leonardo henrique dalcheco messiasrepositorio.unicamp.br/bitstream/reposip/244491/1/... · 2018. 8....

86
i LEONARDO HENRIQUE DALCHECO MESSIAS OBTENÇÃO DE PARÂMETROS ANAERÓBIOS DE ATLETAS DE ELITE DA CANOAGEM SLALOM POR MEIO DA APLICAÇÃO DE ERGOMETRIA ATADA: RELAÇÕES COM O DESEMPENHO Limeira 2014

Upload: others

Post on 21-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

i

LEONARDO HENRIQUE DALCHECO MESSIAS

OBTENÇÃO DE PARÂMETROS ANAERÓBIOS DE ATLETAS DE ELITE DA CANOAGEM SLALOM POR MEIO DA APLICAÇÃO DE ERGOMETRIA ATADA:

RELAÇÕES COM O DESEMPENHO

Limeira 2014

Page 2: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

ii

Page 3: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

iii

Page 4: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

iv

Page 5: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

v

Page 6: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

vi

Page 7: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

vii

RESUMO

A utilização de avaliações fisiológicas para modalidade esportivas em ascensão se

faz necessária para promoção do monitoramento e melhor controle do

treinamento. Entretanto, nesse processo a especificidade da modalidade em

questão necessita de ser preservada. Sendo o metabolismo anaeróbio

extremamente requisitado durante as provas de canoagem slalom, a aplicação de

sistemas atados para determinação de parâmetros acerca dessa via energética

pode ser extremamente interessante. Desse modo, o objetivo do presente projeto

foi aplicar um teste específico atado para a determinação de parâmetros

anaeróbios de canoístas slalom e estudar a relação dos resultados obtidos nesse

teste com o desempenho esportivo na modalidade. Para isso, atletas de elevado

rendimento nesse esporte foram submetidos a um teste all-out de 30-s atado (em

piscina) e avaliação de desempenho (em corredeira), todas realizadas sob caíque.

O sistema de canoagem atado (SCA) foi utilizado no teste de all-out. Os canoístas

remaram atado utilizando uma corda elástica atada ao caiaque e a uma célula de

carga fixada na borda da piscina conectada a um sistema de aquisição de dados

com sinais sendo coletados a 1000 Hz. Um teste all-out anaeróbio atado de 30-s,

foi aplicado para a determinação de valores absolutos (A) e relativos (R) de força

pico (FPico), média (FMéd), mínima (FMin), índice de fadiga (IF) e impulso. Uma

simulação de prova contendo 24 portas foi aplicada objetivando a aquisição de

variáveis como tempo de prova (TP), distância, velocidade média e respostas

acerca da freqüência cardíaca durante o esforço. Nos testes de all-out e simulação

de prova, coletas de sangue (25ul) visando a análise da concentração de lactato

sanguíneo foram realizadas antes dos testes, e no 2°, 4°, 6°, 8° e 10° minuto após

testes. A aplicação de provas simuladas para análise de respostas fisiológicas e

de desempenho dos atletas permitiu observar a existência de correlações mais

pronunciadas entre o rendimento e alguns dos parâmetros obtidos nos diversos

tipos de testes anaeróbios. Dentre essas, foram destacadas as significantes e

Page 8: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

viii

inversas correlações visualizadas entre TP (109,1±15,0 s) e A.FPico (170,29±35,36

N; r= -0,60), R. FPico (2,50±0,39 N•kg; r=

-0,71), A.FMéd (121,12±23,58 N; r= -0,61), R.FMéd (1,78±0,26 N•kg ; r= -0,73),

A.Impulso (3634,73±707,26 N/s; r= -0,61) e R.Impulso (53,46±7,72; N/s•kg r= -

0,73). Desse modo, foi possível, após a conclusão do projeto, diagnosticar quais

parâmetros, de fato, foram mais atrelados com o rendimento, propondo

direcionamentos concretos relacionados ao monitoramento de intensidade do

esforço e ao treinamento objetivando o desempenho esportivo.

Palavras-chave: Canoagem, slalom, especificidade, condição anaeróbia, desempenho esportivo

Page 9: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

ix

ABSTRACT

The using of physiological evaluations is utmost necessary for training monitoring

and control. However, in this process is necessary to preserve the specificity.

Considering that the anaerobic metabolism is required during canoe slalom races,

the application of tethered evaluations for anaerobic assessment may be relevant.

Thus, the aim of this study was apply an specific tethered test to determine

anaerobic parameters of slalom kayakers and study the relationship of these

parameters with the performance in canoe slalom races. Slalom kayakers were

evaluated by means of a 30-s all-out tethered test (in swimming pool) and

performance evaluation (river rapid) using a kayak. Tethered canoe system (TCS)

was used in the all-out test. Slalom kayakers paddled tethered using an elastic

cord fixed in the swimming pool connected to a system of data acquisition being

collected at 1000 Hz. The all-out 30-s test was applied for the assessment of

absolute (A) and relative (R) peak force (PForce), mean force (MeForce), minimum

force (MinForce), fatigue index (FI) and impulse. A simulated race with 24 gates was

applied for performance assessments. Inverse correlations were visualized

between time of race (109,1±15,0 s) and A.PForce (170,29±35,36 N; r= -0,60), R.

PForce (2,50±0,39 N•kg; r=-0,71), A.MeForce (121,12±23,58 N; r= -0,61), R.MeForce

(1,78±0,26 N•kg ; r= -0,73), A.Impulse (3634,73±707,26 N/s; r= -0,61) e R.Impulse

(53,46±7,72; N/s•kg r= -0,73). Thus, was possible after the conclusion of this study

visualize which parameters were related with the performance, proposing guidance

for effort intensity monitoring for better performance.

Key words: Canoeing, specificity, anaerobic fitness, performance

Page 10: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

x

Page 11: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

xi

Sumário RESUMO ........................................................................................................... viiABSTRACT ........................................................................................................ ixAGRADECIMENTOS ........................................................................................ xvLISTA DE ILUSTRAÇÕES .............................................................................. xviiLISTA DE TABELAS ........................................................................................ xixLISTA DE ABREVIATURAS E SIGLAS ........................................................... xxi1. INTRODUÇÃO GERAL .................................................................................. 12. OBJETIVOS ................................................................................................... 53. MATERIAIS E MÉTODOS .............................................................................. 6

3.1. Participantes ........................................................................................... 63.2. Local ....................................................................................................... 73.3. Delineamento do Estudo ......................................................................... 7

3.3.1 Instrumentação Geral ..................................................................... 83.3.2. Sistema de Canoagem Atado – SCA ............................................. 83.3.3. Determinação da força anaeróbia atada por meio do teste all out de 30-s. ....................................................................................................... 153.3.4 Aplicação de prova simulada para análise do desempenho ......... 17

3.4. Extração de sangue e análises lactacidemicas ..................................... 203.5. Análise estatística ................................................................................. 20

4. RESULTADOS E DISCUSSÃO .................................................................... 21ARTIGO 1 .................................................................................................... 23ARTIGO 2 .................................................................................................... 45

5. CONCLUSÃO GERAL .................................................................................. 596. REFERÊNCIAS ............................................................................................ 607. ANEXOS ...................................................................................................... 64

7.1 Financiamento da pesquisa ................................................................... 64

Page 12: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

xii

Page 13: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

xiii

Dedicatória Dedico esse trabalho a Deus, pois apenas por ele, apenas pela

sua bondade, pela sua crença em mim, foi possível o cumprimento desse projeto. Muito obrigado.

Page 14: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

xiv

Page 15: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

xv

AGRADECIMENTOS

-Inicialmente, agradeço a Deus por me proporcionar esse trabalho, por me

dar força, capacidade, e acima de tudo, fazer com que eu ame aquilo que faço.

-A minha Família, minha mãe Maria, meu pai Eliseo e minha irmã Cássia,

por sempre acreditarem em mim e me darem forças pra continuar. Muito obrigado.

-A minha orientadora Prof. Dra. Fúlvia de Barros Manchado-Gobatto, pela

sua incomparável pessoa, por sempre, em todas as ocasiões, me apoiar, ajudar, e

ser sempre solicita nas dificuldades que tive durante todo o processo.

-Ao Prof. Dr. Cláudio Alexandre Gobatto, por antes mesmo do meu ingresso

no mestrado, abrir as portas do seu laboratório e me proporcionar grande

aprendizagem acerca da ciência.

-Ao amigo, Pedro Paulo Menezes Sacriot, por ser uma pessoa

extremamente boa, simples e competente, e ter a capacidade de usar tal

competência de forma excelente no auxílio de seus colegas.

-Aos amigos Ivan, Filipe, Beck, Homero, Lucas, Willian, Natália, Adriano e a

todos os integrantes do LAFAE, por fazerem de tal laboratório um local amigável,

produtivo, e memorável.

-Ao LAFAE, por ser um ambiente exemplo, exemplo o qual levarei para o

resto de minha vida.

Page 16: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

xvi

-Aos técnicos e atletas da Associação de Canoagem de Piracicaba

(ASCAPI), em especial, Denis Terezani e Gustavo Gozzo, por sempre nos auxiliar

em diversos aspectos.

-A Seleção Brasileira de Canoagem Slalom, ao coordenador Argos

Rodrigues, aos técnicos Ettore Ivaldi e Guile, e a todos os atletas que participaram

de forma fundamental para que o presente projeto pudesse ser realizado.

Page 17: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

xvii

LISTA DE ILUSTRAÇÕES

Figura 1. a) Piscina de 25 metros a qual o protocolo atado foi efetuado. b) Canal da Usina Hidroelétrica de Itaipu utilizada na aplicação da simulação de prova. Figura 2. Organograma representativo do desenho experimental adotado no presente projeto.

Figura 3. Caiaque modelo Flecha composto por material polietileno utilizado no protocolo atado. Figura 4. Célula de carga com capacidade de 500kgf utilizada no SCA.

Figura 5. Ventosa na qual a célula de carga foi acoplada.

Figura 6. a) Cabo elástico utilizado no SCA. b) Linearidade do elástico verificada pela força realizada para estender o elástico a cada 0,5 metros. Figura 7. Quilha empregada para estabilização do ergômetro. a) Todas as partes que compõem a quilha ilustrada de forma separada. b) Quilha montada. Figura 8. a) Amplificador usado para ampliação do sinal emitido pela célula de carga. b) Módulo USB 6008 que realizou a conversão em sinal digital. Figura 9. a) Dinamômetro utilizado na calibração do sistema. b) Reta de calibração utilizada para a conversão das unidades de massa para força (N). Figura 10. Sistema de Canoagem Atada (SCA) desenvolvido para aplicação do protocolo anaeróbio atado em canoagem slalom. A quilha na parte traseira e inferior da embarcação foi acoplada visando a estabilização do ergômetro. Através do esforço exercido durante o teste, o elástico fixado ao barco e a célula de carga (fixada a uma ventosa) foi estendido, gerando micro modificações na célula de carga, o qual teve seu sinal amplificado pela interface e finalmente pode ser visualizado em um computador, por meio do software LabView. Figura 11. Exemplo gráfico da FPico, FMéd, FMin e Impulso considerados no teste de all-out.

Page 18: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

xviii

Figura 12. a) Output fornecido pelo LabView referente a captação do sinal total durante o teste de all-out. b) Tratamento do sinal total do teste de all-out realizado pelo Matlab. c) Tratamento do sinal referente a apenas os 30-s do teste de all-out.

Figura 13. Especificações das portas utilizadas na prova simulada. A prova contou com 24 portas, sendo 18 situadas a favor da corrente (sinalizadas pela cor verde), e 6 situadas contra a corrente (sinalizadas pela cor vermelha). Figura 14. a) Logística adotada no teste de simulação de prova. b) Exemplo da interface produzida pelo GPS acerca da trajetória traçada pelo canoísta durante o teste.

Figura 15. Extração de sangue para análise da concentração do lactato sanguíneo. ARTIGO 1 Figure 1. Distribution of publications regarding physiological, psychological, biomechanical, performance, race strategies and training aspects related to canoe slalom in the last decades (analyzed period: from 1971 to 2013) § Review was made until July/2013. Figure 2. Percentage distribution of scientific articles indexed when considering the main topics investigated in productions (Results shown in percentage for the n total of publications on the canoe slalom, n=21). ARTIGO 2 Figure 1. a) Tethered Canoe System (TCS) used in the all-out test. b) Raw data (grey) and the mean at each of 1000 signals (black) obtained at 1000 Hz in the all-out test; the PForce, MeForce and MiForce of the all-out test are labeled.

Figure 2. Pearson product moment (r) and confidence interval (CI) between the TR and the absolute and relative PForce, MeForce, and IMP values. A.PForce= absolute peak force; R.PForce = relative peak force; A.MeForce = absolute mean force; R.MeForce = relative mean force; A.IMP = absolute impulse; R.IMP = relative impulse; TR = time of race. P<0.05. Figure 3. Two-way ANOVA interaction analysis on blood lactate concentrations [Lac] at different time points (rest, 2, 4, 6, 8 and 10 minute) in the all-out test and simulated race. P<0.05.

Page 19: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

xix

LISTA DE TABELAS

ARTIGO 1 Table 1.Studies regarding physiological, psychological, biomechanical, performance, race strategies and training aspects and canoe slalom published in periodical publication from 1973 to 2013. Table 2. Anthopometrical and morphological variables of sports performed on boats. ARTIGO 2

Table 1. Absolute (A) and relative (R) values for peak force (PForce), mean force (MeForce), minimum force (MiForce), FI and impulse (IMP) obtained in the all-out 30-s test. #Upper and lower confidence limits of confidence interval for SD Table 2. Time of race (TR), distance, mean velocity (MV), peak heart rate (PHR), mean heart rate (MeHR) and minimum heart rate (MiHR) obtained in a simulated race. #Upper and lower confidence limits of confidence interval for SD

Page 20: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

xx

Page 21: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

xxi

LISTA DE ABREVIATURAS E SIGLAS

Aer – contribution of aerobic metabolism

Anl– contribution of lactic anaerobic metabolism

AnAl– contribution of alactic anaerobic metabolism

ATP – adenosine trifosfato

BP – block periodization

C1 – canoe single

CV – coefficient of variation

Df – drag force

FC – frequência cardíaca

FCPico – frequência cardíaca pico

FCMéd – frequência cardíaca média

FCMín – frequência cardíaca mínima

FPico –força pico FMéd – força média

FMín – força mínima

FI – fatigue Index

HR – heart rate

ICC – teste de correlação intraclasse

ICF – International Canoe Federation

IF – índice de fadiga

IMP – impulse

K1– kayak single

MePower – mean power

MeHr – mean heart rate

MeHr – minimum heart rate MiPower – minimum power

NaF – sodium fluoride

Page 22: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

xxii

PHR – peak heart rate PPower – peak power

PPico – potência pico PMéd – potência média

PMín – potência mínima

SCA – sistema de canoagem atado

TCS – tethered canoe system

TP – traditional periodization

TP – tempo de prova

VT2 – ventilatory threshold 2

VO2peak– peak oxygen consumption

[Lac] – concentração de lactato sanguíneo

Page 23: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

1

1. INTRODUÇÃO GERAL

A crescente busca pela otimização do treinamento a atletas de diversos

níveis tem se tornado a ferramenta chave para aquisição de melhor rendimento

esportivo. Como via para tal fim, a utilização de dados científicos provenientes de

pesquisas bem elaboradas que abordam diversas áreas e princípios do

treinamento são proporcionalmente evidentes em modalidades que detém de um

reconhecimento midiático mais elevado. Nesse sentido, modalidades que

apresentam ascensão de forma lenta e gradativa, sofrem com a escassez de

estudos científicos e consequentemente, treinadores e preparadores físicos são

impossibilitados de otimizarem o treinamento e o desempenho de seus atletas.

Dentro de tal problemática é possível destacar a canoagem slalom. Inserida como

uma categoria dentro da grande modalidade canoagem, a slalom possui

características peculiares e únicas, sendo a elaboração de pesquisas científicas

voltadas a essa categoria dificultadas por vários seguimentos no qual a slalom

está inserida.

Originada em 11 de setembro de 1932, na Suíça, a modalidade canoagem

slalom surgiu da adaptação do “esqui slalom” sob a neve, o qual só poderia ser

realizado no inverno. O primeiro campeonato mundial da modalidade aconteceu

em 1949, em Geneva. Posteriormente em 1972, foi inserida como modalidade

demonstrativa nas Olimpíadas de Munique (Sidney e Shephard, 1973; Ridge et al.,

2007). Em 1992, a canoagem slalom retornou aos jogos Olímpicos de Barcelona,

e desde então tal modalidade é presente nas Olimpíadas. Apesar de não ser

considerada uma modalidade recente, é evidente na literatura a escassez de

estudos científicos voltados exclusivamente a slalom (Messias et al., 2014), sendo

atualmente encontrados trabalhos acerca de parâmetros fisiológicos (Sidney e

Shephard, 1973; Baker, 1982; Messias et al., 2013; Messias et al., 2014;

Manchado-Gobatto et al., 2014), psicológicos (Males et al., 1998; Moran e

MacIntyre, 1998; White e Hardy, 1998; Macintyre et al., 2002; Macintyre e Moran,

2007), biomecânicos (Hunter et al., 2007), de estratégias de prova (Hunter et al.,

Page 24: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

2

2008; Hunter, 2009), variabilidade em provas (Nibali et al., 2011), bioenergética e

metabolismo (Zamparo et al., 2006), e treinamento (Ušaj, 2002).

As provas de slalom são caracterizadas por descidas em rios e corredeiras,

sendo alocadas balizas ou “portas” tanto a favor como contra a corrente, a qual o

canoísta deve transpor durante o trajeto. Caso o atleta toque a baliza com corpo,

embarcação ou remo, um acréscimo de 2 segundos é atribuído ao seu tempo final.

O não cumprimento da transposição das portas ocasiona em uma penalidade de

50 segundos para cada porta que não foi transposta. A denotação do vencedor é

realizada de acordo com o menor tempo obtido na sua descida. Apesar das regras

serem bem elaboradas e estabelecidas, o trajeto no qual o canoísta percorre não

é linear, ou seja, mudanças de direções bem como acelerações e desacelerações

são constantes durante a prova. Além disso, não há similaridade entre as provas,

ou seja, nenhum percurso em determinado campeonato será semelhante a outro

que já tenha ocorrido (Messias et al., 2014).

Tais fatores tornam a slalom um desafio para a comunidade científica no

que tange a aplicação de protocolos que possibilitem a aquisição de dados

aplicáveis na prática. Embora Manchado-Gobatto et al., 2014 terem analisado

parâmetros aeróbio e anaeróbio por meio da aplicação de um teste específico, até

o presente momento é inexistente na literatura a aplicação de protocolos que de

fato apresentem relações com o desempenho desses atletas. Além disso, é

pautado que o metabolismo anaeróbio é predominante em prova simulada para

essa modalidade (Zamparo et al., 2006), sendo a adequações de protocolos

visando respostas acerca desse metabolismo de inestimável validade para a o

desenvolvimento e elaboração de programas de treinamento.

Com relação à obtenção de parâmetros acerca da potência anaeróbia, Bar-

Or et al., (1977) propuseram o referenciado Wingate Anaerobic Test. Inicialmente

aplicado em ciclo ergômetro, o teste consiste em o avaliado realizar esforço

máximo durante 30 segundos contra uma resistência relativa a 7,5 % da sua

massa corporal. Por meio da aplicação de tal teste, algumas variáveis podem ser

obtidas. A maior potência relatada durante o Wingate é considerado como a

Page 25: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

3

potência pico (PPico), a média das potências realizadas durante os 30 segundos é

interpretada como a potência média (PMéd), e o menor registro de potência obtido

durante o teste é denominado potência mínima (PMín). Ainda como resultado do

protocolo destaca-se o índice de fadiga (IF), caracterizado pelo decaimento da

potência em função do tempo.

Os parâmetros sugeridos por esse protocolo podem ser atrelados a

potência proveniente do metabolismo anaeróbio do participante avaliado.

Entretanto, mesmo sendo pautado que mediadores glicolíticos são expressos

durante o Wingate (Cheetham et al., 1986), existe uma dicotomia na literatura

acerca das potências produzidas durante esse protocolo serem advindas de

aspectos mecânicos, metabólicos ou a agregação dessas duas variáveis (Minahan

et al., 2007). Contudo, apesar dessas divergências conceituais causarem

confusão na literatura científica, tal protocolo foi inserido em diversos âmbitos,

dentre os quais se destacam as análises das respostas obtidas no teste em

relação aos gêneros (Hill e Smith, 1993), em diferentes momentos do dia (Souissi

et al., 2007), em estado de hipoxia (McLellan et al., 1990) e em diferentes tempos

de protocolo (Calbet et al., 1997).

Entretanto, mesmo os parâmetros supracitados permearem até hoje como

válidos para o entendimento da potência anaeróbia, sua aplicabilidade foi criticada

devido à inespecificidade a outras modalidades e a restrição ao ciclo ergômetro

que tal protocolo possui. Nesse sentido, a utilização de sistemas que

possibilitassem a aquisição de dados acerca da potência e que preservem a

especificidade do desporto é imprescindível. Dessa maneira, Cheetham et al.,

(1985) lidaram com os empecilhos supracitados propondo um método denominado

de ergometria atada. Utilizando um sistema com célula de carga, os autores

propuseram um protocolo semelhante ao Wingate, mas com exercício de corrida

realizado em esteira não motorizada. Nos 30 segundos de teste o avaliado

realizou o esforço atado a uma corda elástica fixada em uma superfície à célula de

carga, e a outra, a cintura do avaliado. A micro modificação conformacional da

célula de carga durante o protocolo foi emitida como sinal de voltagem, sendo um

Page 26: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

4

conversor analógico-digital utilizado para a ampliação e transferência do sinal para

o computador. De acordo com o ergômetro proposto foi possível então identificar a

velocidade, força e consequentemente a potência que o sujeito desempenhou ao

longo do teste.

Partindo da possibilidade de utilização de sistemas atados para

mensuração de força e/ou potência com possibilidade de manutenção da

especificidade, são observados na literatura diversos protocolos de avaliação

adotando tal ferramenta. Dentre elas destacam-se estudos envolvendo a própria

corrida, realizada tanto em laboratório (Cheetham et al., 1985; Lakomy, 1987; Chia

e Lim, 2008) como e campo (Lima et al., 2011), e natação (Hooper et al., 1998;

Papoti et al., 2007; Papoti et al., 2009; Papoti et al., 2013). Contudo, para outras

modalidades com gestos motores específicos a literatura ainda carece da

adaptação de protocolos atados, como é o caso da canoagem slalom. Para essa

categoria, na qual inclusive os atletas já efetuam sessões de treinamento atado,

tal ergômetro torna-se ainda mais interessante, uma vez que detém características

peculiares e incomparáveis a outros desportos.

Apesar da importância dos procedimentos atados em âmbitos da avaliação

e prescrição do treinamento, não há muito sentido a adoção dessa ferramenta se,

de fato as variáveis obtidas utilizando o sistema atado não apresentarem relação

com o desempenho em ambientes de campo. Em natação, tal comparação já foi

apresentada por Papoti et al., (2013). No que tange a canoagem slalom, a relação

entre as respostas obtidas por meio da aplicação do teste all-out 30 s e o

desempenho na modalidade são desconhecidas. Entretanto, mais relevante do

que o simples fato que essas comparações nunca terem sido realizadas, é a

grande contribuição que a ergometria atada voltada para a canoagem slalom pode

trazer, tanto para a prescrição de intensidade de esforço quanto para controle de

cargas de treinamento

Page 27: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

5

2. OBJETIVOS

Considerando a carência de avaliações anaeróbias específicas para a

canoagem slalom, a utilização de treinamentos atados e a ampla possibilidade de

utilização de sistema atado para quantificação de força em modalidades

esportivas, o presente projeto objetiva, de modo geral, propor um teste específico

atado para avaliação de indicadores anaeróbios de canoístas slalom, investigando

as possíveis correlações entre os parâmetros anaeróbios obtidos por teste atado e

rendimento em remada livre e prova simulada.

Especificamente, objetiva-se:

• Propor um teste anaeróbio de 30 s executado por meio de sistema de

canoagem atada, estudando a viabilidade desse protocolo na obtenção da

força máxima, força média, força mínima, índice de fadiga e impulso de

canoístas slalom;

• Estudar as possíveis correlações entre os parâmetros fornecidos pelo

protocolo anaeróbio em remada atada e os resultados observados em

prova simulada de canoagem slalom;

• Comparar as respostas lactacidêmicas observadas antes e após execução

de protocolo atado e simulação de prova, verificando a reposta metabólica

dos dois testes frente a esse indicador fisiológico.

Como hipóteses do presente estudo são possíveis destacar: i. A aplicação do protocolo anaeróbio de 30-s na ergometria atada proposta

apresentará viabilidade na obtenção de seus índices, preservando o gesto motor

da remada de canoístas slalom;

ii. As variáveis obtidas por meio da aplicação do protocolo anaeróbio de 30-s se

relacionarão com os índices de desempenho obtidos em simulação de prova,

Page 28: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

6

sendo estas, apontadas como sinalizadores de desempenho esportivo, permitindo

direcionamento da prescrição e controle da intensidade do exercício específico.

iii. As respostas lactacidêmicas obtidas em protocolo anaeróbio de 30-s e prova

simulada apresentarão respostas semelhantes, sugerindo que a demanda

metabólica necessária na realização do protocolo anaeróbio esteja relacionada

com a demanda metabólica requerida durante uma prova na canoagem slalom.

iv. Tanto as variáveis mecânicas quanto metabólicas obtidas no protocolo

anaeróbio de 30-s apresentarão relação com as variáveis obtidas em prova

simulada, comprovando a efetividade da utilização do ergômetro atado em

canoagem slalom;

3. MATERIAIS E MÉTODOS

3.1. Participantes

Participaram do estudo doze atletas do gênero masculino (idade: 18±2

anos, massa corporal: 68,1±0,6kg, estatura: 173,6±0,6 cm,10.3±0.1% de gordura

e massa livre de gordura 53.4±0.8kg) de elevado rendimento na canoagem slalom,

pertencentes à Seleção Brasileira dessa modalidade. Como critérios de inclusão

foram considerados o atleta ser membro da equipe selecionada para avaliação,

estando em treinamento na modalidade há, no mínimo, dois anos; estar realizando

treinamentos periódicos nesse esporte obtendo elevado rendimento esportivo e

apresentar condições físicas adequadas para o treinamento desportivo e

avaliação, previamente investigadas por equipe da área da saúde.

Todos os avaliados (ou seus responsáveis, no caso dos atletas com idades

inferiores a 18 anos) assinaram um termo de consentimento livre e esclarecido, o

qual constou a descrição das atividades à qual foram submetidos, bem como

informações claras sobre a possibilidade de abandonar o estudo no momento que

julgaram necessário. Esse projeto de pesquisa está inserido em uma proposta

Page 29: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

7

Desenho Experimental

Avaliação Atada Avaliação de Desempenho

•Aplicação do all-out 30 s de modoatado•Obtenção das forças pico, média,mínima, índice de fadiga e impulso•Análise da curva de concentraçãolactacidêmica pós esforço

All-out 30 s Simulação de prova

•Tempo de prova•Distância percorrida•Colocaçãona prova•Velocidademédia•FC máxima, média e mínima•Análise da curva deconcentração lactacidêmica pósesforço

maior, aprovada no Comitê de Ética em Pesquisa – CEP, da Universidade

Estadual de Campinas – UNICAMP sob o protocolo no. 02160812.9.0000.5404

3.2. Local

Todas as avaliações foram efetuadas em Foz do Iguaçu –PR, Brasil, cidade

onde é localizado o centro de treinamento da seleção brasileira de slalom. O

protocolo anaeróbio atado foi realizado em piscina de 25 m ao ar livre (Figura 1a).

A simulação de prova foi efetuada no canal onde comumente os atletas realizam

sessões de treinamento (Figura 1b).

Figura 1. a) Piscina de 25 metros a qual o protocolo atado foi efetuado. b) Canal da Usina Hidroelétrica de Itaipu utilizada na aplicação da simulação de prova.

3.3. Delineamento do Estudo

O protocolo experimental foi composto por avaliações específicas à

canoagem slalom realizadas de modo atado,

bem como uma prova simulada para aquisição de

resultados de desempenho dos

canoístas,

conforme detalhado

na

Figura 2.

a) b)

Page 30: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

8

3.3.1 Instrumentação Geral

Todas as avaliações do presente projeto foram realizadas sob caiaque K1

(Brudeen Náutica, SP, Brasil). O protocolo atado foi executado em um caiaque

cujas dimensões de massa, comprimento e largura eram, respectivamente, 16kg,

355cm e 61cm (Figura 3). Com o intuído de respeitar os instrumentos esportivos

usado por cada atleta, durante as provas simuladas cada canoísta utilizou do seu

próprio barco, com o qual comumente realizava as sessões de treinamentos.

Mesmo não sendo apontadas as dimensões individuais de cada embarcação,

todos os caíques utilizados compreendiam os limites mínimos de massa,

comprimento e largura de acordo com International Canoe Federation (ICF), 2013

(Peso – 8kg; Comprimento – 350cm; Largura – 60cm). Durante todas as

avaliações os atletas utilizaram do seu próprio remo, caracterizado por duas pás.

Figura 3. Caiaque modelo Flecha composto por material polietileno utilizado no protocolo atado.

3.3.2. Sistema de Canoagem Atado – SCA

Todas as avaliações atadas foram procedidas com o auxílio de um aparato,

especialmente utilizado para capturar e registrar a força em remada atada.

Figura 2.Organograma representativo do desenho experimental adotado no presente projeto.

Page 31: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

9

Para isso, foi utilizado uma célula de carga (Figura 4) modelo CSL/ZL (MK

Controle e instrumentação Ltda.) com capacidade de 500 kgf, contendo strain

gauge como elemento sensor primário a partir da aplicação elétrica de pontes de

Weatstone (1/2Bridge), adaptado de Papoti et al., (2003). O dinamômetro foi

fixado em uma ventosa (Figura 5), fixado à borda da piscina

Figura 4. Célula de carga com capacidade de 500kgf utilizada no SCA.

Figura 5. Ventosa na qual a célula de carga foi acoplada.

Célula de carga

•Modelo CSL/ZL MK•Capacidade 500 kgf

+

=

Page 32: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

10

No centro do dinamômetro foi afixado um gancho metálico, onde foi

conectado um cabo elástico (Altaflex, SP, Brasil, Diâmetro externo – 16,60mm;

Diâmetro interno – 4,00mm; Espessura – 6,30mm; Comprimento – 320 cm)

(Figura 6a). Previamente a aplicação dos protocolos atados, a linearidade do

elástico utilizado foi verificada. Partindo de um ponto sem tensão (ponto zero), o

elástico foi estendido até três metros, sendo registrada a força a cada 0,5 metros

(Figura 6b).

Figura 6. a) Cabo elástico utilizado no SCA. b) Linearidade do elástico verificada pela força realizada para estender o elástico a cada 0,5 metros.

a)

b)

Page 33: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

11

Na extremidade oposta ao cabo elástico, foi acoplado uma braçadeira com

um gancho, onde o caiaque foi fixado. Visando melhor estabilização do ergômetro,

uma quilha (Figura 7) foi vinculada na traseira da embarcação.

A distensão do cabo elástico em relação à borda da piscina foi dependente

da força produzida pela remada, sendo maior ou menor, dependendo da

intensidade a qual o canoísta realizou durante o teste.

A deformação no strain gauge detectada pelas pontes de Weatstone devido

à tensão realizada pelos esforços de remada dos canoístas, gerou uma tensão

elétrica que seguiu por um amplificador (Figura 8a) antes de ser convertido em

um sinal digital por meio de um módulo modelo USB 6008 (National Instruments®)

(Figura 8b), que também serviu como interface com o computador. Durante os

esforços, os sinais foram obtidos em uma freqüência de 1000 Hz processados, e

filtrados por meio do software LabView Signal Express 2.0 (National

Instruments®).

a) b)

a) b)

Figura 7. Quilha empregada para estabilização do ergômetro. a) Todas as partes que compõem a quilha ilustrada de forma separada. b) Quilha montada.

Page 34: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

12

Figura 8. a) Amplificador usado para ampliação do sinal emitido pela célula de carga. b) Módulo USB 6008 que realizou a conversão em sinal digital.

Previamente a análise dos dados referentes à força que os canoístas

realizaram durante o teste de 30-s, foi realizada uma calibração do sistema por

meio de um dinamômetro com capacidade de 20 kgf (Crown Filizola, SP, Brasil)

(Figura 9a). É válido ressaltar que a calibração do sistema é fundamental para a

análise dos dados obtidos por meio teste aplicado. Nesse sentido, concomitante a

necessidade de calibração, existe também a dificuldade em realizar a calibração

no mesmo no local onde os protocolos serão ou foram efetuados. Dessa maneira,

o dinamômetro supracitado possibilitou realizar a calibração com mais facilidade

sem perder sua efetividade em calibrar o sistema, sendo um utensílio inovador no

que tange a calibração de sistemas atados. A reta de calibração (Figura 9b) foi

realizada com anilhas de massas conhecidas (0, 5, 10, 15 e 20 kg), sendo os

valores de sinal (strain) convertidos em unidades de massa (quilograma) e

posteriormente em força (N).

Page 35: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

13

Figura 9. a) Dinamômetro utilizado na calibração do sistema. b) Reta de calibração utilizada para a conversão das unidades de massa para força (N).

Estrutura fixada junto a ventosa

Local onde a célula de carga foi fixada

Dinamômetro Crown Filizola20 kgf

Borboleta utilizada para regular a tração na célula de carga

a)

b)

Page 36: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

14

Em síntese, a agregação de todos os itens supracitados possibilitou a

construção do Sistema de Canoagem Atada (Figura 10).

Figura 10. Sistema de Canoagem Atada (SCA) desenvolvido para aplicação do protocolo anaeróbio atado em canoagem slalom. A quilha na parte traseira e inferior da embarcação foi acoplada visando a estabilização do ergômetro. Através do esforço exercido durante o teste, o elástico fixado ao barco e a célula de carga (fixada a uma ventosa) foi estendido, gerando micro modificações na célula de carga, o qual teve seu sinal amplificado pela interface e finalmente pode ser visualizado em um computador, por meio do software LabView.

Borda da piscina

Ventosa

Célula de carga

Quilha

Corda elástica

Interface

Computador

Sistema de Canoagem Atado

Page 37: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

15

3.3.3. Determinação da força anaeróbia atada por meio do teste all out

de 30-s.

Inicialmente, visando o aquecimento prévio ao teste, os atletas remaram

em baixa intensidade por 5 minutos. Após o aquecimento os sujeitos

permaneceram em recuperação passiva por 5 minutos. Novamente os atletas

remaram em baixa intensidade por aproximadamente 10 s até um sinal sonoro

informá-los sobre o início do teste, o qual ocorreu de modo lançado. A partir desse

estímulo, os atletas remaram por 30 s em intensidade máxima.

O teste de all-out possibilitou a determinação das forças pico (FPico), média

(FMéd), mínima (FMin), índice de fadiga (IF) e impulso. A FPico foi considerada como

o maior sinal de força obtido durante o teste de all-out. A média das forças durante

os 30-s foi referente a FMéd. O menor sinal de força durante o all-out foi relativo a

FMin. Para a obtenção do índice de fadiga (IF) a equação clássica proposta por

Bar-Or foi adotada: IF=(( FPico - FMin / FPico )) * 100. Além das variáveis

supracitadas, foi possível obter resultados acerca do impulso realizado durante o

teste por meio da integração numérica pelo método trapezoidal sobre a curva dos

30-s. (Figura 11)

Page 38: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

16

Figura 11. Exemplo gráfico da FPico, FMéd, FMin e Impulso considerados no teste de all-out.

Como descrito anteriormente, por meio do LabView a captação de sinais

durante o all-out foi realizada em uma frequência de 1000 Hz, ou seja, para cada

segundo foram fornecidos 1000 registros (v) desses sinais. Um exemplo do

comportamento desses registros referente ao teste pode ser visualizado na Figura 12a. Devido ao grande número de dados obtidos por cada teste, o software Matlab

foi utilizado para o tratamento dos resultados (Figura 12b). De forma visual e

padronizada para todos os casos, o início do teste foi entendido como a primeira

elevação abrupta do sinal. Dessa maneira, a partir da determinação do ponto

inicial do teste, os próximos 29.999 sinais foram considerados como os 30-s do

teste de all-out (Figura 12c). Possivelmente por conta da aplicação do teste de

forma lançada, em nenhum caso foi visualizado um pico momentâneo no início do

protocolo que descaracterizasse o comportamento clássico da curva do teste

anaeróbio utilizado.

Page 39: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

17

Figura 12. a) Output fornecido pelo LabView referente a captação do sinal total durante o teste de all-out. b) Tratamento do sinal total do teste de all-out realizado pelo Matlab. c) Tratamento do sinal referente a apenas os 30-s do teste de all-out.

Em estado de repouso e nos minutos 2, 4, 6, 8 e 10 ao final do teste de all-

out, foram extraídas amostras de sangue do lóbulo da orelha dos canoístas

objetivando a verificação do pico de concentração do lactato, o momento de sua

ocorrência e a determinação da curva lactacidemica pós esforço.

3.3.4 Aplicação de prova simulada para análise do desempenho

Os atletas foram submetidos à realização de descidas em um canal

(anteriormente explanado), remando a favor e contra-corrente, de acordo com a

a)

c)b)

Page 40: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

18

pista imposta. O trajeto contou com a distribuição de 24 portas (Figura 13), sendo

18 situados a favor e 6 contra a corrente, organizados do mesmo modo como em

competições oficiais. Por serem dispostos em corredeira, os obstáculos naturais

também ampliaram a dificuldade do trajeto (Figura 14a).

Figura 13. Especificações das portas utilizadas na prova simulada. A prova contou com 24 portas, sendo 18 situadas a favor da corrente (sinalizadas pela cor verde), e 6 situadas contra a corrente (sinalizadas pela cor vermelha).

Para caracterização da simulação de prova, foram utilizados parâmetros

fisiológicos e de desempenho. Especificamente, foram observados os tempos de

prova, distância percorrida por cada atleta, a velocidade média de prova, a

freqüência cardíaca antes, durante e após a descida bem como as concentrações

de lactato sanguíneo ([Lac]).

Os valores de tempo de prova foram registrados com a utilização de um

cronômetro (Cássio, modelo HS-30W-N1V). Um sistema global de posicionamento

(GPS) (Polar, RS800, RJ, Brasil) foi utilizado para quantificar a distância percorrida

por cada atleta, bem como a trajetória realizada durante a simulação, sendo o

mesmo acoplado pouco abaixo do joelho do canoísta (Figura 14b). Amostras

sanguíneas foram coletadas do lóbulo da orelha, nos tempos equivalentes ao

repouso e após 2, 4, 6, 8 e 10 minutos de recuperação. Com os dados

4 metros 4 metros

2 metros 2 metros

Page 41: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

19

lactacidêmicos foi possível verificar o pico de concentração do lactato, o momento

de sua ocorrência e a determinação da curva lactacidemica pós esforço.

Para o registro da freqüência cardíaca durante a simulação de prova, foi

utilizado um cardiofrequencímetro (Polar, RS800, RJ, Brasil). Os registros obtidos

foram transferidos para um microcomputador com a utilização de uma interface

específica da marca Polar. Apesar dos dados serem armazenados nos intervalos

R-R, a análise da freqüência cardíaca foi procedida através dos registros a cada 1

segundo. A FCPico foi considerada como o maior registro de FC durante a

simulação, a FCMéd foi obtida por meio da média de todas as FC, e a FCMin foi

entendida como o menor valor de FC obtido durante a simulação.

Figura 14. a) Logística adotada no teste de simulação de prova. b) Exemplo da interface produzida pelo GPS acerca da trajetória traçada pelo canoísta durante o teste.

a) b)

•Ponto de partida•Coleta de sangue pré simulação•Colocação do GPS/Cardiofrequencímetro

•Ponto de chegada•Coletas de sangue no 2°, 4°, 6°, 8° e 10° minuto pós simulação

Page 42: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

20

3.4. Extração de sangue e análises lactacidemicas

Durante os procedimentos invasivos, foi efetuada uma pequena perfuração

para coletas de sangue do lóbulo da orelha dos avaliados com a utilização

lancetas descartáveis e materiais para assepsia, garantindo a total segurança do

avaliador e avaliado, a partir do qual todas as coletas de sangue foram efetuadas

(Figura 15). O lóbulo da orelha foi selecionado devido à sua reduzida

sensibilidade à dor e elevada capilarização. Amostras de sangue (25 µl) foram

extraídas com a utilização de capilares calibrados e heparinizados, sendo

posteriormente depositadas em tubos Eppendorf (1,5 ml) contendo 50 µl de

fluoreto de sódio – NaF (1%). As amostras foram congeladas à temperatura -20o e

posteriormente, homogeneizadas e analisadas em Lactímetro (YSI 2300 STAT

Plus™ Glucose & Lactate Analyzer – Yellow Springs).

Figura 15. Extração de sangue para análise da concentração do lactato sanguíneo.

3.5. Análise estatística

A análise estatística foi realizada utilizando um pacote de software

estatístico (Statistic 7.0, Statsoft, Tulsa, USA). Previamente a análise paramétrica,

a homogeneidade e normalidade dos dados foram verificadas pelo teste de

Page 43: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

21

Levene e Shapiro-Wilk respectivamente. O teste de ANOVA-two way seguido do

post-hoc de Scheffè foram aplicados para a comparação entre as concentrações

de lactato do teste de all-out e simulação de prova nos diferentes momentos. O

teste de correlação de Pearson foi utilizado para o relacionamento entre as

variáveis. Os intervalos de confiança foram calculados para a análise de

correlação e para a variância da amostra (desvio padrão) α = 0.05. Em todos os

casos, o nível de significância foi fixado em 5 % (P<0.05). Os resultados estão

expressos em média ± desvio padrão da média.

4. RESULTADOS E DISCUSSÃO

Os resultados do presente estudo bem como a discussão dos dados

analisados serão apresentados em forma de artigos. Uma breve contextualização

desses manuscritos está exibida a seguir:

Artigo 1-Physiological, psychological, and biomechanical parameters applied in

canoe slalom training: a review

Sendo a canoagem slalom uma modalidade extremamente carente de

informações provenientes da literatura, e, entendo que as informações que

permeiam por artigos científicos não objetivam primordialmente variáveis

aplicadas ao treinamento, houve a proposta de reunir o máximo de informações

possíveis relacionadas a essa modalidade em uma revisão e tentar direcionar tais

estudos para a aplicação cotidiana em sessões de treinamentos.

Situação do manuscrito – Publicado no periódico International Journal of

Performance Analysis in Sport

Data de publicação – Março / 2014

Artigo 2 - All-out test in tethered canoe system can determine anaerobic parameters of elite canoeists

Page 44: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

22

No artigo 2 foram reunidas todas as propostas pautadas no presente

projeto, ou seja todas as possíveis análises acerca da relação entre as respostas

obtidas em teste de all-out atado e os testes máximos e de simulação de prova.

Situação do manuscrito – Em revisão no Periódico International Journal of Sports

Medicine

Page 45: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

23

ARTIGO 1

Page 46: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

24

Physiological, psychological and biomechanical parameters applied in canoe slalom training: a review Leonardo Henrique Dalcheco Messias, Ivan Gustavo Masselli dos Reis, Homero Gustavo Ferrari and Fúlvia de Barros Manchado-Gobatto Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas – UNICAMP. Pedro Zaccaria St. 1300, Santa Luíza, 13484-350 Limeira, SP, Brazil. +55 19 3201-6669

Abstract Canoe slalom is an Olympic sport held in natural and artificial rivers, with peculiar characteristics as compared to other sports. This sport is divided into the subdisciplines of kayak single (K1), canoe single (C1) and canoe double (C2), which also have specific characteristics. As with many other Olympic sports still on the rise, which lack expressive media recognition, few scientific studies have investigated canoe slalom. This information gap minimises possible similarities between theory and practice and advances in the preparation of teams (i.e., coaches, physical trainers and athletes). It is well established that for athletic development, several areas of knowledge must be integrated and applied to the specific nature of the sport, optimising sports training and athletic performance. Accordingly, this review aims to bring together studies on the physiological, psychological and biomechanical parameters, sports strategies and periodisation training applied to canoe slalom, explaining the need for increased knowledge in each of these areas of the practice of this sport. Keywords- Canoe slalom, Training, Physiology, Psychology, Morphology, Biomechanics

1. Introduction Sports on the rise increasingly use scientific information to improve the performance of their athlete and, in most cases, to develop and receive

International Journal of Performance Analysis in Sport 2014, 14, 24-41.

Page 47: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

25

recognition. However, this assessment does not transpire in the same way for less recognized sports, being characterised by a shortage of scientific studies. Canoeing is featured among the Olympic sports that gradually elevate their media exposure but lack scientific studies. Canoeing consists of a range of different specificities and is has distinctive characteristics from other water sports that use boats. "Canoe" has several disciplines: i) Canoe Sprint, held in rivers or lakes with calm waters and limited boundaries; ii) Canoe Slalom, performed in white waters and rivers, over distances of approximately 300 meters, in which athletes must negotiate gates both downstream (with the current) and upstream (against the current); iii) Canoe Ocean Racing, held in marine waters aiming at going a predetermined distance in the shortest possible time; iv) Canoe Marathon, held in calm and turbulent waters without a course previously determined, in which athletes must overcome obstacles but not necessarily within the boat (disembarking from the boat and carrying it with their own hands is an alternative); v) Canoe Polo, which resembles water polo but is performed with kayaks and paddles; and vi) Canoe Freestyle, which uses waves and eddies in which athletes must perform technical moves without leaving the wave, thus accumulating points (Michael et al., 2009; ICFa, 2013). Considering the various Canoe branches, the acquisition of scientific information about the peculiarities of each discipline in this sport becomes even more difficult. Studies that investigate Canoe Sprint, although restricted, are still more frequent in the literature, possibly because it is a cyclic sport with races defined by fixed distances, which is closer to the severity needed when adopting scientific methods. When the searching for studies on Canoe slalom, specifically regarding approaches related to means and training methods of physiological evaluation, scientific deficiencies are even more pronounced. Because it is held in rivers, with races characterised by displacement exercises both for and against the current, canoe slalom has several peculiarities and suffers interference from the environment where it is practiced and thus is not considered a "closed" sport (i.e., held in conditions of high control). In this sense, studies of slalom that are guided by scientific methods with traditional characteristics are hampered. This is one of the major reasons for the low number of scientific studies on canoe slalom. Therefore, there are very few reports in the literature about the metabolism and bioenergetics predominant in slalom (Zamparo et al., 2006), variability of races (Nibali et al., 2011), race strategies (Hunter et al., 2008; Hunter, 2009), biomechanical analyses (Hunter et al., 2007), psychological analyses (Males et al., 1998; Moran and MacIntyre, 1998; White and Hardy, 1998; Macintyre et al., 2002; Macintyre and Moran, 2007) and physiological analyses (Sidney and Shephard, 1973; Baker, 1982). The purpose of this review is to encourage dialogue between those involved in practical and theoretical canoeing, with emphasis on studies of slalom, helping the

Page 48: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

26

rapprochement between science and coaches/technical committees of these sports, presenting the different scientific aspects of canoeing. Accordingly, the present review addresses different aspects of the sport and is divided into a brief historical section containing the profile characterisation studies involving canoe slalom, followed by examination of physiological, psychological, biomechanical, performance, race strategy and training aspects. Scientific studies were searched for using the search engines EBSCO Host and NCBI PubMed and various combinations of words such as "training", "tests", "physiological", "biomechanics", “canoe”, “slalom”, “white water”, "canoeing" and "kayaking". For the studies that emphasised the “white water” term, only the articles that clearly described the slalom discipline were included. Studies that did not relate psychological, biomechanical, performance, race strategies and training with canoe slalom were not included in this review. Only studies written in English as the primary language were used in this paper. Factors such as sample characteristics (level of training), the number of samples evaluated and the reproducibility of the assessments proposed in the mentioned studies were not considered limiting and did not determine their inclusion in this review. 2. Canoe Slalom The first canoe slalom competition was held on September 11th, 1932, in Switzerland. Canoe slalom arose from an adaptation of "slalom skiing" held on snow, which could only be performed in winter. The adequacy of performance strategies adopted in other seasons resulted in the use of kayaks in rivers and white waters (ICFb, 2013). The first canoe slalom world championship occurred in 1949, in Geneva. It was later included in the Olympic Games in Munich in 1972 (Sidney and Shephard, 1973; Ridge et al., 2007). In 1992, the slalom event returned to the Olympic Games in Barcelona and was held in La Seu d'Urgell, near the border with Andorra (ICFc, 2013). Since that point, slalom has become established as an Olympic sport. In the slalom sport, several branches can be found with even greater specifications. The discipline K1 (kayak single) is carried out in boats whose minimum dimensions are 8 kg, 60 cm wide and 350 cm long, where the athlete, in a seated position, paddles with the aid of a double-bladed paddle. Similar to K1, the C1 (canoe single) discipline is held in boats that must have minimum proportions of 8 kg, 60 cm wide and 350 cm long; however, the canoeist uses a single-bladed paddle. The performances that adopt the canoe as a boat can also be performed by pairs, in a discipline called C2 in (canoe double), with two canoeists in the same boat (13 kg, 75 cm wide and 410 cm long), and the paddles used similar to those of C1 athletes (ICFd, 2013).

Page 49: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

27

Despite different boats or stroke tools, the slalom competitions take place in similar environments, running on natural and artificial rivers. During competitions, performances are characterised by two runs, and the winner is defined by the time he/she completes the entire course, negotiating "gates" that can be found both with and against the current. To touch or fail to negotiate a gate invokes a penalty, resulting in an increase of 2 or 50 s, respectively, added to the final time of the run (Nibali et al., 2011). It is important to note that the official courses have closer to 90 seconds duration (Hunter, 2009), with random courses composing a range between 200 and 400 meters (ICFd, 2013). The latter are defined at the beginning of the competition without allowing athletes to test the course prior to the competition (Moran and MacIntyre, 1998). Although athletes could watch a 32 demonstration run at the course after 1997 (performed by several good paddlers), according to the International Canoe Federation, they cannot perform training in the course prior to their participation (Macintyre and Moran, 2007). In that sense, Nibali et al. (2011) stress that variability in performance for swimmers, runners, cyclists and flat water kayakers appears to be related to the maintenance of high-intensity exercise by the athletes. However, for canoe slalom, the athletes not only have to sustain high-intensity efforts but also have to negotiate gates and natural obstacles, brining in the variability of the performance attributed to intensity and technical ability. 3. Profile of studies on canoe slalom Table 1 shows studies focused on physiological, psychological, biomechanical, performance, race strategy and training aspects of canoe slalom, published from 1973 to 2013. It is possible, by literature review, to observe a clear lack of scientific information involving slalom, as only twenty-one studies were found that directly considered the aspects of this sport that this review emphasises. Underscoring the need for knowledge in this area, only one study was found on physiological parameters and specific assessments capable of assisting in the development of training programs, as well as evaluative responses, after periodic slalom training. This can be considered a detrimental factor to the sport, given the recent placement of Banfi et al. (2012), noting the need for information about the volume and intensity of training essential for the growth and improvement of athletes’ performance in any sport.

Table 1. Studies regarding physiological, psychological, biomechanical, performance, race strategy and training aspects of canoe slalom published in periodical journals from 1973 to 2013.

Author(s) Year of publication Periodical Canoeists

(n) Objective of the study

Page 50: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

28

Sidney and Shepard 1973

European Journal of Applied

Physiology

12

To describe the structural and functional factors related to the features of success in canoe

slalom competition

Baker 1982 British Journal of Sports Medicine 19

To analyse the blood lactate concentration after competition in a

canoe slalom race

Vaccaro and Gray 1984

Research Quarterly for Exercise and

Sport

13 To analyse the physiological characteristics in elite canoe

slalom

Sklad et al 1994 Biology of Sport 10 To determine the morphological differences in elite rowers and

canoe slalomists

Vest 1997

Kinesiologia Slovenica

Scientific Journal on Sport

20 To characterise the influencing factors on competitive results in

canoe slalom

White and Hardy 1998 The Sport Psychologist 3

To explore qualitatively how high-level canoe slalomists use images

in competitions and training

Moran and Macintyre 1998 The Irish Journal

of Psychology 12 To investigate the images of

kinaesthetic processes in canoe slalomists

Males et al 1998 Journal of

Applied Sport Psychology

9 To analyse qualitatively the

metamotivational states during canoe slalom competition

Macintyre et al 2002 Perceptual and Motor Skills 31

To explore the controllability of imagination of elite athletes and the intermediate canoe slalom

Usaj 2002

Kinesiologia Slovenica

Scientific Journal on Sport

7 To analyse the effects of different

methods within distinct periodisation in canoe slalom

Beatie et al 2004 Journal of Sport

and Exercise Psychology

81

To explore self-discrepancies in self-confidence in relation to

performance and cognitive anxiety in canoe slalomists

Ong et al 2005 Sports Biomechanics 42

To characterise and differentiate

the boat (kayak) of canoe slalomists

Zamparo et al 2006 International

Journal of Sports Medicine

8 To investigate the metabolism prevalent in canoe slalom

Page 51: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

29

Hunter et al 2007 Sports Biomechanics 4

To analyse canoe slalom races using kinematics and determine

the reliability intra- and interobserver

Ridge et al 2007 European

Journal of Sport Science

43 To characterise the specific

morphological aspects of canoe slalomists

Macintyre and Moran 2007

Journal of Imagery

Research in Sport and

Physical Activity

12 To explore imagery experiences among elite canoe slalomists

Hunter et al 2008 Sports Biomechanics 30*

To kinematically analyse and

assess the strategies used during a canoe slalom race

Hunter 2009 Sports Biomechanics 17

To study different courses chosen in simulated canoe slalom races by

kinematic analysis

Nibali et al 2011 European

Journal of Sport Science

151

To characterise the variability effects between canoe slalom

races

Bílý et al 2011 Journal of Outdoor Activities

110 To find selected somatic factors of canoe slalomists and compare with

previous measurements

Bílý et al 2012 European

Journal of Sport Science

84

To analyse the effect of paddle blade adherence as well as the

prevalence of the use of the stroke arm on the morphological aspects

of canoe slalomists * (n) characterised by number of runs in official races.

Notwithstanding the clear need, it is possible to identify a small quantitative growth in the number of scientific publications involving physiological, psychological, biomechanical, performance, race strategies and training and canoe slalom in recent years (Figure 1). According to the graphic representation, there was a 62.5% increase in the number of scientific publications indexed in 2001-2010 compared to the previous three decades.

Page 52: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

30

Figure 1. Distribution of publications regarding physiological, psychological, biomechanical, performance, race strategy and training aspects related to canoe slalom in the past five decades (period analysed: 1971 to 2013) § Reviewed until July 2013.

Regarding the percentage distribution among these studies of subjects related to slalom publications, it is possible to observe a predominance of physiological, anthropometric. biomechanical evaluations and race strategies (Figure 2). It is important to emphasise the lack of studies directly related to training, such as the means and methods of training and periodisation applied to the sport, as well as obtaining physiological data through evaluations of specific characteristics of the sport. Despite this lack in the literature, in the subsequent topics of this review, it will be possible to identify some aspects listed in an attempt to bring together the data from their studies into canoe practice, with emphasis on performance optimisation of canoeists.

Page 53: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

31

Figure 2. Percentage distribution of scientific articles indexed when considering the main topics investigated in the publications. The results are shown as a percentage of the 21 publications found on canoe slalom. 4. Physiological variables and energetic predominance in canoe slalom Information on the predominance of energy systems, lactate concentration and maximal oxygen uptake in canoe sprint are commonly found in the literature (Zamparo et al., 1999; van Someren et al., 2000; Bishop et al., 2002; van Someren and Oliver, 2002; Zamparo et al., 2006; Michael, 2008), which is in contrast with canoe slalom. This difference is possibly related to differences in the characteristics of the races. The pioneering study involving physiological analyses in canoe slalom was published by Sidney and Shephard. (1973) one year after its insertion as a demonstration sport in the Munich Games. The authors reported the physiological and functional data from approximately 10 male and 2 female aspirants to the Canadian national white water slalom team. However, the subjects in this pioneering study regarding physiological characteristics in canoe slalomists were evaluated outside of their place of competition and training. Thereafter, Baker. (1982) investigated the blood lactate concentrations in different slalom categories (K1, C1 and C2). The author found that, after the execution of the official race, male K1 athletes had a greater elevation of this metabolite (16.18±1.20 mM) compared to female K1 athletes (12.20±1.77 mM). Analyses revealed that male C1 and C2 competitors had blood lactate concentrations of 13.10±1.75 mM and

Physiological aspects

19%

Biomechanical aspects

9%

Anthropometric aspects

19%Race strategy14%

Variability in official races

5%

Training5%

Psychological aspects

29%

Page 54: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

32

10.83±1.68 mM, respectively. Baker suggested that the participation of lactic anaerobic metabolism was important in races of different canoe slalom categories, despite the differences between slalom categories and athlete’s gender, due to the elevated blood lactate concentrations obtained in these conditions. Still aiming to investigate the participation of aerobic and anaerobic metabolism (lactic and alactic) in providing energy during competition and training, Zamparo et al. (2006) studied race simulations of 300 meters for canoe slalom (K1). Using the equation proposed by Wilkie. (1980), the authors determined the predominance of energy systems in race simulation, as well as in a maximal test in flat water (300 meters all-out test), considering three variables: Aer (contribution of aerobic metabolism), Anl (contribution of lactic anaerobic metabolism) and AnAl (contribution of alactic anaerobic metabolism). According to the authors, using these values to quantify the contribution of metabolism and dividing by the duration of the exercise, it is possible to obtain the predominance of each type of metabolism during participation. The authors report that in the two evaluation sites (river and lake) and in both testing conditions (simulated race or stimulus of 300 m), the contribution of aerobic metabolism is between 45 and 47 %, with the lactic anaerobic metabolism responsible for 29.9 % in simulated races and 33.9 % in maximal tests. With respect to alactic metabolism, the authors present values close to 24.9 % and 19.0 % in simulated races and maximal tests, respectively. The predominance of specific energy or metabolism systems in exercises is determined primarily by the intensity and duration of the effort. Even considering the short duration and high intensity of official slalom races (90 to 120 s), there is great interest in providing energy by aerobic metabolism, and training sessions with oxidative character are interesting tools implemented to improve the performance of slalom athletes (Zamparo et al., 2006). In contrast, other factors such as different categories and boats used are elements that can interfere with both biomechanical and physiological variables, such as energy demand. Pendergast et al. (1989) emphasised that differences related to boat, paddle and canoeist body size can generate different energy expenditures. Studying a heterogeneous sample (elite and inexperienced athletes slalom athletes), the authors note that athletes who do not have a developed technique should run trainings to improve this aspect because the technique is significant for reducing energy expenditure and improving efficiency mechanics. Moreover, according to these authors, elite athletes must turn their attention to training with an emphasis on increased muscle mass, especially in the upper limbs, thus improving their metabolic power.

Page 55: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

33

5. Morphological profile The characterisation of morphological profiles has become, over the years, a relevant tool in the identification and pursuit of great athletes around the world (Norton and Olds, 2001), especially in detecting potential talent in individual sports. In this sense, analysing the morphological particularities of canoeists, Freeman et al. (1987) look for similarities between canoeist profiles of canoe sprint and slalom disciplines, characterising them as mesomorphic individuals. Expanding the comparison of somatotypes to other sports, Table 2 exposes anthropometric and morphological parameters of various sports performed in boats. Interpreting the data shown, it is possible to highlight the similarity in somatotype patterns of canoe sprint and canoe slalomists with other sports presented. However, despite being similar, the differentiation and identification of specific morphological profiles in various sports is necessary. Supporting this idea, Sklad et al. (1994) initially reported differences (P< 0.05) in anthropometric characteristics (weight and height) between rowers and slalom kayakers. Thereafter, Ackland et al. (2003) evaluated Olympian athletes (canoe sprint, Sydney, 2000) and reported that their sample was characterised as homogeneous in relation to anthropometric and somatotype variables. However, even though marked differences were not observed when compared to general population characteristics, canoe sprint athletes show peculiarities such as lean bodies, large circumferences of the upper limbs, and narrow hips. Similarly, Vedat. (2012) also observed similar results for the Turkish national canoe team. In the study of Alves et al. (2012), the somatotype was not given; however, there were similarities regarding height (cm), weight (kg) and fat percentage (%) when canoe polo athletes were compared with canoe sprint and slalom athletes. Studying a large sample of female paddlers, Battista et al. (2007) found an endomorph somatotype predominance, thus indicating differences in anthropometric characteristics for the canoe slalom, sprint and polo. Anthropometric variables of canoe slalomists were also investigated. Male canoe slalom athletes from the USA were studied, where the mesomorphic profile of athletes was predominant (Vaccaro and Gray, 1984). In addition, Ridge et al. (2007) note that male canoe slalomists have a high brachial index (ratio between lengths of forearm and arm) that is 1.9 % higher compared to reference values of the population (76.7 % for slalomist athletes and 74.8 % for reference values) (Norton and Olds, 2001). As this factor is primarily affected by genetic variables than training adaptations, it highlights that this index may be an indicator for identifying potential talent.

Page 56: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

34

6. Psychological aspects In regards to the relationship between physical and sporting performance aspects, some attention has been given in the literature to studies relating psychology to performance. However, even though it is evident that reduced performance can be related to psychological factors, minimum training sessions are implemented for the development of psychological skills of these athletes (Carr, 2006). Psychological skills play an extremely important role in performance during the training of slalom athletes and, particularly, during races. In this way,(Macintyre and Moran, 2007) emphasise that psychological traits are important for canoe slalom for two reasons: 1) the canoe slalom is a cognitively demanding activity, requiring the planning and sequencing of complex routes under time constraints; and 2) canoe slalomists regularly use imagery both in competition and training. Moreover, Moran and MacIntyre. (1998) stress that in competitions, athletes must plan their route mentally from the bank of the river in question. Thus, specific psychological skills, such as "controllability of imagery", can be determinants for a better race performance. The controllability of imagery can be conceptualised as the ability to predict tasks before they happen, playing a role in the transmission of specific skills obtained through mental imagery of performance improvement of these skills during the actual event (Macintyre et al., 2002). Macintyre et al. (2002) applied the Mental Rotation Test (Vandenberg and Kuse, 1978) in 31 slalom athletes after 3 or 4 weeks of the Canoe World Championship in Augsburg (1992-1993). The test consisted of a questionnaire with questions directed toward psychological and cognitive issues; the final test score had a minimum of 0 and maximum of 40 points. The main findings were significant correlations (r = 0.42; P< 0.05) between the placement the canoeists achieved at the world championships and the score obtained on the Mental Rotation Test. More recently, Macintyre and Moran. (2007) implemented an interview guide comprising sections with questions about imagery, athletes meta-imagery knowledge and experiences in 12 elite canoe slalomists. The authors aimed to analyse qualitatively how imagery can be used in canoe slalom situations. The athletes reported that they used imagery as part of their performance routine. Additionally, they also indicated that imagery was used to generate creative solutions to the problems of planning their route down the slalom course. Moreover, prior to participating in competitions, the athletes visualised other competitors in their route and imagined themselves doing the course. Based on the literature, it is possible to suggest that canoe slalomists are subject to great cognitive challenges during races, and psychological skills are fundamental to better performance in competitions. Thus, the team involved with training the slalom athletes should not be limited to professionals who are only able to apply physical and tactical training but should also include sports psychologists.

Page 57: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

35

In summary, training directed toward the development of psychological skills is indispensable because mental abilities can be a determining factor in the performance of athletes during canoe slalom races. 7. Biomechanical analyses applied to performance Biomechanical analyses are commonly used for the study and implementation of technical aspects in different sports, which are directly linked to better performance. Given that stroke technique is one of the determining factors in the classification of elite athletes (Hunter, 2009), analysis of biomechanical stroke characteristics appears to be an important tool in the development slalom athletes. In slalom, a simple stroke begins at the starts of the capture phase (where the paddle goes into the water) on one side of the kayak and ends at the start of the capture on the other side and includes the period during which the paddle is submerged (propulsion phase) as well as the phase when the paddle is out of water and the recovery phase (where the canoeist prepares for the next stroke) (Michael et al., 2009). Double strokes have all the same phases as the simple stroke, except that two sequential strokes are performed on the same side (McDonnell et al., 2012). Although the stroke technique is the determining factor in canoeist performance and focus of canoeing biomechanics studies, other factors such as aerodynamics and hydrodynamics of the boat (Michael et al., 2009), as well as the type of paddle blade (Sumner et al., 2003), have specific relevance in achieving a better race performance. According to Michael et al. (2009) the drag force (Df), in the context of both the hydrodynamics and aerodynamics, can be defined as the force that acts opposite to the velocity vector of the kayak, resulting in slowdown when the kayak is submerged into the water. However, according to the authors, in the case of the canoe, the boat hydrodynamic variable has a greater influence on the loss of kayak speed than aerodynamic aspects. In addition, hydrodynamic Df is composed of three drag variables: a) friction or drag surface between the boat hull and the water; b) the pressure or drag force created when water is separated to allow passage of the kayak; c) the drag caused by the wave, which is a result of acceleration of water produced away from the boat. Sumner et al. (2003) report that, in opposition to the Df on the boat, the propulsion efficiency of the stroke can be maximised by another Df produced by the paddle blade, which aims to shift the boat and competes with the Df of the boat. Analysing three types of blades (Conventional, Norwegian, Turbo), the authors report that, regardless of the type of blade used, Df does not show difference. On the other hand, aspects such as blade return to the beginning of the stroke, the blade entrance into and exit from the water and the interaction between the blade and the water surface are factors that differ according to the type of blade used and thus may be an aid for canoeist performance.

Page 58: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

36

When canoeing is performed in standing water, the above aspects are adequate to describe canoe sprint races. However, due to the characteristics of slalom race environments, aspects related to the types of blade are attenuated. Nevertheless, the effects related to the stroke type and boat used is heightened. Performed in natural and artificial rivers, the slalom races have obstacles (e.g., rocks and waterfalls) (Shephard, 1987), and during the race, changes in biomechanical variables are necessary for the athlete to complete the course. Thus, Hunter et al. (2007) analysed in detail the biomechanic particularities of different strokes in canoe slalom and designated two classifications: pure strokes and multi-strokes. Pure strokes are strokes of one predominant phase. Among these types, the authors name them as Forward (propulsive stroke, carries boat forward with no significant change in direction), C (propulsive stroke moving the blade in a C-shaped path, turns the boat while propelling forward), Draw (blade facing inwards, parallel to boat, significantly changes the direction), Sweep (blade facing outwards, causes significant change in direction but not much propulsion), Reverse Sweep (reverse Sweep movement), Reverse (reverse stroke, causes a significant change in direction without slowing the boat), Brace (support stroke used for stability), Punt (stroke in contact with solid surfaces, usually used for turning), Side Draw (blade facing inwards, parallel to the boat in line with the body of the paddler, does not propel the boat forward or change direction, but moves sideways) and Steering strokes (strokes that define the direction of the boat). Moreover, the authors define that multi-strokes are classified as combinations of pure strokes, which include Draw-Forward, Reverse Sweep-Forward, Forward-Reverse Sweep, Draw-Draw, Reverse Sweep-Draw, Draw-Sweep and Forward-Sweep. Through these analyses, Hunter et al. (2008) aimed to quantify the influence of the stroke technique in different groups of canoeists (female C1, male C1 and K1) in the performance of official canoe slalom races. The authors reported that, for the group composed of female K1 canoeists, longer race durations were reported (108.5±2.6 s) compared to C1 males (100.8±2.2 s) and K1 athletes (97.9±1.3 s). According to Hunter et al. (2008), the longer duration for female athletes may be linked to physical differences of this group compared to males. However, no differences were detected between the durations of the C1 and K1 males; only the number of strokes was significantly lower (C1=80+; K1=100+) (P˂ 0.05). Thus, the authors suggest that although C1 canoeists use paddles that include only one blade, and thus have limitations compared to the paddles used in K1 canoeists, the stroke technique of C1 canoeists is more effective compared to K1 canoeists. Though it is suggested that canoeists improve their performance through training aimed at improving physical abilities, technical training should be implemented for athlete development

.

Page 59: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

37

8. Strategies and variability in canoe slalom races Commonly, canoe slalom races consist of two runs, the first (semi-final) being used to classify athletes for the second (final). However, the courses in official races are not similar across competitions. In addition, the final time of the athlete is adjusted in slalom races if the canoeist touches any of the gates or fails to negotiate a gate. Additionally, Vest. (1997) emphasises that the identification of competitive capability in athletes is hampered by components such as non-standard wild-water conditions, different gate placements and various constructions of artificial slalom courses. Moreover, these factors make it difficult to analyse the variability of performance in this sport (Nibali et al., 2011). Based on these observations, Nibali et al. (2011) emphasised that, for sports such as swimming, running and cycling, the variability in performance appears to be linked to the athlete's ability to sustain high-intensity exercise. In other words, the variability is directly related to the duration required for the athlete to complete the race. On the other hand, canoe slalom is a sport that requires a large technical development of the athlete. Because they need to sustain high-intensity exercise while negotiating gates and natural obstacles, the variability in slalom performance is linked not only to the athlete’s performance at high intensities but also to their technical capabilities. Races in canoe sprint are characterised by a linear course (i.e., the canoeist paddles in a fixed direction throughout the race). Regarding strategies for performing in this type of a race (pacing strategy), coaches and canoe athletes generally agree that the best strategy is to begin a race with maximal effort (fast start) and then transition to a steady pace (Bishop et al., 2002). However, slalom races are nonlinear, and each course is distinct. Consequently, various strategies can be chosen depending on the course.

Page 60: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

38

Table 2. Anthropometrical and morphological variables of sports performed in boats.

Study Sport Subdiscipline Gender Athletes (n)

Age (years)

Height (cm)

Body mass (kg)

Fat percentage

(%) Somatotype

Predominance

Sklad et al, 1994

Canoe slalom* K1 M 10 19.1 ±

2.2 178.3 ±

7.3 73.7 ±

5.9 10.3 ±

2.6 #

Ridge et al., 2007

Canoe slalom* K1 M 12 27.8 ±

3.9 177.0 ±

0.0 71.7 ±

4.8 # Mesomorphic

F 12 25.3 ± 4.8

168.0 ± 0.0

59.0 ± 4.5 # Mesomorphic

C1 M 19 28.2 ±

5.9 177.0 ±

0.0 73.1 ±

6.5 # Mesomorphic

Bílý et al., 2012

Canoe slalom* K1 M 29 24.0 ±

4.7 176.8 ±

6.0 74.0 ±

6.7 10.0 ±

2.7 #

F 23 24.0 ± 6.6

166.1 ± 5.7

59.5 ± 4.9

17.0 ± 4.6 #

C1 M 17 25.2 ± 5.2

181.6 ± 6.4

77.4 ± 7.5

10.1 ± 3.5 #

C1 bowmen M 7 22.7 ± 5.4

175.4 ± 5.6

73.7 ± 4.4

11.6 ± 2.6 #

C1 stern men M 8 23.4 ± 3.5

175.9 ± 3.6

74.5 ± 8.4

11.8 ± 4.9 #

Ackland et al., 2003

Canoe Sprint* K2, K4 e C2§ M 50 24.8 ±

3.0 184.3 ±

5.8 85.2 ±

6.2 # Mesomorphic

F 20 26.4 ± 5.1

170.4 ± 6.3

67.7 ± 5.7 # Mesomorphic

Vedat, 2012

Canoe Sprint* # M 10 # 176.2 ±

5.5 74.5 ± 10.7 # Mesomorphic

Alves et al., 2012

Canoe Polo # M 10 26.7 ±

4.1 177.1 ±

6.5 76.8 ±

9.0 12.3 ±

4.0 #

Battista et al., 2007 Paddle* # F 90 20.2 ±

1.3 173.0 ±

0.0 74.6 ±

8.5 22.4 ±

2.5 Endomorph

Data shown as the means ± standard deviation. M-Male; F-Female; §Data presented encompassing all sports; #Information not specified in the study; *Olympic discipline

Page 61: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

39

In support of this idea, Hunter et al. (2008) investigated the different strategies used by canoeists (C1, C2 and K1) for thirty runs in official races. The authors report that, regardless of the sport, the strategy used to negotiate gates and navigate the course is the same (i.e., in general, throughout the race, athletes have used similar techniques to negotiate all the gates). However, the use of different strokes techniques, such as spin (situation where the canoeist turns to the gate at an angle greater than 180 °) and pivot (situation where the canoeist turns to the gate at an angle less than 180 °) in specific locations, such as gates placed in locations where the current is flowing upstream (upstream gates), can differentiate the final performance of the athlete. In an attempt to extend these findings, Hunter. (2009) aimed to determine how the strategy chosen by canoeists to negotiate upstream gates influences the final race duration. In a simulated race with six gates (four with and two against the current), 17 canoeists (11 - K1; 6 - C1) repeated the course six times according to their respective strategies. Similar to considerations already presented (Hunter et al., 2008), the authors report that regardless of the sport, the strategy used to negotiate upstream gates is the same. However, using kinematic analysis, Hunter explains that the canoeists who showed better performance in the simulated race used techniques that included a passage closer to the canoeist head and the negotiated gate. In summary, the strategy chosen to go through the course is a determining factor for improved performance in slalom races. However, canoeists should not be limited to considering evidence only from slalom races of their respective discipline but instead should pay attention to all disciplines, which present great similarity in terms of race strategies and techniques used (Hunter, 2009). 9. Training periodisation Throughout this review, several aspects involving physiological, psychological, biomechanical and morphological parameters were addressed, and studies were analysed that aimed to equip slalom participants, including athletes, coaches, and trainers, to enhance the sports training of slalomists. However, despite timely attempts, there is a clear lack of studies that assess periodisation and periodic evaluations in canoe (Ušaj, 2002; Garcia-Pallares et al., 2010). Periodisation in sport was the subject of a review of the literature presented by Issurin. (2008). In this study, the author stresses that training periodisation is one of the more training theory-oriented branches, and its application is essential in obtaining a better athletic performance. Nevertheless, this strategy is not well investigated in canoeing.

Page 62: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

40

Recently, Garcia-Pallares et al. (2010) investigated the physiological and performance effects using a traditional periodisation (TP = 22 weeks) and block periodisation (BP = 12 weeks) applied to elite athletes (n = 10) of canoe sprint. According to the authors, the most pronounced differences between traditional and block periodisation is in the total volume of training implemented and the percentage of this volume aimed at improving physiological parameters such as ventilatory threshold 2 (VT2) and peak oxygen consumption (VO2 peak). Conducting periodic evaluations within each periodisation, the authors found that similar gains in these parameters were obtained at the end of each periodisation, observing a VT2 increase of 9.9 % for TP and 8.0 % for BP and a VO2 peak increase of 11.0 % for TP and 8.1 % for BP. Based on these results, the authors suggest that block periodisation seems to be more effective than traditional periodisation for canoe sprint, considering that the gains obtained were similar to traditional periodisation but over a shorter duration of time (12 weeks). Only one study was found in the literature that evaluated the effects of periodisation applied to canoe slalomists. Ušaj. (2002) aimed to examine whether the traditional periodisation (40 weeks) would be effective in modifying physiological parameters such as anaerobic threshold as well as enhancing related variables to performance into two groups: Olympic athletes (n=3) and non-Olympic (n=4). Applying an incremental test, the athletes were subjected to five maximum efforts equivalent to 600 meters, with intervals of one minute between efforts for the extraction of blood and blood lactate analysis. The anaerobic threshold was classically determined by a method proposed by Kindermann et al. (1979) and by fixed blood lactate concentration (Sjodin and Jacobs, 1981). Performance data were presented as the total time for completion of the EIGHT test (Ušaj, 2002), where the athletes performed a course on a lake consisting of eight "gates". According to Usaj, unexpectedly, neither Olympic athletes nor non-Olympic athletes showed any significant differences in the physiological parameters analysed after 40 weeks. However, increased performance (i.e., lower test duration in the lake) was displayed at the end of periodisation for both groups. The author assigns no modifications in physiological variables at the training level of each group, speculating that the athletes could be at their biological limit and that improvement in this aspect would be very difficult to attain.

10. Final considerations Commonly, studies published in the scientific community mistakenly include canoe slalom alongside other disciplines that include canoes. However, despite being performed with a boat and paddles, the present review indicates that slalom has peculiar aspects, including the race features, which should preclude its comparison and/or association with other canoe disciplines.

Page 63: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

41

We speculate that the limited number of scientific studies focused on canoe slalom is also a reflection of the characteristics of the sport, which hinder the application of scientific methods to evaluate the practice of the sport. Nevertheless, in spite of the lack of scientific studies, the number of studies in the literature focused on canoe slalom has increased in recent decades, with emphasis on designs related to investigations of physiological, psychological, biomechanical, and morphological aspects and the race strategies of canoe slalomists. To improve the progress of performance in this sport, we believe that a combination of all the factors discussed in this review, as well as the adoption of specific assessment methods for canoe slalom, should be considered when drafting and prescribing regimens for training. In this respect, scientific attention to slalom, with specific proposals addressed to aspects related to training and athletic performance, certainly aids in the understanding of this Olympic sport. 11. Acknowledgments We would like to thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP – Proc. 2012/06355-2 and 2009/08535-5), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Proc. 472277/2011-1), Fundo de Apoio ao Ensino, à Pesquisa e à Extensão (FAEPEX – Proc. 756/13), and Funcamp (Proc. 1403) for financial support. 12. References Ackland, T. R., Ong, K. B., Kerr, D. A., and Ridge, B. (2003), Morphological

characteristics of Olympic sprint canoe and kayak paddlers. Journal of Science and Medicine in Sport,6,285-294

Alves, C. R., Pasqua, L., Artioli, G. G., Roschel, H., Solis, M., Tobias, G., . . . Gualano, B. (2012), Anthropometric, physiological, performance, and nutritional profile of the Brazil National Canoe Polo Team. Journal of Sports Science,30,305-311

Baker, S. J. (1982), Post competition lactate levels in canoe slalomists. British Journal of Sports Medicine,16,2

Banfi, G., Colombini, A., Lombardi, G., and Lubkowska, A. (2012), Metabolic markers in sports medicine. Advanced Clinical Chemistry,56,1-54

Battista, R. A., Pivarnik, J. M., Dummer, G. M., Sauer, N., and Malina, R. M. (2007), Comparisons of physical characteristics and performances among female collegiate rowers. Journal of Sports Science,25,651-657

Beattie, S., Hardy, L., and Woodman, T. (2004), Precompetition Self-Confidence: The Role of the Self. Journal of Sport and Exercise Psychology 26,427-441

Page 64: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

42

Bílý, M., Balas, J., Martin, A. J., Cichrane, D., Coufalova, K., and Suss, V. (2012), Effect of paddle grip on segmental fluid distribuiton in elite slalom paddlers. European Journal of Sport Sience,1,1-6

Bílý, M., Suss, V., and Buchtel, M. (2011), Selected somatic factors of white water canoeists. Journal of Outdoor Activities 5,30-42

Bishop, D., Bonetti, D., and Dawson, B. (2002), The influence of pacing strategy on VO2 and supramaximal kayak performance. Medicine Science Sports Exercise,34,1041-1047

Carr, C. M. (2006), Sport psychology: psychologic issues and applications. Physical Medicine and Rehabilitation Clinics of North America,17,519-535

Freeman, P. L., Chennells, E. R., and Briggs, C. A. (1987). Specificity in performance:Determination of the antropometric and physiological characteristics of canoeists. Applied Sports Research Program.

Garcia-Pallares, J., Garcia-Fernandez, M., Sanchez-Medina, L., and Izquierdo, M. (2010), Performance changes in world-class kayakers following two different training periodization models. European Journal Applied Physiology,110,99-107

Hunter, A. (2009), Canoe slalom boat trajectory while negotiating an upstream gate. Sports Biomechanics,8,105-113

Hunter, A., Cochrane, J., and Sachlikidis, A. (2007), Canoe slalom--competition analysis reliability. Sports Biomechanics,6,155-170

Hunter, A., Cochrane, J., and Sachlikidis, A. (2008), Canoe slalom competition analysis. Sports Biomechanics,7,24-37

ICFa. (2013). International Canoe Federation, from http://canoeicf.com/icf/Aboutoursport.html

ICFb. (2013). International Canoe Federation, from http://canoeicf.com/icf/Aboutoursport/Canoe-Slalom/More-on-Canoe-Slalom.html /

ICFc. (2013). International Canoe Federation, from http://laseudurgell2013.worldcup.events.slalom.canoeicf.com/en/parc-ol%C3%ADmpic-del-segre-la-seu-durgell/20-years-olympic-slalom

ICFd. (2013). International Canoe Federation, from http://www.canoeicf.com/icf/Aboutoursport/Canoe-Slalom/Rules-and-education/main/0/text_files/file/ICF%20Canoe%20Slalom%20Competition%20Rules%202013.pdf

Issurin, V. (2008), Block periodization versus traditional training theory: a review. Journal of Sports Medicine and Physical Fitness,48,65-75

Kindermann, W., Simon, G., and Keul, J. (1979), The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. European Journal of Applied Physiology and Occupational Physiology,42,25-34

Macintyre, T., Moran, A., and Jennings, D. J. (2002), Is controllability of imagery related to canoe-slalom performance? Perceptual and Motor Skills,94,1245-1250

Page 65: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

43

Macintyre, T. E., and Moran, A. P. (2007), A qualitative investigation of imagery use and meta-imagery processes among elite Canoe-Slalom competitors. Journal of Imagery Research in Sport and Physical Activity,2,1-25

Males, J. R., Kerr, J. H., and Gerkovich, M. M. (1998), Metamotivational states during canoe slalom competition: A qualitative analysis using reversal theory. Journal of Applied Sport Psychology,10,185-200

McDonnell, L. K., Hume, P. A., and Nolte, V. (2012), An observational model for biomechanical assessment of sprint kayaking technique. Sports Biomechanics,11,507-523

Michael, J. S. (2008), The metabolic demands of kayaking: A review. Journal of Sports Science and Medicine,7,1-7

Michael, J. S., Smith, R., and Rooney, K. B. (2009), Determinants of kayak paddling performance. Sports Biomechanics,8,167-179

Moran, A., and MacIntyre, T. (1998), ‘There’s more to an image than meets the eye’: A qualitative study of kinaesthetic imagery among elite canoe-slalomists. The Irish Journal of Psychology,19,406-423

Nibali, M., Hopkins, W. G., and Drinkwater, E. (2011), Variability and predictability of elite competitive salom-kayak performance. European Journal of Sport Science,11,125-130

Norton, K., and Olds, T. (2001), Morphological evolution of athletes over the 20th century: causes and consequences. Sports Medicine,31,763-783

Ong, K. B., Ackland, T. R., Hume, P. A., Ridge, B., Broad, E., and Kerr, D. A. (2005), Equipment set-up among Olympic sprint and slalom kayak paddlers. Sports Biomechanics,4,47-58

Pendergast, D. R., Bushnell, D., Wilson, D. W., and Cerretelli, P. (1989), Energetics of kayaking. European Journal of Applied Physiology and Occupational Physiology,59,342-350

Ridge, B. R., Broad, E., Kerr, D. A., and Ackland, T. R. (2007), Morphological characteristics of Olympic slalom canoe and kayak paddlers. European Journal of Sport Science,7,107-113

Shephard, R. J. (1987), Science and medicine of canoeing and kayaking. Sports Medicine,4,19-33

Sidney, K., and Shephard, R. J. (1973), Physiological characteristics and performance of the White-Water paddler. European Journal of Applied Physiology,32,55-70

Sjodin, B., and Jacobs, I. (1981), Onset of blood lactate accumulation and marathon running performance. International Journal Sports Medicine,2,23-26

Sklad, B., Krawczyk, B., and Majle , B. (1994), Body build profiles of male and female rowers and kayakers. Biology of Sport,11,249-256

Sumner, D., Sprigings, E. J., and Bugg, J. D. (2003), Fluid forces on kayak paddle blades of different design. Sports Engineering,6,11-20

Ušaj, A. (2002), Kinetics of basic endurance and basic speed endurance characteristics throughout one olympic season in white water slalom kayak. Kinesiologia Slovenica,8,30-37

Page 66: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

44

Vaccaro, P., and Gray, P. R. (1984), Physiological Characteristics of World Class White-Water Slalom Paddlers. Reaseach Quartely for Exercise and Sport,55,206-210

van Someren, K. A., and Oliver, J. E. (2002), The efficacy of ergometry determined heart rates for flatwater kayak training. International Journal of Sports Medicine,23,28-32

van Someren, K. A., Phillips, G. R. W., and Palmer, G. S. (2000), Comparison of Physiological Responses to OpenWater Kayaking and Kayak Ergometry. International Journal of Sports Medicine,21,200-204

Vandenberg, S. G., and Kuse, A. R. (1978), Mental rotations, a group test of three-dimensional spatial visualization. Percept Motors Skills,47,599-604

Vedat, A. (2012), Somatotypes of male whitewater canoe athletes of the Turkish National Canoe Team. Educational Research and Reviews,7,526-531

Vest, A. L. (1997), Correlation of the actual and the substitute competitive result in kayak slalom. Kinesiologia Slovenica,1,13-17

White, A., and Hardy, L. (1998), An In-Depth analysis of the uses of imagery by high-level canoe slalomists and artistic gymnasts. The Sport Psychologist,12,387-403

Wilkie, D. R. (1980). Equations describing power imput by humans as a function of duration of exercise. In: Ceretelli P, Whipp BJ (eds).Exercise Bioenergetics and Gas Exchange. Amsterdam, Elsevier

Zamparo, P., Capelli, C., and Guerrini, G. (1999), Energetics of kayaking at submaximal and maximal speeds. European Journal of Applied Physiology and Occupational Physiology,80,542-548

Zamparo, P., Tomadini, S., Didone, F., Grazzina, F., Rejc, E., and Capelli, C. (2006), Bioenergetics of a slalom kayak (k1) competition. International Journal of Sports Medicine,27,546-552

Page 67: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

45

ARTIGO 2

Page 68: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

46

Original Article

ALL-OUT TEST IN TETHERED CANOE SYSTEM CAN DETERMINE

ANAEROBIC PARAMETERS OF ELITE CANOEISTS

Abstract

The aim of this study was to use a specific all-out 30-s tethered test for the determination of anaerobic parameters in elite canoeists and verify the relationship between these results and sport performance. Twelve elite slalom canoeists were evaluated. Tethered canoe system was created and used for all-out 30-s test application. Measurements of peak force, mean force, minimum force, fatigue index and impulse were performed. Performance evaluation was determined by measuring the time of race in a simulated race containing 24 gates on a white-water course. Blood was collected (25-µl) for analysis of lactate concentration at rest and at 2,4,6,8, and 10 minutes after both the all-out test and the simulated race. The Pearson product moment shows a significant relationship of peak force, mean force and impulse with time of race. Blood lactate concentration after the all-out test and simulated race both peak at same time (4 minutes). Additionally, no interaction was visualized between time and all-out test/simulated race for blood lactate concentration (P<0.365). These results suggest a relationship between the parameters of the all-out test and performance. Thus, the tethered canoe system is valid for the determination of parameters that could be used in training sessions of slalom canoeists.

Keywords: Anaerobic evaluation, tethered ergometry, all-out, performance, canoe slalom Introduction

Protocols for evaluating physiological indicators of aerobic metabolism are

well recognized [3, 4, 6, 22, 29]. However, despite the great importance of anaerobic metabolism for many sports, few standardized evaluation tools or training protocols have been well established. Currently, the Wingate Anaerobic Test [2] is commonly used to determine anaerobic power. The Wingate Anaerobic Test measures peak power (PPower), mean power (MePower), minimum power (MiPower) and fatigue index (FI) over 30 seconds of maximal effort on a cycle ergometer. The metabolic data produced by this test indicate that the Wingate Anaerobic Test requires a predominance of

Page 69: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

47

anaerobically derived energy from the subject [5]. However, because the test is performed on a cycle ergometer, both its applicability to other sports and its validity for the determination of anaerobic parameters is decreased. To increase the applicability of the Wingate, Cheetham., et al [8] modified the Wingate Anaerobic Test by performing a similar evaluation on a non-motorized treadmill using a tethered system composed by load cell. Importantly, it has been well established that the high levels of glycolytic intermediaries, including adenosine triphosphate, glucose 1-phosphate, glucose 6-phosphate, fructose 6-phosphate, pyruvate and lactate were observed during the running exercise in the tethered system [7]. Additionally, the anaerobic index suggested by this test was validated in the laboratory [9], and the tethered ergometry was recently applied in field for running [17] and in swimming test [27]. Notwithstanding, tethered systems are useful primarily to sports that are limited by the specificity of the ergometer in tests that measure physiological parameters. However, this use is still restricted in sports that suffer from a lack of scientific information. For example, slalom canoeists routinely use tethered paddling in training sessions, but do not have standard evaluation protocols to measure physiological parameters using the tethered system. The canoe slalom is a sport composed of descents in rivers and white waters, where the canoeists negotiate “gates” that can be found both with and against the current. During competitions, canoeists perform two runs, and the winner is defined by the time taken to complete the entire course [21]. Penalties of 2 to 50 s are incurred if the athlete touches or fails to negotiate any gate correctly [24]. Originating in 1932, until recently, few scientific studies had been performed to evaluate the physiological [1, 20, 28], psychological [18, 23, 30], or biomechanical parameters [13], or variability in official races [24]. Requiring unique movements and, consequently, specific metabolic demand, lactic acid metabolism is predominant (29.9 %) compared to alactic (24.9 %) metabolism during simulated canoe slalom races and, when linked, shows predominance over aerobic metabolism (45.2 %) [31]. However, despite its importance, literature evaluating the force of paddling or other biomechanical and physiological variables involved in anaerobic metabolism during canoe slalom remains scarce. This may be because of the difficulty in implementing specific protocols due to the peculiar characteristics of this sport. An all-out 30-s test using a tethered canoe system may be an alternative to analyze the force produced concomitantly with anaerobic metabolic characteristics preserving specificity and ecologic validity. Additionally, if the results provided by the application of an all-out 30-s test using the tethered canoe system have relationship to performance results, the use of this system can be implemented in training sessions aiming to improve force and anaerobic metabolic characteristics.

Thus, the aim of this study was to use a specific tethered system and an all-out 30-s anaerobic test to determine the anaerobic parameters of slalom canoeists. Additionally, we investigate the relationship of those parameters with performance results in this sport.

Page 70: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

48

Methods Participants Twelve males, elite slalom canoeists (national Brazilian team, 18±2 yrs., 68.1±0.6 kg, 173.6±0.6 cm, 10.3±0.1 fat %) were evaluated. Of the total sample, 58 % participated in the canoe slalom World Cup in 2013, and 75 % are classified in the canoe slalom world ranking according to the International Canoe Federation (ICF). Athletes and parents were informed about the risks of the experimental procedures, and both provided written, informed consent authorizing the athlete’s participation in this study. All experiments were approved by the Ethics Committee and were conducted according to the ethical standards of International Journal of Sports Medicine [12]. Design For determination of anaerobic parameters in an all-out 30-s test and in maximal efforts or simulated race, each athlete participated in two evaluation sessions: 1st session: An all-out test using a tethered canoe system for determination of peak force (PForce), mean force (MeForce), minimum force (MiForce), fatigue index (FI) and impulse (IMP); 2nd session: A simulated race to obtain physiological parameters such as heart rate (HR) and blood lactate concentration ([Lac]), and performance results including the total time and mean velocity. All-out 30-s test in Tethered Canoe System The all-out 30-s test was performed using a denominated Tethered Canoe System (TCS) constructed specifically for this purpose (Figure 1a). This system was initially described in a prototype model [19] which demonstrated high reproducibility (PForce r = 0.87, CV = 6.6 %, P = 0.057; MeForce r = 0.85, CV = 8.1 %, P = 0.108; peak [Lac] r = 0.95, CV = 8.9, P = 0.315). The ergometer was composed of a load cell (CSL/ZL-MK, SP, Brazil) with 250 kgf capacity, using a strain gauge as the primary sensor from the electric application of Wheatstone bridges (1/2 Bridge). The dynamometer was fixed to a suction pad (Vonder, PR, Brazil), and its center was coupled to a metallic hook connected to an elastic cord (length–320 cm; external diameter – 16.60 mm; internal diameter – 4.00 mm; thickness – 6.30 mm; Altaflex, SP, Brazil). The digital signal was converted with a module USB 6008 (National Instruments, TX, USA). During the test, signals were obtained at frequency of 1000 Hz (totaling 30.000 Hz), then processed and filtered using LabView-Signal-Express 2.0 (National Instruments, TX, USA). The dynamometer (Crown Filizola, 20 kgf, SP, Brazil) was calibrated with known

Page 71: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

49

weights (0, 5, 10, 15 and 20 kg) into force units (N) using a linear equation (~r = 0.99).

The test was performed in a 25 m outdoor swimming pool. Each subject used the same double-bladed paddle and the same boat (kayak model arrow, 355 cm length; 61 cm width, 16 kg mass). A keel was coupled to the rear of the boat (situated below the boat with an acrylic structure) to stabilize the ergometer. Canoeists warmed up by paddling at the minimum extension of the elastic cord for 5 minutes. After the warm up, the subjects remained in passive recovery for 5 minutes. The athletes were then instructed to paddle for 10 seconds at the low intensity paddling, and then perform the test at all-out intensity for 30 seconds after the signal (whistle) was sounded.

PForce was defined as the highest force registered during the test. MeForce was defined as the mean force of the all-out test. MiForce was defined as the lowest signal during the test (Figure 1b). IMP was calculated by the numerical integration of a trapezoidal method from the total area of the 30.000 Hz obtained from the test. The classical equation proposed by Bar-Or et al.,[2] was used for FI: FI=((PForce- MiForce/PForce))*100.

Page 72: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

50

Figure 1. a) Tethered Canoe System (TCS) used in the all-out test. b) Raw data (grey) and the mean at each of 1000 signals (black) obtained at 1000 Hz in the all-out test; the PForce, MeForce and MiForce of the all-out test are labeled.

Simulated race The simulated race was conducted on a white water course (Itaipu, PR, Brazil) where the athletes performed competitions and training sessions. The warm-up consisted of low intensity paddling in a lake for 5 minutes. The course had 24 gates (18 with and 6 against the current) to be negotiated by the canoeists. The athletes were instructed to perform similarly to an official race; however, the penalties were not considered.

Page 73: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

51

Time was recorded with a timer (Casio, HS-30 W - N1). The distance and velocity were measured using a global positioning system (GPS-Polar, RS800, RJ, Brazil; precision = ± 98 % either for distance as well as velocity) coupled just below the canoeist knee. HR was measured using a validated [10] heart rate monitor (Polar, RS800, RJ, Brazil; precision = ± 99 %). Data were acquired at 1 s intervals. The HR peak (PHR) was defined as the highest value during the simulated race. The mean HR (MeHR) was defined as the mean of all HR measurements obtained during the race. The minimum HR (MiHR) was defined as the lowest HR of the race.

Blood sampling Blood samples (25 µl) were collected from the earlobe with a heparinized capillary and were deposited into microtubes (Eppendorf – 1.5ml) containing 50 µl of 1 % sodium fluoride (NaF); the samples were collected while the participant was at rest and 2, 4, 6, 8 and 10 minutes following the all-out test and simulated race, and [Lac] was measured. The samples were frozen at -20°C before being homogenized and analyzed in a lactimeter (YSI – 2300 - STAT-Plus™ Glucose & Lactate Analyzer –Yellow Springs). Statistical analysis

Statistical analysis was carried out using a statistical software package (Statistic 7.0, Statsoft, OK, USA). Mean and standard deviation were calculated for all studied variables. Prior to the parametric analyses, homogeneity and normality were confirmed using the Levene and Shapiro-Wilk tests, respectively. A two-way ANOVA and a Scheffé post-hoc test were used to assess the interaction (time x all-out test/simulated race) of lactate concentration and multiple time points in the all-out test and simulated race. A Pearson product moment was applied to the relationship between the results of the all-out test and simulated race. Confidence intervals were also calculated for relationships analysis (Pearson product moment) and standard deviation with α = 0.05 (σ/√n). In all cases, statistical significance was set at P<0.05. Results

Table 1 shows the absolute (N) and relative (N∙kg-1) values of PForce, MeForce, MiForce, FI and IMP obtained in the all-out test using the TCS. The mean time to attain PForce was 6.4 ± 0.6 seconds (fifth second = 5 %; sixth second = 41 %; seventh second = 50 %).

Page 74: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

52

Table 1. Absolute (A) and relative (R) values for peak force (PForce), mean force (MeForce), minimum force (MiForce), FI and impulse (IMP) obtained in the all-out 30-s test. #Upper and lower confidence limits of confidence interval for SD Figure 2 illustrates the significant and inverse correlations observed between the absolute and relative PForce, MeForce, and IMP values and the time in simulated race. Regarding the MiForce and FI, no relationship was visualized (A.MiForce x TR – r = -0.43, P = 0.152, CI = -0.19–0.81; R.MiForce x TR – r = -0.45, P = 0.134, CI = -0.17–0.81; FI x TR – r = -0.03, P = 0.910, CI = -0.55 – 0.59).

Figure 2. Pearson product moment (r) and confidence interval (CI) between the TR and the absolute and relative PForce, MeForce, and IMP values. A.PForce= absolute peak force; R.PForce = relative peak force; A.MeForce = absolute mean force; R.MeForce = relative mean force; A.IMP = absolute impulse; R.IMP = relative impulse; TR = time of race. P<0.05.

Page 75: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

53

For the simulated race, the results evaluated as time of race, distance covered and mean velocity, as well as physiological indexes such as peak, mean and minimum heart rate, are shown in Table 2.

Table 2. Time of race (TR), distance, mean velocity (MV), peak heart rate (PHR), mean heart rate (MeHR) and minimum heart rate (MiHR) obtained in a simulated race. #Upper and lower confidence limits of confidence interval for SD

Regarding the comparison between [Lac] in the all-out test and simulated race, the two-way ANOVA (Figure 3) analyze showed no interaction of time (rest, 2, 4, 6, 8 and 10 minute) and protocols (all-out and simulated race)(P<0.365). Peak [Lac] was similar for all-out and simulated race (8.07 ± 1.83 mM and 8.29 ± 2.43 mM respectively).

Page 76: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

54

Figure 3. Two-way ANOVA interaction analysis on blood lactate concentrations [Lac] at different time points (rest, 2, 4, 6, 8 and 10 minute) in the all-out test and simulated race. P<0.05.

Discussion The main findings of the present study showed that an all-out test using a TCS was a feasible way to determine anaerobic parameters while preserving the canoe slalom specificity. Additionally, significant relationships were visualized between the anaerobic parameters obtained in all-out test and performance results obtained in simulated race.

The PForce was inversely correlated with TR (Figure 2a and 2b). Interestingly, in 2012 Olympic games and 2013 world championship of canoe slalom (K1-Men), the mean time between gates was 4.5 and 4.3 seconds respectively [16, 25]. In this study, 91 % of the athletes attained the PForce between the 5 and 6 seconds. Albeit exists a range of paddle techniques that a slalom canoeists use during a race [14] and differences for negotiate a gate [15], is possible to propose that the initial effort (first 6 seconds) of the all-out 30-s test using TCS is related to the efforts required to negotiate some gates, especially the upstream gates. This relation may be performed by the fact that the two situations (first seconds of all-out and negotiate of an upstream gate in canoe slalom race) are characterized by great water resistance and the attrition of the blade with the water. Although it is impossible at present, assume that the PForce obtained in all-out test is closely related to performance in canoe slalom, tethered training session aiming to improve the PForce can supposedly improve performance in this sport. Future investigations regarding the sensibility of the PForce using tethered training and the concomitantly performance improve in simulated race can answers this question.

Papoti., et al [26] visualized that the MeForce obtained during an all-out 30-s in tethered swimming is related with the performance in swimming, assuming the

Page 77: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

55

MeForce as the anaerobic fitness of the swimmers. In the present investigation, the MeForce and IMP were inversely correlated with TR (Figure 2c, 2d, 2e and 2f). During the all-out test using the TCS, higher levels of IMP and MeForce were obtained by the canoeists that were capable to produce and sustain the force throughout the 30-s. The capacity of produce and sustain higher levels of force are extremely necessary for the slalom canoeists negotiate the gates and transpose natural obstacles [21]. Therefore, the inverse correlations of MeForce / IMP and TR may mean some similarity of the anaerobic capacity required in all-out test and simulated race. Thus, we believe MeForce and IMP obtained in all-out test can be accepted as anaerobic indexes of canoeists.

In line with this, the metabolic results of the all-out test in the present study also showed relationship with the results of the simulated race. In regard of the [Lac], the two-way ANOVA did not show an interaction between time and protocol. Additionally, the time to peak [Lac] was similar in both tests (Figure 3). Though scientific studies specifically addressing slalom canoe are lacking, Zamparo., et al [31] previously reported the analysis of a simulated race. These authors reported nearly results for peak [Lac] (8.10±1.60 mM) when compared to peak [Lac] of the all-out test (peak [Lac] = 8.07 ± 1.83 mM) and simulated race (peak [Lac] 8.29 ± 2.43 mM) in the present investigation. In that sense, the metabolic similarity visualized in the present study between the all-out test and simulated race does not seem to have happened by chance, suggesting that the bioenergetic supply in all-out test was similar for the simulated race.

One major challenge of the all-out test using the TCS is that the paddler remains stationary. Indeed, during a canoe slalom race the canoeists performs many kinds of paddles [13, 14, 15] across natural obstacles [21]. Nevertheless, Hunter., et al [14] state that during a canoe slalom race, 67-71 % of the paddles are propulsive stroke named as forward stroke. According to these authors, the forward stroke pulls straight though the water effecting in a propulsion of 90 % on boat with no significant change in direction. Although the fact that TCS necessarily requires stationary paddling during the all-out, is relevant to state that all paddles performed by the slalom canoeist were the forward stroke.

Regarding canoe slalom, until now, no study investigates the application of the tethered system for this sport. In that sense, an ergometry that preserve paddling biomechanical characteristics and provide parameters as well as metabolic characteristic related to results from a performance task becomes necessary. The study that was closer to analyze the force performed by the canoeists preserving the specificity and ecological validity was conducted by Fleming., et al [11]. These authors aimed to investigate if variables as muscle activation, stroke force and kinematic data differ from on-water paddling and on-kayak ergometer. Once significant differences were found between the variables investigated, Fleming., et al [11] suggest that at least biomechanically, paddling in on-kayak ergometer and on-water are not perfectly matched. Albeit it is early to assert that the all-out test using TCS is a concise tool to analyze the performance of canoeists, the results of the present investigation indicate that both mechanically

Page 78: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

56

(PForce, MeForce, IMP) as well as metabolically ([Lac]), the results were related to the performance in canoe slalom.

As a matter of fact, the TCS used in the present study consider many aspects of canoe slalom. Despite the fact that exist differences between the TCS and a real-situation of canoe slalom race, it is valid to state that this is the first study to propose an ergometer that consider many aspects of paddling (as example of forward stroke) and allow the acquisition of the force that the slalom canoeists performs during tests. Notwithstanding, during training sessions in river and white waters, the relation between coach and athlete is hampered by the fact that the coach analyzes the training in the riverbank. Using TCS the coach can correct stroke technique easily and with proximity. Moreover, it is worth noting that not all canoeists have a specific location for their practice (i.e. possibility constantly of training in river or white water). In this sense, only using a simple tethered system and a swimming pool, specific trainings can be applied independent of geographical location and climatic conditions.

In conclusion, aiming to increase scientific information regarding specific protocols and ergometry for canoe slalom, the present study showed that the all-out 30-s test using the TCS is a valid tool to determine anaerobic parameters of slalom canoeists. Besides, relevant relationships were observed between the results provided by the all-out 30-s using the TCS with performance results from the simulated race in canoe slalom. References

1 Baker SJ. Post competition lactate levels in canoe slalomists. Br J Sports Med, 1982. 16:2 2 Bar-Or O, Dotan R, Inbar O. A 30 sec. all-out ergometer test - its reliability and validity for anaerobic capacity. Isr J Med Sci, 1977. 13:4 3 Beneke R, Hutler M, Leithauser RM. Maximal lactate-steady-state independent of performance. Med Sci Sports Exerc, 2000. 32:1135-1139 4 Beneke R, Hutler M, Von Duvillard SP, Sellens M, Leithauser RM. Effect of test interruptions on blood lactate during constant workload testing. Med Sci Sports Exerc, 2003. 35:1626-1630 5 Beneke R, Pollmann C, Bleif I, Leithauser RM, Hutler M. How anaerobic is the Wingate Anaerobic Test for humans? Eur J Appl Physiol, 2002. 87:388-392 6 Beneke R,von Duvillard SP. Determination of maximal lactate steady state response in selected sports events. Med Sci Sports Exerc, 1996. 28:241-246 7 Cheetham ME, Boobis LH, Brooks S, Williams C. Human muscle metabolism during sprint running. J Appl Physiol 1985. 61:54-60 8 Cheetham ME, Williams C, Lakomy HKA. A laboratory running test: Metabolic responses of sprint and endurance trained athletes. British Journal Sports Medicine, 1985. 19:81-84

Page 79: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

57

9 Chia M,Lim JM. Concurrent validity of power output derived from the non-motorised treadmill test in sedentary adults. Annals Academy Medicine Singapore, 2008. 37:279-285 10 Essner A, Sjostrom R, Ahlgren E, Lindmark B. Validity and reliability of Polar(R) RS800CX heart rate monitor, measuring heart rate in dogs during standing position and at trot on a treadmill. Physiol Behav, 2013. 114-115:1-5 11 Fleming N, Donne B, Fletcher D, Mahony N. A biomechanical assessment of ergometer task specificity in elite flatwater kayakers. J Sports Sci Med, 2012. 11:16-25 12 Harriss D,Atkinson G. Update-ethical standards in sport and exercise science research. Int J Sports Med, 2014. 34:1025-1028 13 Hunter A. Canoe slalom boat trajectory while negotiating an upstream gate. Sport Biomech, 2009. 8:105-113 14 Hunter A, Cochrane J, Sachlikidis A. Canoe slalom--competition analysis reliability. Sports Biomechanics, 2007. 6:155-170 15 Hunter A, Cochrane J, Sachlikidis A. Canoe slalom competition analysis. Sports Biomechanics, 2008. 7:24-37 16 ICF. International Canoe Federation. 2013; Available from: http://www.canoeliveresults.com/event/prague-troja-icf-world-championships-2013.php. 17 Lima MCS, Ribeiro LFP, Papoti M, Santiago PRP, Cunha SA, Martins LEB, Gobatto CA. A Semi-Tethered Test for Power Assessment in Running. Int J Sports Med, 2011. 32:1-6 18 Macintyre T, Moran A, Jennings DJ. Is controllability of imagery related to canoe-slalom performance? Percept Motor Skill, 2002. 94:1245-1250 19 Manchado-Gobatto FB, Ferrari HG, Messias LHD, Reis IGM, Terezani DR, Gobatto CA. Reproducibility of an all-out tethered fiedl test for anaerobic parameters determination in slalom kayak. in 18th annual Congress of the European College of Sports Science. 2013. Barcelona. 20 Manchado-Gobatto FB, Vieira NA, Messias LHD, Ferrari HG, Borin JP, Andrade VC, Terezani DR. Anaerobic threshold and critical velocity parameters determined by specific tests of canoe slalom:Effects of monitored training. Science and Sports, 2014. 29:55-58 21 Messias LHD, Reis IGM, Ferrari HG, F.B.. M-G. Physiological, psychological and biomechanical parameters applied in canoe slalom training: a review. Int J Perform Anal Sport, 2014. 14:24-41 22 Monod H,Scherrer J. The work capacity of a synergic muscular group. Ergonomics, 1965. 8:329-339 23 Moran A, MacIntyre T. ‘There’s more to an image than meets the eye’: A qualitative study of kinaesthetic imagery among elite canoe-slalomists. Irish J Psychol, 1998. 19:406-423 24 Nibali M, Hopkins WG, Drinkwater E. Variability and predictability of elite competitive salom-kayak performance. Eur J Sport Sci, 2011. 11:125-130

Page 80: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

58

25 Olympic.org. Results of 2012 Olympic finals. 2012; Available from: http://www.olympic.org/olympic-results/london-2012/canoe-slalom/k-1-kayak-single-m. 26 Papoti M, da Silva AS, Araujo GG, Santiago V, Martins LE, Cunha SA, Gobatto CA. Aerobic and anaerobic performances in tethered swimming. Int J Sports Med, 2013. 34:712-719 27 Papoti M, Martins LE, Cunha SA, Zagatto AM, Gobatto CA. Effects of taper on swimming force and swimmer performance after an experimental ten-week training program. J Strength Cond Res, 2007. 21:538-542 28 Sidney K, Shephard RJ. Physiological characteristics and performance of the White-Water paddler. Eur J Appl Physiol, 1973. 32:55-70 29 Tegtbur U, Busse MW, Braumann KM. Estimation of an individual equilibrium between lactate production and catabolism during exercise. Med Sci Sports Exerc, 1993. 25:620-627 30 White A, Hardy L. An In-Depth analysis of the uses of imagery by high-level canoe slalomists and artistic gymnasts. Sport Psychol, 1998. 12:387-403 31 Zamparo P, Tomadini S, Didone F, Grazzina F, Rejc E, Capelli C. Bioenergetics of a slalom kayak (k1) competition. Int J Sports Med, 2006. 27:546-552

Page 81: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

59

5. CONCLUSÃO GERAL

No que tange a nossa primeira hipótese, a ergometria atada proposta na

presente pesquisa mostrou se efetiva na aplicação do protocolo anaeróbio de 30-

s, sendo possibilitada a obtenção de índices como FPico, FMéd, FMin, IF e Impulso.

Não obstante, tais índices foram obtidos de forma específica, ou seja, o gesto

motor referente à remada dos canoístas slalom foi preservada. Referente à nossa

segunda hipótese, alguns índices sugeridos pelo protocolo anaeróbio de 30-s

apresentaram relação com indicadores de desempenho esportivo em prova

simulada. Além disso, marcadores fisiológicos como as respostas lactacidêmicas

apresentaram comportamento semelhante após teste atado e de desempenho.

Dessa maneira, é possível ressaltar que, por meio da aplicação do protocolo

anaeróbio atado de 30-s utilizando a ergometria proposta, torna se possível

adequar alguns dos resultados obtidos por meio dessa aplicação na prescrição e

controle da intensidade do exercício de forma específica, otimizando dessa

maneira as respostas que esse treinamento específico possa promover a

canoístas slalom.

Page 82: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

60

6. REFERÊNCIAS

Baker, S. J. (1982). Post competition lactate levels in canoe slalomists. British Journal of Sports Medicine 16, 2. Bar-Or, O., Dotan, R., and Inbar, O. (1977). A 30 sec. all-out ergometer test - its reliability and validity for anaerobic capacity. Israel Journal of Medicine and Science 13, 4. Calbet, J. A. L., Chavarren, J., and Dorado, C. (1997). Fractional use of anaerobic capacity during a 30- and a 45-s Wingate test. European Journal Applied Physiology 76, 5. Cheetham, M. E., Williams, C., and Lakomy, H. K. A. (1985a). Human muscle metabolism during sprint running. Journal of Applied Physiology. 61, 6. Cheetham, M. E., Williams, C., and Lakomy, H. K. A. (1985b). A laboratory running test: Metabolic responses of sprint and endurance trained athletes. British Journal Sports Medicine 19, 81-84. Chia, M., and Lim, J. M. (2008). Concurrent validity of power output derived from the non-motorised treadmill test in sedentary adults. Annals Academy Medicine Singapore 37, 279-285. Hill, D. W., and Smith, J. C. (1993). Gender difference in anaerobic capacity: role of aerobic contribution. British Journal Sports Medicine 27, 45-48. Hooper, S. L., Mackinnon, L. T., and Ginn, E. M. (1998). Effects of three tapering techniques on the performance, forces and psychometric measures of competitive swimmers. European Journal Applied Physiology 78, 258-263. Hunter, A. (2009). Canoe slalom boat trajectory while negotiating an upstream gate. Sports Biomechanics 8, 105-113. Hunter, A., Cochrane, J., and Sachlikidis, A. (2007). Canoe slalom--competition analysis reliability. Sports Biomechanics 6, 155-170. Hunter, A., Cochrane, J., and Sachlikidis, A. (2008). Canoe slalom competition analysis. Sports Biomechanics 7, 24-37.

Page 83: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

61

Lakomy, H. K. A. (1987). The use of a non-motorized treadmill for analysing sprint performance. Ergonomics 30, 10. Lima, M. C. S., Ribeiro, L. F. P., Papoti, M., Santiago, P. R. P., Cunha, S. A., Martins, L. E. B., and Gobatto, C. A. (2011). A Semi-Tethered Test for Power Assessment in Running. Int J Sports Med 32, 1-6. Macintyre, T., Moran, A., and Jennings, D. J. (2002). Is controllability of imagery related to canoe-slalom performance? Percept Motor Skill 94, 1245-1250. Macintyre, T. E., and Moran, A. P. (2007). A qualitative investigation of imagery use and meta-imagery processes among elite Canoe-Slalom competitors. Journal of Imagery Research in Sport and Physical Activity 2, 25. Males, J. R., Kerr, J. H., and Gerkovich, M. M. (1998). Metamotivational states during canoe slalom competition: A qualitative analysis using reversal theory. Journal of Applied Sport Psychology 10, 15. Manchado-Gobatto, F. B., Vieira, N. A., Messias, L. H. D., Ferrari, H. G., Borin, J. P., Andrade, V. C., and Terezani, D. R. (2014). Anaerobic threshold and critical velocity parameters determined by specific tests of canoe slalom:Effects of monitored training. Science and Sports 29, 55-58. McLellan, T. M., Kavanagh, M. F., and Jacobs, I. (1990). The effect of hypoxia on performance during 30 s or 45 s of supramaximal exercise. European Journal Applied Physiology Occupattional Physiology 60, 155-161. Messias, L. H. D., Moreno, M. A., Vieira, N. A., Terezani, D. R., Bom, D. P., and Manchado-Gobatto, F. B. (2013). Efeitos do treinamento físico específico e monitorado sobre a variablidade da frequência cardíaca de canoístas slalom. Conexões 11, 16-28. Messias, L. H. D., Reis, I. G. M., Ferrari, H. G., and F.B.., M.-G. (2014). Physiological, psychological and biomechanical parameters applied in canoe slalom training: a review. International Journal of Performance and Analysis in Sport 14, 24-41. Minahan, C., Chia, M., and Inbar, O. (2007). Does Power Indicate Capacity? 30-sWingate Anaerobic Test vs. Maximal Accumulated O2 Deficit. International Journal Sports Medicine 28, 7. Moran, A., and MacIntyre, T. (1998). ‘There’s more to an image than meets the eye’: A qualitative study of kinaesthetic imagery among elite canoe-slalomists. The Irish Journal of Psychology 19, 406-423.

Page 84: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

62

Nibali, M., Hopkins, W. G., and Drinkwater, E. (2011). Variability and predictability of elite competitive salom-kayak performance. European Journal of Sport Science 11, 125-130. Papoti, M., da Silva, A. S., Araujo, G. G., Santiago, V., Martins, L. E., Cunha, S. A., and Gobatto, C. A. (2013). Aerobic and anaerobic performances in tethered swimming. International Journal Sports Medicine 34, 712-719. Papoti, M., Martins, L. E., Cunha, S. A., Zagatto, A. M., and Gobatto, C. A. (2007). Effects of taper on swimming force and swimmer performance after an experimental ten-week training program. The Journal Strength Conditioning Research 21, 538-542. Papoti, M., Martins, L. E. B., Cunha, S. A., Zagatto, A. M., and Gobatto, C. A. (2003). Standardization of a specific protocol to determine the anaerobic conditioning in swimmers during a 30sec effort using load cells. Portuguese Journal Sport Science 3, 6. Papoti, M., Vitório, R., Araujo, G. G., Silva, A. S. R., Santhiago, V., Martins, L. E. B., Gobatto, C. A. (2009). Determination of Force Coresponding to Maximal Lactate Steady State in Tethered Swimming. International Journal Exercise Science 2, 10. Ridge, B. R., Broad, E., Kerr, D. A., and Ackland, T. R. (2007). Morphological characteristics of Olympic slalom canoe and kayak paddlers. European Journal of Sport Science 7, 6. Sidney, K., and Shephard, R. J. (1973). Physiological characteristics and performance of the White-Water paddler. European Journal of Applied Physiology 32, 15. Souissi, N., Bessot, N., Chamari, K., Gauthier, A., Sesboue, B., and Davenne, D. (2007). Effect of time of day on aerobic contribution to the 30-s Wingate test performance. Chronobiology International 24, 739-748. Ušaj, A. (2002). Kinetics of basic endurance and basic speed endurance characteristics throughout one olympic season in white water slalom kayak. Kinesiologia Slovenica 8, 7. White, A., and Hardy, L. (1998). An In-Depth analysis of the uses of imagery by high-level canoe slalomists and artistic gymnasts. The Sport Psychologist 12, 387-403.

Page 85: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

63

Zamparo, P., Tomadini, S., Didone, F., Grazzina, F., Rejc, E., and Capelli, C. (2006). Bioenergetics of a slalom kayak (k1) competition. International Journal of Sports Medicine 27, 546-552.

Page 86: LEONARDO HENRIQUE DALCHECO MESSIASrepositorio.unicamp.br/bitstream/REPOSIP/244491/1/... · 2018. 8. 27. · CONCLUSÃO GERAL..... 59 6. REFERÊNCIAS ... Especificações das portas

64

7. ANEXOS

7.1 Financiamento da pesquisa

OBTENÇÃO DE PARÂMETROS ANAERÓBIOS DE ATLETAS DE ELITE DA CANOAGEM SLALOM POR MEIO DA APLICAÇÃO DE ERGOMETRIA ATADA:

RELAÇÕES COM O DESEMPENHO Esse trabalho foi financiado pelo “Fundo de Apoio ao Ensino, à Pesquisa e à Extensão”

FAEPEX Processo n° 756/13