kamila aplicação de energia fotovoltaica para prédios administrativos e Áreas industriais

83
Universidade Federal de Juiz de Fora Programa de Formação de Recursos Faculdade de Engenharia Humanos da Petrobras na área de Curso de Engenharia Elétrica Sistemas Elétricos Industriais Kamila Costa Mancilha APLICAÇÃO DE ENERGIA FOTOVOLTAICA PARA PRÉDIOS ADMINISTRATIVOS E ÁREAS INDUSTRIAIS Juiz de Fora 2013 Kamila Costa Mancilha

Upload: rarison-fortes

Post on 25-Jan-2016

67 views

Category:

Documents


46 download

DESCRIPTION

Kamila Aplicação de Energia Fotovoltaica Para Prédios Administrativos e Áreas Industriais

TRANSCRIPT

Universidade Federal de Juiz de Fora Programa de Formação de Recursos

Faculdade de Engenharia Humanos da Petrobras na área de

Curso de Engenharia Elétrica Sistemas Elétricos Industriais

Kamila Costa Mancilha

APLICAÇÃO DE ENERGIA FOTOVOLTAICA PARA PRÉDIOS ADMINISTRATIVOS

E ÁREAS INDUSTRIAIS

Juiz de Fora

2013

Kamila Costa Mancilha

2

AGRADECIMENTOS

Agradeço primeiramente a Deus por me guiar nessa trajetória de vida, colocando

sempre pessoas importantes em meu caminho o que me ajuda a definir quem eu sou e

as direções corretas que devo tomar para conquistar cada vez mais sucesso em minha

vida profissional, como também, em minha vida pessoal.

Aos meus pais, Adilson e Luiza Helena, que em meio a dificuldades sempre me

apoiaram para que eu atingisse um objetivo maior na vida e me tornasse a pessoa que

sou hoje.

Aos amigos que sempre estiveram ao meu lado.

Aos mestres que souberam transmitir seus conhecimentos, em especial o

professor Abílio Variz, meu orientador, que soube me conduzir para a realização do

projeto de forma amiga e honrada.

Ao programa PRH-PB214 – Programa de Formação de Recursos Humanos da

Petrobras na área de Sistemas Elétricos Industriais – ao qual fui bolsista durante 18

meses, que contribuiu de forma significativa para minha formação, e ao coordenador e

professor Leandro Ramos de Araújo.

3

RESUMO

O presente trabalho tem por objetivo abordar os principais conceitos e avaliar a

viabilidade técnica e econômica para a aplicação de energia fotovoltaica em

edificações administrativas e comerciais, como em áreas industriais.

O sistema fotovoltaico apresenta diversas vantagens, sendo considerada uma

energia limpa. O maior empecilho para a sua utilização em larga escala ainda é o seu

custo de implantação, pela necessidade de uma tecnologia sofisticada. Entretanto,

pesquisas apontam que o custo desta geração vem caindo cerca de 5 a 7% a cada

ano.

Para o estudo de viabilidade técnica e econômica de diversos casos, foram

utilizadas ferramentas computacionais e metodologias para a obtenção de parâmetros

como a quantidade de energia fotovoltaica fornecida pela instalação, custos de

aquisição, evolução das tarifas de energia elétrica, entre outros. Dentre os casos

simulados destacam-se, o estudo de instalação de placas fotovoltaicas em prédios

comerciais e de indústria, utilizando-se de um sistema integrado à edificação e

interligado a rede elétrica de distribuição de energia.

A motivação para este trabalho é o fato da energia fotovoltaica estar ganhando

espaço, por se tratar de uma fonte renovável de energia, frente a esta visão de

desenvolvimento sustentável que nos cerca. O grande desafio encontra-se em tornar

esta tecnologia viável, uma vez que seu alto custo de implantação dificulta sua

utilização em larga escala.

O objetivo então é deixar claro, por meio das análises econômicas, como o

Brasil é carente em programas de incentivo que alavanque a utilização desta fonte de

energia e como é de fundamental importância que este panorama seja modificado, uma

vez que o país apresenta um potencial extremamente elevado.

Palavras-chave: Sistema fotovoltaico. Conexão à rede de distribuição elétrica. Análise

econômica. Relação custo-benefício.

4

LISTA DE FIGURAS

Figura 1.1: Evolução da produção mundial de energia elétrica

(EREC,2005) 12

Figura 1.2: Passos para a evolução da energia fotovoltaica (ASSUNÇÃO,

2010) 14

Figura 2.1: Sistema isolado (ABB, 2010) 17

Figura 2.2: Sistema interligado à rede elétrica (ABB, 2010) 18

Figura 3.1: Composição de um sistema fotovoltaico (CENTRAIS

ELÉTRICAS) 19

Figura 3.2: Corte transversal de uma célula fotovoltaica mostrando o

funcionamento do efeito fotovoltaico (BLUESOL

EDUCACIONAL, 2011) 20

Figura 3.3: Efeito causado pela variação de intensidade luminosa da luz

na curva característica i x v para um módulo fotovoltaico

(CRESESB, 1999) 21

Figura 3.4: (a) Conexão de células em paralelo (b) Conexão de células e

série (CRESESB, 1999) 22

Figura 3.5: Seção transversal de um módulo (ABB, 2010) 23

Figura 3.6: Processo de purificação do silício (ASSUNÇÃO, 2010) 25

Figura 3.7: Cadeia produtiva da energia solar fotovoltaica (ASSUNÇÃO,

2010) 25

Figura 3.8: Painel de células monocristalinas (ACRE, 2004) 26

Figura 3.9: Painel de células policristalinas (ACRE, 2004) 26

Figura 3.10: Painel de filmes fino (RÜTHER, 2004) 27

Figura 3.11: Esquema de um inversor (ABB, 2010) 28

Figura 3.12: Princípio da tecnologia PWM (ABB, 2010) 28

Figura 3.13: Curva de eficiência de um inversor de 650W (RÜTHER, 2004) 29

Figura 4.1: Circuito equivalente (ABB, 2010) 32

Figura 4.2: Característica corrente x tensão (CRESESB, 1999) 32

Figura 4.3: Curva característica potência x tensão (CRESESB, 1999) 33

Figura 4.4: Parâmetros de máxima potência (CRESESB, 1999) 33

Figura 4.5: Influência da temperatura na célula (SOLARTERRA, 2011) 34

5

Figura 4.6: (a) Gráfico para a obtenção do fator de espaçamento (b)

Figura para o cálculo da distância (SOLARTERRA, 2011) 35

Figura 5.1: (a) Um inversor por planta (b) Um inversor por fileira (c)

Vários inversores (ABB, 2010)

37

Figura 5.2: Diagrama de um sistema solar fotovoltaico interligado à rede

de distribuição (RÜTHER, 2004) 38

Figura 5.3: (a) Sistema IT (b) Sistema TN (ABB, 2010) 40

Figura 5.4: Sistema sem o transformador (ABB, 2010) 40

Figura 6.1: Relação de custo de um watt fotovoltaico (EPIA, 2008) 43

Figura 7.1: Planta baixa do térreo 46

Figura 7.2: Planta baixa dos andares com os escritórios 47

Figura 7.3: Planta baixa dos anfiteatros 47

Figura 7.4: Curva de carga estipulada fora de escala 50

Figura 7.5: Curva de carga em escala 51

Figura 7.6: Curva de carga com os valores das demandas apontados em

cada intervalo de hora 51

Figura 7.7: Energia consumida diariamente 52

Figura 7.8: Incidência da radiação solar (ELETRONICA) 54

Figura 7.9: Simulação do caso com a instalação de painéis

monocristalinos no teto do edifício 58

Figura 7.10: Simulação do caso com a instalação de painéis policristalinos

no teto do edifício 58

Figura 7.11: Simulação do caso com a instalação de painéis de silício

amorfo no teto do edifício 59

Figura 7.12: Instalação de painéis de filmes finos na fachada do edifício

(BRIGHT SOLAR) 61

Figura 7.13: Simulação do caso com a instalação de painéis de silício

amorfo na fachada do edifício utilizando o inversor SMC 5000A 63

Figura 7.14: Simulação do caso com a instalação de painéis de silício

amorfo na fachada do edifício utilizando o inversor SMC 4600A

– 11 63

Figura 7.15: Simulação do caso com a instalação de painéis de silício

amorfo na fachada do edifício utilizando o inversor SB 2500 64

6

Figura 7.16: Comparação entre o Investimento na Fotovoltaica e a

Aplicação do dinheiro 66

Figura 7.17: Fotografia tirada na fábrica fora do horário de funcionamento 68

Figura 7.18: Simulação do caso com a instalação de painéis

monocristalinos na área industrial 72

Figura 7.19: Simulação do caso com a instalação de painéis policristalinos

na área industrial 73

Figura 7.20: Simulação do caso com a instalação de painéis de silício

amorfo na área industrial 73

7

LISTA DE TABELAS

Tabela 4.1: Ângulos de inclinação segundo a latitude do local da

instalação 35

Tabela 7.1: Área dos módulos utilizados nas simulações 54

Tabela 7.2: Especificação das simulações realizadas com a instalação dos

módulos fotovoltaicos no teto do edifício 55

Tabela 7.3: Resultados da simulação para os casos com instalação de

módulos fotovoltaicos no teto do edifício 56

Tabela 7.4: Resultados das análises econômicas paras os casos com

instalação de módulos fotovoltaicos no teto do edifício 57

Tabela 7.5: Especificação das simulações realizadas com a instalação dos

módulos fotovoltaicos na fachada do edifício 61

Tabela 7.6: Resultados da simulação para os casos com instalação de

módulos fotovoltaicos na fachada do edifício 62

Tabela 7.7: Resultados das análises econômicas para os casos com

instalação de módulos fotovoltaicos na fachada do edifício 62

Tabela 7.8: Resultado das análises em diferentes cidades do Brasil

utilizando o mesmo sistema do Caso 2 (painéis policristalinos

no teto do edifício) 65

Tabela 7.9: Média anual de Radiação Solar para as cidades simuladas

acima 65

Tabela 7.10: Especificação das simulações realizadas com a instalação dos

módulos fotovoltaicos na indústria 70

Tabela 7.11: Resultados da simulação para os casos com instalação de

módulos fotovoltaicos na indústria 71

Tabela 7.12: Resultados das análises econômicas para os casos com

instalação de módulos fotovoltaicos na indústria 71

8

SUMÁRIO

1. INTRODUÇÃO 10

1.1 BRASIL E A FOTOVOLTAICA 13

2. SISTEMA FOTOVOLTAICO 15

2.1 TIPOS DE SISTEMAS FOTOVOLTAICOS 16

2.1.1 SISTEMAS ISOLADOS OU AUTÔNOMOS 16

2.1.2 SISTEMAS HÍBRIDOS 17

2.1.3 SISTEMAS INTERLIGADOS À REDE 17

3. COMPONENTES DO SISTEMA FOTOVOLTAICO 19

3.1 GERADOR FOTOVOLTAICO 19

3.1.1 TIPOS DE PAINÉIS FOTOVOLTAICOS 24

3.1.1.1 SILÍCIO MONOCRISTALINO 25

3.1.1.2 SILÍCIO POLICRISTALINO 26

3.1.1.3 SILÍCIO AMORFO 27

3.1.1.4 TELURETO DE CÁDMIO 27

3.2 INVERSOR 28

3.3 CONTROLADORES (REGULADORES) DE CARGA 29

3.4 BATERIAS (ACUMULADORES DE ENERGIA) 29

3.4.1 TIPOS DE BATERIAS 30

3.4.1.1 BATERIAS DE CHUMBO-ÁCIDO (BATERIAS ESTACIONÁRIAS) 30

3.4.1.2 BATERIA NÍQUEL-CÁDMIO OU NÍQUEL METAL HIDRETO 30

3.4.1.3 BATERIAS DE IÕES DE LÍTIO (LI-ION) 31

3.5 OUTROS COMPONENTES 31

4. ENERGIA PRODUZIDA 32

5. INSTALAÇÃO DOS SISTEMAS FOTOVOLTAICOS 36

5.1 ATERRAMENTO E PROTEÇÃO DE SISTEMAS FOTOVOLTAICOS 39

6. ANÁLISE ECONÔMICA DO INVESTIMENTO 42 7. ESTUDOS REALIZADOS 45

7.1 PRÉDIOS ADMINISTRATIVOS 45

7.1.1 SIMULAÇÕES E ANÁLISES ECONÔMICAS 53

7.1.1.1 INSTALAÇÃO DE PAINÉIS FOTOVOLTAICOS NA FACHADA DO EDIFÍCIO

60

9

7.1.1.2 INSTALAÇÃO DE PAINÉIS FOTOVOLTAICOS EM DIFERENTES REGIÕES

64

7.1.1.3 INSTALAÇÃO DO SISTEMA FOTOVOLTAICO X APLICAÇÃO 66

7.2 ÁREA INDUSTRIAL 67

7.2.1 SIMULAÇÕES E ANÁLISES ECONÔMICAS 69

8. CONCLUSÃO 75

9. APÊNDICE A 78

10. APÊNDICE B 81

11. BIBLIOGRAFIA 82

10

1. INTRODUÇÃO

Nos últimos anos, o atual modelo energético mundial vem sendo questionado,

devido ao acelerado crescimento populacional e consequente aumento do consumo de

energia. O termo Desenvolvimento Sustentável, atender às necessidades do presente

sem prejudicar as necessidades de um futuro, tem incentivado a utilização das fontes

de energia renováveis, consideradas limpas por não interferirem de forma danosa ao

meio ambiente, diminuindo assim a atual degradação ambiental.

Outra questão alvo de debates é a Eficiência Energética, cujo foco é a utilização

da energia de forma racional, ou seja, de forma eficaz, sem comprometer o conforto do

consumidor. Seu princípio baseia-se no melhor condicionamento do padrão de serviços

e qualidade de vida, reduzindo os custos com o consumo de energia, o que é obtido

através da redução dos desperdícios, pela implantação de mudanças comportamentais

(melhorias na educação), ações corretivas e introdução de novas tecnologias.

Os combustíveis fósseis por serem poluentes, pois emitem gases causadores

do Efeito Estufa – aquecimento global – como o gás carbônico – e por serem

provenientes de fontes de natureza finita, tendem ao longo das próximas décadas a

perderem espaço para as fontes renováveis de energia (SHAYANI, 2006). Tal mudança

já encontra-se em andamento. A energia solar fotovoltaica é uma das formas de

geração de energia elétrica que está conquistando espaço no mercado mundial frente a

esta nova visão, uma vez que o Sol é a maior fonte de energia renovável existente.

A implantação dessas fontes de forma distribuída apresenta inúmeras vantagens

ao sistema (SHAYANI, 2006). A geração distribuída ocorre próximo ao local de

consumo de energia, apresentando ganhos relativos à redução de perdas nas linhas de

transmissão e distribuição, além da possibilidade de cogeração.

A mentalidade capitalista da sociedade se curva à maximização de seus lucros,

onde as gerações centralizadas em grandes usinas se tornam mais atrativas

economicamente do que os sistemas distribuídos. A argumentação de que a

configuração distribuída trará maiores benefícios sociais ainda é insuficiente para

mudar a estrutura econômica do setor energético, porém esse panorama está

evoluindo. Nos últimos anos, têm-se grandes estudos sobre a distribuição da energia

em forma de redes inteligentes, as Smart Grid, mas poucas efetivadas de fato

(SHAYANI, 2006). A partir do momento que a energia for obtida de forma

11

descentralizada, todas as regiões passarão a ter igual acesso à eletricidade, dessa

forma áreas rurais se desenvolverão, aumentará a necessidade de mão de obra e

elevará os níveis de educação e saúde nas áreas mais desprovidas, o que contribuirá

para o desenvolvimento social das cidades.

Realizando uma análise superficial entre o custo final da energia, as renováveis

apresentam um preço mais elevado que a convencional centralizada (usinas

hidrelétricas, térmicas) (SHAYANI, 2006). A simplicidade com que a energia

fotovoltaica é gerada reduz os custos a serem contabilizados, pois não existe a

necessidade de extração, refino e transporte, como ocorre com os combustíveis

fósseis. Além de o processo ser mais simples, não emitir gases poluentes ao meio

ambiente e nem ruídos, a sua manutenção é mínima.

O custo de implantação da geração solar fotovoltaica pode chegar a 50 vezes o

custo de uma PCH (pequena central hidrelétrica), por outro lado, considerando a

energia gerada ao longo da vida útil do sistema solar, cerca de 30 anos, obtém-se o

correspondente a 10 vezes o custo da energia entregue ao consumidor para sistemas

isolados e essa relação cai para 3 vezes para a geração interligada à rede elétrica

(SHAYANI, 2006). Com a valorização dos custos ambientais e sociais da geração

centralizada e a constante redução dos custos dos sistemas solares, devido às

inovações nos painéis fotovoltaicos, o sistema solar tende a se tornar economicamente

competitivo no mercado mundial de energia elétrica em um curto prazo.

Na Figura 1.1 é apresentada a Evolução da produção mundial de energia

elétrica (EREC, 2005). Observe que por esta previsão a partir de 2020 ocorre uma

explosão da energia solar fotovoltaica, fazendo desta uma das maiores geradoras de

energia elétrica junto à hídrica, a eólica e a biomassa.

12

Figura 1.1 - Evolução da produção mundial de energia elétrica (EREC,2005).

Um dos países pioneiros na utilização da energia solar fotovoltaica distribuída é

a Alemanha (SHAYANI, 2006). Estes sistemas são interligados à rede elétrica

convencional trabalhando em conjunto com esta, o que alivia o sistema de distribuição

da concessionária local, de forma que se a energia solar for superior ao consumo, o

excedente é injetado na rede pública, caso ocorra o contrário, a geração solar for

inferior à demanda, o sistema é suprido pela rede interligada. O país apresenta uma

política onde o consumidor pode vender o excedente de energia gerada às

concessionárias, por meio de uma tarifa prêmio. Estes sistemas interligados à rede

dispensam o uso de acumuladores de energia, banco de baterias, reduzindo o custo da

instalação em cerca de 30%, tornando o sistema fotovoltaico mais atraente. A

possibilidade de colocar os painéis nos telhados das construções não torna necessária

a utilização de mais espaço físico, o que facilita sua implantação nos centros urbanos.

O que dificulta sua utilização ainda são os altos custos para a implementação deste

sistema, sua geração ser descontínua, pois apresenta interrupções durante os períodos

noturnos ou sombreamentos, além da radiação solar ao longo do dia ser variável.

13

1.1 Brasil e a Fotovoltaica

O Brasil é um país rico em recursos naturais e possui recursos humanos

disponíveis para atuar na geração de energia solar fotovoltaica (ASSUNÇÃO, 2010).

Ainda se encontram em definição as políticas públicas para o incentivo ou

regulamentação que promovam a inserção dessa fonte de energia nas redes

concessionárias, tendo como base, que a conexão do sistema fotovoltaico à rede de

distribuição é compreendida como uma fonte complementar de energia, uma vez que

se trata de uma fonte intermitente.

A primeira iniciativa que incorporou o uso da energia solar fotovoltaica no Brasil

foi o Programa de Desenvolvimento Energético de Estados e Municípios – PRODEEM

(GALDINO & LIMA, 2002), programa que visou à eletrificação rural por meio de

sistemas fotovoltaicos, sendo estabelecido em 1994 pelo governo brasileiro (VARELLA,

2008). As regiões que apresentaram o maior número de instalações deste programa

foram as Regiões Norte e Nordeste.

O maior obstáculo para a utilização desta energia em grande escala é o seu

elevado custo atual. Entretanto, pesquisas apontam que para o ano de 2050, 50% da

geração de energia no mundo virão de fontes renováveis, sendo 25% dessa energia

oriunda da solar fotovoltaica (ASSUNÇÃO, 2010). Com isso, o Brasil tende a aumentar

a participação da energia solar fotovoltaica em sua matriz energética nacional, seguida

também, da energia eólica.

Para a evolução desta tecnologia no país são apresentadas quatro propostas

pela CGEE – Centro de Gestão e Estudos Estratégicos (ASSUNÇÃO, 2010), conforme

ilustrado na Figura 1.2:

14

Figura 1.2 – Passos para a evolução da energia fotovoltaica (ASSUNÇÃO, 2010).

1) Incentivo a pesquisa e a inovação tecnológica: buscar a redução dos

custos de produção das células e módulos fotovoltaicos através de uma cadeia

produtiva, para aumentar a competitividade em energia solar fotovoltaica, assim como

buscar melhorias na eficiência destes. Modernizar laboratórios de pesquisa,

desenvolver recursos humanos para inovar e formar mão de obra de grau técnico, para

instalar, operar e manter os sistemas fotovoltaicos, estudar a matéria-prima;

2) Criação de mercado consumidor: criação de empregos estimulando a

economia local, regulamentar a conexão de sistemas fotovoltaicos à rede elétrica,

divulgar a energia solar para a sociedade, incentivar a geração distribuída conectada à

rede elétrica (adotar a tarifa-prêmio), estimular a criação de empresas de serviços de

instalação e manutenção;

3) Estabelecimento de indústrias de células solares e de módulos

fotovoltaicos: recursos qualificados para produção destes estão sendo formados a

partir das plantas piloto (exemplo na PUC-RS), estimular o estabelecimento de

indústrias de células e módulos fotovoltaicos, como também, os demais equipamentos

necessários para o sistema fotovoltaico;

4) Estabelecimento de indústrias de silício grau solar e grau eletrônico: o

Brasil possui uma das maiores reservas de quartzo para produção de silício grau solar

e grau eletrônico (aproximadamente 90% dos painéis fotovoltaicos produzidos utilizam

silício).

15

2. SISTEMA FOTOVOLTAICO

A geração de energia em sistemas fotovoltaicos se dá pela transformação

direta e instantânea de energia solar em energia elétrica sem a utilização de

combustíveis, por meio do Efeito Fotovoltaico.

Apresenta várias vantagens que são citadas a seguir:

A geração é distribuída, reduzindo as perdas com transmissão e

distribuição;

É considerada uma energia limpa. Apenas na construção de painéis que

utilizam materiais perigosos que consomem grande quantidade de

energia, há a liberação de poluentes. Entretanto, em cerca de 3 anos os

painéis conseguem devolver essa energia, e em comparação a uma

térmica convencional, emitem cerca de 20% a menos de para

produzir a mesma quantidade de energia (PORTAL ENERGIA, 2009);

Não necessita de combustíveis fosseis;

Apresentam vida útil em torno de 25 anos;

É um sistema de fácil modulação (ABB, 2010);

Apresenta alta confiabilidade, não possui peças móveis (ASSUNÇÃO,

2010);

Fácil portabilidade e adaptabilidade dos módulos, permitindo montagens

simples e adaptáveis a várias necessidades energéticas;

Os sistemas podem ser dimensionados para aplicações de alguns

miliwatts ou de kiloWatts, pois a potência instalada pode ser alterada pela

incorporação de módulos adicionais;

O custo de operação é reduzido e a manutenção é quase inexistente;

É silenciosa e não perturba o ambiente;

Os módulos são resistentes a condições climáticas extremas como

granizo, vento, temperatura e umidade.

Em contra partida tem-se:

Custo inicial de investimento é elevado, pois a fabricação dos módulos

fotovoltaicos necessita de uma tecnologia muito sofisticada;

16

A geração de potência é irregular devido à variação da fonte de energia, o

Sol. A potência gerada depende da radiação solar incidente no local da

instalação, da inclinação e orientação dos painéis, da presença ou não de

sombreamento e de seus componentes.

O rendimento real de conversão de um módulo é reduzido se comparado

ao custo do investimento;

Quando o sistema é isolado, é necessário um banco de baterias para o

armazenamento de energia, o que eleva ainda mais o custo do sistema

fotovoltaico;

O sistema fotovoltaico não substitui economicamente a energia

convencional se esta estiver disponível a menos de aproximadamente 3

Km do local (ASSUNÇÃO, 2010);

O descarte dos painéis fotovoltaicos ainda apresenta algumas incertezas.

A preocupação encontra-se no descarte dos metais raros, como o

cádmio, existente em muitos painéis. O acúmulo destes pode vir a se

tornar um sério problema ambiental. Algumas empresas ligadas à energia

solar possuem programas de reciclagem dos painéis.

Os sistemas fotovoltaicos podem ser interligados à rede elétrica de baixa e

média tensão, mas sua maior aplicação no Brasil, atualmente, encontra-se nos

sistemas com instalação isolados da rede de distribuição elétrica, geralmente em

regiões rurais (VARELLA, 2008). Além da eletrificação rural, são muito utilizados para

iluminação exterior, sinalização e outros.

2.1 Tipos de sistemas fotovoltaicos

2.1.1 Sistemas isolados ou autônomos

São sistemas off grid, que devem possuir um sistema de armazenamento de

energia e caso haja a necessidade de corrente alternada deve-se fazer uso de um

inversor. São sistemas puramente fotovoltaicos que se tornam vantajosos, de forma

técnica e financeira, em pontos isolados do sistema elétrico tradicional, como áreas

rurais afastadas. Para a instalação de tal sistema é necessário que o local possua

condições climáticas extremamente favoráveis, ou seja, radiação solar elevada, poucas

17

nuvens para evitar sombreamentos entre outros. As aplicações mais comuns são:

equipamentos de bombeamento de água, rádios de observação do tempo, sistemas de

luzes em estradas, portos e aeroportos, abastecimento de campos, anúncios, lugares

de alta altitude. A Figura 2.1 exemplifica um sistema isolado.

Figura 2.1 - Sistema isolado (ABB, 2010).

2.1.2 Sistemas híbridos

Os sistemas híbridos utilizam da combinação do sistema fotovoltaico com outras

fontes de energia que atendem a carga na ausência da energia solar, como por

exemplo, os geradores eólicos, a diesel e a gasolina. São utilizados em sistemas de

médio a grande porte.

2.1.3 Sistemas interligados à rede

Os sistemas on grid são ligados diretamente à rede elétrica de distribuição de

energia. O sistema fotovoltaico opera de forma conjunta com a rede, sendo que,

quando o gerador fotovoltaico não consegue produzir a energia necessária, a rede

supre a carga, caso contrário, se o sistema fotovoltaico produzir energia excedente

este é injetada na rede, não necessitando de acumuladores. A grande vantagem é a

geração ser distribuída, ou seja, sua energia é produzida nas áreas de consumo não

apresentando perdas com transmissão (ABB, 2010). Além disso, o fato de dispensarem

as baterias reduz seu custo de instalação em cerca de 30% (SOLARTERRA, 2011).

18

A rede elétrica de distribuição pública aceita certo limite de potência intermitente,

para não causar problemas relacionados à estabilidade do sistema, que depende da

configuração da rede e do grau de conexão com esta. A Figura 2.2 apresenta o

esquema de ligação simplificado de um sistema interligado à rede elétrica.

Figura 2.2 - Sistema interligado à rede elétrica (ABB, 2010).

19

3. COMPONENTES DO SISTEMA FOTOVOLTAICO

Uma planta fotovoltaica é constituída por um gerador, um suporte para os

painéis, um sistema de controle de potência para evitar um sobrecarregamento do

sistema, um sistema de armazenamento de energia (baterias), chaves, equipamentos

de proteção, cabos, inversores de corrente com potência adequada e outros. A Figura

3.1 esquematiza um sistema fotovoltaico com seus componentes.

Figura 3.1 - Composição de um sistema fotovoltaico (CENTRAIS ELÉTRICAS).

3.1 Gerador fotovoltaico

O gerador fotovoltaico é o componente elementar do sistema, onde de fato

ocorre a conversão da radiação solar em corrente elétrica (ABB, 2010). A célula é

constituída por uma fina camada semicondutora (material com características

intermediárias entre um condutor e um isolante), geralmente de silício, com uma

espessura de 0,3 mm e uma área de 100 a 225 cm².

O silício puro não possui elétrons livres de forma que não é um bom condutor,

logo para que este possa ser utilizado deve-se adicionar porcentagens de outros

elementos em sua composição, processo denominado de dopagem. O silício é

tetravalente, dopado com átomos trivalentes, como por exemplo, o boro, forma a

camada P (excesso de cavidades) e dopado com átomos pentavalentes, como por

20

exemplo, o fósforo, forma a camada N (excesso de elétrons). A área de contato entre

as camadas forma a junção P-N, os elétrons tendem a se mover da região rica em

elétrons para a pobre (da camada N para a camada P), acumulando cargas negativas

na região P e cargas positivas na região N. Então ocorre a Criação de um campo

elétrico que é oposto às cargas elétricas. Ao incidir luz solar na célula, os fótons

chocam-se com os elétrons dando-lhes energia e transformando-os em condutores.

Aplicando uma tensão entre as camadas permite-se que haja circulação de corrente

em uma única direção, atuando como um diodo funcional. A célula exposta à luz faz

com que a corrente flua da região N para a região P. A Figura 3.2 apresenta uma célula

fotovoltaica e o funcionamento do efeito fotovoltaico em seu interior.

Figura 3.2 - Corte transversal de uma célula fotovoltaica mostrando o funcionamento do efeito fotovoltaico (BLUESOL EDUCACIONAL, 2011).

Quanto maior a superfície maior é a geração da corrente, pois a intensidade da

corrente gerada variará proporcionalmente conforme a intensidade da luz incidente na

placa. Esta característica pode ser observada na Figura 3.3. Em condições normais de

operação, ou seja, 1 kW/m² de irradiância na temperatura de 25°C, a célula fotovoltaica

gera uma corrente de aproximadamente 3 A com uma tensão de 0,5V e um pico de

potência de 1,5 a 1,7Wp (ABB, 2010).

21

Figura 3.3 - Efeito causado pela variação de intensidade luminosa da luz na curva característica i x v para um módulo fotovoltaico (CRESESB, 1999).

Como dito anteriormente, uma célula fotovoltaica individual, produz apenas uma

reduzida potência elétrica, o que tipicamente varia entre 1 e 3 W, com uma tensão

menor que 1 Volt.

Para disponibilizar potências mais elevadas, as células são utilizadas de forma

integrada, formando um módulo ou painel. Quanto maior for o módulo, maior será a

potência e/ou a corrente disponível. As ligações em série de várias células aumentam a

tensão terminal, enquanto que ligações em paralelo permitem aumentar a corrente

elétrica circulante (ASSUNÇÃO, 2010). Estas ligações podem ser observadas na

Figura 3.4. A maioria dos módulos comercializados atualmente (mais comum) é

composta por 36 células de silício cristalino, dispostas em 4 fileiras paralelas

conectadas em série, com área variando de 0,5 a 1 m², e utilizadas para aplicações de

12 V.

O número máximo de painéis que podem ser conectados em série depende da

largura de operação do inversor e da disponibilidade de desconectar e proteger os

dispositivos de forma satisfatória a alcançar a tensão desejada.

22

Figura 3.4 - (a) Conexão de células em paralelo, (b) Conexão de células e série. (CRESESB, 1999).

As células não são exatamente iguais isso faz com que parte da potência gerada

seja perdida dentro do próprio módulo, sendo o chamado Mismatch losses (RÜTHER,

2004). Essas desigualdades são determinadas pela diferença de irradiância solar,

pelos sombreamentos e por deterioramento dos módulos. A maioria das células solares

são conectadas em série, uma pequena sombra sobre uma destas células, pode

reduzir o rendimento do sistema como um todo, pois a célula sobre a qual incidir a

menor quantidade de radiação é que irá determinar a corrente, e consequentemente, a

potência gerada de todo o conjunto a ela conectado. Uma célula quando sombreada

pode vir até a atuar como uma carga, levando ao aquecimento do módulo podendo

motivar à sua destruição. Podem-se colocar diodos by-pass entre as fileiras dos

módulos para evitar a circulação de corrente reversa no mesmo, o que por outro lado

leva a uma perda de rendimento, podendo também comprometer a relação custo-

benefício do empreendimento.

As células possuem um encapsulamento que as protege contra agentes

atmosféricos e estresses mecânicos, sendo resistentes aos raios ultravioletas e às

mudanças inesperadas de temperatura, além de isolar eletricamente as células. Este

encapsulamento é da seguinte forma, como mostra a Figura 3.5: uma folha

transparente protetora que fica exposta à luz geralmente de vidro, um material para

evitar o contato direto entre o vidro e a célula, geralmente de EVA, um suporte

geralmente de vidro, metal ou plástico e finalmente um molde de metal geralmente de

alumínio.

23

Figura 3.5 - Seção transversal de um módulo (ABB, 2010).

O processo de fabricação dos módulos fotovoltaicos se dá através das seguintes

etapas (SOLARTERRA, 2011):

Ensaio elétrico e classificação das células;

Interconexão elétrica das células;

Montagem do conjunto;

Laminação do módulo;

Curagem: o laminado processa-se num forno onde se completa a

polimerização do plástico encapsulante e alcança-se a adesão perfeita

dos diferentes componentes;

Emolduração: as molduras de poliuretano são colocadas por meio de

máquinas de injeção;

Colocação de terminais, bornes, diodos e caixas de conexões;

Ensaio final.

Durante os ensaios dos módulos são verificados suas características elétricas

operacionais, seu isolamento elétrico, os defeitos de acabamento, as resistência ao

impacto e à tração das conexões, comportamento em temperaturas elevadas e sua

estabilidade às mudanças térmicas (SOLARTERRA, 2011).

24

3.1.1 Tipos de painéis fotovoltaicos

Várias tecnologias são utilizadas para a fabricação dos módulos fotovoltaicos,

como:

Silício monocristalino;

Silício policristalino;

Silício amorfo;

Disseleneto de Cobre, Índio e Gálio (CIGS);

Telureto de Cádmio (CdTe) ;

Semicondutores Orgânicos.

Os módulos mais utilizados atualmente são os de silício (ASSUNÇÃO, 2010). O

Brasil possui grandes jazidas de quartzo de qualidade, além do conhecimento para

extrair esse mineral e o transformar em silício grau metalúrgico, considerado matéria-

prima ainda bruta para a produção de painéis fotovoltaicos. O processo de purificação

transforma-o tanto em silício grau solar quanto em silício grau eletrônico. O silício grau

solar, dependendo de seu grau de purificação, pode ser utilizado como matéria-prima

para a indústria fotovoltaica e para a produção de semicondutores (chips de

computadores).

O processo de purificação de silício utilizado mundialmente é o conhecido por

“rota química”, obtendo silício de grau eletrônico. No Brasil existem pesquisas para se

utilizar o processo denominado “rota metalúrgica”, que produz silício grau solar com

menor gasto de energia e menor impacto ambiental, uma vez que o Brasil já possui

indústrias de silício grau metalúrgico, podendo se tornar um dos líderes mundiais de

produção de silício de grau solar. A Figura 3.6 apresenta o processo de purificação do

silício.

25

Figura 3.6 - Processo de purificação do silício (ASSUNÇÃO, 2010).

A produção nacional de módulos fotovoltaicos levará a uma redução de custo,

abrangendo sua utilização por todo o país, como mostra a Figura 3.7.

Figura 3.7 - Cadeia produtiva da energia solar fotovoltaica (ASSUNÇÃO, 2010).

3.1.1.1 Silício monocristalino (m-Si)

Representa a primeira geração de módulos fotovoltaicos, com um rendimento

(eficiência) relativamente elevado, cerca de 14 a 17%, porém com técnicas complexas

e caras para a sua produção. Utiliza silício de alta pureza (Si = 99,99% a 99,9999%)

fundido para banhar o monocristal, como envolve elevadas temperaturas (1400°C),

torna necessária uma grande quantidade de energia no seu processo de fabricação

(RÜTHER, 2004). A Figura 3.8 exibe uma célula monocristalina.

26

Figura 3.8 - Painel de células monocristalinas (ACRE, 2004).

3.1.1.2 Silício policristalino (p-Si)

O silício policristalino, exemplo Figura 3.9, apresenta diferentes formas e

direções na sua reflexão, sua eficiência é menor se comparada ao silício

monocristalino, cerca de 12 a 14%, mas seu custo também é reduzido, pois necessitam

de menos energia no seu processo de fabricação. A redução de rendimento se dá pela

imperfeição do cristal. Durante o processo de fundição e solidificação aparecem blocos

com grande quantidade de grãos ou cristais, onde se concentram os defeitos que

tornam este material menos eficiente do que o m-Si. Nos últimos anos este tipo de

tecnologia vem ganhando espaço no mercado mundial, sendo mais utilizado hoje que o

silício monocristalino (RÜTHER, 2004).

Figura 3.9 - Painel de células policristalinas (ACRE, 2004).

27

3.1.1.3 Silício amorfo (a-Si)

A tecnologia de painéis de filmes finos (Figura 3.10) baseia-se na deposição de

materiais semicondutores em suportes de vidro, polímeros, alumínio, aço,

economizando material e possibilitando flexibilidade á célula.

O silício amorfo apresenta um reduzido custo, mas em contra partida sua

eficiência também é reduzida, ficando em torno de 8 a 10%, ou seja, muito baixa

comparada as tecnologias apresentadas anteriormente. Pode ser borrifado em

camadas de plástico ou material flexível, podendo adaptá-lo a superfícies curvas.

Apresentam alto grau de desordem na estrutura dos átomos. Uma vantagem do painel

de a-Si é que este não reduz sua potência gerada com o aumento da temperatura de

operação, sendo de ótima aplicação em países de climas quentes como o Brasil

(RÜTHER, 2004).

Figura 3.10 - Painel de filmes fino (RÜTHER, 2004).

3.1.1.4 Telureto de Cádmio (CdTe)

Seu mercado ainda é limitado, se comparado ao silício cristalino apresenta uma

eficiência menor, em torno de 10 a 11%. Sua produção em larga escala envolve

problemas ambientais por apresentar elementos altamente tóxicos em sua composição.

O mesmo ocorre com o Disseleneto de Cobre, Índio e Gálio (CIGS), pois além

de apresentar elementos tóxicos (Cd, Se, Te), alguns também são raros (Te, Se, Ga,

In, Cd) o que torna um obstáculo à expansão dessa tecnologia.

28

3.2 Inversor

O inversor é o responsável pela conversão entre a corrente contínua e corrente

alternada, além de controlar a qualidade da potência de saída, possibilitando a conexão

do sistema com a rede elétrica pública. Possui um filtro formado por capacitores e

indutores e um transistor que controla a abertura e o fechamento de cada sinal,

“quebrando” a corrente contínua em pulsos, obtendo assim na saída, uma forma de

onda quadrada através da tecnologia PWM (modulação da largura de pulso) permitindo

a regulação da frequência e o valor rms da saída, como mostram as Figuras 3.11 e

3.12.

Figura 3.11 - Esquema de um inversor (ABB, 2010).

Figura 3.12 – Princípio da tecnologia PWM (ABB, 2010).

As deformações devido às comutações podem produzir perturbações nas

células, as distorções harmônicas. A potência entregue pelo gerador depende do ponto

de operação, por isso utiliza-se um MPPT (Maximum Power Point Tracker) que calcula

os pares de tensão corrente que produzem a máxima potência.

Um diferencial de 1% na eficiência do inversor pode resultar 10% a mais em

energia gerada ao longo de um ano (RÜTHER, 2004), como mostra a Figura 3.13

abaixo.

29

Figura 3.13 - Curva de eficiência de um inversor de 650W (RÜTHER, 2004).

3.3 Controladores (reguladores) de carga

O controlador monitora constantemente a tensão dos acumuladores. Se a

tensão alcança um valor para o qual se considera que a bateria esteja carregada, o

controlador interrompe o processo de carga, através da abertura do circuito entre os

módulos fotovoltaicos e a bateria (controlo tipo série) ou curto-circuitando a saída dos

módulos fotovoltaicos (controle tipo shunt – paralelo). Quando o consumo faz com que

a bateria comece a descarregar, diminuir sua tensão, o controlador reconecta o gerador

à bateria e recomeça o ciclo, evitando uma descarga profunda, o que aumenta a vida

útil da mesma.

Um controlador de carga deve possuir em média uma vida útil de 10 anos,

possuir chaveamento eletrônico, proteção contra inversão de polaridade e deve

compensar as variações de temperatura existentes (BRAGA, 2008).

3.4 Baterias (acumuladores de energia)

As baterias acumulam a energia que se produz durante as horas de

luminosidade para poder utilizar esta durante a noite ou períodos prolongados que

impedem a geração de energia. Estabiliza a corrente e a tensão na hora de alimentar

30

cargas elétricas, suprindo transitórios que possam ocorrer na geração. Também são

responsáveis por fornecer uma intensidade de corrente superior àquela que o

dispositivo fotovoltaico pode entregar em casos especiais, como por exemplo, no

arranque de um motor que exige cerca de 4 a 6 vezes sua corrente nominal.

As baterias para terem um bom desempenho nos sistemas fotovoltaicos devem

possuir elevada vida cíclica para descargas profundas, pouca manutenção, alta

eficiência de carregamento, boa confiabilidade e mínima mudança de desempenho

quando operar fora da faixa de temperatura recomendada.

3.4.1 Tipos de baterias

3.4.1.1 Baterias de chumbo-ácido (baterias estacionárias)

A matéria ativa dessas baterias é o chumbo e o eletrólito uma solução aquosa

de ácido sulfúrico, a unidade de construção básica é a célula de 2 Volts em média

(tensão nominal). Quando ligadas em paralelo devem possuir mesma tensão e

capacidade. São as mais utilizadas devido sua variedade de tamanhos, baixo custo e

grande disponibilidade no mercado (BRAGA, 2008). A capacidade de armazenamento

de uma bateria esta ligada a sua velocidade de descarga, sendo que quanto maior o

tempo de descarga maior será a quantidade de energia que a bateria fornece. Para as

baterias de chumbo-ácido o tempo de descarga típico é de 100 horas, por exemplo,

para as baterias DF1000 com esse tempo de descarga, a capacidade é de 70 Ah

(ampér-hora) (FREEDOM, 2008).

3.4.1.2 Bateria Níquel-Cádmio (NiCd) ou Níquel Metal Hidreto

(NiMH)

Essas baterias utilizam hidróxido de níquel para as placas positivas e óxido de

cádmio para as placas negativas, o eletrólito utilizado é alcalino (hidróxido de potássio).

Elas admitem descargas profundas (de até 90% da capacidade nominal), apresentam

baixo coeficiente de autodescarga, alto rendimento de absorção de carga (superior a

31

80%), custo elevado em comparação com as baterias ácidas longo tempo de vida e

pequena manutenção.

3.4.1.3 Baterias de iões de lítio (Li-ion)

Estas baterias são constituídas basicamente por um cátodo de lítio, um ânodo

de carbono poroso e um eletrólito composto por sais de lítio em um solvente orgânico.

São as que apresentam maior longevidade e resistência aos ciclos de carga e

descarga, sendo também as mais caras, devido à tecnologia e materiais utilizados.

Apresentam baixa eficiência, são leves e possuem uma vida útil elevada.

3.5 Outros componentes

Além dos componentes listados anteriormente, existem outros também

importantes para a operação de um sistema fotovoltaico, dos quais se destacam:

As chaves são utilizadas para romper o fluxo de corrente em casos de

emergência ou para se realizar uma manutenção.

Os fusíveis e os disjuntores protegem os equipamentos contra

sobrecorrentes provocadas por curtos circuitos.

Os cabos utilizados nestes sistemas são normalmente resistentes à

radiação ultravioleta e têm duplo isolamento, devendo suportar as

temperaturas elevadas que são atingidas assim como as condições

severas do meio ambiente, como precipitações atmosféricas. Em

condições de corrente contínua a planta não deve exceder 50% da tensão

dos cabos, e em corrente alternada a tensão na planta não deve exceder

a taxa de tensão dos cabos. Lembrando que em corrente contínua a

tensão é maior, logo a isolação deve ser reforçada em dobro para

minimizar os riscos provocados por faltas e curtos circuitos. A área da

seção transversal de um cabo é definida pela capacidade de carregar

corrente sendo que esta não deve ser menor que a corrente projetada.

Deve-se lembrar que esses dispositivos devem operar em corrente contínua.

32

4. ENERGIA PRODUZIDA

A célula fotovoltaica pode ser vista como uma fonte de corrente, com uma

resistência interna (Rs) e uma condutância (Gi), podendo ser representada pelo circuito

equivalente apresentado na Figura 4.1.

Figura 4.1 - Circuito equivalente (ABB, 2010).

A eficiência da célula é afetada por uma pequena variação de Rs, uma vez que

esta encontra-se em série com a tensão a ser medida. Ao passo que é pouco afetada

por uma variação de Gi, por estar em paralelo, sendo que a parcela de corrente

referente à condutância é desprezada para a realização dos cálculos (ABB, 2010).

A curva característica tensão x corrente mostrada abaixo (Figura 4.2) comprova

a consideração feita de que a célula apresenta o funcionamento de uma fonte de

corrente constante. Pode-se observar que um acréscimo de tensão faz com que

aumente a potência até esta atingir seu ponto máximo, onde cai repentinamente

próxima ao ponto de tensão de circuito aberto.

Figura 4.2 - Característica corrente x tensão (CRESESB, 1999).

33

Figura 4.3 - Curva característica potência x tensão (CRESESB, 1999).

Figura 4.4 - Parâmetros de máxima potência (CRESESB, 1999).

Aumentando o nível de insolação no módulo fotovoltaico, ocorre um aumento da

temperatura da célula, o que tende a reduzir a eficiência do mesmo. Isto acontece, pois

o aumento da temperatura diminui significativamente a tensão, ao passo que a corrente

sofre uma elevação pequena, permanecendo praticamente constante, com isso ocorre

a diminuição da potência gerada. Em locais com temperaturas ambientes muito

elevadas é aconselhável utilizar módulos que possuam maior quantidade de células em

série para que consigam atingir a tensão adequada de funcionamento (SOLARTERRA,

2011). Os módulos de silício amorfo são menos influenciados que os demais tipos.

34

Figura 4.5 - Influência da temperatura na célula (SOLARTERRA, 2011).

Como já foi dito anteriormente a produção de energia fotovoltaica depende da

disponibilidade de radiação solar, da orientação e inclinação dos módulos e da

eficiência da instalação fotovoltaica.

A máxima eficiência dos módulos se dá com o ângulo de incidência dos raios

solares em 90°. A incidência da radiação solar varia com a latitude e com a declinação

solar durante o ano. Para calcular o ângulo que os painéis devem ser instalados, deve-

se considerar o caminho que o Sol faz através do céu durante diferentes períodos do

ano. A fixação dos painéis deve ser orientada de forma que o painel pegue a melhor

insolação ao meio dia no local da instalação. Valores positivos de ângulo indica que a

orientação é para o oeste, enquanto os negativos indicam o leste (ABB, 2010).

Outro fator importante que deve ser levado em consideração é a presença de

objetos próximos aos módulos. Os módulos devem estar suficientemente afastados de

qualquer objeto que projete sombra sobre eles no período de melhor radiação solar,

que ocorre normalmente de 9 às 17 horas (SOLARTERRA, 2011). As duas figuras a

seguir ajudam no cálculo da distância mínima que o objeto deve estar dos módulos. O

fator de espaçamento deve ser obtido com base na latitude do local da instalação.

Conhecendo este fator é possível calcular a distância pela seguinte fórmula.

35

(4.1)

Sendo o fator de espaçamento retirado do gráfico apresentado abaixo, a

altura do objeto e a altura em relação ao nível do solo em que se encontram

instalados os módulos. A curva do fator de espaçamento é obtida em relação à latitude

do local a realizar a instalação do sistema fotovoltaico.

Figura 4.6 - (a) Gráfico para a obtenção do fator de espaçamento (b) Figura para o cálculo da distância (SOLARTERRA, 2011).

Os módulos devem ser orientados para que a sua face frontal esteja na direção

do Norte geográfico (ou Sul, quando no hemisfério Norte). Para conseguir um melhor

aproveitamento da radiação solar incidente, os módulos devem estar inclinados em

relação ao plano horizontal sob um ângulo que varia conforme a latitude do local da

instalação. Recomenda-se a adoção dos seguintes ângulos de inclinação, expostos na

Tabela 4.1.

Tabela 4.1- Ângulos de inclinação segundo a latitude do local da instalação (SOLARTERRA, 2011).

Latitude Ângulo de

inclinação

0 a 4° 10°

5 a 20° Latitude + 5°

21 a 45° Latitude + 10°

46 a 65° Latitude + 15°

66 a 75° 80°

36

5. INSTALAÇÃO DOS SISTEMAS FOTOVOLTAICOS

As plantas fotovoltaicas podem ser instaladas de três formas diferentes: (i)

integradas, (ii) parcialmente integradas e (iii) não integradas. As plantas não integradas

são utilizadas de maneira centralizada, como uma usina geradora convencional,

normalmente a certa distância do ponto de consumo, sendo que seus módulos são

montados no chão. As plantas parcialmente integradas substituem parcialmente a

construção, geralmente partes dos telhados. Enquanto as plantas integradas

substituem todo o material, como por exemplo, todo o telhado é substituído por

módulos fotovoltaicos, apresentando a vantagem de não necessitar de uma área extra,

o que facilita sua implantação em centros urbanos. A instalação em centros urbanos

ocorre próximo aos pontos de consumo o que figura na eliminação de perdas com

transmissão e distribuição de energia elétrica.

Os painéis também podem ser vistos como uma ferramenta arquitetônica, que

proporcione à instalação uma estética inovadora e ecológica, o que tem atraído

grandes empresas para sua utilização já que o tema sustentabilidade encontra-se em

foco.

As plantas também são caracterizadas pela quantidade de inversores que estas

utilizam em sua configuração. Em sistemas pequenos é comum o emprego de um

único inversor, para o sistema se tornar mais econômico. Por outro lado, uma falha no

sistema ocasiona perda total da produção de energia do sistema fotovoltaico. Para as

plantas de médio porte, geralmente utiliza-se um inversor para cada fileira de módulos,

reduzindo as paradas de produção de energia devido às faltas. Finalmente, em

sistemas de grande porte utilizam-se vários inversores, de modo que o sistema seja

subdividido em vários grupos. Entretanto não utiliza um inversor para cada fileira de

módulos, o que torna seu investimento mais atrativo, assim como sua manutenção.

37

Figura 5.1 - (a) Um inversor por planta, (b) Um inversor por fileira, (c) Vários inversores. (ABB, 2010).

Em sistemas Net Metering, o mais utilizado nos Estados Unidos, adota-se um

medidor bidirecional, o que torna necessário ser de mesmo valor as tarifas de energia,

tanto a absorvida da rede como também a injetada nesta (RÜTHER, 2004). Caso as

tarifas sejam diferentes é necessário utilizar dois ou três medidores. A figura a seguir

representa esses medidores. Se for empregado o sistema Net Metering, somente o

medidor 3 (kWh 3) é necessário. Por outro lado, se este sistema não for adotado, há a

necessidade dos outros medidores, sendo que o medidor 1 (kWh 1) fará a medição da

energia produzida pelo gerador solar fotovoltaico e o medidor 2 (kWh 2) fará a medição

da energia injetada na rede.

38

Figura 5.2 - Diagrama de um sistema solar fotovoltaico interligado à rede de distribuição (RÜTHER, 2004).

Através destes medidores é possível detectar a energia elétrica que é

consumida da rede elétrica, a entregue à rede elétrica e a produzida pelo sistema

fotovoltaico, sendo que o balanço de energia do sistema é obtido utilizando a seguinte

fórmula:

(5.1)

Onde é a energia produzida pela planta fotovoltaica e entregue à rede elétrica,

é a energia absorvida da rede elétrica, é a energia produzida pela planta

fotovoltaica mantida pela tarifa de feedback ( retorno obtido com a geração de energia

fotovoltaica) e é a energia consumida pelo usuário da planta.

39

Durante a noite e nos momentos em que a planta fotovoltaica não produz

energia, sabe-se que:

(5.2)

Ou seja, toda a energia consumida é retirada da redede distribuição elétrica.

Quando a planta gera energia são possíveis duas situações:

: o balanço é positivo e a energia é entregue à rede elétrica e

: o balanço é negativo e a energia é absorvida da rede elétrica.

5.1 Aterramento e Proteção de Sistemas Fotovoltaicos

O sistema de aterramento envolve as partes condutoras expostas, ou seja, as

armações de metal dos painéis, e o sistema de geração de potência, as partes vivas do

sistema (células). O aterramento é realizado de forma que evite que o sistema atinja

tensões elevadas em caso de falhas. O sistema de isolação é seguro para pessoas que

tocam partes vivas de pequenas plantas, pois a resistência de isolação da terra para

estas não é infinita e uma pessoa pode servir como uma resistência para a passagem

de corrente até esta retornar a terra. Porém o mesmo não pode ser dito para plantas

maiores, pois uma corrente pode causar a eletrocução de uma pessoa podendo leva-la

à morte. A resistência de isolação diminui com o aumento da corrente, com o tamanho

do sistema, com o passar do tempo e com a umidade também (ABB, 2010).

As plantas possuem os seguintes tipos de sistema de proteção: IT, TN ou TT. O

sistema IT apresenta o neutro isolado da terra e suas massas ligadas diretamente à

terra de proteção. O sistema TN possui o neutro ligado à terra de serviço e suas

massas ligadas diretamente ao neutro. Já o sistema TT possui o neutro ligado à terra

de serviço e suas massas ligadas diretamente à terra de proteção. Considerando o

lado do transformador ligado à carga, os sistemas podem ser IT, ou seja, as plantas

possuem suas partes vivas isoladas do terra por meio de uma resistência de

aterramento. Ou podem ser sistemas do tipo TN, onde os neutros também são

aterrados. Ao analisar o lado referente à alimentação do transformador, o sistema pode

ser do tipo TT, onde as partes condutoras expostas pertencentes à planta do

consumidor são protegidas por um circuito de quebra de corrente residual posicionado

40

no começo da planta, resultando na proteção da rede como do gerador fotovoltaico

também.

Figura 5.3 - (a) Sistema IT (b) Sistema TN ( ABB, 2010).

Nas plantas que não existe o transformador, a instalação fotovoltaica deve ser

isolada do terra e suas partes vivas devem se tornar uma extensão da rede por meio

de um sistema TT ou TN.

Figura 5.4 - Sistema sem o transformador (ABB,2010).

Uma questão importante e crítica em todos os sistemas é a proteção, e isso não

seria diferente para os sistemas fotovoltaicos. Deve-se realizar o estudo para que o

sistema fique protegido contra sobrecorrentes e sobretensões.

Os cabos devem ser escolhidos corretamente de acordo com a capacidade de

corrente máxima que pode afetá-los. Como já foi dito, um módulo pode vir a funcionar

41

como uma carga, devido a sombreamentos ou faltas, isso pode causar danos aos

módulos, sendo que este resiste a uma corrente reversa variando de 2,5 a 3 vezes a

corrente de curto circuito (ABB, 2010).

Os efeitos do curto circuito na rede e nos capacitores são de natureza transitória

e normalmente tais efeitos não são dimensionados na proteção posicionados no lado

DC. Entretanto, é necessário analisar caso a caso com prudência.

Os dispositivos devem satisfazer o uso de corrente contínua e ter uma taxa de

tensão de serviço igual ou maior a tensão máxima do gerador fotovoltaico, sendo que

estes devem ser posicionados no final do circuito a ser protegido. A capacidade de

bloquear dos dispositivos não deve ser menor que a corrente de curto circuito de outras

fileiras.

Para a proteção do lado de corrente alternada, ou seja, o lado da carga, os

cabos devem ser dimensionados com uma capacidade de corrente maior que a

máxima que o inversor pode entregar. É aconselhável a utilização de chaves

interruptoras para facilitar a manutenção das fileiras sem retirar de serviço outras

partes da planta.

As instalações fotovoltaicas isoladas podem ser alvo de sobretensões de origem

atmosférica, seja de forma direta (golpes de raios nas estruturas) ou indireta. Logo é

importante verificar a possibilidade da instalação de um sistema de proteção contra as

descargas atmosféricas – SPDA.

42

6. ANÁLISE ECONÔMICA DO INVESTIMENTO

Desde 2007 entrou em vigor as tarifas de incentivo para a utilização dos

sistemas fotovoltaicos em países como a Alemanha por exemplo. Essa tarifa consiste

na remuneração da energia produzida pelo sistema fotovoltaico, em um período de 20

anos. Este incentivo trás vantagens econômicas pela entrega de potência para a rede,

sendo que a energia produzida pode ser utilizada para o próprio consumo ou pode ser

vendida para o mercado de energia. Caso seja utilizada para o próprio cosumo, o

produtor receberá uma diminuição na sua conta de energia, mas se esta for utilizada

para a venda, o sistema se torna uma fonte explícita de renda. Um sistema de venda

de energia para a rede é estendido para todas as plantas de fontes renováveis que

possuem uma média anual de potência menor que 200kW.

O cálculo desta tarifa considera a quantidade de energia elétrica trocada com a

rede, o valor da energia elétrica entregue à rede e o valor da taxa paga pela energia

tirada da rede dividida pelo preço da energia e do serviço. Quando o valor da energia

entregue à rede exceder a absorvida, o balanço representará um crédito. Para as

plantas fotovoltaicas participantes do Net Metering existe uma recompensa adicional

pelo uso eficiente da energia nas construções.

Para a instalação de qualquer sistema duas análises de viabilidade devem ser

realizadas, uma técnica e uma econômica. Do ponto de vista técnico, deve-se garantir

o tamanho ótimo da instalação. Para a realização da análise econômica deve-se

considerar a relação custo-benefício do empreendimento, consistindo numa

comparação entre o investimento inicial e o valor presente do investimento.

O lucro (L) pode ser calculado pelo retorno do investimento (R) subtraindo os

custos da instalação (C), esta relação é válida para uma duração instantânea.

(6.1)

Se o valor presente (NPV) calculado for positivo significa que os descontos

darão um grande retorno sendo maior que o custo inicial, o que torna a instalação da

planta vantajosa do ponto de vista financeiro.

(6.2)

Onde é o investimento inicial, é o dinheiro que esta fluindo a cada ano e

é o custo referente a juros e a inflação. A taxa de retorno interno (IRR) também é

utilizada como um indicador econômico. Se esta taxa exceder o custo capital

43

considera-se o investimento lucrativo. Entretanto, se o IRR for menor que o retorno o

investimento deve ser evitado. Caso exista a possibilidade de duas alternativas com o

mesmo risco de investimento, deve-se escolher a que possui o maior IRR.

O payback (N) é representado pelo número de anos depois que o NPV se torna

nulo, considerando n como o número de anos previsto para o investimento, este se

tornará oportuno se N > n, caso contrário o investimento deve ser evitado. Na Itália,

país que possui uma quantidade significativa de sistemas fotovoltaicos, apresenta um

payback em torno de 11 anos (ABB, 2010).

Estudos confirmam que os preços no que diz respeito à energia fotovoltaica vem

sofrendo quedas ano após ano (VALLÊRA, 2005), como mostra a Figura 6.1 através da

curva vermelha. O gráfico de barras representa a relação entre custo e tamanho da

instalação fotovoltaica. Observe que, com o aumento da instalação, aumenta-se o

custo do Wp (watt-pico) produzido. Quando se trata de capacidade de geração de

energia em um dia não se deve esquecer que um sistema convencional, como por

exemplo, uma central hidrelétrica, pode gerar energia durante 24 horas por dia. O

mesmo não ocorre com os sistemas fotovoltaicos, que dependendo de sua localização

geográfica podem gerar em média 6 horas por dia de energia (SHAYANI, 2006).

Portanto, para que o sistema fotovoltaico possa produzir a mesma quantidade de

energia em um dia, ele deve ter sua potência aumentada em 4 vezes, o que eleva seu

custo de implantação.

Figura 6.1 - Relação de custo de um watt fotovoltaico (EPIA, 2008).

Entretanto, deve ser levado em consideração que os sistemas fotovoltaicos não

apresentam gastos com combustível, o que em usinas térmicas representa um elevado

44

custo, além dos gastos com operação e manutenção que na geração fotovoltaica

chega a ser até 5 vezes mais barato (SHAYANI, 2006). A manutenção de um painel

fotovoltaico deve garantir que estes permaneçam limpos, livres de poeiras e outros,

para que não ocorram sombreamentos que venham a reduzir a geração de energia.

Essa limpeza a própria água da chuva realiza. Em caso de quebra de algum painel não

é necessário mão de obra altamente qualificada para realizar a troca, motivo pelo qual

o custo com manutenção é mínimo.

45

7. ESTUDOS REALIZADOS

Os sistemas solares fotovoltaicos utilizados em edificações de forma integrada e

interligada à rede de distribuição pública de energia elétrica oferecem uma série de

vantagens para o sistema elétrico, ressaltando a minimização das perdas com

transmissão e distribuição de energia comparadas à transmissão e distribuição da

energia elétrica convencional e a não necessidade de uma área física externa à

edificação comparada, por exemplo, aos sistemas de geração eólica. Além disso, o

sistema fotovoltaico pode oferecer suporte de reativo aos pontos críticos da rede,

melhorando a qualidade de energia entregue ao consumidor (RÜTHER, 2004).

Geralmente, em instalações comerciais, o perfil de consumo de energia da

instalação se ajusta perfeitamente à geração fotovoltaica, pois a utilização dos

aparelhos de ar condicionado coincide com o período de maior geração de energia, ou

seja, durante o dia onde o calor é mais intenso assim como a radiação solar incidente

nos módulos fotovoltaicos. O perfil de consumo energético de um prédio público é

dividido da seguinte forma, aproximadamente 50% é destinado aos ar condicionados,

seguido de cerca de 25% para a iluminação, e em proporções menores os demais

equipamentos de escritório, elevadores e bombas (SHAYANI, 2006).

Em instalações industriais, a utilização de painéis de forma integrada às

edificações também se torna vantajosa por na maioria das vezes, constar de grandes

áreas de cobertura geralmente plana, o que facilita a instalações dos painéis.

A seguir serão apresentadas todas as análises que realizei para a instalação do

sistema fotovoltaico em prédios administrativos e em áreas industriais, sendo que todas

as considerações foram tomadas com base no estudo apresentado até o capítulo

anterior.

7.1 Prédios administrativos

Inicialmente, para o estudo do consumo energético em um prédio administrativo,

foi considerada uma edificação típica, tomando como base parâmetros reais. O

detalhamento de tal edificação, que será utilizado posteriormente para as análises,

encontra-se a seguir. Foi proposto um edifício composto por 10 andares, sendo:

46

1º andar: Recepção, sala de espera, cantina e banheiros;

2º e 3°andares: Garagem;

4º ao 9º andares: Escritórios com banheiros;

10º andar: Anfiteatros e banheiros.

As dimensões técnicas para a edificação são: altura de 30m e área da secção de

300 m² (20 x 15 m²). As figuras abaixo representam as plantas baixas para os

diferentes andares.

Figura 7.1 - Planta baixa do térreo

47

Figura 7.2 - Planta baixa dos andares com os escritórios

Figura 7.3 - Planta baixa dos anfiteatros

OBS: As imagens estão na escala de 1:100.

48

Pelas imagens acima apresentadas pode-se observar que, o prédio consta de 12

escritórios por andar, cada um com seu respectivo banheiro, totalizando 72 escritórios.

Além disso, consta de 5 anfiteatros no último andar, 4 elevadores, dois andares

utilizados para estacionamento dos carros dos funcionários, uma cantina e áreas de

espera próxima à recepção com televisores.

A seguir são listados os equipamentos existentes no edifício com sua respectiva

potência. Estes dados permitem a determinação da carga instalada da edificação.

Escritório:

1 Computador com impressora 250W

1 Ar-condicionado 8500Btu 1300W

1 Aquecedor de ambiente 1550W

1 Bebedouro 100W

2 Lâmpadas fluorescentes (40W) 80W

1 Lâmpada fluorescente compacta (banheiro) 20W

Total 3300W

12 escritórios x 6 andares x 3300W = 237,60kW

Cantina:

2 Freezer vertical – 280L (200W) 400W

1 Freezer horizontal – 330L (2 portas) 200W

1 Forno micro ondas 1150W

1 Cafeteira elétrica média 750W

1 Estufa 1000W

1 Grill 1200W

1 Suggar 200W

1 Liquidificador 320W

1 Espremedor de laranjas 150W

1 Torradeira 800W

1 Forno elétrico 2000W

49

12 Lâmpadas fluorescentes (40W) 480W

Total 8650W

Recepção:

1 Máquina Xerox pequena 1500W

1 Scanner 50W

1 Ar-condicionado 16000Btu 1950W

2 Computadores com impressora (250W) 500W

2 Televisores (200W) 400W

12 Lâmpadas fluorescentes (40W) 480W

Total 4880W

Banheiros (térreo):

6 Lâmpadas fluorescentes (40W) 240W

Anfiteatros:

5 Retroprojetores (210W) 1050W

5 Computadores (180W) 900W

5 Amplificadores de som (50W) 250W

42 Lâmpadas fluorescentes (40W) 1680W

Total 3880W

Garagem:

80 lâmpadas fluorescentes (40W) 3200W

Elevadores:

50

Cada elevador possui capacidade para 8 pessoas

Consumo médio por viagem 0,40kWh

Estipulando o tempo de 3 mim para uma viagem e o elevador funcionando de

7:00 às 20:00, num total de 13 horas, tem-se:

Carga total instalada 275,74kW

Portanto, de posse da informação da utilização de cada um desses

equipamentos ao longo do dia foram definidas as curvas de carga da edificação. A

Figura 7.4 mostra como foi realizada a distribuição das cargas ao longo do dia, estando

as demandas dessas fora de escala.

Figura 7.4 - Curva de carga estipulada fora de escala

A Figura 7.5 já apresenta a curva de carga considerando os consumos de cada

equipamento, de forma que a figura mostra em escala a carga demandada ao longo do

dia. Na Figura 7.6 o valor dessas demandas encontram-se explicitadas no gráfico.

51

Figura 7.5 - Curva de carga em escala

Figura 7.6 - Curva de carga com os valores das demandas apontados em cada

intervalo de hora

Pela curva de carga calcula-se o consumo diário, multiplicando a demanda pelo

intervalo de tempo e depois somando as parcelas, como mostra a seguir:

0

20

40

60

80

100

120

140

160

180

Dem

and

a (k

W)

Horas do dia

Curva de Carga - Prédio Administrativo

10,75

31,32

155,91

128,27

155,91

37,47

13,95 10,75

0

20

40

60

80

100

120

140

160

180

0h-1h 1h-2h 2h-3h 3h-4h 4h-5h 5h-6h 6h-7h 7h-8h

8h-9h 9h-10h 10h-11h 11h-12h 12h-13h 13h-14h 14h-15h 15h-16h

52

Consumo diário 1759,17 kWh

Figura 7.7 - Energia consumida diariamente

Considerando que um mês possui 30 dias tem-se:

Consumo mensal 52,77 MWh

Segundo a ANEEL (relatorios.aneel.gov.br, 2013), para a classe de consumo

comercial, serviços e outros, a tarifa cobrada referente à região Sudeste é de R$

53

295,22 por MWh (em Abril de 2013). Portanto, o edifício nestas condições apresenta os

seguintes custos em relação à energia elétrica:

Custo mensal:

Custo anual:

Esses valores serão utilizados para a realização de diversos ensaios com

diferentes tipos de painéis fotovoltaicos e diferentes configurações de instalações, para

que seja possível comparar e concluir qual configuração, no cenário atual, é a mais

vantajosa ou a que se encontra mais próximo disso.

7.1.1 Simulações e análises econômicas

Para a aquisição dos dados necessários às análises (rendimento fotovoltaico,

nível de consumo próprio e outros) foi utilizado o software SMA Sunny Design 2.211

que apresenta como resultado a geração anual de energia fotovoltaica que a instalação

é capaz de fornecer.

Para as simulações iniciais o local estipulado para a implementação do sistema

fotovoltaico foi a cidade de Juiz de Fora, em Minas Gerais. Em relação às temperaturas

foram adotados os valores utilizados para uma condição normal de operação, sendo o

sistema trabalhando na temperatura de 25°C, com uma temperatura mínima de 5°C e

uma máxima de 40°C (valores estipulados pelo software).

A Tabela 7.1 apresenta três casos testes com a instalação de painéis no telhado

do prédio (correspondente a uma área de 300 m²), cada um utilizando um tipo de painel

(monocristalino, policristalino e filmes finos – silício amorfo). A inclinação utilizada para

os painéis foi de 23°, assim como o seu azimute (ângulo entre a perpendicular ao plano

de incidência e o plano de vibração de uma radiação eletromagnética planopolarizada),

sendo este o mais favorável para tal região.

Na figura abaixo o ângulo de azimute é representado por , formado pela

direção Sul-Norte com a projeção no plano horizontal da normal ao painel. Dado em

graus a partir do Norte e em direção os sentido horário.

1 Software desenvolvido pela SMA Solar Technology.

54

Figura 7.8 – Incidência da radiação solar (ELETRONICA).

Visto que grande parte dos equipamentos são importados e cotados em dólares

americanos ou euros, para o cálculo dos custos de investimento foram adotadas as

seguintes taxas de câmbio como sendo igual a R$2,0020/US$1,00 e R$2,6352/EU$1,0,

valores retirados de Valor Econômico (Banco Central do Brasil, 2013) no dia 30 de Abril

de 2013.

Para a realização das simulações que serão apresentadas a seguir, os painéis e

inversores foram escolhidos de forma a obter o melhor rendimento para cada

simulação. Esta escolha foi realizada tendo como base os diversos modelos

disponíveis pelo programa SMA Sunny Design 2.21.

A quantidade de painéis a serem utilizados foi determinada pelo cálculo entre a

área disponível no telhado do edifício e a área correspondente de cada painel, de

forma a conseguir um melhor aproveitamento na instalação destes.

Tabela 7.1 - Área dos módulos utilizados nas simulações

Módulo Área (m²)

SolarWorld – SW 230 mono 1,6767

SolarWorld – SW 230 poly 1,6767

Sharp – NA-F121 (A5) 1,4217

Com a definição do tipo de painel a ser utilizado, assim como seu fabricante, seu

modelo e a sua quantidade, e também o tipo de inversor em relação a modelo e

fabricante, o software sugere o número de inversores necessários que satisfaça a

55

instalação em questão. Foram simulados três casos com diferentes tipos de painéis,

painéis monocristalinos, policristalinos e de filmes finos.

Tabela 7.2 – Especificação das simulações realizadas com a instalação dos módulos fotovoltaicos no teto do edifício

CASO 1 CASO 2 CASO 3

Painel Monocristalino Policristalino Silício amorfo

Especificação do painel

SolarWorld – SW 230 mono

SolarWorld – SW 230 poly

Sharp – NA-F121 (A5)

Potência do painel

230 W 230 W 121 W

Quantidade de painéis

154 154 192

Custo com painéis (R$)

Especificação do inversor

Sunny mini central - SMC 4600A

Sunny mini central - SMC 4600A

Sunny mini central - SMC 4600A

Quantidade de inversores

7 7 4

Custo com inversores (R$)

Custo total de investimento (R$)

284.537,26 207.373,26 51.031,76

Ao simular cada caso obtém-se o rendimento anual do sistema fotovoltaico

assim como a porcentagem de energia utilizada para seu próprio consumo. Se a

energia produzida for menor que o seu consumo anual, toda a energia será utilizada

para seu próprio consumo, não deixando excedente para a injeção de energia na rede.

Para realizar as simulações a edificação descrita anteriormente foi considerada um

consumidor típico comercial, trabalhando em dias úteis de 8 às 18 horas. Durante a

simulação é considerado um Fator de Capacidade (relação entre o rendimento real e o

nominal do sistema fotovoltaico em um mesmo intervalo de tempo) de acordo com a

localização escolhida para a instalação dos painéis. Este fator leva em consideração o

período em que o sistema não gera energia, devido à presença de nuvens, chuvas,

períodos da noite entre outros.

56

Tabela 7.3 – Resultados da simulação para os casos com instalação de módulos fotovoltaicos no teto do edifício

CASO 1 CASO 2 CASO 3

Rendimento anual

fotovoltaico 38,72 MWh 38,52 MWh 25,13 MWh

Porcentagem utilizada

para o próprio consumo 100 % 100 % 100 %

Para o estudo da viabilidade econômica, foram considerados os custos de

investimentos, custos com energia elétrica convencional, evolução das tarifas de

energia, e taxa de juros do mercado financeiro nacional. A taxa de juros utilizada foi de

5% ao ano, e para a evolução na tarifa de energia foi considerada um aumento de 2%

a cada 2 anos. Dessa forma foi possível calcular o payback previsto para cada caso

teste. Abaixo encontra-se de forma detalhada o cálculo realizado para a obtenção da

economia obtida com a instalação do sistema fotovoltaico para o Caso 1. Para os

demais utilizou-se o mesmo raciocínio.

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

57

Tabela 7.4- Resultados das análises econômicas paras os casos com instalação de módulos fotovoltaicos no teto do edifício

CASO 1 CASO 2 CASO 3

Economia de gastos com

energia elétrica (R$) 11.430,92 11.371,87 7.418,88

Payback previsto (anos) > 25 > 25 > 25

A seguir encontram-se os gráficos referentes a cada caso simulado. Em cada

gráfico é apresentado o lucro que a instalação do sistema fotovoltaico proporciona e o

momento quando o sistema passa a ser vantajoso, ou seja, passa a ser rentável ao

investidor.

A curva em azul apresenta a evolução da tarifa de energia ao longo dos anos

simulados, simulou-se 25 anos, uma vez que a vida útil do sistema fotovoltaico gira em

torno de 25 anos. Esta curva inicia-se no valor gasto anualmente com a energia elétrica

antes de realizar a instalação do sistema fotovoltaico, e a cada dois anos, ela aumenta

a uma taxa de juros de 2% ao ano.

A curva vermelha apresenta o lucro que a instalação dos painéis proporciona

com o passar dos anos. Seu primeiro valor indica o total de investimento necessário

para realizar a instalação do sistema fotovoltaico. Seu lucro é dado pela economia que

a instalação desse sistema proporciona no gasto com a energia elétrica, sendo que a

cada ano este valor é implementado, e foi considerado que este lucro está rendendo a

uma taxa de juros de 5% ao ano.

Já a curva verde apresenta o retorno proporcionado pelo sistema, ou seja, seu

payback, quando este passa a ser positivo significa que todos os custos com a

instalação do sistema foram pagos e a partir deste momento o sistema fotovoltaico

somente rende lucros para o investidor. Se esta situação ocorrer antes do tempo de

vida útil do sistema, a instalação é rentável. A curva se inicia no valor gasto no primeiro

ano da instalação (total do investimento + custo anual com a energia oriunda da rede

elétrica após a instalação), no segundo ano contabiliza-se apenas o custo anual com a

rede elétrica após a instalação do sistema e a economia que este sistema proporciona.

Nos demais anos o gasto com a energia elétrica continua sendo subtraído do lucro,

considerando o aumento da tarifa de energia a cada dois anos. Quando sua curva

atingir um valor positivo, significa que a partir deste momento o sistema apenas

proporciona lucros.

58

Figura 7.9 – Simulação do caso com a instalação de painéis monocristalinos no teto do edifício

Figura 7.10 - Simulação do caso com a instalação de painéis policristalinos no teto do edifício

-500.000,00

-400.000,00

-300.000,00

-200.000,00

-100.000,00

-

100.000,00

200.000,00

300.000,00

1 3 5 7 9 11 13 15 17 19 21 23 25

Caso 1

Fluxo de Lucro com a Energia Fotovoltaica

Retorno da Instalação

Tarifa de Energia

-500.000,00

-400.000,00

-300.000,00

-200.000,00

-100.000,00

-

100.000,00

200.000,00

300.000,00

1 3 5 7 9 11 13 15 17 19 21 23 25

Caso 2

Fluxo de Lucro com a Energia Fotovoltaica

Retorno da Instalação

Tarifa de Energia

59

Figura 7.11 - Simulação do caso com a instalação de painéis de silício amorfo no teto do edifício

Comparando e analisando estes três casos é possível observar que:

O caso que utiliza o painel monocristalino (Caso 1) apresenta um

rendimento superior aos demais, devido ao fato do painel ser construído

com um silício de melhor qualidade (maior pureza), porém seu custo se

torna mais elevado.

O rendimento apresentado pelo painel policristalino (Caso 2) não cai de

forma significativa se comparado com o monocristalino, o que o torna

mais vantajoso nas instalações por seu custo ser pouco mais reduzido.

Sua relação custo-benefício é mais atrativa, pois tem-se praticamente o

mesmo rendimento necessitando de um menor investimento, razão pela

qual domina as instalações atualmente.

A utilização dos painéis de filmes finos (Caso 3) apesar de possuir um

custo extremamente reduzido comparado com os demais, possui também

uma perda de rendimento, o que desfavorece a sua implementação.

Como já foi dito no item 3.1.1, o rendimento do painel de silício amorfo

reduz em relação ao painel monocristalino aproximadamente 8%, e em

relação ao policristalino 4%. Estudos e testes em laboratórios a cada ano

que passa consegue melhorar a eficiência de tal painel, o que fará

alavancar a utilização da energia fotovoltaica em massa, pois o problema

-300.000,00

-200.000,00

-100.000,00

-

100.000,00

200.000,00

300.000,00

1 3 5 7 9 11 13 15 17 19 21 23 25

Caso 3

Fluxo de Lucro com a Energia Fotovoltaica

Retorno da Instalação

Tarifa de Energia

60

do rendimento será solucionado e junto a este estará associado seu baixo

custo de aquisição. Enquanto isso não ocorre, os painéis de silício amorfo

estão sendo mais utilizados por uma questão estética, por serem

semitransparentes podem ser utilizados nas fachadas dos edifícios, ao

mesmo tempo em que aproveitam a iluminação natural do dia produzem

energia para a instalação, e conferem uma responsabilidade social para a

construção.

Em relação ao tempo necessário para obter retorno do investimento,

payback, os três casos se mostram inviáveis comparados ao tempo de

vida útil da instalação, em média 25 anos. Ambos apresentaram um

payback superior a 25 anos, desta forma o sistema não agrega lucro. Esta

situação mostra como é indispensável a introdução de meios que

incentivem a utilização desta forma de geração de energia.

Observando agora as curvas em vermelho e em azul, torna-se mais claro

identificar se a instalação é vantajosa ou não. Note que nos três casos, a

curva vermelha (lucro obtido com o sistema fotovoltaico) não ultrapassa a

curva em azul (gastos considerando a evolução da tarifa de energia), a

utilização da energia convencional se mostra mais vantajosa que a

instalação do sistema fotovoltaico.

Chega-se à conclusão que os resultados apresentados com os três tipos mais

utilizados de painéis fotovoltaicos (monocristalino, policristalino e filmes finos – silício

amorfo) são condizentes com o que era de se esperar, pelo fato da melhor situação em

relação a custo-benefício ser a instalação de painéis policristalinos, pelas razões

descritas anteriormente. Porém, em nenhuma dessas situações a instalação

fotovoltaica é viável, devido ao seu elevado custo, o que aumenta o tempo necessário

para que o sistema obtenha um retorno favorável ao investidor.

7.1.1.1 Instalação de painéis fotovoltaicos na fachada do edifício

Neste subitem são apresentados três novos testes considerando a instalação

dos painéis na fachada do prédio. A Figura abaixo exemplifica a instalação de painéis

de filmes finos na fachada de um edifício em Portugal.

61

Figura 7.12 – Instalação de painéis de filmes finos na fachada do edifício (BRIGHT

SOLAR)

Foram utilizados apenas painéis de filmes finos (silício amorfo), para o prédio ter

o aproveitamento da luz do dia, uma vez que são painéis semitransparentes, para uma

iluminação mais eficiente do ponto de vista energético, o que os demais painéis não

permitiriam por serem painéis opacos. Nos três casos apresentados a seguir foram

utilizados 406 módulos da fabricante Sharp, modelo Sharp – NA – F121 (A5), a

diferenciação entre os casos encontra-se na escolha dos inversores. A diferença entre

os inversores encontra-se na sua capacidade. Os de maiores capacidades utilizam um

menor número de inversores.

Tabela 7.5 - Especificação das simulações realizadas com a instalação dos módulos fotovoltaicos na fachada do edifício

CASO 4 CASO 5 CASO 6

Custo com

painéis (R$)

Especificação do

inversor

Sunny mini central -

SMC 5000A

Sunny mini central -

SMC 4600A

Sunny mini central

- SMC 6000A

Quantidade de

inversores 7 8 7

Custo com

inversores (R$)

Custo total de

investimento (R$) 109.346,16 104.728,16 154.806,40

62

Da mesma forma, o rendimento anual do sistema fotovoltaico é obtido pela

simulação dos casos acima no programa SMA Sunny Design 2.21. Para realizar a

simulação também foi considerado um consumidor típico comercial, trabalhando em

dias úteis de 8 às 18 horas.

Tabela 7.6 - Resultados da simulação para os casos com instalação de módulos fotovoltaicos na fachada do edifício

CASO 4 CASO 5 CASO 6

Rendimento anual

fotovoltaico 53,08 MWh 52,35 MWh 53,06 MWh

Porcentagem utilizada para

o próprio consumo 100 % 100 % 100 %

Os resultados obtidos pela realização das análises econômicas encontram-se a

seguir.

Tabela 7.7 – Resultados das análises econômicas para os casos com instalação de módulos fotovoltaicos na fachada do edifício

CASO 4 CASO 5 CASO 6

Economia de gastos com

energia elétrica (R$) 15.670,28 15.454,77 15.664,37

Payback previsto (anos) 21 21 23

Para as análises econômicas tornarem mais simples, encontram-se abaixo os

gráficos referentes a cada simulação com a instalação de painéis de filmes finos na

fachada do edifício. Foram utilizadas as mesmas taxas de juros, o mesmo valor do

dólar, do euro, da tarifa de energia para poder comparar essas instalações.

63

Figura 7.13 – Simulação do caso com a instalação de painéis de silício amorfo na fachada do edifício utilizando o inversor SMC 5000A

Figura 7.14 – Simulação do caso com a instalação de painéis de silício amorfo na fachada do edifício utilizando o inversor SMC 4600A – 11

-400.000,00

-300.000,00

-200.000,00

-100.000,00

-

100.000,00

200.000,00

300.000,00

400.000,00

1 3 5 7 9 11 13 15 17 19 21 23 25

Caso 4

Fluxo de Lucro com a Energia Fotovoltaica

Retorno da Instalação

Tarifa de Energia

-400.000,00

-300.000,00

-200.000,00

-100.000,00

-

100.000,00

200.000,00

300.000,00

400.000,00

1 3 5 7 9 11 13 15 17 19 21 23 25

Caso 5

Fluxo de Lucro com a Energia Fotovoltaica

Retorno da Instalação

Tarifa de Energia

64

Figura 7.15 – Simulação do caso com a instalação de painéis de silício amorfo na fachada do edifício utilizando o inversor SB 2500

Note que como as simulações estão utilizando os mesmo módulos, a diferença

de custo de investimento está no tipo de inversor. Pela Tabela 7.5 é fácil perceber que

à medida que aumenta a capacidade de conversão do inversor, mais caro este se

torna. Logo, o Caso 6 faz uso do inversor mais caro entre os casos simulados, sendo o

caso que apresenta o maior payback. Outra observação consequente desta anterior é o

fato da redução da capacidade de conversão tornar necessária a utilização de um

maior número de inversores. O Caso 4 mostra-se mais eficiente, apesar da

necessidade de um investimento um pouco maior que o Caso 5, apresenta o mesmo

payback e um maior rendimento fotovoltaico. Observe que nos Casos 4 e 5, a curva

vermelha (lucro obtido com o sistema fotovoltaico) ultrapassa a curva em azul (gastos

considerando a evolução da tarifa de energia) mostrando que a instalação do sistema

fotovoltaico nestes casos é mais atrativa que a utilização da energia convencional.

7.1.1.2 Instalação de painéis fotovoltaicos em diferentes regiões

Agora será realizada uma análise na qual seja possível uma comparação da

geração de energia fotovoltaica em diferentes regiões do Brasil, para analisar como a

radiação solar influencia em tal fator. Para isso, utilizaremos como base o Caso 2, onde

são usados painéis policristalinos no topo do edifício. Os azimutes e as inclinações

escolhidas favorecem a maior geração de energia fotovoltaica.

-400.000,00

-300.000,00

-200.000,00

-100.000,00

-

100.000,00

200.000,00

300.000,00

1 3 5 7 9 11 13 15 17 19 21 23 25

Caso 6

Fluxo de Lucro com a Energia Fotovoltaica

Retorno da Instalação

Tarifa de Energia

65

Tabela 7.8 - Resultado das análises em diferentes cidades do Brasil utilizando o mesmo sistema do Caso 2 (painéis policristalinos no teto do edifício)

Cidades Azimute Inclinação Rendimento anual fotovoltaico (MWh)

Belém -90° 20° 47,81

Brasília -90° 10° 47,71

Fortaleza -90° 20° 52,25

Juiz de Fora 23° 23° 38,52

Porto Alegre 60° 20° 37,88

Rio de Janeiro 60° 25° 46,60

O primeiro fato que merece importância são os valores de azimute e inclinação.

Estes valores se diferenciam de uma cidade para outra por apresentarem diferentes

localizações em relação à Linha do Equador. Esses dados são utilizados para

proporcionar a cada caso, a disposição que obtenha o melhor rendimento fotovoltaico

possível.

As duas cidades que apresentam maiores rendimentos fotovoltaicos são as

cidades de Fortaleza (Nordeste) seguida de Belém (Norte), justamente as cidades que

apresentam maior taxa de radiação solar, 5,56 e 5,05 kWh/m².dia, respectivamente. A

tabela abaixo mostra esses índices de radiação solar para as cidades simuladas acima,

sendo que os valores foram retirados de Solar Energy (2013).

Tabela 7.9 – Média anual de Radiação Solar para as cidades simuladas acima

Cidades Média Anual de Radiação

Solar (kWh/m².dia)

Belém 5,05

Brasília 4,93

Fortaleza 5,56

Juiz de Fora 4,16

Porto Alegre 4,45

Rio de Janeiro 4,64

Observe que a geração de energia fotovoltaica é proporcional ao índice de

radiação solar, ou seja, ao passo que se aumenta a radiação solar da região a ser

instalado o sistema fotovoltaico, aumenta-se a geração fotovoltaica.

66

7.1.1.3 Instalação do Sistema Fotovoltaico x Aplicação

Para um investidor a questão ambiental e o investimento ser lucrativo após

alguns anos, não são o suficiente para que este opte a investir na instalação de um

sistema fotovoltaico, ele sempre analisa todas as possíveis possibilidades para apostar

seu dinheiro.

Pensando nisso, o Caso 4, instalação de painéis fotovoltaicos de silício amorfo

na fachada de um edifício, será analisado por este novo âmbito. Neste Caso 4, o

investimento necessário para a instalação do sistema fotovoltaico foi de R$ 109.346,16

e o retorno esperado deste investimento foi de 21 anos. Considere agora que ao invés

de investir este valor no sistema fotovoltaico, este foi aplicado no mercado financeiro,

por exemplo, em uma poupança, rendendo juros a taxa de 5% ao ano. O gráfico abaixo

apresenta essa relação.

Figura 7.16 – Comparação entre o Investimento na Fotovoltaica e a Aplicação do

dinheiro

Observe que o investimento na instalação do sistema fotovoltaico se aproxima

do lucro obtido com a aplicação da mesma quantia, porém ainda não ultrapassa.

Portanto, neste caso, aplicar o dinheiro no mercado financeiro é mais vantajoso.

Por isso a necessidade de se criar tarifas de incentivo para a utilização da energia

-350.000,00

-300.000,00

-250.000,00

-200.000,00

-150.000,00

-100.000,00

-50.000,00

-

50.000,00

100.000,00

150.000,00

200.000,00

1 3 5 7 9 11 13 15 17 19 21 23 25

Retorno da Instalação Fotovoltaica

Lucro com o investimento do dinheiro

67

fotovoltaica. Com os incentivos a curva em azul irá subir e tornará a instalação do

sistema fotovoltaico atrativa para os olhos dos grandes investidores.

7.2 Área Industrial

Para a realização do estudo de viabilidade técnica e econômica de uma

instalação fotovoltaica em uma área industrial, foi utilizada como base uma empresa do

ramo de calçados de segurança, localizada na cidade de Itanhandu – MG. O horário de

funcionamento da fábrica é de 7 às 12h e de 13 às 17h, o que já favorece a

implementação do sistema fotovoltaico, uma vez que o funcionamento da indústria se

dá exatamente no período diurno, onde se tem maior radiação solar. A área coberta

pelo galpão da fábrica compreende 1800 m² (20m x 90m).

A seguir encontra-se a lista de equipamentos utilizados na fabricação dos

calçados de proteção individual, assim como os demais equipamentos que demandam

energia, como por exemplo, ventiladores e bebedouros.

7 Balancins de corte hidráulico 1,5 hp (Açoreal) 7829,85 W

1 Balancim de ponte de aviamento 4,25 cv (Poppi) 3125,87 W

1 Máquina de aplicar couraça termoplástica (USM Brasil) 1100 W

1 Máquina de carimbar (Erps) 500 W

1 Máquina de entretelar (Erps) 3500 W

2 Máquinas de cambrear (Morbach) 400 W

1 Máquina de prensar metatasso 3 cv (Becker) 2206,5 W

35 Máquinas de costura ½ cv (Ivomaq) 12871,25 W

1 Máquina de costura ½ cv (Juki Corporation) 367,75 W

3 Máquinas de conformar ½ cv (BM Fusionmaq) 1103,25 W

3 Máquinas de estrubelar (Tecnomaq) 1104 W

1 Prensa pneumática (USM Brasil) 5500 W

1 Braqueadora 1 cv (Weq motores SA) 735,5 W

1 Forno (Master) 4000 W

1 Esteira 25m com 22 lâmpadas fluorescentes 2200 W

1 Aspirador de pó 1,5 cv (Master) 1103,25 W

68

1 Lixadeira (Gilber) 1000 W

1 Montadora de bico pneumática (Internacional) 1500 W

1 Máquina sazi ½ cv 367,75 W

2 Compressores 15 cv (Chaperine) 22065 W

2 Máquinas de ilhós (Kehl) 720 W

1 Máquina de chanfrar 2 cv (Cemec) 1471 W

138 Lâmpadas fluorescentes 13800 W

8 Ventiladores (Arge) 1040 W

2 Bebedouros 130 W

Total 89740,97 W

OBS: 1 cv = 735,5 W

1 hp = 745,7 W

Logo, o carga total instalada é de 89,74 kW.

Figura 7.17 - Fotografia tirada na fábrica fora do horário de funcionamento

69

Esta indústria é considerada um consumidor industrial do subgrupo A4, ou seja,

sua tarifa é do tipo horo-sazonal verde. A tarifa horo-sazonal possui preços

diferenciados de acordo com as horas do dia e os períodos do ano. Sendo que

considera-se o horário de ponta (3 horas consecutivas definidas pela concessionária) e

o horário fora de ponta (demais horas do dia), e período seco (intervalo entre os meses

de maio a novembro) e período úmido (intervalo entre os meses de dezembro a abril).

Por ser do tipo verde apresenta uma tarifa única para a demanda de potência e tarifas

diferenciadas para o consumo de energia.

Através da sua conta de energia tem-se que o consumo anual de energia da

instalação é de 121.770 kWh. Sua tensão de alimentação é de 13,8 kV e a indústria

possui um transformador particular, que quando necessita de manutenção, ela é

realizada pela própria concessionária de energia (Cemig) através do pagamento de

uma taxa extra.

7.2.1 Simulações e análises econômicas

Itanhandu – MG, cidade onde se encontra a indústria, não está entre as cidades

disponíveis no programa SMA Sunny Design 2.21. É possível inserir uma nova cidade,

mas para o projeto ficaria inviável, pois são necessários 8760 valores de temperatura

(°C) e 8760 valores de radiação global horizontal (W/m²), ambos medidos na cidade

que se deseja inserir no software. Com isso, entre as cidades disponíveis foi escolhida

Juiz de Fora por ser a que mais se aproxima de sua característica climática.

A escolha da quantidade de painéis a serem utilizados se deu da mesma forma

que a descrita para o caso de um edifício comercial. Os tipos de painéis foram os

mesmos utilizados nos casos 1, 2 e 3. Por se tratar agora de uma indústria com nível

de tensão superior aos prediais, os inversores utilizados serão diferentes, mais

robustos e consequentemente mais caros.

70

Tabela 7.10 – Especificação das simulações realizadas com a instalação dos módulos fotovoltaicos na indústria

CASO 1 CASO 2 CASO 3

Painel Monocristalino Policristalino Silício amorfo

Especificação do

painel

SolarWorld – SW

230 mono

SolarWorld – SW

230 poly

Sharp – NA-F121

(A5)

Potência do painel 230 W 230 W 121 W

Quantidade de

painéis 1.064 1.064 1.047

Custo com painéis

(R$)

Especificação do

inversor

Sunny central –

SC 250HE (EVR)

Sunny central – SC

250HE (EVR)

Sunny central – SC

100HE (EVR)

Quantidade de

inversores 1 1 1

Custo com

inversores (R$)

Custo total de

investimento (R$) 1.793.944,26 1.260.880,26 221.007,86

Note que para se obter o melhor aproveitamento possível da área pode-se

utilizar um maior número de módulos, principalmente no caso 3 (1260 módulos), porém

não seria possível a instalação desse número de painéis e inversores devido a

incompatibilidade para a instalação destes no sistema, como por exemplo, seria

necessário um número maior de inversores para ligar a apenas poucos módulos, isso

encareceria o projeto e não o tornaria viável. Por isso, foi utilizado menos módulos que

a capacidade máxima suportada pela área do galpão para que assim obtivesse a

melhor relação custo benefício para o projeto. O número de painéis utilizados foi

determinado a partir de sugestões que o software apresenta.

Simulando no programa SMA Sunny Design 2.21, tem-se o rendimento anual do

sistema fotovoltaico. Para realizar a simulação foi considerado um consumidor

industrial, trabalhando em dias úteis de 8 às 18 horas.

71

Tabela 7.11 - Resultados da simulação para os casos com instalação de módulos fotovoltaicos na indústria

CASO 1 CASO 2 CASO 3

Rendimento anual

fotovoltaico 270,09 MWh 268,49 MWh 140,23 MWh

Porcentagem utilizada para

o próprio consumo 35,6 % 35,7 % 59,3 %

Observe que em todos os casos simulados, a geração de energia fotovoltaica foi

superior à necessária para atender todo o consumo industrial. Nestes casos, o restante

da energia seria jogado na rede de distribuição elétrica pública e a empresa receberia

incentivos em troca, ou seja, a indústria estaria vendendo energia para a

concessionária local.

Atualmente no Brasil existe uma resolução normativa nº 482 da ANEEL, que foi

aprovada em 17 de Abril de 2012, com o intuito de facilitar a geração de energia de

forma distribuída para unidades de pequeno porte, abrangendo a microgeração (até

100 kW) e a minigeração (de 100 kW a 1 MW). A norma utiliza o Sistema de

Compensação de Energia, ou seja, a energia gerada que não for consumida é injetada

no sistema da distribuidora e o consumidor recebe créditos equivalentes a esta que

podem ser abatidos do seu consumo nos meses subsequentes, em um prazo de 36

meses. Para o caso de usinas maiores de até 30 MW, o consumidor também recebe

descontos nas tarifas de uso do sistema de distribuição e de transmissão, TUSD e

TUST respectivamente. Caso a usina entre em operação até 31/12/2017, durante os

primeiros dez anos esse desconto será de 80% e nos demais anos passará para 50%.

Já as usinas que entrarem em operação depois de 31/12/2017 receberão apenas 50%

de desconto nas tarifas citadas.

Logo, para a realização da análise econômica destes casos simulados para a

indústria de calçados, foi levada em consideração a norma citada acima, obtendo os

seguintes resultados.

Tabela 7.12 – Resultados das análises econômicas para os casos com instalação de módulos fotovoltaicos na indústria

CASO 1 CASO 2 CASO 3

Economia de gastos com

energia elétrica (R$) 79.735,97 79.263,62 41.398,70

Payback previsto (anos) 8 7 3

72

Pelos gráficos apresentados a seguir fica claro como a análise nestes casos se

diferencia das análises realizadas para o prédio administrativo.

A curva em azul representa o gasto com a energia antes da instalação do

sistema fotovoltaico, esta foi calculada como anteriormente considerando o aumento da

tarifa de energia de 2% a cada dois anos.

A curva em amarelo apresenta o gasto com a energia depois de realizada a

instalação fotovoltaica. Durante os três primeiros anos foi considerado um gasto nulo,

uma vez que o sistema gera toda a energia necessária para seu consumo e ainda

consegue recuperar os créditos equivalentes à energia excedente que é injetada na

rede de distribuição. Após estes três anos a energia volta a ser paga, porém com os

descontos nas tarifas de uso do sistema de distribuição e transmissão.

A curva em vermelho representa o fluxo de lucro obtido com a instalação

fotovoltaica, sendo dado pela diferença entre os dois gastos apresentados

anteriormente, além de considerar que este dinheiro esta rendendo a uma taxa de juros

de 5% ao ano.

Finalmente, a curva verde apresenta o retorno obtido com a instalação, ou seja,

seu payback, quando esta curva se torna positiva seu investimento passa a ser

lucrativo.

Figura 7.18 – Simulação do caso com a instalação de painéis monocristalinos na área industrial

-4.000.000,00

-2.000.000,00

-

2.000.000,00

4.000.000,00

6.000.000,00

8.000.000,00

10.000.000,00

12.000.000,00

1 3 5 7 9 11 13 15 17 19 21 23 25

Gasto com energia antes da instalação

Gasto com energia depois da instalação

Fluxo de lucro com a energia fotovoltaica

Retorno da instalação

73

Figura 7.19 – Simulação do caso com a instalação de painéis policristalinos na área industrial

Figura 7.20 – Simulação do caso com a instalação de painéis de silício amorfo na área industrial

Analisando a questão técnica continuamos com a mesma questão apresentada

em todos os casos anteriores. A instalação que se utiliza de módulos monocristalinos é

a mais eficiente por gerar uma maior energia, porém é a mais onerosa. Enquanto isso,

-2.000.000,00

-

2.000.000,00

4.000.000,00

6.000.000,00

8.000.000,00

10.000.000,00

12.000.000,00

1 3 5 7 9 11 13 15 17 19 21 23 25

Gasto com energia antes da instalação

Gasto com energia depois da instalação

Fluxo de lucro com a energia fotovoltaica

Retorno da instalação

-2.000.000,00

-

2.000.000,00

4.000.000,00

6.000.000,00

8.000.000,00

1 3 5 7 9 11 13 15 17 19 21 23 25

Gasto com energia antes da instalação

Gasto com energia depois da instalação

Fluxo de lucro com a energia fotovoltaica

Retorno da instalação

74

a instalação de painéis policristalinos gera praticamente a mesma quantidade de

energia, só reduz um pouco por ser um painel de menor pureza em silício, a um custo

menor. Em grandes instalações qualquer redução de custo com equipamentos é de

grande valia, uma vez que envolve muito dinheiro.

A utilização de painéis de silício amorfo, mesmo sendo a configuração de menor

eficiência e consequentemente, menor rendimento fotovoltaico, apresentou a melhor

relação custo benefício, pelo fato de conseguir gerar energia acima do suficiente para

seu consumo a um custo bem menor, o que lhe proporciona um payback mais

satisfatório, neste caso de 3 anos.

75

8. CONCLUSÃO

Neste trabalho foi apresentada uma introdução ao sistema de energia

fotovoltaica, assim como uma análise de sua viabilidade econômica frente a sua

aplicação em prédios administrativos e áreas industriais. Para tal, utilizou-se o

software SMA Sunny Design 2.21 para simular diversos casos apresentados ao longo

deste.

Através da análise dos casos simulados, concluiu-se que o Brasil pode se tornar

um grande gerador de energia fotovoltaica, devido às suas diversas condições

favoráveis, como sua extensão e sua localização global.

Os investimentos para a utilização desse tipo de energia avançaram com a

subida dos preços do petróleo, de forma que a energia fotovoltaica está substituindo os

geradores a diesel em equipamentos de monitoramento de pequenas plataformas de

petróleo, além de realizarem a proteção catódica para dutos enterrados. Em Mossoró

(RN) existe uma unidade piloto de bombeio de petróleo acionado por painéis

fotovoltaicos (SAUER, 2006).

As análises realizadas tanto no edifício comercial, como na área industrial,

mostraram que a utilização de painéis monocristalinos é a mais favorável considerando

a visão técnica, por apresentar maior rendimento fotovoltaico, gerando assim maior

volume de energia elétrica. Os módulos monocristalinos são fabricados a partir de

silício de alta pureza, o que eleva seu rendimento, mas em contrapartida, eleva seu

preço. Ao analisar a visão econômica, este panorama se modifica. Os módulos

policristalinos tornam-se mais favoráveis que os comentados anteriormente, pois

apresentam menor custo para sua aquisição, diminuindo assim o valor a ser investido

para implantar o sistema fotovoltaico. Além disso, seu rendimento não é comprometido

de forma que afete o sistema. A redução de seu rendimento em relação ao módulo

monocristalino é de cerca de 3%. Desta forma, a instalação com módulos policristalinos

apresenta uma relação custo-benefício mais atrativa, motivo pelo qual é o sistema mais

utilizado na área de geração fotovoltaica.

A tecnologia mais recente em energia fotovoltaica são os painéis de filmes finos,

sendo que o mais utilizado é o de silício amorfo. Esse tipo de módulo possui um custo

extremamente reduzido comparado com os demais, mas o que o impede de ser

competitivo com o painel policristalino é seu baixo rendimento. Em situações que a

76

área utilizada para realizar a instalação não é um fator determinante este tipo de painel

pode se tornar competitivo. Seu custo é reduzido, pois demandam pouca energia e

matérias primas na sua fabricação. Sua eficiência com o passar dos anos tem

melhorado gradativamente, o que possibilitará no futuro a sua utilização em massa,

pois o problema do rendimento será solucionado e junto a este estará associado seu

baixo custo de aquisição. No caso industrial, apresentou-se como a configuração mais

atrativa, uma vez que conseguiu suprir todo seu consumo a um custo bem reduzido

quando comparado às demais configurações.

Alguns casos simulados no edifício comercial mostraram que as instalações

(principalmente os Casos 4 e 5) no Brasil são favoráveis. Os paybacks encontrados

foram satisfatórios comparados com a vida útil do gerador fotovoltaico, em média de 25

anos. Comparando com a aplicação no mercado financeiro da quantia necessária para

o investimento do sistema fotovoltaico, nenhum caso simulado é vantajoso, a aplicação

do dinheiro se sobressai. Em alguns países este problema é contornado com

programas de incentivo para que o retorno financeiro seja possível e vantajosa.

Até o momento o preço de um sistema solar fotovoltaico não consegue competir

com os valores cobrados pelas concessionárias. Os incentivos geralmente são de difícil

acesso ou de pouca aplicabilidade, quando comparados ao potencial desta tecnologia.

Portanto, enquanto o Brasil não incluir as tarifas e projetos de incentivos à energia

fotovoltaica, a utilização deste sistema ainda será economicamente inviável para ser

conectado à rede elétrica se comparado à geração convencional.

A Alemanha, país que utiliza a energia fotovoltaica de forma consolidada,

também faz uso dos créditos de energia, a diferença entre o Brasil e este está na

quantidade de anos em que estes créditos podem ser recuperados. Sua política

permite que o consumidor recupere seus créditos de energia em um período de 20

anos, enquanto no Brasil este período é de apenas 3 anos, o que evidencia a evolução

que o país precisa ter em relação a esta tecnologia.

É importante ressaltar que os sistemas que utilizam a energia solar fotovoltaica

no Brasil são autônomos, geralmente para eletrificação rural ou bombeamento de água.

De forma resumida, este trabalho mostra como é necessária a inserção de um

programa de incentivo ao uso da tecnologia solar fotovoltaica para aumentar a

participação da energia solar na matriz energética e melhorar sua competitividade

econômica frente às fontes convencionais de geração de energia, além de trazer

grandes benefícios ao meio ambiente e à sociedade.

77

A seguir são listadas algumas propostas de trabalhos futuros:

- Incluir o custo das baterias na análise econômica para instalação de sistemas

autônomos.

- Avaliar o uso de baterias para suprir carga no horário de ponta.

- Realizar a análise econômica para casos onde é possível a venda de energia

para a rede.

- Realizar o mesmo estudo em prédios administrativos de grande porte.

- Aprofundar o estudo entre a comparação de se aplicar o dinheiro ou investir em

um sistema fotovoltaico.

78

9. APÊNDICE A

Exemplo do documento gerado pelo software Sunny Design 2.21 após a

simulação. Este é o Caso 1 para prédios administrativos, ou seja, instalação de

módulos monocristalinos no telhado do edifício.

79

80

81

10. APÊNDICE B

Exemplo da planilha fornecida para a análise econômica do projeto. Este é o

Caso 1, instalação de módulos monocristalinos no telhado do edifício.

82

11. BIBLIOGRAFIA

ABB, 2010, Technical Application Papers No. 10, Photovoltaic Plants.

ASSUNÇÃO, F. C. R., 2010, Energia Solar Fotovoltaica no Brasil: Subsídios para

Tomada de Decisão. Série Documentos Técnicos, CGEE, Maio.

Australian CRC for Renewable Energy, 1996 – 2004, Murdoch, Australia, ACRE

Australian Cooperative Research Centre for Renewable Energy.

Banco Central do Brasil, 2013, Cotação do Dólar Americano no dia 30 de Abril de 2013.

Website: http://www4.bcb.gov.br/pec/taxas/port/ptaxnpesq.asp?id=txcotacao

acessado em 30 de Abril de 2013.

BLUESOL EDUCACIONAL, 2011, Energia Solar, Website: http://www.blue-

sol.com/energia-solar/energia-solar-como-funciona-o-efeito-fotovoltaico/,

publicado em Dezembro de 2011.

BRAGA, R. P., 2008, Energia Solar Fotovoltaica: Fundamentos e Aplicações.

Universidade Federal do Rio de Janeiro, Escola Politécnica, Departamento de

Engenharia Elétrica, Novembro.

BRIGHT SOLAR, Website: http://www.bright-solar.pt/index.php.

CENTRAIS ELÉTRICAS, Website: http://centraiselectricas.wordpress.com/energia-

solar/.

CRESESB, Centro de Referência para a Energia Solar e Eólica Sérgio de Salvo Brito,

Manual de Engenharia para Sistemas Fotovoltaicos, Rio de Janeiro: Centro de

pesquisas em Energia Elétrica – CEPEL; Novembro, 1999.

ELETRONICA, Website: http://www.electronica-pt.com/index.php/content/view/273/204.

EPIA, European Photovoltaic Industry Association, and Greenpeace, 2008, ‘Solar

Generation V – 2008, Solar electricity for over one billion people and two million

jobs by 2020’, Brussels: EPIA and Amsterdam: Greenpeace.

EREC, European Renewable Energy Council, 2005; Website: http://erec-

renewables.org/publications/scenario_2040.htm.

FREEDOM, 2008, Manual Técnico Bateria Estacionária. Sorocaba, 25 de Julho de

2008.

PORTAL ENERGIA, 2009, Energias Renováveis, Website: http://www.portal-

energia.com/teoria-funcionamento-energia-solar-fotovoltaica/. Publicado em 25

de Janeiro de 2009.

83

RÜTHER, R., 2004, Edifícios Solares Fotovoltaicos – O Potencial da Geração Solar

Fotovoltaica Integrada a Edificações Urbanas e Interligada à Rede Elétrica

Pública no Brasil. LABSOLAR, Florianópolis.

SANTOS, I.P., Desenvolvimento de ferramenta de apoio à decisão em projetos de

integração solar fotovoltaica à arquitetura, 2013. Tese (Doutorado em

Engenharia Civil) - Universidade Federal de Santa Catarina. Orientador: Ricardo

Rüther.

SAUER, I. L., QUEIROZ, M. S., MIRAGAYA, J. C. G., MASCARENHAS, R. C.,

JÚNIOR, A. R. Q., 2006, Energias renováveis: ações e perspectivas na

Petrobras. BAHIA ANÁLISE & DADOS Salvador, v. 16, n. 1, p. 9-22, jun. 2006.

SHAYANI, R. A., OLIVEIRA, M. A. G., CAMARGO, I. M. T., 2006, Comparação do

Custo entre Energia Solar Fotovoltaica e Fontes Convencionais. Congresso

Brasileiro de Planejamento Energético – CBPE, Brasília, DF.

Solar Energy, 2013, Tabela de Radiação Solar no Brasil. Website:

http://www.solarenergy.com.br/energia-solar/tabela-radiacao-solar/ acessado em

30 de Abril de 2013.

SOLARTERRA, 2011, Energia Solar Fotovoltaica, Guia Prático. Soluções em Energia

Alternativa, São Paulo.

VALLÊRA, A.,2005, Energia Solar Fotovoltaica. Centro de Física da Matéria

Condensada, Edifício CB, Faculdade de Ciências da Universidade de Lisboa,

Campo Grande.

VARELLA, F. K. O., CAVALIERO, C. K. N., SILVA, E. P., Energia Solar Fotovoltaica no

Brasil: Incentivos regulatórios. Revista Brasileira de Energia, Vol. 14, N° 1, 1°

Sem. 2008.