instituto de quÍmica programa de pÓs-graduaÇÃo … figueiredo... · e em restauração, na mata...

117
INSTITUTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS - GEOQUÍMICA VIVIANE FIGUEIREDO SOUZA MECANISMOS DA CICLAGEM DO NITROGÊNIO E EMISSÃO DE ÓXIDO NITROSO (N2O) EM SOLOS DE DIFERENTES LATITUDES NITERÓI 2017

Upload: lynhi

Post on 02-Jan-2019

215 views

Category:

Documents


0 download

TRANSCRIPT

INSTITUTO DE QUÍMICA

PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS - GEOQUÍMICA

VIVIANE FIGUEIREDO SOUZA

MECANISMOS DA CICLAGEM DO NITROGÊNIO E EMISSÃO DE ÓXIDO NITROSO (N2O) EM SOLOS DE DIFERENTES LATITUDES

NITERÓI

2017

VIVIANE FIGUEIREDO SOUZA

MECANISMOS DA CICLAGEM DO NITROGÊNIO E EMISSÃO

DE ÓXIDO NITROSO (N2O) EM SOLOS DE DIFERENTES

LATITUDES

Tese apresentada ao Curso de Pós-Graduação em Geociências da Universidade Federal Fluminense, para a obtenção do Grau de Doutor. Área de Concentração: Geoquímica Ambiental.

Orientador:

Profº. Drº. Alex Enrich Prast

NITERÓI

2017

UFF. SDC. Biblioteca de Pós-Graduação em Geoquímica

S729 Souza, Viviane Figueiredo.

Mecanismos da ciclagem do nitrogênio e emissão de óxido nitroso (N2O) em solos de diferentes latitudes / Viviane Figueiredo Souza. – Niterói : [s.n.], 2017.

115 f. : il. ; 30 cm.

Tese (Doutorado em Geociências - Geoquímica Ambiental) - Universidade Federal Fluminense, 2017. Orientadora: Profº Drº Alex Enrich Prast.

1. Geoquímica. 2. Nitrogênio. 3. Óxido nitroso. 4. Solo. 5. Floresta

Atlântica. 6. Floresta Amazônica. 7. Produção intelectual. I. Título.

CDD 551.9

AGRADECIMENTOS

Ao Professor Alex Enrich Prast pela orientação, pelos mais de 10 anos de trabalho

juntos, pelas inúmeras oportunidades profissionais e pessoais, que influenciaram

profundamente a profissional que me tornei. Agradeço a confiança de sempre!

Ao Professor Tobias Rütting pela paciência de me ensinar muito sobre nitrogênio em

solos e todas as metodologias que aplicamos, e por ter me ajudado imensamente com o

inglês em nosso primeiro artigo publicado!

Aos membros da pré-banca, Professora Luciane Silva Moreira e Professor William

Zamboni de Mello, pelas correções atenciosas e sugestões enriquecedoras.

Aos membros da banca, Professora Luciane Silva Moreira e Professor William

Zamboni de Mello, Professor Jean Ometto e Dr. Renato Rodrigues, pelas sugestões e

críticas construtivas.

Ao Nivaldo Camacho por esclarecer minhas dúvidas e sempre me ajudar.

Ao CNPq e ao Programa de Pós-Graduação em Geociências – Geoquímica Ambiental

pela concessão da bolsa de doutorado.

Programa do CAPES/STINT, pelo financiamento do projeto “Fatores controladores da

produção e emissão de óxido nitroso (N2O) em solos intactos, impactados por pecuária

e em restauração, na Mata Atlântica (Guapiaçu/RJ)” Proc. Nr. BEX 10827/14-5, o qual

está inserido nessa tese, com a concessão da bolsa de doutorado sanduíche na Suécia.

Ao pessoal do Laboratório de Biogeoquímica da Universidade Federal do Rio de

Janeiro, pela ajuda durante os quatro anos de doutorado, seja nas saídas de campo,

análises laboratoriais, discussões científicas e estatísticas, ou na companhia do dia a dia

de laboratório: Roberta Peixoto, Fausto da Silva, Rafael Feijó, Lisa Tavares, João

Felizardo, Tainá Soares Leonardo Amora, nas análises laboratoriais Ricardo Pollery,

Lívia Cosme, Vinícius Perruzi, Ana Lúcia Santoro, Laís Rodrigues, Nayara Gomes,

Cristiane Caetano, Eliane Cristina, Tainá Stauffer, dentre outros. Obrigada!

À técnica da Universidade de Gotemburgo Aila Schachinger pela ajuda com as análises

de NH4+ e NO3

- e pelo carinho.

À minha mãe que sempre apoiou minhas escolhas profissionais, dando suporte e

carinho, e participando dos momentos mais importantes e decisivos.

À minha irmã que sempre torceu e se orgulhou de mim, me apoiando e aconselhando.

Ao meu pai por ler meus textos, ficar feliz e querer entender mais meu trabalho. Seu

interesse e participação são muito importantes!

À Renata Souza e Orlando Moreira, que me acompanhando a muito tempo como

madrastra e padastro, sempre ajudando e tendo papéis muito importantes no suporte da

nossa família.

Ao meu namorado Thadeo Pinhão, pelo carinho, pela paciência comigo nos momentos

de estresse e das mil mudanças de planos, por me ajudar tanto quando estávamos

distantes, e mais ainda quando estamos juntos. Obrigada!

À todas as minhas amigas e amigos que ajudaram a descontrair e tornaram esses anos

mais leves! Em especial à Fernanda Rimes, Maria Carolina Barroso, Juliana Valle,

Roberta Peixoto e Thaís Guedes, por segurarem minha mão, compartilharem momentos

de alegria e angustia, sempre ajudando!

À todos que não citei, mas que, de alguma forma, contribuíram para a realização deste

trabalho.

"A verdadeira viagem da descoberta não consiste em procurar

novas paisagens, mas em vê-las com novos olhos."

Marcel Proust

RESUMO

O nitrogênio (N) é um elemento imprescindível para todos os organismos do nosso planeta,

entretanto o composto nitrogenado mais abundante, o gás dinitrogênio (N2), é assimilável

apenas por poucos micro-organismos. Isso torna o N limitante, refletindo na sua

disponibilização via mineralização de matéria orgânica (MO) e a nitrificação, que produzem

amônio (NH4+) e nitrato (NO3

-), respectivamente. Em solos, esses processos são regulados por

fatores como conteúdo de MO e água no solo, pH e temperatura. Em ecossistemas florestais,

tropicais e boreais, esses processos são muito relevantes e ainda pouco estudados,

principalmente em áreas de floresta secundária sob influência de manejo. A mudança de uso

do solo causa alterações na ciclagem e disponibilidade do N, nos fatores reguladores, e na

emissão de óxido nitroso (N2O), um gás de efeito estufa. Padrões de recuperação florestal são

bastante distintos entre diferentes florestas tropicais, como visto para floresta de Mata

Atlântica e Amazônica, com taxas de mineralização em florestas jovens (10 anos) muito

elevadas na Amazônia (20,9 µg N g-1 SWD d-1) e mais baixas na Mata Atlântica (3,2 µg N g-1

SWD d-1). Já a nitrificação teve um padrão semelhante, com baixas taxas em ambas as

florestas jovens (0,6 6,8 µg N g-1 SWD d-1 na Mata Atlântica e Amazônia, respectivamente), o

que indica uma ciclagem de N conservativa, evitando perdas via emissão de gás e lixiviação

de NO3-. Entretanto, a emissão de N2O em área de restauração na Mata Atlântica foi maior do

que na pristina (22 e 2,5 µg N2O-N g-1 SWD h-1, respectivamente) devido à maior temperatura

do solo que estimula os processos microbianos produtores de N2O. Em termos de floresta

pristina, a taxa de nitrificação foi bastante distinta entre a floresta de Mata Atlântica e

Amazônica (0,08 e 15,9 µg N2O-N g-1 SWD h-1, respectivamente). Isso evidencia os

diferentes fatores reguladores de cada região tropical, como regime de chuvas, composição

vegetal, tipos de solo, etc. Em florestas boreais, foi visto que o conteúdo de MO e água do

solo e o pH do solo são os principais reguladores, limitando a disponibilidade de N em

florestas bem drenadas dominadas por coníferas, em comparação com florestas pouco

drenadas dominadas por turfa. Dessa forma, verificamos que a mineralização e,

principalmente, a nitrificação, são processos muito relevantes no controle de N, e mesmo em

ecossistemas diferentes, os fatores reguladores muitas vezes são os mesmos. Isso evidencia a

necessidade de mais estudos acerca da dinâmica do N nesses ambientes, principalmente em

florestas em restauração.

Palavras-chave: Nitrogênio. Mineralização. Nitrificação. Fatores reguladores. Floresta de

Mata Atlântica. Floresta Amazônica. Floresta boreal.

ABSTRACT

Nitrogen (N) is an essential element for all organisms; however, the most abundant nitrogen

compound, dinitrogen (N2), is assimilable only by a few microorganisms. This makes N

limiting, which reflects in its availability via organic matter (OM) mineralization and

nitrification, which produce ammonium (NH4+) and nitrate (NO3

-), respectively. In soils, these

processes are regulated by factors such as OM and soil water content, pH and temperature. In

forest ecosystems, tropical and boreal, these processes are very relevant and still poorly

understood, especially in secondary forest previously deforested. The land use change causes

alterations in cycling and availability of N, regulating factors, and emission of nitrous oxide

(N2O), a greenhouse gas. Forest recovery patterns are quite distinct among different

rainforests, as seen for Atlantic and Amazon rainforest, with very high levels of

mineralization in young forests (10 years) in Amazonia (20.9 µg N2O-N g-1 SWD h-1) and low

in the Atlantic Forest (3.2 µg N2O-N g-1 SWD h-1). Nitrification had a similar pattern between

them, with low rates in both young forests (0.6 and 6.8 µg N2O-N g-1 SWD h-1 in the Atlantic

and Amazon forest, respectively), indicating a conservative N cycling, avoiding losses

through gas emission and NO3- leaching. However, the N2O emission in restoration area in

the Atlantic Forest was higher than in pristine (22 and 2.5 µg N2O-N g-1 SWD h-1,

respectively) due to the higher soil temperature, which stimulates microbial production of

N2O. In terms of pristine forest, the nitrification rate was very different between the Atlantic

forest and Amazonian forest (0.08 and 15.9 µg N2O-N g-1 SWD h-1, respectively), showing

the different regulatory factors of each tropical region, such as rainfall regime, vegetal

composition, soil types, etc. In boreal forests, OM, soil water content and soil pH were the

main regulators, limiting the availability of N in conifer-dominated well-drained forests

compared to peat-dominated poorly drained forests. In this way, we verified that

mineralization and, mainly, nitrification are very relevant processes in the control of N, and

even in extremely different ecosystems, the regulating factors are often the same. This

evidences the need for more studies about N dynamics in these environments, especially in

restoration forests.

Keywords: Nitrogen. Mineralization. Nitrification. Regulating factors. Atlantic forest.

Amazon rainforest. Boreal forest.

LISTA DE FIGURAS

Figura 1. Esquema apresentando a organização em que a presente tese está dividida...............17

Figura 2. Esquema representativo do ciclo do nitrogênio simplificado com os processos

microbianos responsáveis pela transformação do nitrogênio em solos. Siglas: NOP = nitrogênio

orgânico particulado; NOD = nitrogênio orgânico dissolvido; NOS = nitrogênio orgânico no

solo...............................................................................................................................................21

Figura 3. Relação entre a taxa de desnitrificação e o conteúdo de água nos poros do solo

(CAPS) em 15 cm de perfil no solo de plantação de milho. Adaptado de Ju et al.,

(2011)...........................................................................................................................................24

Figura 4. Distribuição das áreas de desmatamento e reflorestamento no Brasil e alguns países

da América Latina entre os anos de 2000 e 2010. Os nomes originais dos biomas estão incluídos

na legenda, associados às cores do mapa. Adaptado de AIDE et al.,

2013.............................................................................................................................................29

Figura 5. Precipitação mensal (a) e flutuação do nível de água (b) no rio Madeira em Porto

Velho, rio Amazonas em Manaus, e rio Negro em Barcelos, correspondendo às regiões sul,

central e norte da bacia Amazônica. (Retirado de Junk 1984b apud Junk,

1997).............................................................................................................................................31

Figure 6. Esquema do experimento de 15N in situ em cada área de estudo com três subáreas,

cada uma contendo dois transectos com dois locais de marcação. Cada transecto recebe uma

espécie de 15N (15NH4+ e 15NO3

-), e são distantes entre si 1 m. Os locais de marcação no mesmo

transecto são separados 0,3 m entre si. B – Esquema de cada local de marcação com 11 15N

injeções de solução. Após a marcação, a amostra de solo é retirada do círculo preto no tempo 0,

imediatamente após a adição da solução, e no tempo 24, 24 horas após a adição da

solução..........................................................................................................................................36

Figure 7. Map showing the Ecological Reserve of Guapiaçú (REGUA) localization in Rio de

Janeiro state, Brazil. Adapted from DAMASCENO (2012)………………………………..…..44

Figure 8. Gross soil N transformation rates in pristine forest soils (upper graph) and restored

forest soils (lower graph) in Ecological Reserve of Guapiaçú (REGUA) at Rio de Janeiro state,

Brazil. N = 3. Student’s T test (P < 0.05) was done between forests to test the same gross N

transformation. None of them was significantly different. Rates were calculated between hour

zero and hour 24 after 15N solutions added. Rates unit is µg N g-1 soil dry weight (SDW) d-

1……………………………………………………………………………………………….…48

Figure 9. Rates of N2O flux (µg N2O-N m-2 h-1; median, minimum and maximum) in soils from

pristine and restored Atlantic forest at Ecological Reserve of Guapiaçú (REGUA), in Rio de

Janeiro/Brazil. Student’s T test (P < 0.05) was done to compare the means, which are

significantly different between the forests (N = 20)………………………………………….…49

Figure 10. Relationship between N2O flux (µg N-N2O m-2 h-1) and soil temperature (°C) for

restored Atlantic forest. Correlation was significant and positive (P < 0.05; Pearson’s r =

0.79)……………………………………………………………………………………………..51

Figure 11. Map of the Ecological Station of Cunia, Porto Velho municipality, at Rondônia

state, Brazil. The red star represent our sampling area. (Map from PPBio

INPA)…………………………………………………………………………………...………64

Figure 12. Gross N mineralization (top) and nitrification (bottom) rates (µg N g-1 SDW day-1;

Mean ± Standard Error) in five forest soils at Cuniã Ecological Station, Rondônia, with one

pristine forest (set to t = 0 years) and three regrowth forests (10 years; 20 years; and 40 years).

For gross N mineralization, the 10 years old regrowth forest was statistically different from the

40 years old forest (One way ANOVA with Tukey’s post hoc test P < 0.05). For gross

nitrification the pristine forest was significantly different from all three regrowth forests (One

way ANOVA with Tukey’s post hoc test P <

0.05)……………………………………………………………………………………………..68

Figure 13. Content of soil NH4+ and NO3

- (µg N g-1 SDW; Mean ± SE) as well as the ratio

between the two mineral N forms in pristine forests (set to t=0 years) and three regrowth forests

(10, 20 and 40 years) at the Ecological Station of Cuniã, Rondônia (Brazil). The contents were

calculated from the first extraction after 15N labelling by subtracting the amount of tracer

recovered (based on 15N enrichment)……………………………………….…………...……..72

Figure 14. Rates of gross N transformation for riparian (RZ) and upland (UpL) soils in two

Swedish boreal forests on a soil dry weight (SDW) basis and on a soil organic matter (SOM)

basis (mean ± standard error). The gross rates of N transformation evaluated here were: (a)

mineralization on SDW, (b) consumption of NH4+ on SDW, (c) nitrification on SDW, (d)

consumption of NO3- on SDW, (e) mineralization on SOM, (f) consumption of NH4

+ on SOM,

(g) nitrification on SOM and (h) consumption of NO3- on SOM……………………………….86

Figure 15. Contribution of NH4+ oxidation (white), NO3

- reduction (grey) and organic N

oxidation (black) to N2O production in riparian (RZ) and upland (UpL) soils in two Swedish

boreal forests (sites 1 and 8). Means ± standard error are shown (n = 6)..……………………..90

LISTA DE TABELAS

Table 1 - Physico-chemical soil properties of pristine and restored Atlantic forests in the

Ecological Reserve of Guapiaçú/Rio de Janeiro, Brazil………………………….…….………47

Table 2 - Rates of gross N transformations (mineralization, NH4+ consumption, nitrification and

NO3- consumption) in two Atlantic forests, a pristine forest and a young restored

forest…………………………………………………………………………………………….49

Table 3 - Compilation of gross N transformations data in different tropical forest soils from the

literature (µg N g-1 d-1)……………………………………………………………………...…...52

Table 4 - Soil properties of pristine forest and three regrowth forests (10, 20 and 40 year old) at

Ecological Station of Cuniã, Rondônia (Brazil). Mean ± Standard Error………………..……..69

Table 5 - Physicochemical soil properties of the riparian and upland zones of two forest sites in

northern Sweden. Summary statistics of raw data of pH, SOM, GWC, TC, TN and C/N ratio.

Soil properties with skewness coefficients outside the limits ±1 were transformed to common

logarithms (log10) for further statistical analysis. The missing data in the log10 column indicate

that the property had a near-normal distribution and was not –transformed….………………...80

Table 6 - Two-way ANOVA results to determine the effects of sampling sites (1 and 8) and

zones (riparian and upland) on soil properties……………………………………………....….84

Table 7 - Results of two-way ANOVA to determine the effects of sampling sites (1 and 8) and

zones (riparian and upland) on gross N transformations (mineralization, NH4+ consumption,

nitrification and NO3- consumption) on a soil dry weight basis (µg N g-1 SDW day-1) and a soil

organic matter basis (µg N g-1 SOM day-1)……………………………………………….…….88

Table 8 - Gross rates of N transformation (mineralization, NH4+ consumption, nitrification and

NO3- consumption) on a soil dry weight basis (µg N g-1 SDW day-1) and a soil organic matter

basis (µg N g-1 SOM day-1) at sampling sites (1 and 8) and zones (riparian and

upland)…………………………………………………………………………………….….…90

Table 9 - Rates of gross autotrophic and heterotrophic nitrification (µg N g-1 SDW day-1) at

sites 1 and 8, riparian and upland zones (n = 6; mean of each process at different sites and zones

and standard errors)……………………………………………………………………………..91

Table 10 - Physicochemical soil properties of the riparian and upland zones of two forest sites

in northern Sweden……………………………………………………………………..….…....92

Tabela 11 - Taxas brutas de mineralização nas três florestas de diferentes latitudes que foram

investigadas no presente estudo (Mata Atlântica, Amazônia e Boreal; Média ± Erro

Padrão)........................................................................................................................................100

Tabela 12 - Taxas brutas de nitrificação nas três florestas de diferentes latitudes que foram

investigadas no presente estudo (Mata Atlântica, Amazônia e Boreal; Média ± Erro

Padrão)........................................................................................................................................100

Tabela 13 - Taxas brutas de mineralização e nitrificação nas três florestas de diferentes latitudes

que foram investigadas no presente estudo (Mata Atlântica, Amazônia e Boreal; Média ± Erro

Padrão)........................................................................................................................................102

LISTA DE SIGLAS

CAPS = conteúdo de água nos poros do solo

CH4 = metano (methane)

CO2 = dióxido de carbono (carbon dioxide)

C/N = carbon / nitrogen ratio

GEE = gás de efeito estufa

GHG = greenhouse gas

GWC = gravimetric water content

MOS (SOM) = matéria orgânica do solo

N = nitrogênio

N2 = dinitrigênio

NO = óxido nítrico

N2O = óxido nitroso (nitrous oxide)

NH3 = amônia

NH4+ = íon amônio

NO2- = nitrito

NO3- = nitrato

NOD = nitrogênio orgânico dissolvido

NOP = nitrogênio orgânico particulado

RDNA = redução dissimilatória de nitrato à amônia

SD = standard deviation

SE = standard error

SDW = soil dry weight

SON = soil organic nitrogen

T = temperature

TC = total carbon

TN = total nitrogen

SUMÁRIO

RESUMO..........................................................................................................................6

ABSTRACT.....................................................................................................................7

LISTA DE FIGURAS......................................................................................................8

LISTA DE TABELAS...................................................................................................10

LISTA DE SIGLAS.......................................................................................................12

1 INTRODUÇÃO GERAL...........................................................................................16

2 BASE TEÓRICA........................................................................................................18

2.1 NITROGÊNIO E SUA RELEVÂNCIA GLOBAL..................................................18

2.2 CICLO DO N.............................................................................................................20

2.2.1 N2 e a Fixação Biológica de Nitrogênio (FBN)...................................................20

2.2.2 Mineralização do nitrogênio orgânico no solo...................................................21

2.2.3 Nitrificação............................................................................................................22

2.2.3.1 Nitrificação autotrófica........................................................................................22

2.2.3.2 Nitrificação heterotrófica.....................................................................................23

2.2.4 Desnitrificação......................................................................................................23

2.2.5 Redução Dissimilatória de Nitrato à Amônio (RDNA).....................................24

2.2.6 Oxidação Anaeróbica de Amônio (ANAMMOX)..............................................25

2.3 FATORES REGULADORES...................................................................................25

2.4 ECOSSISTEMAS FLORESTAIS DE DIFERENTES LATITUDES.......................27

2.4.1 Floresta tropical....................................................................................................28

2.4.1.1 Floresta de Mata Atlântica...................................................................................28

2.4.1.2 Floresta Amazônica.............................................................................................30

2.4.2 Floresta Boreal......................................................................................................32

2.5 DESMATAMENTO E MANEJO.............................................................................33

2.6 OBJETIVO GERAL..................................................................................................34

2.6.1 Objetivos específicos.............................................................................................34

2.7 HIPÓTESES..............................................................................................................35

3 METODOLOGIAS APLICADAS............................................................................36

3.1 EXPERIMENTO DE 15N IN SITU............................................................................36

3.2 AVALIAÇÃO DO FLUXO DE N2O........................................................................38

3.3 EXPERIMENTO DE 15N EM LABORATÓRIO.....................................................39

4 EFFECTS OF RESTORATION FOREST ON SHORT-TERM NITROGEN

TRANSFORMATIONS AND N2O FLUX IN TROPICAL ATLANTIC

FOREST…………………………………………………………………………..…...41

4.1 INTRODUCTION………………………………………………………………….41

4.2 MATERIAL AND METHODS…………………………………………………….43

4.2.1 Study region……………..………………………………………………………43

4.2.2 Experimental design………………………………………………………….…44

4.2.2.1 15N experiment………………………………………………………………….44

4.2.2.2 N2O flux measurement……………………………………………………...….46

4.2.2.3 Statistical analyses……………………………………………………………...46

4.3 RESULTS…………………………………………………………………………..47

4.3.1 Differences between pristine and restored Atlantic forests in terms of soil

properties………………………………………………………………………...…….47

4.3.2 Gross N transformations in pristine and restored Atlantic forest………..….48

4.3.3 N2O fluxes from pristine and restored Atlantic forest soils…………………..49

4.4 DISCUSSION………………………………………………………………………50

4.4.1 Gross N transformations and their relationship with soil properties in both

pristine and restored forests……………………………………………………….....50

4.4.2 N2O Restoration emission in restoration forest soil……………….………….53

4.4.3 Effects of soil compaction from restoration forest……….…………………...55

4.5 CONCLUSION………………………………………………………………...…..55

4.6 REFERENCES..……………………………………………………………………56

5 RECOVERY OF SOIL N MECHANISMS IN REGROWING AMAZONIAN

RAINFOREST………………………………………………………………………...62

5.1 INTRODUCTION………………………………………………………………….62

5.2 METHODS…………………………………………………………………………64

5.2.1 Study area………………………………………………………………………..64

5.2.2 In situ 15N labelling……………………………………………………………..65

5.2.3 Data analysis…………………………………………………………………….66

5.3 RESULTS AND DISCUSSION……………………………………………………67

5.4 CONCLUSION…………………………………………………………...………..72

5.5 REFERENCES..........................................................................................................72

6 SOIL ORGANIC MATTER CONTENT CONTROLS GROSS NITROGEN

DYNAMICS AND N2O PRODUCTION IN RIPARIAN AND UPLAND BOREAL

SOIL…………..……………………………………………………………………..…77

Damasceno (2008)

6.1 INTRODUCTION………………………………………………………………….78

6.2 MATERIAL AND METHODS…………………………………………………….79

6.2.1 Study site…………………………………..…………………………………….79

6.2.2 The 15N experiment……………………………………….…………..….……...81

6.2.3 Calculations and statistics………………………………………………………82

6.3 RESULTS…………………………………………………………………………..86

6.4 DISCUSSION………………………………………………………………………91

6.5 CONCLUSION…......……………………………………………………….…..…94

6.6 REFERENCES……………………………………………………………….…….95

7 VIAS DO CICLO DO NITROGÊNIO EM SOLOS DE DIFERENTES

LATITUDES..................................................................................................................99

7.1 COMPARAÇÃO ENTRE FLORESTAS PRISTINAS DE DIFERENTES

LATITUDES...................................................................................................................99

7.2 MINERALIZAÇÃO E NITRIFICAÇÃO EM FLORESTAS EM ESTÁGIO

INICIAL DE RECUPERAÇÃO....................................................................................102

7.3 EMISSÃO DE N2O EM SOLOS TROPICAIS.......................................................103

8 CONCLUSÕES.........................................................................................................104

9 REFERÊNCIAS........................................................................................................105

16

1 INTRODUÇÃO GERAL

Ecossistemas florestais de diferentes latitudes apresentam fatores ambientais

(conteúdo de matéria orgânica, carbono, nitrogênio e água no solo, pH, dentre outros) e

fatores climáticos (temperatura, precipitação), que regulam de maneira sinérgica, as taxas dos

processos do ciclo do N, o que torna imprescindível a avaliação de tais fatores em estudos

ambientais relacionados ao nitrogênio (DE BOER; KOWALCHUK, 2001; KARHU et al.,

2010; LIU et al., 2015; BOOTH et al., 2005). Florestas tropicais, como floresta de Mata

Atlântica e Amazônica, e florestas boreais apresentam características ambientais diferentes,

dentre elas, a temperatura (PETTERSSON; BAATH, 2003) e a dominância de espécies

(LAMBERS et al., 2009). Em florestas tropicais, as temperaturas médias são mais altas (20

°C) e estes ecossistemas apresentam uma enorme diversidade vegetal, sendo considerados hot

spots de diversidade (SOS MATA ATLÂNTICA/INPE 2015). Já as florestas boreais,

apresentam uma ampla variação de temperatura ao longo do ano, indo de -54 a 21 °C, e uma

baixa diversidade de espécies, com dominância de vegetação conífera (NILSSON; WARDLE,

2005). Dessa forma, tais exemplos das características bastante distintas, influenciam os

processos do ciclo do N e as principais vias e formas nitrogenadas (NH4+ e NO3

-) dominantes

nos solos.

Tanto florestas tropicais quanto florestas boreais estão suscetíveis à intensa

interferência humana através do desmatamento. Essa mudança de uso do solo ocorre,

geralmente, para abertura de área destinada à agricultura e pastagem, e também para obtenção

de madeira. Essa alteração da cobertura do solo gera drásticas modificações das suas

características pristinas (ROBERTSON; TIEDJE, 1988; KELLER; REINERS, 1994), como

alteração da vegetação nativa, compactação do solo, aumento da lixiviação de nutrientes

devido à maior exposição à chuva, dentre outros. Além disso, há alteração do estoque natural

de nitrogênio disponível no solo (LAL, 2004), atrelada à consideráveis perdas desse nutriente,

uma vez que as árvores protegem o solo do efeito da erosão e participam da manutenção e

conservação das características do solo, minimizando as perdas de N do sistema

(DAMASCENO, 2012). Dessa forma, ações de reflorestamento em locais desmatados podem

auxiliar no aumento do estoque de N no solo (LAL, 2005). Entretanto, ainda são escassos os

estudos a cerca da recuperação da ciclagem do N em solos que sofreram mudança do seu uso.

A redação da tese foi separada por capítulos, onde cada um representa um artigo que

será submetido (Capítulos 4 e 5) e que já está publicado (Capítulo 6) em periódico

especializado. Também, é apresentada uma revisão teórica sobre o estado da arte do

17

conhecimento relacionado com o nitrogênio, sua ciclagem, fatores reguladores e a

caracterização dos ambientes estudados em cada capítulo (Capítulo 2). O capítulo 3 apresenta

as diferentes metodologias que foram aplicadas em cada estudo mostrado nos capítulos

seguintes. O capítulo 4 (Effects of restoration forest on short-term nitrogen transformations

and N2O flux in tropical Atlantic forest), aborda a dinâmica do N, com foco nos processos de

mineralização, nitrificação e emissão de N2O, em solos de floresta pristina e floresta com 10

anos de restauração em área de Mata Atlântica. O capítulo 5 (Recovery of soil N mechanisms

in regrowing amazonian rainforest), trata da recuperação da ciclagem de N em solos de uma

floresta amazônica pristina e três florestas amazônicas secundárias de diferentes idades,

abandonadas após sofrerem a prática de corte e queima. O capítulo 6 apresenta o artigo

publicado em 2016 no periódico European Journal of Soil Science, intitulado “Soil organic

matter content controls gross nitrogen dynamics and N2O production in riparian and upland

boreal soil”. Nesse capítulo foi avaliada a importância do conteúdo de matéria orgânica como

fator regulador da dinâmica do N e da produção de N2O em duas diferentes zonas de floresta

boreal. No capítulo 7 são discutidas as hipóteses propostas de acordo com os resultados

encontrados. A presente tese está estruturada seguindo o esquema abaixo:

Figura 1: Esquema apresentando a organização em que a presente tese está dividida.

Capítulo 3

Capítulo 4

Objetivos e Hipóteses

Capítulos 1 e 2

Introdução Geral

Base teórica

Capítulo 5

• Relevância do N

• Processos de ciclagem de N

• Fatores reguladores

• Desmatamento e manejo

Effects of restoration forest on short-term nitrogen

transformations and N2O flux in tropical Atlantic forest

Recovery of soil N mechanisms in regrowing Amazonian rainforest

Soil organic matter content controls gross nitrogen dynamics and N2O

production in riparian and upland boreal soil Capítulo 6

Metodologias Aplicadas

Vias do ciclo do nitrogênio em solos de diferentes latitudes Capítulo 7

Conclusões

18

2 BASE TEÓRICA

2.1 NITROGÊNIO E SUA RELEVÂNCIA GLOBAL

O nitrogênio (N) é o quinto elemento mais abundante do Sistema solar, compondo

aproximadamente 78 % da atmosfera terrestre sob a forma de N2 (dinitrogênio). Apesar da

grande quantidade, o gás N2 é inerte e sua assimilação e transformação em N reativo são

realizadas por um único processo natural restrito a um pequeno grupo de micro-organismos

(CANFIELD et al., 2010, REIS et al., 2016). Dessa forma, diversos ecossistemas têm sua

produtividade limitada por N em função da grande demanda e baixa disponibilidade (ZEHR et

al., 2000). O N é um dos elementos mais importantes do planeta, visto que ele está presente

em compostos imprescindíveis para todos os organismos, como proteínas, ATP, bem como à

entrada de energia nos ecossistemas, regulando processos microbianos (ZEHR et al., 2000), e

também atuando em questões globais como efeito estufa, aquecimento global e uso excessivo

de fertilizantes na agropecuária (GALLOWAY et al., 2008).

Os processos microbianos que ocorrem em solos e realizam a ciclagem desse elemento

podem redisponibilizá-lo ou removê-lo do ambiente através da produção de compostos

nitrogenados gasosos, por exemplo (RUTTING et al., 2008). Essas emissões gasosas reduzem

o N no ecossistema e podem gerar consequências ambientais alarmantes com a produção de

óxido nitroso (N2O), um gás de efeito estufa (IPCC, 2013). Dessa forma, processos de

ciclagem do N, com destaque para os processos de mineralização da matéria orgânica

[degradação de matéria orgânica produzindo o íon amônio (NH4+)] e nitrificação [oxidação da

NH4+ ou N orgânico à nitrato (NO3

-)], regulam sua disponibilidade nos ecossistemas, se

tornando determinantes na produção primária dos ecossistemas (BOOTH et al., 2005).

Atividades antrópicas, como a utilização maciça de fertilizantes nitrogenados e a queima de

combustíveis fósseis, têm gerado intensas mudanças no ciclo global do N (REIS et al., 2016).

No caso da aplicação de fertilizantes, isso permite o aumento da produção de alimento,

necessária para sustentar o crescimento populacional. Entretanto, grande parte desses

compostos nitrogenados lábeis, como amônia/amônio (NH3/NH4+) e nitrato adicionados aos

solos são perdidos devido as transformações microbianas e movimentos que ocorrem nos

solos como lixiviação para água subterrânea, rios, lagos e mares próximos, causando

eutrofização, poluição das águas, dentre outros efeitos associados, e também emissões de

gases através das emissões de NH3, óxido nítrico e óxido nitroso (NO e N2O,

respectivamente; BOUWMAN et al., 2013; BODIRSKY et al., 2014).

19

Tais gases nitrogenados apresentam efeitos negativos para o meio ambiente como: a

interação do NO com o ozônio estratosférico, causando sua destruição catalítica e afetando a

camada de ozônio; a transformação de N2O em NO na estratosfera e este interagindo com o

ozônio estratosférico (RAVISHANKARA et al., 2009); e também o fato do N2O ser um

potente gás de efeito estufa, 310 vezes mais potente da retenção de calor do que o dióxido de

carbono (CO2; WERNER et al., 2007; BRAKER; CONRAD, 2011), com maior tempo de

residência na atmosfera (120 anos; IPCC, 2013). Atualmente, o N2O tem recebido bastante

atenção de pesquisadores devido a características citadas acima e a concentração atmosférica

que tem crescido linearmente sem perspectiva de redução (RAVISHANKARA et al., 2009).

Sua concentração atmosférica, em 2015, foi estimada em 328 ppb (NOAA, 2016), com

aumento de aproximadamente 20 % a partir de 1750 associado à Era Industrial (IPCC, 2013).

A principal fonte natural de N2O em nosso planeta é o solo (SCHLESINGER, 2013),

com uma emissão de aproximadamente 6.6 Tg N2O-N ano-1 por solos naturais. Nesse

compartimento, os principais processos biogeoquímicos responsáveis pela produção de N2O,

nitrificação e desnitrificação, fazem parte da ciclagem de nitrogênio no sistema, e estão

envolvidos na disponibilização dos compostos nitrogenados para os organismos. Esses dois

processos são os principais responsáveis pela produção de N2O em solos (BRAKER;

CONRAD, 2011). Por serem processos biológicos, fatores controladores, bióticos e abióticos,

regulam suas taxas (MAMILOV; DILLY, 2002; MA et al., 2010), influenciando a

disponibilidade de N no ecossistema, bem como a produção e emissão de N2O para a

atmosfera.

Atualmente, uma das grandes preocupações mundiais é o aquecimento global e suas

consequências para a vida na Terra. Em função disso, diversos estudos buscam diagnosticar

os fatores agravadores do aquecimento global e encontrar mecanismos que minimizem as

emissões dos gases de efeito estufa, como a preservação e regeneração de florestas, que atuam

como sumidouro de carbono atmosférico (MAY et al., 2005).

Em relação ao N, poucos micro-organismos são aptos a realizar a fixação de

nitrogênio atmosférico, o que nos leva a ter mais atenção com a perda de compostos

nitrogenados dos ecossistemas, principalmente sob a forma de N2O. Os estudos a respeito das

emissões desse gás em áreas tropicais ainda são poucos, sendo essas áreas ideais para a sua

produção e emissão em função de características como as altas temperaturas na maior parte do

ano, intensificando o metabolismo de muitos organismos (BRAKER et al., 2010), a elevada

concentração de matéria orgânica, que subsidia diversos processos microbianos (BOOTH et

al., 2005; PINA-OCHOA; ALVAREZ-COBELAS, 2006), dentre outros.

20

2.2 CICLO DO N

O ciclo do N é composto por diferentes processos biogeoquímicos, realizados por uma

variedade de micro-organismos (Figura 2). Algumas dessas transformações do N podem

conservar o N no sistema, o que ocorre quando são produzidos compostos lábeis, como NH4+

e NO3-, ou podem gerar a perda desse nutriente, como citado anteriormente. Um melhor

entendimento dessas transformações e perdas de N em solos tem se mostrado cada vez mais

importante, através de estudos dos processos biogeoquímicos e de fatores reguladores que os

influenciam (VAN GROENIGEN et al., 2015), tanto em ecossistemas naturais como em

sistemas agrícolas e similares, buscando minimizar prévios e futuros danos ambientais

(CHEN et al., 2014).

2.2.1 N2 e a Fixação Biológica de Nitrogênio (FBN)

A forma de N mais abundante em nosso planeta é o N2 que, devido a sua não

reatividade, é assimilado e biodisponibilizado nos ecossistemas por uma gama restrita de

micro-organismos (bactérias fixadoras de nitrogênio, cianobactérias e fungos) simbiontes

(principalmente com plantas leguminosas) ou de vida livre (CLEVELAND et al., 1999).

O fluxo de N2 a partir da atmosfera para ecossistemas terrestres e aquáticos se dá

através do processo natural da FBN, no qual o gás é assimilado pelo micro-organismo e

reduzido a íon amônio (NH4+), forma de N biodisponível (Figura 2; HALBLEIB; LUBBEN,

2000). A FBN é um processo de alta demanda energética, sendo mais favorável para bactérias

em simbiose com plantas, uma vez que estas liberam exsudatos orgânicos que fornecem

energia para as bactérias (OLIVARES et al., 2013).

21

Figura 2. Esquema representativo do ciclo do nitrogênio simplificado com os processos microbianos

responsáveis pela transformação do nitrogênio em solos. Siglas: NOP = nitrogênio orgânico particulado;

NOD = nitrogênio orgânico dissolvido; NOS = nitrogênio orgânico no solo.

2.2.2 Mineralização do nitrogênio orgânico no solo

A mineralização da matéria orgânica do solo (MOS) é um processo fundamental que

auxilia o ciclo do N, bem como outros ciclos, uma vez que fornece substratos de N

inorgânico, principalmente NH4+, através da decomposição da MOS, o que o torna um

processo extremamente relevante em solos.

A mineralização de MOS é o processo de degradação mais eficiente e energeticamente

favorável quando há presença de oxigênio, e ocorre, principalmente, na faixa superior do solo,

local predominantemente aeróbico e com acúmulo de MOS (AMBUS et al., 1992). Esse

processo é correlacionado positivamente com o consumo de oxigênio proveniente da

respiração aeróbica que ocorre durante a degradação (LI et al., 2012).

Existem duas formas de expressar a taxa de mineralização: Através do cálculo da

mineralização bruta, que fornece o valor total de N inorgânico que está sendo produzido no

solo por esse processo, e também da mineralização líquida, que representa o que restou do N

inorgânico após a imobilização do mesmo por plantas e micro-organismos. Por exemplo:

Mineralização líquida de N = Mineralização bruta de N - Imobilização de N inorgânico produzido (1)

Cada uma dessas taxas tem sua relevância ecossistêmica. A taxa de mineralização

líquida, por exemplo, pode indicar a disponibilidade de N inorgânico para assimilação, mas

não informa a quantidade desse N que está sendo produzida a partir da MOS. Isso é

Mineralização N

Imobilização NO3

-

Imobilização NH4

NOS

NH4+

22

demonstrado pela taxa bruta do processo, que reflete a dinâmica das transformações

microbianas do N (NEILL et al., 1999, BOOTH et al., 2005, HÖGBERG et al., 2014). Essa

mesma diferenciação entre taxa bruta e líquida pode ser usada para todos os processos

transformadores de N.

2.2.3 Nitrificação

O processo de nitrificação corresponde a oxidação de compostos nitrogenados à NO3-.

Esse processo microbiano é um dos destinos do NH4+ em solos, uma vez que esse íon pode

ser imobilizado por plantas e micro-organismos (BENGTSSON et al., 2003; BOOTH et al.,

2005), sofrer retenção abiótica em argilas e reações químicas com a matéria orgânica do solo

(JOHNSON et al., 2000), ou ainda ser volatilizado quando se encontra sob a forma de NH3.

Esse último processo é dependente do pH do solo, pois em pH alto, ou seja, alcalino, o íon

NH4+ passa para a forma de NH3, que é facilmente volatilizado (JAYAWEERA et al., 1991;

BAJWA et al., 2006; FIENCKE et al., 2006; HADEN et al., 2011). Sua assimilação, retenção

abiótica, bem como a volatilização indisponibilizam o N para o processo nitrificante,

reduzindo as taxas de desnitrificação.

Muitos organismos têm preferência por assimilar NH4+ em detrimento do NO3

-. Isso

torna a nitrificação um importante processo que atua na regulação da disponibilidade de N no

ecossistema, auxiliando no controle das formas nitrogenadas presentes e também na

quantidade das mesmas (PROSSER, 2005). A nitrificação é subdividida em dois principais

processos, que dentre outros fatores, são regulados pelo pH do solo. São eles:

2.2.3.1 Nitrificação autotrófica

Esse processo é realizado por micro-organismos quimiolitoautotróficos que obtém

energia através da oxidação de NH4+. Ele é composto por duas principais fases realizadas por

diferentes grupos de micro-organismos estritamente aeróbicos. Na primeira fase a NH4+ é

oxidada a nitrito (NO2-) pelas bactérias oxidadoras de amônia, havendo requerimento de

oxigênio. Em ausência ou redução das concentrações de oxigênio, algumas dessas bactérias

são capazes de realizar a desnitrificação do NO2- e formar gases de nitrogênio, como NO, N2O

e N2 (PROOSER, 2005). Durante a segunda fase, o NO2- é oxidado a NO3

- pelas bactérias

oxidadoras de nitrito. Em ambas as fases há liberação de energia usada na fixação de dióxido

de carbono (CO2) para o crescimento celular (DE BOER; KOWALCHUK, 2001; FIENCKE

et al., 2006; KAMPSCHREUR et al., 2009).

23

2.2.3.2 Nitrificação heterotrófica

Tanto bactérias heterotróficas quanto fungos são responsáveis pela nitrificação

heterotrófica em solos. Esse processo apresenta dois caminhos, realizados por distintos grupos

de micro-organismos, mas, diferentemente da nitrificação autotrófica, a obtenção de energia

para o crescimento celular é pouca ou nenhuma (FIENCKE et al., 2006, HAYATSU et al.,

2008).

Um dos caminhos é semelhante a oxidação autotrófica e é realizada por bactérias

nitrificantes heterotróficas que oxidam tanto NH4+ quanto compostos orgânicos de N. O outro

caminho da nitrificação heterotrófica é realizada por fungos, havendo oxidação de aminas à

NO3- (ROBERTSON; GROFFMAN, 2007).

As taxas desse tipo de nitrificação são mais baixas se comparadas com as taxas da

nitrificação autotrófica, indicando uma baixa contribuição desse processo nitrogenado

(FIENCKE et al., 2006). Entretanto, estudos em solos ácidos têm encontrado grande

contribuição desse processo na produção de NO3- e também de N2O, indicando o pH como

um poderoso fator regulador (HUYGENS et al., 2007; CHEN et al., 2014b; ZHANG et al.,

2015; FIGUEIREDO et al., 2016). Tem sido visto que a nitrificação heterotrófica pode ser

uma via predominante para a produção de nitrato (NO3-) também em solos com elevado

conteúdo de carbono orgânico recalcitrante, principalmente nos ecossistemas de pastagem e

floresta (ZHANG et al., 2014).

2.2.4 Desnitrificação

A desnitrificação é um processo microbiano anaeróbico facultativo do ciclo do N

bastante conhecido que consiste na degradação da matéria orgânica com redução do NO3-

formando o gás N2 como produto final. Os produtos intermediários são NO2-, NO e N2O,

formando N2. Diversos fatores reguladores podem alterar o processo de desnitrificação,

interrompendo-o e liberando algum dos compostos intermediários, o que faz da

desnitrificação o processo do ciclo do N que mais gera perda de N do sistema

(KAMPSCHREUR et al., 2009). O produto intermediário mais preocupante atualmente é o

N2O, devido ao seu potencial de efeito estufa altíssimo, e sua capacidade de destruição da

camada de ozônio (RAVISHANKARA et al., 2009). Entretanto, em ambientes ricos em NO3-,

a desnitrificação pode atuar como sumidouro de N, evitando a poluição de ecossistemas

aquáticos por meio da lixiviação de N (ROBERTSON; GROFFMAN, 2007).

24

Esse processo é conhecido como facultativo porque, em ausência de oxigênio, a ampla

gama de bactérias heterotróficas que tem capacidade desnitrificante, utiliza o NO3- como

receptor de elétrons; enquanto que em presença de oxigênio, esses micro-organismos são

capazes de utilizar o oxigênio e realizar a respiração aeróbica, energeticamente mais favorável

(ROBERTSON; GROFFMAN, 2007). Em função disso, solos que sofrem alagamentos

periódicos, como planícies alagadas do Pantanal e Amazônia, e sob influência da chuva,

apresentam um alto potencial desnitrificante, e podem ter uma grande perda de N na forma

gasosa (LIENGAARD et al., 2014; FIGUEIREDO, 2012; TÔSTO, 2014). Na Figura 3,

podemos ver a influência do aumento do percentual de água no solo sob o processo de

desnitrificação. Uma vez que esse percentual aumenta no solo, a disponibilidade de O2

diminui, favorecendo processos anaeróbicos como a desnitrificação.

Figura 3. Relação entre a taxa de desnitrificação e o conteúdo de água nos poros do solo (CAPS) em 15 cm

de perfil no solo de plantação de milho. A linha pontilhada representa a partir de que valor de CAPS a

taxa de desnitrificação é mais elevada. Adaptado de Ju et al., (2011).

2.2.5 Redução Dissimilatória de Nitrato à Amônio (RDNA)

A redução dissimilatória de nitrato à amônia é um processo microbiano heterotrófico

anaeróbico realizado por bactérias fermentadoras facultativas e obrigatórias. Durante a

RDNA, o NO3- é reduzido a NO2

- e finalmente a NH4+, realizando a transformação do N nos

solos, sem perdas gasosas (SILVER et al., 2001; SILVER et al., 2005; SOTTA et al., 2008).

Entretanto, há registro de produção de N2O por esse processo em solos florestais (COLE

1988; BAGGS 2011). A produção de N2O por esse processo está associada a um mecanismo

da bactéria para desintoxicar o sistema evitando altas concentrações de NO2-, composto

nitrogenado tóxico em altas concentrações (KASPAR et al., 1982). O pH é um fator

Ta

xa d

e d

esn

itri

fica

ção

(g

N h

a-1

d-1

)

CAPS (%)

25

importante na produção de N2O pela RDNA, uma vez que, em pH alto, há maior acúmulo de

NO2- (STEVENS et al., 1998).

Por usar NO3- como substrato, a RDNA compete com o processo de desnitrificação,

uma vez que ambos os processos ocorrem na faixa anóxica do solo (TIEDJE et al., 1982).

Porém esse processo é favorecido em solos com alto teor de matéria orgânica em relação ao

NO3-, já que esse processo obtém e conserva mais energia a partir de uma quantidade menor

de NO3- reduzido, se comparado com a desnitrificação (YOON et al., 2015). Fatores

ambientais como conteúdo de NO2- em relação ao NO3

- e razão carbono/nitrogênio (C/N) são

cruciais para determinar o destino do NO3- entre desnitrificação e a RDNA (KRAFT et al.,

2014). Dessa maneira, a competição entre esses processos pode variar de acordo com

características ambientais e controlar a disponibilidade do N reativo.

2.2.6 Oxidação Anaeróbica de Amônio (ANAMMOX)

O processo de oxidação anaeróbica de NH4+ ocorre em combinação com NO2

-

formando o gás N2 como produto final. Além de N2, também pode haver significativa

produção dos gases NO e N2O (JETTEN et al., 2003). Existem poucos estudos acerca da

atividade bacteriana da anammox em solos, mostrando apenas evidências da presença dessas

bactérias em diferentes ecossistemas terrestres (HUMBERT et al., 2010). Os principais

ambientes em que esse processo é avaliado são os ambientes aquáticos, principalmente

marinhos (KUYPERS et al., 2005), e também sistemas de tratamento de esgoto, uma vez que

esse processo contribui para a remoção de N do sistema (ERLER et al., 2005).

A anammox é um processo microbiano autotrófico realizado por bactérias que têm

crescimento lento (aproximadamente 11 dias; JETTEN et al., 2003), o que faz com que sua

população apresente baixa densidade e demande um ambiente estável para seu

estabelecimento. Devido a obrigatoriedade da anoxia, solos periodicamente alagados ou sob

influência da chuva são os mais suscetíveis à essa oxidação anaeróbica (ROBERSTON;

GROFFMAN, 2007).

2.3 FATORES REGULADORES

Alguns fatores bióticos e abióticos que caracterizam o ecossistema influenciam o

desempenho metabólico dos micro-organismos e alterações nas condições ótimas refletem nas

taxas dos processos biogeoquímicos.

26

Os solos são constituídos por quatro principais componentes: partículas minerais

constituídas de fragmentos de rochas e produtos de seu intemperismo químico, matéria

orgânica, água e gases (BRADY, 1989), e sua composição também influencia a ciclagem do

N. Cada tipo de solo apresenta uma composição, com diferentes quantidades de cada

componente, como, por exemplo, a textura do solo, que varia de acordo com a quantidade de

areias, siltes e argilas (BRADY, 1989). A textura dos solos é um importante regulador de

processos microbianos de ciclagem de N no solo devido a distribuição da matéria orgânica

(USSIRI; LAL, 2013). A organização dos componentes e partículas determinam a formação

dos poros no solo, e o volume desse espaço poroso é conhecido como porosidade. O tamanho

dos poros é importante na distribuição de água e gases (REINERT; REICHERT, 2006), uma

vez que espaços maiores (> 0,05 mm de diâmetro), como solos arenosos, permitem uma

maior emissão de gases e lixiviação; enquanto que solos com poros menores (< 0,05 mm de

diâmetro), geralmente argilosos, apresentam uma menor movimentação de gases e água

(BRADY, 1989). A presença de água no espaço poroso dos solos, seja periódica ou pela

influência das chuvas (JU et al., 2011; ZHU et al., 2013; MADDOCK et al., 2001; BROWN

et al., 2012), impede a oxigenação do solo, inibindo processos aeróbicos, como a

mineralização e a nitrificação (BOLLMANN; CONRAD, 1998; MORLEY et al., 2008;

MORLEY; BAGGS, 2010).

O pH é um fator regulador bastante importante na produção de enzimas metabólicas.

No caso das bactérias desnitrificantes, a produção de enzimas que realizam parte das reduções

de NO3- a N2, que se dá por etapas, pode ser inibida em pH baixo, fazendo com que o N2O

seja o produto final. O pH também pode regular a competição entre a desnitrificação e RDNA

por substrato (NO3-), pois o processo de RDNA é favorecido em pH acima de 6,5. Isso pode

ser visto no acúmulo de NO2- em pH alto devido a inibição da produção da enzima NO2

-

redutase, que reduz o NO2- à NH4

+, presente na bactéria RDNA (STEVENS et al., 1998).

Outro processo regulado pelo pH, como já mencionado anteriormente na seção 2.1.3.2, é a

nitrificação autotrófica, que é inibida em solos ácidos, favorecendo a nitrificação

heterotrófica. Essa inibição da atividade em pH baixo ocorre porque a enzima amônia mono-

oxigenase é dependente do composto NH3, menos disponível em pH baixo (SUZUKI et al.,

1974; DE BOER; KOWALCHUK, 2001).

A temperatura também atua como fator regulador dos processos do ciclo do N, uma

vez que influencia diretamente as taxas metabólicas dos micro-organismos. Ela influencia a

taxa de crescimento, bem como as reações de oxidação e redução realizados pela bactéria para

obter energia ou biomassa. A mineralização de matéria orgânica (KARHU et al., 2010),

27

nitrificação (LIU et al., 2015) e desnitrificação (BRAKER et al., 2010), bem como a

anammox, são exemplos de processos do N realizados por bactérias sensíveis a alterações de

temperatura do ambiente. Mudanças de temperatura, como previstas pelo aquecimento

global, podem causar significativas alterações na comunidade microbiana dos solos

(PETTERSSON; BAATH, 2003).

Além dos fatores citados acima, a disponibilidade de matéria orgânica, assim como

sua qualidade atrelada a composição química, tem papel regulador no ciclo do N, uma vez que

a matéria orgânica fornece substratos nitrogenados como NH4+ e NO3

-, principalmente

(BOOTH et al., 2005). Essa regulação pode ser direta, como na mineralização de MOS, que

depende do conteúdo de matéria orgânica como substrato, ou indireta como é o caso, por

exemplo, da nitrificação, que é fortemente dependente da mineralização de MOS, pela

produção de NH4+ (BOOTH et al., 2005).

Também ligado a questão de compostos orgânicos, temos a liberação de exsudatos

orgânicos pelas raízes da vegetação local. Esses exsudatos são ricos em C lábil e estimulam

processos microbianos, principalmente a mineralização de MOS (ZHU et al., 2014),

aumentando a disponibilidade de N nos solos (DIJKSTRA et al., 2013). As taxas de liberação

dos exsudatos variam com as espécies (LAMBERS et al., 2009), o que é bastante relevante

em áreas de grande biodiversidade vegetal, como florestas tropicais, gerando micro sítios de

acordo com as espécies, que regulam os processos do N de maneiras diferentes.

De maneira geral, um único fator regulador pode influenciar os micro-organismos no

solo, contudo, ao observarmos a natureza e sua complexidade em cada compartimento, como

o solo de um ecossistema, entendemos que é a interação entre os fatores reguladores, que

influencia a resposta dos processos microbianos, manifestada através da ciclagem do N, da

disponibilidade das formas lábeis de N e da produção de N2O, por exemplo (BROWN et al.,

2012).

2.4 ECOSSISTEMAS FLORESTAIS DE DIFERENTES LATITUDES

Florestas tropicais e boreais são dois biomas continentais de grande extensão no

planeta, representando, juntas, o maior reservatório continental de carbono (MALHI et al.,

1999). Na grande maioria das florestas tropicais, a produtividade primária não apresenta

limitação por N, uma vez que solos tropicais, especialmente de florestas de planície (baixa

altitude), são ricos em N (MATSON et al. 1999; HEDIN et al. 2009), o que estimula os

processos de ciclagem de N, incluindo mineralização de MOS, nitrificação e perdas via

28

lixiviação e emissões de gases, como o N2O. Isso indica que os ecossistemas de florestas

tropicais pristinas ou maduras apresentam um ciclo do N aberto (MARTINELLI et al., 1999).

Em contraste, os solos de florestas temperadas e boreais, são considerados pobres em N,

apresentando menores taxas de processos de ciclagem e perdas desse nutriente

(MARTINELLI et al., 1999; HEDIN et al. 2009). Nos tópicos seguintes, descrevemos em

mais detalhes esses ecossistemas.

2.4.1 Floresta tropical

Florestas tropicais, como Amazônia e Mata Atlântica, têm um papel crucial na questão

da conservação da biodiversidade de fauna e flora (SOS MATA ATLÂNTICA/INPE 2015), e

participam do controle climático global, sendo grandes estocadoras de C (GIBBS et al., 2007).

Essas áreas apresentam estudos relacionados a dinâmica do N, seus processos

biogeoquímicos e a emissão de N2O por solos (MADDOCK et al., 2001; WICK et al., 2005;

DAVIDSON et al., 2007; AMAZONAS et al., 2011; SOUSA NETO et al., 2011; DO

CARMO et al., 2012; FIGUEIREDO, 2012; TÔSTO, 2014; RODRIGUES; DE MELLO,

2012; LIENGAARD et al., 2014; dentre outros), devido a rápida ciclagem de nutrientes em

função de suas características básicas, como altos índices de precipitação e altas temperaturas.

Entretanto, em termos de área ocupada por florestas tropicais no Brasil, levando em conta sua

diversidade, vemos que estudos acerca de temas que envolvem o N ainda são poucos, tendo

menor enfoque em questões como balanço do N nos solos, e suas principais vias de ciclagem

e disponibilização de N para os organismos.

Além disso, uma prática ainda muito frequente em áreas de floresta tropical,

principalmente na região Amazônica, é o desmatamento florestal para mudança de uso do

solo. Essa prática é responsável por profundas alterações das características do solo, bem

como dos processos biogeoquímicos (AIDE et al., 2000; KIRBY et al. 2006; BARONA et al.,

2010).

2.4.1.1 Floresta de Mata Atlântica

Considerada um hot spot de biodiversidade (MYERS et al., 2000), a Floresta de Mata

Atlântica sofreu intenso desmatamento desde o descobrimento do Brasil, com apenas 12,5 %

remanescentes de floresta nativa nos dias atuais (SOS MATA ATLÂNTICA/INPE 2015). Ela

está localizada em quase todo o litoral brasileiro e também em áreas sem litoral Atlântico,

29

presente em 17 estados: Rio Grande do Sul, Santa Catarina, Paraná, São Paulo, Goiás, Mato

Grosso do Sul, Rio de Janeiro, Minas Gerais, Espírito Santo, Bahia, Alagoas,

Sergipe, Paraíba, Pernambuco, Rio Grande do Norte, Ceará e Piauí.

Devido a sua larga extensão no litoral Atlântico, o clima da Mata Atlântica, segundo

Köopen, varia desde equatorial ao norte do Brasil, à subtropical no sul do país, alterando de

22 °C e precipitação anual média de 2100 mm (SOS MATA ATLÂNTICA/INPE 2015).

Figura 4. Distribuição das áreas de desmatamento e reflorestamento no Brasil e alguns países da América

Latina entre os anos de 2000 e 2010. Os nomes originais dos biomas estão incluídos na legenda, associados

às cores do mapa. Adaptado de AIDE et al., 2013.

A imensa diversidade vegetal encontrada na floresta de Mata Atlântica é atribuída a

sua distribuição em diferentes topografias como regiões costeiras montanhosas e de planícies,

padrões de temperatura e precipitação.

No estado do Rio de Janeiro, o clima predominante é tropical úmido com verão

chuvoso e inverno comparativamente seco, com temperatura média e também em condições

climáticas diferentes, com variados níveis de precipitação (METZGER, 2009). Essa floresta é

formada por dois principais tipos de vegetação: floresta de Mata Atlântica ombrófila e floresta

de Mata Atlântica Semidecidual (MORELLATO; HADDAD, 2000). A primeira apresenta

30

árvores maduras de até 15 m, com algumas espécies podendo chegar a 40 m, tem uma copa

bastante densa e fechada, com intensa presença de bromélias, orquídeas, cactos e samambaias.

A floresta ombrófila estende-se do Ceará ao Rio Grande do Sul, localizada principalmente nas

encostas da Serra do Mar, da Serra Geral e em ilhas situadas no litoral entre os Estados do

Paraná e do Rio de Janeiro, com clima quente e úmido na maior parte do ano. O segundo tipo

dominante apresenta árvores de 25 m a 30 m, com a presença de espécies que perdem suas as

folhas na estação do inverno, epífitas, samambaias e cipós. Ocorrem a oeste das Florestas

Ombrófilas da encosta atlântica, apresentando clima quente com seca mais pronunciada entre

os meses de abril a setembro (MORELLATO; HADDAD, 2000).

Devido ao intenso desmatamento, diversas áreas de proteção florestal surgiram nos

últimos 150 anos, buscando manter intacto o restante de floresta nativa e aumentar a área de

floresta de Mata Atlântica através da restauração (JOLY et al., 2010). Através da Figura 4,

verificamos que no período de 2000 a 2010, houve um predomínio de áreas de restauração em

regiões de Mata Atlântica e Caatinga, já desmatadas a muitas décadas, e áreas desmatadas

principalmente na região Amazônica. Questões ecológicas e biogeoquímicas relacionadas ao

N em áreas de restauração de floresta de Mata Atlântica após mudanças de uso do solo, ainda

são pouco compreendidas. Contudo, considerando sua imensa biodiversidade, influência

hidrológica e nos ciclos do C e N ligados a emissões de gases de efeito estufa, é

imprescindível o entendimento dessas questões para o melhor manejo da área em processo de

restauração (AIDE et al., 2000).

2.4.1.2 Floresta Amazônica

A floresta amazônica é a maior floresta tropical do mundo, com uma área de

aproximadamente 7.584.421 km2, incluindo países como Brasil, Bolívia Colômbia, Equador,

Peru, Venezuela, Suriname, Guiana e Guiana Francesa. Dentre eles, o Brasil é o país com

maior área de floresta amazônica, aproximadamente 5.033.072 km2, abrangendo os Estados

do Pará, Amazonas, Maranhão, Goiás, Mato Grosso, Acre, Amapá, Rondônia e Roraima.

O clima da região amazônica é equatorial quente e úmido, com pouca variação de

temperatura em grande parte da região, exceto na Amazônia meridional (Rondônia), devido

aos altos valores de radiação solar incidente ao longo do ano. As temperaturas médias anuais

oscilam entre 24 °C e 26 °C, com amplitude anual de 1° a 2 °C, enquanto que na Amazônia

meridional essa amplitude pode atingir 3° a 4 °C. A precipitação média anual da região varia

entre 1500 mm e 3600 mm. A Zona de Convergência Intertropical, um dos mais importantes

31

sistemas meteorológicos que atuam nos trópicos, em combinação com ventos alísios,

penetração de sistemas meteorológicos oriundos do sul do continente Sul Americano, e com o

vapor gerado pela floresta Amazônica, atuam na regulação do sistema de chuvas da região

amazônica, controlando seu regime hidrológico com variação do nível d’água de seus rios,

como visto na Figura 5 (NOBRE et al., 2009).

Figura 5. Precipitação mensal (a) e flutuação do nível de água (b) no rio Madeira em Porto Velho, rio

Amazonas em Manaus, e rio Negro em Barcelos, correspondendo às regiões sul, central e norte da bacia

Amazônica. (Retirado de Junk 1984b apud Junk, 1997).

A floresta amazônica é influenciada por pulsos de inundação com período de cheia,

vazante, seca e enchente, durante o ciclo de um ano (MELACK; HESS, 2010), como visto na

Figura 5. Essa variação do nível da água é responsável pela formação de diferentes tipos de

floresta como, por exemplo, a floresta de terra firme, que compõe a grande maioria da área de

floresta amazônica, é uma área de floresta localizada em regiões mais elevadas, que

permanecem o ano inteiro sem sofrer inundação, sendo composta por árvores de grande porte

(entre 30 e 60 m de altura), e muitas vezes com regiões de cerrado associadas. Em áreas de

menor altitude encontramos a floresta de várzea, que sofre inundação periódica durante o

período de águas altas, apresentando, muitas vezes, vegetação com adaptações morfológicas e

fisiológicas para lidar com o alagamento temporário. Já as florestas de igapó estão situadas

em terrenos baixos, permanentemente inundadas (JUNK; PIEDADE, 2010).

Essa variedade de habitats durante os períodos de inundação, associada aos diferentes

tipos de água dos rios (branca, clara e preta) que têm características específicas, criam um

32

cenário ideal de alta diversidade de fauna e flora na região amazônica (JUNK, 1997). Isso

também é refletido na ciclagem de N quando vemos, por exemplo, diferentes taxas de

mineralização e nitrificação associada à determinadas espécies de árvores e/ou tipos de solo

(DIJKSTRA et al., 2006).

2.4.2 Floresta Boreal

Os ecossistemas boreais ocupam aproximadamente 22 % de toda a área de floresta do

mundo e 11 % de toda a superfície terrestre, localizados exclusivamente no hemisfério Norte

entre as latitudes 45° e 70°. Os países que apresentam floresta boreal em sua vegetação são

Estados Unidos, Canadá e sul da Groenlândia; Sudeste da Noruega, Suécia, Finlândia,

Estônia, Letônia, parte da Lituânia e Bielorrússia; norte da Rússia e Japão (NILSSON;

WARDLE, 2005).

A diversidade de espécies em áreas de floresta boreal é baixa, principalmente quando

comparada com florestas tropicais. Essa floresta é dominada por poucas espécies de coníferas,

como a Norway spruce (Picea abies), em solos úmidos, e a Scots pine (Pinus sylvestris), em

solos mais secos, e outros tipos de vegetação como ciprestes, abetos e lariços (NILSSON;

WARDLE, 2005), além de turfas e musgos em áreas alagadas ou com alto conteúdo de água

no solo (TAGUE et al., 2010). A estação de crescimento da vegetação de floresta boreal é

curta, devido a baixa temperatura e irradiação solar, o que diminui as taxas de produtividade

primária (MALHI et al., 1999). Além disso, a baixa temperatura ao longo do ano também

influencia os processos microbianos no solo, como visto no tópico 2.3, reduzindo, por

exemplo, as taxas de decomposição de matéria orgânica que resulta no acúmulo de compostos

orgânicos complexos em solos mais profundos (KASISCHKE; STOCKS, 2000). Isso faz com

que regiões boreais tenham um dos maiores estoques de C terrestre do mundo, mas, devido a

baixa taxa de mineralização de MOS, há baixa disponibilidade de N, tornando-o limitante

(HARTLEY et al., 2010). Em paralelo, os valores de imobilização de N são comparáveis às

taxas de mineralização, sendo esse o principal destino do N em solos limitados (BLASKO et

al., 2013).

Uma prática antiga e bastante comum na região do norte da Escandinávia é o corte de

árvores para obtenção de madeira, com posterior replantio ou sucessão secundária natural.

Essa mudança da cobertura vegetal age diretamente na ciclagem do N, estimulando a

mineralização e diminuindo a absorção do mesmo pela ausência de plantas e serrapilheira, o

que resulta na perda de N para corpos aquáticos adjacentes e emissão de gases de N

(GUNDERSEN et al., 2006; RUCKSTUHL et al., 2008). Além disso, a zona boreal tem um

33

histórico bastante antigo de ocupação humana, desmatamentos e exploração de madeira. Na

Suécia, por exemplo, 96 % das florestas boreais nativas sofreram algum tipo de intervenção

nos últimos 200 anos (IPCC, 2013), o que mostra a importância da preservação da vegetação

boreal e do monitoramento de parâmetros e processos biogeoquímicos que auxiliam o

entendimento da dinâmica e sustentabilidade das florestas, bem como na análise de cenários

futuros de mudança climática, em que as previsões para a disponibilidade de N para plantas

em áreas boreais são críticas (SIGURDSSON et al., 2013; YUAN; CHEN, 2015).

2.5 DESMATAMENTO E MANEJO

Uma questão cada vez mais atual e que necessita de uma maior atenção dos cientistas

é a ciclagem de nutrientes em áreas de recuperação florestal que sofreram algum tipo de

mudança de uso do solo. Como vimos nos tópicos anteriores, os processos de ciclagem do N

são sensíveis a diversos fatores ambientais característicos de cada ecossistema, e alterações

naturais ou mais severa, como as de origem antrópica, podem causar efeitos drásticos nas

características pristinas do ambiente e na ciclagem do N (ROBERTSON; TIEDJE, 1988;

KELLER; REINERS, 1994). Isso é visto através da retirada da vegetação arbórea, que

contribui para o aquecimento e compactação do solo e, consequentemente, alteração da sua

oxigenação (YAN et al. 2011; HARTMANN; NIKLAUS, 2012). Além disso, há diminuição

do estoque de N devido a erosão do solo (LAL 2004). Dessa forma, ações de reflorestamento

em locais desmatados podem auxiliar no aumento do estoque de N no solo (LAL 2005), e na

diminuição de perdas por lixiviação e emissão de gases de N.

Um exemplo de mudanças do uso do solo é o desmatamento para introdução de áreas

agrícolas ou de pecuária, que por improdutividade, são abandonadas (KELLER; REINERS,

1994), ou até desapropriadas para a construção de áreas de preservação ou floresta secundária

que surgem de maneira espontânea. As áreas de proteção ambiental visam preservar o que

ainda resta e reestabelecer a vegetação nativa, buscando recuperar as características anteriores

do ecossistema, macro e microbiológicas (GANDOLFI; RODRIGUES, 2007). Entretanto, não

se tem um amplo conhecimento do manejo de áreas de restauração (MORELLATO;

HADDAD, 2000), tão pouco da ciclagem do N, o que faz com que essas áreas, assim como de

florestas secundárias em fase inicial de reestabelecimento, necessitem de avaliações e

monitoramentos para que seja alcançada a sustentabilidade do ecossistema (DAMASCENO

2012), avaliando os danos causados pelo desmatamento associado à mudança de uso do solo.

34

Dessa forma, podemos notar que muitas lacunas ainda restam sobre o que regula a

ciclagem de N e a produção e emissão de N2O (BUTTERBACH-BAHL et al. 2013) em

ecossistemas potencialmente emissores, como florestas tropicais e florestas boreais, visto que

elas apresentam diferentes características, aportes e ciclagem de N. Em um contexto de

discussão científica mundial sobre aquecimento global e demanda de alimentos para a

população mundial, se torna extremamente necessário um melhor entendimento sobre essas

florestas (AUSTIN et al., 2013), pois elas ocupam uma grande área terrestre, que para muitos

pode ser ocupada por áreas cultiváveis.

Diante disso, as três florestas avaliadas nesse estudo, floresta de Mata Atlântica,

Amazônica e boreal são extremamente representativas em suas respectivas latitudes, o que

torna esse estudo relevante para questões como: manutenção do N em solos, quais os fatores

que estão regulando os processos do ciclo do N, qual a contribuição desses solos para as

emissões de N2O, e possíveis interferências do aquecimento global. Essas questões são muito

importantes para estudos em solos pristinos, mas também são extremamente relevantes em

solos em recuperação, para qual surgem outras perguntas como: de que maneira os fatores

reguladores são alterados após a mudança do uso do solo; quanto tempo uma floresta

necessita para se regenerar; o que podemos mudar no processo de restauração para acelerá-lo,

minimizando erros, dentre outras.

2.6 OBJETIVO GERAL

O objetivo geral da presente tese foi avaliar semelhanças e diferenças na ciclagem do

N em solos de florestas de diferentes latitudes, tropicais e boreais, a partir do estudo dos

processos de disponibilização de N, como a mineralização e nitrificação, da avaliação da

relação de tais processos com a limitação e perda de N, e seus controles ambientais.

2.6.1 Objetivos específicos

Avaliar as diferenças e semelhanças da ciclagem do N, através de medidas de taxas de

mineralização e nitrificação brutas, em solos de floresta tropical e boreal.

Identificar diferenças na magnitude dos processes biogeoquímicos do N e nos fatores

reguladores do ciclo do N e da emissão de N2O em floresta tropical de Mata Atlântica

pristina e floresta com 10 anos de restauração.

35

Avaliar os processos biogeoquímicos do N responsáveis pela produção de N

inorgânico em uma floresta tropical pristina e em três florestas em cronosequência,

após mudança de uso do solo, na Amazônia, compreendendo quais fatores

controladores são alterados durante o crescimento da floresta secundária.

Compreender a regulação dos processos do N em solos de florestas boreais limitados

por N, sob diferentes níveis de influência da água no solo.

Estimar a contribuição de processos biogeoquímicos do ciclo do N (produção e

redução de NO3-) na produção de N2O em solos de floresta boreal.

2.7 HIPÓTESES

1) As taxas de mineralização e nitrificação são mais elevadas em solos de florestas

pristinas tropicais do que boreais.

2) O conteúdo de matéria orgânica lábil e o pH do solo são os principais fatores

reguladores do processo de mineralização e nitrificação, respectivamente, em solos

boreais.

3) Florestas em processo de restauração recente apresentam ciclo do N fechado, com

altas taxas de mineralização e baixas taxas de nitrificação.

4) Florestas tropicais em restauração emitem menos N2O que florestas pristinas.

36

A

3 METODOLOGIAS APLICADAS

Diferentes metodologias foram usadas nos capítulos 4, 5 e 6, que correspondem a três

diferentes áreas de estudo. A seguir serão apresentadas em mais detalhes as metodologias

usadas em cada capítulo.

3.1 EXPERIMENTO DE 15N IN SITU

O mesmo experimento metodológico com 15N foi utilizando em ambos os capítulos 4

e 5, realizados na área de amostragem da Mata Atlântica e Amazônia. Esse experimento visa

avaliar as taxas brutas de transformações de N como mineralização de N, consumo de NH4+,

nitrificação e consumo de NO3- em solos. Em cada uma das áreas de estudo selecionadas, três

subáreas foram escolhidas aleatoriamente dentro de um quadrado de 50 m x 30 m (Figura 6).

Cada subárea contém dois transectos distantes 1 m entre si, cada um com dois locais de

marcação distantes 0,3 m entre si.

Figure 6. A – Esquema do experimento de 15N in situ em cada área de estudo com três subáreas, cada uma

contendo dois transectos com dois locais de marcação. Cada transecto recebe uma espécie de 15N (15NH4+ e

15NO3-), e são distantes entre si 1 m. Os locais de marcação no mesmo transecto são separados 0,3 m entre

si. B – Esquema de cada local de marcação com 11 15N injeções de solução. Após a marcação, a amostra de

solo é retirada do círculo preto no tempo 0, imediatamente após a adição da solução, e no tempo 24, 24

horas após a adição da solução.

Em cada transecto foi aplicada uma solução contendo NH4NO3, um recebeu 15N-NH4+

e outro recebeu 15N-NO3- (Figura 6A) ambas enriquecidas com 15N 99 %, de acordo com a

metodologia chamada “virtual soil core” (Rütting et al., 2011). Essas soluções foram

7 cm

B

37

aplicadas homogeneamente em cada local de marcação, que corresponde a um círculo de 7 cm

de diâmetro. A solução foi distribuída através de 11 injeções de 1 mL dentro do solo, usando

uma seringa de 1 mL e uma agulha de 10 cm de comprimento (Figura 6B). Um dos pares dos

locais de marcação com solo já marcado foi retirado imediatamente após a adição da solução

de 15N (t0) e o outro foi retirado após 24 horas (t24). Um testemunho de solo de 4 cm de

diâmetro e 10 cm de altura foi retirado para análises do solo.

A amostra de solo intacto, logo após sua remoção, foi, no laboratório de campo,

peneirada para remoção de pedras, folhas e raízes grandes com a utilização de pinças. Após o

peneiramento, 50 gramas da amostra foram transferidos para frascos plásticos de 200 mL,

recebendo então 100 mL de KCl 1M e permanecendo por 1 hora sob agitação constante. Após

a agitação, a amostra descansou por 30 min para deposição do solo no fundo do frasco, e foi

então filtrada com filtro de papel MN 615 (Macherey-Nagel), gerando um extrato final.

A análise da abundância de 15N da NH4+ foi realizada utilizando a técnica de micro

difusão (BROOKS et al., 1989), na qual o extrato recebe 0,5 g de óxido de magnésio, fazendo

com que a NH4+ seja volatilizada e fixada em filtros de fibra de vidro acidificados com 10 µL

de H2SO4 2M. Os filtros foram analisados no analisador elementar (ANCA-GSL, PDZ

Europa, UK) acoplado ao Espectrômetro de Massas de Razão Isotópica (IRMS; 20-20, Sercon

Ltd., Cheshire, UK). Tal análise isotópica foi conduzida no Stable Isotope Facility na

Universidade da Califórnia, Davis (EUA).

Para análise da abundância de 15N do NO3-, o NO3

- foi avaliado usando o método de

medição automática SPIN acoplado a um quadrupolo comum do Espectrômetro de Massas

(GAM 400, InProcess Instruments GmbH, Bremen, Germany), chamado Sample Preparation

of Inorganic N compounds Mass Spectrometry (SPINMAS; STANGE et al., 2007).

O solo restante foi seco em estufa a 100 ºC para avaliação do conteúdo gravimétrico

de água e a densidade do solo foi medida seguindo EMBRAPA (1997). O conteúdo de

matéria orgânica foi medido por perda de massa por ignição, as concentrações de NH4+ and

NO3- nos extratos de KCl foram medidas no analisador por injeção de fluxo (FIAstar 5000,

Foss Tecator AB, Brazil), e a granulometria dos solos foi determinada usando granulômetro a

laser (Malvern Mastersizer 2000, Malvern Instruments SA, Orsay cedex, France). Todas as

análises acima foram feitas no Laboratório de Biogeoquímica, na Universidade Federal do

Rio de Janeiro (Brasil).

O pH do solo foi medido em solução de KCl (100 g de KCl 1M : 50 g de solo) com

pHmetro (pH-1500 Instrutherm, SP, Brazil). O total de C e N (TC e TN) foram medido no

38

Espectrômetro de Massas de Razão Isotópica (IRMS; 20-20, Sercon Ltd., Cheshire, UK) na

Universidade de Gotemburgo Suécia).

As taxas de mineralização bruta, e também nitrificação, podem ser calculadas através

do cálculo de KIRKHAM AND BARTHOLOMEW, (1954), usando valores de nitrogênio

isotópico, como 15NH4+ para mineralização bruta e 15NO3

- para nitrificação bruta onde N0 e Nt

são o teor de NH4+ ou NO3

- no tempo zero e t, respectivamente, e t é o tempo em dias. As a'0 e

a't são o excesso de 15N frações de NH4+ ou NO3

- no tempo zero e t, respectivamente. As taxas

brutas médias podem ser apresentadas em peso seco do solo (em inglês = soil dry weight,

SDW).

, (2)

3.2 AVALIAÇÃO DO FLUXO DE N2O

No capítulo 4, foi realizada a avaliação da emissão de N2O na interface solo-

atmosfera, medida manualmente através de câmaras estáticas de solo opacas de PVC (20 cm x

18 cm, diâmetro e altura). Em cada área de amostragem, cinco subáreas foram escolhidas

próximas as três subáreas de marcação com 15N (Figura 6A), dentro do quadrado de 50 m x

30 m pré-selecionado. Em cada uma das 5 subáreas, um arco de câmara estática de solo foi

colocado sem a tampa, e afundado 2,5 cm dentro do solo, objetivando minimizar distúrbios no

solo (DAVIDSON et al., 2002). Tais arcos foram fixados dois dias antes de iniciar a coleta

para estabilizar a comunidade de solo entorno. Durante quatro dias, no período da manhã, a

tampa da câmara foi colocada, e amostras de gás foram retiradas do interior da câmara uma

vez ao dia durante 40 minutos, a cada 10 minutos (0, 10, 20, 30 e 40 min). Através de um tubo

acoplado a uma válvula three-way localizados na tampa da câmara, a amostra era retirada com

o auxílio de uma seringa de polipropileno de 60 mL também acoplada a uma válvula three-

way, que permite o armazenamento do gás no interior da seringa, sem vazamentos. Após

coletadas, as amostras eram conduzidas para o laboratório de campo e analisadas no

equipamento analisador de N2O/CO por espectroscopia a laser (model 908-0014, Los Gatos

Research, Mountain View, CA, USA).

Os resultados foram calculados a partir de respostas de detectores a padrões de 0,35 e

1,01 ppm de N2O. Os fluxos foram calculados a partir do aumento linear da concentração do

gás dentro da câmara ao longo do tempo. A linearidade foi confirmada no início do

39

experimento através da medida de concentração do gás em 0, 5, 10, 20, 40, 60 e 80 minutos

após o fechamento da câmara.

3.3 EXPERIMENTO DE 15N EM LABORATÓRIO

A metodologia apresentada abaixo foi utilizada no capítulo 6, onde foi realizada uma

campanha em duas florestas no norte da Suécia e, em cada floresta, foram realizadas seis

coletas de solo na zona ripária, ao redor de um lago, e seis coletas de solo na zona montana.

Cada amostra de solo foi retirada dos 10 primeiros centímetros do solo, amostrando a porção

mineral após remover cuidadosamente a camada orgânica. As amostras foram retiradas com

uma pá a partir de uma área de 10 cm x 10 cm.

Após amostragem, o solo foi peneirado para retirada de pedras, raízes e folhas

grandes, e estocada a 4 ºC por quatro dias até serem feitas as análises. Com as amostras de

solo peneiradas, cada uma delas foi dividida em seis subamostras de 100 g cada, e colocadas

em frascos de vidro. Essas seis subamostras foram separadas em três tratamentos com 15N, no

qual o solo recebeu uma das soluções de 15NH4NO3, NH415NO3 ou 15NH4

15NO3 enriquecido

com 15N.

As duas subamostras de cada tratamento receberam 50 mL da respectiva solução de

15N que continha 5 µg NH4+-N ml-1 and 0.4 µg NO3

--N ml-1. Uma das subamostras (t0)

recebeu, imediatamente a seguir, 100 mL de KCl 2M, e foi colocada no shaker por 1 hora e

subsequentemente filtrada com filtro de microfibra de vidro Whatman GF/D (12,5 cm). A

outra subamostra permaneceu incubada em temperatura ambiente por 23 horas, quando foi

vedada para retirada de amostra de gás e posterior análise de N2O, logo após a vedação e 1

horas depois. As amostras de gás foram retiradas utilizando uma seringa de vidro e estocadas

em exetainers evacuados Labco® Exetainers (Lampeter, Wales, UK). Após a retirada da

segunda amostra de gás, 100 mL de KCl 2 M foram adicionados ao solo (t24), como descrito

anteriormente.

O fluxo de N2O foi calculado a partir do aumento da concentração do gás no interior

do frasco durante o período de incubação de 1 hora.

As concentrações de NH4+ e NO3

- nos extratos de KCl foram medidas no analisador

por injeção de fluxo (FIAstar 5000, Foss Tecator AB, Höganäs, Sweden). Análises de C e N

totais foram feitas no analisador elementar (ANCA-GSL, PDZ Europa, UK) acoplado ao

Espectrômetro de Massas de Razão Isotópica (IRMS; 20-20, Sercon Ltd., Cheshire, UK). Para

as análises de 15N, o NO3- contido nos extratos foi convertido a N2O (Stevens & Laughlin,

40

1994) e então analisados na unidade de preparação de gás traço (ANCA-TGII, PDZ Europa,

Crewe, UK) acoplado ao Espectrômetro de Massas de Razão Isotópica (IRMS; 20-20, Sercon

Ltd., Cheshire, UK). A análise da abundância de 15N da NH4+ é realizada utilizando a técnica

de micro difusão (BROOKS et al., 1989), na qual o extrato recebe 0,5 g de óxido de

magnésio, fazendo com que a NH4+ seja volatilizada e fixada em filtros de fibra de vidro

acidificados com 10 µL de H2SO4 2M. Os filtros são analisados usando um analisador

elementar (ANCA-GSL, PDZ Europa, UK) acoplado ao Espectrômetro de Massas de Razão

Isotópica (IRMS; 20-20, Sercon Ltd., Cheshire, UK). As amostras de gás foram analisadas

para N2O enriquecido com 15N analisados na unidade de preparação de gás traço (ANCA-

TGII, PDZ Europa, Crewe, UK) acoplado ao Espectrômetro de Massas de Razão Isotópica

(IRMS; 20-20, Sercon Ltd., Cheshire, UK). As análises de amostras isotópicas foram

realizadas no Stable Isotope Facility at the University of California, Davis, CA (EUA).

41

4 EFFECTS OF RESTORATION FOREST ON SHORT-TERM NITROGEN

TRANSFORMATIONS AND N2O FLUX IN TROPICAL ATLANTIC FOREST

ABSTRACT

We evaluated gross N processes (mineralization, nitrification, NH4+ and NO3

- consumption),

using 15N pool dilution, and N2O emissions in a pristine Atlantic forest and a 10 year old

restored Atlantic forest. Gross mineralization and NH4+ consumption were higher in pristine

(6.3 and 8.2 µg N g-1 SDW d-1, respectively) than in restored forest (3.2 and 4.0 µg N g-1

SDW d-1, respectively), while gross nitrification and NO3- consumption had the opposite

tendency, being close to zero in pristine soil, and 0.6 and 0.7 µg N g-1 SDW d-1, respectively,

in restored soil. These unexpected findings were associated to the recent disturbance in

restored forest, which depleted the soil in SOM and TN, but was also associated to the

previous rainfall, responsible to leach inorganic N. The N2O emission was higher in restored

forest, positively correlated to high soil temperature, which stimulate the metabolism of

microbial community, and the nitrification process that produce nitrification and provide

substrate for N2O production. Our findings suggest N limitation or a stabilization of the

restored system due to the similarity between restored and pristine forest. Moreover, both

forests, but mainly pristine, seems to be N limited with a very low nitrification rate in

comparison with mineralization. It shows the importance of biogeochemical studies in a long-

term scale in restored areas, to evaluate the re-establishment of the ecosystem.

4.1 INTRODUCTION

The Atlantic forest is one of the most important and unique tropical biome in the

world, considered a biodiversity hotspot of plants and animals, with high level of endemism

(MYERS et al., 2000; SILVA; CASTELETI, 2003). In Brazil, this biome covers the east coast

from 04° to 32°S, originally covering around 150 million hectares (RIBEIRO et al., 2009).

However, due to the intense deforestation in Brazil for agriculture (sugar cane, coffee, and

soya bean) and pasture, mainly for production of export articles, the Atlantic forest became

one of the most endangered biomes (TABARELLI et al., 2005). As a result, very little

remains of this biome, estimated around 12.5 % of the original vegetation distributed in

fragments above 3 hectares (SOS MATA ATLÂNTICA/INPE 2015).

42

The restoration forest is a recent practice in Brazil in terms of scientific attention and

government support (RODRIGUES et al., 2009). The number of ecological reserves has

increased the last 150 years to preserve, monitor and understand the remaining Atlantic forest,

but to replace devastated areas as well (LAMB et al., 2005; JOLY et al., 2010; CALMON et

al., 2011). One of the challenges for this biome is to increase the forested area, after intense

disturbance, through regrowth forest or plantation, and maintaining the original composition

and characteristics (JOLY et al., 2014).

The soil compartment is a very relevant part of the ecosystem involved in restructuring

and recovery vegetation (CHAZDON 2003), especially soils under land-use management

(AIDE et al., 2000). As pointed out by MORAN et al. (2000), the soil fertility is a key

parameter to evaluate the status of restoration forest, mainly under influence of land-use. The

availability of compounds such as carbon (C) and nitrogen (N) in soils is essential in the

forest restoration process (PAUL et al., 2010).

The N cycling shows different pathways in soils, which is mainly governed by

microbial community, vegetation and soil properties (TEMPLER et al., 2008). Gross N

mineralization and nitrification are considered key processes in the soil N cycle, as these

processes supply plants and microorganisms with labile N as ammonium (NH4+) and nitrate

(NO3-), while also controlling the inorganic N losses through for example volatilization of

NH3 to the atmosphere and NO3- leaching to groundwater and aquatic bodies

(BUTTERBACH-BAHL et al., 2011).

Gross nitrification can also lead to N losses via nitrous oxide (N2O) emission, either as

by-product of the nitrification process or produced by denitrification, which is an anaerobic

reduction of NO3- to N2 (PEREZ et al., 2006; FARQUHARSON; BALDOCK, 2008). The

N2O is known as a powerful greenhouse gas and ozone destroyer at stratosphere, with

constant increase in atmospheric concentration (IPCC 2013). Soils properties and climatic

factors (e.g. rainfall, temperature) are the main factors that control N2O production by

microbial processes in soils (SMITH et al., 1998; SKIBA; BALL, 2002; BUTTERBACH-

BAHL et al., 2013). As the strong differences between young restored forest soil and pristine

forest soil exist, the N2O emission will probably be affected by them, as well as the N

transformations. Therefore, it is important to evaluate the N cycle in both pristine and restored

soil to understand the recovery process in the latter one (WEN et al., 2016).

Based on that, some questions become important about Atlantic forest and restored

practice in terms of N cycling: How does reforestation influence the N cycling in tropical

Atlantic soils? What controls the gross N transformations and N2O emissions in these soils?

43

Does the control differ between the pristine and restored forests, after 10 years of restoration?

As studies about N dynamics in soils of tropical forests are scarce, especially in restored

forests, obtain explanations to these questions becomes relevant. We, therefore, investigated

the in situ gross N mineralization and nitrification and the inorganic N consumption in soils of

a pristine Atlantic forest and a 10 years old restored forest in Rio de Janeiro state, Brazil. We

hypothesized that in young restored forest, the gross N mineralization is higher compared to

pristine forest due to the ecosystem invest in plants biomass growth trought NH4+ release, but

that the gross nitrification and N2O emission are lower, to avoid losses of N, as seen in some

previous studies (DAVIDSON et al., 2007; AMAZONAS et al., 2011; MARTIN et al, 2013).

As our study area is in a tropical zone, the temperature and precipitation are probably the

major regulating factors of N transformations and N2O emissions.

4.2 MATERIAL AND METHODS

4.2.1 Study region

This research was carried out in the Ecological Reserve of Guapiaçú (REGUA;

42°43’23’’ W and 22°25’07’’ S) at Rio de Janeiro state, in southeastern Brazil (Figure 7), in

August 2013, during the dry season, which usually have a precipitation mean ± standard

deviation of 40 ± 50 mm, but during our sampling work, the precipitation mean was 101.1

mm. This reserve was created in 2001 to protect the Atlantic Forest and restoring damaged

habitats, representing one of the largest remnants of Atlantic forest in the state (60,000 ha),

with 2,558 ha of remnants undisturbed forests (ROCHA et al., 2006). The sampling area is

located within the Atlantic Forest biome, dominated by semi-deciduous seasonal forest and

ombrophilous dense forest (VELOSO et al., 1991). The climate in the region is mainly warm

and humid (Af type in Köppen) with mean annual temperature and rainfall of 22.4 °C and

2095 mm (www.cptec.inpe.br). The predominant soil type in the study area is red-yellow

latosol (EMBRAPA 2006).

44

REGUA

Figure 7. Map showing the Ecological Reserve of Guapiaçú (REGUA) localization in Rio de Janeiro state,

Brazil. The red circle represent the localization of REGUA. Adapted from DAMASCENO. (2012).

The ecological reserve studied here has several restored forest areas with different

dimensions owing to the many areas with grassland pasture activity until 2001. The seedlings

used for the restoration were mainly produced with the genetic material of the remaining

forests from the reserve, but some was bought in nurseries. Native species were planted and

distributed randomly among ecological groups of pioneers, early and late secondary and

climax, with a greater proportion of the first ecological group, trying to make a restored forest

as much similar as possible to the native forest (Nicholas Locke, the owner of REGUA,

personal communication).

4.2.2 Experimental design

4.2.2.1 15N experiment

To evaluate the gross N transformations as mineralization, NH4+ consumption,

nitrification and NO3- consumption in pristine and restored forest, each of the three plots had

two transects, distant 1 m between them, with two spots 0.3 m separated (Figure 6A).

In each transect a solution containing NH4NO3 was applied, one received 15N-NH4+

and the other one received 15N-NO3-, both enriched with 15N at 99 %, following the “virtual

soil core” approach (RÜTTING et al., 2011). These 15N solutions were applied

Damasceno (2008)

45

homogeneously in each spot in a circle of 7 cm diameter. The solutions were distributed with

eleven 1 mL injections of 15N solution into the soil using 1 mL syringe and 10 cm spinal

needle, totalizing 11 mL of 15N solution (Figure 6B). The total amount of N species that was

added corresponded to 1.25 µg N-NH4+ and 2.2 µg N-NO3

- per gram dry soil. One of the

paired labelling spots was sampled immediately after labelling (t0) and the other one was

sampled 24h (t24) after labelling. The soil cores of 4 cm diameter and 10 cm length were

taken out to the soil analyses, which guarantee that the soil sampled was labelled.

The intact soil samples were immediately gently broken by hand to remove stones,

leaves and large roots by tweezers at the field laboratory. After sieving, 50 grams of each soil

sample was added in a brown plastic bottle together with 100mL of 1M KCl, placed on a

shaker for 1 hour, and lastly filtered through MN 615 filter paper (Macherey-Nagel).

The analysis of 15N abundance of NH4+ was done using the micro-diffusion technique

(BROOKS et al., 1989), in which NH4+ is trapped in acidified glass fibre filters and analysed

using an elemental analyser (ANCA-GSL, PDZ Europa, UK) coupled to the IRMS cited

above. All isotope analyses were conducted at the Stable Isotope Facility at the University of

California, Davis. For analysis of 15N abundance, NO3- in extracts was measured using the

automatic measuring method SPIN unit to a common quadrupole Mass Spectrometer (GAM

400, InProcess Instruments GmbH, Bremen, Germany), called Sample Preparation of

Inorganic N compounds Mass Spectrometry (SPINMAS; STANGE et al., 2007).

The left soil was dried after sieving to measure gravimetric water content (GWC).

Bulk density was measured following EMBRAPA (1997). Soil organic matter content (SOM)

was measured by loss-on-ignition, the concentrations of NH4+ and NO3

- in KCl extracts were

measured on flow injection analyser (FIAstar 5000, Foss Tecator AB, Brazil), and the grain

size distribution of the soil samples was determined using a laser type granulometer (Malvern

Mastersizer 2000, Malvern Instruments SA, Orsay cedex, France). All these analyses were

done at University Federal of Rio de Janeiro (Brazil). The soil pH was measured in KCl

solution (100 g of KCl 1M : 50 g of soil) with pHmeter (pH-1500 Instrutherm, SP, Brazil).

The total C and N (TC and TN) was measured on Isotope Ratio Mass Spectrometer (IRMS;

20-20, Sercon Ltd., Cheshire, UK) at University of Gothenburg (Sweden). The physico-

chemical soil properties are showed in Table 1.

The gross N transformations rates were calculated following KIRKHAM;

BARTHOLOMEW (1954). We calculated the rates in 24 hours, using t0 and t24. Gross

nitrification and gross NO3- consumption found in pristine forest soil were very close to zero

and the uncertainties are overlapping with zero.

46

4.2.2.2 N2O flux measurement

To measure the N2O emission at the soil-atmosphere interface, manual static chambers

made of opaque PVC (20 cm x 18 cm; diameter and height, respectively) were used. In each

of the five spots mentioned before, one static chamber was placed 2.5 cm onto the soil aiming

to minimize soil disturbance (DAVIDSON et al., 2002). The chamber frames were placed

onto the soil two days before to a previous stabilization of the microbial community. During

four days, the samples were taken of the chamber headspace once a day at 5 times (0, 10, 20,

30 and 40 min) after chamber closure by connecting a polypropylene syringe of 60 mL to the

chamber sampling port fitted a three-way. The gas samples were analyzed in a laser

spectroscopy N2O/CO analyzer (model 908-0014, Los Gatos Research, Mountain View, CA,

USA). Results were calculated from detector responses to calibration mixture standards of

0.25 and 1.0 ppm N2O. Fluxes were calculated from the linear increase of gas concentrations

inside the chamber with time. The linearity was confirmed at the start of the experiment by

measuring concentrations of the gases at 0, 5, 10, 20, 40, 60 and 80 min after chamber

closure.

4.2.2.3 Statistical analyses

The Kolmogorov-Smirnov‘s test (P < 0.05) was used to examine the statistical

distribution of soil properties and N2O fluxes in both pristine and restored forests. A Student’s

T-test was carried out to examine the differences between pristine and restored forest in terms

of soil properties (soil pH, SOM, GWC, TC), gross N transformations (mineralization, NH4+

and NO3- consumptions and nitrification) and N2O fluxes. A Mann-Whitney’s test was used to

nonparametric soil properties, such as the amount of NH4+ NO3

-, TN and soil temperature

(soil T °C). Pearson correlations were done between gross N transformations and soil

properties, and N2O fluxes and soil properties. The nonparametric soil properties were

correlated using Spearman correlations between them and gross N transformations and N2O

fluxes. All statistical analyses were performed using the program GraphPad Prism 5.0

(GraphPad Software, Inc).

47

4.3 RESULTS

4.3.1 Differences between pristine and restored Atlantic forests in terms of soil

properties

The amount of NH4+ was higher than NO3

- in pristine soils, but they were not

statistically different (P = 0.77), while in restored soil the amount of NH4+ dominated over

NO3- (Table 1), showing a significant difference (P < 0.05).

The soils in both pristine and restored Atlantic forest were acidic, with pH of 4.06 and

4.9, respectively (Table 1), which was significantly different (P < 0.05) between the two

forest soils. Significant difference were also found for temperature, SOM, GWC, TC and TN

(Table 1), indicating a strong difference in the soil characteristics between the two forests.

Table 1 - Physico-chemical soil properties of pristine and restored Atlantic forests in the Ecological

Reserve of Guapiaçú/Rio de Janeiro, Brazil.

Mean values ± SE are given for the listed parameters. N = 24. ᵃN = 12. ᵇN = 1. Soil pH and soil T°C was

measured in situ; Porosity unit is percentage of total pore space. *It means significantly different (P < 0.05). The

contents of NH4+ and NO3

- were calculated from the first extraction after 15N labelling by subtracting the amount

of tracer recovered (based on 15N enrichment). T = temperature; SOM = soil organic matter; GWC = gravimetric

water content; TC = total carbon; TN = total nitrogen.

The bulk density and the porosity of the soils could not be statistically evaluated

because they were measured in one composed soil sample. Pristine forest had very porous

soil, with a porosity of 78 % (Table 1), while porosity was four-times lower in the restored

soil, indicating compacted soil in this forest. Bulk density was 14 % lower in pristine

compared to restored Atlantic forest soils. The gravimetric water content (GWC) is in line

with porosity values, being high in pristine soil (Table 1).

Forest

type Soil pHᵃ*

Soil T

(°C)*

SOM

(%)*

GWC

(%)* TC (%)* TN (%)*

NH4+

(µg N g-1)

NO3-

(µg N g-1)* C/N ratio

Bulk

density

(g/cm3)ᵇ

Porosity

(%)ᵇ Granulometry

Pristine 4.06 ± 0.6 18.2 ±

0.2

9.8 ± 0.9 27.4 ±

2.3

5.9 ± 0.5 0.3 ± 0.01 3.5 ± 0.6 2.7 ± 0.2 22.6 ± 1.8 1.23 78 Slightly gravelly

muddy sand

Restored 4.9 ± 0.1 20.1 ±

0.2

6.9 ± 0.4 18.0 ±

1.5

4.5 ± 0.5 0.2 ± 0.02 3.3 ± 0.6 1.1 ± 0.1 22.1 ± 1.2 1.42 18 Slightly gravelly

muddy sand

48

4.3.2 Gross N transformations in pristine and restored Atlantic forest

Gross N mineralization was higher than gross nitrification in both soils, and gross

NH4+ consumption was quite similar to gross N mineralization, indicating low net

mineralization and, consequently, low amount of NH4+ available to nitrification.

None of the investigated gross N transformations were significantly different (P <

0.05; Table 2) between soils from pristine and young restored forest soils in REGUA. Pristine

forest soils showed higher gross rates of mineralization and NH4+ consumption, while restored

soils had higher gross nitrification and NO3- consumption rates (Figure 8).

Pristine forest

0

3

6

9

12

NO3- consumption

Nitrification

Mineralization

NH4+ consumption

Gro

ss N

tra

nsfo

rmati

on

rate

s(

g N

g-1

SD

W d

-1)

Restored forest

0

3

6

9

12

Gro

ss N

tra

nsfo

rmati

on

rate

s(

g N

g-1

SD

W d

-1)

Figure 8. Gross soil N transformation rates in pristine forest soils (upper graph) and restored forest soils

(lower graph) in Ecological Reserve of Guapiaçú (REGUA) at Rio de Janeiro state, Brazil. N = 3.

Student’s T test (P < 0.05) was done between forests to test the same gross N transformation. None of them

was significantly different. Rates were calculated between hour zero and hour 24 after 15N solutions

added. Rates unit is µg N g-1 soil dry weight (SDW) d-1.

As cited before, nitrification was very low in both soils, especially in pristine soil

(Table 2), and it would be attributed to a rapidly assimilation of plants and microbes. The

close relationship between inorganic N consumptions and mineralization and nitrification is

49

probably associated to the calculation of consumption rates, which is based on the

mineralization for NH4+ and nitrification for NO3

-.

In forest soils, significant correlations were found between gross transformation rates

and soil properties. Gross mineralization was negatively correlated with pH (Pearson’s r = -

0.99, P = 0.04, N = 3) and GWC (Pearson’s r = -0.99, P = 0.01, N = 3).

Table 2 - Rates of gross N transformations (mineralization, NH4+ consumption, nitrification and NO3

-

consumption) in two Atlantic forests, a pristine forest and a young restored forest.

N transformations Pristine Forest Restored Forest Student T-test

(µg N g-1 SDW d-1) P value (P < 0.05)

Mineralization 6.3 ± 1.3 3.2 ± 1.2 0.43

NH4+ consumption 8.2 ± 2.3 4.0 ± 1.6 0.59

Nitrification 0.08 ± 0.2 0.6 ± 0.1 0.11

NO3- consumption 0.07 ± 0.3 0.7 ± 0.1 0.85

Means values and standard error of listed N transformation. Means are not significantly different (P < 0.05; N =

3).

4.3.3 N2O fluxes from pristine and restored Atlantic forest soils

Nitrous oxide fluxes in the pristine soil ranged from –29.8 to 26.7 µg N2O-N m-2 h-1,

while the fluxes in the restored soil showed a variation from 3.1 to 52.3 µg N2O-N m-2 h-1

(Figure 9). Negative values in the pristine soil (N = 3) were measured on day 1 of sampling

(data no shown), which could be related to the strong rainfall during the three days prior to

our sampling.

Pristine Restored-40

-20

0

20

40

60P < 0.05

N2O

flu

x (

µg

N2O

-N m

-2 h

-1)

Figure 9. Rates of N2O flux (µg N2O-N m-2 h-1; median, minimum and maximum) in soils from pristine

and restored Atlantic forest at Ecological Reserve of Guapiaçú (REGUA), in Rio de Janeiro/Brazil.

Student’s T test (P < 0.05) was done to compare the means, which are significantly different between the

forests (N = 20).

50

A comparison of N2O flux from pristine and restored Atlantic forest soils showed a

significant difference between them (P < 0.05; Figure 9). The mean of measured N2O

emission in pristine soil was 10 times lower than in restored soil (2.5 ± 3.4 and 22.02 ± 4.1 µg

N2O-N m-2 h-1; mean ± SE). We found a significantly correlation only between N2O flux and

soil temperature (Pearson’s r = 0.79) in restored forest soils (Figure 10).

Restored forest

19.0 19.5 20.0 20.5 21.0

0

10

20

30

40

50

Soil temperature (°C)

N2O

flu

x (

µg

N2O

-N m

-2 h

-1)

Figure 10. Relationship between N2O flux (µg N-N2O m-2 h-1) and soil temperature (°C) for restored

Atlantic forest. Correlation was significant and positive (P < 0.05; Pearson’s r = 0.79).

4.4 DISCUSSION

The present study was designed to focus on the relationships between restoration

forest and N cycle in soils, covering microbial N transformations and N2O emission. To

understand the N cycling in reforestation soils and the level of ecosystem recovery, a

comparison with a pristine forest under the same abiotic influence was conducted. The

pristine forest represents the system without human interference and the natural mechanisms

that regulate the N cycle in the soil.

4.4.1 Gross N transformations and their relationship with soil properties in both pristine

and restored forests

Carbon and N content in soils are the most direct factor that influence gross N

mineralization, one of the most important mechanism to transform N in soils (BOOTH et al.,

2005). Considering an ecosystem at the beginning of a restoration process, the rapid growth of

51

biomass to establish the vegetation demands large amount of C and N, which result in high N

transformation rates (AMAZONAS et al., 2011).

Our findings point to that restoration in Atlantic forests can result in a decline in N

cycling rates, compared to pristine Atlantic forest, as has been found in other tropical forests

(SILVER et al., 2005). For pristine soil, negative correlations were found between gross N

mineralization and GWC, and pH. The water content in soil, represented by GWC, has a

strong control on the amount of oxygen available for the microbiota into the soil (RETH et al.,

2005).

As mineralization is mainly an aerobic process, the increase in water content in the

pristine soil reduces oxygen availability, limiting mineralization. The low pH is known as a

regulating factor of mineralization that has the optimum around 6 to 8 (DE BOER;

KOWALCHUK, 2001). Besides that, there are other explanations to the tendency of the low

gross N mineralization that are based on soil properties. The amount of SOM and TN are one

of them in both forests, mainly in restored. As the young restored forest was an active pasture

10 years before the sampling, the soil is still poor in nutrients and organic matter, with a rapid

nutrient cycling and storage of nutrients in plants biomass, maintaining the C and N stored

(SILVER et al., 2005; COMPTON et al., 2007). It may be one of the reasons for the low gross

N mineralization rate in the restored forest, and the similarity with pristine soil (AIDAR et al.,

2003).

Beyond the quantity of SOM, the quality is also considered an important regulating

factor. This parameter was not evaluate in our study, but has been considered important for

microbial processes (ARNOLD et al., 2009). The C/N ratio could be an indicator for SOM

quality, and we observed a larger increase of TC than TN, leading to a high C/N ratio, which

agrees with the slow gross N mineralization found in our restored soil (ABERA et al., 2012).

A similar C/N ratio was found in pristine soils; however, as the amount of SOM is higher than

in restored soils as well as the mineralization rate, the C/N ratio does not seems to controlling

the gross N mineralization.

One week before our sampling work, a strong and uncommon rainfall for August (23.7

mm in three days and 101.1 mm in July; http://www.inmet.gov.br/) occurred in our study

area. In pristine and restored forests, the amount of NH4+ (7.5 and 6.8 µg N g-1, respectively)

and NO3- (14.7 and 12.5 µg N g-1, respectively) was evaluated two weeks before sampling

work and was decreased during the 15N experiment (Table 1). We assign this to the strong

rainfall and leaching losses, which influenced the availability of N and the gross N

transformations. As suggested by DAVIDSON et al. (1990), an ecosystem with higher content

52

of NH4+ than NO3

- in soils is considered as N-limited, because of the larger losses of NO3- or

gas emission from denitrification. Owning to this, both the pristine and restored forest can be

considered N-limited, at least 15 days after the rainfall (Table 1). Here, is possible to see a

temporal dynamic of this limiting nutrient influenced by rainfall, since prior to the strong rain,

NO3- content was higher than NH4

+ and both soils were not N-limited, and after the rainfall

they became N-limited. SCOWCROFT et al. (2004) reported an N limitation in a 9-11 years

old koa plantation in Hawaii, indicated by a higher NH4+ immobilization than nitrification,

which is confirmed by our results (Table 2, Figure 8). This is suggested as a mechanism to

maintain the N in the soil system (SILVER et al., 2005).

In our two forest soils, the gross nitrification rates were very low (Table 2, Figure 8)

and it is probably being regulated by some soil properties. The low concentrations of TN and

the inorganic N (Table 1) together with a possible competition between microbes (e.g

nitrifiers) and plants, coupled to the leaching associated to the previous rainfall, making the

NO3- scarce and rapidly consumed when available in the soil. In addition, the pH in both soil

is low (Table 1) likely controlling negatively the nitrification, as suggested by PROSSER

AND NICOL, (2012). Besides that, trying to keep the N cycle tight, the majority of NH4+

produced by mineralization is immobilized (Table 2, Figure 8) by plants and microbial

biomass. Thereby, nitrification is limited in both pristine and restored soils.

Relating our gross N mineralization data with native forests and young plantation in

tropical areas, comparable rates were found. NEILL et al. (1999) found in lowland forest soil

in Southern Amazon rates around 3.7 µg N g-1 d-1 and SILVER et al. (2001) measured rates

around 4.8 µg N g-1 d-1 in lower montane wet tropical forest in Puerto Rico. Similar rates was

also found in a 10 years old plantation in Costa Rica (3.9 µg N g-1 d-1, respectively; SILVER

et al., 2005), and in a humid Amazon forest with sandy soil (5.0 µg N g-1 d-1; SOTTA et al.,

2008; Table 3).

Table 3 – Compilation of gross N transformations data in different tropical forest soils from the literature

(µg N g-1 d-1).

Reference Localization SON

mineralization Nitrification

NEILL et al 1999 Humid Amazon forest

(Rondônia/Brazil) 3.7 2.6

SILVER et al 2001 Lower montane wet tropical

forest (Puerto Rico) 4.8 0.6

SILVER et al 2005 Humid tropical forest

(Costa Rica) 7.9 5.1

53

SILVER et al 2005 1- and 10-yrs-old plantation

(Costa Rica) 3.9 3.2

BURTON et al 2007 Mixed rainforest and scrub

(native forest; Australia) 9.1 3.7

BURTON et al 2007 5-yrs-old plantation (Australia) 6.9 3.2

SOTTA et al 2008 Humid Amazon forest

(Pará/Brazil) 5.0 1.4

TEMPLER et al 2008 Humid tropical montane forest

(Puerto Rico) 2.0 5.6

Present study Tropical pristine lowland forest

(Rio de Janeiro/Brazil) 6.3 0.08

Present study Tropical restored lowland forest

(Rio de Janeiro/Brazil) 3.2 0.6

SILVER et al, (2005) and BURTON et al, (2007) measured lower gross N

mineralization in tropical young plantations than old-growth forests as in our study. They

reported that differences between soils in terms of microbial biomass, available C and N from

lysed cells in anaerobic conditions, could be influencing the processes. We did not measure

the microbial biomass, but considering the high GWC, TC and TN in pristine soils, the same

could have occurred in anaerobic microsites in this soil, which enhanced the gross N

mineralization. In terms of gross nitrification, only SILVER et al, (2001) showed similar

values in lower montane forest (Table 3). As our findings, the authors suggested soil

properties limiting the nitrifier activity. Other studies found in general higher gross

nitrification rates.

4.4.2 N2O restoration emission in restoration forest soil

Ecosystems in regeneration process have generally developed mechanisms to keep the

N and other nutrients in the system by avoiding losses, such as leaching and gas emissions

(DAVIDSON et al., 2007). Our findings showed an opposite trend, with higher N emissions

in restored forest soils compared to pristine soils (Figure 8). Positive correlation between N2O

emission and soil temperature in restored forest soil (Figure 9) is one of the possible

54

explanation for the findings since in restored soil, the in situ temperature was two degrees

higher than in pristine soil, due to the larger open area compared to the dense pristine forest,

which stimulate the metabolism of the N2O producers (RODRIGUES; DE MELLO, 2012).

Therefore, the water content was lower in restored soils, which favor the gases release.

The difference of gross nitrification in our two forests, which reflect on the N2O

emission, is probably linked to the soil pH. In the pristine soil, N2O emissions are near to

zero, which could be related to the very low nitrification rate inhibited by the low pH.

Without nitrification, no substrate for denitrification is produced, besides nitrification-related

emissions being zero in that case as well. However, because the low pH favors the

heterotrophic nitrification, which oxidize organic nitrogen to produce NO3-, the higher

production of N2O in restored soil, but not in pristine due to the low emission, could be

associated to this process (HUYGENS et al., 2007; ZHANG et al., 2015). It could be a

response to the restoration process that has different abundance of tree species influencing the

microbial community associated as well the organic compounds in the soil, stimulating the

microorganisms differentially (DIJKSTRA et al., 2006; DIJKASTRA et al., 2013; WANG et

al., 2014). Furthermore, DE SOUZA et al. (2015) found a higher deposition of organic N via

throughfall (water that passes through forest canopies; 19.7 kg N ha-1 yr-1) on the same region

studied here. It could stimulate the heterotrophic nitrification, mainly in young restored forest,

which has shorter and sparse trees, compared to pristine forest, and the rainfall and the

deposited compounds reach the soil easily.

However, comparing our data with other measurements in Atlantic forest soils, our

values are considered low, particularly in pristine forest. SOUSA NETO et al. (2011)

measured a mean of N2O emission around 26 µg N m-2 h-1 in a pristine Atlantic forest at 100

m of altitude, in the same month as our sampling. In a compilation data done by

RODRIGUES; DE MELLO (2012) different native Atlantic forests at various altitudes were

evaluated in terms of N2O emission, and a strong variation was observed, with the higher

value (48 µg N m-2 h-1) at altitudes between 170 and 300 m. Our mean N2O emission from

pristine soil was comparable only with Atlantic montane forests located at 1000-1200 m that

showed the lowest N2O emission (2.9 µg N2O-N m-2 h-1 in RODRIGUES; DE MELLO, 2012;

1.0 µg N2O-N m-2 h-1 in CARMO et al., 2012), which are N limited (PURBOPUSPITO et al.,

2006), as well as occurred in our soils due to the strong rainfall three days before sampling.

PERRY (2011) found N2O emissions in Atlantic Forest, during dry and wet seasons at 400 m

of altitude of 2.84 and 12.04 µg N m-2 h-1 and at 1200 m of altitude of 2.02 and 5.28 µg N m-2

55

h-1. The emissions during dry season in both altitudes was similar to our low emission from

pristine soil.

KELLER AND REINERS (1994) reported an opposite tendency of annual means of

N2O fluxes in old-growth forest and 7-13 years old abandoned pasture in Atlantic lowlands at

Costa Rica (67 and 9 µg N m-2 h-1, respectively). Our values of NH4+ are similar to their in

old-growth forest and abandoned pasture and the amount of NO3- follow the same pattern that

ours, with highest values in old-growth forest and low in abandoned pasture (Table 1).

However, the NO3- measured in the present study was very low compared to the authors

above, explaining the large difference of N2O emissions.

4.4.3 Effects of soil compaction from restoration forest

Soil compaction increases the bulk density and diminish porosity, affecting water

retention and gas transport (RICHARD et al., 2001). This behavior was seen in restored soil

(Table 1), and agrees with previous studies in land use areas, due to compaction by pasture

management that causes markedly changes in soil properties (REINERS et al., 1994;

SCOWCROFT et al., 2004). The unexpected high N2O emission from the restored soil with

low amount of pores could be associated with different water contents in pristine and restored

soil pores (Table 1) may also controlling the N2O emission, since this gas is very soluble in

water and can be transformed in N2 at anaerobic environmental, by denitrification process, at

pristine soil. However, it is important to highlight the very low gross nitrification rate in

pristine soil, producing low amount of NH4+ to produce NO3

-, which would be denitrified.

4.5 CONCLUSION

Our hypothesis about mineralization and N2O emissions in restored forest were

refuted. The results found here show low gross N mineralization rates and higher N2O

emission in the specific period, which was very peculiar due to the high precipitation during

the dry season. The influence of soil temperature was confirmed as an important regulating

factor for N2O production and emission, which could be a concern in the future with increase

of global warming. Precipitation also seems to regulate the N processes and N2O emission,

probably because of the change the availability of inorganic N by leaching, and the additional

water at the soil pores, which control the gas exchanges between soil and atmosphere.

56

The 10 years old Atlantic Forest had slow metabolism in terms of N cycling, since we

expected high rates of gross N mineralization to release N for assimilation; however, we could

see the ecosystem being similar to the pristine Atlantic forest. It may suggests an N limitation

or, as an unexpected result, a stabilization of the system related to gross N transformations

only 10 years after reforestation started, as the values were similar to pristine forest.

Moreover, the pristine area seems to be N limited with a very low gross nitrification, or at

least N limited during the wet season with high amount and frequency of precipitation. It is

important to highlight the studied region of Atlantic Forest has strong influence of rainfall,

which could vary the N availability in soils, leaching the N in soils and/or increasing the N via

throughfall.

These results emphasize the need and importance of long-term biogeochemical studies

in restored areas, to evaluate the status of the ecosystem, comparing to a pristine area, and

suggest changes during the reforestation practice to supply the requirements of the altered

ecosystem.

4.6 REFERENCES

ABERA, G.; E. WOLDE-MESKEL; L. R. BAKKEN. Carbon and nitrogen mineralization

dynamics in different soils of the tropics amended with legume residues and contrasting soil

moisture contents. Biology and Fertility of Soils, v. 48, p. 51-66. 2012.

AIDAR, M. P. M. et al. Nitrogen Use Strategies of Neotropical Rainforest Trees in Threatend

Atlantic Forest. Plant, Cell & Environment, v. 26, p. 389–399. 2003

AIDE, T, M. et al. Forest Regeneration in a Chronosequence of Tropical Abandoned Pastures:

Implications for Restoration Ecology. Restoration Ecology, v. 8, n. 4, p. 328-338. 2000.

AMAZONAS, N. T. et al. Nitrogen Dynamics during Ecosystem Development in Tropical

Forest Restoration. Forest Ecology and Management, v. 262, n. 8, p. 1551–1557. 2011.

ARNOLD, J.; M. D. CORRE; E. VELDKAMP. Soil N cycling in old-growth forests across

an Andosol toposequence in Ecuador. Forest Ecology and Management, v. 257, p. 2079-

2087. 2009.

BROOKS, P. D. et al. Diffusion method to prepare soil extracts for automated nitrogen-15

analysis. Soil Science Society of America Journal, v. 53, p. 1707–1711. 1989.

BURTON, J. et al. Gross nitrogen transformations in adjacent native and plantation forests of

subtropical Australia. Soil Biology & Biochemistry, v. 39, p. 426-433. 2007.

57

BUTTERBACH-BAHL, K. et al. Nitrous oxide from soils: how well do we understand the

processes and their controls? Philosophical Transactions, v. 368. 2013

BUTTERBACH-BAHL, K. et al. Nitrogen turnover processes and effects in terrestrial

ecosystems. In: The European Nitrogen Assessment. ed. M.A. Sutton, C.M. Howard, J.W.

Erisman et al. Cambridge University Press. 2011.

CALMON, M. et al. Emerging threats and opportunities for large-scale ecological restoration

in the Atlantic Forest of Brazil. Restoration Ecology, v. 19, n. 2, p. 154-158. 2011.

CARMO, J. B. et al. Conversion of the coastal Atlantic forest to pasture: Consequences for

the nitrogen cycle and soil greenhouse gas emissions. Agriculture, Ecosystems and

Environmental, v. 148, p. 37-43. 2012.

CHAZDON R L. Tropical forest recovery: legacies of human impact and natural

disturbances. Perspectives in Plant Ecology, Evolution and Systematics, v. 6, n. /1,2, p. 51-

71. 2003

COMPTON, J. E.; T. D. HOOKER; S. S. PERAKIS. Ecosystem N distribution and δ15N

during a century of forest regrowth after agricultural abandonment. Ecosystems, v. 10, p.

1197-1208. 2007.

DAVIDSON, E. A.; J. M. STARK; M. K. FIRESTONE. Microbial production and

consumption of nitrate in an annual grassland. Ecology, v. 71, n. 5, p. 1968-1975. 1990.

DAVIDSON, E. A. et al. Testing a conceptual model of soil emission of nitrous and nitric

oxides. BioScience, v. 50, p. 667-680. 2000.

DAVIDSON, E. A. et al. Minimizing artifacts and biases in chamber-based measurements of

soil respiration. Agric. Forest Meteorol, v. 113, p. 21–37. 2002.

DAVIDSON, E. A. et al. Recuperation of Nitrogen Cycling in Amazonian Forests Following

Agricultural Abandonment. Nature, v. 447, n. 7147, p. 995–98. 2007.

DE BOER, W.; G. A. KOWALCHUK. Nitrification in acid soils: micro-organisms and

mechanisms. Soil Biology & Biochemistry, v. 33, n. 7–8, p. 853-866. 2001.

DIJKSTRA, F. A.; CHENG, W.; JOHNSON, D. W. Plant biomass influences rhizosphere

priming effects on soil organic matter decomposition in two differently managed soils. Soil

Biology and Biochemistry, v. 38, p. 2519–2526. 2006.

DIJKSTRA, F. A. et al. Phizosphere priming: a nutrient perspective. Frontiers in

Microbiology, v. 4, n. 216. 2013.

58

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análise de

solo, EMBRAPA/SNLCS. Rio de Janeiro, 1997, 212 p.

EMBRAPA - Centro Nacional de Pesquisa de Solos (Rio de Janeiro, RJ). Sistema Brasileiro

de Classificação de Solos. 2 ed.. Rio de Janeiro, 2006, 286 p.

FARQUHARSON, R.; L. BALDOCK. Concepts in modelling N2O emissions from land use.

Plant and Soil, v. 309, n. 1, p. 147-167. 2008.

HUYGENS, D. et al. Soil nitrogen conservation mechanisms in a pristine South Chilean

Nothofagus forest ecosystem. Soil Biology and Biochemistry, v. 39, p. 2448–2458. 2007.

IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

[Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia,

V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom

and New York, NY, USA, 1535 pp. 2013.

JOLY, C. A. et al. Biodiversity conservation research, training and policy in São Paulo.

Science, v. 328, p. 1358-1359. 2010.

JOLY, C. A.; J. P. METZNGER; M. TABARELLI. Experiences from the Brazilian Atlantic

Forest: ecological findings and conservation initiatives. New Phytologist, v. 204, p. 459-473.

2014.

KELLER, M.; W. A. REINERS. Soil-atmosphere exchange of nitrous oxide, nitric oxide and

methane under secondary succession of pasture to forests in the Atlantic lowlands of Costa

Rica. Global Biogeochemical Cycles, v. 8, p. 399–409. 1994.

KIRKHAM, D.; W. V. BARTHOLOMEW. Equations for following nutrient transformations

in soil, utilizing tracer data. Soil Sci. Soc. Am. Proc., v. 18, p. 33-34. 1954.

LAMB, D.; P. D. ERSKINE; J. A. PARROTA. Restoration of degraded tropical forest

landscapes. Science, v. 310, p. 1628-1632. 2005.

MARTIN, P. A.; A. C. NEWTON; J. M. BULLOCK. Carbon pools recover more quickly

than plant biodiversity in tropical secondary forests. Proceedings of the Royal Society B.

2013

MORAN, E. F. et al. Effects of soil fertility and land-use on forest succession in Amazônia.

Forest Ecology and Management, v. 139, p. 93-108. 2000.

MYERS, N. et al. Biodiversity hotspots for conservation priorities. Nature, v. 403, n. 24, p.

853-858. 2000.

59

NEILL, C. et al. Nitrogen Dynamics in Amazon Forest and Pasture Soils Measured by 15N

Pool Dilution. Soil Biology and Biochemistry, v. 31, n. 4, p. 567–72. 1999.

PAUL, M. et al. Recovery of soil properties and functions in different rainforest restoration

pathways. Forest Ecology and Management, v. 259, p. 2083-2092. 2010.

PEREZ, T. et al. Nitrous oxide nitrification and denitrification N-15 enrichment factors from

Amazon forest soils. Ecological Applications, v. 16, n. 6, p. 2153-2167. 2006.

PROSSER, J. I.; G. W. NICOL. Archaeal and bacterial ammonia-oxidisers in soil: the quest

for niche specialisation and differentiation. Trends in Microbiology, v. 20, p. 523-531 2012.

PURBOPUSPITO, J. et al. Trace gas fluxes and nitrogen cycling along an elevation sequence

of tropical montane forests in Central Sulawesi, Indonesia. Global Biogeochemical Cycles, v.

20. 2006.

RETH, S. et al. DenNit - Experimental analysis and modelling of soil N2O efflux in

response on changes of soil water content, soil temperature, soil pH, nutrient availability and

the time after rain event. Plant and Soil, v. 272, p. 349-363. 2005.

REINERS, W. A. et al. Tropical rain forest conversion to pasture: Changes in vegetation and

soil properties. Ecological Applications, v. 4, p. 363-377. 1994.

RIBEIRO, M. C. et al. The Brazilian Atlantic Forest: How much is left, and how is the

remaining forest distributed? Implications for conservation. Biological Conservation.

Conservation Issues in the Brazilian Atlantic Forest, v. 142, n. 6, p. 1141–1153. 2009.

RICHARD, G. et al. Effect of compaction on the porosity of a silty soil: influence on

unsaturated hydraulic properties. European Journal of Soil Science, v. 52, p. 49-58. 2001.

ROCHA, C. F. D. et al. A survey of the leaf-litter frog assembly from an Atlantic forest area

(Reserva Ecológica de Guapiaçu) in Rio de Janeiro state, Brazil, with an estimate of frog

densities. Tropical Zoology, v. 20, p. 99-108. 2007.

RODRIGUES, R. A. R.; W. Z. DE MELLO. Fluxos de óxido nitroso em solos com cobertura

de floresta ombrófila densa montana da Serra do Órgãos, Rio de Janeiro. Química Nova, v.

35, p. 1549–1553. 2012.

RODRIGUES, R. R. et al. On the restoration of high diversity forests: 30 years of experience

in the Brazilian Atlantic Forest. Biological Conservation, v. 142, p. 1242-1251. 2009.

60

RÜTTING, T. et al. Advances in 15N-tracing experiments: new labeling and data analysis

approaches. Biochemical Society Transactions, v. 39, p. 279-283. 2011.

SCOWCROFT, P. G.; J. E. HARAGUCHI, N. V. HUE. Reforestation and topography affect

montane soil properties, nitrogen pools and nitrogen transformations in Hawaii. Soil Science

Society of America, v. 68, p. 959-968. 2004.

SILVA, J. M. C.; C. H. M. CASTELETI. Status of the biodiversity of the Atlantic Forest of

Brazil. C. Galindo-Leal, I.G. Câmara (Eds.), The Atlantic Forest of South America:

Biodiversity Status, Threats, and Outlook, CABS and Island Press, Washington. p. 43–59.

2003.

SILVER, W. L. et al. Dissimilatory Nitrate Reduction to Ammonium in Upland Tropical

Forest Soils. Ecology, v. 82, n .3, p. 2410–2416. 2001.

SILVER, W. L. et al. Nitrogen cycling in tropical plantation forests: potential controls on

nitrogen retention. Ecological Applications, v. 15, p. 1604-1614. 2005.

SKIBA, U.; B. BALL. The effect of soil texture and soil drainage on emissions of nitric oxide

and nitrous oxide. Soil Use Manage, v. 18, p. 56–60. 2002.

SMITH, K. A. et al. Effect of temperature, water content and nitrogen fertilization on

emissions of nitrous oxide by soils. Atmospheric Environmental, v. 3219, p. 3301–3309.

1998.

SOS MATA ATLÂNTICA, INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS, 2015.

Atlas dos remanescentes florestais da Mata Atlântica, período de 2013 a 2014.

<http://www.sosmatatlantica.org.br>.

SOTTA, E. D.; M. D. Corre; E. Veldkamp. Differing N Status and N Retention Processes of

Soils under Old-Growth Lowland Forest in Eastern Amazonia, Caxiuanã, Brazil. Soil Biology

and Biochemistry, v. 40, n. 3, p. 740–50. 2008.

SOUSA NETO, E. et al. Soil-atmosphere exchange of nitrous oxide, methane and carbon

dioxide in a gradient of elevation in the coastal Brazilian Atlantic forest. Biogeosciences, v. 8,

p. 733-724. 2011.

STANGE, C. F. et al. Automated and rapid online determination of 15N abundance and

concentration of ammonium, nitrite, or nitrate in aqueous samples by the SPINMAS

technique. Isotopes in Environmental and Health Studies, v. 43, n. 3, p. 227-236. 2007.

TABARELLI, M. et al. Challenges and opportunities for biodiversity conservation in the

Brazilian Atlantic forest. Conservation Biology, v. 19, p. 695–700. 2005.

61

TEMPLER, P. H. et al. Plant and microbial controls on nitrogen retention and loss in a humid

tropical forest. Ecology, v. 89, n. 11, p. 3030-3040. 2008.

VELOSO, H. P. et al. Classificação da vegetação brasileira, adaptada a um sistema universal.

Rio de Janeiro IBGE, Departamento de Recursos Naturais e Estudos Ambientais, 1991. IBGE

CDDI. Dep. de Documentação e Biblioteca.

WANG, F et al. Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil

properties and nitrogen transformation during forest restoration in southern China. Soil

Science and Plant Nutrition, v. 56, n. 2, p. 297-306. 2010.

WEN, L. et al. Rapid recuperation of soil nitrogen following agricultural abandonment in a

karst area, southwest China. Biogeochemistry, v. 129, p. 341-354. 2016.

ZHANG, J.; C. MÜLLER; Z. CAI. Heterotrophic nitrification of organic N and its

contribution to nitrous oxide emissions in soils. Soil Biology & Biochemistry, v. 84, p. 199–

209. 2015.

62

5 RECOVERY OF SOIL N MECHANISMS IN REGROWING AMAZONIAN

RAINFOREST

ABSTRACT

Extensive regions of tropical forests are subjected to high rates of both deforestation and

forest regrowth on abandoned agricultural lands and grasslands, and their rates have been

unprecedented during the past few decades. The deforestation leads to a loss of soil organic

matter and soil nutrients, such as nitrogen and phosphorus. These soil pools might be build up

again upon reforestation, but the time needs to reach undisturbed forest conditions soil is

unclear. Here, we assessed mechanistic changes in the soil N cycle of tropical forests of

different ages of regrowth after one time disturbance in Brazilian Amazonian. The overall aim

of the study was to understand which N cycle pathways and their controlling factors are

altered during forest regrowth, which is still uncertain for tropical forests. We showed that

soil gross nitrification, mineralization and the nitrate-to-ammonium (NO3-:NH4

+) ratio are

decreased in regrowing forests, which is preserved even after 40 years. This indicates an

evolution of the N cycle into a more conservative status. This is a clear indication that

abandoned forests have the potential to reach natural mechanistic N balances over a period of

ca. 50 years.

5.1 INTRODUCTION

In the Amazon region of Brazil, deforestation is largely practiced for soya bean

cultivation, logging and cattle ranching, mainly for export (BARONA et al., 2010). The

deforested area in the Brazilian Amazon is around 780 thousand km2, which represents 19 %

of the entire Amazonian forest in Brazil (INPE, 2016). The high rate of tropical deforestation

led to global concern since these areas are a hot spot of biodiversity and, in terms of

Amazonian forests, has direct influence on the global climate through hydrological and

biogeochemical cycles (LAURANCE et al., 2001; MCGRATH et al., 2001; KIRBY et al.,

2006; AGUIAR et al., 2016).

Many deforested areas in tropical countries are frequently abandoned after

managements, such as clear-cutting and slash-and-burn, owing to unproductive soils

(DAVIDSON et al., 2004), and secondary forest can establish, which show modified

vegetation as well as soil properties and microbial community (MARTIN et al., 2013;

ZHANG et al., 2016). According to TerraClass system (2014), the area of secondary forest on

63

previously cleared land in Amazon region is approximately 167 thousand km2. Owing to

deforestation still occur in the region, even the rates decrease from 2004, the regrowth area is

increasing (INPE, 2016). How the regrowth of tropical secondary forest after management

affects the availability of nutrients and biogeochemical processes, and how the post-

disturbance regeneration can influence these processes are poorly understood (DAVIDSON et

al., 2007).

Generally, early secondary forests have high metabolism on disturbed soils to increase

biomass (MARTIN et al., 2013) and recover pristine conditions rapidly, even when nitrogen

(N) is limited (AMAZONAS et al., 2011). Microbial processes, such as mineralization and

nitrification, drive the soil N cycle and thereby control the amount of organic and inorganic N

forms in soil (KOWALCHUK; STEPHEN, 2001; SCHIMEL; BENNETT, 2004).

Mineralization of soil organic matter is responsible for inorganic N production in terrestrial

ecosystems, releasing ammonium (NH4+) that supports nitrification (BOOTH et al., 2005), an

oxidation of NH4+ to nitrate (NO3

-). These two inorganic N forms may have different fates in

soils, as immobilization in biomass, leaching and gas losses (TEMPLER et al., 2008), and the

occurrence and magnitude of these pathways might influence the forest growth (SCHMIDT,

2007).

In a previous study, DAVIDSON et al, (2007) investigated the N cycling recovery in a

secondary forest age chronosequence after agricultural abandonment in the Amazon region,

using indicators based on inorganic N concentrations. The authors found a conservative N-

cycling in soils of young successional tropical forests based on N and P contents in leaves,

litterfall and soils, as well as N2O emissions as indicators of the recovery of N-cycling

(DAVIDSON et al., 2007). However, their study did not directly evaluate the mechanisms of

the soil N cycle, such as gross mineralization and nitrification. The gross soil N cycle

dynamics could show clearly the dynamic of labile N in soils since they are the main control

of inorganic N availability. In this line, understanding the gross N transformations in tropical

regrowth forest soils, with focus on the mineralization and nitrification processes, determining

the availability of N, is an important step in managing and enhancing abandoned managed

areas.

Four forests, including one pristine forest and one regrowth forest (40 years old)

located inside and two regrowth forests (10 and 20 years old) near the Ecological Station of

Cuniã in the state of Rondônia, Western Amazonia, were evaluated in terms of soil N cycling

with focus on gross N mineralization and gross nitrification. The 15N pool dilution technique

using the “virtual soil core” approach (RÜTTING et al., 2011) was used to quantify in situ

64

gross N processes rates. All gross rates are presented as means and standard error.

Physicochemical soil properties which affect the soil N cycle, such as total soil N, soil organic

matter (SOM) and soil carbon (C) content, soil pH and soil moisture (Table 1) were measured.

Predominant soil type of the investigated forests is Plinthosol (IUSS Working Group WRB,

2014) and the vegetation is dominated by hardwood with abundance of palms (PANSINI et

al., 2016).

5.2 METHODS

5.2.1 Study area

The study was carried out at the Ecological Station of Cunia, Porto Velho

municipality, at Rondônia state, Brazil (08°06’23”S and 63°28’59”W; Figure 11). The

ecological station was established for conservation and scientific research in 2001 in one of

the states with highest deforestation rate in Amazonian region between 1980 and 1990.

Figure 11. Map of the Ecological Station of Cunia, Porto Velho municipality, at Rondônia state, Brazil.

The red star represent our sampling area. (Map from PPBio INPA).

The area of the station corresponds to 125,849 ha of open rainforest dominated by

hardwood with abundance of palms. The soils studied were classified as Plinthosols, iron-rich

and humus-poor and predominance of kaolinitic clay (IUSS Working Group WRB, 2014).

65

Inside the station, there is an area of 2500 ha (5 x 5 km) previously defined for sampling and

used in long-term monitoring. The mean annual precipitation in this region is 2500 mm, the

rain season occurs from October to April, and the dry season from June to August. The mean

annual temperature at the region is around 26 °C (ALVARES et al., 2013).

To investigate the gross N transformations in intact soils of pristine and regrowth

forest, one pristine forest and three regrowth forests with an age of 10, 20 and 40 years after

slash-and-burn practice were chosen. The pristine forest was inside a grid of 1 km2 and were

within the long-term monitoring site, as was the 40 years old regrowth forest (3-4 km from the

pristine plot). The other two regrowth forests (10 and 20 years old) were located in the

surrounding area, 10-12 km away.

5.2.2 In situ 15N labelling

To investigate the in situ gross N transformations in intact soil, with an intact

rhizosphere, a 15N labelling using the “virtual soil core” approach (RÜTTING et al., 2011;

Figure 6, Chapter 3) was conducted at the beginning of the dry season in April 2013.

In the pristine forest in total seven plots in two straight lines, 1 km apart, were

established with 10 m distance between plots. In the regrowing forests, three plots were

randomly chosen with a distance of 10 m either in a straight line (40 years old) or in a triangle

(10 and 20 years old), which was mainly governed by accessibility. Each plot was treated as a

replicate and in each two sets of a paired labelling spots were establish, receiving a solution

containing NH4+ and NO3

- with one of the N species enriched with 15N at 99 %. One of the

paired labelling spots was sampled immediately after labelling (t0) and the second one 24

hours (t24) after labelling. Each spot received eleven 1 mL injections of 15N solution in a

circular area of 7 cm in diameter, homogenously distributed into the soil underneath the litter

to a depth of 9 cm using a 1 mL syringe and 9 cm spinal needle (RÜTTING et al., 2011). Soil

sampling was conducted in the inner 4 cm labelling spot. The larger labelling area provides a

buffer zone around the sampling (RÜTTING et al., 2011). The total amount added

corresponded to 1.73 µg NH4+-N and 0.86 µg NO3

--N per gram dry soil.

The intact soil samples were immediately transported to the field laboratory, where

they were gently broken by hand to remove stones, leaves and large roots by tweezers. After

sieving, 50 grams of each soil sample was added to a brown plastic bottle together with 100

mL of 1M KCl, placed on a shaker for 1 hour, and lastly filtered through MN 615 filter paper

(Macherey-Nagel).

66

The remaining soil was dried later in the laboratory to measure gravimetric water

percentage (GWC), the soil organic matter percentage (SOM) was measured by loss-on-

ignition, and the total C and N (TC and TN) was measured on an elemental analyser coupled

to an Isotope Ratio Mass Spectrometer (IRMS) (20-20, Sercon Ltd., Cheshire, UK). The pH

was measured in 1 M KCl extract solution with pH meter (691, Metrohm AG, Herisau, CH).

Concentrations of NH4+ and NO3

- in KCl extracts were measured on flow injection analyser

(FIAstar 5000, Foss Tecator AB, Brazil). The soil properties are showed in Table 4.

For analysis of 15N abundance, NO3- in extracts was measured using the automatic

measuring method Sample Preparation of Inorganic N compounds Mass Spectrometry

(SPINMAS) (STANGE et al., 2007) at UFZ Halle. The 15N abundance of NH4+ was analysed

using the micro-diffusion technique (BROOKS et al., 1989), in which NH4+ is trapped in

acidified glass fibre filters and analysed using an elemental analyser (ANCA-GSL, PDZ

Europa, UK) coupled to the same IRMS as above, conducted at the Stable Isotope Facility at

the University of California, Davis.

5.2.3 Data analysis

Gross N mineralization and nitrification rates were calculated for each plot using the

analytical 15N tracing model by KIRKHAM; BARTHOLOMEW (1954), using data from the

15NH4+ labelling for gross mineralization and 15NO3

- labeling for gross nitrification:

, (1)

where N0 and Nt are soil NH4+ or NO3

- content at time zero and t, respectively, t is the time in

days. The a’0 and a’t are the excess 15N fractions of NH4+ or NO3

- at time zero and t,

respectively. Average gross rates were calculated per forest type and are presented on soil dry

weight (SDW). A one-way analysis of variance (ANOVA) with Tukey’s post-test (P < 0.05)

was carried out to examine the differences between the four forest sites.

The Normality test (Shapiro-Wilk) was used to examine the normality of soil

properties. As some of our data, such as gravimetric water content (GWC), total nitrogen

(TN), soil NH4+ and NO3

- content were not normally distributed, the Kruskal-Wallis test with

Dunn’s post-test (P < 0.05) was conducted to examine the difference between the four forest

sites. Data of pH, SOM and total carbon (TC) showed a normal distribution and one-way

67

analysis of variance (ANOVA) was conducted. All the analyses were conducted using

GraphPad Prism (Version 5.01, GraphPad Software, Inc.).

5.3 RESULTS AND DISCUSSION

Early secondary forests exhibited a more conservative N cycle compared to pristine

and older secondary forests in the Amazon region (DAVIDSON et al., 2007). This is in

agreement with our results from a chronosequence, which, moreover, provide mechanistic

insights how the soil N cycle develops during forest regrowth. The quantified gross N cycle

rates provide further evidence for a closer N cycle in regrowing (secondary) forests.

Rates of gross mineralization in the pristine forest are though within the range of gross

mineralization reported by other pristine tropical forests (e.g. BOOTH et al., 2005; SILVER et

al., 2005; ALLEN et al., 2015). In an Eastern Amazon forest during the dry season, SOTTA et

al (2008) found a gross N mineralization rate of 13.9 ± 3.8 µg N g-1 d-1 from clay soil and 7.2

± 1.8 µg N g-1 d-1 from sand soil, which is similar to the rate we found in the pristine forests at

the Ecological Station of Cuniã. Gross N mineralization measured along the chronosequence

of forest regrowth is consistent with the successional stage, where the early forest (10 years

old) had the highest rates (20.9 ± 5.3 µg N g-1 d-1), four times higher compared to the older

regrowth (5.5 ± 1.7 µg N g-1 d-1) and two times higher than pristine forests (11.1 ± 2.5 µg N g-

1 d-1; Figure 12).

68

0

5

10

15

20

25

30

Gro

ss

min

era

liza

tio

n (

g N

g-1

da

y-1

)

Pristine 10 20 40

0

3

6

9

12

15

18

21

Time of regrowth (year)

Gro

ss

nit

rifi

ca

tio

n (

g N

g-1

da

y-1

)

Figure 12. Gross N mineralization (top) and nitrification (bottom) rates (µg N g-1 SDW day-1; Mean ±

Standard Error) in five forest soils at Cuniã Ecological Station, Rondônia, with one pristine forest (set to t

= 0 years) and three regrowth forests (10 years; 20 years; and 40 years). For gross N mineralization, the

10 years old regrowth forest was statistically different from the 40 years old forest (One way ANOVA with

Tukey’s post hoc test P < 0.05). For gross nitrification, the pristine forest was significantly different from

all three regrowth forests (One way ANOVA with Tukey’s post hoc test P < 0.05).

A similar pattern was found by BURTON et al. (2007) in Australia, where gross N

mineralization was 2 to 3 times higher in early monospecific plantation (5 years old) than

pristine forest and older (53 years old) plantation. However, other studies showed a different

69

pattern of unaffected or decreased gross mineralization in early forest plantations or

successional secondary forests (ZOU et al., 1992; SCOWCROFT et al., 2004; KITA et al.,

2005; SILVER et al., 2005). These differences might be related to different responses of the

microbial biomass in early plantation (SILVER et al., 2005) and/or depending on tree species.

Across the secondary forest age chronosequence, the SOM content was significantly

higher (P < 0.05) in pristine than10 years old regrowth but they were not significantly

different from 20 and 40 years old regrowth (Table 4).

Table 4 – Soil properties of pristine forest and three regrowth forests (10, 20 and 40 year old) at Ecological

Station of Cuniã, Rondônia (Brazil). Mean ± Standard Error.

Pristine 10 yrs. 20 yrs. 40 yrs.

pH 3.7 ± 0.04a 3.4 ± 0.1b 3.9 ± 0.04c 3.8 ± 0.05a,c

GWC (%) 35.1 ± 0.1a 22.0 ± 0.9b 35.8 ± 1.5a 30.8 ± 1.2a

SOM (%) 7.5 ± 0.4a 5.1 ± 0.7b 8.0 ± 1.8a,b 6.8 ± 1.2a,b

TC (%) 4.4 ± 0.3a 2.9 ± 0.4b 4.7 ± 1.1a,b 3.9 ± 0.7a,b

TN (%) 0.19 ± 0.01a 0.17 ± 0.02a 0.20 ± 0.01a 0.17 ± 0.02a

NH4+

(µg/g SDW) 3.4 ± 0.5a 8.0 ± 1.7a 7.1 ± 1.9a 5.7 ± 0.3a

NO3-

(µg/g SDW) 9.4 ± 1.4a 3.8 ± 0.7a,b 1.7 ± 1.2b 2.2 ± 0.4b

NO3-:NH4

+ 2.9 ± 0.2a 0.6 ± 0.17b 0.4 ± 0.25b 0.4 ± 0.3b

The letters a, b and c represent the values that are statistically significantly different in the four studied sites One

way ANOVA test with Tukey’s post hoc test (P < 0.05) was used for parametric soil properties (GWC, TN,

NH4+ and NO3

-) and Kruskal-Wallis test with Dunn’s post hoc test, P < 0.05 for non-parametric (pH, SOM and

TC). GWC = gravimetric water percentage, TC = total carbon, TN = total nitrogen.

However, SOM content does not seems to be controlling the rates gross N

mineralization, because the lower SOM content was found in the forest with the highest rates.

A relevant implication of the recent management, instead of the amount of SOM, is the

organic matter quality (ZHANG et al., 2011), that is derived from different species of plants

in each investigated site. The Carbon/Nitrogen (C/N) ratio is one powerful indicator of the

organic matter quality, confirming our idea about control of mineralization, since 10 years old

regrowth had the lower C/N ratio (17) in comparison with the others (C/N in pristine, 20 and

40 years old were 23, 24 and 23 respectively). Hence, some species of plants would release

high quality organic compounds, which stimulates gross N mineralization (SOTTA et al.,

2008; WANG et al. 2015). Changes in the internal soil N cycle as consequence of

deforestation provide different responses of microbial and plant community during regrow

70

stage (GONZÁLEZ-PÉREZ et al., 2004). In general, the main pattern seen in early forests is

high rate of NH4+ released through mineralization (AIDAR et al., 2003; DAVIDSON et al.,

2007) and as the regrowing forest ages, other N cycle processes become progressively more

important, changing the dominate N form in soil (MARKEWITZ et al., 2004). This pattern is

also confirmed by our results. As shown by AIDAR et al (2003), gross mineralization in early

regrowth forests is high due to the recent disturbance that redistribute organic matter stored in

deeper soil layers to soil surface. Furthermore, the previous management, as slash-and-burn,

degraded the soil organic matter, releasing labile compounds that are easier to mineralize

(GONZÁLEZ-PÉREZ et al. 2004, STEINER et al., 2008). Subsequently, gross mineralization

decreases over time, possibly due to the low tree biomass, which reduces root exudation and

rhizosphere priming (DIJKSTRA et al., 2006; BENGTSON et al., 2012; DIJKSTRA et al.,

2013). In contrast, gross nitrification is decreased in all three stages of forest regrowth. This

could be related to the alteration of the soil microbial community, as found by PAULA et al

(2014), who showed higher abundance of nitrifiers in pristine forest soils than regrowth forest

soils after land-use changes. In addition, an enhanced plant N demand, competing with

nitrifiers for NH4+, could contribute to the decreased gross nitrification. Consequently,

regrowing forests have a tighter N cycle with less risk of N losses and enhanced N retention

(COMPTON et al., 2007).

In a global dataset, the rate of gross nitrification was best explained by gross

mineralization as this process provides the main substrate for nitrification (BOOTH et al.,

2005). However, the high nitrification rate found in the pristine forest, suggests different

sources of NH4+ in Amazonian soils supporting high gross nitrification. For instance, NH4

+

content could be increased in soils via biological nitrogen fixation (YANG et al., 2009) or

dissimilatory nitrate reduction to ammonium (SILVER et al., 2001; RÜTTING et al., 2008),

which still is unclear in tropical environments (SILVER et al., 2001; TEMPLER et al., 2008).

Another possibility for high gross nitrification is heterotrophic nitrification, in which

microorganisms use organic N to produce NO3- (DE BOER; KOWALCHUK, 2001). As

found by BURTON et al. (2007) in a subtropical forest in Australia, heterotrophic nitrification

could be responsible for the higher gross nitrification than the rate of NH4+ production by

gross N mineralization. Moreover, the investigated pristine soils have low pH, which

promotes heterotrophic nitrification (DE BOER; KOWALCHUK, 2001). Due to the higher

gross nitrification in pristine forest, this site showed the highest amount of NO3- (9.4 ± 1.4 µg

g-1 SDW; Figure 13; Table 4). This is in accordance with the general pattern of open N cycle

reported for other tropical pristine forests (DAVIDSON et al., 2007), which have a relative

71

excess in NO3- that is more mobile than NH4

+ in soils, and promotes N losses by leaching and

N gas emission (NEILL et al., 1999; SILVER et al., 2005; SOTTA et al., 2008; RÜTTING et

al., 2015). In all regrowth stages, gross nitrification rates were lower than pristine forest

(Figure 12, limiting the soil NO3- content, which confirms the idea of N retention and

conservation in early ecosystems (DAVIDSON et al. 2007). The same pattern of low gross

nitrification rates in tropical early plantations and secondary forests was found in previous

studies (ZOU et al., 1992; SCOWCROFT et al., 2004; SILVER et al., 2005). Particularly the

results by BURTON et al. (2007), investigating two forest plantations of different age, are

strikingly similar to our study. These authors found the same tendency of decreased gross

nitrification in both early and old plantations compared to the pristine forest, but this was

uncoupled from changes in gross mineralization, which was, as in our study, enhanced in the

early plantation (BURTON et al., 2007). The strategy in early regrowth forests is to promote

high rates of gross N mineralization and low rates of gross nitrification, maintaining the N as

NH4+, which is less mobile in soils than NO3

-, leading to reduced losses (SOTTA et al., 2008),

but maintaining availability of N for plant uptake. This is expressed in the lower NO3-:NH4

+

ratio (Figure 13), an indicator of a conservative N cycle (DAVIDSON et al., 2007).

Figure 13. Content of soil NH4+ and NO3

- (µg N g-1 SDW; Mean ± SE) as well as the ratio between the two

mineral N forms in pristine forests (set to t=0 years) and three regrowth forests (10, 20 and 40 years) at

the Ecological Station of Cuniã, Rondônia (Brazil). The contents were calculated from the first extraction

after 15N labelling by subtracting the amount of tracer recovered (based on 15N enrichment).

72

Our findings are in line with DAVIDSON et al. (2007), since our regrowing forests

showed a lowered NO3-:NH4

+ ratio compared to pristine forests (Figure 13). Moreover, in N-

limited ecosystems, as our regrowth forests, the NH4+ content prevails in the soil and the N

dynamics has evolved to maintain N in the system and keep concentration and N process rates

low (HUYGENS et al. 2007).

5.4 CONCLUSION

Until recently, gross N mineralization and nitrification were a good indicator of the

environmental recovery status after a disturbance; however, our findings suggest a re-

establishment of gross N mineralization process after 20 years of the disturbance, becoming

lower, but close to pristine stage, while gross nitrification in the soil forest did not recovery

even after 40 years. It indicates the gross nitrification as a more sensitive process that needs

long time to recovery the pristine conditions, and allow the N, as NO3- form, flowing through

the N cycle and the assimilations and movements in soils. Moreover, the influence of the

vegetation over nitrification is stronger than mineralization, since they compete by the same

substrate (NH4+) in early stages of regrowth forest. Meanwhile, in advanced stages of

regrowth forest, the vegetation is already established, and the demand of NH4+ declines,

leaving more NH4+ to be consumed by nitrification, as showed in pristine forest.

Thereby, the present study provide the understanding of the best mechanism to

evaluate the N-cycling recovery on degraded soils in secondary succession forests, which is

the gross nitrification. This process is a key process driving N cycle, since controls N losses

and is influenced by the regenerated vegetation. Based on that, this finding could be

implemented in models to predict the future recovery of forest regrowth after deforestation

practice.

5.5 REFERENCES

AGUIAR, A. P. D. et al. Land use change emission scenarios: anticipating a forest transition

process in the Brazilian Amazon. Global Change Biology, v. 22, p. 1821-1840. 2016.

AIDAR, M. P. M. et al. Nitrogen Use Strategies of Neotropical Rainforest Trees in Threatend

Atlantic Forest. Plant, Cell & Environment, v. 26, p. 389–399. 2003.

73

ALLEN, K. et al. Soil nitrogen-cycling responses to conversion of lowland forests to oil palm

and rubber plantations in Sumatra, Indonesia. PlosOne, v. 10, n. 7. 2015.

ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische

Zeitschrift, v. 22, n. 6, p. 711-728, 2013

AMAZONAS, N. T. et al. Nitrogen Dynamics during Ecosystem Development in Tropical

Forest Restoration. Forest Ecology and Management, v. 262, n. 8, p. 1551–1557. 2011.

BARONA, E. et al. The role of pasture and soybean in deforestation of the Brazilian Amazon.

Environmental Research Letters, v. 5. 2010.

BENGTSON, P.; J. BRAKER; S. J. GRAYSTON. Evidence of a strong coupling between

root exudation, C and N availability, and stimulated SOM decomposition caused by

rhizosphere priming effects. Ecology and Evolution, v. 2, n. 8, p. 1843-1952. 2012.

BOOTH, M. S.; J. M. STARK; R. EDWARD. Controls on Nitrogen Cycling in Terrestrial

Ecosystems: A Synthetic Analysis of Literatura Data. Ecological Monographs, v. 75, n. 2, p.

139–57. 2005.

BROWN, J. R. et al. Effects of multiple global change treatments on soil N2O fluxes.

Biogeochemistry, v. 109, p. 85-100. 2012.

BURTON, J. et al. Gross nitrogen transformations in adjacent native and plantation forests of

subtropical Australia. Soil Biology & Biochemistry, v. 39, p. 426-433. 2007.

CHAPIN, F. S. et al. Consequences of Changing Biodiversity. Nature, v. 405, n. 6783, p,

234–242. 2000.

COMPTON, J. E.; T. D. HOOKER; S. S. PERAKIS. Ecosystem N distribution and δ15N

during a century of forest regrowth after agricultural abandonment. Ecosystems, v. 10, p.

1197-1208. 2007.

DAVIDSON, E. et al. Nitrogen and Phosphorus Limitation of Biomass Growth in a Tropical

Secondary Forest. Ecological Applications, v.14, n. 4, p. 150–163. 2004.

DAVIDSON, E. A. et al. Recuperation of Nitrogen Cycling in Amazonian Forests Following

Agricultural Abandonment. Nature, v. 447, n. 7147, p. 995–98. 2007.

DE BOER, W.; G. A. KOWALCHUK. Nitrification in acid soils: micro-organisms and

mechanisms. Soil Biology & Biochemistry, v. 33, n. 7–8, p. 853-866. 2001.

74

DIJKSTRA, F. A.; CHENG, W.; JOHNSON, D. W. Plant biomass influences rhizosphere

priming effects on soil organic matter decomposition in two differently managed soils. Soil

Biology and Biochemistry, v. 38, p. 2519–2526. 2006.

DIJKSTRA, F. A. et al. Phizosphere priming: a nutrient perspective. Frontiers in

Microbiology, v. 4, n. 216. 2013.

GONZÁLEZ-PÉREZ, J. A. et al. The effect off ire on soil organic matter – a review.

Environmental International, v. 30, p. 855-870. 2004.

HUYGENS, D. et al. Soil nitrogen conservation mechanisms in a pristine South Chilean

Nothofagus forest ecosystem. Soil Biology and Biochemistry, v. 39, p. 2448–2458. 2007.

INPE (2015) Amazon Program - Monitoring the Brazilian Amazon by satellite: The

PRODES, DETER, DEGRAD and TerraClass Systems. Available at www.inpe.br (accessed

01 February 2017).

IUSS Working Group WRB (2014) World reference base for soil resources 2015. World Soil

Resources Report No. 106. FAO, Rome. 2014.

KIRBY, K. R. et al. The Future of Deforestation in the Brazilian Amazon. Futures, v. 38, n.

4, p. 432–453. 2006.

KIRKHAM, D.; W. V. BARTHOLOMEW. Equations for following nutrient transformations

in soil, utilizing tracer data. Soil Sci. Soc. Am. Proc., v. 18, p. 33-34. 1954.

KITA, S. et al. Effects of cutting and regeneration on microbial activity of natural forest in

east Kalimantan. Journal of the Japanese Forestry Society, v. 87, p. 217-224 2005.

KOWALCHUK, G. A.; J. R. STEPHEN. Ammonia-oxidizing bacteria: a model for molecular

microbial ecology. Annual Review of Microbiology, v. 55, p. 485-529. 2001

LAURANCE, W. F. et al. The Future of the Brazilian Amazon. Ecology, v. 29, n. 5503, p.

438–439. 2001.

MARKEWITZ, D. et al. Nutrient loss and redistribution after forest clearing on a highly

weathered soil in Amazonia. Ecological Applications, v. 14, n. 4, p. S177-S199. 2004

MARTIN, P. A.; A. C. NEWTON; J. M. BULLOCK. Carbon pools recover more quickly

than plant biodiversity in tropical secondary forests. Proceedings of the Royal Society B.

2013

MCGRATH, D. A. Effects of Land-Use Change on Soil Nutrient Dynamics in Amazônia.

Ecosystems, v. 4, n. 7, p. 625–645. 2001.

75

NEILL, C. et al. Nitrogen Dynamics in Amazon Forest and Pasture Soils Measured by 15N

Pool Dilution. Soil Biology and Biochemistry, v. 31, n. 4, p. 567–72. 1999.

PANSINI, S. et al. Riqueza e seletividade de palmeiras ao longo de gradientes ambientais na

região do interflúvio Purus-Madeira em Porto Velho, RO. Biota Amazônica, v. 6, n. 2, p. 93-

100. 2016.

PAULA, F. S. et al. Land use change alters functions gene diversity, composition and

abundance in Amazon forest soil microbial communities. Molecular Ecology, v. 23, p. 2988-

2999. 2014.

RÜTTING, T. et al. Functional Role of DNRA and Nitrite Reduction in a Pristine South

Chilean Nothofagus Forest. Biogeochemistry, v. 90, n. 3, p. 243–258. 2008.

RÜTTING, T. et al. Assessment of the importance of dissimilatory nitrate reduction to

ammonium for the terrestrial nitrogen cycle. Biogeosciences, v. 8, p. 1779-1791. 2011.

RÜTTING, T. et al. Leaky nitrogen cycle in pristine African montane rainforest soil. Global

Biogeochemical Cycles, v. 29, p. 1754-1762. 2015.

SCHIMEL, J. P.; J. BENNETT. Nitrogen mineralization: challenges of a changing paradigm.

Ecology, v. 85, n. 3, p. 591-602. 2004

SCHMIDT, S. K. Biogeochemical Consequences of Rapid Microbial Turnover. Ecology, v.

88, n. 6, p. 1379–1385. 2007.

SCOWCROFT, P. G.; J. E. HARAGUCHI, N. V. HUE. Reforestation and topography affect

montane soil properties, nitrogen pools and nitrogen transformations in Hawaii. Soil Science

Society of America, v. 68, p. 959-968. 2004.

SILVER, W. L. et al. Nitrogen cycling in tropical plantation forests: potential controls on

nitrogen retention. Ecological Applications, v. 15, p. 1604-1614. 2005.

SOTTA, E. D.; M. D. Corre; E. Veldkamp. Differing N Status and N Retention Processes of

Soils under Old-Growth Lowland Forest in Eastern Amazonia, Caxiuanã, Brazil. Soil Biology

and Biochemistry, v. 40, n. 3, p. 740–50. 2008.

STANGE, C. F. et al. Automated and rapid online determination of 15N abundance and

concentration of ammonium, nitrite, or nitrate in aqueous samples by the SPINMAS

technique. Isotopes in Environmental and Health Studies, v. 43, n. 3, p. 227-236. 2007.

STEINER, C. et al. Nitrogen retention and plant uptake on a highly weathered central

Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and

76

Soil Science, v. 171, p. 893-899. 2008.

TEMPLER, P. H. et al. Plant and microbial controls on nitrogen retention and loss in a humid

tropical forest. Ecology, v. 89, n. 11, p. 3030-3040. 2008.

WANG, H. et al. Quality of Fresh Organic Matter Affects Priming of Soil Organic Matter and

Substrate Utilization Patterns of Microbes. Scientific Reports, v. 5, n. 10102 2015.

YANG, X. et al. Integration of Nitrogen Cycle Dynamics into the Integrated Science

Assessment Model for the Study of Terrestrial Ecosystem Responses to Global Change.

Global Biogeochemical Cycles, v. 23, n. 4, p. 1–18. 2009.

ZHANG, J.; Z. CAI; T. ZHU. N2O production pathways in the subtropical acid forest soils in

China. Environmental Research, v. 111, p. 643–649. 2011.

ZHANG, C. et al. Soil bacterial community dynamics reflect changes in plant community and

soil properties during the secondary succession of abandoned farmland in the Loess Plateau.

Soil Biology and Biochemistry, v. 97, p. 40-49. 2016.

ZOU, X. M. et al. Resin-core and buried-bag estimates of nitrogen transformations in Costa

Rican lowland rainforests. Plant and Soil, v. 139, p. 275-283. 1992.

77

6 SOIL ORGANIC MATTER CONTENT CONTROLS GROSS NITROGEN

DYNAMICS AND N2O PRODUCTION IN RIPARIAN AND UPLAND BOREAL

SOILi

Highlights:

Which soil properties control gross N transformations and N2O production pathways

in boreal soil?

Examined nitrogen dynamics in two boreal forest soils with 15N.

Considerable oxidation of organic N in boreal soil is the main source of N2O.

Soil organic matter is the main regulator of N transformations in boreal forest soil.

Summary

We investigated the pathways of gross soil nitrogen (N) transformations and nitrous oxide

(N2O) production with 15N enrichment techniques in a boreal forest landscape by comparing

organic (riparian) and mineral (upland) soil within two catchments in northern Sweden. The

values of all soil properties evaluated for the riparin and upland zones were statistically

different (P < 0.05). The rates of gross N transformation were larger in the riparian than in the

upland soil (P < 0.05), which can be explained by the larger soil organic matter (SOM)

content that provides energy and mineral N as a substrate for other processes. The riparian

soil at one site shows a decoupling of nitrification from mineralization; the largest gross

mineralization occurred in the soil at this site, but gross nitrification was relatively small. This

was probably because of the low pH (2.7 ± 0.1), which inhibits the activity of autotrophic

nitrifiers. Oxidation of organic N was the main source of N2O in the soil at all sites, probably

because of low soil pH and large organic carbon content, which favours heterotrophic

nitrification. The results of our study confirm that organic matter is the main regulating factor

of gross N mineralization and nitrification; the latter are markedly different in the organic rich

riparian soil from the upland soil in the boreal forest landscape.

iFIGUEIREDO, V.; ENRICH-PRAST, A.; RÜTTING, T. Soil organic matter content controls gross

nitrogen dynamics and N2O production in riparian and upland boreal soil. European Journal of Soil

Science, v. 67, p. 782-791, 2016. Doi: 10.1111/ejss.12384. Formatado segundo normas do periódico.

78

6.1 INTRODUCTION

Nitrogen (N) is the main limiting factor in primary production in most terrestrial ecosystems,

particularly at high latitudes (Vitousek & Howarth, 1991). Atmospheric deposition of N in

Europe is known to be large; it ranges from 1 to more than 75 kg N ha−1 year−1 (Corre &

Lamersdorf, 2004), but it is small in the boreal forests of northern Sweden (< 2 kg N ha-1 year-

1; IVL Svenska Miljöinstitutet, 2015). The major terrestrial reservoir of N is soil organic

matter (SOM). When this is mineralized it provides mineral N, which is readily taken up by

plants and immobilized by microorganisms (Booth et al., 2005). Moreover, autotrophic and

heterotrophic microbial processes transform forms of mineral N: autotrophic nitrification is

the oxidation of ammonium (NH4+) to nitrate (NO3

-) and denitrification, a heterotrophic

process that reduces NO3- to N2 gas (Butterbach-Bahl & Gundersen, 2011). Nitrous oxide

(N2O) is produced during both these microbial processes, which contributes to global

warming and stratospheric ozone depletion (Ravishankara et al., 2009). Nitrification releases

N2O as a by-product, whereas it is an obligate intermediate compound during denitrification

(Tiedje, 1988). In addition, microbial processes that rely on the oxidation of organic N have

been shown recently to contribute to N2O production in soil (Stange et al., 2009).

Nitrogen cycling in boreal soil varies considerably in spatial scale depending on N

availability, soil drainage, soil organic matter content (Högberg et al., 2007) and pH

(Rosenkranz et al., 2010). These edaphic factors differ between well-drained mineral soil in

the uplands and poorly-drained soil in the riparian zone (Ullah & Moore, 2009). The soil of

boreal forests stores a large amount of terrestrial carbon (C) in SOM, but the mineralization of

SOM that releases mineral N compounds is small because the microbial community is limited

by N (Hartley et al., 2010).

The boreal landscape is a mosaic of different ecosystems: forests, peatlands and lakes

(Nilsson & Wardle, 2005). Understanding the effect of biogeochemical cycles at the

landscape scale requires that this variation be considered. The typical terrestrial boreal

ecosystems of northern Sweden are dominated by forests, mainly Norway spruce (Picea abies

(L.) H. Karst.), Scots pine (Pinus sylvestris L.) and birches (Betula pubescens Ehrh. and

Betula pendula Roth) (Nilsson & Wardle, 2005; Jonsson et al., 2001). Boreal forests often

have different zones in terms of soil type, vegetation, amount of SOM and soil water content

(Högberg et al., 2006). In general, the upland zone away from the aquatic bodies has mature

trees and, compared to the riparian zone, less soil moisture and SOM content (Kurbatova et

al., 2013). The riparian zone is close to an aquatic system that is affected by changes in water

79

level, and it is vegetated mainly by mosses that often form peat. Large soil moisture content in

the riparian zone leads regularly to anoxic conditions, therefore, the N cycling dynamics can

be expected to differ from those of the upland forest zone (Tague et al., 2010).

The evaluation of gross N transformations in soil can provide important information

on the regulating mechanisms and dynamics of the soil N cycle, such as the extent of N

limitation, risks of N losses and its environmental controls. Therefore, we quantified rates of

gross N transformation (mainly mineralization and nitrification) and investigated N2O

production at two forested boreal sites in northern Sweden. We compared organic (riparian)

and mineral (upland) soil with 15N tracer techniques. The results of this study improve our

understanding of N cycling, and the sources and limitations of N in poorly- and well-drained

boreal forest soil.

6.2 MATERIAL AND METHODS

6.2.1 Study site

The study was carried out in northern Sweden at two different sites in the forest landscape.

Both sites encompassed riparian and upland zones on the west and east sides of two lakes.

Site 1, close to Lake Övre Björntjärn (64°07’N, 18°46’E), is covered mainly by coniferous

forests (65 %) and mires (27 %), whereas lakes cover 3.5 % only of the catchment (Jonsson et

al., 2001). Site 8 is around Lake Struptjärn (64°01’N, 19°29’E); it has 50 % coniferous forest,

37 % mires and 3.7 % lakes (Engström, 2013). The upland zones are vegetated by Norway

spruce and Scots pine on Podzols, whereas the riparian zones that border the lake shores are

vegetated by mosses that form peat. The climate in the region (measured at Vindeln, 64°08'N,

19°45'E; www.smhi.se) is characterized by an annual mean temperature of 1.5 °C and mean

annual precipitation of 591 mm for the period 1961–90.

At both sites, six soil samples were taken in the riparian and upland zones; three from

the western and three from the eastern sides of their corresponding lakes in August 2012.

Riparian zones were 10 m and upland zones were 110 m from the lakes on both west and east

sides. The samples were distributed approximately equally with ~30 m between them and

parallel to the shoreline of the lake. Sampling locations were chosen to be representative of

the ecosystems investigated in terms of vegetation and soil type, which prevented a strict

80

randomization of sampling locations. At each sampling location, we then randomly selected

one point for soil sampling.

Soil samples were taken from the top 10 cm of the mineral soil after carefully

removing the 5–10-cm thick organic layer; in both the upland forest and riparian zone, the top

10 cm of un-decomposed organic material directly underneath the living mosses was sampled.

Samples were taken with a shovel from an area of about 10 cm × 10 cm. The physicochemical

soil properties we measured are listed in Table 5. The pH was measured in KCl extract, which

makes the pH about 1.3 pH units less than that for water extracts. The main advantage,

however, is that pH measured in salt extracts such as CaCl2 or KCl leads to less seasonal

variation in the measurements.

Table 5 - Physicochemical soil properties of the riparian and upland zones of two forest sites in northern

Sweden. Summary statistics of raw data of pH, SOM, GWC, TC, TN and C/N ratio. Soil properties with

skewness coefficients outside the limits ±1 were transformed to common logarithms (log10) for further

statistical analysis. The missing data in the log10 column indicate that the property had a near-normal

distribution and was not -transformed.

Site Zone Statistic pH1 SOM/

%

log10

SOM

GWC/

%

log10

GWC

TC/

%

log10

TC

TN/

%

log10

TN C/N

log10

C/N

1 RZ Minimum

Maximum

Mean

Median

Variance

SE

Skewness

Number of

observations

2.55

2.89

2.67

2.78

0

0.05

0.25

6

93.89

98.3

96.3

96.3

2.1

0.65

-0.65

6

487.2

1306.7

806.1

630.2

150.5

148.4

0.8

6

43.4

77.4

58.4

56.7

148.0

4.97

0.53

6

1.33

1.59

1.44

1.43

0. 005

0.02

6

28.02

50.77

41.1

43.43

88.2

3.83

-0.58

6

UpL Minimum

Maximum

Mean

Median

Variance

SE

Skewness

Number of

observations

2.91

3.88

3.51

3.61

0.1

0.14-

1.23

6

8.96

19.85

14.54

16.66

16.3

1.64

0.08

6

10.4

148.5

60.9

23.3

4486.7

27.3

0.9

6

1.46

5.0

2.56

2.07

1.7

0.54

1.61

6

0.16

0.50

0.38

0.37

0.01

0.05

0.77

6

0.08

0.17

0.12

0.11

0

0.014

0.87

6

11.02

46.5

22.43

19.83

153.1

5.05

1.92

6

1.2

1.3

1.3

1.3

0.003

0.03

-1.27

6

8 RZ Minimum

Maximum

Mean

Median

Variance

SE

Skewness

Number of

observations

2.77

3.77

3.33

3.54

0.2

0.16

-1.11

6

80.77

96.97

88.03

88.71

40.2

2.83

0.44

5

210.7

1081.8

627.3

523.7

117.6

140.0

0.55

6

37.27

74.02

50.01

47.02

185.7

5.56

1.24

6

1.6

1.7

1.6

1.6

0.055

0.03

0.38

6

1.33

1.42

1.37

1.34

0.002

0.02

0.665

5

27.07

55.14

35.07

30.5

116.6

4.4

1.67

6

1.4

1.6

1.5

1.4

0.004

0.03

1.42

6

81

UpL Minimum

Maximum

Mean

Median

Variance

SE

Skewness

Number of

observations

2.82

3.81

3.14

2.96

0.2

0.23

1.61

4

12.42

24.96

16.8

15.66

21.5

1.89

1.24

6

1.1

1.4

1.2

1.2

0.01

0.04

0.86

6

20.85

141.9

54.6

30.5

2283.8

19.5

1.6

6

1.3

2.1

1.6

1.5

0.1

0.13

1.04

6

2.85

9.43

5.7

5.3

8.9

1.5

0.55

4

0.11

0.40

0.22

0.22

0.01

0.05

1.55

5

-1.7

-0.4

-0.9

-0.8

0.21

0.2

-1.38

5

17.0

40.8

26.4

23.9

103.1

5.1

1.3

4

1.3

1.4

1.3

1.3

0.007

0.05

-1.5

4

RZ, riparian zone; UpL, upland zone; measured soil properties are: pH 1measured in 2 M KCl, SOM (soil

organic matter measured by loss-on-ignition), GWC (gravimetric water content), TC and TN (total soil carbon

and nitrogen, respectively), C/N (C:N ratio).

6.2.2 The 15N experiment

The field moist soil samples were sieved immediately (2-mm mesh size), and when roots,

pieces of leaf and stones had been removed they were stored at 4 °C for 4 days until analysis.

Such a short storage period has small effects only on N cycle dynamics in temperate and

boreal soil (Stenberg et al., 1998). The 15N experiments were done on sieved soil samples at

the University of Gothenburg, Sweden. For these experiments, each of the 24 wet soil samples

(2 sites × 2 zones × 6 replicates) was divided into six subsamples of 100 g and each was

placed in a glass bottle. These six sub-samples were separated into three 15N treatments in

which the soil received 15NH4NO3, NH415NO3 or 15NH4

15NO3 at 99 % 15N enrichment.

The two sub-samples for each 15N treatment received 50 ml of the respective 15N

solution that contained 5 µg NH4+-N ml-1 and 0.4 µg NO3

--N ml-1. One of the sub-samples per

15N treatment (t0) received 100 ml of 2 M KCl extraction 15 minutes after addition of the

respective 15N label, and was placed on the shaker for 1 hour and subsequently filtered

through a Whatman GF/D glass microfibre filter (12.5 cm). The second sub-sample was

incubated at room temperature for 23 hours following addition of the 15N label. Then, 12 ml

of gas was sampled from the headspace of the glass bottles, the bottles were sealed for 1 hour

with a gas tight lid containing a rubber septum and a second gas sample was taken. Gas

samples were taken with gas tight glass syringes and stored in evacuated Labco® Exetainers

(Lampeter, Wales, UK). After the second gas sampling, the soil was extracted with KCl

extraction (t24) as described above. Nitrous oxide fluxes were calculated from the increase in

gas concentrations in the headspace of the glass bottles during the one hour closure.

Concentrations of NH4+ and NO3

- in KCl extracts were measured with a flow injection

analyser (FIAstar 5000, Foss Tecator AB, Höganäs, Sweden). Total C and total N were

measured with an elemental analyser coupled to an isotope ratio mass spectrometer (IRMS)

(20-20, Sercon Ltd., Crewe, Cheshire, UK). For 15N analysis, the NO3- in extracts were

82

converted to N2O (Stevens & Laughlin, 1994) and then analysed with a trace gas preparation

unit (ANCA-TGII, PDZ Europa, Crewe, UK) coupled to an isotope ratio mass spectrometer

(IRMS) (20-20, Sercon Ltd., Crewe, Cheshire, UK). The 15N enrichment of NH4+ was

analysed by the microdiffusion technique (Brooks et al., 1989) in which NH4+ is trapped in

acidified glass fibre filters and analysed with an elemental analyser (ANCA-GSL, PDZ

Europa, Crewe, UK) interfaced to the same type of IRMS as above. With the same EA-IRMS,

dried soil samples were analysed for total C and N content together with 15N enrichment.

Headspace samples were analysed for 15N enrichment of N2O with the same IRMS as above.

All isotope analyses were done at the Stable Isotope Facility at the University of California,

Davis, CA.

6.2.3 Calculations and statistics

Gross rates of N transformation (i.e. mineralization, nitrification and consumption of NH4+

and NO3-) were calculated with the analytical 15N tracer model of Kirkham & Bartholomew

(1954), and are presented separately on soil dry weight (SDW) and soil organic matter (SOM)

weight basis. The following equations were used to quantify gross mineralization (m) with

NH4+ as the form of N used and gross nitrification with NO3

- as the form of N:

, (1)

where N0 and Nt are soil NH4+ or NO3

- concentration at time zero and t, respectively, t is the

time in days. The APE0 and APEt are the 15N atom percent excess of NH4+ or NO3

- at time

zero and t, respectively. Separate gross rates for autotrophic and heterotrophic nitrification

were calculated based on the equations of Huygens et al. (2008) with data from the 15NH4+

labelling treatment. In that context, the autotrophic pathway is defined as NH4+ oxidation and

the heterotrophic pathway as oxidation of organic N. The following equation calculates gross

autotrophic nitrification (nA):

, (2)

83

where and are the soil NO3- concentrations at time zero and t, respectively,

is the percentage 15N at time zero, is the 15N atom percentage at time t,

corrected for NO3- consumption as described in Huygens et al. (2008) and %NH4

+av is the

average 15N atom percentage of the NH4+ pool. The heterotrophic nitrification is the

difference between total nitrification and autotrophic nitrification. There is more information

on Equation (2) in Huygens et al. (2008).

A two-way analysis of variance (ANOVA) was done to examine the effects of

different sites and zones and their interactions on soil properties. The Shapiro–Wilk’s test for

normality was used to examine the statistical distribution of soil properties and gross N

transformations. The residuals from the analysis of variance (ANOVA) were examined and

some of these were not normally distributed (skewness values were outside the limits ±1,

Table 5). Therefore, we transformed TC and C/N ratio in the upland zone at site 1, SOM, TC,

TN and C/N ratio in the riparian zone at site 8, and SOM, GWC, TN and C/N ratio in the

upland zone at site 8 to common logarithms (log10) to achieve a distribution close to normal.

We also transformed the C/N ratios so that they were additive for ANOVA. The transformed

data were then back-transformed with Equation (3) where is the mean on the log10 scale and

s2 is the variance on that scale (Table 6):

y = exp ( × ln(10) + 0.5 × s2 × ln(10)2) (3)

The two-way ANOVA was also used to examine the effect of sites and zones on gross

N transformations. Both analyses were done with SigmaPlot (Version 11, Systat Software,

Inc. San Jose, CA, USA). The replication at site level was a true replication, but that at the

zone level was considered pseudo-replication. Because of the latter we calculated the F ratio

for all of the ANOVAs and checked the significance with one degree of freedom. The

analytical solution of the inverse abundance approach (IAA) was applied to calculate the

fractions of NH4+ oxidation, NO3

- reduction and organic N oxidation that contribute to the

production of N2O. The IAA is based on a separate 15N labelling of different forms of N and

tracing the 15N label into N2O. Although NH4+ oxidation and NO3

- reduction can be estimated

by labelling the respective substrate, organic N oxidation is estimated from N2O derived from

the unlabelled substrate, which is assumed to be the organic N pool, after concomitant 15N

labelling of NH4+ and NO3

- (Stange et al., 2009).

84

Table 6 - Two-way ANOVA results to determine the effects of sampling sites (1 and 8) and zones (riparian

and upland) on soil properties.

Source of Variation Degrees of

freedom Mean squares F ratio P

pH

Site 1 0.105

0.075 > 0.05

Zone 1 0.546

4.609 0.046

Site ×Zone 1 1.396 11.78 0.003

Residual 18 0.118

SOM

Site 1 177.9

0.490 > 0.05

Zone 1 32 908.3 600.8 < 0.001

Site × Zone 1 362.9

6.624 0.018

Residual 20 54.8

GWC

Site 1 0.0033

0.048 > 0.05

Zone 1 8.961 75.73 < 0.001

Site × Zone 1 0.069

0.580 0.455

Residual 20 0.118

TC

Site 1 37.52

0.209 > 0.05

Zone 1 13 383.6 141.4 < 0.001

Site × Zone 1 179.7

1.898 0.185

Residual 18 94.66

TN

Site 1 0.296

1.169 > 0.05

Zone 1 7.411 44.12 < 0.001

Site × Zone 1 0.253

1.505 0.234

Residual 19 0.168

C/N ratio

Site 1 0.000531 > 0.05

85

0.014

Zone 1 0.244 10.62 0.004

Site × Zone 1 0.0368

1.603 0.222

Residual 18 0.0230

The F ratio for sites was calculated from the mean square of site divided by the mean

square of site × zone with one degree of freedom.

6.3 RESULTS

The boreal forest soil evaluated here was acid, with a very low pH (between 2.7 and 3.5) in

both zones and sites. This is considered low even though it has been measured in KCl.

Landscape position had a significant effect on the other soil properties examined (Table 6). At

both sites, riparian soil had means of GWC, SOM content, TC and TN contents, and a C/N

ratio that were significantly larger than those of the upland soil at the same site (Table 5 and

Table 6; P < 0.05). This result indicates that the values of TC, TN and C/N ratio depend on

the amount of SOM available. However, there were no significant differences in soil

properties between sites 1 and 8 when the same zones were compared (Table 6; P > 0.05).

The results for the two-way ANOVA show an interaction between site and zone for pH and

SOM in relation to their F ratios and P values (Table 6).

86

0

5

10

15

20

25 Site 1

Site 8(e)

Min

erali

zati

on

/

ug

N g

-1 S

OM

day

-1

0

5

10

15(b)

NH

4+ C

on

sum

pti

on

/

ug

N g

-1 S

DW

day

-1

0

5

10

15

20(f)

NH

4+ C

on

sum

pti

on

/

ug N

g-1

SO

M d

ay

-1

0.0

0.5

1.0

1.5

2.0

2.5(c)

Nit

rif

icati

on

/

ug

N g

-1 S

DW

day

-1

0

1

2

3

4(g)

Nit

rif

icati

on

/

ug

N g

-1 S

OM

day

-1

0

1

2

3

4

RZ UpL

(d)

NO

3- C

on

sum

pti

on

/

ug

N g

-1 S

DW

day

-1

0

1

2

3

4

5

RZ UpL

(h)

NO

3- C

on

sum

pti

on

/

ug

N g

-1 S

OM

day

-1

0

5

10

15

20

25(a)

Min

erali

zati

on

/

ug

N g

-1 S

DW

day

-1

87

Figure 14. Rates of gross N transformation for riparian (RZ) and upland (UpL) soils in two Swedish

boreal forests on a soil dry weight (SDW) basis and on a soil organic matter (SOM) basis (mean ± standard

error). The gross rates of N transformation evaluated here were: (a) mineralization on SDW, (b) consumption

of NH4+ on SDW, (c) nitrification on SDW, (d) consumption of NO3

- on SDW, (e) mineralization on SOM, (f)

consumption of NH4+ on SOM, (g) nitrification on SOM and (h) consumption of NO3

- on SOM.

All gross rates of N transformation for both sites 1 and 8 were significantly larger in

the riparian zone than in the upland zone when expressed on an SDW basis (Figure 14), which

suggests a possible effect from the amount of SOM. In contrast, gross mineralization did not

differ between zones on a SOM basis (Figure 14 and Table 7; P = 0.18), but all other rates of

gross transformation were larger in the upland than in the riparian soil (Figure 13, Table 7 and

Table 8; P = 0.03–0.06).

A more complex pattern occurred when the two sites studied (sites 1 and 8) were

compared. Although mineralization was larger at site 1 on both an SDW and SOM basis

(Figure 14, Table 7 and Table 8; P = 0.08 and 0.06, respectively), nitrification and NO3-

consumption, both on a SDW basis were significantly smaller at site 1 than site 8 (Figure 14

and Table 7; P = 0.015 and P = 0.002, respectively). In general, there were no interactive

effects between site and zone, except for NO3- consumption on an SOM basis (Table 7; P =

0.024).

The results of the two-way ANOVA show a significant effect of zones on

mineralization, NH4+ consumption, nitrification and NO3

- consumption when they were

calculated on an SDW basis. However, when we used the rates calculated on an SOM basis,

the effect is almost insignificant except for NH4+ consumption (Table 7).

The results suggest a strong difference between zones that is linked mainly to the

larger SOM content in the riparian zone (Table 5 and Table 6). Table 6 shows that the effect

of site is statistically significant for nitrification and NO3- consumption, both on an SDW and

SOM basis, which suggests that other factors that were not measured, such as quality of the

organic matter and microbial diversity, also had an effect.

The N2O fluxes from the riparian zone at both sites were larger (5.4 ± 7.6 and 2.8 ±

3.2 ng N2O-N g-1 SDW hour-1, respectively; mean and SD) than for the upland zones where

N2O emissions were small (0.9 ± 1.9 and 0.7 ± 0.7 ng N2O-N g-1 SDW hour-1, respectively;

mean and SD). This result was expected because of the large organic matter content in the soil

of the riparian zone, which supports more N2O production than the soil of the upland zone.

88

Table 7 - Results of two-way ANOVA to determine the effects of sampling sites (1 and 8) and zones

(riparian and upland) on gross N transformations (mineralization, NH4+ consumption, nitrification and

NO3- consumption) on a soil dry weight basis (µg N g-1 SDW day-1) and a soil organic matter basis (µg N g-

1 SOM day-1).

Source of Variation Degrees of

freedom Mean squares F ratio P

Mineralization

Site 1 0.349 1.347 > 0.05

Zone 1 2.053 19.839 < 0.001

Site × Zone 1 0.259 2.5 0.130

Residual 19 0.104 - -

NH4+ consumption

Site 1 0.00232 0.111 > 0.05

Zone 1 1.420 15.25 < 0.001

Site × Zone 1 0.0209 0.224 0.641

Residual 19 0.145 - -

Nitrification

Site 1 0.652 5.015 > 0.05

Zone 1 1.683 18.39 < 0.001

Site × Zone 1 0.130 1.418 0.248

Residual 20 0.0915 - -

NO3- consumption

Site 1 1.366 3.415 > 0.05

Zone 1 1.225 10.95 0.004

Site × Zone 1 0.400 3.577 0.073

Residual 20 0.112 - -

Mineralization (SOM)

Site 1 0.343 2.931 > 0.05

Zone 1 0.168 1.995 0.178

Site × Zone 1 0.117 1.364 0.257

Residual 19 0.0860 - -

NH4+ consumption (SOM)

Site 1 0.00186 3.924 > 0.05

Zone 1 0.424 5.674 0.028

Site × Zone 1 0.000474

0.0063

4

0.937

Residual 19 0.0747 - -

89

Nitrification (SOM)

Site 1 0.656 2.351 > 0.05

Zone 1 0.346 3.989 0.060

Site × Zone 1 0.279 3.209 0.088

Residual 20 0.0868 - -

NO3- consumption (SOM)

Site 1 1.372 2.142 > 0.05

Zone 1 0.606 5.646 0.028

Site × Zone 1 0.641 5.963 0.024

Residual 20 0.107 - -

We applied the IAA method (Stange et al., 2009) to evaluate the contribution of NH4+

oxidation, NO3- reduction and oxidation of organic N to N2O production in the soil samples

studied. Ammonium oxidation had an insignificant effect on N2O production for both,

riparian and upland zones at sites 1 and 8, with a mean contribution between 0 and 0.6 %

(Figure 15). Reduction of NO3- contributed between 7.8 and 32.1 % to N2O production. The

largest contribution was observed in the upland soil at site 8, whereas the smallest was in the

upland soil at site 1 (Figure 15). Consequently, the contribution of NO3- reduction to the N2O

produced was greater in the upland than in the riparian soil at site 8, whereas the reverse

pattern was observed for site 1. The main source of N2O production in the soil of both zones

was the oxidation of organic N, with average contributions of between 67.7 % and 92.2 %

(Figure 15). The small contribution of NH4+ oxidation to the production of N2O at both sites

and zones was linked with the small gross rates of autotrophic nitrification that range between

0.02 and 0.03 µg N g-1 SDW day-1, whereas gross heterotrophic nitrification dominated

nitrification activity (Table 9). Moreover, neither the site nor the zone show any effect on the

type of nitrification because autotrophic nitrification was very small at all of them.

90

Table 8 - Gross rates of N transformation (mineralization, NH4+ consumption, nitrification and NO3

-

consumption) on a soil dry weight basis (µg N g-1 SDW day-1) and a soil organic matter basis (µg N g-1

SOM day-1) at sampling sites (1 and 8) and zones (riparian and upland).

Values are means and standard errors (n = 6).

IAA

RZ UpL RZ UpL

0

20

40

60

80

100

120ONH4

+

RNO3-

ONorg

Site 1 Site 8

Co

ntr

ibu

tio

n o

n

N2O

pro

du

ctio

n/

%

Figure 15. Contribution of NH4+ oxidation (white), NO3

- reduction (grey) and organic N oxidation (black)

to N2O production in riparian (RZ) and upland (UpL) soils in two Swedish boreal forests (sites 1 and 8).

Means ± standard error are shown (n = 6).

Site Zone

Mineralization/

µg N g-1

SDW day-1

NH4+

consumption/

µg N g-1

SDW day-1

Nitrification/

µg N g-1

SDW day-1

NO3-

consumption/

µg N g-1

SDW day-1

Mineralization/

µg N g-1

SOM day-1

NH4+

consumption/

µg N g-1

SOM day-1

Nitrification/

µg N g-1

SOM day-1

NO3-

consumption/

µg N g-1

SOM day-1

1

RZ 14.7 7.7 0.7 0.5 15.3 7.9 0.7 0.6

UpL 2.1 2.1 0.2 0.3 14.4 14.6 1.7 1.8

8

RZ 4.7 6.1 1.9 2.4 5.4 7.2 2.2 2.8

UpL 1.8 2.4 0.4 0.5 10.6 13.5 2.7 3.05

SE 1.95 1.14 1.19 0.23 3.21 2.42 0.46 0.5

91

Table 9 - Rates of gross autotrophic and heterotrophic nitrification (µg N g-1 SDW day-1) at sites 1 and 8,

riparian and upland zones (n = 6; mean of each process at different sites and zones and standard errors).

Nitrification rate/ µg N g-1 SDW day-1

Autotrophic Heteretrophic

Site 1 RZ 0.03 0.63

UpL 0.02 0.25

Site 8 RZ 0.03 1.83

UpL 0.03 0.40

SE 0.026 0.2

SDW, soil dry weight; RZ, riparian zone. UpL, upland zone.

6.4 . DISCUSSION

Our results for the rates of gross N transformation in boreal soil were larger in the riparian

zones than in the upland forests, as expected (Figure 14). This probably reflects the larger

SOM content (Table 5). All N transformations depend, directly or indirectly, on the

decomposition of SOM by microorganisms, which provides energy and releases mineral N as

a substrate for other processes (Booth et al., 2005). The importance of SOM for regulating

processes in the N cycle is demonstrated by the fact that most gross rates did not differ

between the riparian and upland soil when expressed on SOM content (Figure 14). Nitrogen

mineralization in poorly drained soil can be small because of the lack of oxygen availability

(Chen & Shrestha, 2012). On the other hand, organic soil provides a large amount of organic

matter that can stimulate microbial processes (Niedermeier & Robinson, 2007). In the riparian

soil at sites 1 and 8, the observed gross mineralization (14.8 and 4.7 µg N g-1 SDW day-1,

respectively) and nitrification (0.7 and 1.9 µg N g-1 SDW day-1, respectively) compare in

magnitude to those from other studies. For peatlands in boreal and cold climates, gross

mineralization of 1.1 to 16.2 µg N g-1 SDW day-1 and gross nitrification of 1.2 µg N g-1 SDW

day-1 have been reported (Marushchak et al., 2011; Wray & Bayley, 2008). For the upland

forest soil, gross N mineralization was close to rates reported for Podzols in the United

Kingdom (Cookson et al., 2007). For other mineral forest soils, others have reported rates of

gross nitrification close to those measured in the present research (Corre & Lamersdorf, 2004;

Rosenkranz et al., 2010).

Booth et al. (2005) reported a negative correlation between gross N mineralization and

C/N ratio in forest soil, which is related to the amount of N released from SOM compared to

the amount of C mineralized. Högberg et al. (2007) found a similar relation in Swedish boreal

92

forest soil. In temperate forest soil in the USA, Christenson et al. (2009) evaluated gross soil

N dynamics in the organic and mineral layers. There was a negative correlation between gross

nitrification and C/N ratio in the organic layer, and between gross mineralization, NH4+

consumption and nitrification in mineral layer. In all of the three studies cited above, the C/N

ratio was related to N transformations, which suggests that SOM composition and lability

regulate them. We found no relation between gross N transformations and the C/N ratio. This

is probably because the previous studies mentioned calculated correlations separately for

mineral and organic forest soil layers, whereas we sampled both soil layers together. The C/N

ratio in our study was larger in the riparian than in the upland soil (Table 5 and Table 7), but

the larger value in the riparian soil does not correspond to a small gross rate of N

mineralization. Our results suggest that other soil properties regulate the differences in gross

N dynamics between the riparian and upland zones, mainly the SOM content.

Table 10 - Physicochemical soil properties of the riparian and upland zones of two forest sites in northern

Sweden.

Means and standard error (SE) of raw and log10 transformed data, and the back-transformed means with

confidence limits (α = 0.05) in brackets are given after examining the skewness of the residuals from the

two-way ANOVA. When the skewness was outside the limits ±1, the data were transformed to

log10logarithms. The missing data in ‘Log10 columns’indicate that the soil property had a near-normal

distribution. The values for GWC are in the range of what is expected for (undrained) peat soil.

The gross rates of consumption of NH4+ and NO3

-, in general, follow the gross rates of

production closely (Figure14), which Banning et al. (2008) reported earlier. Gross

nitrification is usually strongly correlated with gross mineralization (e.g. Booth et al., 2005)

because mineralization produces the substrate for nitrification. Small changes in

mineralization might have a large effect on N availability for nitrification (Banning et al.,

2008). However, the riparian soil at site 1 shows a decoupling of nitrification from

Site Zone pH1 log10

SOM SOM/%

log10

GWC GWC/%

log10

TC TC/%

log10

TN TN/%

log10

C/N C/N

1 RZ 2.7 ±

0.05

96.3 ± 0.2 806 ± 64 58.4 ± 2.0 1.4 ± 0.02 41.1 ± 1.5

UpL 3.5 14.4 ± 0.7 61± 11 0.3 ±

0.05

2.1

[1.6, 2.5]

0.1 ± 0.005 1.3 ±

0.02

19.3

[21.2, 17.3]

8 RZ 3.3 88.03 ± 2.8 627 ± 57 1.6 ±

0.03

45.3

[39.1, 51.1]

0.13 ±

0.005

1.37

[1.3, 1.4]

1.5 ±

0.03

31,1

[27.2, 34.7]

UpL 3.15 1.2 ±

0.04

16.9

[13.3, 20.1]

1.6 ±

0.13

55.7

[22.8, 76.7]

5.7 ± 0.5 –0.7 ±

0.08

0.05

[0.1, 0.3]

1.3 ±

0.03

21.8

[17.5, 25.8]

SE 0.14

93

mineralization; the largest gross mineralization occurred in this soil, but gross nitrification

was relatively small (Figure 14). This is because the soil at the sites investigated showed that

heterotrophic nitrification was the main nitrification pathway (Table 9), which does not

depend on mineralization. One possible explanation for the small rates of gross nitrification in

the soil of the riparian site is the low pH (2.7 ± 0.1) of this soil, even though all the soil

samples were acidic with a pH in the range of 3.1 to 3.5 (Table 6 and Table 10). The pH

affects the equilibrium between NH3 and NH4+ and has a great effect on the availability of

substrate for nitrifiers (Suziki et al., 1974). In our acidic soil, the equilibrium will be strongly

towards NH4+, which would limit autotrophic nitrification (Prosser & Nicol, 2012). A soil pH

of less than 5 is considered to inhibit autotrophic nitrification (De Boer et al., 1991).

However, autotrophic nitrification could have occurred locally at sites with neutral pH

(Prosser & Nicol, 2012) or the autotrophic nitrifiers could be archaeal, which Gubry-Rangin

et al. (2011) have shown to be active at a pH as low as 3.5. Less is known about the effect of

pH on heterotrophic nitrifiers, but our results indicate that all nitrification activity decreased

when pH fell below 3. The subtle differences in pH and GWC (Table 5 and Table 10), which

regulate nitrification and denitrification in the soil (Szukics et al., 2010), could explain the

effect of sites and zones on nitrification and NO3- consumption (Table 7) and, consequently,

regulate these gross rates in different ways (Figure 14).

We investigated which processes contribute to N2O production in the soils studied

with the IAA (Stange et al., 2009). In all soil, heterotrophic nitrification of organic N was the

main N process that contributed to N2O production (67.7–92.2 %; Figure 15 and Table 5).

Zhang et al. (2015) showed that heterotrophic nitrification is an important or even

predominant source of N2O production in acidic subtropical (27–42 %; Zhang et al., 2011)

and temperate forests (40–80 %; Stange et al., 2013). Here we provide evidence for a similar

pattern in boreal forests. Notably, when these three different climatic zones are compared, the

contribution of heterotrophic nitrification seems to increase towards colder climates (Liu et

al., 2015).

In general, soil with a low pH, large SOM content and oxygen availability are

favourable to heterotrophic nitrification (Zhang et al., 2015). Although heterotrophic nitrifiers

are known to produce N2O (Papen et al., 1989), alternative processes exist that can explain

the large contribution of organic N as a source for N2O production. First, heterotrophic

nitrifiers might oxidize organic N to nitrite (NO2-) or NO3

-, which is subsequently reduced by

denitrifiers to produce N2O. Second, archaeal nitrifiers are known to be mixotrophic, i.e.

autotrophic and heterotrophic, and to produce N2O. Consequently, it is possible that part of

94

the N2O derived from organic N is produced by autotrophic, archaeal nitrifiers (Prosser &

Nicol, 2012).

Oxidation of NH4+ was insignificant as a source of N2O; it contributed 2 % at the most

(Figure 15 and Table 9). The third source of N2O evaluated here was NO3- reduction, which

contributed substantially to N2O production in both zones and indicated the N2O released by

denitrification. As discussed above, however, the contribution of denitrifiers to N2O

production might have been underestimated because some of the N2O derived from organic N

might ultimately be produced by denitrifiers. Therefore, heterotrophic processes have more

effect on N2O production in boreal soil and production is greater in riparian than upland zones

because of the large amount of organic matter present that maintains heterotrophic

nitrification and denitrification.

6.5 CONCLUSION

The results of our research confirm greater gross N mineralization and nitrification in organic

rich riparian soil than in the upland soil of the boreal forest landscape because of differences

in SOM content. In general, there was no difference between the soil zones when gross N

transformations are expressed on an SOM basis. Small amounts of mineralized N only were

nitrified, which indicated more heterotrophic than autotrophic microbial activity. Likewise,

N2O production was dominated by heterotrophic processes, which rely directly or indirectly

on the oxidation of organic N. Evaluation of gross N transformations and interactions with

edaphic factors are important, especially in N limited ecosystems to understand the dynamics

of N cycling and N limitation.

ACKNOWLEDGEMENTS

We thank Karina Tôsto and Leverson Chaves for assistance in the field and laboratory; Ann-

Kristin Bergström and Jan Karlsson (Umeå University) for logistic help; Alex Enrich Prast is

a research fellow from CNPq (Conselho Nacional de Desenvolvimento Científico e

Tecnológico) and Cientista do Estado from FAPERJ (Fundação de Amparo à Pesquisa do

Estado do Rio de Janeiro). Viviane Figueiredo thanks CNPq, CAPES (Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior) and STINT (The Swedish Foundation for

International Cooperation in Research and Higher Education) and the Coordinate Research

Network - CRN3 - Nnet Project Interamerican Institute for Global Change Research for travel

95

support from Brazil to Sweden for field work and sample analyses. Tobias Rütting is

supported by the Swedish strategic research area “Biodiversity and Ecosystem services in a

Changing Climate – BECC” (www.becc.lu.se/).

6.6 REFERENCES

Banning, N.C., Grant, C.D., Jones, D.L. & Murphy, D.V. 2008. Recovery of soil organic

matter, organic matter turnover and nitrogen cycling in a post-mining forest rehabilitation

chronosequence. Soil Biology & Biochemistry, 40, 2021–2031.

Booth, M.S., Stark, J.M. & Rastetter, E. 2005. Controls on nitrogen cycling in terrestrial

ecosystems: a synthetic analysis of literature data. Ecological Monographs, 75, 139–157.

Brooks, P.D., Stark, J.M., McInteer, B.B. & Preston, T. 1989. Diffusion method to prepare

soil extracts for automated nitrogen-15 analysis. Soil Science Society of America Journal, 53,

1707–1711.

Butterbach-Bahl, K. & Gundersen, P. 2011. Nitrogen processes in terrestrial ecosystems. In:

The European Nitrogen Assessment: Sources, Effects, and Policy Perspectives (eds M. A.

Sutton, C. M. Howard, J. W. Erisman, G. Billen, A. Bleeker, P. Greenfelt, et al.), pp. 99-125.

Cambridge University Press, Cambridge, United Kingdom.

Chen, H.Y.H. & Shrestha, B.M. 2012. Stand age, fire and clearcutting affect soil organic

carbon and aggregation of mineral soils in boreal forests. Soil Biology & Biochemistry, 50,

149–157.

Christenson, L.M., Lovett, G.M., Weathers, K.C. & Arthur, M.A. 2009. The influence of tree

species, nitrogen fertilization, and soil C to N ratio on gross soil nitrogen transformations. Soil

Science Society of America Journal, 73, 638–646.

Cookson, W.R., Osman, M., Marschner, P., Abaye, D.A., Clark, I., Murphy, D.V., et al. 2007.

Controls on soil nitrogen cycling and microbial community composition across land use and

incubation temperature. Soil Biology & Biochemistry, 39, 744–756. Corre, M.D. &

Lamersdorf, N.P. 2004. Reversal of nitrogen saturation after long-term deposition reduction:

impact on soil nitrogen cycling. Ecology, 85, 3090–3014.

De Boer, W., Kelin Gunnewiek, P.J.A., Veenhuis, M., Bock, E. & Laanbroek, H.J. 1991.

Nitrification at low pH by aggregated chemolithotrophic bacteria. Applied and Evironmental

Microbiology, 57, 3600–3604.

96

Engström, L. 2013. Effects of Forestry on Stream Water Chemistry During Autumn. Degree

Thesis, Umea University, Umea, Sweden.

Gruby-Rangin, C., Hai, B., Quince, C., Engel, M., Thomson, B.C., James, P., et al. 2011.

Niche specialization of terrestrial archaeal ammonia oxidizers. PNAS, 108, 21206–21211.

Hartley, I.P., Hopkins, D.W., Sommerkorn, M. & Wookey, P.A. 2010. The response of

organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil

Biology & Biochemistry, 42, 92–100.

Högberg, M.N., Myrold, D.D., Giesler, R. & Högberg, P. 2006. Contrasting patterns of soil

N-cycling in model ecosystems of Fennoscandian boreal forests. Oecologia, 147, 96–107.

Högberg, M.N., Chen, Y. & Högberg, P. 2007. Gross nitrogen mineralisation and fungi-to-

bacteria ratios are negatively correlated in boreal forests. Biology and Fertility of Soils, 44,

363–366.

Huygens, D., Boeckx, P., Templer, P., Paulino, L., Van Cleemput, O., Oyarzún, C. et al.

2008. Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nature

Geoscience, 1, 543–548.

IVL Svenska Miljöinstitutet, 2015. Krondroppsnätet 1985-2015 - tre decennier med

övervakning av luftföroreningaroch dess effekter i skogsmark. In: IVL Rapport C 127,

Göteborg, Sweden. www.krondroppsnatet.ivl.se

Jonsson, A., Meili, M., Bergström, A.K. & Jansson, M. 2001. Whole-lake mineralization of

allochthonous and autochthonous organic carbon in a large humic lake (Örträsket, N.

Sweden). Limnology and Oceanography, 46, 1691–1700.

Kirkham, D., & Bartholomew, W.V. 1954. Equations for following nutrient transformations

in soil, utilizing tracer data. Soil Science Society Proceedings, 18, 33–34.

Kurbatova, J., Tatarinov, F., Molchanov, A., Varlagin, A., Avilov, V., Kozlov, D., et al. 2013.

Partitioning of ecosystem respiration in a paludified shallow-peat spruce forest in the southern

taiga of European Russia. Environmental Research Letters, 8, 1–9.

Liu, R., Suter, H., He, J., Hayden, H. & Chen, D. 2015. Influence of temperature and moisture

on the relative contributions of heterotrophic and autotrophic nitrification to gross nitrification

in an acid cropping soil. Journal of Soils and Sediments, 15, 2304–2309.

Marushchak, M.E., Pitkämäki, A., Koponen, H., Biasi, C., Seppäla, M. & Martikainen, P.J.

2011. Hot spot for nitrous oxide emissions found in different types of permafrost peatlands.

Global Change Biology, 17, 2601–2614.

97

Niedermeier, A. & Robinson, J.S. 2007. Hydrological controls on soil redox dynamics in a

peat-based, restored wetland. Geoderma, 137, 318–326.

Nilsson, M.C. &Wardle, D.A. 2005. Understory vegetation as a forest ecosystem driver:

evidence from the northern Swedish boreal forest. Frontiers in Ecology and the Environment,

3, 421–428.

Papen, H., von Berg, R., Hinkel, I., Thoene, B., & Rennenberg, H. 1989. Heterotrophic

nitrification by Alcaligenes faecalis: NO2-, NO3

-, N2O, and NO production in exponentially

growing cultures. Applied and Environmental Microbiology, 55, 2068–2072.

Prosser, J.I. & Nicol, G.W. 2012. Archaeal and bacterial ammonia-oxidisers in soil: the quest

for niche specialisation and differentiation. Trends in Microbiology, 20, 523–531.

Ravishankara, A.R., Adniel, J.S. & Portmann, R.W. 2009. Nitrous oxide (N2O): the dominant

ozone-depleting substance emitted in the 21st century. Science, 326, 123–125.

Rosenkranz, P., Dannenmann, M., Brüggemann, N., Papen, H., Berger, U., Zumbush, E. et al.

2010. Gross rates of ammonification and nitrification at a nitrogen-saturated spruce (Picea

abies (L.) Karst.) stand in southern Germany. European Journal of Soil Science, 61, 745–758.

Stange, C.F., Spott, O. & Müller, C. 2009. An inverse abundance approach to separate soil

nitrogen pools and gaseous nitrogen fluxes into fractions related to ammonium, nitrate and

soil organic nitrogen. European Journal of Soil Science, 60, 907–915.

Stange, C.F., Spott, O., Arriaga, H., Menéndez, S., Estavillo, J.M. & Merino, P. 2013. Use of

the inverse abundance approach to identify the sources of NO and N2O release from Spanish

forest soils under oxic and hypoxic conditions. Soil Biology and Biochemistry, 57, 451–458.

Stenberg, B., Johansson, M., Pell, M., Sjödahl-Svensson, K., Stenström, J., & Torstensson, L.

1998. Microbial biomass and activities in soil as affected by frozen and cold storage. Soil

Biology & Biochemistry, 30, 393–402.

Stevens, R.J. & Laughlin, R.J. 1994. Determining nitrogen-15 in nitrite or nitrate by

producing nitrous oxide. Soil Science Society of America Journal, 58, 1108–1116.

Suzuki, I., Dular, U. & Kwok, S.C. 1974. Ammonia or ammonium ion as substrate for

oxidation by Nitrosomonas europea cells and extracts. Journal of Bacteriology, 120, 556–558.

Szukics, U., Abell, G.C.J., Höld, V., Mitter, B., Sessitsch, A., Hackl, E., et al. 2010. Nitrifiers

and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine

forest soil. Federation of European Microbiological Societies Microbial Ecology, 72, 395–

406.

Tague, C., Band, L., Kenworthy, S. & Tenebaum, D. 2010. Plot- and watershed-scale soil

moisture variability in a humid Piedmont watershed. Water Resources Research, 46, 1–13.

98

Tiedje, J.M. 1988. Ecology of denitrification and dissimilatory nitrate reduction to

ammonium. In: Environmental Microbiology of Anaerobes. (ed. A.J.B. Zehnder), pp. 179–

244. John Wiley & Sons, New York.

Ullah, S. & Moore, T.R. 2009. Soil drainage and vegetation controls of nitrogen

transformation rates in forest soils, southern Quebec. Journal of Geophysical Research, 114,

1–13.

Vitousek, P.M. & Howarth, R.W. 1991. Nitrogen limitation on land and in the sea: How can it

occur? Biogeochemistry, 13, 87–115.

Wray, H.E. & Bayley, S.E. 2008. Nitrogen dynamics in floating and non-floating peatlands in

the Western Boreal Plain. Canadian Journal of Soil Science, 88, 697–708.

Zhang J., Cai, Z. & Zhu, T. 2011. N2O production pathways in the subtropical acid forest soils

in China. Environmental Research, 111, 643–649.

Zhang, J., Müller, C. & Cai, Z. 2015. Heterotrophic nitrification of organic N and its

contribution to nitrous oxide emissions in soils. Soil Biology & Biochemistry, 84, 199–209.

99

7 VIAS DO CICLO DO NITROGÊNIO EM SOLOS DE DIFERENTES LATITUDES

Diferentes mecanismos de produção e ciclagem de N controlam a disponibilidade de N

em solos, sendo influenciados por fatores reguladores característicos de cada ecossistema

avaliado nesta tese. Em sistemas terrestres, a dinâmica do N pode ainda ser alterada por

mudanças do uso do solo, comumente encontradas em regiões tropicais e boreais.

Parâmetros físico-químicos do solo como conteúdo de matéria orgânica e água no

solo, e pH e temperatura, se mostraram os principais fatores reguladores dos processos de

produção de NH4+ e NO3

- em solos de florestas tropicais, e também boreais (DE BOER;

KOWALCHUK, 2001; BOOTH et al., 2005; BRAKER et al., 2010; LIU et al., 2015;

FIGUEIREDO et al., 2016). Isso se torna bastante interessante, uma vez que esses

ecossistemas são extremamente distintos em relação ao clima, sazonalidade, tipo de

vegetação, disponibilidade de nutrientes, dentre outros, o que mostra a intima relação entre

tais fatores reguladores e os processos avaliados. O que não exclui uma possível regulação por

outros fatores em sinergia com os parâmetros físico-químicos mencionados acima.

As hipóteses apresentadas no início desta tese foram avaliadas ao longo dos capítulos

apresentados o que nos permite chegar as seguintes conclusões:

7.1 COMPARAÇÃO ENTRE FLORESTAS PRISTINAS DE DIFERENTES LATITUDES

Diante do que foi apresentado ao longo da tese, verificamos que comparando florestas

pristinas tropicais (Capítulo 4 e 5) e boreais com solos bem drenados [zona de montana (UpL

zone), Capítulo 6], que foram mais semelhantes aos tropicais avaliados, os boreais apresentam

taxas de mineralização bruta bastante inferiores às taxas de mineralização bruta encontradas

para florestas pristinas amazônicas e de Mata Atlântica (Tabela 11). Entretanto, a nitrificação

foi bastante semelhante entre florestas boreais, com diferentes níveis de drenagem (floresta de

zona ripária e de montana) e florestas de Mata Atlântica (Tabela 12), sendo essas taxas muito

baixas, e extremamente inferiores às taxas de nitrificação bruta encontradas nas florestas

amazônicas avaliadas (Tabela 11). Dessa forma, ao dividirmos nossa primeira hipótese entre

os dois processes avaliados nos três diferentes ecossistemas, verificamos que ela foi

corroborada para a mineralização e corroborada para nitrificação quando comparamos as

taxas de florestas boreais com floresta amazônica.

100

Hipótese 1a: Taxas de mineralização bruta são mais elevadas em solos de florestas

pristinas tropicais do que boreais: CORROBORADA

Tabela 11 - Taxas brutas de mineralização nas três florestas de diferentes latitudes que foram investigadas

no presente estudo (Mata Atlântica, Amazônia e Boreal; Média ± Erro Padrão).

Ecossistema

estudado

Tipos de

floresta

Taxa de

mineralização

Mata Atlântica Pristina 6,3

Amazônia Pristina 11,1

Boreal

Zona de montana

Site 1 2,1

Site 8 1,8

Entretanto, a hipótese 1 foi refutada para a comparação com a floresta de Mata

Atlântica, visto que esta apresentou taxas de nitrificação semelhantes às boreais.

Hipótese 1b: Taxas de nitrificação bruta são mais elevada em solos de florestas

pristinas tropicais do que boreais: REFUTADA.

Tabela 12 - Taxas brutas de nitrificação nas três florestas de diferentes latitudes que foram investigadas

no presente estudo (Mata Atlântica, Amazônia e Boreal; Média ± Erro Padrão).

Ecossistema

estudado

Tipos de

floresta

Taxa de

nitrificação

Mata Atlântica Pristina 0,08

Amazônia Pristina 15,9

Boreal

Zona de montana

Site 1 0,2

Site 8 0,4

Como visto na Base Teórica, a temperatura é um fator regulador importante ao se

tratar do metabolismo de micro-organismos (PETTERSSON; BAATH, 2003). Uma vez que

florestas boreais apresentam baixas temperaturas durante a maior parte do ano, as taxas de

mineralização tendem a ser mais baixas do que florestas tropicais sob mesmas condições de

drenagem (POTTER et al., 1999). Isso também é confirmado visto que o conteúdo de matéria

101

orgânica no solo é maior nas florestas boreais estudadas, ou seja, o substrato para a ocorrência

do processo de mineralização, está presente, mas por regulação de outros fatores, não é

degradado facilmente. Um desses fatores, além da temperatura, é o conteúdo de água no solo,

pois florestas boreais de zonas ripárias (riparian zone - RZ; Capítulo 6) apresentaram taxas de

mineralização bruta semelhantes e até mesmo mais altas que algumas das florestas tropicais

avaliadas, enquanto florestas boreais de montana, com alta drenagem, apresentaram taxas

bastante inferiores (Tabela 11). Dessa forma, florestas boreais apresentam acúmulo de matéria

orgânica, sendo consideradas importantes sumidouros de carbono (MALHI et al., 1999). Em

contrapartida, as altas temperaturas dos trópicos, em sinergia com o alto índice de

precipitação, fazem com que a matéria orgânica não se acumule, e o conteúdo nos solos seja

inferior ao encontrado em florestas boreais (SANCHES et al., 2009).

A semelhança encontrada entre florestas boreais e de Mata Atlântica para o processo

de nitrificação indica uma limitação por N em ambos os ecossistemas, visto que esse processo

aumenta a perda de N e tende a ser evitado em baixo conteúdo de N. Além disso, notamos um

desacoplamento entre os dois processos avaliados, principalmente na Mata Atlântica, pois a

NH4+ necessária para a nitrificação está sendo produzida via mineralização, porém utilizada

por outras vias, que podem ser assimilação por plantas, por exemplo. Fatores reguladores

abióticos também parecem estar regulando esse processo em ambos os solos, sendo o

principal responsável o pH do solo, que inibe a nitrificação autotrófica. Mesmo com taxas

inferiores às encontradas na floresta pristina amazônica, solos de florestas secundárias

amazônicas apresentaram taxas mais altas de nitrificação do que boreais e de Mata Atlântica.

Isso indica uma ciclagem bastante diferenciada entre esses ecossistemas, com maior

disponibilidade de N em solos amazônicos. Além disso, um fator importante que atua na

regulação de nutrientes em solos é o tipo de vegetação, que assimila formas e quantidades de

N inorgânico diferenciadas, e pode estar atuando nesse sentido na disponibilidade de N para a

microbiota (DIJKSTRA et al., 2006). Assim, verificamos que nossa segunda hipótese foi

corroborada.

Hipótese 2: O conteúdo de matéria orgânica lábil e o pH do solo são os principais

fatores reguladores do processo de mineralização e nitrificação, respectivamente, em

solos boreais: CORROBORADA.

102

7.2 MINERALIZAÇÃO E NITRIFICAÇÃO EM FLORESTAS EM ESTÁGIO INICIAL DE

RECUPERAÇÃO

Através do estudo realizado em uma área de restauração guiada pelo homem e uma área

de sucessão secundária, verificamos comportamentos da ciclagem de N bastante diferentes

entre floresta de Mata Atlântica e Amazônica, o que refuta nossa terceira hipótese na floresta

de Mata Atlântica (Capítulo 4; hipótese 3a) e corrobora na floresta Amazônica (Capítulo 5;

hipótese 3b).

Hipótese 3a: Florestas em processo de restauração recente apresentam ciclo do N

fechado, com altas taxas de mineralização e baixas taxas de nitrificação.

Tabela 13 - Taxas brutas de mineralização e nitrificação nas três florestas de diferentes latitudes

que foram investigadas no presente estudo (Mata Atlântica, Amazônia e Boreal; Média ± Erro

Padrão).

Ecossistema

estudado

Tipos de

floresta

Taxa de

Mineralização

Taxa de

nitrificação

ESTÁGIO

FLORESTAL µg N g-1 d-1 µg N g-1 d-1

Mata Atlântica Pristina 6,3 0,08

10 anos 3,2 0,6

Amazônia

Pristina 11,1 15,9

10 anos 20,9 6,8

20 anos 5,8 4,5

40 anos 5,5 4,5

Na área de Mata Atlântica, as taxas de mineralização foram mais altas em floresta

pristina, e as taxas de nitrificação mais altas na área de restauração. Já nas florestas

amazônicas, padrões opostos foram encontrados, indicando uma ciclagem de N fechada com

diminuição de perdas de N, o que está em concordância com a literatura (DAVIDSON et al.,

2007). Isso mostra que o processo de restauração realizado na Mata Atlântica pode estar

alterando a recuperação natural do sistema, visto que ele apresenta uma perda de N, via

emissão de N2O, maior do que a área pristina, bem como uma menor produção de N

inorgânico lábil (NH4+). Além disso, a mudança de uso do solo que ocorreu em cada um dos

ecossistemas estudados foi diferente, a área de Mata Atlântica foi alterada para pastagem e a

103

área Amazônica para agricultura, com uso de fogo. Em geral, solos de pastagem antigas são

pobres em nutrientes e solos agrícolas com influência de fogo apresentam uma maior

quantidade de matéria orgânica em processo de decomposição mais avançada devido a

biomassa vegetal queimada (GONZÁLEZ-PÉREZ et al., 2004; WICK et al., 2005). Dessa

forma, o tipo de mudança de uso do solo também pode estar influenciando o processo de

restauração florestal e controlando a recuperação da ciclagem do N em solos.

7.3 EMISSÃO DE N2O EM SOLOS TROPICAIS

Em solos de florestas tropicais pristinas, espera-se encontrar altas emissões de N2O,

uma vez que a comunidade microbiana e a biomassa vegetal já estão estabelecidas no sistema,

permitindo uma ciclagem de N aberta, com maiores perdas por emissão de gases e lixiviação

de NO3- (DAVIDSON et al., 2007). Entretanto, em florestas de Mata Atlântica, encontramos

resultados opostos, com maiores emissões de N2O em floresta em restauração. Como as taxas

de nitrificação e a temperatura foram mais altas nesses solos durante o período de

amostragem, podemos associar a emissão de N2O a esses fatores, principalmente porque foi

vista uma correlação positiva entre o fluxo de N2O e a temperatura do solo. Logo, a menor

biomassa vegetal associada ao estágio inicial de restauração pode estar permitindo o

aquecimento do solo e, consequentemente, estimulando o metabolismo microbiano e gerando

taxas mais altas, como as verificadas para nitrificação e emissão de N2O, o que refuta nossa

quarta hipótese.

Hipótese 4: Florestas tropicais em restauração emitem menos N2O que florestas

pristinas: REFUTADA.

Vale a pena ressaltar que há variações sazonais de temperatura no solo, o que irá

influenciar, e até potencializar, as emissões de N2O, pois nossas medidas foram realizadas

durante a estação mais fria do ano, o que não pode ser extrapolado para a estação mais quente

na região.

104

8 CONCLUSÕES

Concluímos que apesar das diferenças marcantes entre solos tropicais e boreais, os

fatores reguladores dos processos de mineralização e nitrificação são bastante semelhantes,

com limitação por N na maioria dos ambientes estudados, exceto floresta pristina amazônica.

Também verificamos que o estágio de restauração florestal tem um forte controle sobre a

recuperação da ciclagem do N, uma vez que as plantas necessitam investir em biomassa para

o crescimento estrutural e são boas competidoras. Dessa forma, a nitrificação é regulada

negativamente, até que haja maior disponibilidade de N no ambiente, o que torna o ciclo do N

conservativo, como visto em florestas amazônicas. Entretanto, florestas tropicais de Mata

Atlântica, apresentaram um padrão oposto, com maior perda de N por emissão de N2O em

solos que esperávamos ser conservativo, o que parece estar atrelado ao estágio de restauração

desta floresta e a recente alteração do solo. Diante disso, concluímos que padrões de ciclagem

de nitrogênio devem ser verificados para cada tipo de ecossistema, uma vez que

características locais são de suma importância, buscando reduzir incertezas sobre a ciclagem

de N, suas perdas via lixiviação e emissão de gases, principalmente N2O, evidenciando as

consequências de alterações humanas em ecossistemas terrestres.

105

9 REFERÊNCIAS

As referências a seguir são correspondentes aos capítulos 1, 2, 3, 7 e 8.

AIDE, T. M. et al. Forest Regeneration in a Chronosequence of Tropical Abandoned Pastures:

Implications for Restoration Ecology. Restoration Ecology, v. 8, n. 4, p. 328–338, 2000.

AIDE, T. M. et al. Deforestation and Reforestation of Latin America and the Caribbean

(2001–2010). Biotropica, v. 45, n. 2, p. 262–271, 2013.

AMAZONAS, N. T. et al. Nitrogen Dynamics during Ecosystem Development in Tropical

Forest Restoration. Forest Ecology and Management, v. 262, n. 8, p. 1551–1557, 2011.

AMBUS, P.; MOSIER, A; CHRISTENSEN, S. Nitrogen turnover rates in a riparian fen

determined by 15N dilution. Biology and Fertility of Soils, v. 14, p. 230–236, 1992.

AUSTIN, A. T. et al. Latin America's Nitrogen Challenge. Science, v. 340, p. 149, 2013.

BAGGS, E. Soil microbial sources of nitrous oxide: recent advances in knowledge, emerging

challenges and future direction. Current Opinion in Environmental Sustainability, v. 3, p.

321–327, 2011.

BAJWA, K. S.; ANEJA, V. P.; ARYA, S. P. Measurement and estimation of ammonia

emissions from lagoon-atmosphere interface using a coupled mass transfer and chemical

reactions model, and an equilibrium model. Atmospheric Environment, v. 40, p. 275–286,

2006.

BARONA, E. et al. The role of pasture and soybean in deforestation of the Brazilian Amazon.

Environmental Research Letters, v. 5. 2010.

BENGTSSON, G.; P. BENGTSON; K. F. MANSSON. Gross nitrogen mineralization-,

immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity.

Soil Biology and Biochemistry, v. 35, p. 143–154, 2003.

BLASKO, B. et al. Relations among soil microbial community composition, nitrogen

turnover, and tree growth in N-loaded and previously N-loaded boreal spruce forest. Forest

Ecology and Management, v. 302, p. 319-328, 2013.

BODIRSKY, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and

potential to mitigate nitrogen pollution. Nature Communications, v. 5, n. 3858, 2014.

BOLLMANN, A.; R. CONRAD. Influence of O2 availability on NO and N2O release by

nitrification and denitrification in soils. Global Change Biology, v. 4, p. 387-396, 1998.

106

BOUWMAN, L. et al. Exploring global changes in nitrogen and phosphorus cycles in

agriculture induced by livestock production over the 1900–2050 period. PNAS, v. 110, n. 52.

p. 20882–20887, 2013.

BOOTH, M. S.; J. M. STARK; R. EDWARD. Controls on Nitrogen Cycling in Terrestrial

Ecosystems: A Synthetic Analysis of Literatura Data. Ecological Monographs, v. 75, n. 2, p.

139–57, 2005.

BRADY, N. C. Natureza e propriedades dos solos. [S. l.]: Freitas Bastos, 1989. 898 p.

BRAKER, G.; SCHWARZ, J.; CONRAD, R. Influence of temperature on the composition

and activity of denitrifying soil communities. Fems Microbiology Ecology, v. 73, n. 1, p.

134–148, 2010.

BRAKER, G.; CONRAD, R. Diversity, Structure, and Size of N2O-Producing Microbial

Communities in Soils--What Matters for Their Functioning? In: ALLEN, I. LASKIN, S. S.;

GEOFFREY, M. G. (Eds.). Advances in Applied Microbiology. [S. l.]: Academic Press,

2011. v. 75, p. 33–70.

BROWN, J. R. et al. Effects of multiple global change treatments on soil N2O fluxes.

Biogeochemistry, v. 109, p. 85-100, 2012.

BUTTERBACH-BAHL, K. et al. Nitrous oxide from soils: how well do we understand the

processes and their controls? Philosophical Transactions, v. 368, 2013.

CANFIELD, D. E.; GLAZER, A. N.; FALKOWSKI, P. G. The Evolution and Future of

Earth's Nitrogen Cycle. Science, v. 330, p. 192–196, 2010.

CARMO, J. B. et al. Conversion of the coastal Atlantic forest to pasture: Consequences for

the nitrogen cycle and soil greenhouse gas emissions. Agriculte, Ecosystems and

Environmental, v. 148, p. 37-43, 2012.

CHEN, X. P. et al. Producing more grain with lower environmental costs. Nature, v. 514, p.

486–489, 2014a.

CHEN, Z. M. et al. Nitrous oxide emissions from cultivated black soil: a case study in

Northeast China and global estimates using empirical model. Global Biogeochemical Cycles,

v. 28, p. 1311–1326, 2014b.

CLEVELAND, C. C. et al. Global patterns of terrestrial biological nitrogen (N2) fixation in

natural ecosystems. Global Biogeochemical Cycles, v. 13, n. 2, p. 623–645, 1999.

107

COLE, J. A. Assimilatory and dissimilatory reduction of nitrate to ammonia. In: COLE, J. A.;

FERGUSON, S. J. (Eds.). The Nitrogen and Sulphur Cycles. Cambridge: Cambridge

University Press, 1988. p. 281–329.

DAMASCENO, A. A. Estoque de carbono em áreas de recuperação da Mata Atlântica

com diferentes idades na Bacia do Rio Guapiaçú, Cachoeiras de Macacu, Rio de Janeiro.

Seropédica, 2012. 123 f. Dissertação (Mestrado) - Universidade Federal Rural do Rio de

Janeiro, Seropédica, 2012.

DAVIDSON, E. A. et al. Recuperation of Nitrogen Cycling in Amazonian Forests Following

Agricultural Abandonment. Nature, v. 447, n. 7147, p. 995–98, 2007.

DE BOER, W.; KOWALCHUK, G. A. Nitrification in acid soils: micro-organisms and

mechanisms. Soil Biology & Biochemistry, v. 33, n. 7–8, p. 853-866, 2001.

DIJKSTRA, F. A.; CHENG, W.; JOHNSON, D. W. Plant biomass influences rhizosphere

priming effects on soil organic matter decomposition in two differently managed soils. Soil

Biology and Biochemistry, v. 38, p. 2519–2526, 2006.

DIJKSTRA, F. A. et al. Phizosphere priming: a nutrient perspective. Frontiers in

Microbiology, v. 4, n. 216, 2013.

DRISCOLL, C. T. et al. Effects of acidic desposition on forest and aquatic ecosystems In the

New York State. Environmental Pollution, v. 123, p. 327–336, 2003.

ERLER, The contribution of anammox and denitrification to sediment N2 production in a

surface flow constructed wetland. Environmental Science & Technology, v. 42, n. 24, p.

9144-9150, 2008.

FIENCKE, C.; SPIECK, E.; BOCK, E. Nitrifying Bacteria. In: WERNER, D.; NEWTON, W.

E. (Ed.). Nitrogen Fixation in Agriculture, Forestry, Ecology and the Environment.

Amsterdam: Springer Netherlands, 2006. v. 4, p. 255–276. (Nitrogen Fixation: Origins,

Apllications, and Research Progress).

FIGUEIREDO, V. S. Influência do pulso de inundação sobre as emissões de óxido nitroso

(N2O) em áreas alagadas tropicais. Rio de Janeiro, 2012. 90 f. Dissertação (Mestrado em

Ecologia) - Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro,

2012.

FIGUEIREDO, V.; A. ENRICH-PRAST; T. RÜTTING. Soil organic matter content controls

gross nitrogen dynamics and N2O production in riparian and upland boreal soil. European

Journal of Soil Science, v. 67, p. 782-791, 2016.

108

GALLOWAY, J. N. et al. Transformation of the nitrogen cycle: Recent trends, questions, and

potential solutions. Science, v. 320, p. 889–892, 2008.

GANDOLFI, S.; RODRIGUES, R. R. Metodologias de restauração florestas. In: CARGILL,

F. (Ed.). Manejo ambiental e manejo de áreas degradadas. [S. l.: s. n.], 2007. p. 109-143.

GIBBS, H. K. et al. Monitoring and estimating tropical forest carbon stocks: Making REDD a

reality. Environmental Research Letters, v. 2, p. 1–13, 2007.

GONZÁLEZ-PÉREZ, J. A. et al. The effect off ire on soil organic matter – a review.

Environmental International, v. 30, p. 855-870, 2004.

GUNDERSEN, P.; SCHMIDT, I. K.; RAULUND-RASMUSSEN, K. Leaching of nitrate

from temperate forests — effects of air pollution and forest management. Environmental

Reviews, v. 14, p. 1–57, 2006.

HADEN, V. R. et al. Ammonia toxicity in aerobc rice: use of soil properties to predict

ammonia volatilization following urea application and the adverse effects on germination.

European Journal of Soil Science, v. 62, p. 551–559, 2011.

HALBLEIB, C. M.; LUDDEN, P. W. Regulation of Biological Nitrogen Fixation. Journal of

Nutrition, v. 130, n. 5, p. 1081–1084, 2000.

HARTLEY, I. P. et al. The response of organic matter mineralisation to nutrient and substrate

additions in sub-arctic soils. Soil Biology and Biochemistry, v. 42, p. 92–100, 2010.

HARTMANN, A. A.; NIKLAUS, P. A. Effects of simulated drought and nitrogen fertilizer on

plant productivity and nitrous oxide (N2O) emissions of two pastures. Plant Soil, v. 361, p.

411–426, 2012.

HAYATSU, M.; TAGO, K.; SAITO, M. Various players in the nitrogen cycle: Diversity and

functions of the microorganisms involved in nitrification and denitrification. Soil Science and

Plant Nutrition, v. 54, p. 33–45, 2008.

HEDIN, L. O. et al. The Nitrogen Paradox in Tropical Forest Ecosystems. Annual Review of

Ecology, Evolution, and Systematics, v. 40, p. 613–635, 2009.

HÖGBERG, M. N. et al. The return of an experimentally N-saturated boreal forest to an N-

limited state: observations on the soil microbial community structure, biotic N retention

capacity and gross N mineralization. Plant Soil, v. 381, p. 45–60, 2014.

HUMBERT, S. et al. Molecular detection of anammox bacteria in terrestrial ecosystems:

distribution and diversity. ISME, v. 4, n. 3, p. 450-454, 2010.

109

HUYGENS, D. et al. Soil nitrogen conservation mechanisms in a pristine South Chilean

Nothofagus forest ecosystem. Soil Biology and Biochemistry, v. 39, p. 2448–2458, 2007.

IPCC. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y,

Bex V, Midgley PM, eds. Climate change 2013: the physical science basis. Contribution of

Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate

Change. Cambridge, UK; New York, NY, USA: Cambridge University Press, 2013.

JAYAWEERA, G. R.; MIKKELSEN, S. Assessment of Ammonia Volatilization from

Flooded Soil Systems. Advances in Agronomy, v. 45, p. 303–356. 1991.

JETTEN, M. S. M. et al. Anaerobic ammonium oxidation by marine and freshwater

planctomycete-like bacteria. Applied Microbiology Biotechnology, v. 63, p. 107-114. 2003.

JOHNSON, D. W.; CHENG, W.; BURKE, I. C. Biotic and Abiotic Nitrogen Retention in a

Variety of Forest Soils. Soil Sci. Soc. Am. J., v. 64, p. 1503–1514, 2000.

JU, X. et al. Processes and factors controlling N(2)O production in an intensively managed

low carbon calcareous soil under sub-humid monsoon conditions. Environmental Pollution,

v. 159, n. 4, p. 1007-1016, 2011.

JUNK, W. J. (Ed.). The central Amazon floodplain – Ecology of a pulsing system.

Heidelberg, Berlin; New York, USA: Springer-Verlag, 1997. 530 p.

JUNK, W. J.; PIEDADE, M. T. F. An Introduction to South American Wetland Forests:

Distribution, Definitions and General Characterization. In: JUNK, W. J. et al. (Ed.).

Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management.

New York, USA: Springer Verlag, 2010. p. 43–60.

KAMPSCHREUR, M. J. et al. Nitrous oxide emission during wastewater treatment. Water

Research, v. 43, n. 17, p. 4093-4103, 2009.

KARHU, K. et al. Temperature sensitivity of organic matter decomposition in two boreal

forest soil profiles. Soil Biology and Biochemistry, v. 42, p. 72-82, 2010.

KASISCHKE, E.S.; STOCKS, B. J. Fire, Climate Change, and Carbon Cycle in the Boreal

Forest. Ecological Studies, v. 138, 2000.

KASPAR, H. F. Nitrite reduction to nitrous oxide by propionibacteria: detoxication

mechanism. Archives of Microbiology, v. 133, p. 126–130, 1982.

KELLER, M.; REINERS, W. A. Soil-atmosphere exchange of nitrous oxide, nitric oxide and

methane under secondary succession of pasture to forests in the Atlantic lowlands of Costa

Rica. Global Biogeochemical Cycles, v.8, p.399–409, 1994.

110

KIRBY, K. R. et al. “The Future of Deforestation in the Brazilian Amazon.” Futures, v. 38,

n. 4, p. 432–53, 2006.

KRAFT, B. et al. The environmental controls that govern the end product of bacterial nitrate

respiration. Science, v. 345, n. 6197, p. 676, 2014.

KUYPERS, M. M. M. et al. Massive nitrogen loss from the Benguela upwelling system

through anaerobic ammonium oxidation. PNAS, v. 102, n. 18, p. 6478–648, 2005.

LAL, R. Forest soils and carbon sequestration. Forest Ecology and Management, v. 220, p.

242–258, 2005.

LAL, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security.

Science, v. 304, p. 1623–1626, 2004.

LAMBERS, H. et al. Plant-microbe-soil interections in the rhizosphere: an evolutionary

perspective. Plant Soil, v. 321, p. 83-115, 2009.

LI, J. et al. Carbon mineralization and oxygen dynamics in sediments with deep oxygen

penetration, Lake Superior. Limnology and Oceanography, v. 57, n. 6, p. 1634–1650, 2012.

LIENGAARD, L. et al. Hot moments of N2O trsnformation and emission in tropical soils

from the Pantanal and the Amazon (Brazil). Soil Biology and Biochemistry, v. 75, p. 26–36,

2014.

LIU, R. et al. Influence of temperature and moisture on the relative contributions of

heterotrophic and autotrophic nitrification to gross nitrification in an acid cropping soil.

Journal of Soils and Sediments, v. 15, p. 2304–2309, 2015.

MA, W. K. et al. Relationship between nitrifier and denitrifier community composition and

abundance in predicting nitrous oxide emissions from ephemeral wetland soils. Soil Biology

& Biochemistry, v. 40, n. 5, p. 1114–1123, 2008.

MADDOCK, J. E. L.; DOS SANTOS, M. B. P.; PRATA, K. R. Nitrous oxide emission from

soil of the Mata Atlantica, Rio de Janeiro State, Brazil. Journal of Geophysical Research:

Atmospheres, v. 106, p. 23055–23060, 2001.

MALHI, Y. et al. The carbon balance of tropical, temperate, and boreal forests. Plant, Cell

and Environmental, v. 22, p. 71, 1999.

MAMILOV, A. S.; DILLY, O. M. Soil microbial eco-physiology as affected by short-term

variations in environmental conditions. Soil Biology and Biochemistry, v. 34, p. 1283–1290,

2002.

111

MARTINELLI, L. A. et al. Nitrogen stable isotopic composition of leaves and soil: Tropical

versus temperate forests. Biogeochemistry, v. 46, n., p. 45–65, 1999.

MATSON, P. A. et al. The globalization of N deposition: ecosystem consequences in tropical

environments. Biogeochemistry, v. 46, n. 1–3, p. 67–83, 1999.

MAY, P. H. et al. Sistemas agroflorestais e reflorestamento para captura de carbono e geração

de renda. In: ENCONTRO DA SOCIEDADE BRASILEIRA DE ECONOMIA ECOLÓGICA

- ECO, 6., 2005, Brasília, DF. Anais… Barsília, DF, 2005.

MELACK, J. M.; HESS, L. L. Remote sensing of the distribution and extent of wetlands in

the Amazon Basin. In: JUNK, W. J. et al. (Ed). Amazonian floodplain forests:

ecophysiology, biodiversity and sustainable management. New York, USA: Springer Verlag,

2010. p. 43–60.

METZGER, J. P. Conservation issues in the Brazilian Atlantic forest. Biological

Conservation, v. 142, p. 1138–1140, 2009.

MOREIRA-TURCQ, P. et al. Exportation of organic carbon from the Amazon River and its

main tributaries. Hydrological Processes, v. 17, p. 1329–1344, 2003.

MORELLATO, L. P. C.; HADDAD, C. F. B. Introduction: The Brazilian Atlantic Forest.

Biotropica, v. 32, n. 4b, p. 786–792, 2000.

MORLEY, N.; E. M. BAGGS. Carbon and oxygen controls on N2O and N2 production

during nitrate reduction. Soil Biology and Biochemistry, v. 42, p. 1864-1871, 2010.

MORLEY, N. et al. Production of NO, N2O and N2 by extracted soil bacteria, regulation by

NO2- and O2 concentrations. Fems Microbiology Ecology, v. 65, p. 102-112, 2008.

MYERS, N. et al. Biodiversity hotspots for conservation priorities. Nature, v. 403, n. 24, p.

853–858, 2000.

NEILL, C. et al. Nitrogen Dynamics in Amazon Forest and Pasture Soils Measured by 15N

Pool Dilution. Soil Biology and Biochemistry, v. 31, n. 4, p. 567–72, 1999.

NILSSON, M. C.; WARDLE, D. A. Understory vegetation as a forest ecosystem driver:

evidence from the northern Swedish boreal forest. Frontiers in Ecology and the

Environment, v. 3, p. 421–428, 2005.

112

NOBRE, C. et al. Understanding the Climate of Amazonia: Progress From LBA.

Washington, DC: AGU, 2009. 565 p. (Geophysical Monograph Series, 186).

NOOA. Nitrous Oxide (N2O) — Combined Data Set. In: Earth System Research Laboratory.

Global Monitoring Division. 2016. Accessed in 10 January 2017.

OLIVARES, J.; E. J. BEDMAR; J. SANJUÁN. Biological Nitrogen Fixation in the Context

of Global Change. Molecular Plant-Microbe Interactions, v. 26, n. 5, p. 486–494, 2013.

PERRY, I. G. Fluxos de óxido nitroso e potenciais fatores ambientais de controle em uma

floresta tropical pluvial atlântica na serra do mar. Niterói, 2011. 112 f. Tese (Doutorado

em Geociências – Geoquímica Ambiental) – Instituto de Química, Universidade Federal

Fluminense, Niterói, 2011.

PETTERSSON, M.; BAATH, E. Temperature-dependent changes in the soil bacterial

community in limed and unlimed soil. FEMS Microbiology Ecology, v. 45, p. 13–21, 2003.

PINA-OCHOA, E.; ALVAREZ-COBELAS, M. Denitrification in aquatic environments: A

cross-system analysis. Biogeochemistry, v. 81, n. 1, p. 111–130, 2006.

POTTER, C. et al. Ecosystem modeling and dynamic effects of deforestation on trace gas

fluxes in Amazon tropical forests. Fores Ecology and Management, v. 152, p. 97-117, 2001.

PROSSER, J. Nitrogen in Soils/Nitrification. The Encyclopedia of Soils in the

Environmental, University of Aberdeen, UK., p. 31-38, 2005.

RAVISHANKARA, A. R.; DANIEL, J. S.; PORTMANN, R. W. Nitrous Oxide (N2O): The

Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science, v. 326, n. 5949,

p. 123–125, 2009.

REINERT, D. J.; REICHERT, J. M. Propriedades físicas do solo. Santa Maria: Universidade

Federal de Santa Maria, 2006. 18 p.

REIS, S. et al. Synthesis and review: Tackling the nitrogen management challenge: from

global to local scales. Environmental Research Letters, v. 11, 2016.

ROBERTSON, G. P.; TIEDJE, J. M. Deforestation alters denitrification in a lowland tropical

rain-forest. Nature, v. 336, p. 756–759, 1988.

ROBERTSON, G. P.; GROFFMAN, P. M. Nitrogen transformations. In: PAUL, E. A. (Ed.).

Soil Microbiology and Biochemistry. 3rd ed. New York: Academic Press, 2007. p. 341–364.

113

RODRIGUES, R. A. R.; W. Z. DE MELLO. Fluxos de óxido nitroso em solos com cobertura

de floresta ombrófila densa montana da Serra do Órgãos, Rio de Janeiro. Química Nova, v.

35, p. 1549–1553, 2012.

RUCKSTUHL, K. E. et al. Introduction. The boreal forest and global change. Philosophical

Transactions og Royal Society, v. 363, p. 2245- 2249, 2008.

SANCHES, L. et al. Dinâmica sazonal da produção e decomposição de serrapilheira em

floresta tropical de transição. Revista Brasileira de Engenharia Agrícola e Ambiental, v.

13, p. 183-189, 2009.

SCHLESINGER, W. H. An estimate of the global sink for nitrous oxide in soils. Global

Change Biology, v. 9, n. 10, p. 2929–2931, 2013.

SIGURDSSON, B. D. et al. Growth of mature boreal Norway spruce was not affected by

elevated [CO2] and/or air temperature unless nutrient availability was improved. Tree

Physiology, v. 33, p. 1192–1205, 2013.

SILVER, W. L. et al. Dissimilatory Nitrate Reduction to Ammonium in Upland Tropical

Forest Soils. Ecology, v. 82, n. 3, p. 2410–2416, 2001.

SILVER, W. L. et al. Nitrogen cycling in tropical plantation forests: potential controls on

nitrogen retention. Ecological Applications, v. 15, p. 1604-1614, 2005.

SOS Mata Atlântica, Instituto Nacional de Pesquisas Espaciais, 2015. Atlas dos

remanescentes florestais da Mata Atlântica, período de 2013 a 2014.

<http://www.sosmatatlantica.org.br>.

SOTTA, E. D.; CORRE, M. D.; VELDKAMP, E. Differing N Status and N Retention

Processes of Soils under Old-Growth Lowland Forest in Eastern Amazonia, Caxiuanã, Brazil.

Soil Biology and Biochemistry, v. 40, n. 3, p. 740–50, 2008.

SOUSA NETO, E. et al. Soil-atmosphere exchange of nitrous oxide, methane and carbon

dioxide in a gradient of elevation in the coastal Brazilian Atlantic forest. Biogeosciences, v. 8,

p. 733-724, 2011.

STEVENS, R. J.; LAUGHLIN, R. J.; MALONE, J. P. Soil pH affects the processes reducing

nitrate to nitrous oxide and di-nitrogen. Soil Biology and Biochemistry, v. 30, p. 1119–1126,

1998.

SUZIKI, I.; DULAR, U.; KWOK, C. Ammonia or ammonium ion as substrate for oxidation

by Nitrossomonas europea cells and extracts. Journal of Bacteriology, p. 556-558, 1974.

114

TAGUE, C. et al. Plot- and watershed-scale soil moisture variability in a humid Piedmont

watershed. Water Resources Research, v. 46, p. 1–13, 2010.

TIEDJE, J. M. Denitrification: ecological niches, competition and survival. Antonie van

Leeuwenhoek, v. 48, p. 569-583, 1982.

TÔSTO, K. L. Regulação das taxas de emissão de óxido nitroso (n2o) em solos

amazônicos pelo pulso de inundação. Rio de Janeiro, 2014. 71 f. Dissertação (Mestrado em

Ecologia) - Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro,

2014.

USSIRI, D.; LAL, R. Formation and release of nitrous oxide from terrestrial and aquatic

ecosystems. In: USSIRI, David; LAL, Rattan. Soil emission of nitrous oxide and its

mitigation. [S. l.]: Springer Science, 2013. p. 63–96.

VAN GROENIGEN, J. W. et al. The soil N cycle: new insights and key challenges. Soil, v. 1,

p. 235–256, 2015.

VIANELLO, R. L.; ALVES, A. R. Meteorologia Básica e Aplicações. Viçosa: UFV, 2000.

WERNER, C. et al. A global inventory of N2O emissions from tropical rainforest soils using

a detailed biogeochemical model. Global Biogeochemical Cycles, v. 21, n. 3, p. 1–18, 2007.

WICK, B. et al. Nitrous oxide fluxes and nitrogen cycling along a pasture chronosequence in

Central Amazonia, Brazil. Biogeosciences, v. 2, p. 175–187, 2005.

YAN, L. et al. Increasing water and nitrogen availability enhanced net ecosystem CO2

assimilation of a temperate semiarid steppe. Plant and Soil, v. 349, p. 227–240, 2011.

YOON, S. et al. Denitrification versus respiratory ammonification: environmental controls of

two competing dissimilatory NO3-/NO2- reduction pathways in Shewanella loihica strain

PV-4. ISME, v. 9, p. 1093-1104, 2015.

YUAN, Z. Y.; CHEN, H. Y. H. Decoupling of nitrogen and phosphorus in terrestrial plants

associated with global changes. Nature Climate Change, v. 5, p. 1–5, 2015.

ZEHR, J. P.; CARPENTER, E. J.; VILLAREAL, T. A. New perspectives on nitrogen-fixing

microorganisms in tropical and subtropical oceans. Trends in Microbiology, v. 8, p. 68–73,

2000.

ZHANG, J. B. et al. The substrate is an important factor in controlling the significance of

heterotrophic nitrification in acidic forest soils. Soil Biology and Biochemistry, v. 76, p.

143–148, 2014.

115

ZHANG, J.; MÜLLER, C.; CAI, Z. Heterotrophic nitrification of organic N and its

contribution to nitrous oxide emissions in soils. Soil Biology & Biochemistry, v. 84, p. 199–

209, 2015.

ZHU, J. et al. Spatial and temporal variability of N2O emissions in a subtropical forest

catchment in China. Biogeosciences, v. 10, p. 1309-1321, 2013.

ZHU, B. et al. Rizhospfere priming effects on soil carbon and nitrogen mineralization. Soil

Biology and Biochemistry, v. 76, p. 183-192, 2014.