dados: γH2O = 10000N/m³, Atubos = 10cm², g = 10m/s².

Mecânica dos Fluidos

M

A

B

ref

(1)

(2)

5m

15m

Page 199: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 13 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

3) A figura a seguir mostra parte de uma instalação de bombeamento de água. Considerando que a vazão é igual a 8 litros/s, que a tubulação possui o mesmo diâmetro ao longo de todo o seu comprimento e que os pontos (2) e (3) estão na mesma cota, determine a diferença de pressão entre a saída e a entrada da bomba.

Dados: NB = 4cv, 1cv = 736,5W, η = 70%, ρh20 = 1000kg/m³ e g = 10m/s².

Mecânica dos Fluidos

B

(2) (3)

Page 200: Mef 110808224140-phpapp01

Próxima Aula

Instalações de Recalque.

Solução de Exercícios.

Aula 13 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 201: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 14 – Instalações de Recalque

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 202: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Instalações de Recalque.

Solução de Exercícios.

Aula 14 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 203: Mef 110808224140-phpapp01

Definição de Instalação de Recalque

Define-se instalação de recalque toda a instalação hidráulica que transporta o fluido de uma cota inferior para uma cota superior e onde o escoamento éviabilizado pela presença de uma bomba hidráulica, que éum dispositivo projetado para fornecer energia ao fluido, que ao ser considerada por unidade do fluido édenominada de carga manométrica da bomba (HB).

Uma instalação de recalque é dividida em:Tubulação de sucção = tubulação antes da bomba; Tubulação de recalque = tubulação após a bomba.

Aula 14 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 204: Mef 110808224140-phpapp01

Aplicação da Equação da Energia

Aula 14 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Z2

Z1

v1

v2

P1

P2

ref

M

21 HHH M =+ 2

222

1

211

22z

g

vPHz

g

vPM +

⋅+=++

⋅+

γγ

Page 205: Mef 110808224140-phpapp01

Exemplos de Instalações

Aula 14 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 206: Mef 110808224140-phpapp01

Exercício 1

Aula 14 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) Deseja-se elevar água do reservatório A para o reservatório B. Sabe-se que a vazão é igual a 4 litros/s, determine:

a) A velocidade da água na tubulação de sucção. b) A velocidade da água na tubulação de recalque. c) A potência da bomba. d) O tempo necessário para se encher o reservatório B. Dados: γH2O = 10000N/m³, g = 10m/s², dsuc = 10cm, drec = 5cm, VB = 10m³, ηB = 70%.

Mecânica dos Fluidos

B M

A

B

(1)

(2)

(3)

2m

20m

ref

aberto com nível constante

sucção recalque

Page 207: Mef 110808224140-phpapp01

Solução do Exercício 1

Aula 14 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

AvQV ⋅=

suc

V

sucA

Qv =

4

2suc

V

sucd

Qv

⋅=π

2

4

suc

V

sucd

Qv

⋅=π 2

3

1,0

1044

⋅⋅=

πsucv

51,0=sucv

AvQV ⋅=

rec

V

recA

Qv =

4

2rec

V

recd

Qv

⋅=π

2

4

rec

V

recd

Qv

⋅=π

a) Velocidade na sucção: b) Velocidade no recalque:

2

3

05,0

1044

⋅⋅=

πrecv

03,2=recv

m/s

m/s

Page 208: Mef 110808224140-phpapp01

Solução do Exercício 1

Aula 14 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

31 HHH B =+

3

233

1

211

22z

g

vPHz

g

vPB +

⋅+=++

⋅+

γγ

3

233

1

211

22z

g

vPHz

g

vPB +

⋅+=++

⋅+

γγ

3

2

2z

g

vH rec

B +⋅

= 2220

03,2 2

+=BH

2,22=BH

B

BB

HQN

η

γ ⋅⋅=

7,0

2,2210410000 3 ⋅⋅⋅=

BN

57,1268=BN

5,736

57,1268=BN

72,1=BN

c) Equação da energia entre (1) e (3): Potência da Bomba:

t

VQV =

VQ

Vt =

4

10000=t 2500=t

d) Tempo de enchimento:

m

s

cv

W

Page 209: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 14 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

1) Deseja-se elevar água do reservatório A para o reservatório B. Sabe-se que a vazão é igual a 4 litros/s, determine:

a) A velocidade da água na tubulação de sucção. b) A velocidade da água na tubulação de recalque. c) A potência da bomba. d) O tempo necessário para se encher o reservatório B. Dados: γH2O = 10000N/m³, g = 10m/s², dsuc = 8cm, drec = 4cm, VB = 15m³, ηB = 65%.

B M

A

B

(1)

(2)

(3)

2m

25m

ref

sucção recalque

P1 = 0,5barnível constante

Page 210: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 14 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) Deseja-se elevar água do reservatório inferior (1) para a caixa d’água mostrada em (3). Sabe-se que a vazão é igual a 5 litros/s, determine:

a) As velocidades da água nas tubulações de sucção e recalque. b) A pressão em (2) na entrada da bomba. c) A potência da bomba. d) O tempo necessário para se encher o reservatório B. Dados: γH2O = 10000N/m³, g = 10m/s², dsuc = 4cm, drec = 2cm, ηB = 65%.

Mecânica dos Fluidos

B M

A

B

(1)

(2)

(3)

3m

25m

ref

aberto com nível constante

sucção recalque

Page 211: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 14 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

3) Para a instalação mostrada na figura, determine: a) As velocidades de sucção e recalque. b) As pressões na entrada e na saída da bomba. Dados: γH2O = 10000N/m³, g = 10m/s², dsuc = 6cm, drec = 5cm, NB = 4cv, 1cv = 736,5W,

QV = 12 litros/s, ηB = 80%.

Mecânica dos Fluidos

B M

A

B

(1)

(2) (3)

2m

12,8m

ref

aberto com nível constante

(4)

0,2m

Page 212: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 14 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

4) Na instalação mostrada na figura, a bomba possui potência de 4cv e rendimento de 65%, considere que o fluido é água, determine:

a) A velocidade do escoamento na tubulação de sucção. b) A pressão em (2) na entrada da bomba. c) A pressão em (3) na saída da bomba. d) A altura Z4 da caixa d’água. Dados: γH2O = 10000N/m³, g = 10m/s², d1 = d2 = 10cm, d3 = d4 = 7cm, QV = 12 litros/s.

Mecânica dos Fluidos

B M

A

B

(1)

(2) (3)

2m

Z4

ref

aberto com nível constante

(4)

0,2m

Page 213: Mef 110808224140-phpapp01

Próxima Aula

Instalações de Recalque.

Solução de Exercícios.

Aula 14 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 214: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 15 – Instalações de Recalque

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 215: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Instalações de Recalque.

Solução de Exercícios.

Aula 15 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 216: Mef 110808224140-phpapp01

Exercício 1

Aula 15 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

1) Uma mistura de dois líquidos é bombeada para um tanque de 30m³ de um caminhão, determine:

a) A massa específica da mistura dos dois líquidos. b) A velocidade do escoamento no ponto (3). c) A velocidade do escoamento na tubulação de recalque. d) A potência da bomba. e) O tempo necessário para encher o reservatório do caminhão. Dados: ρ1 = 600kg/m³, ρ2 = 800kg/m³, Qv1 = 4 litros/s, Qv2 = 3 litros/s, γH2O =

10000N/m³, g = 10m/s², d3 = 10cm, drec = 5cm, ηB = 80%, P3 = -0,2bar.

B M

(3) (4)

10m

ref

(5)

4m

(1) (2)

Page 217: Mef 110808224140-phpapp01

Solução do Exercício 1

Aula 15 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

∑ ∑= msme QQ

)( 2132211 VVVV QQQQ +⋅=⋅+⋅ ρρρ

213 VVV QQQ +=

332211 VVV QQQ ⋅=⋅+⋅ ρρρ

3

22113

V

VV

Q

QQ ⋅+⋅=

ρρρ

7

380046003

⋅+⋅=ρ

7

240024003

+=ρ

7

48003 =ρ 71,6853 =ρ

a) Massa específica da mistura: b) Velocidade em (3):

23

33

4

d

Qv V

⋅=π

2

3

31,0

1074

⋅⋅=

πv

89,03 =v

2

34

rec

V

recd

Qv

⋅=π

2

3

505,0

1074

⋅⋅=

πv

56,35 =v

c) Velocidade em (5):

kg/m³

m/s

m/s

Page 218: Mef 110808224140-phpapp01

Solução do Exercício 1

Aula 15 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

d) Equação da energia entre (3) e (5):

53 HHH B =+

5

255

3

233

22z

g

vPHz

g

vPB +

⋅+=++

⋅+

γγ

5

255

3

233

22z

g

vPHz

g

vPB +

⋅+=++

⋅+

γγ

01,1

2,01012303

⋅−=P 54,200453 −=P

1420

56,34

20

89,0

10000

54,20045 22

+=+++−

BH

14635,04039,0923,2 +=+++− BH

635,14116,1 =+ BH

116,1635,14 −=BH

519,13=BH

B

BB

HQN

η

γ ⋅⋅=

8,0

519,131071,6857 3 ⋅⋅⋅=

BN

13,811=BN

5,736

13,811=BN

10,1=BN

t

VQV =

VQ

Vt =

7

30000=t 7,4285=t

Potência da Bomba:

e) Tempo de enchimento:

s

cv

W

m

Page 219: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 15 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

1) Uma mistura de dois líquidos é bombeada para um tanque de 40m³ de um caminhão, determine:

a) A massa específica da mistura dos dois líquidos. b) A velocidade do escoamento no ponto (3). c) A velocidade do escoamento na tubulação de recalque. d) A potência da bomba. e) O tempo necessário para encher o reservatório do caminhão. Dados: ρ1 = 800kg/m³, ρ2 = 900kg/m³, Qv1 = 6 litros/s, Qv2 = 4 litros/s, γH2O =

10000N/m³, g = 10m/s², d3= 10cm, drec = 5cm, ηB = 85%, P3 = -0,3bar.

B M

(3) (4)

10m

ref

(5)

4m

(1) (2)

Page 220: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 15 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) Para a instalação mostrada na figura a seguir calcule: a) A velocidade na tubulação de sucção. b) A pressão na saída da bomba. c) A vazão nas tubulações (4) e (5). d) A velocidade nas tubulações (4) e (5). Dados: γH2O = 10000N/m³, g = 10m/s², Qv2 = 15 litros/s, Qv4 = 0,7Qv5, Qv4+Qv5=15

litros/s, d1 = d2 = 7cm, d3 = d4 = 5cm, d5 = 6cm, NB = 6cv ηB = 70%.

Mecânica dos Fluidos

B M

(1)

(2) (3)

3mref

aberto com nível constante

(4)

0,3m

(5)

10m

2m

Page 221: Mef 110808224140-phpapp01

Próxima Aula

Equação da Energia para Fluido Real.

Estudo da Perda de Carga.

Aula 15 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 222: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 16 – Instalações de Recalque Perda de Carga

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 223: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Equação da Energia para Fluido Real.

Estudo da Perda de Carga.

Aula 16 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 224: Mef 110808224140-phpapp01

Equação da Energia na Presença de uma Máquina Considerando as Perdas da Carga

Aula 16 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

2,1Pdiss HQN ⋅⋅= γ

Z2

Z1

v1

v2

P1

P2

ref

M

(1)

(2)HP1,2

Potência Dissipada:

2,121 PM HHHH +=+2,12

222

1

211

22 PM Hzg

vPHz

g

vP++

⋅+=++

⋅+

γγ

Page 225: Mef 110808224140-phpapp01

Exercício 1

Aula 16 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

1) Para a instalação mostrada, determine a potência da bomba necessária para elevar água até o reservatório superior. Considere as perdas de carga.

Dados: Qv = 20 litros/s, γH2O = 10000N/m³, g = 10m/s²,d4= 8cm, HP1,2 = 4m, HP3,4 = 5m, ηB = 65%.

B M

A

B

(1)

(2) (3)

3mref

aberto com nível constante

(4)

27m

Page 226: Mef 110808224140-phpapp01

Solução do Exercício 1

Aula 16 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

4,141 PB HHHH +=+

4,14

244

1

211

22 PB Hzg

vPHz

g

vP++

⋅+=++

⋅+

γγ

4,14

244

1

211

22 PB Hzg

vPHz

g

vP++

⋅+=++

⋅+

γγ

24

4

4

d

Qv V

⋅=π 2

3

408,0

10204

⋅⋅=

πv

4,14

24

2 PB Hzg

vH ++

⋅=

93020

98,3 2

++=BH

39792,0 +=BH 792,39=BH

B

BB

HQN

η

γ ⋅⋅=

65,0

792,39102010000 3 ⋅⋅⋅=

BN

69,12243=BN

5,736

69,12243=BN

62,16=BN

98,34 =v m/scv

W

m

Equação da energia entre (1) e (4):

Velocidade em (4):

Potência da Bomba:

Page 227: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 16 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

1) Para a instalação mostrada, determine:

a) A velocidade na tubulação de sucção.

b) A pressão na entrada da bomba.

c) Sabendo-se que NB = 10cv, calcule a altura Z4.

Dados: Qv = 15 litros/s, γH2O = 10000N/m³, g = 10m/s², d1 = d2 = 10cm, d4= 8cm, HP1,2 = 5m, HP3,4 = 7m, ηB = 60%.

B M

A

B

(1)

(2) (3)

2mref

aberto com nível constante

(4)

Z4

Page 228: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 16 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) Na instalação da figura, a máquina é uma bomba e o fluido é água. A bomba tem uma potência de 5kW e seu rendimento é 80%. A água édescarregada com uma velocidade de 5m/s pela saída (2) com área de 10cm². Determine a perda de carga do fluido entre (1) e (2) e calcule a potência dissipada ao longo da instalação.

Dados: γH2O = 10000N/m³, g = 10m/s².

Mecânica dos Fluidos

(1)

(2)

5m

B

Page 229: Mef 110808224140-phpapp01

Próxima Aula

Bombas Hidráulicas.

Aula 16 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 230: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 17 – Bombas Hidráulicas

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 231: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Características das Bombas Hidráulicas.

Aula 17 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 232: Mef 110808224140-phpapp01

Definição

São Máquinas Hidráulicas Operatrizes, isto é, máquinas que recebem energia potencial (força motriz de um motor ou turbina), e transformam parte desta potência em energia cinética (movimento) e energia de pressão (força), cedendo estas duas energias ao fluído bombeado, de forma a recirculá-lo ou transportá-lo de um ponto a outro.

Portanto, o uso de bombas hidráulicas ocorre sempre que há a necessidade de aumentar-se a pressão de trabalho de uma substância líquida contida em um sistema, a velocidade de escoamento, ou ambas.

Aula 17 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 233: Mef 110808224140-phpapp01

Classificação das Bombas

Devido a grande diversidade das bombas existentes, pode-se utilizar uma classificação resumida, dividindo-as em dois grandes grupos:

A) Bombas Centrífugas ou Turbo-Bombas, também conhecidas como Hidro ou Rotodinâmicas;

B) Bombas Volumétricas, também conhecidas como de Deslocamento Positivo.

Aula 17 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 234: Mef 110808224140-phpapp01

Bombas Centrífugas Nas Bombas Centrífugas, ou Turbo-Bombas, a movimentação do fluído

ocorre pela ação de forças que se desenvolvem na massa do mesmo, em conseqüência da rotação de um eixo no qual é acoplado um disco (rotor, impulsor) dotado de pás (palhetas, hélice), o qual recebe o fluído pelo seu centro e o expulsa pela periferia, pela ação da força centrífuga, daí o seu nome mais usual.

Em função da direção do movimento do fluído dentro do rotor, estas bombas dividem-se em:

A.1.Centrífugas Radiais (puras): A movimentação do fluído dá-se do centro para a periferia do rotor, no sentido perpendicular ao eixo de rotação;

OBS.: Este tipo de bomba hidráulica é o mais usado no mundo, principalmente para o transporte de água, e é o único tipo de bomba fabricada pela SCHNEIDER, cujos diferentes modelos e aplicações estão apresentados neste catálogo.

A.2.Centrífugas de Fluxo Misto (hélico-centrífugas): O movimento do fluído ocorre na direção inclinada (diagonal) ao eixo de rotação;

A.3.Centrífugas de Fluxo Axial (helicoidais): O movimento do fluído ocorre paralelo ao eixo de rotação.

Aula 17 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 235: Mef 110808224140-phpapp01

Bombas Volumétricas Nas Bombas Volumétricas, ou de Deslocamento Positivo, a

movimentação do fluído é causada diretamente pela ação do órgão de impulsão da bomba que obriga o fluído a executar o mesmo movimento a que está sujeito este impulsor (êmbolo, engrenagens, lóbulos, palhetas).

Dá-se o nome de volumétrica porque o fluído, de forma sucessiva, ocupa e desocupa espaços no interior da bomba, com volumes conhecidos, sendo que o movimento geral deste fluído dá-se na mesma direção das forças a ele transmitidas, por isso são chamadas de deslocamento positivo. As Bombas Volumétricas dividem-se em:

B.1.Êmbolo ou Alternativas (pistão, diafragma, membrana); B.2.Rotativas (engrenagens, lóbulos, palhetas, helicoidais, fusos,

parafusos, peristálticas).

Aula 17 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 236: Mef 110808224140-phpapp01

Funcionamento da Bomba Centrífuga Radial

A Bomba Centrífuga tem como base de funcionamento a criação de duas zonas de pressão diferenciadas, uma de baixa pressão (sucção) e outra de alta pressão (recalque).

Para que ocorra a formação destas duas zonas distintas de pressão, é necessário existir no interior da bomba a transformação da energia mecânica (de potência), que éfornecida pela máquina motriz (motor ou turbina), primeiramente em energia cinética, a qual irá deslocar o fluído, e posteriormente, em maior escala, em energia de pressão, a qual irá adicionar “carga” ao fluído para que ele vença as alturas de deslocamento.

Aula 17 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 237: Mef 110808224140-phpapp01

Partes de uma Bomba

Existem três partes fundamentais na bomba: A) Corpo (carcaça), que envolve o rotor, acondiciona o

fluído, e direciona o mesmo para a tubulação de recalque; B) Rotor (impelidor), constitui-se de um disco provido de

pás (palhetas) que impulsionam o fluído; C) Eixo de acionamento, que transmite a força motriz ao

qual está acoplado o rotor, causando o movimento rotativo do mesmo.

Antes do funcionamento, é necessário que a carcaça da bomba e a tubulação de sucção estejam totalmente preenchidas com o fluído a ser bombeado.

Aula 17 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 238: Mef 110808224140-phpapp01

Detalhes de uma Bomba

Aula 17 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 239: Mef 110808224140-phpapp01

Funcionamento da Bomba

Aula 17 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 240: Mef 110808224140-phpapp01

Bombas Centrífugas

Aula 17 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 241: Mef 110808224140-phpapp01

Aplicações das Bombas

Bombas centrífugas: irrigação, drenagem e abastecimento.

Bombas a injeção de gás: abastecimento a partir de poços profundos.

Carneiro hidráulico e bombas a pistão: abastecimento em propriedades rurais.

Bombas rotativas: combate a incêndio e abastecimento doméstico.

Aula 17 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 242: Mef 110808224140-phpapp01

Cavitação em Bombas

Como qualquer outro líquido, a água também tem a propriedade de vaporizar-se em determinadas condições de temperatura e pressão. E assim sendo temos, por exemplo, entra em ebulição sob a pressão atmosférica local a uma determinada temperatura, por exemplo, a nível do mar (pressão atmosférica normal) a ebulição acontece a 100°C. A medida que a pressão diminui a temperatura de ebulição também se reduz. Por exemplo, quanto maior a altitude do local menor será a temperatura de ebulição. Em consequência desta propriedade pode ocorrer o fenômeno da cavitação nos escoamentos hidráulicos.

Aula 17 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 243: Mef 110808224140-phpapp01

Fenômeno da Cavitação Chama-se de cavitação o fenômeno que decorre, nos casos em estudo, da

ebulição da água no interior dos condutos, quando as condições de pressão caem a valores inferiores a pressão de vaporização. No interior das bombas, no deslocamento das pás, ocorrem inevitavelmente rarefações no líquido, isto é, pressões reduzidas devidas à própria natureza do escoamento ou ao movimento de impulsão recebido pelo líquido, tornando possível a ocorrência do fenômeno e, isto acontecendo, formar-se-ão bolhas de vapor prejudiciais ao seu funcionamento, caso a pressão do líquido na linha de sucção caia abaixo da pressão de vapor (ou tensão de vapor) originando bolsas de ar que são arrastadas pelo fluxo. Estas bolhas de ar desaparecem bruscamente condensando-se, quando alcançam zonas de altas pressões em seu caminho através da bomba. Como esta passagem gasoso-líquido é brusca, o líquido alcança a superfície do rotor em alta velocidade, produzindo ondas de alta pressão em áreas reduzidas. Estas pressões podem ultrapassar a resistência à tração do metal e arrancar progressivamente partículas superficiais do rotor, inutilizando-o com o tempo.

Aula 17 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 244: Mef 110808224140-phpapp01

Características da Cavitação

Quando ocorre a cavitação são ouvidos ruídos e vibrações característicos e quanto maior for a bomba, maiores serão estes efeitos. Além de provocar o desgaste progressivo até a deformação irreversível dos rotores e das paredes internas da bomba, simultaneamente esta apresentará uma progressiva queda de rendimento, caso o problema não seja corrigido. Nas bombas a cavitação geralmente ocorre por altura inadequada da sucção (problema geométrico), por velocidades de escoamento excessivas (problema hidráulico) ou por escorvamentoincorreto (problema operacional).

Aula 17 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 245: Mef 110808224140-phpapp01

Efeitos da Cavitação

Aula 17 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 246: Mef 110808224140-phpapp01

Próxima Aula

Exercícios Complementares.

Aula 17 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 247: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 18 – Exercícios Complementares

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 248: Mef 110808224140-phpapp01

Tópicos Abordados Nesta Aula

Exercícios Propostos.

Exercícios Complementares.

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 249: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

1) A massa específica de uma determinada substância é igual a 900kg/m³, determine o volume ocupado por uma massa de 700kg dessa substância.

Mecânica dos Fluidos

Page 250: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

2) Sabe-se que 600kg de um líquido ocupa um reservatório com volume de 2500 litros, determine sua massa específica, seu peso específico e o peso específico relativo. Dados: γH2O = 10000N/m³, g = 10m/s², 1000 litros = 1m³.

Mecânica dos Fluidos

Page 251: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

3) Determine a massa de gasolina presente em uma reservatório de 4 litros. (Ver propriedades da gasolina na Tabela). Dados: g = 10m/s², 1000 litros = 1m³.

Mecânica dos Fluidos

Page 252: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

4) Um reservatório cúbico com 3m de aresta estácompletamente cheio de óleo lubrificante (ver propriedaes na Tabela). Determine a massa de óleo quando apenas 3/4 do tanque estiver ocupado. Dados: γH2O = 10000N/m³, g = 10m/s².

Mecânica dos Fluidos

Page 253: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

5) Sabendo-se que o peso específico relativo de um determinado óleo é igual a 0,9, determine seu peso específico em N/m³. Dados: γH2O = 10000N/m³, g = 10m/s².

Mecânica dos Fluidos

Page 254: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

6) Uma caixa d'água de área de base 1,4m X 0.6 m e altura de 0,8 m pesa 1500N que pressão ela exerce sobre o solo?

a) Quando estiver vazia b) Quando estiver cheia com água Dados: γH2O = 10000N/m³, g = 10m/s².

Mecânica dos Fluidos

Page 255: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

7) Uma placa circular com diâmetro igual a 2m possui um peso de 1000N, determine em Pa a pressão exercida por essa placa quando a mesma estiver apoiada sobre o solo.

Mecânica dos Fluidos

Page 256: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

8) Converta as unidades de pressão para o sistema indicado. (utilize os fatores de conversão apresentados na tabela).

a) converter 30psi em Pa.

b) converter 4000mmHg em Pa.

c) converter 600kPa em kgf/cm².

d) converter 10kgf/cm² em psi.

e) converter 15bar em Pa.

f) converter 45mca em kgf/cm².

g) converter 1500mmHg em bar.

h) converter 18psi em mmHg.

i) converter 180000Pa em mca.

j) converter 38mca em mmHg.

Mecânica dos Fluidos

Page 257: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

9) Converta as unidades de pressão para o sistema indicado. (utilize os fatores de conversão apresentados na tabela).

a) converter 20atm em Pa. b) converter 3700mmHg em psi. c) converter 39psi em bar. d) converter 50mca em kgf/cm². e) converter 67bar em Pa. f) converter 17psi em Pa.

Mecânica dos Fluidos

Page 258: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

10) Qual a pressão, em kgf/cm2, no fundo de um reservatório que contém água, com 8m de profundidade? Faça o mesmo cálculo para um reservatório que contém alcool (peso específico relativo = 0,79).

Mecânica dos Fluidos

Page 259: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

11) O nível de água contida em uma caixa d’água aberta à atmosfera se encontra 22m acima do nível de uma torneira, determine a pressão de saída da água na torneira.

Dados: γH2O = 10000N/m³, g = 10m/s².

Mecânica dos Fluidos

Page 260: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

12) As áreas dos pistões do dispositivo hidráulico mostrado na figura mantêm a relação 25:2. Verifica-se que um peso P colocado sobre o pistão maior é equilibrado por uma força de 40N no pistão menor, sem que o nível de fluido nas duas colunas se altere. Aplicando-se o principio de Pascal determine o valor do peso P.

Mecânica dos Fluidos

Page 261: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

13) A prensa hidráulica mostrada na figura está em equilíbrio. Sabendo-se que os êmbolos possuem uma relação de áreas de 18:2, determine a intensidade da força F.

Mecânica dos Fluidos

Page 262: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

14) Na prensa hidráulica mostrada na figura, os diâmetros dos tubos 1 e 2 são, respectivamente, 5cm e 16cm. Sendo o peso do carro igual a 12000N, determine:

a) a força que deve ser aplicada no tubo 1 para equilibrar o carro.

b) o deslocamento do nível de óleo no tubo 1, quando o carro sobe 10cm.

Mecânica dos Fluidos

Page 263: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

15) O manômetro em U mostrado na figura contém óleo, mercúrio e água. Utilizando os valores indicados, determine a diferença de pressões entre os pontos A e B.

Dados: γh20 = 10000N/m³, γHg = 136000N/m³, γóleo = 7500N/m³.

Mecânica dos Fluidos

Page 264: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

16) A pressão da água numa torneira fechada (A) é de 0,48 kgf/cm2. Se a diferença de nível entre (A) e o fundo da caixa é de 2m, Calcular:

a) a altura da água (H) na caixa. b) a pressão no ponto (B), situado 3m abaixo de (A).

Mecânica dos Fluidos

Page 265: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

17) Um manômetro diferencial de mercúrio (massa específica 13600kg/m3) é utilizado como indicador do nível de uma caixa d'água, conforme ilustra a figura abaixo. Qual o nível da água na caixa (hl) sabendo-se que h2 = 20m e h3 = 1,5m.

Mecânica dos Fluidos

Page 266: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

18) Qual o peso específico do líquido (B) do esquema abaixo:

Mecânica dos Fluidos

0,4m

Page 267: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

19) Um bloco cúbico de madeira com peso específico γ = 8500N/m³, com 30 cm de aresta, flutua na água (ρH2O = 1000kg/m³). Determine a altura do cubo que permanece dentro da água.

20) Um bloco pesa 70N no ar e 30N na água. Determine a massa específica do material do bloco. Dados: ρH2O = 1000kg/m³ e g = 10m/s².

21) Um corpo com volume de 4,0m³ e massa 5000kg encontra-se totalmente imerso na água, cuja massa específica é (ρH2O = 1000kg/m³). Determine a força de empuxo sobre o corpo.

Mecânica dos Fluidos

Page 268: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

22) Uma mangueira é conectada em um tanque com capacidade de 13000 litros. O tempo gasto para encher totalmente o tanque é de 600 minutos. Calcule a vazão volumétrica máxima da mangueira.

23) Calcular a vazão volumétrica de um fluido que escoa por uma tubulação com uma velocidade média de 1,2 m/s, sabendo-se que o diâmetro interno da seção da tubulação é igual a 7cm.

Mecânica dos Fluidos

Page 269: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

24) Calcular o volume de um reservatório, sabendo-se que a vazão de escoamento de um líquido é igual a 7 l/s. Para encher o reservatório totalmente são necessárias 2 horas e 15 minutos.

25) No entamboramento de um determinado produto são utilizados tambores de 400 litros. Para encher um tambor levam-se 10 min. Calcule: a) A vazão volumétrica da tubulação utilizada para encher os tambores.b) O diâmetro da tubulação, em milímetros, sabendo-se que a velocidade de escoamento é de 4 m/s.c) A produção após 24 horas, desconsiderando-se o tempo de deslocamento dos tambores.

Mecânica dos Fluidos

Page 270: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

26) Um determinado líquido é descarregado de um tanque cúbico de 4m de aresta por um tubo de 7cm de diâmetro. A vazão no tubo é 15 l/s, determinar: a) a velocidade do fluído no tubo.b) o tempo que o nível do líquido levará para descer 15cm.

27) Calcule a vazão em massa de um produto que escoa por uma tubulação de 0,4m de diâmetro, sendo que a velocidade de escoamento é igual a 1,2m/s. Dados: massa específica do produto = 1200kg/m³

28) Baseado no exercício anterior, calcule o tempo necessário para carregar um tanque com 700 toneladas do produto.

Mecânica dos Fluidos

Page 271: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

29) A vazão volumétrica de um determinado fluído é igual a 15 l/s. Determine a vazão mássica desse fluído, sabendo-se que a massa específica do fluído é 700 kg/m3.

30) Um tambor de 300 litros é enchido com óleo de peso específico relativo 0,75, sabendo-se que para isso é necessário 18 min. Calcule: a) A vazão em peso da tubulação utilizada para encher o tambor. b) O peso de cada tambor cheio, sendo que somente o tambor vaziopesa 250N c) Quantos tambores um caminhão pode carregar, sabendo-se que o peso máximo que ele suporta é 20 toneladas.

Mecânica dos Fluidos

Page 272: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

31) Os reservatórios I e II da figura abaixo, são cúbicos. Eles são cheios pelas tubulações, respectivamente em 200s e 1000s. Determinar a velocidade da água na seção A indicada, sabendo-se

que o diâmetro da tubulação é 1m.

Mecânica dos Fluidos

Page 273: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

32) Calcular o número de Reynolds e identificar se o escoamento élaminar ou turbulento sabendo-se que em uma tubulação com diâmetro de 5cm escoa água com uma velocidade de 0,3m/s.

33) Um líquido de massa específica 1300kg/m³ escoa por uma tubulação de diâmetro 4cm com uma velocidade de 0,15m/s, sabendo-se que o número de Reynolds é 12000. Determine qual a viscosidade dinâmica do líquido.

Obs: Para solução dos exercícios ver propriedades nas tabelas das aulas 2 e 10.

Mecânica dos Fluidos

Page 274: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

34) Acetona escoa por uma tubulação em regime laminar com um número de Reynolds de 1600. Determine a máxima velocidade do escoamento permissível em um tubo com 3cm de diâmetro de forma que esse número de Reynolds não seja ultrapassado.

35) Benzeno escoa por uma tubulação em regime turbulento com um número de Reynolds de 5000. Determine o diâmetro do tubo em mm sabendo-se que a velocidade do escoamento é de 0,3m/s.

Obs: Para solução dos exercícios ver propriedades nas tabelas das aulas 2 e 10.

Mecânica dos Fluidos

Page 275: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

36) Água é descarregada de um tanque cúbico com 4m de aresta por um tubo de 5cm de diâmetro. A vazão no tubo é de 12 l/s. Determine a velocidade de descida da superfície livre da água do tanque e calcule quanto tempo o nível da água levará para descer 10cm. Calcule também a velocidade de descida da água na tubulação.

37) Um determinado líquido escoa por uma tubulação com uma vazão de 8 l/s. Calcule a vazão em massa e em peso sabendo-se que ρ = 1350kg/m³ e g = 10m/s².

Mecânica dos Fluidos

Page 276: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

38) Água escoa na tubulação mostrada com velocidade de 4m/s na seção (1). Sabendo-se que a área da seção (2) é o dobro da área da

seção (1), determine a velocidade do escoamento na seção (2).

Mecânica dos Fluidos

(1)

(2)

v1 v2

Page 277: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

39) Calcule o diâmetro de uma tubulação sabendo-se que pela mesma escoa água com uma velocidade de 0,6m/s com uma vazão de 5 l/s.

40) Sabe-se que para se encher o tanque de 20m³ mostrado são necessários 1h e 30min, considerando que o diâmetro do tubo é igual a 12cm, calcule a velocidade de saída do escoamento pelo tubo.

Mecânica dos Fluidos

20m³

Page 278: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

41) Determine a velocidade do fluido nas seções (2) e (3) da tubulação mostrada na figura.

Dados: v1 = 2m/s, d1 = 0,7m, d2 = 0,5m e d3 = 0,3m.

Mecânica dos Fluidos

(2)

(1)

(3)

v2 v3v1

Page 279: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

42) Para a tubulação mostrada determine: a) A vazão e a velocidade no ponto (3). b) A velocidade no ponto (4). Dados: v1 = 2m/s, v2 = 4m/s, d1 = 0,2m, d2 = 0,1m, d3 = 0,3m e d4 =

0,2m.

Mecânica dos Fluidos

(2)

(1)

(3) (4)v2

v1

v3 v4

Qv2

Qv1

Page 280: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

43) Sabendo-se que Q1 = 2Q2 e que a vazão de saida do sistema é 14 l/s, determine a massa específica da mistura formada e calcule o diâmetro da tubulação de saída em (mm) sabendo-se que a velocidade de saída é 3m/s.

Dados: ρ1 = 890kg/m³ e ρ2 = 620kg/m³.

Mecânica dos Fluidos

(ρ3)

(ρ2)(ρ1)

(1) (2)

(3)

Page 281: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

44) Água é descarregada do reservatório (1) para os reservatórios (2) e (3). Sabendo-se que Qv2 = 3/4Qv3 e que Qv1 = 14l/s, determine:

a) O tempo necessário para se encher completamente os reservatórios (2) e (3).

b) Determine os diâmetros das tubulações (2) e (3) sabendo-se que a velocidade de saída é v2 = 2m/s e v3 = 2,5m/s.

Dado: ρ = 1000kg/m³.

Mecânica dos Fluidos

(3)(2)

(1)

V3 = 20m³V2 = 10m³

Page 282: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

45) O motor a jato de um avião queima 1,5kg/s de combustível quando a aeronave voa a 250m/s de velocidade. Sabendo-se que ρar=1,2kg/m³ e ρg=0,5kg/m³ (gases na seção de saída) e que as áreas das seções transversais da turbina são A1 = 0,3m² e A2 = 0,2m²,

determine a velocidade dos gases na seção de saída.

Mecânica dos Fluidos

(3)(1)

(2)

combustível

ar

Saída dos gases

Page 283: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

46) Determine a altura da coluna da água no reservatório de grandes dimensões mostrado na figura.

Dados: ρh20 = 1000kg/m³ e g = 10m/s².

Mecânica dos Fluidos

H

v1=6m/s(1)

(2)

ref

Aberto, nível constante

Page 284: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

47) Água escoa em regime permanente através do tubo de Venturimostrado. Considere no trecho mostrado que as perdas são desprezíveis. Sabendo-se que A1 = 2A2 e que d1 = 12cm. Determine a

vazão de água que escoa pelo tubo.

Mecânica dos Fluidos

h=20cm

(2)(1)

H2O

Hg

(A)

(B) (C)

(D)

Page 285: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

48) Determine a potência de uma turbina pela qual escoa água com uma vazão de 1500 litros/s.

Dados: HT = 40m, η = 80%, ρh20 = 1000kg/m³ e g = 10m/s².

Mecânica dos Fluidos

Page 286: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

49) O reservatório mostrado na figura possui nível constante e fornece água com uma vazão de 25 litros/s para o tanque B. Verificar se a máquina é uma bomba ou uma turbina e calcule sua potência sabendo-se que η = 70%.

Dados: γH2O = 10000N/m³, Atubos = 12cm², g = 10m/s².

Mecânica dos Fluidos

M

A

B

ref

(1)

(2)

5m

15m

Page 287: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

50) A figura a seguir mostra parte de uma instalação de bombeamento de água. Considerando que a vazão é igual a 18 litros/s, que a tubulação possui o mesmo diâmetro ao longo de todo o seu comprimento e que os pontos (2) e (3) estão na mesma cota, determine a diferença de pressão entre a saída e a entrada da bomba.

Dados: NB = 6cv, 1cv = 736,5W, η = 60%, ρh20 = 1000kg/m³ e g = 10m/s².

Mecânica dos Fluidos

B

(2) (3)

Page 288: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

51) Deseja-se elevar água do reservatório A para o reservatório B. Sabe-se que a vazão é igual a 6 litros/s, determine:

a) A velocidade da água na tubulação de sucção. b) A velocidade da água na tubulação de recalque. c) A potência da bomba. d) O tempo necessário para se encher o reservatório B. Dados: γH2O = 10000N/m³, g = 10m/s², dsuc = 9cm, drec = 5cm, VB = 30m³, ηB = 60%.

B M

A

B

(1)

(2)

(3)

2m

25m

ref

sucção recalque

P1 = 0,5barnível constante

Page 289: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

52) Deseja-se elevar água do reservatório inferior (1) para a caixa d’água mostrada em (3). Sabe-se que a vazão é igual a 8 litros/s, determine:

a) As velocidades da água nas tubulações de sucção e recalque. b) A pressão em (2) na entrada da bomba. c) A potência da bomba. d) O tempo necessário para se encher o reservatório B. Dados: γH2O = 10000N/m³, g = 10m/s², dsuc = 6cm, drec = 3cm, ηB = 70%.

Mecânica dos Fluidos

B M

A

B

(1)

(2)

(3)

3m

25m

ref

aberto com nível constante

sucção recalque

Page 290: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

53) Para a instalação mostrada na figura, determine: a) As velocidades de sucção e recalque. b) As pressões na entrada e na saída da bomba. Dados: γH2O = 10000N/m³, g = 10m/s², dsuc = 8cm, drec = 4cm, NB = 6cv, 1cv = 736,5W,

QV = 18 litros/s, ηB = 70%.

Mecânica dos Fluidos

B M

A

B

(1)

(2) (3)

2m

12,8m

ref

aberto com nível constante

(4)

0,2m

Page 291: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

54) Na instalação mostrada na figura, a bomba possui potência de 5cv e rendimento de 75%, considere que o fluido é água, determine:

a) A velocidade do escoamento na tubulação de sucção. b) A pressão em (2) na entrada da bomba. c) A pressão em (3) na saída da bomba. d) A altura Z4 da caixa d’água. Dados: γH2O = 10000N/m³, g = 10m/s², d1 = d2 = 12cm, d3 = d4 = 8cm, QV = 15 litros/s.

Mecânica dos Fluidos

B M

A

B

(1)

(2) (3)

2m

Z4

ref

aberto com nível constante

(4)

0,2m

Page 292: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

55) Uma mistura de dois líquidos é bombeada para um tanque de 40m³ de um caminhão, determine:

a) A massa específica da mistura dos dois líquidos. b) A velocidade do escoamento no ponto (3). c) A velocidade do escoamento na tubulação de recalque. d) A potência da bomba. e) O tempo necessário para encher o reservatório do caminhão. Dados: ρ1 = 900kg/m³, ρ2 = 700kg/m³, Qv1 = 8 litros/s, Qv2 = 6 litros/s, γH2O =

10000N/m³, g = 10m/s², d3= 10cm, drec = 5cm, ηB = 80%, P3 = -0,4bar.

B M

(3) (4)

10m

ref

(5)

4m

(1) (2)

Page 293: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

56) Para a instalação mostrada na figura a seguir calcule: a) A velocidade na tubulação de sucção. b) A pressão na saída da bomba. c) A vazão nas tubulações (4) e (5). d) A velocidade nas tubulações (4) e (5). Dados: γH2O = 10000N/m³, g = 10m/s², Qv2 = 20 litros/s, Qv4 = 0,7Qv5, Qv4+Qv5=20

litros/s, d1 = d2 = 8cm, d3 = d4 = 4cm, d5 = 6cm, NB = 5cv ηB = 70%.

Mecânica dos Fluidos

B M

(1)

(2) (3)

3mref

aberto com nível constante

(4)

0,3m

(5)

10m

2m

Page 294: Mef 110808224140-phpapp01

Exercício 1

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

57) Para a instalação mostrada, determine a potência da bomba necessária para elevar água até o reservatório superior. Considere as perdas de carga.

Dados: Qv = 25 litros/s, γH2O = 10000N/m³, g = 10m/s²,d4= 8cm, HP1,2 = 6m, HP3,4 = 4m, ηB = 70%.

B M

A

B

(1)

(2) (3)

3mref

aberto com nível constante

(4)

27m

Page 295: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

58) Para a instalação mostrada, determine:

a) A velocidade na tubulação de sucção.

b) A pressão na entrada da bomba.

c) Sabendo-se que NB = 8cv, calcule a altura Z4.

Dados: Qv = 30 litros/s, γH2O = 10000N/m³, g = 10m/s², d1 = d2 = 9cm, d4= 7cm, HP1,2 = 7m, HP3,4 = 9m, ηB = 70%.

B M

A

B

(1)

(2) (3)

2mref

aberto com nível constante

(4)

Z4

Page 296: Mef 110808224140-phpapp01

Exercícios Propostos

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

59) Na instalação da figura, a máquina é uma bomba e o fluido é água. A bomba tem uma potência de 7kW e seu rendimento é 70%. A água édescarregada com uma velocidade de 5m/s pela saída (2) com área de 12cm². Determine a perda de carga do fluido entre (1) e (2) e calcule a potência dissipada ao longo da instalação.

Dados: γH2O = 10000N/m³, g = 10m/s².

Mecânica dos Fluidos

(1)

(2)

5m

B

Page 297: Mef 110808224140-phpapp01

Próxima Aula

Avaliação 2.

Aula 18 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 298: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 19 – Avaliação 2

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 299: Mef 110808224140-phpapp01

Avaliação 2 Matéria da Prova:

Aula 10 - Escoamento Laminar e Turbulento, Cálculo do Número de Reynolds

Aula 11 - Equação da Continuidade para Regime Permanente Aula 12 - Equação da Energia para Fluido Ideal Aula 13 - Equação da Energia na Presença de uma Máquina Aula 14 - Equação da Energia para Fluido Real - Estudo da Perda de

Carga Aula 15 - Instalações de Recalque - Uma Entrada, Uma Saída Aula 16 - Instalações de Recalque - Várias Entradas, Várias Saídas Aula 17 – Bombas Hidráulicas Aula 18 – Exercícios Complementares

Aula 19 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 300: Mef 110808224140-phpapp01

Próxima Aula

Recuperação Final

Aula 19 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos

Page 301: Mef 110808224140-phpapp01

Mecânica dos Fluidos

Aula 20 – Recuperação Final

Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Page 302: Mef 110808224140-phpapp01

Recuperação Final

Estudar toda a matéria.

Aula 20 Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos