livro de matemática financeira

111
MATEMÁTICA FINANCEIRA JÚLIO CÉSAR ENGEL DE ABREU 2008

Upload: secret2013

Post on 28-Dec-2015

371 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Livro de Matemática Financeira

MATEMÁTICA FINANCEIRA

JÚLIO CÉSAR ENGEL DE ABREU 2008

Page 2: Livro de Matemática Financeira

2

NOTA SOBRE O AUTOR Júlio César Engel de Abreu é graduado em Licenciatura em Matemática pela Universidade Federal do Rio Grande do Sul, fez Curso de Especialização em Matemática na Universidade Vale do Rio dos Sinos e posteriormente graduou-se em Direito pelo Instituto Ritter dos Reis. Cursou a título de aperfeiçoamento as disciplinas do Curso de Mestrado em Estratégia Empresarial na Pontifícia Universidade Católica de Porto Alegre. É professor de Matemática Financeira na Universidade Luterana do Brasil desde 1984 e Advogado atuando na área de Assessoria Empresarial Tributária e Trabalhista.

Page 3: Livro de Matemática Financeira

3

APRESENTAÇÃO Após ministrar aulas de Matemática Financeira a alunos da Graduação das áreas de Administração, Ciências Contábeis, Economia, Matemática, e Análise de Sistemas, por mais de 20 anos, e percebendo que os Livros e Manuais existentes não atendiam a seqüência prática, nem a forma didática adequada dos conteúdos ministrados na Universidade resolvemos elaborar o presente Livro que pretende atingir tais objetivos. Neste Livro discorremos sobre os diversos aspectos dos conteúdos que envolvem Matemática Financeira abordando a chamada capitalização simples e a capitalização composta, os descontos comercial e racional, bem como o estudo das séries de pagamentos e a amortização de empréstimos, de forma simples, clara e objetiva, sendo o mais didático possível para que alunos das áreas antes referidas, muitos deles sem aqueles conhecimentos matemáticos mais apurados possam entender os assuntos abordados, e em diversos casos estamos apresentando a forma de utilizar a Calculadora Financeira que atualmente é muito conhecida e utilizada por empresários e estudantes destas áreas. Esperamos que nossos objetivos sejam atingidos e que todos que vierem a trabalhar com este Livro consigam entender os conteúdos nele abordados aprendendo um pouco deste conteúdo tão fascinante denominado de Matemática Financeira bem como as suas repercussões na vida diária de cada pessoa.

Page 4: Livro de Matemática Financeira

4

SUMÁRIO NOTAS SOBRE O AUTOR APRESENTAÇÃO SUMÁRIO CAPÍTULO – I ...................................... 1. JURO SIMPLES 1.1. DEFINIÇÕES PRELIMINARES 1.2. JUROS SIMPLES 1.2.1. Considerações iniciais 1.2.2. Fórmula para o cálculo dos juros simples 1.2.3. Ano civil e ano comercial 1.2.4. Classificação dos juros 1.2.5. Fórmula para o cálculo do montante 1.3. EXERCÍCIOS COMPLEMENTARES CAPÍTULO – II ...................................... 2. DESCONTO SIMPLES 2.1. DEFINIÇÕES PRELIMINARES 2.2. DESCONTO SIMPLES RACIONAL 2.2.1. Forma de obtenção do desconto racional 2.2.2. Forma de obtenção do valor atual racional 2.3. DESCONTO SIMPLES COMERCIAL 2.3.1. Forma de obtenção do desconto comercial 2.3.2. Forma de obtenção do valor atual comercial 2.4. EXERCÍCIOS COMPLEMENTARES CAPÍTULO – III ...................................... 3. TAXAS e DESCONTOS EQUIVALENTES; EQUIVALÊNCIA DE CAPITAIS 3.1. TAXAS EQUIVALENTES 3.2. DESCONTOS EQUIVALENTES 3.3. EQUIVALÊNCIA DE CAPITAIS 3.4. EXERCÍCIOS COMPLEMENTARES CAPÍTULO – IV ...................................... 4. CAPITALIZAÇÃO COMPOSTA 4.1. COMENTÁRIOS INICIAIS 4.2. JUROS COMPOSTOS 4.2.1. Convenção exponencial 4.2.2. Convenção linear 4.3. EXERCÍCIOS COMPLEMENTARES

Page 5: Livro de Matemática Financeira

5

CAPÍTULO – V ...................................... 5. ESTUDO DAS TAXAS 5.1. ESTUDO DAS TAXAS NO JURO COMPOSTO 5.1.1. Tipos de taxas 5.1.2. Transformação de taxas 5.2. EXERCÍCIOS COMPLEMENTARES CAPÍTULO – VI ...................................... 6. RENDAS OU SÉRIES DE PAGAMENTOS (1.ª Parte) 6.1. INTRODUÇÃO 6.2. ELEMENTOS DE UMA RENDA 6.2.1. Montante 6.2.2. Valor atual 6.2.3. Termos 6.3. CLASSIFICAÇÃO DAS RENDAS 6.3.1. Rendas aleatórias 6.3.2. Rendas certas 6.4. RENDA CERTA, TEMPORÁRIA, IMEDIATA, e POSTECIPADA 6.4.1. Cálculo do montante na renda postecipada 6.4.2. Cálculo do valor atual na renda postecipada 6.5. EXERCÍCIOS COMPLEMENTARES CAPÍTULO – VII ...................................... 7. RENDAS OU SÉRIES DE PAGAMENTOS (2.ª Parte) 7.1. RENDA CERTA, TEMPORÁRIA, IMEDIATA e ANTECIPADA 7.1.1. Cálculo do montante na renda antecipada 7.1.2. Cálculo do valor atual na renda antecipada 7.2. EXERCÍCIOS COMPLEMENTARES CAPÍTULO – VIII ...................................... 8. RENDAS OU SÉRIES DE PAGAMENTOS (3.ª Parte) 8.1. RENDAS CERTAS TEMPORÁRIAS COM DIFERIMENTO 8.1.1. Diferimento final 8.1.2. Diferimento inicial 8.2. EXERCÍCIOS COMPLEMENTARES CAPÍTULO – IX ...................................... 9. AMORTIZAÇÃO DE EMPRÉSTIMOS (1.ª Parte) 9.1. AMORTIZAÇÃO DE EMPRÉSTIMOS 9.1.1. Formas de amortização de empréstimos 9.2. EXERCÍCIOS COMPLEMENTARES CAPÍTULO – X ...................................... 10. AMORTIZAÇÃO DE EMPRÉSTIMOS (2.ª Parte) 10.1. SISTEMA DE AMORTIZAÇÃO FRANCÊS 10.1.1. Cálculo das prestações 10.1.2. Cálculo dos juros em um período 10.1.3. Cálculo da amortização em um período 10.1.4. Cálculo do saldo devedor em um período 10.1.5. Cálculo do total pago em um período

Page 6: Livro de Matemática Financeira

6

10.1.6. Planilha de amortização 10.2. SISTEMA DE AMORTIZAÇÃO CONSTANTE – SAC 10.2.1. Cálculo da amortização de todos os períodos 10.2.2. Cálculo dos juros em um período 10.2.3. Cálculo das prestações 10.2.4. Cálculo do saldo devedor em um período 10.2.5. Cálculo do total pago em um período 10.2.6. Planilha de amortização 10.3. EXERCÍCIOS COMPLEMENTARES 11. BIBLIOGRAFIA ......................................

Page 7: Livro de Matemática Financeira

7

CAPÍTULO – I

1. JURO SIMPLES

1.1. DEFINIÇÕES PRELIMINARES: 1.1.1. Juro: é a quantia que se recebe (ou se paga) por emprestar certo Capital

durante um determinado Prazo. 1.1.2. Capital: é a quantidade de moeda corrente (dinheiro) de um determinado

investimento ou aplicação financeira. 1.1.3. Prazo (n.º de períodos): é o espaço de tempo durante o qual fica aplicado certo

Capital, ou o tempo decorrido entre a data de aplicação e a data de resgate do Capital.

1.1.4. Taxa de juro: é a razão percentual entre o Capital e o Juro, cuja unidade será a

do prazo de aplicação. 1.1.5. Juro simples: é aquele que é obtido durante todo o Prazo sobre o Capital

inicialmente aplicado. 1.1.6. Juro composto: é aquele que é obtido, a partir do 2.º período, sobre o

Montante do período anterior, ou seja, é aquele que a cada período o capital é somado com o juro produzido no período anterior.

1.1.7. Montante: é a soma de um Capital com seu Juro. 1.1.8. Período financeiro: é o período a que se refere a taxa de juro. Por exemplo, se

tivermos uma taxa de juro de 10% aa (% ao ano), o período financeiro será anual, mas se a taxa for de 5% as (% ao semestre) o período financeiro será semestral.

1.1.9. Observações: Em Matemática Financeira, utilizamos dois tipos de taxas de

juro (taxa percentual e taxa unitária). 1.1.9.1. Taxa Percentual: é a quantia de Juro que será produzido pela aplicação de 100

(cem) unidades de Capital durante uma unidade de Prazo (este resultado é expresso pelo n.º obtido, acrescido do símbolo % e da unidade do prazo), que é utilizada na apresentação dos problemas.

Exemplo 1: Se a aplicação do Capital de R$ 100,00 (cem reais) produzir juro de R$ 10,00 (dez reais) no prazo de 01 (um) ano, diremos que a taxa percentual será de 10 (dez) por cento ao ano, que será representada por 10%aa.

Exemplo 2: Se a aplicação do Capital de R$ 100,00 (cem reais) produzir juro de R$ 15,00 (quinze reais) no prazo de 04 (quatro) meses, diremos que a taxa percentual será de 15 (quinze) por cento ao quadrimestre, que será representado por 15%aq.

Page 8: Livro de Matemática Financeira

8

1.1.9.2. Taxa Unitária: é a quantia de Juro que será produzida pela aplicação de 01

(uma) unidade de Capital durante uma unidade de Prazo (este resultado será expresso apenas pelo n.º obtido e da unidade do prazo), ou seja, é a taxa percentual dividida por 100 (cem), que é utilizada na solução dos problemas (aplicação das fórmulas).

Exemplo 1: Se a aplicação do Capital de R$ 1,00 (um real) produzir durante um ano de aplicação a quantia de R$ 0,10 (dez centavos), significa que termos uma taxa unitária de 0,10 ao ano, que será representada por 0,10aa. Exemplo 2: Se a aplicação do Capital de R$ 1,00 (um real) produzir juro de R$ 0,15 (quinze centavos) no prazo de 06 (seis) meses, diremos que a taxa unitária será de 0,15 (quinze centavos) ao semestre, que será representado por 0,15as.

1.2. JURO SIMPLES: 1.2.1. Considerações iniciais:

Diz-se que um capital “C” está aplicado a juro simples quando este capital permanecer constante durante todo o período de aplicação, produzindo, assim, juros constantes, isto é, o juro do primeiro período é igual ao do segundo período, que, por sua vez, será igual ao juro do terceiro período e assim sucessivamente.

Capital → R$ 1.000,00 Taxa → 10% aa (juro simples) → 0,10 aa (taxa unitária) Prazo → 4 anos

1.2.2. Representação gráfica: Capital Aplicado = 1.000,00

|-------------------|------------------------|---------------------------|--------------------------| 0 1 2 3 4 1º ano C = 1000,00 2º ano i = 0,10 aa C = 1000,00 3º ano J1 = 1000x0,10 i = 0,10 aa C = 1000,00 4º ano J1 = 100,00 J2 = 1000x0,10 i = 0,10 aa C = 1000,00 J2 = 100,00 J3 = 1000x0,10 i = 0,10 aa J3 = 100,00 J4 = 1000x0,10 J4 = 100,00

Pelos desenvolvimentos acima, verificamos que o capital permanece constante durante todo o período de aplicação, resultando juros iguais.

J1 = J2 = J3 = J4 = 100,00

Page 9: Livro de Matemática Financeira

9

1.2.3. Fórmula para o cálculo do juro simples:

niCJ ..=

Onde: J = juro simples C = capital i = taxa unitária de juro n = prazo OBS: Na aplicação desta fórmula, o período da taxa deve coincidir com a

unidade do prazo da aplicação, isto é, devem estar em unidades semelhantes:

i = taxa anual → n = prazo anual i = taxa trimestral → n = prazo trimestral

Exemplo 1: A importância de R$ 3.800,00 foi aplicada, a juro simples, à taxa de 8% aa. Determine os juro produzidos no prazo de 4 meses. Solução: C = 3.800,00 i = 8% aa n = 4 meses = 4/12 ano

J = C. i .n

J = 3.800 x 0,08 x 4/12

J = 101,33

Exemplo 2: Quanto deverá ser aplicado, a juro simples, à taxa de 1,2% am, para produzir R$ 450,00 de juro no prazo de 45 dias? Solução: J = 450,00 i = 1,2%am n = 45 dias = 45/30 meses

30/45012,0

00,450

xC =

C = 25.000,00

Exemplo 3: A importância de R$ 45.000,00 produziu R$ 4.785,00 de juro simples, no prazo de 3 meses. Qual a taxa de juro utilizada nesta aplicação? Solução: C = 45.000,00 J = 4.785,00 n = 3 meses

300,45000

00,4785

xi =

i = 0,03544 → Taxa unitária mensal i = 3,544% ao mês, ou i = 42,533% aa

Page 10: Livro de Matemática Financeira

10

Exemplo 4: Determine o prazo necessário para um capital de R$ 78.500,00 produzir R$ 8.831,25 de juro, sabendo-se que a taxa de juro simples é de 30% aa. Solução: C = 78.500,00 J = 8.831,25 i = 30%aa ou 0,30 aa

30,000,500.78

25,8831

xn =

n = 0,375 período anual n = 0,375 x 360 → 135 dias 1.2.4. Ano civil e ano comercial: 1.2.4.1. Ano civil : é o ano do calendário, ou seja, o ano que todos nós vivemos.

Possui: 365(6) dias, será de 366 dias quando for bissexto; 12 meses de 28(9); 30 ou 31 dias.

1.2.4.2. Ano comercial: é o ano matemático (não possui calendário) Possui: 360 dias 12 meses de 30 dias 06 bimestres de 60 dias 04 trimestres de 90 dias 03 quadrimestres de 120 dias 02 semestres de 180 dias

1.2.5. Tipos de juro simples: 1.2.5.1. Juro exato: é calculado levando-se em consideração os dias do calendário e

como transformador de unidades o fator 365 ou 366 no caso de ano bissexto; 1.2.5.2. Juro comercial ou ordinário: é calculado levando-se em consideração o ano

comercial e como transformador de unidades os fatores do ano comercial;

1a = 2s = 3q = 4t = 6b = 12m = 360d

1.2.5.3. Juro pela regra dos banqueiros: é calculado levando-se em consideração os dias transcorridos no calendário e como fator de transformação de unidades os fatores do ano comercial. OBS.: 1) Utiliza-se a Regra dos Banqueiros sempre que o prazo for

apresentado fazendo-se referência ao ano do civil.

2) Utiliza-se a Regra do Juro Exato quando o prazo for apresentado fazendo-se referência ao ano do civil, e vier expresso nos problemas o pedido de seu cálculo.

Page 11: Livro de Matemática Financeira

11

1.2.6. Fórmula para o cálculo do montante: Montante é a soma entre o valor aplicado (capital) e os rendimentos produzidos (juro).

JCM += Substituindo “J” pela equação apresentada anteriormente, para o cálculo do juro simples, teremos:

niJCM ..+= Que resulta na fórmula:

).1.( niCM +=

Exemplo 1: Uma dívida no valor de R$ 65.000,00 será paga no prazo de 5 meses, acrescida de juro simples de 15% as. Determine o valor da dívida da data do seu vencimento. Solução: C = 65.000,00 ∴∴∴∴n = 5 meses ∴∴∴∴i = 15%as � i = 2,5%am

M = 65.000 x ( 1 + 0,025 x 5 ) M = 65.000 x (1 + 0,125 ) M = 65.000 x 1,125 M = 73.125,00

Exemplo 2: Uma dívida no valor de R$ 7.800,00 foi contraída em data de 15/out/2006, e será paga pelo valor de R$ 12.012,00 em data de 10/out/2007. Determine o valor da taxa bimestral de juro aplicada. Solução: C = 7.800,00 ∴∴∴∴ M = 12.012,00 ∴∴∴∴ n = 360 dias = 12 meses (Regra dos Banqueiros)

12012 = 7800 x (1 + i x 12) 12012 = 7800 + 93600 . i 12012 – 7800 = 93600 . i 4212 = 93600 . i 4212/93600 = i i = 0,045 � i = 4,5% am � i = 9,00% ab.

Exemplo 3: Certo capital foi aplicado a taxa de juro de 12%aq durante 10 meses, produzindo ao final da aplicação um montante de R$ 4.914,00. Encontre o valor do capital inicialmente aplicado. Solução: M = 4.914,00 ∴∴∴∴i = 12%aq ∴∴∴∴n = 10 meses � 2,5 quadrimestres

4914= C x (1 + 0,12 x 2,5)

Page 12: Livro de Matemática Financeira

12

4914 = C x (1 + 0,3) 4914 = C x 1,3 4914/1,3 = C C = 3.780,00

Exemplo 4: Uma dívida no valor de R$ 4.800,00 será paga por R$ 7.440,00, ao se aplicar uma taxa de juro de 2,5% am. Determine o prazo de aplicação desta dívida. Solução: C = 4.800,00 ∴∴∴∴i = 2,5%am ∴∴∴∴M = 7.440,00

7440 = 4800 x (1 + 0,025.n) 7440 = 4800 + 120 . n 7440 – 4800 = 120 . n 2640 = 120 . n 2640/120 = n n = 22 meses � 01 ano e 10 meses.

Page 13: Livro de Matemática Financeira

13

1.3. EXERCÍCIOS COMPLEMENTARES - JURO SIMPLES

1) O capital de R$ 2.500,00 foi investido a taxa de juro simples de 6% aa,

durante 4 meses. Quanto foi recebido de juro no término do prazo? R⇒⇒⇒⇒ R$ 50,00

2) O capital de R$ 1.650,00 foi aplicado em período de 10 meses e recebidos

R$ 55,00 de juro. Quanto foi a taxa anual de juro simples utilizada? R⇒⇒⇒⇒ 4% aa.

3) O capital de R$ 900,00 foi aplicado a uma taxa de juro simples de 5% aa,

tendo sido obtidos juro de R$ 15,00. Qual foi o tempo da operação? R⇒⇒⇒⇒ 4 meses

4) Um capital foi aplicado a uma taxa de juro simples de 6% aa, durante um

período de 8 meses, rendendo um juro de R$ 48,00. Qual foi o capital empregado? R⇒⇒⇒⇒ R$ 1.200,00

5) Uma pessoa aplica 2/5 de seu capital a taxa de juro de 6% am e o restante a

taxa de juro de 5% am, recebendo um juro mensal de R$ 324,00. Qual o capital aplicado? R⇒⇒⇒⇒ R$ 6.000,00

6) À taxa de juro simples de 10% at, em quanto tempo um capital triplica de

valor? R ⇒⇒⇒⇒ 5 anos 7) Uma pessoa aplica 3/5 de seu capital em letras durante 180 dias à taxa de

5% am e recebe de juro simples R$ 96.000,00. Qual era o capital? R ⇒⇒⇒⇒ R$ 533.333,00

8) Uma pessoa empregou seu capital à taxa de juro simples de 5% aa. Retirou,

no fim de 6 meses, capital e juro e os colocou à taxa de juro simples de 6% aa durante 4 meses recebendo no fim desse prazo, o montante de R$ 20.910,00. Calcular o capital primitivo. R ⇒⇒⇒⇒ R$ 20.000,00

9) Uma pessoa deposita num banco um capital que, no fim de 3 meses se

eleva juntamente com o juro produzido, a R$ 18.180,00. Este montante, rendendo juro, a mesma taxa, produz no fim de 6 meses, o montante de R$ 18.543,60. Calcular a taxa de juro simples utilizada e o valor do capital inicial. R ⇒⇒⇒⇒ i = 4% aa e C = R$ 18.000,00

10) Um capital de R$ 5.000,00 rendeu R$ 625,00 de juro. Sabendo-se que a

taxa de juro contratada foi de 30% aa e que a aplicação foi feita em 18/03/2008, qual a data de vencimento? R ⇒⇒⇒⇒ 15/08/08

Page 14: Livro de Matemática Financeira

14

CAPÍTULO – II

2. DESCONTO SIMPLES 2.1. DEFINIÇÕES PRELIMINARES: 2.1.1. Desconto: é a quantia que se reduz em uma dívida por se antecipar seu

vencimento por um determinado Prazo, ou de outra forma, é a diferença entre o Valor Devido e o Valor Pago por certa dívida.

A N i

|---------------------------------|--------------------------------------------| 0 p v

d

D = N – A

2.1.2. Valor nominal (N): é a importância que está indicada no Título, isto é, a quantia

a ser paga (ou resgatada) em seu vencimento. 2.1.3. Valor atual (A) : é o valor líquido recebido (ou pago) pelo Título ao se efetuar

uma antecipação no seu vencimento. 2.1.4. Períodos: 2.1.4.1.Data de emissão do título (0): é a data em que a dívida foi contraída; 2.1.4.2.Data de pagamento do título (p): é a data em que a dívida foi efetivamente

paga; 2.1.4.3.Data de vencimento do título (v): é a data prevista para o vencimento da

dívida. 2.1.5. Prazo (n): é o período de tempo decorrido entre a data do pagamento (p) e a

data do vencimento (v). 2.1.6. Taxa de juro (i): é a taxa percentual que se obtém pela divisão entre o valor do

desconto recebido (Dr) e o valor pago (Ar) pela dívida, sua unidade será dada no prazo de antecipação da dívida.

Page 15: Livro de Matemática Financeira

15

2.1.7. Taxa de desconto (d): é a taxa percentual que se obtém pela divisão entre o valor do desconto recebido (Dc), e o valor devido (N) na data prevista para seu vencimento, sua unidade será data no prazo de antecipação da dívida.

2.2. DESCONTO SIMPLES RACIONAL:

2.2.1. Forma de obtenção do desconto racional:

No desconto simples racional, também chamado de por dentro ou matemático, o valor do desconto é calculado aplicando-se a taxa de juro sobre o valor atual da dívida. Diz-se que, o desconto racional corresponde ao juro produzido pelo valor líquido (atual) da dívida, ou seja:

niAD rr ..=

Se: rr AND −=

Então:

rr DNA −= Que substituído na primeira equação acima, teremos:

ni

niNDr .1

..

+=

O que possibilita calcular o desconto racional, partindo-se do valor nominal da dívida.

Exemplo 1: Um título no valor de R$ 48.000,00 foi descontado à taxa de juro simples de 15% as, faltando 120 dias para o seu vencimento. Determine o valor do desconto:

Solução: N = 48.000,00 i = 15% as = 30% aa n = 120 dias ou 120/360 = 0,333333 anos

ni

niNDr .1

..

+=

33333,039,01

333333,030,000,48000

x

xxDr +

=

0999999,1

4800=rD

Dr = 4.363,64

Exemplo 2: Uma Nota Promissória no valor de R$ 13.000,00 foi descontada por R$ 10.500,00, faltando 65 dias para o seu vencimento. Determine o valor da taxa de juro simples mensal.

Page 16: Livro de Matemática Financeira

16

Solução: n = 65 dias ou 65/30 meses N = 13.000,00 Ar = 10.500,00 � Dr = 2.500,00

niAD rr ..=

30/6500,10500

00,2500

xi =

i = 0,1098901 ou i = 10,98901 %am

Exemplo 3: Uma duplicata recebeu um desconto de R$ 6.000,00 ao se antecipar seu vencimento em 45 dias. Determine o valor inicial da duplicata, e o valor pago pela dívida, se foi aplicada uma taxa de juro simples de 30% as. Solução: Dr = 6.000,00 i = 30%as ou 0,30 as n = 45 dias ou 45/180 = 0,25 semestres

ni

niNDr .1

..

+=

25,030,01

25,030,06000

x

xNx

+=

075,1

075,06000

Nx=

075,0

075,16000xN =

N = 86.000,00 rr DNA −= Ar = 86000 – 6000 Ar = 80.000,00

Exemplo 4: Uma dívida de R$ 86.000,00 com vencimento previsto para 18/Agosto/2008 recebeu um desconto de R$ 6.000,00 ao se aplicar uma taxa de juro simples de 30% as. Determine a data de pagamento desta dívida. Solução: i = 30%as = 5% am N = 86.000,00 Dr = 6.000,00 � Ar = 80.000,00

niAD rr ..=

xnx 05,0800006000=

Page 17: Livro de Matemática Financeira

17

n.40006000=

n = 1,5 meses ou 45 dias Data de Pagamento em: 04/Julho/2008

HP - 12C Data do Pagamento: 18/08/2008 - 45 dias � 04/07/2008 g D. MY 18.082008 enter 45 CHS g DATE 04.072008

2.2.2. Forma de obtenção do valor atual racional:

É a diferença entre o valor da dívida e o valor pago pela mesma, após se ter efetuado uma antecipação em seu vencimento.

rr DNA −=

Como:

ni

niNDr .1

..

+=

Então:

ni

niNNAr .1

..

+−=

O que resulta em:

ni

NAr .1+

=

Exemplo 1: Uma dívida de R$ 86.000,00 com vencimento previsto para 18/Agosto/2008 foi paga em data de 04/Julho/2008, encontre o valor pago por esta dívida se a taxa de juro simples aplicada foi de 30% as. Solução: N = 86.000,00 i = 30%as n = 45 dias (Venc.: 18/08/2008 – Pgto: 04/07/2008)

ni

NAr .1+

=

25,030,01

86000

xAr +

=

075,1

86000=rA

Page 18: Livro de Matemática Financeira

18

00,000.80=rA

Exemplo 2: Uma dívida foi paga por R$ 45.000,00 tendo seu vencimento antecipado em 72 dias. Encontre o valor inicial da dívida se a taxa de juro simples aplicada foi se 18%at. Solução: Ar = 45.000,00 n = 72 dias = 0,8 trimestres i = 18%at

ni

NAr .1+

=

8,018,0145000

x

N

+=

144,145000

N=

N = 45000x1,144 � N = 51.480,00

2.3. DESCONTO SIMPLES COMERCIAL: 2.3.1. Forma de obtenção do desconto comercial:

Neste método, o valor do desconto é calculado aplicando-se a taxa de desconto simples sobre o valor nominal do título. Diz-se que, o desconto comercial corresponde ao juro produzido pelo valor nominal da dívida, isto é:

ndNDc ..=

Exemplo 1: Um título no valor de R$ 6.500,00, emitido no dia 10/03/2007 e com seu vencimento para o dia 29/07/2007, foi descontado à taxa de desconto simples de 30% at, no dia 10/05/2007. Determine o valor do desconto recebido na operação. Solução:

data emissão data resgate data vencimento 10/03/2007 10/05/2007 29/07/2007 |--------------------------------------------|--------------------------------------| n = 80 dias

N = 6.500,00 d = 30%at t = 80 dias ou 80/90 trimestres

Dc = N.d.n Dc = 6500 x 0,30 x 80/90 Dc = 1.733,33

Page 19: Livro de Matemática Financeira

19

Cálculo do prazo (n.º de dias) na

HP – 12C Número de dias entre 10/05/2007 a 29/07/2007: f clear REG g D.MY 10.052007 enter 29.072007 g � DYS 80

Exemplo 2: Uma Nota Promissória recebeu um desconto de R$ 1.800,00 ao ser descontada 90 dias antes do seu vencimento, à taxa de desconto simples de 40% aa. Determine o valor da Nota Promissória. Solução: DC = 1.800,00 d = 40%aa t = 90 dias ou 90/360 anos

Dc = N.d.n 1800,00 = N x 0,40 x 90/360 1800 = N x 0,1 N = 18.000,00

Exemplo 3: Uma divida de R$ 7.200,00 foi descontada por R$ 5.126,40 no dia 14/05/2008. Utilizando a taxa de desconto simples de 12%am, determine a data marcada para o vencimento. Solução: N = 7.200,00 Ac = 5.126,40 d = 12% am � Dc = 2.073,60

Dc = N.d.n 2073,60 = 7200 x 0,12 x n 2073,60 = 864 x n n = 2,40 meses, ou seja 2,40 x 30 = 72 dias

Data do Vencimento: 14/05/2008 + 72 dias → 25/07/2008

Page 20: Livro de Matemática Financeira

20

HP - 12C g D. MY 14.052008 enter 72 g DATE 25.072008

2.3.2. Forma de obtenção do valor atual comercial:

É a diferença entre o valor da dívida e o valor pago pela mesma, após se ter efetuado uma antecipação em seu vencimento.

CC DNA −=

Como: ndNDC ..=

Então: ndNNAC ..−=

O que resulta em: ).1.( ndNAC −=

Exemplo 1: Uma dívida de R$ 48.000,00 com vencimento previsto para 25/Agosto/2008 foi paga em data de 11/Julho/2008, encontre o valor pago por esta dívida se a taxa de desconto simples aplicada foi de 30% as. Solução: N = 48.000,00 d = 30%as n = 45 dias (Venc.: 25/08/2008 – Pgto: 11/07/2008)

).1.( ndNAC −=

)180/4530,01(48000 xxAC −=

925,048000xAC =

00,400.44=CA

Exemplo 2: Uma dívida foi paga por R$ 45.000,00 tendo seu vencimento antecipado em 72 dias. Encontre o valor inicial da dívida se a taxa de desconto aplicada foi se 18%at. Solução: Ar = 45.000,00 n = 72 dias = 0,8 trimestres d = 18%at

).1.( ndNAC −=

)8,018,01(45000 xNx −= 856,045000 Nx=

N = 45000/0,856 � N = 52.570,09

Page 21: Livro de Matemática Financeira

21

2.4. EXERCÍCIOS COMPLEMENTARES - DESCONTO SIMPLES :

1) Um título de R$ 10.000,00 com vencimento em 23/09/2007 foi resgatado em 15/06/2007. Qual foi o desconto recebido se a taxa de juro contratada foi de 27% aa? R ⇒⇒⇒⇒ R$ 697,67

2) O desconto de um título foi de R$ 750,00, adotando-se uma taxa de desconto

simples de 5% ab. Quanto tempo faltaria para o vencimento do título, se o seu valor nominal fosse R$ 20.000,00? R ⇒⇒⇒⇒ 45 dias

3) Uma nota promissória no valor de R$ 52.400,00 foi descontada à taxa de

juro simples de 5 % at, faltando 4 meses e 20 dias para o seu vencimento. Qual o valor do desconto e o valor recebido pela nota promissória? R ⇒⇒⇒⇒ Desconto = R$ 3.781,44; Valor atual = R$ 48.618,56.

4) Uma nota promissória foi emitida no dia 20/02/07 com seu vencimento

marcado para o prazo de 5 meses (20/07/07 – ano comercial). No dia 12/05/07 foi descontada por R$ 28.300,00. Qual o valor do desconto, sabendo-se que a taxa de desconto simples utilizada era de 10% aq? R ⇒⇒⇒⇒ R$ 1.726,53

5) Um título no valor de R$ 120.000,00 foi descontado por R$ 108.380,00,

faltando 95 dias para o seu vencimento. Qual a taxa de juro simples semestral utilizada? R ⇒⇒⇒⇒ i = 20,31% as

6) Uma nota promissória foi descontada por R$ 25.000,00 no dia 10/10/2008, à

taxa de desconto simples de 15% as, sabendo-se que o desconto foi de R$ 2.930,00. Qual a data do vencimento da nota promissória e qual o seu valor? R ⇒⇒⇒⇒ 13/02/2009 e R$ 27.930,00

7) Um título no valor de R$ 12.415,00 emitido em 10/08/2008, com seu

vencimento marcado para o dia 21/12/2008, foi descontado em 12/11/2008, à taxa de desconto simples de 12% am. Determine o valor recebido pelo título na data do desconto? R ⇒⇒⇒⇒ R$ 10.478,26

8) Uma nota promissória no valor de R$ 40.000,00 foi descontada faltando 129

dias para o seu vencimento, à taxa de desconto simples de 10% ao bimestre. Determine o valor recebido pela nota na data do desconto. R ⇒⇒⇒⇒ R$ 31.400,00

9) Um título foi descontado com 40 dias de antecipação à taxa de desconto de

5% ao mês, e na mesma data, o valor atual foi aplicado à taxa de juro simples de 8% ao mês durante 90 dias. Sabendo-se que o montante dessa aplicação foi de R$ 173.600,00, determine o valor nominal do título na operação de descontos. R ⇒⇒⇒⇒ R$ 150.000,00

10) Uma Nota Promissória de R$ 29.300,00 teve seu vencimento antecipado em

321 dias, recebendo uma taxa de descontos de 16%aq. O valor atual recebido por este título foi aplicado a taxa de juro de 60%aa, ficando aplicado por 426 dias. Determine o montante final resgatado. R ⇒⇒⇒⇒ R$ 28.658,92

Page 22: Livro de Matemática Financeira

22

CAPÍTULO – III

3. TAXAS E DESCONTOS EQUIVALENTES, EQUIVALÊNCIA DE CAPITAIS

3.1. TAXAS EQUIVALENTES:

A equivalência entre a taxa de juro simples e a taxa de desconto simples, ocorre sempre que a redução de um Título a seu Valor Atual, tanto pelo método racional quanto pelo método comercial produzirem o mesmo desconto (descontos iguais), neste caso, diz-se que as duas taxas (juro e desconto) são equivalentes. Ressalte-se que são condições indispensáveis para a existência a equivalência entre a taxa de juro e a taxa de desconto, que se tenha a mesma dívida ( N ), a mesma antecipação (n) e que os descontos sejam iguais ( DC = Dr ), nestas condições teremos:

Ar = Ac

Como:

ni

NAr .1+

= e ).1.( ndNAC −=

Teremos:

).1.(.1

ndNni

N −=+

Simplificando-se N, teremos:

).1(.1

1nd

ni−=

+

Donde se conclui que:

nd

di

.1−=

Ou que

ni

id

.1+=

Page 23: Livro de Matemática Financeira

23

Exemplo 1: Uma Nota Promissória no valor de R$ 5.000,00 foi descontada à taxa de desconto simples de 15%am, faltando 48 dias para o seu vencimento. Determine o valor da taxa de juro simples mensal equivalente. Solução: N = 5.000,00 d = 15%am n = 48 dias ou 48/30 meses

30/4815,01

15,0

xi

−=

24,01

15,0

−=i

76,0

15,0=i � ami 197368,0=

ami %7368,19=

Comprovação da equivalência:

O Valor Atual pelo método comercial resulta em:

Ac = 5000 x (1 - 0,15 x 48/30 ) Ac = 3.800,00

O Valor Atual pelo método racional resulta em:

30/48197368,01

5000

xAr +

=

3157888,1

5000=rA

Ar = 3.800,00

Logo temos que:

Ac = Ar Exemplo 2: Uma instituição financeira adota uma taxa de desconto simples de 18% am, numa operação de desconto com 60 dias de prazo. Determine o custo desta operação para o cliente caso fosse tomado como empréstimo. Solução: d = 18%am n = 60 dias ou 2 meses i = ?

30/6018,01

18,0

xi

−=

Page 24: Livro de Matemática Financeira

24

36,01

18,0

−=i

64,0

18,0=i � i = 0,28125 am

i = 28,125%am

Exemplo 3: Determine a taxa de desconto simples, equivalente à taxa de juro simples de 23%am, no prazo de 80 dias. Solução: i = 23%am n = 80 dias ou 80/30 meses d = ?

30/8023,01

23,0

xd

+=

6133333,01

23,0

+=d

6133333,1

23,0=d

→= amd 1425619,0 14,25619%am

3.2. DESCONTOS EQUIVALENTES:

A equivalência entre o desconto simples comercial e o desconto simples racional, ocorre sempre que a redução de um Título a seu Valor Atual, tanto pelo método racional quanto pelo método comercial produzirem como resultado a mesma taxa (taxas iguais � i = d ), neste caso, diz-se que os descontos (comercial e racional) são equivalentes ou proporcionais. Ressalte-se que são condições indispensáveis para a existência a equivalência entre o desconto comercial e o desconto racional, que se tenha a mesma dívida ( N ), a mesma antecipação ( n ) e que as taxas sejam iguais ( i = d ), nestas condições teremos:

ni

niNDr .1

..

+= e que ndNDC ..=

Como, pelas hipóteses iniciais, temos que:

N . i . n = N . d . n

Page 25: Livro de Matemática Financeira

25

Então podemos afirmar que:

ni

DD c

r .1+=

Ou que:

).1.( ndDD rC +=

Exemplo 1: Uma Nota Promissória no valor de R$ 15.000,00 foi descontada à taxa de 15%am, faltando 48 dias para o seu vencimento. Determine o valor do Desconto Comercial e do Desconto Racional que se receberia. Solução: N = 15.000,00 Taxa = 15%am n = 48 dias ou 48/30 meses

DC = N . d . n DC = 15000 x 0,15 x 48/30 DC = 3.600,00

ni

niNDr .1

..

+=

30/4815,01

30/4815,015000

x

xxDr +

=

24,1

3600=rD

23,903.2=rD

Comprovação da equivalência:

Note-se que o Desconto Comercial é 1,24 vezes maior que o Desconto Racional Ou seja:

DC = Dr . (1 + d . n) DC = 2903,23 x (1 + 0,15 x 48/30) DC = 2903,23 x 1,24 DC = 3.600,00

Page 26: Livro de Matemática Financeira

26

Ou que, o Desconto Racional é 1,24 vezes menor que o Desconto Comercial:

ni

DD C

r .1+=

30/4815,01

3600

xDr +

=

24,1

3600=rD

Dr = 2.903,23

Exemplo 2: Uma pessoa troca em 12/07/2008 com uma Instituição Financeira ZYX uma dívida de R$ 12.000,00 com vencimento previsto 19/10/2008. A Instituição Financeira para efetuar o pagamento ao titular da dívida adota uma taxa de juro simples de 18% as. Na mesma data o devedor procura o credor querendo pagar antecipadamente sua dívida, que lhe informa que o título havia sido trocado com a Instituição Financeira ZYX. O credor procurando a referida empresa recebe a uma proposta por parte do gerente de que se aplique a mesma taxa de desconto para que não sofra nenhum prejuízo. Pergunta-se, a Instituição Financeira ZYX obteve algum lucro nesta operação? Solução: N = 12.000,00 Taxa = 18%as n = 99 dias (Venc.: 19/10/2008 – Pgto.: 12/02/2008)

Operação realizada com o Credor:

ni

niNDr .1

..

+=

180/9918,01

180/9918,012000

x

xxDr +

=

099,1

1188=rD � Dr = 1.080,98

Operação realizada com o Devedor:

ndNDC ..=

180/9918,012000 xxDC =

DC = 1.188,00

Page 27: Livro de Matemática Financeira

27

Lucro da Instituição Financeira ZYX:

Lucro na Operação = DC – Dr

Lucro na Operação = 1188 – 1.080,98 Lucro na Operação = 107,02

Exemplo 3: Em uma divida o Desconto Comercial é R$ 250,00 maior que o Desconto Racional. Encontre o valor nominal desta divida se a taxa aplicada foi de 5%am, e a antecipação em seu vencimento foi de 84 dias. Solução: DC = DR + 250,00 Taxa = 5%am n = 84 dias ou 84/30 meses = 2,8 meses

).1.( ndDD rC +=

ndNDC ..=

Substituindo os dados no Sistema formado por estas duas equações, teremos:

)8,205,01.(250 xDD rr +=+

8,205,0250 xNxDr =+ Isolando Dr na segunda equação, teremos:

25014,0 −= NxDr

Substituindo o valor encontrado para Dr na primeira equação, teremos

)8,205,01()25014,0(25025014,0 xxxNxN +−=+− O que resulta, depois de efetuadas as operações aritméticas em:

14,1)25014,0(14,0 xxNxN −=

Eliminando-se os parênteses, teremos:

2851596,014,0 −= xNxN

Isolando-se o Valor Nominal (N), teremos:

NxN 14,01596,0285 −=

xN0196,0285=

0196,0

285=N

Page 28: Livro de Matemática Financeira

28

82,540.14=N

Logo o Valor da Dívida era de R$ 14.540,82

3.3. EQUIVALÊNCIA DE CAPITAIS:

Dizemos que dois ou mais capitais com vencimento futuro são equivalentes em determinada data, se nesta data seus valores atuais forem iguais. Aplica-se a Equivalência de Capitais quando temos a necessidade de alterar a forma de pagamento de certa dívida, ou desejamos verificar se uma proposta de pagamento com datas diferentes é viável e se equivale a dívida já existente. Para que se possa operacionalizar esta idéia, devemos escolher uma data, que é chamada de data focal, e então, encontrar os valores atuais de cada uma das parcelas envolvidas na operação, formando-se a denominada equação de equivalência de capitais, onde a soma do valor devido deve ser igual à soma do valor que se passará a dever. N1 N2 N3 N4

|--------------------------|---------------|------------------|---------------------| 0 n1 n2 n3 n4

d %

Devido = Nova Dívida AC = AC

Exemplo 1: Uma pessoa possui uma dívida de R$ 12.000,00 com vencimento previsto para 96 dias, desejando substituir esta dívida por outras duas dívidas de pagamentos iguais e com vencimento previsto para 120 e 150 dias, propõe ao credor a substituição da divida atual pelas duas novas dividas. O credor afirma que concorda com o parcelamento se na operação for aplicada uma taxa de desconto de 12%as. Encontre os novos valores a serem pagos por esta pessoa ao credor. Solução: Dívida = 12.000 N1 = N2 d = 12%as ou 2%am

12000 N1 N2

|----------------------------|---------------|--------------------| 0 96 120 150 dias

d = 2 %am Devido = Nova Dívida AC96 = AC120 + AC150

)502,01()402,01()2,302,01(12000 21 xxNxxNxx −+−=−

Page 29: Livro de Matemática Financeira

29

)1,01()08,01()064,01(12000 −+−=− NxNxx

9,092,0936,012000 NxNxx +=

xN82,111232=

43,171.6=N

Desta forma os dois pagamentos serão de R$ 6.172,43 sendo o primeiro em 120 dias e o segundo em 150 dias da data da proposta de substituição da dívida

Exemplo 2: Uma pessoa possui uma dívida de R$ 18.000,00 com vencimento previsto para 84 dias, e outra dívida de R$ 15.000,00 com vencimento para 180 dias, desejando substituir estas dívidas por outra com vencimento para 150 dias, propõe ao credor a substituição das dividas atuais pela nova dívida. O credor afirma que concorda com a substituição se na operação for aplicada uma taxa de desconto de 18%aa. Encontre o valor a ser pago por esta pessoa. Solução: Dívida1 = 18.000,00 n1 = 84 dias Dívida2 = 15.000,00 n2 = 180 dias d = 18%aa

Pgto = N n = 150 dias 18000 N 15000

|----------------------------|---------------|--------------------| 0 84 150 180 dias

d = 1,5 %am Devido = Nova Dívida AC84 + AC180 = AC150

)5015,01()6015,01(15000)8,2015,01(18000 xNxxxxx −=−+−

)075,01()09,01(15000)042,01(18000 −=−+− Nxxx

925,091,015000958,018000 Nxxx =+

925,01365017244 Nx=+

025,030894 Nx=

92,398.33=N

Logo o valor a ser pago pelo Devedor em 150 dias será de R$ 33.398,92

Exemplo 3: Uma pessoa possui uma dívida de R$ 12.000,00 com vencimento previsto para 96 dias, e outra dívida de R$ 15.000,00 com vencimento para 150 dias, desejando substituir estas dívidas por 03 (três) pagamentos iguais e com vencimento para 60; 120 e 180 dias, propõe ao credor a substituição das dividas atuais pelas novas dívidas. O credor afirma que concorda com a substituição se na operação for

Page 30: Livro de Matemática Financeira

30

aplicada uma taxa de desconto de 12%aa. Encontre o valor a ser pago em cada parcela por esta pessoa. Solução: Dívida1 = 12.000,00 n1 = 96 dias Dívida2 = 15.000,00 n2 = 150 dias d = 12%aa

Pgto1 = N n1 = 60 dias; Pgto2 = N n2 = 120 dias; Pgto3 = N n3 = 180 dias N 12000 N 15000 N

|--------------|----------|-------------|--------------|------------------| 0 60 96 120 150 180 dias d = 1,0 %am Devido = Nova Dívida AC96 + AC150 = AC60 + AC120 + AC180

)601,01()401,01()201,01()501,01(15000)2,301,01(12000 xNxxNxxNxxxxx −+−+−=−+−)06,01()04,01()02,01()05,01(15000)032,01(12000 −+−+−=−+− NxNxNxxx

94,096,098,095,015000968,012000 NxNxNxxx ++=+

88,21425011616 Nx=+

88,225866 Nx=

N=88,2

25866

N = 8981,25

Desta forma os 03 (três) pagamentos serão de R$ 8.981,25 sendo o primeiro em 60 dias; o segundo em 120 dias e o terceiro em 180 dias da data da proposta de substituição da dívida.

Page 31: Livro de Matemática Financeira

31

3.4. EXERCÍCIOS COMPLEMENTARES – EQUIVALÊNCIAS

1) Numa operação de desconto de um título a vencer em 5 meses, o desconto comercial é de R$ 140,00 maior que o desconto racional. Qual será o valor nominal do título, se a taxa empregada nos descontos for de 24% ao ano? R ⇒⇒⇒⇒ 15.400,00

2) Qual a taxa de juro mensal que equivale à taxa de descontos de 20% ao mês?

R ⇒⇒⇒⇒ 25% ao mês 3) Determine a taxa de juro simples, equivalente à taxa de desconto simples de

15% ao mês num prazo de 82 dias. R ⇒⇒⇒⇒ i = 25,42 ao mês 4) Um título no valor de R$ 12.415,00 emitido em 10/08/2007, com seu

vencimento marcado para o dia 20/12/2007, foi descontado em 14/11/2007, à taxa de desconto simples de 12% ao mês. Determine o valor recebido pelo título na data do desconto e a taxa de juro simples equivalente? R ⇒⇒⇒⇒ 10.627,24 e i = 14,0187% ao mês

5) Qual o valor da taxa de desconto simples, equivalente à taxa de juro simples

de 30% ao semestre, num período de 90 dias. R ⇒⇒⇒⇒ d = 26,08 ao semestre 6) O valor nominal de um título cujos descontos comercial e racional são,

respectivamente, R$ 180.000,00 e R$ 120.000,00 é? R ⇒⇒⇒⇒ 360.000,00 7) O desconto de um título foi de R$ 750,00, adotando-se uma taxa de desconto

simples de 5% ab. Quanto tempo faltaria para o vencimento do título, se o seu valor nominal fosse R$ 20.000,00? R ⇒⇒⇒⇒ 45 dias

8) Uma nota promissória de R$ 30.000,00 vencível em 45 dias será substituída

por outra nota promissória vencível em 24 dias. Determine o valor da nova nota promissória, sabendo-se que a taxa de desconto simples é de 30% aa. R ⇒⇒⇒⇒ N = R$ 29.464,29

9) Uma dívida representada por duas notas promissórias de R$ 40.000,00 e R$

90.000,00, vencíveis, respectivamente em 60 e 90 dias, serão substituídas por dois títulos de mesmo valor final, vencíveis em 120 e 180 dias. Determine o valor nominal dos novos títulos, sabendo-se que a taxa de desconto simples é de 1,5% am. R ⇒⇒⇒⇒ R$ 67.432,43

10) Um título no valor de R$ 16.000,00, vencível no prazo de 36 dias, será

substituído por outro título no valor de R$ 16.994,36. Utilizando uma taxa de desconto de 30% ao semestre, determine o prazo para o vencimento do novo título. R ⇒⇒⇒⇒ n = 69 dias

Page 32: Livro de Matemática Financeira

32

CAPÍTULO – IV

4. CAPITALIZAÇÃO COMPOSTA

4.1. COMENTÁRIOS INICIAIS

No estudo da Capitalização Composta se impõe regras mais severas ao estudante, para que se obtenha os resultados desejados, por isto destacamos que a partir deste Capítulo deste Livro, é imprescindível que a unidade do prazo de aplicação (n) deva seja semelhante a unidade de capitalização da taxa de juro, isto é:

- Se a taxa (i) for capitalizada anualmente, o prazo de aplicação (n) necessariamente terá que ser medido em anos.

Neste caso chamamos de capitalização ANUAL - Se a taxa (i) for capitalizada mensalmente, o prazo de aplicação (n) necessariamente terá que ser medido em meses. - Se a taxa (i) for capitalizada trimestralmente, o prazo de aplicação (n) necessariamente terá que ser medido em trimestres.

Nestes dois últimos exemplos a capitalização é chamada de SUBANUAL

Os procedimentos de cálculos são iguais em ambas as capitalizações, desta forma, não faremos a demonstração para cada uma delas, mas, sim de forma genérica. No entanto é importante lembrar que:

- Quando a unidade da taxa for igual a unidade da capitalização, chamamos de taxa efetiva. - Quando a unidade da taxa não coincidir com a unidade da capitalização, chamamos de taxa nominal.

Exemplificando:

a) 80% ao ano, com capitalização anual (%aa/a) → taxa efetiva b) 42% ao ano, com capitalização mensal (%aa/m) → taxa nominal c) 3,5% ao mês, com capitalização mensal (%am/m) → taxa efetiva

Page 33: Livro de Matemática Financeira

33

4.2. JURO COMPOSTO 4.2.1. Convenção exponencial:

Consideramos que um capital “PV” está aplicado a juro composto quando o juro do primeiro período ( J1 ) é acrescido ao capital primitivo (PV), formando um novo capital (FV1), que, por sua vez, produzirá um novo juro ( J2 ) no período seguinte. Este juro ( J2 ) será acrescido ao capital (FV1) formando novo capital (PV2), e assim sucessivamente. Diz-se que nesta operação o juro é capitalizado, ou que ocorre o que se denomina de juro sobre juro. Exemplificando: PV = capital, capital inicial, preço, valor atual i = taxa efetiva de juro n = prazo ou número de período da aplicação FV = montante, total gerado, valor final, total pago

4.2.1.1. Representação gráfica:

PV FV1 FV2 FV3 |---------------------|---------------------|----------------------|-----------------------| 0 1 2 3 4

J1 = PV. i FV1 = PV + J1 FV1 = PV + PV. i FV1 = PV.(1 + i) J2 = FV1 .i FV2 = FV1 + J2 FV2 = FV1 + FV1. i FV2 = FV1.(1 + i) J3= FV2 . i FV3 = FV2 + J3 FV3 = FV2 + FV2 . i FV3 = FV2.(1 + i) J4 = FV3 . i FV4 = FV3 + J4 FV4 = FV3 + FV3. i FV4 = FV3.(1 + i)

Page 34: Livro de Matemática Financeira

34

4.2.1.2. Cálculo do montante:

Pelo desenvolvimento apresentado anteriormente, determinamos:

)1.(1 iFVFV nn += −

Ou, substituindo uma fórmula em outra,

FV1 = PV.(1 + i) FV2 = FV1.(1 + i) → FV2 = PV.(1 + i)2

FV3 = FV2.(1 + i) → FV3 = PV.(1 + i)3

e assim sucessivamente, concluímos que:

nn iPVFV )1.( +=

Ou simplificadamente,

niPVFV )1.( +=

isto é, o montante (FV), num período (n) qualquer, é igual ao capital (PV), devidamente capitalizado pela taxa efetiva de juro ao longo do prazo de aplicação. A expressão abaixo é denominada de Fator de Capitalização

→+ ni)1( fator de capitalização

Exemplo 1: Um capital no valor de R$ 14.000,00 foi aplicado a juro composto à taxa de 6% aa/a (ao ano, com capitalização anual). Determine o montante avaliando-o no prazo de 11 anos. Solução: PV = 14.000,00 ∴∴∴∴ i = 6% aa/a ∴∴∴∴ n = 11 anos ∴∴∴∴ FV = ?

FV = PV.(1 + i) n FV = 14000.(1 + 0,06)11 FV = 14000 x 1,898298 FV = 26.576,18 Montante = R$ 26.576,18

Page 35: Livro de Matemática Financeira

35

Na calculadora financeira poderemos fazer da seguinte forma:

HP - 12C

f clear Fin Visor

14.000,00 CHS PV - 14.000,00

11 N 11

6 i 6

FV 26.576,18

Exemplo 2: A importância de R$ 7.500,00 foi emprestada por um período de 3 anos. Sabendo-se que foi estabelecido juro composto na base de 9% at/t (ao trimestre, capitalizados trimestralmente), determine o valor a pagar pelo empréstimo no vencimento. Solução: PV = 7.500,00 ∴∴∴∴ i = 9% at/t ∴∴∴∴ n = 12 trimestres ∴∴∴∴ FV = ?

FV = PV.(1+ i)n FV = 7500 . (1+0,09 ) 12 FV = 7500 x 1,0912

FV = 7500 x 2,812665 FV = 21.094,99 Montante = R$ 21.094,99

Na calculadora financeira poderemos fazer da seguinte forma:

HP - 12C

f clear Fin Visor

7.500,00 CHS PV - 7.500,00

12 N 12

9 i 9

FV 21.094,99

4.2.1.3. Cálculo do capital:

Partindo-se da fórmula do montante:

niPVFV )1.( +=

e isolando o capital, teremos

Page 36: Livro de Matemática Financeira

36

ni

FVPV

)1( +=

Ou de outra forma

niFVPV −+= )1.(

Onde a expressão abaixo e denominada de Fator de Descapitalização

→+ −ni)1( fator de descapitalização

Exemplo 1: Uma dívida foi paga no final de 3 anos com R$ 5.800,00. Se a taxa de juro composto aplicada foi de 48% aa/m (ao ano, com capitalização mensal), determine o valor da dívida na data em que foi contraída. Solução: FV = 5.800,00 ∴∴∴∴ i = 4% am/m ∴∴∴∴ n = 36 meses ∴∴∴∴ PV = ?

niPVFV )1.( +=

36)04,01.(5800 += PV 103932,4.5800 PV=

PV=103932,4

5800

28,1413=PV Ou

niFVPV −+= )1.(

36)04,01.(5800 −+=PV 243668,05800xPV =

28,1413=PV Capital = R$ 1.413,28

Na calculadora financeira poderemos fazer da seguinte forma:

HP - 12C

f clear Fin Visor

5.800,00 CHS FV - 5.800,00

36 N 36

4 i 4

PV + 1.413,28

Page 37: Livro de Matemática Financeira

37

Exemplo 2: Uma pessoa aplica determinado capital durante 2a 3m 9d, a taxa de juro de 18% as/b (ao semestre, com capitalização bimestral), resgatando ao final deste prazo um montante de R$ 7.850,00. Determine o valor do capital aplicado por esta pessoa. Solução: FV = 7.850,00∴∴∴∴i = 6% ab/b ∴∴∴∴n = 2a 3m 9d = 819dias = 13,65 bimestres ∴∴∴∴PV=?

niFVPV −+= )1.( PV = 7850.(1+ 0,06) – 13,65 PV = 7850 x 0,451413912 PV = 3.543,60 Capital = R$ 3.543,60

Na calculadora financeira poderemos fazer da seguinte forma:

HP - 12C

f clear Fin Visor

7.850,00 CHS FV - 7.850,00

13,65 N 13,65

6 i 6

PV 3.543,60

4.2.1.4. Cálculo do prazo:

Tomando-se a fórmula do montante:

niPVFV )1.( +=

E aplicando-se nossos conhecimentos matemáticos para solucionar equações exponenciais de bases distintas, concluímos que:

)1log(

)/log(

i

PVFVn

+=

Exemplo 1: Carolina, tendo encontrado quem lhe oferecesse R$ 10.000,00 emprestado, propôs o pagamento da dívida em uma única parcela no valor de R$ 16.105,10. Se a taxa de juro compostos cobrada foi de 10% am/m (ao mês, capitalizada mensalmente), determine o prazo para a liquidação da dívida. Solução: PV = 10.000,00 ∴∴∴∴ i = 10% am/m ∴∴∴∴ FV = 16.105,10 ∴∴∴∴ n = ?

Page 38: Livro de Matemática Financeira

38

)1log(

)/log(

i

PVFVn

+=

)10,01log(

)10000/10,16105log(

+=n

)10,1log(

)610510,1log(=n

041392685,0

206963425,0=n

5=n Prazo = 5 meses

OBS.: 1) Na HP-12C, por uma questão de sistema interno da calculadora,

não é possível calcular o prazo nas operações de Juro Composto. 2) Na HP-12C, o cálculo do logaritmo é obtido da seguinte forma:

valor g LN 3) Na HP-12C, não possuímos os logaritmos decimais por isto

utilizaremos os logaritmos neperianos, que no exemplo acima produziriam os seguintes valores: LN(1,61051) = 0,476550899 e LN(1,10)0,0953101798 que quando divididos produzem o mesmo resultado final igual a 5 unidades do prazo.

Exemplo 2: Uma pessoa aplica a importância de R$ 3.850,00 a taxa de juro compostos de 6%at/t. Se esta pessoa recebeu em 18/Ago/2008 juro de R$ 2.215,22 em que data foi feita esta aplicação? Solução: PV = 3.850,00 ∴∴∴∴ i = 6% at/t ∴∴∴∴ J = 2.215,22 � FV = 6.065,22

n = ? (Data Aplicação)

)1log(

)/log(

i

PVFVn

+=

)06,01log(

)3850/22,6065log(

+=n

)06,1log(

)57538181,1log(=n

025305865,0

197385828,0=n

80000315,7=n trimestres � 702 dias

Data de Aplicação = Data de Resgate – Prazo de Aplicação

Data de Aplicação = 18/Ago/2008 – 702 dias = 16/Set/2006

Page 39: Livro de Matemática Financeira

39

4.2.1.5. Cálculo da taxa: Partindo-se da fórmula do montante, e isolando-se a taxa (i), teremos:

niPVFV )1.( +=

niPV

FV)1( +=

iPV

FVn += 1

→−= 1n

PV

FVi a taxa assim obtida é unitária

Exemplo 1: Um equipamento está à venda por R$ 15.000,00 à vista. Existe uma proposta de compra mediante um único pagamento de R$ 41.160,00 no prazo de 9 meses. Determine a taxa trimestral capitalizada trimestralmente utilizada. Solução: PV = 15.000,00 ∴∴∴∴ n = 3m ∴∴∴∴ FV = 41.160,00 ∴∴∴∴ i = ? (%at/t)

1−= n

PV

FVi

115000

411603 −=i

1744,23 −=i

140,1 −=i

i = 0,40 taxa efetiva unitária Taxa = 40% at/t

HP - 12C

f clear Fin Visor

15.000,00 CHS PV - 15.000,00

41.160,00 FV 41.160,00

3 N 3

i 40

Page 40: Livro de Matemática Financeira

40

Exemplo 2: Uma mercadoria está à venda à vista por R$ 8.960,00. Uma pessoa interessada na aquisição desta mercadoria faz a seguinte proposta a seu proprietário: Pagar em 45 dias a importância de R$ 9.366,21. Determine a taxa mensal com capitalização mensal que será aplicada. Solução: PV = 8.960,00 ∴∴∴∴ n = 45 dias = 1,5 meses ∴∴∴∴ FV = 9.366,21 ∴∴∴∴ i = ? (%am/m)

1−= n

PV

FVi

100,8960

21,93665,1 −=i

104533594,15,1 −=i

1030000,1 −=i

i = 0,03 taxa efetiva unitária Taxa = 3% am/m

4.2.2. Convenção linear:

Na convenção linear utilizamos juro composto somente no período inteiro e juro simples no período fracionário. Considere uma aplicação com capitalização anual, durante um prazo de 3 anos e 5 meses

PV

|------------------|-----------------|-----------------|-----------------| 0 1a 2a 3a 5m

Juro Composto Juro Simples FV’

Aplicando-se o Juro Composto combinado com o Juro Simples teremos:

)/.1.()1.(' qpiiPVFV n ++=

Page 41: Livro de Matemática Financeira

41

Onde: n → parte inteira do período p/q → parte fracionária do período

Exemplo 1: A importância de R$ 25.000,00 foi aplicada a juro composto à taxa de 15%aa/a. Determine o montante, avaliando-o no prazo de 3 anos e 5 meses (convenção linear). Solução: PV = 25.000,00 ∴∴∴∴ n = 3a e 5m ∴∴∴∴ i = 15%aa/a ∴∴∴∴ FV’ = ? Prazo: 3a e 5m = 3,416666anos, ou seja, 3 anos inteiros e 0,416666 fração de anos

)/.1.()1.(' qpiiPVFV n ++= FV’ = 25000 . (1 + 0,15)3 . (1 + 0,15 x 0,416666) FV’ = 25000 x 1,153 . ( 1 + 0,062499999) FV’ = 25000 x 1,520875 x 1,062499999 FV’ = 40.398,24

Exemplo 2: Certo capital foi aplicado em data de 10/05/2004 a taxa de juro composto de 8,16%ab/b. Em 11/02/2006 foi resgatado um montante, pela convenção linear de R$ 10.540,00. Determine o capital inicialmente aplicado se o juro foi capitalizado bimestralmente. Solução: FV’ = 10.540,00 ∴∴∴∴ i = 8,16%ab/b ∴∴∴∴ PV = ?

Prazo: 10/05/2004 à 11/02/2006 � 642dias = 10,7bimestres, ou seja: 10 inteiros e 0,7 fração

)/.1.()1.(' qpiiPVFV n ++=

10540 = PV . (1+0,816)10 . (1 + 0,0816 x 0,7) 10540 = PV . 2,1911231 x 1,05712 10540 = PV . 2,3162801 PV = 10540/2,3162801 PV = 4.550,40

Exemplo 3: Determinado capital foi aplicado a taxa de juros de 37,0908%aa/t durante 624 dias. Encontre o capital inicialmente investido, pela convenção linear se os juros produzidos, por capitalizações mensais foram de R$ 3.261,92. Solução: J = 3.261,92 ∴∴∴∴ i = 37,0908%aa/t � 9,2727%at/t � 3%at/t ∴∴∴∴ PV = ? Prazo: 624dias = 20,8 meses, ou seja: 20 inteiros e 0,8 fração ∴∴∴∴Como: FV = PV + J

)/.1.()1.(' qpiiPVFV n ++=

PV + 3261,92 = PV . (1+0,03)20 . (1 + 0,03 x 0,8) PV + 3261,92 = PV . 1,806111235 x 1,024 PV + 3261,92 = PV . 1,8494579043 3261,92 = 1,8494579043.PV - PV 3261,92 = 0,8494579043.PV PV = 3261,92/0,8494579043 PV = 3.840,00

Page 42: Livro de Matemática Financeira

42

4.3. EXERCÍCIOS COMPLEMENTARES - JURO COMPOSTO - I

1) Um capital de R$ 12.500,00 foi aplicado a juro composto à taxa de 20% aa/a.

Determine o montante, avaliando-o no prazo de 13 anos. R ⇒⇒⇒⇒ R$ 133.741,51

2) Qual o valor que aplicado a juro composto à taxa de 17% aa/a, produziu no prazo de 6 anos o montante de R$ 22.500,00? R ⇒⇒⇒⇒ R$ 8.771,37

3) Determine o prazo necessário para que o capital de R$ 15.000,00 venha produzir o montante de R$ 27.576,88, sabendo-se que a taxa de juro composto é de 7% aa/a. R ⇒⇒⇒⇒ n = 9 anos

4) Determine a taxa de juro (%aa/a), necessária para que o capital de R$ 12.800,00 venha a produzir, no prazo de 18 anos, um montante de R$ 55.583,41. R ⇒⇒⇒⇒ i = 8,5% a.a./a

5) Determine o prazo (anos, meses e dias, se for o caso) necessário para que o capital de R$ 5.000,00 produza o montante de R$ 7.646,29, sabendo-se que a taxa de juro composto utilizada é de 8% aa/a. Utilizar a convenção exponencial. R ⇒⇒⇒⇒ n = 5 anos, 6 meses e 7 dias Conv. Exponencial

6) O capital de R$ 1.900,00 ficou aplicado durante 420 dias, produzindo ao final deste prazo juro de R$ 2.658,20. Encontre a taxa de juro composto (% ab/b) que foi aplicada? R ⇒⇒⇒⇒ 13,3160%ab/b

7) Uma pessoa aplica em 29/01/2003 certa importância a taxa de juro composto de 4,5% ab/b. Em 30/09/2005 esta pessoa resgata um montante de R$ 6.993,04. Determine o capital inicialmente aplicado por esta pessoa? R ⇒⇒⇒⇒ R$ 3.420,00 Conv. Exponencial ; R$ 3.419,38 Conv. Linear

8) O capital de R$ 6.740,00 foi aplicado a taxa de juro composto de 10,5% aq/q durante 2a 9m e 24d. Determine o total a ser resgatado ao final deste prazo. R ⇒⇒⇒⇒ R$ 15.670,08 Conv. Exponencial; R$ 15.689,48 Conv. Linear

9) Determine o valor do capital que, aplicado a juro composto à taxa de 10% aa/a, produziu o montante de R$ 23.850,00 no prazo de 3 anos e 9 meses. R ⇒⇒⇒⇒ R$ 16.682,68 Conv. Exponencial; R$ 16.668,71 Conv. Linear

10) Qual é o montante produzido pelo capital de R$ 200.000,00 aplicado à taxa de juro composto de 3% at/t, no prazo de 2 anos, 4 meses e 20 dias? R ⇒⇒⇒⇒ R$ 265.275,29 Conv. Exponencial; R$ 265.303,88 Conv. Linear

Page 43: Livro de Matemática Financeira

43

CAPÍTULO – V

5. ESTUDO DAS TAXAS

5.1. ESTUDO DAS TAXAS NO JURO COMPOSTO As taxas de juro estão intrinsecamente ligadas ao juro, sejam eles Simples ou Composto, muito embora se possa definir qualquer destas espécies de juro sem que se utilize especificamente a palavra taxa de juro em sua definição. No Juro Composto o entendimento das taxa e suas transformações são de fundamental importância para que o Estudante entenda o processo de capitalização que ocorre a cada período. A seguir passamos a realizar um estudo dos tipos de taxas utilizadas no Juro Composto bem como suas transformações e aplicações.

5.1.1. Tipos de taxas:

5.1.1.1. Taxas efetivas: São aquelas em que a unidade do percentual é igual a unidade da capitalização.

Considerando-se o tipo de unidades de prazo que utilizamos existem 07 (sete) tipos de taxas efetivas, a saber:

%aa/a; %as/s; %aq/q; %at/t;

%ab/b; %am/m; %ad/d

5.1.1.2. Taxas nominais: São aquelas em que a unidade do percentual é diferente da unidade de capitalização.

Considerando-se o tipo de unidades de prazo que utilizamos existem 42 (quarenta e dois) tipos de taxas nominais, entre elas exemplificamos as seguintes:

%aa/m; %at/a; %ab/s; %aq/d

5.1.2. Transformação de taxas:

5.1.2.1. De taxas nominais em taxas efetivas (de mesma capitalização):

Para se transformar Taxas Nominais em Taxas Efetivas de mesma capitalização, basta se transformar o percentual para a unidade de capitalização, multiplicando ou dividindo pelo fator de conversão.

Exemplo: Transforme para a taxa nominal para a taxa efetiva indicada:

a) 7,2%at/a � %aa/a

Page 44: Livro de Matemática Financeira

44

Como cada ano possui 4 trimestres, basta multiplicar os 7,2 por 4 resultando em 28,8%aa/a b) 33%aa/m � %am/m Como cada ano possui 12 meses, basta dividir os 33 por 12 resultando em 2,75%am/m c) 63%as/b � %ab/b Como cada semestre possui 3 bimestres, basta dividir 63 por 3 resultando 21%ab/b d) 6,4%am/q � %aq/q Como cada quadrimestre possui 4 meses, basta multiplicar 6,4 por 4 resultando 25,6%aq/q

5.1.2.2. De taxas efetivas em taxas efetivas:

A transformação de uma Taxa Efetiva em outra Taxa Efetiva equivalente, é feita através de uma das igualdades abaixo. Assim, a partir de uma determinada taxa efetiva, poderemos calcular outra taxa efetiva.

360)1(12)1(6)1(4)1(3)1(2)1(1)1( dimibitiqisiai +=+=+=+=+=+=+

Taxas efetivas, capitalizadas em períodos diferentes, são equivalentes quando, aplicadas sobre um mesmo capital, vierem a produzir um montante igual durante o mesmo período de aplicação.

Exemplo 1: A taxa de 10%am/m é equivalente à taxa de 21% ab/b, pois se aplicadas sobre um mesmo capital ( R$ 100,00 ), irão produzir montantes iguais no prazo de 1 ano. Solução:

FV12 = 100,00 . (1 + 0,10) 12 FV6 = 100,00 . (1 + 0,21) 6 FV12 = 313,84 e FV6 = 313,84 comparando, os cálculos acima, concluímos que: ( 1,10 ) 12 = ( 1,21 ) 6 ou seja

( 1 + i m ) 12 = ( 1 + i b ) 6 → para um período de 1 ano.

ou ( 1 + i m ) 2 = ( 1 + i b ) → para um período de 2 meses.

Page 45: Livro de Matemática Financeira

45

A transformação de uma taxa efetiva em outra taxa efetiva pode ser feita nas Calculadoras HP-12C, conforme demonstramos no Exemplo a seguir apresentado.

Exemplo 2: Transforme a taxa efetiva apresentada na taxa efetiva indicada:

a) 20%as/s � %at/t

Solução:

(1 + it)4 = (1 + i s)

2 ou (1 + it)

2 = (1 + is) (1 + it)

2 = (1 + 0,20) (1 + it) = 1,20½ 1 + i t = 1,0954451 i t = 0,0954451 ( taxa unitária efetiva trimestral ) i t = 9,5445% at/t

HP - 12C

f clear Fin Visor

120 FV 120

100 CHS PV - 100

2 N 2

i 9,5445

b) 30%ab/b � %at/t

Solução: 64 )1()1( bt ii +=+

32 )30,01()1( +=+ ti

197,2)1( 2 =+ ti 2 197,21 =+ ti

482228053,11 =+ ti

1482228053,1 −=ti

i t = 0,482228 at/t ( taxa unitária )

ou, pela Calculadora Financeira:

Page 46: Livro de Matemática Financeira

46

HP - 12C

f clear Fin Visor

STO EEX C

100 CHS PV - 100

130 FV 130

2/3 N 0,66666

i 48,2228

Exemplo 3: A importância de R$ 12.500,00 foi aplicada a juro composto à taxa de 36%aa/m. Determine o montante (Conv. Linear), capitalizado bimestralmente, avaliando-o no prazo de 3 anos e 5 meses? Solução: PV = 12.500,00 ∴ n = 3a e 5m ∴ i = 36%aa/m ∴ FV’ = ? Transformação da Taxa: 36%aa/m � 3%am/m � 6,09%ab/b

Prazo: 3a e 5m = 41 meses, ou seja, 20 bimestres inteiros e 0,5 fração de bimestre

)/.1.()1.(' qpiiPVFV n ++= PV’ = 12500 . (1 + 0,0609)20 . (1 + 0,0609 x 0,5) FV’ = 12500 x 1,060920 . (1 + 0,03045) FV’ = 12500 x 3,262037792 x 1,03045 FV’ = 42.017,09

Exemplo 4: Determine o total resgatado (Conv. Exponencial), capitalizado mensalmente, se o foi aplicado o capital de R$ 6.270,00 a taxa de juro de 76,4064%aa/t, no prazo compreendido entre 10/Abr/2003 a 09/Jun/2004. Solução: PV = 6.270,00 ∴ i = 76,4064%aa/t ∴ FV = ?

Transformação da Taxa: i = 76,4064%aa/t � 19,1016%at/t � 6%am/m Prazo: 10/04/2003 à 09/06/2004 � 426dias = 14,2 meses

niPVFV )1.( +=

FV = 6270 . (1 + 0,06)14,2 FV = 6270 x 1,0614,2 FV = 6270 x 2,287406162 FV = 14.342,04

Page 47: Livro de Matemática Financeira

47

Exemplo 5: Certo capital foi aplicado em data de 11/10/2004 a taxa de juro composto de 48%aa/m. Em 15/07/2006 foi resgatado um montante, pela convenção linear, de R$ 9.630,00. Determine o capital inicialmente aplicado se o juro foi capitalizado quadrimestralmente. Solução: FV’ = 9.630,00 ∴ i = 48%aa/m ∴ PV = ? Transformação da Taxa: i = 48%aa/m � 4%am/m � 16,985856%aq/q Prazo: 11/10/2004 à 15/07/2006 � 642dias = 5,35 quadrimestres, ou seja: n = 5 e p/q = 0,35

)/.1.()1.(' qpiiPVFV n ++= 9630 = PV. (1+0,16985856)5

.(1+ 0,16985856 x 0,35 ) 9630 = PV . 2,19112314 x 1,059450496 9630 = PV . 2,3213865 PV = 9630 / 2,3213865 PV = 4.148,38

Exemplo 6: Encontre o capital que foi aplicado a taxa de juro composto de 60%aa/m, durante o prazo de 774 dias, se o juro produzido, pela convenção exponencial, e por capitalizações trimestrais, foi de R$ 9.370,00 Solução: Juro = 9.370,00 ∴ i = 60%aa/m ∴ PV = ? Transformação da Taxa: 60%aa/m � 5%am/m � 15,7625% at/t Prazo: 774 dias = 8,6 trimestres

niPVFV )1.( +=

Como FV = PV + J teremos:

niPVJPV )1.( +=+ PV + 9370 = PV . (1 + 0,157625 )8,6 PV + 9370 = PV . (1,157625 )8,6 PV + 9370 = PV . 3,521145052 9370 = 3,521145052 . PV – PV 9370 = 2,521145052 . PV PV = 9370 / 2,521145052 PV = 3.716,57

Page 48: Livro de Matemática Financeira

48

5.2. EXERCÍCIOS COMPLEMENTARES – JURO COMPOSTO II

1) Determine a taxa anual, capitalizada anualmente, que equivale à taxa de 30% ao ano com capitalização mensal. R ⇒⇒⇒⇒ i = 34,48% a.a./a

2) Uma pessoa deseja fazer uma aplicação à taxa de juro composto pelo prazo de 1 ano. São oferecidas as seguintes taxas: a) 482% a.a. com cap. anual; b) 16% ao mês com cap. mensal; c) 100% a.a. com cap. trimestral. Qual é a melhor opção para esta pessoa? R ⇒⇒⇒⇒ alternativa “b”

3) Um capital de R$ 500,00 foi aplicado a juro composto à taxa de 30% ao ano, com capitalização semestral. Determine o prazo necessário para produzir o montante de R$ 1.758,94. R ⇒⇒⇒⇒ n = 9 semestres ou 4 anos e 6 meses

4) Determine o valor da taxa anual, capitalizada quadrimestralmente, necessária para o capital de R$ 800,00 resultar o montante de R$ 1.440,75 no prazo de 5 anos. R ⇒⇒⇒⇒ i = 12% aa/q

5) Determine a taxa trimestral, com capitalização trimestral, que equivale à taxa de 15% ao ano com capitalização anual. R ⇒⇒⇒⇒ i = 3,5558% at/t

6) Conhecendo-se a taxa de 40% aa/t, determine a taxa anual capitalizada bimestralmente equivalente. R ⇒⇒⇒⇒ i = 39,3613% aa/b

7) Qual é a taxa semestral, capitalizada bimestralmente, que equivale à taxa de juro composto de 28% ao trimestre com capitalização mensal? R ⇒⇒⇒⇒ i = 58,6133% as/b

8) Um capital de R$ 5.720,00 foi aplicado à taxa de juro composto de 24,72% aa/s. Determine o montante, por capitalizações trimestrais, avaliando-o no prazo de 3a, 8m e 20d. R ⇒⇒⇒⇒ R$ 13.619,85 Conv. Exponencial e R$ 13.622,10 Conv. Linear

9) Determine o valor do capital que, aplicado à taxa de juro composto de 37,0908% aa/t, produziu o montante, por capitalizações bimestrais, de R$ 28.500,00 no prazo de 6 anos, 3 meses e 15 dias. R ⇒⇒⇒⇒ R$ 9.337,69 Conv. Exponencial e R$ 9.336,93 Conv. Linear

10) Determine o prazo necessário, pela convenção exponencial, para um capital qualquer triplicar de valor, sabendo-se que foi aplicado à taxa de juro composto de 27,3709464% aa/m, sendo que o juro foi capitalizado trimestralmente. R ⇒⇒⇒⇒ n = 4 anos e 21 dias

Page 49: Livro de Matemática Financeira

49

CAPÍTULO – VI

6. RENDAS OU SÉRIES DE PAGAMENTOS (1.ª Parte)

6.1. INTRODUÇÃO:

É a capitalização em várias parcelas (múltipla). Aparece quando se efetua uma série de depósitos (ou pagamentos) em datas previamente estabelecidas que se destine a: produzir certo montante ou a amortizar (pagar) determinada dívida (valor atual). PMT

|---------------|---------------|---------------|---------------|---------------| 0 1 2 3 4 5 (n)

i%

PV FV

6.2. ELEMENTOS DE UMA RENDA:

PV � Valor Atual, Preço, Valor Inicial, Valor Presente, Capital Inicial

FV ���� Montante, Valor Futuro, Total Pago, Total Gerado, Valor Final

PMT ���� Termos, Prestações, Parcelas, Depósitos, Pagamentos

n � Número de Termos ou Prestações

i � Taxa Efetiva de Juro, com capitalização na periodicidade das Parcelas

6.2.1. Montante (FV): numa série de pagamentos, definimos Montante como sendo a parcela única, que equivale (ou substitui) a todos os termos (devidamente capitalizados) até o final do fluxo. É a soma dos montantes de todos os termos que compõe a série.

6.2.2. Valor atual (PV): numa série de pagamentos, definimos Valor Atual como

sendo a parcela única que equivale (ou que substitui) a todos os termos (devidamente descapitalizados) até o início do fluxo. É a soma dos valores atuais de todos os termos que compõe a série.

6.2.3. Termos (PMT): numa série de pagamentos, definimos Termos como sendo o

valor que é pago (ou recebido) a cada período de capitalização de uma Série Pagamentos.

Page 50: Livro de Matemática Financeira

50

6.3. CLASSIFICAÇÃO DAS RENDAS

POSTECIPADAS IMEDIATAS ANTECIPADAS TEMPORÁRIAS INICIAL DIFERIDAS FINAL CERTAS POSTECIPADAS IMEDIATAS ANTECIPADAS PERPÉTUAS INICIAL DIFERIDAS FINAL RENDAS POSTECIPADAS IMEDIATAS ANTECIPADAS TEMPORÁRIAS INICIAL DIFERIDAS FINAL ALEATÓRIAS POSTECIPADAS IMEDIATAS ANTECIPADAS PERPÉTUAS INICIAL DIFERIDAS FINAL

Page 51: Livro de Matemática Financeira

51

6.3.1. Rendas Aleatórias: são aquelas que não obedecem a um acordo regular de periodicidade, dependendo de eventos externos que podem ou não acontecerem.

6.3.2. Rendas Certas: são aquelas que ocorrem de forma periódica e regular,

obedecendo a um acordo previamente estabelecido. 6.3.2.1. Perpétuas: quando possuem um número ilimitado de pagamentos (depósitos).

PMT

|---------------|---------------|---------------|---------------|---------------| 0 1 2 3 4 ......

6.3.2.2. Temporárias: quando possuem um número limitado de pagamentos (depósitos).

PMT

|---------------|---------------|---------------|---------------|---------------| 0 1 2 3 4 .... n

6.3.2.2.1. Imediatas: quando os pagamentos (depósitos) ocorrem a partir do primeiro

período do prazo da renda. 6.3.2.2.1.1. Postecipadas: quando os termos ocorrem no final de cada período

PMT

|---------------|---------------|---------------|-------------------------------| 0 1 2 3 .... n

6.3.2.2.1.2. Antecipadas: quando os termos ocorrem no início da cada período

PMT

|---------------|---------------|------------------------------|---------------| 0 1 2 .... n-1 n

6.3.2.2.2. Com Diferimento: quando existe um prazo (superior a um período de

capitalização) no início ou no final onde não ocorrem pagamentos

6.3.2.2.2.1. Inicial : o prazo onde não ocorrem pagamentos é anterior à ocorrência das prestações.

Page 52: Livro de Matemática Financeira

52

PMT

|-------------------------------|-------|--------|--------------------------------| 0 m m+1 m+2 m+n

diferimento inicial

6.3.2.2.2.2. Final: o prazo onde não ocorrem pagamentos é posterior à ocorrência das prestações. PMT

|-------|--------|--------------------------------|-------------------------------| 0 1 2 n n+m

diferimento final

OBS.: a partir deste ponto de nosso Estudo todas as Rendas possuirão um número determinado (temporárias) de pagamentos iguais e periódicos (certas) onde se aplica uma única taxa de juro

6.4. RENDA CERTA, TEMPORÁRIA, IMEDIATA, e POSTECIPADA: 6.4.1. Representação Gráfica:

PMT

|---------------|---------------|----------------------------------------------| 0 1 2 n

i PV FV

6.4.2. Cálculo do montante na renda postecipada (FV):

O Montante de uma Renda é obtido fazendo-se a capitalização de cada um dos Termos da Série sendo ao final cada um destes valores somados, conforme apresentamos a seguir:

Page 53: Livro de Matemática Financeira

53

PMTiPMTiPMTiPMTiPMTFV nnn +++++++++= −−− 1321 )1.(....)1.()1.()1.(

O valor capitalizado de cada um dos termos de uma Renda (Série de Pagamentos) forma uma Progressão Geométrica (PG) cuja soma resulta na seguinte expressão:

−+=i

iPMTFV

n 1)1(.

A parcela

−+i

i n 1)1(

É denominada de Fator de Capitalização Postecipado e é representado por:

−+=i

inif

n 1)1()%;(

Desta forma poderemos representar resumidamente o montante de uma Renda Postecipada pela seguinte expressão:

)%;(. nifPMTFV =

Exemplo 1: Um objeto foi adquirido na seguinte condição: 12 prestações mensais no valor de R$ 180,00. Encontre o total pago por este objeto se a taxa de juro aplicada foi de 24%aa/m. Solução: PMT = 180,00 ∴∴∴∴ n = 12 prestações ∴∴∴∴ i = 24%aa/m � 2%am/m ∴∴∴∴FV = ?

PMT = 180

|---------------|---------------|----------------------------------------------| 0 1 2 12 m i = 2%am/m FV = ?

)%;(. nifPMTFV =

)12%;2(.180 fFV =

−+=02,0

1)02,01(.180

12

FV

Page 54: Livro de Matemática Financeira

54

4120897,13180⊗=FV

18,2414=FV

Logo o total pago por este objeto é de R$ 2.414,18 Este problema pode ser resolvido diretamente em uma Calculadora Financeira HP-12C, conforme apresentamos a seguir:

HP - 12C

f clear Fin Visor

180,00 CHS PMT - 180,00

12 N 12

2 i 2

FV = ? 2.414,18

Exemplo 2: Uma loja coloca a venda um aparelho eletrodoméstico na seguinte condição de pagamento: Entrada de R$ 250,00 mais 10 prestações bimestrais de R$ 140,00. Um consumidor interessado em saber qual o total que será pago pelo objeto, consulta ao vendedor qual a taxa de juro que a loja está aplicando, sendo-lhe informado que a taxa de juro era de 1,5%am/m. Ajude ao comprador encontrando para ele o valor final deste objeto. Solução: Entrada = 250,00 ∴∴∴∴ PMT = 140,00 ∴∴∴∴ n = 10 parcelas bimestrais

Taxa (i) = 1,5%am/m � 3,0225%ab/b ∴∴∴∴ Valor Final = ? Entr = 250 PMT = 140

|---------------|---------------|----------------------------------------------| 0 1 2 10 b i = 3,0225%ab/b Valor Final = ? Valor Final = FV (Entr) + FV (Série)

Cálculo do Montante da Série de Prestações:

)%;(. nifPMTFV =

)10%;0225,3(.140)( fSérieFV =

Page 55: Livro de Matemática Financeira

55

−+=030225,0

1)030225,01(.140)(

10

SérieFV

47576531,11140)( xSérieFV =

61,1606)( =SérieFV

Cálculo do Montante produzido pela Entrada ao final da Série de Pagamentos:

niPVFV )1.( +=

10)030225,01(250)( += xEntrFV

34685501,1250)( xEntrFV =

71,336)( =EntrFV

Desta forma o Valor Final do objeto será a soma do FV (Série) com o FV (Entr) ou seja:

Valor Final = 1.606,61 + 336,71 Valor Final = 1.943,32

Logo o Comprador ao adquirir o objeto de forma parcelada nas condições estabelecidas pela Loja pagará o Valor Final de R$ 1.943,32 Exemplo 3: O total pago por um objeto foi de R$ 8.437,72 sendo que este objeto foi adquirido nas seguintes condições: Entrada de R$ 620,00 mais 15 prestações mensais, mais um reforço de R$ 1.200,00 a ser pago juntamente com a 7.ª prestação. Encontre o valor das prestações se a taxa de juro aplicada foi de 3%am/m. Solução: Entrada = 620,00 ∴∴∴∴ Reforço na 7.ª parcela = 1.200,00 ∴∴∴∴ Total Pago = 8.437,72 Taxa (i) = 3%am/m ∴∴∴∴ n = 15 parcelas mensais ∴∴∴∴ PMT = ?

Page 56: Livro de Matemática Financeira

56

Entr = 620 Ref = 1200 PMT = ?

|---------------|-------|----------------|-------------------------------| 0 1 2 ... 7 ... 15 m i = 3%am/m Total Pago = 8.437,72 Total Pago = FV (Entr) + FV (Série) + FV (Reforço)

Cálculo do Montante produzido pela Entrada ao final da Série de Pagamentos:

niPVxFV )1( +=

15)03,01(620)( += xEntrFV

5579674166,1620)( xEntrFV =

94,965)( =EntrFV

Cálculo do Montante produzido pela Reforço ao final da Série de Pagamentos:

niPVxFV )1( +=

8)03,01(1200)(Re += xfFV

266770081,11200)(Re xfFV =

12,520.1)(Re =fFV

Desta forma o Valor Final produzido pela série de prestações será a diferença entre o total pago pelo objeto e a soma de FV ( Entr) com FV (Ref) ou seja:

FV (Série) = 8437,72 – FV (Entr) – FV (Ref) FV (Serie) = 8437,72 – 965,94 – 1520,12 FV (Série) = 5.951,66

Cálculo do Valor das Prestações pagas na Série:

)%;(. nifPMTFV =

)15%;3(.66,5951 fPMT=

Page 57: Livro de Matemática Financeira

57

−+=03,0

1)03,01(.66,5951

15

PMT

59891388,1866,5951 ⊗= PMT

→=59891388,18

66,5951PMT PMT = 320,00

Logo o valor de cada uma das prestações mensais pagas por este objeto foi de R$ 320,00.

6.4.3. Cálculo do valor atual na renda postecipada (PV)

O Valor Atual de uma série de pagamentos é obtido fazendo-se a descapitalização de cada um dos Termos da Série sendo ao final cada um destes valores somados, conforme apresentamos a seguir:

niPMTiPMTiPMTiPMTPV −−−− ++++++++= )1.(....)1.()1.()1.( 321

O valor descapitalizado de cada um dos termos de uma Renda (Série de Pagamentos) forma uma Progressão Geométrica (PG) cuja soma resulta na seguinte expressão:

+−+=n

n

ii

iPMTPV

)1.(

1)1(.

A parcela

+−+n

n

ii

i

)1.(

1)1(

É denominada de Fator de Descapitalização Postecipado e é representado por:

+−+=n

n

ii

inip

)1.(

1)1()%;(

Desta forma poderemos representar resumidamente o Valor Atual de uma Renda Postecipada pela seguinte expressão:

)%;(. nipPMTPV =

Exemplo 1: Um objeto foi adquirido na seguinte condição: 12 prestações mensais no valor de R$ 270,00. Encontre o preço por este objeto se a taxa de juro aplicada foi de 36%aa/m. Solução: PMT = 270,00 ∴∴∴∴n = 12 prestações ∴∴∴∴i = 36%aa/m � 3%am/m ∴∴∴∴ PV = ?

Page 58: Livro de Matemática Financeira

58

PMT = 270

|---------------|---------------|----------------------------------------------| 0 1 2 12 m i = 3%am/m Preço = ? = PV

)%;(. nipPMTPV =

)12%;3(.270 pPV =

+−+=

12

12

)03,01.(03,0

1)03,01(.270PV

95400399,9270xPV =

58,2687=PV

Logo o Preço deste objeto é de R$ 2.687,58 Este problema pode ser resolvido diretamente em uma Calculadora Financeira HP-12C, conforme apresentamos a seguir:

HP - 12C

f clear Fin Visor

270,00 CHS PMT - 270,00

12 N 12

3 i 3

PV = ? 2.687,58

Exemplo 2: Uma loja coloca a venda um aparelho eletrodoméstico na seguinte condição de pagamento: Entrada de R$ 480,00 mais 15 prestações bimestrais de R$ 320,00. Um consumidor interessado em saber qual o preço deste objeto, consulta ao vendedor qual a taxa de juro que a loja está aplicando, sendo-lhe informado que a taxa de juro era de 2%am/m. Ajude ao comprador encontrando para ele o preço deste objeto. Solução: Entrada = 480,00 ∴∴∴∴ PMT = 320,00 ∴∴∴∴ n = 15 parcelas bimestrais Taxa (i) = 2%am/m � 4,04%ab/b ∴∴∴∴ Preço = ?

Page 59: Livro de Matemática Financeira

59

Entr = 480 PMT = 320

|---------------|---------------|----------------------------------------------| 0 1 2 15 b i = 4,04%ab/b Preço = ? Preço = Entrada + PV (Série)

Cálculo do Valor Atual da Série de Prestações:

)%;(. nipPMTPV =

)15%;04,4(.320)( fSériePV =

+−+=

15

15

)0404,01.(0404,0

1)0404,01(.320)(SériePV

08735423,11320)( xSériePV =

95,547.3)( =SériePV

Como a entrada é paga no ato da aquisição do objeto, a mesma não possui juro incorporado.

Desta forma o Preço do objeto será a soma do PV (Série) com o Valor da Entrada, ou seja:

Preço = Entrada + PV (Série) Preço = 480 + 3547,95 Preço = 4.027,95

Logo o preço do objeto a ser adquirido pelo Comprador nas condições estabelecidas pela Loja será de R$ 4.027,95 Exemplo 3: Uma pessoa deseja financiar um objeto cujo Valor Inicial é igual a R$ 6.430,00 nas seguintes condições: Entrada de R$ 1.430,00 mais 10 prestações mensais, mais um reforço de R$ 1.000,00 a ser pago juntamente com a 6.ª prestação. Encontre o valor das prestações se a taxa de juro aplicada foi de 2,5%am/m. Solução: Entrada = 1.430,00 ∴∴∴∴ Reforço na 6.ª parcela = 1.000,00 ∴∴∴∴ Preço = 6.430,00 Taxa (i) = 2,5%am/m ∴∴∴∴ n = 10 parcelas mensais ∴∴∴∴ PMT = ?

Page 60: Livro de Matemática Financeira

60

Entr = 1430 Ref = 1000 PMT = ?

|----------------|--------|----------------|---------------------------------------| 0 1 2 ... 6 ... 10 m i = 2,5%m/m Valor Inicial = 6.430,00 Valor Inicial = Entrada + PV (Série) + PV (Reforço)

Cálculo do Valor Atual produzido pelo Reforço no inicio da Série de Pagamentos:

niPVxFV )1( +=

6)025,01()(Re1000 += xfPV

159693418,1)(Re1000 xfPV=

159693418,1

1000)(Re =fPV

30,862)(Re =fPV

Desta forma o Valor Atual produzido pela série de prestações será a diferença entre o Valor Inicial do objeto e a soma de PV (Ref) com a Entrada, ou seja:

PV (Série) = 6430 – PV (Ref) – Entrada

PV (Serie) = 6430 – 862,30 – 1430

PV (Série) = 4.137,70

Cálculo do Valor das Prestações pagas na Série:

)%;(. nipPMTPV =

)10%;5,2(.70,4137 pPMT=

+−+=

10

10

)025,01.(025,0

1)025,01(.70,4137 PMT

75206393,870,4137 PMTx=

Page 61: Livro de Matemática Financeira

61

→=75206393,8

70,4137PMT PMT = 472,77

Logo o valor de cada das prestações mensais a serem pagas por este objeto será de R$ 472,77.

Page 62: Livro de Matemática Financeira

62

6.5. EXERCÍCIOS – RENDAS POSTECIPADAS

1) Uma mercadoria está à venda na seguinte condição: 10 prestações mensais de R$ 2.500,00 cada uma. Sabendo-se que a taxa de juro composto utilizada é de 12% am/m, determine o preço à vista desta mercadoria. R ⇒⇒⇒⇒ R$ 14.125,56

2) Um eletrodoméstico está à venda por R$ 25.850,00 à vista. Sabendo-se que a loja o

coloca à venda a prazo mediante 8 prestações mensais, sem entrada, qual o valor das prestações, admitindo-se uma taxa de juro composto de 18% am/m. R ⇒⇒⇒⇒ R$ 6.339,57

3) Um empréstimo no valor de R$ 150.000,00 será amortizado em 10 prestações

trimestrais postecipadas. Determine o valor das prestações, sabendo-se que a taxa de juro composto utilizada é de 28% aa/t. R ⇒⇒⇒⇒ R$ 21.356,63

4) Determinada pessoa planejando a construção de uma casa prevê gastos mensais de

R$ 752.450,00 no final dos meses de outubro, novembro e dezembro. Quanto deverá depositar mensalmente, no final dos meses de janeiro até setembro do mesmo ano, para que seja possível efetuar aquelas retiradas? Utilizar a taxa de 3,25% am/m. R ⇒⇒⇒⇒ R$ 206.387,94

5) Uma mercadoria está à venda na seguinte condição: uma entrada de R$ 2.000,00

mais 18 prestações mensais postecipadas no valor de R$ 5.000,00, cada uma, e, ao fim de cada semestre, pagará mais R$ 3.000,00. Determine o preço à vista, utilizando a taxa de juro composto de 9% am/m. R ⇒⇒⇒⇒ R$ 49.269,50

6) Determinada mercadoria está à venda na seguinte condição: entrada de R$ 500,00 e

mais 18 prestações mensais de R$ 200,00 cada uma; ao fim de cada trimestre pagará mais R$ 300,00. Utilizando a taxa de juro composto de 36% aa/m, determine o total pago por esta mercadoria. R ⇒⇒⇒⇒ R$ 7.806,69

7) Uma mercadoria está à venda, na seguinte condição: entrada de R$ 290,00 mais 15

prestações mensais de R$ 350,00 cada uma e, ao fim de um ano (da compra), mais um pagamento de R$ 1.700,00. Utilizando-se a taxa de juro composto de 12% as/m, qual o valor final desta mercadoria? R ⇒⇒⇒⇒ R$ 8.247,05

8) Um empréstimo será amortizado mediante 18 prestações mensais de R$ 5.000,00

cada uma, tendo ao fim de cada semestre mais um reforço no valor de R$ 10.000,00 cada um. Utilizando a taxa de juro composto de 2% ao mês com capitalização mensal, determine o valor do empréstimo. R ⇒⇒⇒⇒ R$ 98.726,39

9) Uma mercadoria está à venda na seguinte condição: 36 prestações trimestrais

antecipadas, no valor de R$ 3.800,00 cada uma e mais um pagamento extra no valor de R$ 8.300,00, nove meses após a última prestação trimestral. Utilizando a taxa de juro composto de 40% aa/t. Qual o valor à vista desta mercadoria? R ⇒⇒⇒⇒ R$ 40.669,70

10) Substituir um pagamento de R$ 60.000,00 no final de um ano, por pagamentos a

serem efetuados no final de cada bimestre, utilizando a taxa de juro composto de 30% aa/b. R ⇒⇒⇒⇒ R$ 8.601,76

Page 63: Livro de Matemática Financeira

63

CAPÍTULO – VII

7. RENDAS OU SÉRIES DE PAGAMENTOS (2.ª Parte)

7.1. RENDA CERTA, TEMPORÁRIA, IMEDIATA e ANTECIPADA

7.1.1. Representação Gráfica:

PMT

|---------------|----------------------------------------------|---------------| 0 1 n-1 n

i PV’ FV’

Obs.: as mais importantes rendas antecipadas são: + as Séries de Depósitos; + as Séries de Prestações do tipo: 1 + X parcelas; + as Séries de Prestações onde a 1.ª prestação da série foi paga como entrada;

7.1.2. Cálculo do montante na renda antecipada (FV’):

O Montante de uma série de pagamentos é obtido fazendo-se a capitalização de cada um dos Termos da Série sendo ao final cada um destes valores somados, conforme apresentamos a seguir:

121 )1.(....)1.()1.()1.(' iPMTiPMTiPMTiPMTFV nnn ++++++++= −− O valor capitalizado de cada um dos termos de uma Renda (Série de Pagamentos) forma uma Progressão Geométrica (PG) cuja soma resulta na seguinte expressão:

)1.(1)1(

.' Ii

iPMTFV

n

+

−+=

A parcela

Page 64: Livro de Matemática Financeira

64

)1.(1)1(

Ii

i n

+

−+

É denominada de Fator de Capitalização Antecipado e é representado por:

)1.(1)1(

)%;(' ii

inif

n

+

−+=

Desta forma poderemos representar resumidamente o montante de uma Renda Antecipada pela seguinte expressão:

)%;('.' nifPMTFV =

Exemplo 1: Um objeto foi adquirido na seguinte condição: 1+12 prestações mensais no valor de R$ 230,00. Encontre o total pago por este objeto se a taxa de juro aplicada foi de 36%aa/m. Solução: PMT = 230,00 ∴∴∴∴ n = 13 prestações ∴∴∴∴ i = 36%aa/m � 3%am/m ∴∴∴∴ FV’ = ?

PMT = 230

|---------------|----------------------------------------------|---------------| 0 1 12 13 m i = 3%am/m FV’ = ?

)%;('.' nifPMTFV =

)13%;3('.230' fFV =

)03,01.(03,0

1)03,01(.230'

13

+

−+=FV

08632416,16230' xFV =

85,699.3'=FV

Logo o total pago por este objeto é de R$ 3.699,85 Este problema pode ser resolvido diretamente em uma Calculadora Financeira HP-12C, conforme apresentamos a seguir:

Page 65: Livro de Matemática Financeira

65

HP - 12C

f clear Fin Visor

g BEG BEGIN

230,00 CHS PMT - 230,00

13 N 13

3 i 3

FV’ = ? 3.699,85

Exemplo 2: Uma loja coloca a venda um aparelho eletrodoméstico na seguinte condição de pagamento: 12 prestações bimestrais de R$ 220,00, mais um reforço de R$ 580,00 a ser pago juntamente com a 5.ª prestação. Encontre o total que será pago por este objeto se a taxa de juro de financiamento da loja é de 24%aa/m e a primeira prestação paga como entrada Solução: PMT = 220,00 ∴∴∴∴ n = 12 parcelas bimestrais ∴∴∴∴ Reforço R$ 580,00 com a 5.ª parcela

Taxa (i) = 24%aa/m � 2%am/m � 4,04%ab/b ∴∴∴∴ Valor Final = ? PMT = 220 Ref = 580

|---------------|-----------------------|------------------------|-------------| 0 1 4 11 12 b i = 4,04%ab/b Valor Final = ? Valor Final = FV (Ref) + FV’ (Série)

Cálculo do Montante da Série de Prestações:

)%;('.' nifPMTFV =

)12%;04,4('.220)(' fSérieFV =

)04,01.(0404,0

1)0404,01(.220)('

12

+

−+=SérieFV

66876521,15220)(' xSérieFV =

13,447.3)(' =SérieFV

Page 66: Livro de Matemática Financeira

66

Cálculo do Montante produzido pelo Reforço ao final da Série de Pagamentos:

niPVfFV )1.()(Re +=

8)0404,01(580)(Re += xfFV

3727857,1580)(Re xfFV =

22,796)(Re =fFV

Desta forma o Valor Final do objeto será a soma do FV’ (Série) com o FV (Ref) ou seja:

Valor Final = 3447,13 + 796,22 Valor Final = 4.243,35

Logo o Comprador ao adquirir o objeto de forma parcelada nas condições estabelecidas pela Loja pagará o Valor Final de R$ 4.243,35 Exemplo 3: Uma pessoa deseja resgatar ao final de 18 meses a importância de R$ 8.500,00. Para atingir seu objetivo pensa em realizar 18 depósitos mensais, mais um depósito extra de R$ 1.200,00 a ser realizado juntamente com o 7.ª depósito mensal. Encontre o valor de cada um dos 18 depósitos mensais, se a taxa de juro aplicada foi de 1%am/m. Solução: Reforço no 7.º depósito = 1.200,00 ∴∴∴∴ Total a Resgatar = 8.500,00 Taxa (i) = 1%am/m ∴∴∴∴ n = 18 parcelas mensais ∴∴∴∴ PMT = ?

PMT = ? Ref = 1200

|------------|----------------|-----------------------|-----------| 0 1 ... 6 ... 17 18 m i = 1%am/m Total a Resgatar = 8.500,00 Total a Resgatar = FV’ (Série) + FV (Reforço)

Cálculo do Montante produzido pelo Depósito Extra ao final da Série de Pagamentos:

niPVFV )1.( +=

12)01,01(1200)(Re += xfFV

Page 67: Livro de Matemática Financeira

67

12682503,11200)(Re xfFV =

19,352.1)(Re =fFV

Desta forma o Valor Final produzido pela série de depósitos será a diferença entre o total a resgatar e o total produzido pelo depósito extra FV (Ref), ou seja:

FV’ (Série) = 8500 – FV (Ref) FV’ (Serie) = 8500 – 1352,19 FV’ (Série) = 7.147,81

Cálculo do Valor das Prestações pagas na Série:

)%;('.' nifPMTFV =

)18%;1('.81,7147 fPMT=

)01,01.(01,0

1)01,01(.81,7147

18

+

−+= PMT

81089504,1981,7147 PMTx=

→=8108954,19

81,7147PMT PMT = 360,80

Logo o valor de cada um dos depósitos mensais a ser efetuado por esta pessoa será de R$ 360,80.

7.1.3. Cálculo do valor atual na renda antecipada (PV’) O Valor Atual de uma série de pagamentos é obtido fazendo-se a descapitalização de cada um dos Termos da Série sendo ao final cada um destes valores somados, conforme apresentamos a seguir:

)1(21 )1.(....)1.()1.(' −−−− +++++++= niPMTiPMTiPMTPMTPV O valor descapitalizado de cada um dos termos de uma Renda (Série de Pagamentos) forma uma Progressão Geométrica (PG) cuja soma resulta na seguinte expressão:

+−+= −1)1.(

1)1(.'

n

n

ii

iPMTPV

A parcela

Page 68: Livro de Matemática Financeira

68

+−+−1)1.(

1)1(n

n

ii

i

É denominada de Fator de Descapitalização Antecipado e é representado por:

+−+= −1)1.(

1)1()%;('

n

n

ii

inip

Desta forma poderemos representar resumidamente o Valor Atual de uma Renda Postecipada pela seguinte expressão:

)%;('.' nipPMTPV =

Exemplo 1: Um objeto foi adquirido na seguinte condição: 12 prestações mensais antecipadas no valor de R$ 450,00. Encontre o preço por este objeto se a taxa de juro aplicada foi de 48%aa/m. Solução: PMT = 450,00 ∴∴∴∴n = 12 prestações∴∴∴∴ i = 48%aa/m � 4%am/m ∴∴∴∴Preço = ?

PMT = 450

|---------------|---------------------------------------------------|----------| 0 1 11 12 m i = 4%am/m Preço = ? = PV’

)%;('.' nipPMTPV =

)12%;4('.450' pPV =

+−+=

11

12

)04,01.(04,0

1)04,01(.450'PV

76047671,9450' xPV =

21,392.4'=PV

Logo o Preço deste objeto é de R$ 4.392,21 Este problema pode ser resolvido diretamente em uma Calculadora Financeira HP-12C, conforme apresentamos a seguir:

Page 69: Livro de Matemática Financeira

69

HP - 12C

f clear Fin Visor

g BEG BEGIN

450,00 CHS PMT - 450,00

12 N 12

4 i 4

PV’ = ? 4.392,21

Exemplo 2: Uma loja coloca a venda um aparelho eletrodoméstico na seguinte condição de pagamento: 1 + 15 prestações bimestrais de R$ 370,00, mais um reforço de R$ 1.270,00 a ser realizado juntamente coma 9.ª prestação. Um consumidor interessado em saber qual o preço deste objeto, consulta ao vendedor qual a taxa de juro que a loja está aplicando, sendo-lhe informado que a taxa de juro era de 3%am/m. Ajude este consumidor encontrando o preço deste objeto. Solução: PMT = 370,00 ∴∴∴∴ n = 1 + 15 Prest. Bim. ∴∴∴∴ Reforço = 1.270,00 com a 9.ª Prestação Taxa (i) = 3%am/m � 6,09%ab/b ∴∴∴∴ Preço = ?

PMT = 370 Ref = 1270

|---------------|-----------------------------|-----------------------|--------| 0 1 8 15 16 b i = 6,09ab/b Preço = ? Preço = PV (Ref) + PV’ (Série)

Cálculo do Valor Atual da Série de Prestações:

)%;('.' nipPMTPV =

)16%;09,6('.370)(' pSériePV =

+−+=

15

16

)0609,01.(0609,0

1)0609,01(.370)(' SériePV

65538983,10370)(' xSériePV =

Page 70: Livro de Matemática Financeira

70

49,942.3)( =SériePV

Cálculo do Valor Atual produzido pelo Reforço no inicio da Série de Pagamentos:

niPVFV )1.( +=

8)0609,01()(Re1270 += xfPV

60470644,1)(Re1270 xfPV=

60470644,1

1270)(Re =fPV

42,791)(Re =fPV

Desta forma o Preço do objeto será a soma do PV’(Série) com o PV (Ref), ou seja:

Preço = PV(Ref) + PV (Série) Preço = 791,42 + 3942,49 Preço = 4.733,91

Logo o preço do objeto a ser adquirido pelo Comprador nas condições estabelecidas pela Loja será de R$ 4.733,91 Exemplo 3: Uma pessoa deseja financiar um objeto cujo Valor Inicial é igual a R$ 9.360,00 nas seguintes condições: 13 prestações mensais, mais um reforço de R$ 1.580,00 a ser pago juntamente com a 8.ª prestação. Encontre o valor das prestações, se a primeira prestação mensal foi paga de entrada, e a taxa de juro aplicada do financiamento foi de 2%am/m. Solução: Valor Inicial = 9360,00 ∴∴∴∴ Reforço na 8.ª prestação = 1.580,00 ∴∴∴∴ Taxa = 2%am/m

n = 13 parcelas mensais ∴∴∴∴ PMT = ?

PMT = ? Ref = 1580

|--------|-------------------------------|-----------------------|----------------| 0 1 ... 7 ... 12 13 m i = 2%m/m Valor Inicial = 9.360,00 Valor Inicial = PV’ (Série) + PV (Ref)

Cálculo do Valor Atual produzido pelo Reforço no inicio da Série de Pagamentos:

Page 71: Livro de Matemática Financeira

71

niPVFV )1.( +=

7)02,01()(Re1580 += xfPV

148685667,1)(Re1580 xfPV=

148685667,1

1580)(Re =fPV

49,375.1)(Re =fPV

Desta forma o Valor Atual produzido pela série de prestações será a diferença entre o Valor Inicial do objeto e o valor de PV (Ref), ou seja:

PV’ (Série) = 9360,00 – PV (Ref) PV’ (Serie) = 9360,00 – 1375,49 PV’ (Série) = 7.984,51

Cálculo do Valor das Prestações pagas na Série:

)%;('.' nipPMTPV =

)13%;2('.51,7984 pPMT=

+−+=

12

13

)02,01.(02,0

1)02,01(.51,7984 PMT

57534122,1151,7984 PMTx=

→=57534122,11

51,7984PMT PMT = 689,79

Logo o valor de cada das prestações mensais a serem pagas por este objeto será de R$ 689,79.

Page 72: Livro de Matemática Financeira

72

7.2. EXERCÍCIOS – RENDAS ANTECIPADAS

1) Uma mercadoria está à venda em 1 + 6 prestações mensais de R$ 290,00 cada uma.

Qual o seu preço à vista, sabendo-se que a taxa de juro composto utilizada é de 5% am/m. R ⇒⇒⇒⇒ R$ 1.761,95

2) Encontre o total que será pago por uma mercadoria que está a venda na seguinte condição: 10 prestações mensais antecipadas de R$ 460,00 mais um reforço de R$ 1.240,00 pago juntamente com a 4.ª prestação, sendo que a taxa de juro aplicada pela loja é de 12%aa/m. R ⇒⇒⇒⇒ R$ 6.190,19

3) Uma pessoa desejando produzir um montante de R$ 58.000,00 ao final de 6 anos, realiza uma série de 24 depósitos trimestrais. Determine o valor que deve ser depositado a cada trimestre por esta pessoa, se à taxa de juro da aplicação for de 20% aa/t? R ⇒⇒⇒⇒ R$ 1.241,24

4) Determine o preço de um objeto adquirido na seguinte condição: 1 + 11 prestações mensais de R$ 360,00 mais um reforço de R$ 1.190,00 a ser pago juntamente com a 6.ª prestação. A taxa de juro do financiamento é de 18%aa/m. R ⇒⇒⇒⇒ R$ 5.090,23

5) Um empréstimo no valor de R$ 15.000,00 será amortizado em 10 prestações trimestrais antecipadas. Determine o valor das prestações, sabendo-se que a taxa de juro composto utilizada é de 28% aa/t. R ⇒⇒⇒⇒ R$ 1.995,95

6) Uma mercadoria está a venda na seguinte condição: 1 + 8 prestações bimestrais de R$ 240,00 mais um reforço de R$ 1.300,00 a ser pago seis meses após a aquisição da mercadoria. Encontre o total pago por esta mercadoria, se a taxa de juro aplicada foi de 18%as/b. R ⇒⇒⇒⇒ R$ 4.767,47

7) Uma mercadoria está à venda na seguinte condição: 36 prestações trimestrais antecipadas, no valor de R$ 380,00 cada uma e mais um pagamento extra no valor de R$ 830,00, nove meses após a aquisição da mercadoria. Utilizando a taxa de juro composto de 12% aa/t. Qual o valor à vista desta mercadoria? R ⇒⇒⇒⇒ R$ 8.210,42

8) Substituir o pagamento de R$ 60.000,00 no fim de cada ano, por pagamentos a serem efetuados no inicio de cada bimestre, utilizando a taxa de juro composto de 30% aa/b. R ⇒⇒⇒⇒ R$ 8.401,00

9) Uma pessoa dispõe mensalmente de R$ 525,00 para pagar de prestação em um empréstimo, durante o prazo de 3 anos e 8 meses. Sabendo-se que a taxa de juro composto aplicada pelo banco é de 42% aa/m, determine o valor que poderá solicitar de empréstimo sendo as prestações antecipadas. R ⇒⇒⇒⇒ R$ 12.107,91

10) Um objeto foi adquirido na seguinte condição: 10 prestações bimestrais antecipadas de R$ 450,00 mais 12 prestações mensais postecipadas de R$ 180,00. Encontre o preço deste objeto, se a taxa de juro aplicada foi de 24%aa/m. R ⇒⇒⇒⇒ R$ 5.693,37

Page 73: Livro de Matemática Financeira

73

CAPÍTULO – VIII

8. RENDAS OU SÉRIES DE PAGAMENTOS (3.ª Parte)

8.1. RENDAS CERTAS, TEMPORÁRIAS, COM DIFERIMENTO

Consideramos que uma Série de Pagamentos possui diferimento, quando ocorrer, no início ou no final, um prazo de no mínimo dois períodos (m ≥ 2), onde não ocorrem pagamentos pertencentes a série, ou seja, o empréstimo não e amortizado (pago) neste período. Destaque-se que podem existir outros pagamentos no período de diferimento de uma série, mas estes pagamentos não podem pertencer a série. Exemplos Práticos de:

� Diferimento Inicial: � Compra de Equipamentos com Financiamento do BRDE ou

BADESUL; � Crédito Educativo observado pelo lado do Aluno; � Financiamento de Imóvel adquirido na fase de construção do

prédio;

� Diferimento Final � Contrato de Seguro de Veículos pago “n” parcelas; � Crédito Educativo observado pelo lado do Agente Financiador; � Série de Depósitos em Poupança ou em Títulos de

Capitalização, com resgate alguns períodos após a ocorrência do último depósito;

8.1.1. Diferimento final :

Consideramos que uma Série de Pagamentos possui Diferimento Final, quando ocorrer, após o último pagamento da série, um prazo de no mínimo dois períodos (m ≥ 2), onde não ocorrem pagamentos pertencentes à série. Destaque-se que podem existir outros pagamentos no período de diferimento de uma série, mas estes pagamentos não fazem parte da série.

8.1.1.1. Postecipado (Cálculo do Montante):

Destacamos que numa Renda com Diferimento Final Postecipado, interessa ao observador do negócio o valor a ser obtido no final do contrato (fluxo), pois o valor inicial desta série de pagamento é o mesmo já obtido no Item 3.2 deste livro.

Page 74: Livro de Matemática Financeira

74

Consideramos que uma Série de Pagamentos possui Diferimento Final Postecipado, quando ocorrer, após o último pagamento de uma série postecipada, um prazo de no mínimo dois períodos (m ≥ 2), onde não ocorrem pagamentos pertencentes à série. Destaque-se que podem existir outros pagamentos no período de diferimento de uma série, mas estes pagamentos não fazem parte da série. A obtenção do valor final (montante) de uma Série de Pagamentos com Diferimento Final Postecipado, inicialmente devemos encontrar o valor final da série (FV1) e em seguida promovermos a capitalização deste valor até o final do prazo de vigência do contrato (final do fluxo). Destaque-se ainda que a capitalização feita no período do diferimento não necessita ser com a mesma periodicidade da série de pagamentos, ou seja, em uma série de pagamentos bimestrais ou trimestrais a capitalização do prazo de diferimento pode ser mensal, ou em qualquer outra unidade que costumamos utilizar.

Representação Gráfica:

PMT

|-------|-------|------------------------------|--------------------------------| 0 1 2 ... n n + m i% PV FV1 FV(FV1)

diferimento

Como o montante da Série de Pagamentos Postecipada é dado por:

−+=i

iPMTFV

n 1)1(.1

E a capitalização do período de diferimento é dada por:

mixFVFV )1(1 += Aplicando a capitalização sobre o montante da série obteremos:

mn

ii

iPMTFVFV )1.(

1)1(.)( 1 +

−+=

Que na forma resumida pode ser representada por:

Page 75: Livro de Matemática Financeira

75

);%;(.)( 1 mnifPMTFVFV m=

Onde:

+ “n” é o número de prestações da série de pagamentos + “m” é o números de período do diferimento + “fm” é o fator de capitalização postecipado com diferimento

Exemplo 1: Um objeto foi adquirido na seguinte condição: 12 prestações mensais no valor de R$ 180,00. Encontre o total pago por este objeto 6 meses após o pagamento da última prestação, se a taxa de juro aplicada no financiamento foi de 24%aa/m. Solução: PMT = 180,00 ∴∴∴∴ n = 12 prestações ∴∴∴∴ i = 24%aa/m � 2%am/m Diferimento de 6 meses (m = 6) ∴∴∴∴ FV(FV1) = ?

PMT = 180

|-------|-------|------------------------------|--------------------------------| 0 1 2 ... 12 18 m i = 2%am/m FV1 FV(FV1)

);%;(.)( 1 mnifPMTFVFV m=

)6;12%;2(.180)( 1 mfFVFV =

612

1 )02,01.(02,0

1)02,01(.180)( +

−+=FVFV

126162419,141208972,13180)( 1 xxFVFV =

10419142,15180)( 1 xFVFV =

75,718.2)( 1 =FVFV

Logo o valor do objeto 6 meses após o pagamento da última prestação é de R$ 2.718,75

Page 76: Livro de Matemática Financeira

76

Este problema pode ser resolvido diretamente em uma Calculadora Financeira HP-12C:

HP - 12C

f clear Fin Visor

180,00 CHS PMT - 180,00

12 N 12

2 i 2

FV = ? � 2.214,18

CHS PV - 2.214,18

0 PMT 0

6 n 6

FV = ? � 2718,75

Exemplo 2: Uma mercadoria está a venda na seguinte condição: Entrada de R$ 380,00 mais 10 prestações mensais de R$ 250,00 mais 7 prestações bimestrais de R$ 390,00. Encontre o total pago por este objeto, se a taxa de juro aplicada é de 12%aa/m. Solução: PMT = 250,00 ∴∴∴∴ n = 10 prestações mensais ∴∴∴∴ i = 12%aa/m � 1%am/m � 2,01%ab/b PMT = 390,00 ∴∴∴∴ n = 7 prestações bimestrais ∴∴∴∴ Entrada = 380,00 ∴∴∴∴ Total Pago = ?

Entr = 380 PMT = 250 PMT = 390 |------|------|---------------------|--------|--------|----------------------| 0 1 2 ... 10 12 14 24 m i = 1%am/m ���� 2,01%ab/b FV1 Total Pago = ? Total Pago = FV + FV(FV1) + FV(Entr)

bim mens

Page 77: Livro de Matemática Financeira

77

Cálculo do Valor Futuro da Renda Bimestral � FV:

)%;(. nifPMTFV = )7%;01,2(390xfFV =

25,900.2=FV

Cálculo do Valor Futuro da Entrada � FV(Entr):

niPVFV )1.( +=

24)01,01(380 += xFV

50,482=FV

Cálculo do Valor Futuro do Montante da Renda Mensal � FV(FV1)

);%;(.)( 1 mnifPMTFVFV m=

)14;10%;1(.250)( 1 mfFVFV =

1410

1 )01,01.(01,0

1)01,01(.250)( +

−+=FVFV

51,006.3)( 1 =FVFV

Desta forma o total pago pela mercadoria será a soma das três parcelas, ou seja:

Total Pago = 2900,25 + 482,50 + 3006,51

Total Pago = 6.389,26

8.1.1.2. Antecipada (Cálculo do Montante):

Destacamos que numa Renda com Diferimento Final Antecipada, interessa ao observador do negócio o valor a ser obtido no final do contrato (fluxo), pois o valor inicial desta série de pagamento é o mesmo já obtido no Item 4.2 deste livro. Consideramos que uma Série de Pagamentos possui Diferimento Final Antecipado, quando ocorrer, após o último pagamento de uma série antecipada, um prazo de no mínimo dois períodos (m ≥ 2), onde não ocorrem pagamentos pertencentes à série. Destaque-se que podem existir outros pagamentos no período de diferimento de uma série, mas estes pagamentos não podem fazer parte da série. A obtenção do valor final (montante) de uma Série de Pagamentos com Diferimento Final Antecipado, inicialmente devemos encontrar o valor final da série (FV’1) e em seguida promovermos a capitalização deste valor até o final do prazo de vigência do contrato (final do fluxo). Destaque-se ainda que a capitalização feita no período do diferimento não necessita ser com a mesma periodicidade da série de pagamentos, ou seja, em uma série de pagamentos bimestrais ou trimestrais a capitalização do prazo de

Page 78: Livro de Matemática Financeira

78

diferimento pode ser feita mensalmente, ou em qualquer outra unidade que desejarmos utilizar.

Representação Gráfica:

PMT

|-------|------------------------------|-------|--------------------------------| 0 1 ... n -1 n n + m i% PV’ FV’

1 FV(FV’1)

diferimento

Como o montante da Série de Pagamentos Antecipada é dado por:

)1.(1)1(

.1' i

i

iPMTFV

n

+

−+=

E a capitalização do período de diferimento é dada por: miFVFV )1.('1 +=

Aplicando a capitalização sobre o montante da série obteremos:

11 )1.(

1)1(.)'( ++

−+= mn

ii

iPMTFVFV

Que na forma resumida pode ser representada por:

);%;('.)'( 1 mnifPMTFVFV m=

Onde: + “n” é o número de prestações da série de pagamentos

+ “m” é o números de período do diferimento + “f’ m” é o fator de capitalização antecipado com diferimento

Exemplo 1: Um objeto foi adquirido na seguinte condição: 1 + 15 prestações mensais no valor de R$ 130,00. Encontre o total pago por este objeto 9 meses após o pagamento da última prestação, se a taxa de juro aplicada no financiamento foi de 30%aa/m. Solução: PMT = 130,00 ∴∴∴∴ n = 16 prestações ∴∴∴∴ i = 30%aa/m � 2,5%am/m Diferimento de 8 meses (m = 8) ∴∴∴∴ FV(FV1) = ?

Page 79: Livro de Matemática Financeira

79

PMT = 130

|-------|------------------------------|--------|--------------------------------| 0 1 ... 15 16 24 m i = 2,5%am/m FV’1 FV(FV’

1)

);%;(.)( '1' mnifPMTFVFV m=

)8;16%;5,2(.130)( '1'

mfFVFV =

916

1' )025,01.(

025,0

1)025,01(.130)( +

−+=FVFV

248862969,138022482,19130)( 1' xxFVFV =

20324514,24180)( 1 xFVFV =

42,146.3)( 1 =FVFV

Logo o valor do objeto 9 meses após o pagamento da última prestação é de R$ 3.146,42 Este problema pode ser resolvido diretamente em uma Calculadora Financeira HP-12C:

HP - 12C

f clear Fin Visor

g BEG � BEGIN

130,00 CHS PMT - 130,00

16 N 16

2,5 i 2,5

FV’ = ? � 2.582,41

CHS PV - 2.582,41

0 PMT 0

8 n 8

FV’ = ? � 3146,42

Page 80: Livro de Matemática Financeira

80

Exemplo 2: Uma pessoa realiza 13 depósitos mensais de R$ 220,00 mais 8 depósitos bimestrais de R$ 390,00. Encontre o total que pode ser resgatado um mês após o último depósito, se a taxa de juro aplicada é de 12%aa/m. Solução: PMT = 220,00∴∴∴∴n =13 depósitos mensais∴∴∴∴i = 12%aa/m�1%am/m� 2,01%ab/b PMT = 390,00 ∴∴∴∴ n = 8 depósitos bimestrais ∴∴∴∴ Total a Resgatar = ?

PMT = 220 PMT = 390

|------|--------------------------|------|------|---------|-------------------|-----------| 0 1 ... 12 13 14 16 28 30 m i = 1%am/m ���� 2,01%ab/b FV’1 Total a Resgatar = ? Total a Resgatar = FV’ + FV(FV ’

1) bim mens Cálculo do Total Gerado pelos depósitos Bimestrais � FV’:

)%;('.' nifPMTFV =

)8%;01,2('.390' fFV =

85,415.3'=FV

Cálculo do Total Gerado pelos depósitos Mensais � FV(FV1)

);%;('.)'( 1 mnifPMTFVFV m=

)17;13%;1('.220)'( 1 mfFVFV =

11713

1 )01,01.(01,0

1)01,01(.220)'( ++

−+=FVFV

57199288,16220)'( 1 xFVFV =

96,633.3)'( 1 =FVFV

Desta forma o total a resgatar será a soma das duas parcelas, ou seja:

Total a Resgatar = FV’ + FV(FV’1)

Total a Resgatar = 3415,85 + 3633,96

Total a Resgatar = 7.049,81

Page 81: Livro de Matemática Financeira

81

8.1.2. Diferimento inicial :

Consideramos que uma Série de Pagamentos possui Diferimento Final, quando ocorrer, após o último pagamento da série, um prazo de no mínimo dois períodos (m ≥ 2), onde não ocorrem pagamentos pertencentes à série. Destaque-se que podem existir outros pagamentos no período de diferimento de uma série, mas estes pagamentos não fazem parte da série.

8.1.2.1. Postecipado (Cálculo do Valor Atual):

Destacamos que numa Renda com Diferimento Inicial Postecipado, interessa ao observador do negócio o valor a ser obtido no início do contrato (fluxo), pois o valor final desta série de pagamento é o mesmo já obtido no Item 3.1 deste livro. Consideramos que uma Série de Pagamentos possui Diferimento Inicial Postecipado, quando antes do primeiro pagamento da série postecipada, exista um prazo de no mínimo dois períodos (m ≥ 2), onde não ocorrem pagamentos pertencentes à série. Destaque-se que podem existir outros pagamentos no período de diferimento de uma série, mas estes pagamentos não podem fazer parte da série. A obtenção do valor inicial (valor presente) de uma Série de Pagamentos com Diferimento Inicial Postecipado, inicialmente devemos encontrar o valor atual da série (PV1) e em seguida promovermos a descapitalização deste valor até o início do prazo de vigência do contrato (início do fluxo). Destaque-se ainda que a descapitalização feita no período do diferimento não necessita possui a mesma periodicidade da série de pagamentos, ou seja, em uma série de pagamentos bimestrais ou trimestrais a descapitalização do prazo de diferimento pode ser feita mensalmente, ou em qualquer outra unidade que desejarmos utilizar.

Representação Gráfica:

PMT

|------------------------------------|--------|--------|---------------------------| 0 ... m m + 1 m + 2 ..... n + m i% PV(PV1) PV1 FV

diferimento

Como o Valor Presente da Série de Pagamentos Postecipada é dado por:

+−+=n

n

ii

iPMTPV

)1.(

1)1(.1

Page 82: Livro de Matemática Financeira

82

E a descapitalização do período de diferimento é dada por: miFVPV −+⊗= )1(

Aplicando a descapitalização sobre o valor presente da série obteremos:

+−+= +mn

n

ii

iPMTPVPV

)1.(

1)1(.)( 1

Que na forma resumida pode ser representada por:

);%;(.)( 1 mnipPMTPVPV m=

Onde:

+ “n” é o número de prestações da série de pagamentos + “m” é o números de período do diferimento + “pm” é o fator de descapitalização postecipado com diferimento

Exemplo 1: Um objeto foi adquirido na seguinte condição: 18 prestações mensais no valor de R$ 650,00 vencendo a primeira prestação 4 trimestres após a compra. Encontre o preço deste objeto, se a taxa de juro aplicada no financiamento foi de 24%aa/m. Solução: PMT = 650,00 ∴∴∴∴ n = 18 prestações ∴∴∴∴ i = 24%aa/m � 2%am/m Diferimento de 11 meses (m = 11) ∴∴∴∴ PV(PV1) = ?

PMT = 650

|---------------------------------------|-------|-------|------------------------------| 0 ... 11 12 13 29 m i = 2%am/m PV(PV1) PV1

);%;(.)( 1 mnipPMTPVPV m=

)11;18%;2(.650)( 1 mpPVPV =

+−+= +1118

18

1 )02,01(02,0

1)02,01(.650)(

xPVPV

057536616,12650)( 1 xPVPV =

40,837.7)( 1 =PVPV

Page 83: Livro de Matemática Financeira

83

Logo o preço do objeto, cuja primeira prestação foi paga 12 meses após a compra é de R$ 7.837,40 Este problema pode ser resolvido diretamente em uma Calculadora Financeira HP-12C:

HP - 12C

f clear Fin Visor

650,00 CHS PMT - 650,00

18 N 18

2 i 2

PV = ? � 9.744,82

CHS FV - 9.744,82

0 PMT 0

11 n 11

PV = ? � 7.837,40

Exemplo 2: Uma mercadoria está a venda na seguinte condição: Entrada de R$ 720,00 mais 12 prestações mensais de R$ 170,00 mais 9 prestações bimestrais de R$ 450,00. Encontre o preço deste objeto, se a taxa de juro aplicada é de 12%aa/m. Solução: PMT = 170,00 ∴∴∴∴ n = 12 prestações mensais ∴∴∴∴ i = 12%aa/m � 1%am/m � 2,01%ab/b PMT = 450,00 ∴∴∴∴ n = 9 prestações bimestrais ∴∴∴∴ Entrada = 720,00 ∴∴∴∴ Preço = ?

Entr = 720 PMT = 170 PMT = 450 |------|------|--------------------------|---------|---------|---------------------------| 0 1 2 ... 12 14 16 30 m i = 1%am/m ���� 2,01%ab/b ? = Preço PV1 Preço = Entr + PV + PV(PV1)

mens bim

Page 84: Livro de Matemática Financeira

84

Cálculo do Valor Presente da Renda Mensal � PV:

)%;(. nipPMTPV =

)12%;1(.170 pPV =

36,913.1=PV

Cálculo do Valor Presente do Valor Atual da Renda Mensal � PV(PV1)

);%;(.)( 1 mnipPMTPVPV m=

)6;9%;01,2(.450)( 1 mpPVPV =

+−+= +69

9

1 )0201,01.(0201,0

1)0201,01(.450)(PVPV

24011479,7450)( 1 xPVPV =

05,258.3)( 1 =PVPV

Desta forma o preço desta mercadoria será a soma das três parcelas, ou seja:

Preço = Entr + PV + PV(PV1)

Preço = 720,00 + 1913,36 + 3258,05

Preço = 5.891,41

Logo o preço do objeto, adquirido nas condições estabelecidas no problema é de R$ 5.891,41

8.1.2.2. Antecipado (Cálculo do Valor Atual):

Destacamos que numa Renda com Diferimento Inicial Antecipado, interessa ao observador do negócio o valor a ser obtido no início do contrato (fluxo), pois o valor final desta série de pagamento é o mesmo já obtido no Item 4.1 deste livro. Consideramos que uma Série de Pagamentos possui Diferimento Inicial Antecipado, quando antes do primeiro pagamento da série antecipada, exista um prazo de no mínimo dois períodos (m ≥ 2), onde não ocorrem pagamentos pertencentes à série. Destaque-se que podem existir outros pagamentos no período de diferimento de uma série, mas estes pagamentos não podem fazer parte da série. A obtenção do valor inicial (valor presente) de uma Série de Pagamentos com Diferimento Inicial Antecipado, inicialmente devemos encontrar o valor atual

Page 85: Livro de Matemática Financeira

85

da série (PV’1) e em seguida promovermos a descapitalização deste valor até o início do prazo de vigência do contrato (início do fluxo). Destaque-se ainda que a descapitalização feita no período do diferimento não necessita possui a mesma periodicidade da série de pagamentos, ou seja, em uma série de pagamentos bimestrais ou trimestrais a descapitalização do prazo de diferimento pode ser feita mensalmente, ou em qualquer outra unidade que desejarmos utilizar. Representação Gráfica:

PMT

|-------------------------------|--------|--------|----------------------|---------| 0 ... m m + 1 m + 2 ..... n + m -1 n + m i% PV(PV’

1) PV’1 FV’

diferimento

Como o Valor Presente da Série de Pagamentos Antecipada é dado por:

+−+= −11 )1.(

1)1(.'

n

n

ii

iPMTPV

E a descapitalização do período de diferimento é dada por: miFVPV −+⊗= )1(

Aplicando a descapitalização sobre o valor presente da série obteremos:

+−+= −+ 11 )1.(

1)1(.)'(

mn

n

ii

iPMTPVPV

Que na forma resumida pode ser representada por: );%;('.)'( 1 mnipPMTPVPV m=

Onde: + “n” é o número de prestações da série de pagamentos + “m” é o números de período do diferimento + “p’

m” é o fator de descapitalização antecipado com diferimento

Exemplo 1: Um objeto foi adquirido na seguinte condição: 16 prestações mensais no valor de R$ 530,00 vencendo a primeira prestação 2 semestres após a compra. Encontre o preço deste objeto, se a taxa de juro aplicada no financiamento foi de 18%aa/m. Solução: PMT = 530,00 ∴∴∴∴ n = 16 prestações ∴∴∴∴ i = 18%aa/m � 1,5%am/m Diferimento de 2 semestres = 12 meses (m = 12) ∴∴∴∴ PV(PV’1) = ?

Page 86: Livro de Matemática Financeira

86

PMT = 530

|-----------------------------------------------|-------|------------------------------| 0 ... 12 13 27 m i = 1,5%am/m PV(PV’1) PV’1

);%;('.)'( 1 mnipPMTPVPV m=

)12;16%;5,1('.530)'( 1 mpPVPV =

+−+= −+ 11216

16

1 )015,01(015,0

1)015,01(.530)'(

xPVPV

99649967,11530)'( xPVPV =

14,358.6)'( 1 =PVPV

Logo o preço do objeto, cuja primeira prestação foi paga 12 meses após a compra é de R$ 6.358,14 Este problema pode ser resolvido diretamente em uma Calculadora Financeira HP-12C:

HP - 12C

f clear Fin Visor

g BEG � BEGIN

530,00 CHS PMT - 530,00

16 N 16

1,5 i 1,5

PV’ = ? � 7.601,91

CHS PV - 7.601,91

0 PMT 0

12 n 12

PV = ? � 6.358,14

Page 87: Livro de Matemática Financeira

87

Exemplo 2: Uma mercadoria está a venda na seguinte condição: 1 + 12 prestações mensais de R$ 240,00 mais 8 prestações bimestrais de R$ 380,00. Encontre o preço deste objeto, se a taxa de juro aplicada é de 24%aa/m. Solução: PMT = 240,00 ∴∴∴∴ n = 13 prestações mensais ∴∴∴∴ i = 24%aa/m � 2%am/m � 4,04%ab/b PMT = 380,00 ∴∴∴∴ n = 8 prestações bimestrais ∴∴∴∴ Preço = ?

PMT = 240 PMT = 380 |------|-------------------------|-------|---------|---------|---------------------------| 0 1 ... 12 13 14 16 28 m i = 2%am/m ���� 4,04%ab/b ? = Preço PV’

1 Preço = PV’ + PV(PV’

1) mens bim Cálculo do Valor Presente da Renda Mensal � PV’:

)%;('.' nipPMTPV =

)13%;2('.240' pPV =

08,778.2'=PV

Cálculo do Valor Presente do Valor Atual da Renda Bimestral � PV(PV’1)

);%;('.)'( 1 mnipPMTPVPV m=

)7;8%;04,4('.380)'( 1 mpPVPV =

+−+= −+ 178

8

1 )0404,01.(0404,0

1)0404,01(.380)(PVPV

29996591,5380)( 1 xFVFV =

99,013.2)( 1 =FVFV

Desta forma o preço desta mercadoria será a soma das três parcelas, ou seja:

Preço = PV’ + PV(PV’1)

Preço = 2778,08 + 2013,99

Preço = 4.792,07

Logo o preço do objeto, adquirido nas condições estabelecidas no problema é de R$ 4.792,07

Page 88: Livro de Matemática Financeira

88

8.2. EXERCÍCIOS – RENDAS COM DIFERIMENTO

1) Encontrar o preço de uma mercadoria na seguinte condição: 6 prestações bimestrais, antecipadas, de R$ 2.350,00 cada uma, mais 12 prestações mensais de R$ 5.810,00 cada uma, sendo a taxa de juro composto de 60% as/m. R ⇒⇒⇒⇒ R$ 24.488,78

2) Calcular o montante obtido ao se efetuar 12 depósitos mensais de R$ 4.850,00 cada

um e mais um depósito extra no valor de R$ 18.563,00, dez meses após o último depósito mensal, sendo a taxa de juro de 8% am/m. R ⇒⇒⇒⇒ R$ 217.268,43

3) Qual foi o valor solicitado em um empréstimo, que será pago na seguinte condição:

8 pagamentos bimestrais de R$ 2.578,00 cada um, vencendo a 1ª prestação 12 meses após a assinatura do contrato? A taxa de juro cobrada é de 39% aa/b. R ⇒⇒⇒⇒ R$ 11.456,79

4) Qual o valor das prestações de um empréstimo de valor inicial de R$ 7.500,00,

sendo que a 1ª das 15 prestações mensais vencerá 6 trimestres após a assinatura do contrato, cuja taxa de juro é de 95,6% aa/a? R ⇒⇒⇒⇒ R$ 1.965,10

5) Calcular o valor atual de um empréstimo de 8 prestações bimestrais de R$

28.756,00, que tem um diferimento inicial de 12 meses, sendo a taxa de juro composto de 39% aa/b. R ⇒⇒⇒⇒ R$ 119.993,86

6) Qual o total pago na liquidação de um empréstimo feito em: 12 pagamentos mensais

de R$ 1.830,00 cada um, mais 2 reforços extras de R$ 7.500,00 cada um, sendo o 1º oito meses e o 2º, doze meses após o último pagamento mensal. A taxa de juro cobrada foi de 4,25% am/m? R ⇒⇒⇒⇒ R$ 62.324,63

7) Qual o preço de uma máquina, se o comprador deu R$ 4.200,00 de entrada, mais 9

prestações bimestrais, de R$ 3.850,00 sendo o diferimento inicial de doze meses e a taxa de juro de 54% aa/b? R ⇒⇒⇒⇒ R$ 17.962,86

8) Qual o valor final gerado pela realização de 10 depósitos mensais de R$ 475,00

mais 3 depósitos semestrais postecipados de R$ 1.250,00, sendo estes concomitantes com os primeiros e o resgate feito 2 anos após a realização do último depósito, à taxa de juro aplicada foi de 48% aa/m? R ⇒⇒⇒⇒ R$ 33.193,69

9) Qual o preço à vista de um microcomputador, que está à venda na seguinte

condição: entrada de R$ 400,00, mais dez prestações mensais de R$ 385,00, vencendo a primeira um semestre após a data da compra e a taxa de juro de 151,82% aa/a? R ⇒⇒⇒⇒ R$ 2.158,21

10) Qual o total pago por um objeto que foi comprado em 10 pagamentos mensais de R$

115,00 sendo o primeiro dado como entrada, mais um pagamento extra de R$ 1.475,00, realizado 8 meses após o último pagamento mensal. A taxa de juro aplicada foi de 10% am/m? R ⇒⇒⇒⇒ R$ 5.403,77

Page 89: Livro de Matemática Financeira

89

CAPÍTULO – IX

9. AMORTIZAÇÃO DE EMPRÉSTIMOS (1.ª Parte)

9.1. AMORTIZAÇÃO DE EMPRÉSTIMOS:

O estudo da amortização de empréstimos é a análise do que está ocorrendo durante o prazo de vigência ou período de pagamento de um empréstimo, destaca-se que a palavra amortização que será largamente utilizada nos próximos capítulos tem o significado de pagamento, ou seja, nosso estudo irá se dedicar sobre as diversas ocorrência existentes durante o prazo de pagamento do empréstimo. Desta forma, se em um empréstimo efetuamos um pagamento parcial, este valor será encaminhado a um dos seguintes destinos: Primeiro : o valor pago pode ser direcionado para reduzir o juro devido no empréstimo; Segundo: o valor pago pode ser direcionado para reduzir parte do valor devido; e Terceiro: o valor pago é utilizado para pagar parte do juro e parte do valor devido pelo tomador do empréstimo.

9.1.1. Formas de amortização de empréstimos:

Dependendo do tipo de empréstimo realizado é que pode saber o destino a ser dado a um valor pago em certo período, conforme passamos a descrever em cada uma das formas de pagamentos de empréstimos a seguir descritas.

9.1.1.1. Juro simples:

Em um empréstimo feito pela regra do Juro Simples o tomador do empréstimo deverá pagar o juro ao final de cada período e no final do prazo do empréstimo quitará o principal (capital). Nesta modalidade de empréstimo o tomador mantém contato com o dono do Principal a cada período, por outro lado, tendo em vista que o juro é pago a cada período a dívida do mutuário (tomador do empréstimo) não aumenta podendo ser resgatada a qualquer tempo pelo valor inicial do empréstimo, acrescido do juro do último período.

C

|-----|-----|-------------------------------------------------------| 0 1 2 n i J1 = J1 C

Page 90: Livro de Matemática Financeira

90

Exemplo de Empréstimo a Juro Simples:

� Empréstimo junto ao FMI onde após o período de carência o país tomador do empréstimo inicialmente paga o juro por alguns períodos anuais e ao final do prazo estabelecido quita o principal

Exemplo 1: Um empréstimo de R$ 10.000,00 será amortizado num prazo de 8 meses pelo método do Juro Simples, sendo a taxa de juro de 5%am. Demonstre o que ocorre a cada período neste empréstimo.

10000

|----------|---------|-----------------------------------------------| 0 1 2 8m i = 5%am J1=500 10000 J1=J2=500 ...

9.1.1.2. Juro composto:

Em um empréstimo feito pela regra do Juro Composto o tomador do empréstimo deverá pagar ao final do prazo de vigência do empréstimo o Principal acrescido dos juros capitalizados. Nesta modalidade de empréstimo o tomador não mantém contato com o dono do Principal até o final do prazo do empréstimo, por outro lado, tendo em vista que nenhuma parcela foi paga durante todo o período de vigência do empréstimo, a divida pode ser resgatada a qualquer tempo pelo valor inicial acrescido dos juros capitalizados até qualquer um dos períodos de vigência do financiamento.

PV

|-----|-----|-------------------------------------------------------| 0 1 2 n i FV

Exemplo de Empréstimo a Juro Composto:

� Empréstimo para aquisição de imóvel utilizado pelo Sistema Hipotecário Americano, onde o mutuário assume uma dívida a ser paga em 5 ou 10 anos, e ao final do prazo quita o principal, com juros capitalizados.

Page 91: Livro de Matemática Financeira

91

Exemplo 1: Um empréstimo de R$ 10.000,00 será amortizado num prazo de 8 meses pelo método do Juro Composto, sendo a taxa de juro de 5%am/m. Demonstre o que ocorre a cada período neste empréstimo.

PV1=10000 PV2=10500 PV3=11025

|----------|----------|---------------------------------| 0 1 2 8m i = 5%am J1=500 FV=14.774,55 J2=525 ...

9.1.1.3. Sistema de amortização alemão:

Em um empréstimo feito pela regra do Sistema Alemão (que em resumo corresponde ao nosso Desconto Comercial) o tomador do empréstimo deverá quando da assinatura do empréstimo pagar a integralidade do juro e ao final do prazo pagar o Principal. Nesta modalidade de empréstimo o tomador não mantém contato com o dono do Principal até o final do prazo do empréstimo, por outro lado, tendo em vista que nenhuma parcela será paga durante todo o período de vigência do empréstimo, a divida pode ser resgatada a qualquer tempo descontando-se do Principal o juro que seria devido durante o período de antecipação da dívida.

PV

|-----|-----|-------------------------------------------------------| 0 1 2 n d JTotal PV

Exemplo de Empréstimo pelo Sistema Alemão:

� Empréstimo através de Descontos de Títulos, onde o valor do título é descontado dos juros sendo pago o valor atual ao mutuário;

Exemplo 1: Um empréstimo de R$ 10.000,00 será amortizado num prazo de 8 meses pelo método do Sistema Alemão, sendo a taxa de juro de 5%am. Demonstre o que ocorre a cada período neste empréstimo.

Page 92: Livro de Matemática Financeira

92

10000 � Valor do Empréstimo

|----------|---------|-----------------------------------------------| 0 1 2 8m d = 5%am JT=4000 Juro pago na liberação do Empréstimo Valor pago ao final do empréstimo � 10000

Observe-se que a taxa aplicada neste empréstimo é a de desconto, que nos oito meses corresponderia a 40% do valor do empréstimo, por outro lado a taxa de juro real cobrada no período (oito meses) é de 66,6666% pois se paga R$ 4.000,00 de juro em R$ 6.000,00 que se recebeu de fato emprestado.

9.1.1.4. Sistema de amortização francês – SAF:

Em um empréstimo feito pela regra do Sistema Francês (que em resumo corresponde as nossas Rendas) o tomador do empréstimo pagará a cada período uma prestação que é composta de duas parcelas, a saber: a primeira é chamada de juro que é obtida pela aplicação da taxa do empréstimo sobre o saldo devedor até aquele período, sendo um valor decrescente a cada período; e, a segunda é denominada de amortização que obtida fazendo-se a diferença entre o valor da prestação e o juro a ser pago no período em observação, sendo uma parcela crescente a cada período do financiamento. Nesta modalidade de empréstimo o tomador mantém contato com o dono do Principal a cada período do empréstimo até saldar a última prestação, por outro lado, a divida pode ser resgatada a qualquer tempo calculando-se o valor atual das prestações restantes do financiamento. No empréstimo pelo Sistema de Amortização Francês se o mutuário pagar um determinado percentual de número de prestações não terá pago igual percentual da dívida contratada, pois no início do financiamento o valor pago a título de juro é maior que o valor pago de amortização, uma vez que o saldo devedor no início do empréstimo é maior que no final do empréstimo, e a amortização é crescente, ou seja ao final do empréstimo se paga mais empréstimo do que juro ao contrário do que ocorre no início do financiamento.

PMT |---------------|---------------|---------------|-------------------------------|

0 1 2 3 ... n i

PV PMT = Jp + Ap

Page 93: Livro de Matemática Financeira

93

Exemplo de Empréstimo pelo Sistema Francês:

� Empréstimos feitos em prestações fixas, quando da aquisição de um eletrodoméstico, ou um veículo, ou mesmo um empréstimo pessoal;

Exemplo 1: Um empréstimo de R$ 10.000,00 será amortizado num prazo de 8 meses pelo método do Sistema de Amortização Francês, sendo a taxa de juro de 5%am/m. Demonstre o que ocorre a cada período neste empréstimo.

PMT = 1547,22

|---------------|---------------|---------------|-------------------------------| 0 1 2 3 ... 8m

i=5%am/m

PV=10000

Jp = PVp-1 x i � Ap = PMT - Jp � PVp = PVp-1 – Ap

1.ª Prestação: J1 = 500,00 -- A1 = 1.047,22 -- PV1 = 8.952,78

2.ª Prestação: J2 = 447,64 -- A2 = 1.099,58 -- PV2 = 7.853,20

3.ª Prestação: J3 = 392,66 -- A3 = 1.154,56 -- PV3 = 6.698,64

4.ª Prestação: J4 = 334,93 -- A4 = 1.212,29 -- PV4 = 5.486,35

5.ª Prestação: J5 = 274,32 -- A5 = 1.272,90 -- PV5 = 4.213,45

6.ª Prestação: J6 = 210,67 -- A6 = 1.336,55 -- PV6 = 2.876,90

7.ª Prestação: J7 = 143,85 -- A7 = 1.403,37 -- PV7 = 1.473,53

8.ª Prestação: J8 = 73,68 -- A8 = 1.473,54 -- PV8 = 0,00

9.1.1.5. Sistema de amortização constante – SAC:

Em um empréstimo feito pela regra do Sistema de Amortização Constante o tomador do empréstimo pagará a cada período uma prestação que é composta de duas parcelas, a saber: a primeira é chamada de juro que é obtida pela aplicação da taxa do empréstimo sobre o saldo devedor até aquele período, sendo um valor decrescente a cada período; e, a segunda é denominada de amortização que é constante e obtida através da razão entre o valor da dívida e o número de prestações, como a Amortização é Constante e os Juros são Decrescentes a prestação se tornará decrescente, pois obtida pela soma entre a Amortização e o Juro de cada período.

Nesta modalidade de empréstimo o tomador mantém contato com o dono do Principal a cada período do empréstimo até saldar a última prestação, por outro

Page 94: Livro de Matemática Financeira

94

lado, a divida pode ser resgatada a qualquer tempo calculando-se o valor atual da dívida pela simples multiplicação entre o número de prestações restantes do empréstimo e o valor da amortização constante. No empréstimo pelo Sistema de Amortização Constante se o mutuário pagar um determinado percentual de número de prestações terá pago igual percentual da dívida contratada, pois a Amortização é Constante durante toda a vigência do contrato de financiamento, ou seja, se foi pago 20% das prestações se terá amortizado 20% do valor devido, e assim sucessivamente.

PMT1 PMT2 PMT 3 PMTn

|---------------|---------------|---------------|-------------------------------| 0 1 2 3 ... n

i

PV

PMT 1 = J1 + Ac

PMT 2 = J2 + Ac

PMT 3 = J3 + Ac

..........

PMT n = Jn + Ac

Exemplo de Empréstimo pelo Sistema de Amortização Constante: � Empréstimos feitos com prestações decrescentes sendo cada

prestação uma quantidade fixa menor, quando da aquisição de um eletrodoméstico, ou um veículo, ou mesmo a título de crédito pessoal;

Exemplo 1: Um empréstimo de R$ 10.000,00 será amortizado num prazo de 8 meses pelo método do Sistema de Amortização Constante, sendo a taxa de juro de 5%am/m. Demonstre o que ocorre a cada período neste empréstimo.

PMT1 PMT2 PMT3 PMT8

|---------------|---------------|---------------|-------------------------------| 0 1 2 3 ... 8m

i=5%am/m

PV=10.000,00

Page 95: Livro de Matemática Financeira

95

Jp = PVp-1 x i � Acp = PV/n � PMTp = Acp + Jp � PVp = PVp-1 – Ap

1.ª Prestação: J1 = 500,00 -- Ac1 = 1.250,00 -- PMT1 = 1.750,00 -- PV1 = 8.750,00

2.ª Prestação: J2 = 437,50 -- Ac2 = 1.250,00 -- PMT2 = 1.687,50 -- PV2 = 7.500,00

3.ª Prestação: J3 = 375,00 -- Ac3 = 1.250,00 -- PMT3 = 1.625,00 -- PV3 = 6.250,00

4.ª Prestação: J4 = 312,50 -- Ac4 = 1.250,00 -- PMT4 = 1.562,50 -- PV4 = 5.000,00

5.ª Prestação: J5 = 250,00 -- Ac5 = 1.250,00 -- PMT5 = 1.500,00 -- PV5 = 3.750,00

6.ª Prestação: J6 = 187,50 -- Ac6 = 1.250,00 -- PMT6 = 1.437,50 -- PV6 = 2.500,00

7.ª Prestação: J7 = 125,00 -- Ac7 = 1.250,00 -- PMT7 = 1.375,00 -- PV7 = 1.250,00

8.ª Prestação: J8 = 62,50 -- Ac8 = 1.250,00 -- PMT8 = 1.312,50 -- PV8 = 0,00

9.1.1.6. Sistema de amortização mista – SAM:

Em um empréstimo feito pela regra do Sistema de Amortização Mista – SAM o tomador do empréstimo pagará a cada período uma prestação decrescente, que é obtida fazendo-se a média ponderada entre a prestação do Sistema de Amortização Francês e a prestação do Sistema de Amortização Constante. O peso da ponderação é atribuído pelo agente financeiro, podendo de acordo com seu interesse possui mais percentual de SAC ou de SAF. O juro e a amortização também serão obtidos calculando-se a média ponderada dos valores devidos a cada prestação no SAF e no SAC. Nesta modalidade de empréstimo o tomador mantém contato com o dono do Principal a cada período do empréstimo até saldar a última prestação, por outro lado, a divida pode ser resgatada a qualquer tempo calculando-se o valor atual da dívida pela média ponderada do que seria devido no SAF e do que seria divido no SAC. No empréstimo pelo Sistema de Amortização Misto - SAM se o mutuário pagar um determinado percentual de número de prestações não terá pago igual percentual da dívida contratada, pois no início do financiamento o valor pago a título de juro é maior que o valor pago de amortização, uma vez que o saldo devedor no início do empréstimo é maior que no final do empréstimo, e a amortização é crescente, ou seja ao final do empréstimo se paga mais empréstimo do que juro ao contrário do que ocorre no início do financiamento.

PMT1 PMT2 PMT 3 PMTn

|---------------|---------------|---------------|-------------------------------| 0 1 2 3 ... n

i

PV

PMT 1 = J1 + A1

Page 96: Livro de Matemática Financeira

96

PMT 2 = J2 + A2

PMT 3 = J3 + A3

..........

PMT n = Jn + An

Exemplo de Empréstimo pelo Sistema de Amortização Mista:

� Empréstimos feitos com prestações decrescentes sendo cada prestação uma quantidade variável menor, quando da aquisição de um eletrodoméstico, ou um veículo, ou mesmo a título de crédito pessoal;

Exemplo 1: Um empréstimo de R$ 10.000,00 será amortizado num prazo de 8 meses pelo método do Sistema de Amortização Mista, sendo a taxa de juro de 5%am/m, na proporção de 50% do Sistema de Amortização Francês (SAF) e 50% do Sistema de Amortização Constante (SAC). Demonstre o que ocorre a cada período neste empréstimo.

PMT1 PMT2 PMT3 PMT8

|---------------|---------------|---------------|-------------------------------| 0 1 2 3 ... 8m

i=5%am/m

PV=10000

Jp=50%.Jp(SAF) + 50%.Jp(SAC) � Ap=50%.Ap(SAF) + 50%.Ap(SAC) PMTp=50%.PMTp(SAF) + 50%.PMTp(SAC) � PVp=PVp-1 – Ap

1.ª Prestação: J1 = 500,00 -- A1 = 1.148,61 -- PMT1 = 1.648,61 -- PV1 = 8.851,39 2.ª Prestação: J2 = 443,57 -- A2 = 1.174,79 -- PMT2 = 1.617,36 -- PV2 = 7.676,60 3.ª Prestação: J3 = 383,83 -- A3 = 1.202,28 -- PMT3 = 1.586,11 -- PV3 = 6.474,32 4.ª Prestação: J4 = 323,72 -- A4 = 1.231,14 -- PMT4 = 1.554,86 -- PV4 = 5.243,32 5.ª Prestação: J5 = 262,16 -- A5 = 1.261,45 -- PMT5 = 1.523,61 -- PV5 = 3.981,73 6.ª Prestação: J6 = 199,09 -- A6 = 1.293,27 -- PMT6 = 1.492,36 -- PV6 = 2.688,46 7.ª Prestação: J7 = 134,42 -- A7 = 1.326,69 -- PMT7 = 1.461,11 -- PV7 = 1.361,77 8.ª Prestação: J8 = 68,09 -- A8 = 1.361,77 -- PMT8 = 1.429,86 -- PV8 = 0,00

Obs.: Em nosso estudo faremos a análise e o detalhamento do que ocorre no Sistema de Amortização Francês – SAF, e no Sistema de Amortização Constante – SAC, pois os demais são de simples entendimento, em conformidade com o que já foi explanado neste Livro.

Page 97: Livro de Matemática Financeira

97

9.2. EXERCÍCIOS – AMORTIZAÇÃO DE EMPRÉSTIMOS

1) Qual a diferença fundamental entre os Sistemas de Amortização: Juro Simples e Juro Composto? R ⇒⇒⇒⇒ No primeiro o Juro deve ser pago a cada período e no segundo o juro é capitalizado a cada período e pagos quando da quitação do empréstimo.

2) Qual a diferença fundamental entre os Sistemas de Amortização: Alemão e Juro

Simples? R ⇒⇒⇒⇒ No primeiro o Juro é pago integralmente (descontado) quando da liberação do empréstimo, e no segundo o juro é pago a cada período de vigência do empréstimo.

3) No Sistema de Amortização Alemão o juro é pago antecipadamente, tal sistema se

compara com qual operação bancária utilizada freqüentemente pelo Sistema Financeiro Brasileiro? R ⇒⇒⇒⇒ O Sistema Alemão se compara a Operação de Descontos de Títulos de Crédito (Duplicatas; Notas Promissórias, Cheques, Ordem de Pagamento a Prazo) muito utilizada no Sistema Financeiro Brasileiro.

4) Qual a diferença fundamental entre os Sistemas de Amortização Francês e

Constante? R ⇒⇒⇒⇒ No primeiro a Amortização é Crescente e no segundo a Amortização é Constante.

5) Qual o motivo das prestações serem decrescentes no Sistema de Amortização

Constante? R ⇒⇒⇒⇒ No SAC as prestações são decrescentes, pois o juro é calculado sobre o saldo devedor do período anterior.

6) Em qual dos dois Sistemas de Amortização: Francês ou Constante o mutuário paga

menor quantidade de juro? R ⇒⇒⇒⇒ No Sistema de Amortização Constante, pois o total desembolsado ao final do empréstimo é menor que no Sistema de Amortização Francês.

7) Em qual dos Sistemas de Amortização: Francês ou Misto o mutuário paga menor

quantidade de juro? R ⇒⇒⇒⇒ No Sistema de Amortização Misto, pois o total desembolsado ao final do empréstimo é menor que no Sistema de Amortização Francês.

8) Em qual dos Sistemas de Amortização: Constante ou Misto o mutuário paga maior

quantidade de juro? R ⇒⇒⇒⇒ No Sistema de Amortização Constante, pois o total desembolsado ao final do empréstimo é menor por parte do mutuário.

9) No Sistema de Amortização Misto o mutuário paga prestações decrescentes, por que

motivo? R ⇒⇒⇒⇒ Porque este sistema se utiliza de uma porcentagem do Sistema de Amortização Constante que possui prestações decrescentes;

10) Em qual dos Sistemas de Amortização: Francês, Constante e Misto o mutuário faz

maior amortização para pagar todo empréstimo? R ⇒⇒⇒⇒ Se o empréstimo for de mesmo valor inicial a amortização do empréstimo é a mesma para qualquer dos sistemas, sendo igual ao valor do empréstimo. As prestações são distintas entre as três formas de amortização referidas pela quantidade de juro que será pago durante todo o empréstimo, mas a amortização final será a mesma.

Page 98: Livro de Matemática Financeira

98

CAPÍTULO – X

10. AMORTIZAÇÃO DE EMPRÉSTIMOS (2.ª Parte)

10.1. SISTEMA DE AMORTIZAÇÃO FRANCÊS:

Neste sistema analisa-se o que ocorre a cada período em um empréstimo que está sendo pago em prestações periódicas e constantes. Resumidamente poderíamos dizer que é o detalhamento do que ocorre internamente nas Rendas (Postecipadas; Antecipadas; ou com Diferimento), destacando-se que em nosso Estudo faremos a análise do que ocorre com as Rendas Postecipadas pois as demais resolver-se-ia de modo semelhante. Este Sistema de Amortização utiliza a denominada Tabela Price, que nada mais é do que o cálculo para diversas taxas e para diversos períodos do fator de descapitalização postecipado que neste livro representamos por: p(i%;n). Destaque-se que tais valores, quando não se possuía calculadoras científicas e ou financeiras chegaram a produzir Tabelas Financeiras com mais de uma centena de páginas, tais como a do Prof. Vilson Araújo Rosa editada pela antiga Livraria Sulina Ltda., tais tabelas com a redução dos custos das calculadoras científicas e ou financeiras caíram em desuso, figurando atualmente apenas como peças decorativas nas bibliotecas universitárias. Apresentamos a seguir as equações que dão origem a cada uma das parcelas que nos interessa ter conhecimento na análise ou detalhamento do que ocorre com um empréstimo:

10.1.1. Cálculo das prestações:

As Prestações no Sistema de Amortização Francês, considerando que iremos fazer somente a análise das Rendas Postecipadas é dada pela seguinte equação:

?)%;(. =⇒= PMTnipPMTPV

Onde: � PV � é o Valor do Empréstimo � i � é a taxa efetiva de juro utilizada no empréstimo � n � é o número de prestações do empréstimo � PMT � é a prestação que se deseja calcular

Page 99: Livro de Matemática Financeira

99

Ou ainda

?)1.(

1)1(. =⇒

+−+= PMT

ii

iPMTPV

n

n

Neste ponto se faz interessante ressaltar aos nossos leitores e estudantes os motivos de fazermos somente a análise do que ocorre com as rendas postecipadas. Note-se que se desejássemos o valor da prestação em uma renda antecipada, apenas se alteraria a equação que deveríamos aplicar, passaríamos então a utilizar a equação da Renda Antecipada a nosso empréstimo, ou seja:

)%;(. '' nipPMTPV = De modo semelhante se procederia se a renda possuísse algum diferimento.

10.1.2. Cálculo do juro em um período:

O Juro no Sistema de Amortização Francês, como já foi informado no Ponto 9.1.1.4 deste Livro, é obtido sobre o saldo devedor do período anterior, podendo-se representá-lo pela seguinte equação:

xiPVJ PP 1−= Onde:

� JP � é o Juro pago na Prestação “p” sendo: 1 ≤ p ≤ n � i � é a taxa efetiva de juro utilizada no empréstimo � PVP-1 � é o saldo devedor do período anterior

10.1.3. Cálculo da amortização em um período:

A Amortização no Sistema de Amortização Francês, como já foi informado no Ponto 9.1.1.4 deste Livro, é obtido fazendo-se a diferença entre a Prestação e o Juro de cada período, podendo-se representá-la pela seguinte equação:

PP JPMTA −= Onde:

� Ap � é a parcela de amortização do empréstimo no período “p” � PMT � é a prestação que está sendo paga em todo empréstimo � Jp � é o Juro pago na Prestação “p” sendo: 1 ≤ p ≤ n

10.1.4. Cálculo do saldo devedor em um período:

O Saldo Devedor no Sistema de Amortização Francês é obtido calculando-se o valor atual das prestações que ainda não foram pagas no empréstimo, podendo-se representá-lo pela seguinte equação:

Page 100: Livro de Matemática Financeira

100

)%;(. pnipPMTPVP −= Onde:

� PMT � é a prestação que está sendo paga em todo empréstimo � i � é a taxa efetiva de juro utilizada no empréstimo � n – p � é o número de prestações ainda não pagas no empréstimo,

ou seja, é a diferença entre o total de prestações do empréstimo e o número de prestações pagas no empréstimo

� PVp � é o valor que resta a ser pago no empréstimo, após terem sido pagas “p” prestações

Ou ainda:

?)1.(

1)1(. =⇒

+−+= −

Ppn

pn

P PVii

iPMTPV

10.1.5. Cálculo do total pago em um período:

O Total Pago no Sistema de Amortização Francês é obtido calculando-se a diferença entre o Saldo Devedor Inicial (valor tomado em empréstimo) e o Saldo Devedor no período observado, podendo-se representá-lo pela seguinte equação:

PP PVPVFV −= 0

Onde: � PV0 � é Saldo Devedor Inicial do empréstimo � PVp � é o valor que resta a ser pago no empréstimo, após terem

sido pagas “p” prestações � FVp � é o total Pago no empréstimo, após terem sido pagas “p”

prestações

Exemplo 1: Um empréstimo de R$ 45.000,00 será amortizado em 48 prestações mensais sendo a taxa de juro de 24%aa/m. Calcule o que se pede em cada um das alternativas a seguir:

a) O valor da Prestação a ser paga em cada período neste empréstimo. b) O valor do Juro a ser pago na 1.ª prestação deste empréstimo; c) O valor da Amortização a ser realizada na 1.ª prestação deste empréstimo; d) O valor do Total Pago após terem sido pagas 46 prestações deste

empréstimo. e) O valor do Juro a ser pago na 8.ª parcela deste empréstimo; f) O valor da Amortização a ser realizada na 24.ª prestação deste

empréstimo; Solução: PV = 45.000,00∴∴∴∴ n = 48 prestações ∴∴∴∴i = 24%aa/m� 2%am/m ∴∴∴∴PMT= ?

Resolução da alternativa a):

)%;(. nipPMTPV = )48%;2(.45000 pPMT=

67311957,3045000 PMTx= 08,467.1=PMT

Page 101: Livro de Matemática Financeira

101

Resolução da alternativa b): xiPVJ PP 1−=

xiPVJ 01 =

02,0450001 xJ =

00,9001 =J Resolução da alternativa c):

PP JPMTA −= 11 JPMTA −=

00,90008,14671 −=A

08,5671 =A Resolução da alternativa d):

PP PVPVFV −= 0 46046 PVPVFV −=

Calcularemos o valor de PV46 que é desconhecido:

)%;(. pnipPMTPVP −=

)4648%;(.46 −= ipPMTPV

)2%;2(.08,146746 pPV =

94156094,108,146746 xPV =

43,848.246 =PV Retornando ao cálculo de FV46 teremos:

46046 PVPVFV −=

43,28484500046 −=FV

57,4215146 =FV

Resolução da alternativa e): iPVJ PP .1−=

iPVJ .188 −=

02,0.78 PVJ =

Calcularemos o valor de PV7 que é desconhecido: )%;(. pnipPMTPVP −=

)748%;(.7 −= ipPMTPV

)41%;2(.08,14677 pPV =

79948945,2708,14677 xPV =

07,784.407 =PV Retornando ao cálculo de J8 teremos:

02,0.78 PVJ =

02,007,407848 xJ =

68,8158 =J

Page 102: Livro de Matemática Financeira

102

Resolução da alternativa f):

PP JPMTA −=

2424 JPMTA −= Como não conhecemos o valor de J24 o calcularemos abaixo:

iPVJ PP .1−=

iPVJ .2324 =

Calcularemos o valor de PV23 que é desconhecido: )%;(. pnipPMTPVP −=

)2348%;(.23 −= ipPMTPV

)25%;2(.08,146723 pPV =

52345647,1908,146723 xPV =

47,642.2823 =PV Retornando ao cálculo de J24 teremos:

iPVJ .2324 =

02,047,642.2824 xJ =

85,57224 =J Retornando ao cálculo de A24 teremos:

2424 JPMTA −= 85,57208,146724 −=A

23,86424 =A

10.1.6. Planilha de amortização:

A Planilha de Amortização é um quadro demonstrativo do que ocorre a cada período com o empréstimo, ou seja, é um extrato do que ocorre com o empréstimo durante todo seu prazo de vigência. Um bom Quadro de Amortização deve possuir pelo menos as seguintes colunas: a do juro; a da amortização; a do total pago; e, a do saldo devedor. O mutuário ou o agente financeiro também pode criar outras colunas, tais como: o total desembolsado corrigido; o juro de mora; o total acumulado do juro; etc.

Exemplo 1: Um empréstimo de R$ 25.000,00 será amortizado em 8 prestações mensais sendo a taxa de juro de 48%aa/m. Construa uma Planilha de Amortização do empréstimo pago. Solução: PV = 25.000,00 ∴∴∴∴n = 8 prestações ∴∴∴∴i = 48%aa/m � 4%am/m ∴∴∴∴PMT = ?

Cálculo da Prestação:

)%;(. nipPMTPV = )8%;4(.25000 pPMT=

732744875,625000 PMTx= 20,713.3=PMT

Page 103: Livro de Matemática Financeira

103

Logo a Planilha de Amortização do empréstimo pago ficará da seguinte forma:

n PMT Jp Ap FVp PVp 0 - - - R$ 25.000,00 1 R$ 3.713,20 R$ 1.000,00 R$ 2.713,20 R$ 2.713,20 R$ 22.286,80 2 R$ 3.713,20 R$ 891,47 R$ 2.821,72 R$ 5.534,92 R$ 19.465,08 3 R$ 3.713,20 R$ 778,60 R$ 2.934,59 R$ 8.469,51 R$ 16.530,49 4 R$ 3.713,20 R$ 661,22 R$ 3.051,98 R$ 11.521,49 R$ 13.478,51 5 R$ 3.713,20 R$ 539,14 R$ 3.174,06 R$ 14.695,54 R$ 10.304,46 6 R$ 3.713,20 R$ 412,18 R$ 3.301,02 R$ 17.996,56 R$ 7.003,44 7 R$ 3.713,20 R$ 280,14 R$ 3.433,06 R$ 21.429,62 R$ 3.570,38 8 R$ 3.713,20 R$ 142,82 R$ 3.570,38 R$ 25.000,00 R$ 0,00

Exemplo 2: Um empréstimo de R$ 37.000,00 será amortizado em 8 prestações mensais sendo a taxa de juro de 36%aa/m. Após o pagamento da primeira prestação o mutuário resolve antecipar o pagamento da 3.ª 4.ª e 5.ª prestações, pagando-as juntamente com a segunda prestação. Construa uma Planilha de Amortização do empréstimo pago. Solução: PV = 37.000,00 ∴∴∴∴n = 8 prestações∴∴∴∴i = 36%aa/m � 3%am/m ∴∴∴∴PMT = ?

Cálculo da Prestação:

)%;(. nipPMTPV = )8%;3(.37000 pPMT=

01969218,737000 PMTx= 89,270.5=PMT

Calculo da antecipação da 3.ª Prestação:

niPVFV )1.( += 1%)31.(89,270.5 += PV

03,1

89,5270=PV

36,117.5=PV Cálculo da antecipação da 4.ª Prestação:

niPVFV )1.( += 2%)31.(89,270.5 += PV

0609,1

89,5270=PV

32,968.4=PV Cálculo da antecipação da 5.ª Prestação:

niPVFV )1.( += 3%)31.(89,270.5 += PV

092727,1

89,5270=PV

61,823.4=PV

Page 104: Livro de Matemática Financeira

104

Novo valor a ser pago no 2.º período: PMT = PMT2Norm + PMT3Ant+ PMT4Ant+PMT5Ant

PMT = 5.270,89 + 5.117,36 + 4.968,32 + 4.823,61 PMT = 20.180,18

Logo a Planilha de Amortização do empréstimo pago ficará da seguinte forma:

n PMT Jp Ap FVp PVp 0 - - - - R$ 37.000,00 1 R$ 5.270,89 R$ 1.110,00 R$ 4.160,89 R$ 4.160,89 R$ 32.839,11 2 R$ 20.180,18 R$ 985,17 R$ 19.195,00 R$ 23.355,89 R$ 13.644,11 3 - R$ 409,32 R$ (409,32) R$ 22.946,57 R$ 14.053,43 4 - R$ 421,60 R$ (421,60) R$ 22.524,96 R$ 14.475,04 5 - R$ 434,25 R$ (434,25) R$ 22.090,71 R$ 14.909,29 6 R$ 5.270,89 R$ 447,28 R$ 4.823,61 R$ 26.914,32 R$ 10.085,68 7 R$ 5.270,89 R$ 302,57 R$ 4.968,32 R$ 31.882,63 R$ 5.117,37 8 R$ 5.270,89 R$ 153,52 R$ 5.117,37 R$ 37.000,00 R$ -

10.2. SISTEMA DE AMORTIZAÇÃO CONSTANTE – SAC:

Neste sistema analisa-se o que ocorre a cada período em um empréstimo que está sendo pago em prestações periódicas decrescentes. Conforme já informado anteriormente no SAC as prestações são decrescentes, pois sendo a amortização constante e o juro calculado sobre o saldo devedor o juro decresce a cada período fazendo com isso que as parcelas pagas a cada período decresçam a cada período a uma razão constante e igual ao percentual da taxa de juro aplicada no empréstimo. Apresentamos a seguir as equações que dão origem a cada uma das parcelas que nos interessa ter conhecimento na análise ou detalhamento do que ocorre com um empréstimo:

10.2.1. Cálculo da amortização de todos os períodos:

Na verdade a Amortização neste empréstimo será a mesma em todos os períodos, até para confirmar o nome do empréstimo que é Sistema de Amortização Constante. Para obtermos o valor que será amortizado em cada prestação teremos que fazer a razão entre o valor do empréstimo e o número de prestações, conforme a seguinte equação:

n

PVAc =

Onde: � Ac � é a amortização a ser realizada em cada parcela do

empréstimo; � n � é o número de prestações do empréstimo; � PV � é o valor que foi tomado emprestado pelo mutuário no

início do empréstimo.

Page 105: Livro de Matemática Financeira

105

10.2.2. Cálculo do juro em um período:

O Juro no Sistema de Amortização Constante, como no Sistema Francês, é obtido da maneira que já foi informado no Ponto 9.1.1.5 deste Livro, ou seja, é calculado sobre o saldo devedor do período anterior, podendo ser representado pela seguinte equação:

iPVJ PP .1−= Onde:

� JP � é o Juro pago na Prestação “p” sendo: 1 ≤ p ≤ n � i � é a taxa efetiva de juro utilizada no empréstimo � PVP-1 � é o saldo devedor do período anterior

10.2.3. Cálculo das prestações:

As Prestações no Sistema de Amortização Constante são obtidas calculando-se a soma entre a Amortização e o Juro, conforme também já informado no item 9.1.1.5 deste Livro, podendo ser representada pela seguinte equação:

PP JAcPMT += Onde:

� PMTP � é o valor da prestação no período “p” sendo: 1 ≤ p ≤ n; � Ac � é a Amortização Constante ocorrida a cada período do

empréstimo; � JP � é o Juro a ser pago no período “p”.

10.2.4. Cálculo do saldo devedor em um período:

O Saldo Devedor no Sistema de Amortização Constante é obtido calculando-se o a diferença entre o valor inicial do empréstimo e o resultado do produto entre a amortização (que é constante) e a quantidade de prestações que já foram pagas no empréstimo, podendo-se representá-lo pela seguinte equação:

pAcPVPVP .0 −=

Onde: � PV0 � é o valor inicial do empréstimo; � Ac � é a amortização de cada parcela do empréstimo; � p � é o número de prestações que já foram pagas no

empréstimo, � PVp � é o valor que resta a ser pago no empréstimo, após terem

sido pagas “p” prestações.

10.2.5. Cálculo do total pago em um período:

O Total Pago no Sistema de Amortização Constante é o resultado do produto entre a quantidade de parcelas que já foram quitadas e a amortização de cada parcela (que é constante), podendo-se representá-lo pela seguinte equação:

Page 106: Livro de Matemática Financeira

106

pAcFVP .= Onde:

� Ac � é a amortização de cada parcela do empréstimo; � p � é o número de prestações que já foram pagas no

empréstimo, � FVp � é o valor que já foi pago no empréstimo, após terem sido

quitadas “p” prestações. Exemplo 1: Um empréstimo de R$ 48.000,00 será amortizado, pelo SAC, em 48 prestações mensais sendo a taxa de juro de 36%aa/m. Calcule o que se pede em cada um das alternativas a seguir:

a) O valor da Amortização a ser realizada na 1.ª prestação deste empréstimo; b) O valor do Juro a ser pago na 1.ª prestação deste empréstimo; c) O valor da 1.ª Prestação a ser paga neste empréstimo; d) O valor do Total Pago após terem sido pagas 46 prestações deste

empréstimo; e) O valor do Juro a ser pago na 18.ª parcela deste empréstimo; f) O valor da Prestação a ser paga na 24.ª parcela deste empréstimo.

Solução: PV = 48.000,00 ∴∴∴∴ n = 48 prestações ∴∴∴∴ i = 36%aa/m � 3%am/m ∴∴∴∴ Ac = ?

Resolução da alternativa a):

n

PVAc =

48

48000=Ac

00,000.1=Ac Resolução da alternativa b):

iPVJ PP .1−=

iPVJ .01 =

03,0480001 xJ =

00,440.11 =J Resolução da alternativa c):

PP JAcPMT += 111 JAcPMT += 144010001 +=PMT

00,440.21 =PMT Resolução da alternativa d):

pAcFVP .=

4646 AcxFV =

46100046 xFV =

00,000.4646 =FV

Page 107: Livro de Matemática Financeira

107

Resolução da alternativa e): iPVJ PP .1−=

iPVJ .11818 −=

03,01718 xPVJ =

Calcularemos o valor de PV17 que é desconhecido:

pAcPVPVP .0 −=

174800017 AcxPV −=

1710004800017 ⊗−=PV

170004800017 −=PV

00,000.3117 =PV Retornando ao cálculo de J18 teremos:

03,01718 xPVJ =

03,03100018 xJ =

00,93018 =J Resolução da alternativa f):

PP JAcPMT +=

2424 JAcPMT += Como não conhecemos o valor de J24 o calcularemos abaixo:

iPVJ PP .1−=

iPVJ .2324 =

Calcularemos o valor de PV23 que é desconhecido: pAcPVPVP .0 −=

234800023 AcxPV −=

2310004800023 xPV −=

230004800023 −=PV

00,000.2523 =PV

Retornando ao cálculo de J24 teremos: 03,02324 xPVJ =

03,02500024 xJ =

00,75024 =J

Retornando ao cálculo de A24 teremos:

2424 JAcPMT +=

750100024 +=PMT

00,750.124 =PMT

10.2.6. Planilha de amortização:

A Planilha de Amortização é um quadro demonstrativo do que ocorre a cada período com o empréstimo, ou seja, é um extrato do que ocorre com o empréstimo durante todo seu prazo de vigência.

Page 108: Livro de Matemática Financeira

108

Um bom Quadro de Amortização deve possuir pelo menos as seguintes colunas: a do juro; a da amortização; a da prestação; a do total pago; e, a do saldo devedor. O mutuário ou o agente financeiro também pode criar outras colunas, tais como: o total desembolsado corrigido; o juro de mora; o total acumulado do juro; etc.

Exemplo 1: Um empréstimo de R$ 25.000,00 será amortizado em 8 prestações mensais sendo a taxa de juro de 48%aa/m. Construa uma Planilha de Amortização do empréstimo pago. Solução: PV = 25.000,00 ∴∴∴∴ n = 8 prestações ∴∴∴∴ i = 48%aa/m � 4%am/m ∴∴∴∴ Ac = ?

Cálculo da Amortização Constante:

n

PVAc =

8

25000=Ac

00,125.3=Ac Logo a Planilha de Amortização do empréstimo pago ficará da seguinte forma:

n Ap Jp PMTp FVp PVp 0 - - - R$ 25.000,00 1 R$ 3.125,00 R$ 1.000,00 R$ 4.125,00 R$ 3.125,00 R$ 21.875,00 2 R$ 3.125,00 R$ 875,00 R$ 4.000,00 R$ 6.250,00 R$ 18.750,00 3 R$ 3.125,00 R$ 750,00 R$ 3.825,00 R$ 9.375,00 R$ 15.625,00 4 R$ 3.125,00 R$ 625,00 R$ 3.750,00 R$ 12.500,00 R$ 12.500,00 5 R$ 3.125,00 R$ 500,00 R$ 3.625,00 R$ 15.625,00 R$ 9.375,00 6 R$ 3.125,00 R$ 375,00 R$ 3.500,00 R$ 18.750.00 R$ 6.250,00 7 R$ 3.125,00 R$ 250,00 R$ 3.375,00 R$ 21.875,00 R$ 3.125,00 8 R$ 3.125,00 R$ 125,00 R$ 3.250,00 R$ 25.000,00 R$ 0,00

Page 109: Livro de Matemática Financeira

109

10.3. EXERCÍCIOS – AMORTIZAÇÃO DE EMPRÉSTIMOS

1) Uma dívida no valor de R$ 22.800,00 foi amortizada em 4 anos, através de

prestações mensais constantes. Sabendo-se que a taxa de juro compostos utilizada foi de 36% aa/m, determine: a) A trigésima quota de amortização; R ⇒⇒⇒⇒ 514,60 b) O juro pago na oitava prestação; R ⇒⇒⇒⇒ 633,80 c) O montante já resgatado após o pagamento da 25.ª prestação; R ⇒⇒⇒⇒ 7.961,61

2) Um empréstimo no valor de R$ 18.000,00 será amortizado pelo Sistema Francês em 10 anos mediante prestações trimestrais. Utilizando uma taxa de juro composto de 14% aa/t, determine: a) O juro pago na primeira prestação; R ⇒⇒⇒⇒ 630,00 b) A trigésima quinta quota de amortização; R ⇒⇒⇒⇒ 685,69 c) O montante já resgatado após o pagamento da 32.ª prestação; R ⇒⇒⇒⇒ 12.205,94

3) Uma compra, cujo preço à vista é de R$ 8.500,00, será paga em 12 prestações

mensais, calculadas utilizando-se a Tabela Price. Utilizando uma taxa de juro compostos de 36% aa/m, calcule: a) A primeira quota de amortização; R ⇒⇒⇒⇒ 598,93 b) Os juro pago na décima prestação; R ⇒⇒⇒⇒ 72,46 c) O saldo devedor após o pagamento da décima prestação; R ⇒⇒⇒⇒ 1.633,97

4) Um empréstimo de R$ 15.000,00, foi amortizado pelo Sistema Francês no prazo de

15 anos, mediante prestações semestrais. Se a taxa de juro composto utilizada foi de 8% as/s, pede-se: a) A décima terceira quota de amortização; R ⇒⇒⇒⇒ 333,43 b) O juro pago na sétima prestação; R ⇒⇒⇒⇒ 1.122,29 c) O total já resgatado após o pagamento da trigésima prestação; R ⇒⇒⇒⇒ 15.000,00

5) Uma dívida de R$ 6.500,00 será amortizada em 8 prestações mensais, vencendo a

primeira 150 dias após ter contraído a dívida, sendo o juro pago no prazo do diferimento. Utilizando uma taxa de juro composto de 10% am/m, determine: a) A terceira quota de amortização; R ⇒⇒⇒⇒ 687,75 b) O saldo devedor após o pagamento da quinta prestação; R ⇒⇒⇒⇒ 3.029,96 c) O montante já resgatado após o pagamento da sétima prestação; R ⇒⇒⇒⇒ 5.392,41

6) Um empréstimo no valor de R$ 12.000,00 será pago em 6 prestações mensais,

vencendo a primeira 4 meses após a liberação do empréstimo. Sabendo-se que no período de carência o juro será incorporado ao principal e que a taxa de juro composto utilizada é de 5% am/m, determine: a) O valor das prestações; R ⇒⇒⇒⇒ 2.736,87 b) O valor da quinta quota de amortização; R ⇒⇒⇒⇒ 2.482,42 c) O valor do juro pago na sexta prestação; R ⇒⇒⇒⇒ 130,33 d) O total pago após o pagamento da quarta prestação; R ⇒⇒⇒⇒ 6.911,04

Page 110: Livro de Matemática Financeira

110

7) Um empréstimo no valor de R$ 18.000,00 será amortizado pelo Sistema de Amortização Constante em 10 anos mediante prestações trimestrais. Utilizando uma taxa de juro composto de 14% aa/t, determine: a) O juro pago na primeira prestação; R ⇒⇒⇒⇒ 630,00 b) A trigésima quinta quota de amortização; R ⇒⇒⇒⇒ 450,00 c) O montante já resgatado após o pagamento da 32.ª prestação; R ⇒⇒⇒⇒ 14.400,00 d) O valor da 24.ª prestação; R ⇒⇒⇒⇒ 717,75

8) Um empréstimo no valor de R$ 15.000,00 foi contraído para ser pago em 10

prestações mensais, calculadas à taxa de juro composto de 8% am/m. Após o pagamento da 4ª prestação o saldo devedor foi refinanciado em 12 prestações mensais, calculada à taxa de 10% am/m. Determine o valor das 12 últimas prestações e construa a planilha de amortização. R ⇒⇒⇒⇒ 1.516,68 + Planilha

9) Um empréstimo no valor de R$ 45.000,00 será amortizado em 9 prestações mensais,

sendo a taxa de juro de 48%aa/m. Após o pagamento da 1.ª prestação o mutuário resolve antecipar o pagamento das 3 últimas prestação, pagando a 9.ª com a 2.ª; a 8.ª com a 4.ª e a 7.ª com a 5.ª prestação. Construa a Planilha de Amortização do Empréstimo. R ⇒⇒⇒⇒ Planilha.

10) Um empréstimo no valor de R$ 38.000,00 será amortizado em 6 prestações mensais,

sendo a taxa de juro de 120% ao ano com capitalização mensal. Após pagamento da 2.ª prestação o mutuário necessita atrasar o pagamento de todas as demais prestações por 3 períodos. Construa o Plano de Amortização do empréstimo pago. R ⇒⇒⇒⇒ Planilha

Page 111: Livro de Matemática Financeira

111

BIBLIOGRAFIA

1. AYRES, Frank Jr. Matemáticas Financieras. 1ª ed. México: McGraw-

Hill/Interamericana de México, S.A. de C.V., 1999. 2. DE FRANCISCO, Walter. Matemática Financeira. 7ª ed. São Paulo. Atlas,

2002. 3. FARIA, Rogério Gomes de – Matemática Comercial e Financeira – McGraw-

Hill. 4. FARO, Clovis de. Matemática Financeira. São Paulo, Atlas, 2003 5. FARO, Clóvis de – Princípios de Engenharia Econômica – Atlas. 6. FARO, Clóvis de - Princípios e Aplicações do Cálculo Financeiro - LTC 7. HAZZAN, Samuel e POMPEO, José Nicolau. Matemática Financeira. 6.

ed. São Paulo: Saraiva, 2007. 232 p 8. KRUSE, Fábio – Matemática Financeira Aplicações com o uso da HP-12C –

Feevale. 9. MARCONDES, Oswald. Matemática Financeira. 6ª ed - LTD. 10. MARIM, Walter Chaves - Análise de Alternativas de Investimento - Atlas 11. MATIAS, Washinton Franco e GOMES, José Maria. Matemática Financeira. 4.

ed. São Paulo: Atlas, 2007. 458 p 12. MILONE, Grusepp. Matemática Financeira. São Paulo: Pioneira, 2006. 377 p. 13. MORAES, Euclides de – Matemática Financeira – Sulina. 14. NETO, Alexandre Assaf – Matemática Financeira e suas Aplicações – Atlas. 15. OLIVEIRA, José Alberto Nascimento – Engenharia Econômica - McGraw-Hill 16. PUCCINI, Abelardo Lima. Matemática Financeira. São Paulo, LTC Editora,

2004 17. SAMANEZ, Carlos Patrício. Matemática Financeira: Aplicações à Análise de

Investimentos. 2a ed. São Paulo. MAKRON Books, 1999. 18. SOBRINHO, José D. Vieira – Matemática Financeira. Atlas. 19. SPINELLI, Walter; QUEIROZ, M. Helena. Matemática Comercial e Financeira -

Ática. 20. VERAS, Lílian Ladeira. Matemática Financeira: uso de calculadoras

financeiras, aplicações ao mercado financeiro. — 4. ed. - São Paulo: Atlas, 2001

21. VIEIRA, Sobrinho; DUTRA, José. Matemática Financeira. 3ª ed. São Paulo - Atlas.

22. ZIMA, Peter; BROWN, Robert L. - Fundamentos de Matemática Financeira - McGraw-Hill.