introduÇÃo À relatividade geral - instituto de...

45
INTRODUÇÃO À RELATIVIDADE GERAL Victor O. Rivelles Instituto de F´ ısica Universidade de S ˜ ao Paulo [email protected] http://www.fma.if.usp.br/˜rivelles/ XXI Jornada de F´ ısica Te ´ orica – 2006 INTRODUC ¸ ˜ AO ` A RELATIVIDADE GERAL – p. 1

Upload: phungnhi

Post on 09-Nov-2018

226 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

INTRODUÇÃO À RELATIVIDADEGERALVictor O. Rivelles

Instituto de Fısica

Universidade de Sao Paulo

[email protected]

http://www.fma.if.usp.br/˜rivelles/

XXI Jornada de Fısica Teorica – 2006

INTRODUCAO A RELATIVIDADE GERAL – p. 1

Page 2: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

ROTEIRO

Relatividade Restrita

Geometria Diferencial

Relatividade Geral

Testes da Relatividade Geral

Buracos Negros

Cosmologia

Gravitação Quântica

INTRODUCAO A RELATIVIDADE GERAL – p. 2

Page 3: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

ReferênciasM. Gleiser, A Dança do Universo (Cia. das Letras, 1997)

S. Hawking, O Universo Numa Casca de Noz (Mandarim, 2001)

S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois, 1980)

A. Guth, O Universo Inflacionário (Campus, 1997)

B. Greene, O Universo Elegante (Cia. das Letras, 2001)

S. Weinberg, Gravitation and Cosmology (Wiley, 1972)

B. F. Schutz, A First Course in General Relativity (Cambridge, 1985)

J. Foster and J. D. Nightingale, A Short Course in General Relativity (Springer, 1995)

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon Press, 1975)

C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation (Freeman, 1973)

B. Zwiebach, A First Course in String Theory (Cambridge, 2004)

http://www.fma.if.usp.br/˜rivelles/

http://rivelles.blogspot.com

INTRODUCAO A RELATIVIDADE GERAL – p. 3

Page 4: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Relatividade RestritaFormulada por Einstein em 1905.

A velocidade da luz é a mesma em qualquer referencial inercial.

INTRODUCAO A RELATIVIDADE GERAL – p. 4

Page 5: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Relatividade RestritaFormulada por Einstein em 1905.

A velocidade da luz é a mesma em qualquer referencial inercial.

Contração de Lorentz: comprimentos dependem do observador.` = `0

1 − v2/c2

INTRODUCAO A RELATIVIDADE GERAL – p. 4

Page 6: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Relatividade RestritaDilatação temporal: intervalos de tempo dependem do observador.t =

t0√1−v2/c2

INTRODUCAO A RELATIVIDADE GERAL – p. 5

Page 7: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Relatividade RestritaDilatação temporal: intervalos de tempo dependem do observador.t =

t0√1−v2/c2

A relatividade restrita muda a geometria: geometria de Minkowski.

INTRODUCAO A RELATIVIDADE GERAL – p. 5

Page 8: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Relatividade RestritaDilatação temporal: intervalos de tempo dependem do observador.t =

t0√1−v2/c2

A relatividade restrita muda a geometria: geometria de Minkowski.

Na geometria Euclidiana: comprimentos são constantes.

INTRODUCAO A RELATIVIDADE GERAL – p. 5

Page 9: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Relatividade RestritaNa relatividade restrita: comprimentos e intervalos de tempodependem do observador.

INTRODUCAO A RELATIVIDADE GERAL – p. 6

Page 10: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Relatividade RestritaNa relatividade restrita: comprimentos e intervalos de tempodependem do observador.

Há alguma quantidade é contante e não depende do observador?

Intervalo ∆s2 = ∆x2 + ∆y2 + ∆z2− ∆t2

INTRODUCAO A RELATIVIDADE GERAL – p. 6

Page 11: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Relatividade RestritaNa relatividade restrita: comprimentos e intervalos de tempodependem do observador.

Há alguma quantidade é contante e não depende do observador?

Intervalo ∆s2 = ∆x2 + ∆y2 + ∆z2− ∆t2

Espaço e tempo formam o espaço-tempo quadridimensional comgeometria de Minkowski.

INTRODUCAO A RELATIVIDADE GERAL – p. 6

Page 12: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Geometria de MinkowskiIntervalo pode ser considerado um vetor típico com componentes: (∆t, ∆x, ∆y, ∆z).

Notação: (∆xµ) = (∆x0, ∆x1, ∆x2, ∆x3), µ = 0, 1, 2, 3

INTRODUCAO A RELATIVIDADE GERAL – p. 7

Page 13: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Geometria de MinkowskiIntervalo pode ser considerado um vetor típico com componentes: (∆t, ∆x, ∆y, ∆z).

Notação: (∆xµ) = (∆x0, ∆x1, ∆x2, ∆x3), µ = 0, 1, 2, 3

Componentes de um vetor dependem do sistema de coordenadas. Transformação deLorentz na direção-x:

∆x′0 = γ(∆x0− v∆x1)

∆x′1 = γ(∆x1− v∆x0)

∆x′2 = ∆x2, ∆x′3 = ∆x3, γ = 1/p

1 − v2, c = 1

INTRODUCAO A RELATIVIDADE GERAL – p. 7

Page 14: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Geometria de MinkowskiIntervalo pode ser considerado um vetor típico com componentes: (∆t, ∆x, ∆y, ∆z).

Notação: (∆xµ) = (∆x0, ∆x1, ∆x2, ∆x3), µ = 0, 1, 2, 3

Componentes de um vetor dependem do sistema de coordenadas. Transformação deLorentz na direção-x:

∆x′0 = γ(∆x0− v∆x1)

∆x′1 = γ(∆x1− v∆x0)

∆x′2 = ∆x2, ∆x′3 = ∆x3, γ = 1/p

1 − v2, c = 1

Reescrever em forma mais compacta:

∆x′µ =3

X

ν=0

Λµν∆xν , Λµ

ν =

0

B

B

B

B

B

@

γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1

1

C

C

C

C

C

A

INTRODUCAO A RELATIVIDADE GERAL – p. 7

Page 15: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Geometria de MinkowskiIntervalo pode ser considerado um vetor típico com componentes: (∆t, ∆x, ∆y, ∆z).

Notação: (∆xµ) = (∆x0, ∆x1, ∆x2, ∆x3), µ = 0, 1, 2, 3

Componentes de um vetor dependem do sistema de coordenadas. Transformação deLorentz na direção-x:

∆x′0 = γ(∆x0− v∆x1)

∆x′1 = γ(∆x1− v∆x0)

∆x′2 = ∆x2, ∆x′3 = ∆x3, γ = 1/p

1 − v2, c = 1

Reescrever em forma mais compacta:

∆x′µ =3

X

ν=0

Λµν∆xν , Λµ

ν =

0

B

B

B

B

B

@

γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1

1

C

C

C

C

C

A

Convenção da soma:

Índices repetidos significa somatória sobre tal índice: ∆x′µ = Λµν∆xν

INTRODUCAO A RELATIVIDADE GERAL – p. 7

Page 16: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Geometria de MinkowskiVetor Aµ se transforma como o intervalo: A′µ = Λµ

νAµ

INTRODUCAO A RELATIVIDADE GERAL – p. 8

Page 17: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Geometria de MinkowskiVetor Aµ se transforma como o intervalo: A′µ = Λµ

νAµ

Vetores de base: eµ (4 vetores de base)

A = A0e0 + A1e1 + A2e2 + A3e3 = Aµeµ

e0 = (1, 0, 0, 0)

e1 = (0, 1, 0, 0)

e2 = (0, 0, 1, 0)

e3 = (0, 0, 0, 1)

INTRODUCAO A RELATIVIDADE GERAL – p. 8

Page 18: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Geometria de MinkowskiVetor Aµ se transforma como o intervalo: A′µ = Λµ

νAµ

Vetores de base: eµ (4 vetores de base)

A = A0e0 + A1e1 + A2e2 + A3e3 = Aµeµ

e0 = (1, 0, 0, 0)

e1 = (0, 1, 0, 0)

e2 = (0, 0, 1, 0)

e3 = (0, 0, 0, 1)

Produto escalar de dois vetores: A · B = −A0B0 + A1B1 + A2B2 + A3B3

INTRODUCAO A RELATIVIDADE GERAL – p. 8

Page 19: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Geometria de MinkowskiVetor Aµ se transforma como o intervalo: A′µ = Λµ

νAµ

Vetores de base: eµ (4 vetores de base)

A = A0e0 + A1e1 + A2e2 + A3e3 = Aµeµ

e0 = (1, 0, 0, 0)

e1 = (0, 1, 0, 0)

e2 = (0, 0, 1, 0)

e3 = (0, 0, 0, 1)

Produto escalar de dois vetores: A · B = −A0B0 + A1B1 + A2B2 + A3B3

Norma de um vetor não é sempre positiva definida!A · A = −(A0)2 + (A1)2 + (A2)2 + (A3)2

INTRODUCAO A RELATIVIDADE GERAL – p. 8

Page 20: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Geometria de MinkowskiVetor Aµ se transforma como o intervalo: A′µ = Λµ

νAµ

Vetores de base: eµ (4 vetores de base)

A = A0e0 + A1e1 + A2e2 + A3e3 = Aµeµ

e0 = (1, 0, 0, 0)

e1 = (0, 1, 0, 0)

e2 = (0, 0, 1, 0)

e3 = (0, 0, 0, 1)

Produto escalar de dois vetores: A · B = −A0B0 + A1B1 + A2B2 + A3B3

Norma de um vetor não é sempre positiva definida!A · A = −(A0)2 + (A1)2 + (A2)2 + (A3)2

Ortogonalidade: Se A · B = 0 não significa que são perpendiculares:

P. ex. n = e0 + e1 tem n · n = −1 + 1 + 2.0 = 0 e não é o vetor zero!

INTRODUCAO A RELATIVIDADE GERAL – p. 8

Page 21: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Gravitação na Relatividade RestritaA força gravitacional Newtoniana propaga-se instantâneamente.

INTRODUCAO A RELATIVIDADE GERAL – p. 9

Page 22: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Gravitação na Relatividade RestritaA força gravitacional Newtoniana propaga-se instantâneamente.

É necessário conciliar a relatividade restrita com a gravitação.

Einstein demorou 10 anos para compatibilizar a relatividade restritacom a gravitação.

INTRODUCAO A RELATIVIDADE GERAL – p. 9

Page 23: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Gravitação na Relatividade RestritaA força gravitacional Newtoniana propaga-se instantâneamente.

É necessário conciliar a relatividade restrita com a gravitação.

Einstein demorou 10 anos para compatibilizar a relatividade restritacom a gravitação.

E o resultado é:

INTRODUCAO A RELATIVIDADE GERAL – p. 9

Page 24: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Relatividade GeralRelatividade geral = teoria da gravitação relativística

INTRODUCAO A RELATIVIDADE GERAL – p. 10

Page 25: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Relatividade GeralRelatividade geral = teoria da gravitação relativística

Não há força gravitacional.

A gravitação devido à curvatura doespaço.

Matéria causa a curvatura doespaço.

A curvatura determina o movimentoda matéria.

Objeto fundamental: métrica gµν

Determina todas as propriedades lo-cais do espaço curvo.

INTRODUCAO A RELATIVIDADE GERAL – p. 10

Page 26: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaços Curvos

O que é um espaço curvo?

INTRODUCAO A RELATIVIDADE GERAL – p. 11

Page 27: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaços Curvos

O que é um espaço curvo?

Geometria Euclidiana: soma dosângulos internos de um triângulo é 180graus.

Geometria Riemanniana: a soma podeser diferente!

INTRODUCAO A RELATIVIDADE GERAL – p. 11

Page 28: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaços Curvos

O que é um espaço curvo?

Geometria Euclidiana: soma dosângulos internos de um triângulo é 180graus.

Geometria Riemanniana: a soma podeser diferente!

Sem curvatura: igual à 180 graus.

Curvatura positiva: maior que 180 graus.

Curvatura negativa: menor que 180graus.

INTRODUCAO A RELATIVIDADE GERAL – p. 11

Page 29: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaços Curvos

O que é um espaço curvo?

Geometria Euclidiana: soma dosângulos internos de um triângulo é 180graus.

Geometria Riemanniana: a soma podeser diferente!

Sem curvatura: igual à 180 graus.

Curvatura positiva: maior que 180 graus.

Curvatura negativa: menor que 180graus.

Geometria extrínsica X geometria intrín-sica

INTRODUCAO A RELATIVIDADE GERAL – p. 11

Page 30: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaço Euclidiano em 3D

Sistema de coordenadas Cartesiano (x, y, z)

Vetores unitários ortogonais~i,~j,~k

INTRODUCAO A RELATIVIDADE GERAL – p. 12

Page 31: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaço Euclidiano em 3D

Sistema de coordenadas Cartesiano (x, y, z)

Vetores unitários ortogonais~i,~j,~k

Sistema de coordenadas arbitrário (u, v, w)

P. ex. polares (r, θ, φ). Não precisam ser orto-gonais.

INTRODUCAO A RELATIVIDADE GERAL – p. 12

Page 32: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaço Euclidiano em 3D

Sistema de coordenadas Cartesiano (x, y, z)

Vetores unitários ortogonais~i,~j,~k

Sistema de coordenadas arbitrário (u, v, w)

P. ex. polares (r, θ, φ). Não precisam ser orto-gonais.

Transformação de coodenadas:

x = x(u, v, w), y = y(u, v, w), z = z(u, v, w)

u = u(x, y, z), v = v(x, y, z), w = w(x, y, z)

INTRODUCAO A RELATIVIDADE GERAL – p. 12

Page 33: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaço Euclidiano em 3D

Sistema de coordenadas Cartesiano (x, y, z)

Vetores unitários ortogonais~i,~j,~k

Sistema de coordenadas arbitrário (u, v, w)

P. ex. polares (r, θ, φ). Não precisam ser orto-gonais.

Transformação de coodenadas:

x = x(u, v, w), y = y(u, v, w), z = z(u, v, w)

u = u(x, y, z), v = v(x, y, z), w = w(x, y, z)

Vetor posição ~r = x(u, v, w) ~i + y(u, v, w) ~j + z(u, v, w) ~k

INTRODUCAO A RELATIVIDADE GERAL – p. 12

Page 34: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaço Euclidiano em 3DBase natural no novo sistema de coordenadas:

~eu =∂~r

∂u, ~ev =

∂~r

∂v, ~ew =

∂~r

∂w

Em geral não são normalizados e nem ortogo-nais.

INTRODUCAO A RELATIVIDADE GERAL – p. 13

Page 35: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaço Euclidiano em 3DBase natural no novo sistema de coordenadas:

~eu =∂~r

∂u, ~ev =

∂~r

∂v, ~ew =

∂~r

∂w

Em geral não são normalizados e nem ortogo-nais.Base dual: tomando-se o gradiente

~eu = ~∇u =∂u

∂x~i +

∂u

∂y~j +

∂u

∂z~z

~ev = ~∇v = . . . , ~ew = ~∇w = . . .

INTRODUCAO A RELATIVIDADE GERAL – p. 13

Page 36: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaço Euclidiano em 3DBase natural no novo sistema de coordenadas:

~eu =∂~r

∂u, ~ev =

∂~r

∂v, ~ew =

∂~r

∂w

Em geral não são normalizados e nem ortogo-nais.Base dual: tomando-se o gradiente

~eu = ~∇u =∂u

∂x~i +

∂u

∂y~j +

∂u

∂z~z

~ev = ~∇v = . . . , ~ew = ~∇w = . . .

Para um sistema de coordenadas ortogonal base dual = base natural, mas, em geral, sãodiferentes.

INTRODUCAO A RELATIVIDADE GERAL – p. 13

Page 37: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaço Euclidiano em 3DBase natural no novo sistema de coordenadas:

~eu =∂~r

∂u, ~ev =

∂~r

∂v, ~ew =

∂~r

∂w

Em geral não são normalizados e nem ortogo-nais.Base dual: tomando-se o gradiente

~eu = ~∇u =∂u

∂x~i +

∂u

∂y~j +

∂u

∂z~z

~ev = ~∇v = . . . , ~ew = ~∇w = . . .

Para um sistema de coordenadas ortogonal base dual = base natural, mas, em geral, sãodiferentes.

Notação: coordenadas ui = (u, v, w), i = 1, 2, 3

base natural ei = (~eu, ~ev, ~ew)

base dual ei = (~eu, ~ev , ~ew)

INTRODUCAO A RELATIVIDADE GERAL – p. 13

Page 38: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaço Euclidiano em 3D

Expansão de um vetor ~v = vi~ei = vi~ei

vi componentes contravariantes de ~v

vi componentes covariantes de ~v

INTRODUCAO A RELATIVIDADE GERAL – p. 14

Page 39: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaço Euclidiano em 3D

Expansão de um vetor ~v = vi~ei = vi~ei

vi componentes contravariantes de ~v

vi componentes covariantes de ~v

Vetor posição infinitesimal d~r = ∂~r∂ui

dui = ~eidui

Norma ds2 = d~r · d~r = ~ei · ~ejduiduj = gijduiduj

gij = ~ei · ~ej é a métrica no sistema de coordenadas dado.

INTRODUCAO A RELATIVIDADE GERAL – p. 14

Page 40: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaço Euclidiano em 3D

Expansão de um vetor ~v = vi~ei = vi~ei

vi componentes contravariantes de ~v

vi componentes covariantes de ~v

Vetor posição infinitesimal d~r = ∂~r∂ui

dui = ~eidui

Norma ds2 = d~r · d~r = ~ei · ~ejduiduj = gijduiduj

gij = ~ei · ~ej é a métrica no sistema de coordenadas dado.

Coordenadas Cartesianas

gij =

0

B

B

@

1 0 0

0 1 0

0 0 1

1

C

C

A

ds2 = dx2 + dy2 + dz2

Coordenadas esféricas

gij =

0

B

B

@

1 0 0

0 r2 0

0 0 r2 sin2 θ

1

C

C

A

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2

INTRODUCAO A RELATIVIDADE GERAL – p. 14

Page 41: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaço Euclidiano em 3DTranformação de coordenadas: (u, v, w) para (u′, v′, w′)

~ei =∂u′j

∂ui~e′j , ~ei =

∂ui

∂u′j~e′j

v′i =∂u′i

∂ujvj , v′i =

∂uj

∂u′ivj

INTRODUCAO A RELATIVIDADE GERAL – p. 15

Page 42: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaço Euclidiano em 3DTranformação de coordenadas: (u, v, w) para (u′, v′, w′)

~ei =∂u′j

∂ui~e′j , ~ei =

∂ui

∂u′j~e′j

v′i =∂u′i

∂ujvj , v′i =

∂uj

∂u′ivj

Tensor tipo (r, s) contravariante de ordem r e covariante de ordem s:

T ′i1...ir

j1...js=

∂u′i1

∂uk1

. . .∂ul1

∂uj1. . . Tk1...kr

l1...ls

INTRODUCAO A RELATIVIDADE GERAL – p. 15

Page 43: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaço Euclidiano em 3DTranformação de coordenadas: (u, v, w) para (u′, v′, w′)

~ei =∂u′j

∂ui~e′j , ~ei =

∂ui

∂u′j~e′j

v′i =∂u′i

∂ujvj , v′i =

∂uj

∂u′ivj

Tensor tipo (r, s) contravariante de ordem r e covariante de ordem s:

T ′i1...ir

j1...js=

∂u′i1

∂uk1

. . .∂ul1

∂uj1. . . Tk1...kr

l1...ls

A métrica é um tensor covariante de segunda ordem

INTRODUCAO A RELATIVIDADE GERAL – p. 15

Page 44: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaço Euclidiano em 3DTranformação de coordenadas: (u, v, w) para (u′, v′, w′)

~ei =∂u′j

∂ui~e′j , ~ei =

∂ui

∂u′j~e′j

v′i =∂u′i

∂ujvj , v′i =

∂uj

∂u′ivj

Tensor tipo (r, s) contravariante de ordem r e covariante de ordem s:

T ′i1...ir

j1...js=

∂u′i1

∂uk1

. . .∂ul1

∂uj1. . . Tk1...kr

l1...ls

A métrica é um tensor covariante de segunda ordem

Isto é o cálculo tensorial no espaço Euclidiano

INTRODUCAO A RELATIVIDADE GERAL – p. 15

Page 45: INTRODUÇÃO À RELATIVIDADE GERAL - Instituto de Físicaitec.if.usp.br/~rivelles/Seminars/introd_relat_geral_aula1.pdf · S. Weinberg, Os Três Primeiros Minutos (Guanabara Dois,

Espaço Euclidiano em 3DTranformação de coordenadas: (u, v, w) para (u′, v′, w′)

~ei =∂u′j

∂ui~e′j , ~ei =

∂ui

∂u′j~e′j

v′i =∂u′i

∂ujvj , v′i =

∂uj

∂u′ivj

Tensor tipo (r, s) contravariante de ordem r e covariante de ordem s:

T ′i1...ir

j1...js=

∂u′i1

∂uk1

. . .∂ul1

∂uj1. . . Tk1...kr

l1...ls

A métrica é um tensor covariante de segunda ordem

Isto é o cálculo tensorial no espaço Euclidiano

Pode ser estendido para a relatividade restrita

INTRODUCAO A RELATIVIDADE GERAL – p. 15