matemática elementar iii

Download Matemática elementar iii

Post on 10-Jul-2015

10.100 views

Category:

Education

0 download

Embed Size (px)

TRANSCRIPT

  • MatemticaElementar III

    Domingos Anselmo Moura da SilvaGenilce Ferreira Oliveira

    Drio Souza Rocha

    Manaus 2006

  • FICHA TCNICA

    GovernadorEduardo Braga

    ViceGovernadorOmar Aziz

    ReitorLoureno dos Santos Pereira Braga

    ViceReitorCarlos Eduardo S. Gonalves

    PrReitor de Planej. e Administrao Antnio Dias Couto

    PrReitor de Extenso e Assuntos ComunitriosAdemar R. M. Teixeira

    PrReitor de Ensino de GraduaoCarlos Eduardo S. Gonalves

    PrReitor de PsGraduao e PesquisaWalmir de Albuquerque Barbosa

    Coordenador Geral do Curso de Matemtica (Sistema Presencial Mediado)Carlos Alberto Farias Jennings

    NUPROMNcleo de Produo de Material

    Coordenador GeralJoo Batista Gomes

    Projeto GrficoMrio Lima

    Editorao EletrnicaHelcio Ferreira Junior

    Reviso TcnicogramaticalJoo Batista Gomes

    Silva, Domingos Anselmo Moura da.

    S586m Matemtica elementar III / Domingos Anselmo Moura da Silva,Genilce Ferreira Oliveira, Dario Souza Rocha. Manaus/AM: UEA,2006. (Licenciatura em Matemtica. 2. Perodo)

    125 p.: il. ; 29 cm.

    Inclui bibliografia

    1. Matemtica Estudo e ensino. I. Oliveira, Genilce Ferreira. II.Rocha, Dario Souza. III. Ttulo.

    CDU (1997): 51

    CDD (19.ed.): 510

  • SUMRIO

    Palavra do Reitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 07

    UNIDADE I Funes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 09

    TEMA 01 A funo e o cotidiano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11TEMA 02 Funes injetivas e sobrejetivas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13TEMA 03 Funes inversveis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    UNIDADE II Funes Compostas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    TEMA 04 Funes compostas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19TEMA 05 Funo composta e sua linguagem formal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    UNIDADE III Equaes exponenciais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    TEMA 06 Funo exponencial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27TEMA 07 Potncia com expoente natural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27TEMA 08 Equaes exponenciais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    UNIDADE IV Funes exponenciais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    TEMA 09 Funo exponencial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35TEMA 10 Teoremas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36TEMA 11 Inequaes exponenciais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    UNIDADE V Funes logartmicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    TEMA 12 Introduo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41TEMA 13 Logartmo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41TEMA 14 Bases Especiais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42TEMA 15 Mudana de base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43TEMA 16 Propriedades dos logartmos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43TEMA 17 Funo logartmica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    UNIDADE VI Equaes e inequaes modulares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    TEMA 18 Mdulo de um nmero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55TEMA 19 Equaes modulares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55TEMA 20 Inequaes modulares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    UNIDADE VII Funes modulares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    TEMA 21 Funo modular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    UNIDADE VIII Seqncias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    TEMA 22 Seqncias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75TEMA 23 Seqncia de nmeros reais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    UNIDADE IX Progresses aritmticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    TEMA 24 Progresses aritmticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83TEMA 25 Frmula do termo geral de uma PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85TEMA 26 PA montona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88TEMA 27 Extremos e meios em uma PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 TEMA 28 Representao prtica dos termos de uma PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 TEMA 29 Interpolao aritmtica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 TEMA 30 Soma dos n primeiros termos de uma PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    UNIDADE X Progresses geomtricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    TEMA 31 Progresso geomtrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 TEMA 32 Frmula do termo geral da PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 TEMA 33 Classificao das progresses geomtricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 TEMA 34 Representao prtica de trs termos em PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111TEMA 35 Interpolao geomtrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 TEMA 36 Frmula da soma dos n primeiros termos de uma PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 TEMA 37 Limite da soma dos infinitos termos de uma PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

    Respostas de Exerccios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    Referncias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

  • Domingos Anselmo Moura da SilvaLicenciado e Bacharel em Matemtica - UFAM

    Mestre em Matemtica - UFAM

    Genilce Ferreira OliveiraLicenciada em Matemtica - UFAM

    Especialista em Matemtica - UFAM

    Drio Souza Rocha Licenciado e Bacharel em Matemtica - UFAM

    Especialista em Matemtica - UFAM

    PERFIL DOS AUTORES

  • PALAVRA DO REITOR

    A realidade amaznica, por si s, um desafio educao tradicional, aquela que teima em ficar arraigada

    sala de aula, na dependncia nica dos mtodos triviais d