influÊncia de novos marcadores … fernandes_o_costa.pdf · parcial à obtenção do grau de...

89
UNIVERSIDADE FEDERAL DE SERGIPE PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA MESTRADO EM CIÊNCIAS FARMACÊUTICAS INFLUÊNCIA DE NOVOS MARCADORES IMUNOFENOTÍPICOS NO PROGNÓSTICO E SOBREVIDA DE LEUCEMIAS MIELOIDES AGUDAS: UMA REVISÃO SISTEMÁTICA E META-ANÁLISE AMANDA FERNANDES DE OLIVEIRA COSTA SÃO CRISTÓVÃO FEVEREIRO/2017

Upload: hakiet

Post on 09-Nov-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

UNIVERSIDADE FEDERAL DE SERGIPE

PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA

MESTRADO EM CIÊNCIAS FARMACÊUTICAS

INFLUÊNCIA DE NOVOS MARCADORES

IMUNOFENOTÍPICOS NO PROGNÓSTICO E SOBREVIDA

DE LEUCEMIAS MIELOIDES AGUDAS: UMA REVISÃO

SISTEMÁTICA E META-ANÁLISE

AMANDA FERNANDES DE OLIVEIRA COSTA

SÃO CRISTÓVÃO

FEVEREIRO/2017

UNIVERSIDADE FEDERAL DE SERGIPE

PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA

MESTRADO EM CIÊNCIAS FARMACÊUTICAS

INFLUÊNCIA DE NOVOS MARCADORES

IMUNOFENOTÍPICOS NO PROGNÓSTICO E SOBREVIDA

DE LEUCEMIAS MIELOIDES AGUDAS: UMA REVISÃO

SISTEMÁTICA E META-ANÁLISE

Amanda Fernandes De Oliveira Costa

Dissertação apresentada ao Núcleo de Pós-

Graduação em Ciências Farmacêuticas da

Universidade Federal de Sergipe como requisito

parcial à obtenção do grau de Mestre em

Ciências Farmacêuticas.

Orientadora: Profª Drª Dulce Marta Schimieguel Mascarenhas Lima.

SÃO CRISTÓVÃO

FEVEREIRO/2017

AMANDA FERNANDES DE OLIVEIRA COSTA

INFLUÊNCIA DE NOVOS MARCADORES

IMUNOFENOTÍPICOS NO PROGNÓSTICO E SOBREVIDA

DE LEUCEMIAS MIELOIDES AGUDAS: UMA REVISÃO

SISTEMÁTICA E META-ANÁLISE

Dissertação apresentada ao Núcleo de Pós-

Graduação em Ciências Farmacêuticas da

Universidade Federal de Sergipe como requisito

parcial à obtenção do grau de Mestre em

Ciências Farmacêuticas.

Aprovada em 13/02/2017

______________________________________________________

Orientador: Profª. Drª. Dulce Marta Schimieguel Mascarenhas Lima

_____________________________________________________

1º Examinador: Profª. Drª. Rosana Cipoloti

______________________________________________________

2º Examinador: Prof. Dr. Ricardo Ambrósio Fock

PARECER

---------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------

AGRADECIMENTOS

A gratidão é o único tesouro dos humildes, já dizia Shakespeare. E nada mais

digno aos que me acompanharam nessa trajetória do que a minha profunda gratidão.

Com o passar dos anos, aprendi a enxergar a presença de Deus no meu dia a dia, em

detalhes que muitas vezes passavam despercebidos e sem dúvida alguma, apenas

pela sua existência e persistência nessa mera cristã, ele merece a gratidão de toda a

minha vida. Não só por ter me acompanhado, mas por ter me abençoado de tantas

diversas formas e através de tantas pessoas.

Agradeço sempre, eternamente e incansavelmente as duas pessoas que mais

me apoiaram, suportaram minhas dores e compartilharam minhas alegrias, não só por

esses dois anos, mas por toda a minha vida: Minha mãe, Ana Emília e minha avó,

Maria José. Não existe explicação, se não Deus, por serem vocês a fazerem parte de

mim.

Agradeço ao meu companheiro inquestionável. Aquele que lidou com todas as

minhas frustrações durante esse período, que me incentivou a encarar a vida

acadêmica, me ensinou, me ajudou e sempre está ao meu lado. No sossego e no

sufoco, para toda a vida. Meu amado marido, Adonis.

Agradeço imensamente a essa mulher que me mostrou a beleza da

Hematologia e me inspira a ser como ela. Uma grande profissional, uma mulher com

princípios, de Deus, que muitas vezes me mostrou sua amizade, não só na

compreensão, mas na crítica construtiva, quando fiz corpo mole. Professora Doutora

Dulce Marta Schimieguel Mascarenhas Lima, a você serei eternamente grata. Tudo

que eu me tornar daqui para frente também pertencerá a senhora. Muito obrigada.

Ao Professor Doutor Divaldo Pereira de Lyra Junior, o maior incentivador que

conheci nesse caminho. Obrigada por ter se tornado um amigo, por sempre ter tido fé

em mim e por ter me ensinado a buscar sempre ser melhor. O senhor com certeza,

fez e faz parte da minha história. Sempre que converso com o senhor sinto que algo

me é acrescentado e que aprendo algo novo. Essa vitória também é sua. Obrigada.

Aos mestres que caminharam junto comigo, compartilhando seus

conhecimentos valiosos e contribuindo para o meu crescimento acadêmico. O

Professor Doutor Marco Prado Nunes e o Doutor Alex Sandes. Meus sinceros

agradecimentos.

A Daniel Lima, com quem trabalhei nesse projeto. Obrigada por ter me

presenteado sua amizade. Por ter acompanhado todo esse processo, cheio de

primeiras vezes, cheio de incertezas e inseguranças, mas que graças a Deus, foi

finalizado com êxito. E me sinto muito orgulhosa por ele.

Por último e não menos importante, devo muita gratidão aos que

compartilharam o dia a dia comigo, escutaram todas as minhas choradeiras, me

distraíram, me colocaram para cima e acreditaram em mim quando eu fraquejei. Meus

queridos amigos de laboratório, espero levar vocês para a vida. Muito obrigada por

tudo. E que venham novos desafios.

Finalmente, gostaria de agradecer à CAPES, pelo apoio financeiro, sem o qual,

dificilmente poderia ter concluído o curso de Mestrado do Programa de Pós-

Graduação em Ciências Farmacêuticas da UFS e a todos mais que eu não tenha

citado nesta lista de agradecimentos, mas que de uma forma ou de outra contribuíram

para a conclusão dessa jornada.

Muito obrigada. Esse é só o início.

RESUMO

INFLUÊNCIA DE NOVOS MARCADORES IMUNOFENOTÍPICOS NO PROGNÓSTICO E SOBREVIDA DE LEUCEMIAS MIELOIDES AGUDAS: UMA REVISÃO SISTEMÁTICA E META-ANÁLISE. AMANDA FERNANDES DE OLIVEIRA COSTA. SÃO CRISTÓVÃO, 2016.

Apesar dos avanços tecnológicos, o prognóstico e a sobrevida dos pacientes adultos

com leucemia mieloide aguda (LMA) permanecem baixos quando comparados com

outras neoplasias hematológicas. Alguns antígenos identificados pela técnica de

imunofenotipagem por citometria de fluxo podem desempenhar um papel significativo

na compreensão da fisiopatologia, no prognóstico e na sobrevida global dos pacientes

com LMA. Sendo assim, foi realizada uma revisão sistemática e metanálise nas bases

de dados PubMed, Scopus, Science Direct, Web of Science e Cochrane Library

(utilizando as diretrizes do PRISMA). Em onze estudos realizados em um total de 639

pacientes, foram detectados treze antígenos, analisados pela metodologia de

imunofenotipagem por citometria de fluxo. Destes marcadores, doze exibiram um

impacto negativo no prognóstico da LMA. A metanálise demonstrou que a alta

expressão dos marcadores de LMA tem sido associada a uma diminuição nas taxas

de sobrevida em 10 meses (RR 2,55; IC 95%; 1,49-4,37) e 20 meses (RR 2,46; IC

95%; 1,75- 3.45). O conhecimento de que a expressão de novos marcadores

imunofenotípicos pode ser capaz de influenciar o comportamento da doença, parece

ser uma informação promissora, pois demonstra influência no prognóstico e

diminuição da sobrevida dos pacientes com LMA. Isto pode servir de base para a

investigação de diferentes protocolos quimioterápicos, incluindo o estudo prospectivo

de novos alvos terapêuticos.

Palavras-chave: imunofenotipagem; leucemia mieloide aguda; prognóstico; sobrevida.

ABSTRACT

ROLE OF NEW IMMUNOPHENOTYPIC MARKERS ON PROGNOSTIC AND OVERALL SURVIVAL OF ACUTE MYELOID LEUKEMIA: A SYSTEMATIC REVIEW AND META-ANALYSIS. AMANDA FERNANDES DE OLIVEIRA COSTA. SÃO CRISTÓVÃO, 2016. Despite technological advances, the prognosis and survival of acute myeloid leukemia

(AML) adult patients remain low, compared with other hematologic malignancies.

Some antigens detected by immunophenotyping may soon play a significant role in the

pathophysiologic, prognostic, and overall survival (OS) rate of AML patients. Therefore,

we conducted a systematic review and meta-analysis of PubMed, Scopus, Science

Direct, Web of Science, and the Cochrane Library (using PRISMA guidelines). We

analyzed 11 studies and 13 antigens, detected through the immunophenotyping of 639

patients. From them, 12 exhibited a negative impact with AML prognosis. The meta-

analysis demonstrated a high expression of AML markers, which have been associated

with a decrease in survival over 10 months (RR 2.55; IC 95%; 1.49-4.37) and over 20

months (RR 2.46; IC 95%; 1.75-3.45). Knowing that the expression of

immunophenotypic markers, which are not used on a routine basis, might be able to

influence disease behavior, looks promising. Since they have been associated with a

poor prognosis as well as a decrease in survival. This may allow for different

chemotherapeutical protocols, including future studies for new therapeutic targets.

Key word: immunophenotyping; acute myeloid leukemia; prognosis; survival.

SUMÁRIO 1 INTRODUÇÃO ...................................................................................................................... 1

2 REVISÃO DA LITERATURA .............................................................................................. 2

2.1 Neoplasias hematológicas - Leucemias ........................................................................ 2

2.2 Leucemias mieloides agudas (LMAs) ............................................................................ 5

2.3 Imunofenotipagem e marcadores imunofenotípicos em leucemias mieloides

agudas ..................................................................................................................................... 10

2.4. Novos marcadores imunofenotípicos ......................................................................... 15

REFERÊNCIAS ..................................................................................................................... 19

CAPÍTULO 1 .......................................................................................................................... 24

ROLE OF NEW IMMUNOPHENOTYPIC MARKERS ON PROGNOSTIC AND

OVERALL SURVIVAL OF ACUTE MYELOID LEUKEMIA: A SYSTEMATIC REVIEW

AND META-ANALYSIS ......................................................................................................... 25

ANEXOS ................................................................................................................................. 55

ANEXO A - Supplementary Information ............................................................................. 55

ANEXO B - Carta de aceite do artigo ................................................................................. 59

ANEXO C - Normas da Revista ........................................................................................... 61

ÍNDICE DE FIGURAS

INTRODUÇÃO

Figura 1: Representação espacial das taxas brutas de incidência de leucemia por 100

mil homens e mulheres no estado de Sergipe. ................................................................... 4

Figura 2: Detector de dispersão de luz frontal: Tamanho celular - FSC (Forward

Scatter) e detector de dispersão de luz em ângulo reto: Complexidade celular - SSC

(Side Scatter). ......................................................................................................................... 11

Figura 3: Marcadores mieloides e suas intensidades de expressão de acordo com o

subtipo de Leucemia mieloide aguda. ................................................................................ 13

Figura 4: Via de transdução de sinal do receptor FLT3. ................................................ 16

Figura 5: Esquema funcional de células CD133+. .......................................................... 17

CAPITULO 1

Figure 1: Flow diagram for study identification. .............................................................. 32

Figure 2: Forest Plot of relative risks and confidence intervals of 10-month

survival.....................................................................................................................................39

Figure 3: Forest Plot of relative risks and confidence intervals of 20-month survival.

.................................................................................................................................................. 40

SUPPLEMENTARY INFORMATION

Supplementary figure S 1: Forest plot with relative risks and confidence intervals of

survival in 10 month. ............................................................................................................. 55

Supplementary figure S 2: Funnel plot of studies on survival in 10 months. ............ 56

Supplementary figure S 3: Funnel plot of studies on survival in 10 months. ............ 57

Supplementary figure S 4: Funnel plot of studies on survival in 10 months. ............ 58

ÍNDICE DE QUADROS E TABELAS

INTRODUÇÃO

Quadro 1: Características clínicas e laboratoriais das leucemias mieloides agudas. . 7

Quadro 2: Classificação do grupo Franco-Americano-Britânico para as leucemias

mieloides agudas. .................................................................................................................... 8

Quadro 3: Classificação da Organização Mundial da Saúde para as leucemias

mieloides agudas. .................................................................................................................... 9

Quadro 4: Painel de triagem para leucemias mieloides agudas. ................................ 14

Quadro 5: Descrição dos marcadores que compõem o painel mandatório do Grupo

Brasileiro de Citometria de Fluxo. ....................................................................................... 14

CAPITULO 1

Table 1: Contingency table (2x2). ...................................................................................... 51

Table 2: Main characteristics of the individual studies analyzed on the systematic

review and meta-analysis. .................................................................................................... 52

Table 3: Main disease and treatment features of the individual studies included on the

systematic review and meta-analysis. ................................................................................ 53

Table 4: Basic features of each antigen analyzed on this systematic review and meta-

analysis .................................................................................................................................... 54

1

1 INTRODUÇÃO

As neoplasias hematológicas são doenças malignas que afetam as células do

sistema hematopoético, caracterizadas por alterações no sangue e/ou em seus

tecidos formadores (KLATSKY et al., 2009). Neste grupo estão descritas as

leucemias, neoplasias caracterizadas pela proliferação exacerbada de células

anormais na medula óssea, provocando um prejuízo na produção de eritrócitos,

leucócitos e plaquetas normais, desencadeando consequentemente anemia, maior

suscetibilidade à infecções e quadros hemorrágicos (PUTZU et al., 2014; WINTERS

et al., 2015). De acordo com o tecido em que se origina o clone leucêmico e com a

evolução da doença, as leucemias podem ser categorizadas em quatro subtipos:

leucemias linfoides crônicas, leucemias linfoides agudas, leucemias mieloides

crônicas e leucemias mieloides agudas (BETZ & HESS, 2010).

As leucemias mieloides agudas (LMAs) consistem em um grupo de doenças

biologicamente heterogêneo, onde há acúmulo clonal de células mieloides imaturas,

exibindo diferentes comportamentos clínicos e fisiopatológicos (OUYANG et al., 2015).

São neoplasias com prognóstico sombrio, que afetam predominantemente adultos

com idade média de 70 anos, com taxas de sobrevida global de 10% em 2 anos e 2%

em 5 anos (STRICKLAND et al., 2016).

A heterogeneidade genética deste grupo de neoplasias hematológicas torna

impraticável executar análises iniciais que possam abranger os diferentes genes

envolvidos e todas as alterações compreendidas nestas doenças, o que pode gerar

dificuldades no diagnóstico, implicando diretamente no direcionamento da terapêutica.

Sendo assim, apesar da crescente importância das características genéticas e

moleculares na subclassificação das leucemias mieloides agudas, as análises

morfológicas e imunofenotípicas são fundamentais para diagnóstico inicial destas

doenças (PETERS & ANSARI, 2011; HASAN et al., 2015).

As análises imunofenotípicas por citometria de fluxo compõem uma ferramenta

de útil para diagnóstico e seguimento da doença, por serem capazes de avaliar

diferentes características celulares simultaneamente, célula por célula. Esta técnica

emprega anticorpos monoclonais, utilizados como marcadores imunofenotípicos na

análise do padrão de expressão de antígenos (Clusters Designations - CDs) das

populações celulares, combinados em painéis de triagem e classificação (DOGEN &

2

ORFAO 2012; FINAK et al., 2016).

Os marcadores imunofenotípicos associados à leucemia (leukemia-associated

phenotypic markers - LAIPS) são úteis para distinguir os precursores mieloides

imaturos normais/reativos das células leucêmicas e são amplamente utilizados em

estudos de doença residual mínima (DRM), além de permitirem a possibilidade de

avaliação do protocolo terapêutico e o desenvolvimento de novos alvos terapêuticos.

(GRIMWADE & FREEMAN, 2014; OMMEN, 2016).

Atualmente, na literatura, não são descritas recomendações claras para a

utilização de novos marcadores imunofenotípicos nos painéis de imunofenotipagem

para LMAs, tampouco sua influência no prognóstico e sobrevida. Assim sendo, foi

realizada uma revisão sistemática da literatura e uma metanálise dos dados, com o

objetivo de identificar as publicações relevantes sobre a influência destes novos

marcadores imunofenotípicos no prognóstico e sobrevida dos pacientes com

leucemias mieloides agudas.

2 REVISÃO DA LITERATURA

2.1 Neoplasias hematológicas - Leucemias

As neoplasias hematológicas compõem um grupo de doenças malignas com

características distintas, classificadas de acordo com a linhagem das células das quais

se originam e representam cerca de 8% dos casos de neoplasias nos países

desenvolvidos. Essas doenças afetam o sistema hematopoético, apresentando

diversas alterações morfológicas, mutações genéticas e perda de função celular

(BETZ & HESS, 2010).

São classificadas de acordo com a morfologia, imunofenotipagem, citogenética

e perfil molecular. Dentro da linhagem linfoide são categorizados os linfomas, o

mieloma múltiplo e as leucemias linfoides crônicas e agudas. As neoplasias originadas

da linhagem mieloide são categorizadas em desordens mieloproliferativas, síndromes

mielodisplásicas e leucemias mieloides crônicas e agudas (BETZ & HESS, 2010;

ARBER et al., 2016).

As leucemias são caracterizadas pela proliferação neoplásica maligna e

generalizada ou acúmulo de células hematopoéticas malignas na medula óssea com

3

ou sem envolvimento do sangue periférico, linfonodos e baço (WINTERS et al., 2015).

De acordo com sua incidência, foram relatadas como sendo o 9º tipo de câncer mais

comum em homens e o 10º mais comum em mulheres no mundo (JEMAL et al., 2011).

De acordo com o Instituto Nacional do Câncer (INCA), em 2014 foram relatados, no

Brasil, 5.050 casos novos de leucemia em homens e 4.320 em mulheres e a estimativa

para 2016 é de 5.540 novos casos em homens e de 4.530 em mulheres. Na figura 1

é possível observar a incidência de leucemias no estado de Sergipe em homens e

mulheres.

As leucemias são neoplasias que se apresentam clinicamente de forma

inespecífica. Características laboratoriais como anemia, trombocitopenia e

leucocitose ou leucopenia são identificados e associados a sintomas como fadiga,

dispneia, dor de cabeça, dor no peito e aparecimento de hematomas ou hemorragias,

particularmente do nariz e gengivas. Mesmo quando a contagem de leucócitos está

normal, os pacientes podem apresentar disfunção do sistema imunológico

evidenciada pela cicatrização lenta de feridas da pele, febre, infecções de repetição

e, em casos raros, sepse. As manifestações gastrintestinais são comuns

principalmente em casos de recidiva e podem ocorrer úlceras não só na boca e região

anorretal, mas também no trato gastrintestinal (ROSE-INMAN; KUEHL, 2014).

4

Figura 1: Representação espacial das taxas brutas de incidência de leucemia por 100 mil homens e mulheres no estado de Sergipe. Fonte: http://www.inca.gov.br/estimativa/2014/mapa.asp?ID=8

As leucemias podem afetar pessoas de todas as idades e, embora as causas

para o desenvolvimento de leucemias ainda não sejam bem conhecidas, alguns

fatores de risco que predispõem a doença são a quimioterapia prévia, doenças

genéticas causadas por cromossomos anormais, síndrome mielodisplásica prévia,

exposição à radiação ionizante e exposição ocupacional ao benzeno (RHOMBERG et

al., 2011). São categorizadas de acordo com o desenvolvimento e evolução da doença

em dois grandes grupos: leucemias agudas e leucemias crônicas (WINTERS et al.,

2015).

As leucemias agudas apresentam proliferação clonal acompanhada de

bloqueio maturativo variável, originando diferentes subtipos de leucemias. A célula em

que ocorre a transformação leucêmica é um precursor que perde a capacidade de

acompanhar o processo de maturação normal. A origem tecidual desse precursor irá

5

definir qual subtipo de leucemia aguda irá se desenvolver. Quando este precursor é

de origem linfoide, desenvolvem-se as leucemias linfoides agudas e quando o

precursor advém de linhagem mieloide, são formadas as leucemias mieloides agudas

(MERINO, 2010).

2.2 Leucemias mieloides agudas (LMAs)

As leucemias mieloides agudas são doenças clonais do tecido hematopoético

onde há uma proliferação exacerbada de células jovens da linhagem mieloide,

denominadas “blastos mieloides” ou “mieloblastos”, ocasionando produção

insuficiente de células sanguíneas maduras normais. O processo neoplásico que

origina o clone leucêmico pode surgir em qualquer estágio do desenvolvimento

celular, ou seja, em qualquer fase da hematopoese (FERRARA; SCHIFFER, 2013).

A proliferação exacerbada seguida de comprometimento na diferenciação

celular ocorre devido a mutações moleculares através da ativação de algumas classes

de genes, chamados oncogenes, que começam a produzir proteínas quiméricas

responsáveis pelo descontrole da divisão, diferenciação, amadurecimento e apoptose

celular. Os genes responsáveis pela supressão de tumores ou anti-oncogenes

também podem apresentar alterações, perdendo suas funções de transdução e

produção de proteínas relacionadas à inibição do crescimento celular e diminuição da

proliferação, aumentando o crescimento desregulado dessas células anormais

(LOGAN et al., 2015).

De acordo com dados do Instituto Nacional do Câncer (INCA, 2016), é uma

neoplasia de mau prognóstico, sendo o tipo mais comum de leucemia em adultos,

diagnosticada em idade média de 65 anos e com uma incidência ligeiramente maior

em homens de descendência europeia. Apresenta uma taxa de sobrevida em 5 anos

de 50% para pacientes de até 45 anos e de 2% para pacientes com mais de 75 anos

no momento do diagnóstico.

As taxas de remissão para LMAs apresentam um decréscimo com o aumento

da idade do paciente, chegando a atingir 90% em crianças, 70% em adultos jovens,

60% em adultos de meia idade, e 40% em pacientes mais velhos (ROSE-INMAN;

KUEHL, 2014). Quanto mais jovem o paciente, maior as taxas de sobrevida global e

melhor é o seu prognóstico. A taxa de sobrevida relativa de 5 anos para pacientes

entre 0 e 19 anos é de 62,8%, 48,8% em pacientes com idade entre 20 e 49 anos, de

6

28,0% para os pacientes em torno de 50 a 64 anos e de 5,4%, em pacientes com

idade superior 65 anos (DESANTIS, et al., 2014).

As leucemias mieloides agudas, assim como todas as leucemias, são

idiopáticas, ou seja, acontecem sem uma causa definida. Porém, alguns fatores de

risco são conhecidos e associados a doença, como a exposição à radiação ionizante,

a exposição ocupacional ao benzeno e alguns agentes alquilantes (WANG; BAILEY,

2015).

Algumas alterações moleculares também contribuem para a expansão clonal

leucêmica das células hematopoéticas jovens, fazendo com que elas percam a sua

capacidade de diferenciação e gerando anormalidades morfológicas. Além disso,

alterações cromossômicas como inserções, deleções e translocações são

relacionadas às LMAs, sendo responsáveis pela supressão de genes que regulam o

ciclo celular, induzindo a perda dos mecanismos normais de proliferação,

diferenciação maturação e/ou da morte celular programada (FARAONI et al., 2015).

As manifestações clínicas das LMAs estão descritas no Quadro 1, onde se

relaciona os principais sinais clínicos e achados laboratoriais apresentados por

portadores dessas doenças (MILLER; PILISHOWSKA, 2014).

Inicialmente as leucemias foram classificadas com base somente em

investigações citomorfológicas e citoquímicas. A morfologia ainda é importante, mas

a imunofenotipagem e a citogenética foram incorporadas em sistemas de classificação

atuais para que haja um delineamento mais preciso da linhagem hematopoética, do

estágio de diferenciação celular e prognóstico da doença (MILLER; PILISHOWSKA,

2014). As LMAs possuem subtipos distintos que são definidos pela morfologia

específica, citogenética e expressão molecular (FARAONI et al., 2014).

Nos últimos anos foram sugeridos diversos sistemas de classificação para as

LMAs e, dentre estes, os de maior relevância são os propostos pelo sistema Franco-

Americano-Britânico (FAB), e pela Organização Mundial da Saúde (ROSE-INMAN;

KUEHL, 2014).

7

Quadro 1: Características clínicas e laboratoriais das leucemias mieloides agudas.

EXAME SINAIS

CLÍNICO

-Palidez

-Hepatomegalia/esplenomegalia

-Linfadenopatia

-Febre em consequência de infecções

-Petéquias e outras manifestações hemorrágicas

-Dor óssea

-Hipertrofia gengival

-Infiltrações cutâneas

HEMOGRAMA

-Dosagem hemoglobina baixa

-Contagem de leucócitos < 1.000/μL a 200.000/μL

-Neutropenia e presença de blastos

-Anemia normocrômica e normocítica;

-Trombocitopenia pode ser severa

MIELOGRAMA >20% de blastos

Fonte: Adaptada de MILLER; PILISHOWSKA, 2014.

A classificação publicada pelo grupo Franco-Americano-Britânico entre 1976 e

1994 para as leucemias agudas foi a primeira mundialmente aceita e avalia critérios

morfológicos, citoquímicos e a presença de mais de 30% de blastos na medula óssea.

Primeiramente ela classificava as LMAs em seis subtipos (M1 até M6). Em 1985 foram

adotados critérios imunofenotípicos, incluindo o subtipo LMA M7, através da

confirmação de blastos plaquetários e o subtipo M0, através de marcadores

monoclonais (Quadro 2) (BAIN; ESTCOURT, 2013).

A classificação FAB está aos poucos sendo substituída pela classificação da

OMS, porém mesmo com a classificação da OMS em vigor há mais de dez anos, a

classificação FAB ainda é muito utilizada para os subtipos das LMAs na maioria dos

países em desenvolvimento devido à limitação de análises citogenéticas (MAHMOOD

et al., 2014).

A classificação da Organização Mundial da Saúde, publicada inicialmente em

2001 e com última atualização em 2016, expandiu o uso da imunofenotipagem e

incluiu a avaliação de alterações genéticas e moleculares específicas na classificação

8

das LMAs e outras neoplasias hematológicas, abordando esses critérios na

classificação dos seus subtipos, como é mostrado no quadro 3 (ARBER et al., 2016).

Quadro 2: Classificação do grupo Franco-Americano-Britânico para as leucemias

mieloides agudas.

CLASSIFICAÇÃO FAB PARA LEUCEMIA MIELOIDE AGUDA

M0 MPO (mieloperoxidase) positiva por método imunológico ou ultraestrutural CD13+

ou CD33+ ou CD11b+

M1 Blastos indiferenciados em alta%. Bastonete de Auer presentes ou ausentes.

Mieloperoxidase ou Sudan Black positivos em > 3% dos blastos.

M2 Blastos indiferenciados e diferenciação até promielócito que contém granulações primárias abundantes. Bastonetes de Auer são frequentes. Mieloperoxidase ou

Sudan Black positivos em > 3% dos blastos.

M3 Grande quantidade de promielócitos hipergranulares, com ou sem bastonetes de

Auer. Sudan Black e mieloperoxidase fortemente positivos.

M4 Diferencia-se de M2 por ter > 20% de células monocíticas na medula óssea e/ou

sangue. Diferencia-se de M5 por ter > 20% de promielócitos e mieloblastos na MO e/ou sangue periférico. Alfa naftil esterase positiva nas células monocíticas

M5a Blastos grandes, com citoplasma abundante, levemente basófilo e com projeções

citoplasmáticas. Diferenciação monocítica. Sudan Black e mieloperoxidase - Alfanaftil esterase + nas células monocíticas. >80% das células são monoblastos.

M5b >80% das células são monócitos ou promonócitos. Alfa naftil esterase positiva nas

células monocíticas.

M6

30% de blastos mieloides (mieloblastos ou promielócitos) e > 50% de blastos da série vermelha (eritroblastos). Muitas vezes há > 30% de megaloblastos, formas bizarras. PAS fortemente positivo nas células eritroblásticas e megaloblásticas.

Componente monocítico >80% das células não eritroides.

M7 Megacariócitos pequenos ou megacarioblastos >30% das células nucleadas da

MO. FAB: classificação franco-americana-britânica; MO: medula óssea; CD: grupo de diferenciação; Mb: mieloblasto; PAS: ácido periódico de Schiff. Fonte: Adaptado de BAIN; ESTCOURT, 2013

A OMS classifica as LMAs de acordo com anormalidades genéticas recorrentes

e mutações nos oncogenes Nucleophosmin 1 (NPM1) e potencializador de ligação de

proteína alfa (CEBPA) em três grandes categorias: favorável, intermediaria e não

favorável (ILYAS et al., 2015; STRICKLAND et al., 2016). Diferente da classificação

FAB, que adotava o valor de 30% de blastos para caracterizar o diagnóstico de

leucemias mieloides agudas, a OMS adotou, desde sua primeira publicação o valor

de 20% de blastos encontrados na contagem diferencial de 200 células no sangue

periférico ou 500 células na medula óssea (ESTCOURT; BAIN, 2013).

9

Todas as atualizações incorporadas pela Organização Mundial da Saúde foram

importantes não só para o diagnóstico, mas também para a identificação de doença

residual mínima e para a definição do prognóstico das LMAs. Além disso, evidenciou

a importância de se conhecer o histórico de citotoxicidade induzida por terapia prévia

e de ocorrência de síndrome mielodisplásica e mostrou o valor da análise das

amostras de sangue periférico e medula óssea na identificação de características

especificas de células blásticas ou não blásticas das LMAs (MAHMOOD et al., 2014).

Quadro 3: Classificação da Organização Mundial da Saúde para as leucemias

mieloides agudas.

TIPO DE LMA SUBTIPO DE LMA

LMAs com anormalidades genéticas recorrentes

- LMA com {t(8;21) (q22;q22.1)}, {LMA 1 fator de ligação núcleo alfa/ fator de transcrição 1 relacionado

com o nanico ; translocado para 1 (relacionado a ciclina-D) (CBF-ALFA/ETO)}

- Leucemia promielocítica aguda {LMA com t(15;17) (q22; q11-12} e com variantes {Leucemia

promielocítica/ Receptor alpha do ácido retinóico (PML/RAR-ALFA).

- LMA com eosinófilos anormais na medula óssea {inv(16)(p13q22} {t(16;16)(p13;q11)}, {fator de ligação núcleo beta/cadeia de miosina pesada 11, musculo

liso (CBFb/MYH11)} - LMA com anormalidades em 11q23-Lysine(k)-

specific methyltransferase 2A (LML)

LMAs com alterações relacionadas à mielodisplasia

- Com síndrome mielodisplásica pregressa - Sem síndrome mielodisplásica pregressa

Neoplasias mieloides relacionados à terapia (NM-T)

- Relacionados a agentes alquilantes - Relacionados ao inibidor da topoisomerase II

- Outros tipos

LMAs sem outra especificação (LMA, SOE)

-LMA pouco diferenciada -LMA sem maturação -LMA com maturação

-Leucemia mielomonocítica aguda -Leucemia monoblástica e monocítica aguda

-Leucemia eritróide pura -Leucemia megacariocítica aguda

-Leucemia basofílica aguda -Pan-mielose com mielofibrose aguda

Sarcoma mieloide

Proliferações mieloides relacionadas a síndrome de

Down

Mielopoese anormal transitória (MAT) Leucemia mieloide associada com síndrome de Down

Fonte: Adaptado de ARBER, 2016.

10

A citogenética e os estudos moleculares são capazes de detectar

anormalidades dentro do clone leucêmico, sendo de muita utilidade na definição do

diagnóstico e/ou prognóstico. Alterações cromossomais e moleculares recorrentes

quando identificadas ao diagnóstico, fornecem informações de prognóstico valiosas

tais como: Resposta a indução da quimioterapia, risco de recidiva e sobrevida global

do paciente. Sendo assim, pode-se observar que a citogenética seguida da genética

molecular são fundamentais para desvendar a heterogeneidade das LMAs (ILYAS et

al., 2015).

Além da morfologia e da citogenética, a imunofenotipagem por citometria de

fluxo é uma técnica que possibilita a análise de múltiplos parâmetros (MILLER;

PILISHOWSKA, 2014) para avaliação qualitativa e quantitativamente de padrões de

expressão de antígenos (Clusters designations – CDs) em populações celulares, por

meio da ligação com anticorpos monoclonais específicos, e que auxilia tanto na

diferenciação de tecido, mieloide ou linfoide, quanto na caracterização da etapa

maturativa da célula afetada (PETERS & ANSARI, 2011).

2.3 Imunofenotipagem e marcadores imunofenotípicos em leucemias mieloides agudas

A imunofenotipagem por citometria de fluxo é uma técnica que começou a

surgir com o desenvolvimento dos corantes citológicos. Porém, somente em 1950, foi

provada a detecção de antígenos através de anticorpos fluorescente por Coons e

Kaplan. Com isso, o uso de fluorescência se tornou habitual e a citometria de fluxo

usual nas áreas de hematologia e imunologia (KHAN; BOLTON, 2014). Mack foi o

inventor do precursor dos citômetros de fluxo de hoje, especialmente quando se diz

respeito à separação de células em 1965. O primeiro dispositivo de citometria de fluxo

baseado em fluorescência foi desenvolvido em 1968 por Göhde (NASSAR et al.,

2015).

Nos dias atuais, os citômetros de fluxo modernos são empregados em pesquisa

biológica e diagnósticos clínicos para a determinação de número e concentração de

um ou mais tipos de células sanguíneas. Essa análise é realizada pela passagem de

célula por célula por uma corrente estreita onde incide um feixe de laser. Sinais ópticos

como dispersão frontal da luz (FSC- Forward scatter), dispersão lateral da luz (SSC -

Side scatter) (Figura 2) e emissão de luz fluorescente (FL – Fluorescência relativa)

11

são simultaneamente mensurados para obter informações como o tamanho das

células, granulosidade ou complexidade interna (HUANG et al., 2014).

A imunofenotipagem por citometria de fluxo é uma técnica de análise e

quantificação de proteínas em suspensões celulares. Hoje, é um passo crítico quando

se trata de investigação e tomadas de decisões clínicas para leucemias, HIV e uma

série de outras doenças e serve como uma ferramenta para a triagem de testes

genéticos e moleculares recorrentes (O'NEILL et al., 2015). Além disso, as análises

são realizadas em apenas algumas horas, tornando-a uma ferramenta veloz, ao

contrário dos ensaios moleculares, que além de serem mais lentos necessitam de um

alto nível de conhecimento técnico (PETERS & ANSARI, 2011).

Os dados gerados pela citometria de fluxo são analisados pela aplicação de

regiões ou “gates” que permitem que sejam selecionados os dados de interesse e

descartados os dados que não são interessantes. Essas regiões podem formar

combinações que, ao serem aplicadas, torna viável a imunofenotipagem detalhadas

de toda a população de células. Citômetros modernos estão disponíveis com oito

cores ou mais, permitindo a avaliação de dez ou mais parâmetros simultaneamente

(TUTE, 2011).

Figura 2: Detector de dispersão de luz frontal: Tamanho celular - FSC (Forward Scatter) e detector de dispersão de luz em ângulo reto: Complexidade celular - SSC (Side Scatter). Fonte: http://regmed.musc.edu/flowcytometry/flowcytometry.html

12

A imunofenotipagem por citometria de fluxo é uma das principais técnicas de

relevância para a classificação e o diagnóstico de neoplasias hematológicas e, nos

últimos 20 anos, ganhou espaço como principal forma de analisar características

celulares em amostras de sangue periférico, medula óssea, linfonodos, biopsias,

liquido cefalorraquidiano e ainda outras amostras suspeitas de neoplasias

hematológicas (KALINA et al., 2012).

No estudo das características imunofenotípicas das LMAs, os pacientes

apresentam duas características distintas: Uma população de células que representa

uma fase inicial da hematopoese e uma população de células que representa uma

fase de maturação mais tardia. As duas são geneticamente relacionadas. Estas

populações de células de sinalização têm também perfis distintos, que parecem

representar LMAs de diferentes estágios de diferenciação. Indicadores internos

funcionais, marcadores de superfície celular, e conjuntos centrais de marcadores

podem ser examinados simultaneamente para elaborar um quadro mais completo de

sinalização celular e identificar essas populações. Além disso, existe uma série de

painéis que permitem analisar a ocorrência de apoptose, vias de sinalização, ciclo

celular e danos no DNA (NOLAN, 2011).

Os marcadores imunofenotípicos de linhagem mieloide mais frequentes são:

Mieloperoxidase (MPO), CD13, CD33, CD117, CD15, sendo os principais o CD13, o

CD33 e a MPO (MILLER; PILISHOWSKA, 2014). Porém, devido a evidente

heterogeneidade imunofenotípica apresentada pelas LMAs, existem marcadores bem

característicos de acordo com seus diversos subtipos. Na figura 3 é a expressão de

cada marcador imunofenotípico está representada de acordo com a cor, quanto mais

escura, mais forte a expressão do marcador. Como pode ser observado, o CD34, que

é um marcador de blastos não está presente em alguns subtipos, por serem

compostos de células mais maduras. O CD64 e o CD36 são fortemente expressos em

subtipos de linhagem monocítica e já perdem um pouco a expressão na LMA

mielomonocítica, que também é caracterizada por um componente mieloide

(mieloblastos). Já o CD71 e o 235a são fortemente expressos na Eritroleucemia,

sendo o CD71 exclusivo desse subtipo de LMA (IKOMA et al., 2016).

No Brasil, o Grupo Brasileiro de Citometria de Fluxo (GBCFLUX), padronizou

em 2015, painéis de triagem para leucemias agudas, incluindo as leucemias mieloides

agudas, como é mostrado no quadro 4.

13

Todos os painéis foram concebidos para acomodar diferentes níveis de

recomendações para a precisão do diagnóstico e classificação, para permitir algum

grau de flexibilidade de acordo com os recursos laboratoriais locais disponíveis. A

proposta dos painéis para LMAs teve como objetivo a detecção e classificação das

LMAs com foco no perfil de avaliação de linhagem e maturação de células blásticas

(Quadro 5). As recomendações mandatórias contêm os requisitos mínimos para

identificação, quantificação e classificação de LMAs (IKOMA et al., 2015).

Apesar de já existirem esses marcadores imunofenotípicos predefinidos nos

painéis de diagnóstico para LMAs, ainda há uma grande necessidade do estudo de

novos marcadores para serem incluídos na rotina com o objetivo de cada vez mais

aumentar a precisão no diagnóstico devido à heterogeneidade desse grupo de

neoplasias, para que sejam definidas as medidas de tratamento mais adequadas e,

consequentemente haja uma melhoria na sobrevida global e uma diminuição na taxa

de mortalidade associada a tratamento das LMAs (LARSEN et al, 2011).

Figura 3: Marcadores mieloides e suas intensidades de expressão de acordo com o subtipo de Leucemia mieloide aguda. Fonte: Adaptado de ARBER et al., 2016.

14

Quadro 4: Painel de triagem para leucemias mieloides agudas.

PAINEL MANDATÓRIO

TUBO 1 HLA-DRFITC/CD117PE/CD45PercP/CD34APC

TUBO 2 CD16FITC/CD13PE/CD45PercP/CD11bAPC

TUBO 3 CD36FITC/CD64PE/CD45PercP/CD14APC

TUBO 4 CD71FITC/CD235aPE/CD45PercP/CD33APC

TUBO 5 CD15FITC/CD61PE/CD45PercP/CD13APC

TUBO 6 CD2FITC/CD56PE/CD45PercP/CD4APC

Fonte: Adaptado de IKOMA et al., 2015.

Quadro 5: Descrição dos marcadores que compõem o painel mandatório do Grupo

Brasileiro de Citometria de Fluxo.

Marcador Imunofenotípico Descrição

HLA-DR; CD45; CD34 Marcadores de blastos

CD117 Marcador de blastos/linhagem mieloide

CD13 Marcador de linhagem mieloide

CD33 Marcador de linhagem mieloide

CD11b Marcador de expressão assincrônica

CD16 Marcador de expressão assincrônica

CD15 Marcador de linhagem neutrofílica/assincrônica

CD14 Marcador de linhagem monocítica/assincrônica

CD64 Marcador de linhagem monocítica

CD36 Marcador de linhagem

monocítica/eritróide/megacariocítica

CD71 Marcador de linhagem eritróide

CD235a Marcador de linhagem eritróide

CD56 Marcador de células Natural Killer

CD4 Marcador de linhagem monocítica

CD2 Marcador para identificação de expressão linfoide

aberrante

Fonte: Adaptado de IKOMA et al., 2015

15

2.4. Novos marcadores imunofenotípicos

O estudo de novos marcadores imunofenotípicos é realizado com o intuito de

ampliar a pesquisa na diferenciação das células leucêmicas e seu impacto no

prognóstico e sobrevida dos pacientes com LMA. Alguns marcadores podem ser

destacados por auxiliarem na determinação de prognóstico e por estarem associados

a uma baixa sobrevida, como pode ser observado nos seguintes antígenos: O CD87,

o CD135, o CXCR4 (CD184), o CD133, o TRAILR2 (CD262), o TRAILR3 (CD263) e o

TNFR1.

CD87: É um receptor glicosilado que, ligado a uma serina protease específica

ativadora de plasminogênio (uPA), inicia a conversão de plasminogênio em plasmina.

Além disso, o CD87 exerce vários efeitos regulatórios sobre a migração celular,

adesão de leucócitos, quimiotaxia e na transdução de sinais citoplasmáticos ao

citoesqueleto (ATFY et al., 2011).

A uPA promove a migração celular devido a possibilidade de iniciar a proteólise

pericelular; o complexo-uPA agrupa e polariza sítios focais da célula-substrato,

favorecendo a atividade da plasmina na degradação das membranas basais,

facilitando o movimento celular através das barreiras do tecido. Já a quimiotaxia e a

adesão acontecem pela ligação de proteínas aos receptores dos 3 domínios ligados

por dissulfureto (D1, D2 e D3). Uma mudança na conformação de uPA dependente

de uPAR revela esses domínios quimiotáticos, promovendo a atração de leucócitos

polimorfonucleares. A adesão à matriz celular ocorre com a participação da

fibronectina e vitronectina, ligantes que irão se unir a uPAR e favorecer a adesão

celular (SHEN et al., 2015).

CD135: Denominado FLT3 (fms related tyrosine kinase 3) é um receptor de tirosina-

quinase (RTK) ligado à membrana, com domínios extracelulares: transmembranar,

justamembranar e domínio tirosina-quinase. Pertence à subfamília da classe III das

RTK e é expresso em células mieloides e progenitoras linfoides, com expressão

variável em linhagem monocítica madura. A interação do receptor com o ligante FLT

(FL) leva a uma alteração conformacional com exposição de um de seus domínios,

dimerizando o receptor e ativando a enzima tirosina-quinase. Essa reação conduz a

uma fosforilação dos sítios intracelulares e a ligação com proteínas, formando

16

complexos proteicos, iniciando uma cascata de reações de fosforilação que ativam

uma série de mediadores secundários e promovem a transdução de sinal no núcleo.

Essa série de eventos regula a diferenciação celular, proliferação e apoptose, como

mostra a figura 4 (MESHINCHI; APPELBAUM, 2009).

O CD135 desempenha um papel importante na regulação da hematopoese

normal e crescimento celular. Junto com fatores de crescimento como CSF e IL-3

promovem a proliferação de células progenitoras hematopoéticas primitivas, bem

como as células comprometidas mieloides e precursores linfoides. Sua expressão foi

avaliada em células leucêmicas e dados sugerem que níveis muito elevados de

receptores de FLT3 podem promover a ativação típica do receptor do tipo selvagem

em células malignas (SHARAWAT et al., 2013).

Fonte adaptada: MESHINCHI; APPELBAUM, 2009.

CXCR4: é um receptor de quimiocina CXC 4 para fator derivado do estroma 1 (SDF1),

que desempenha um papel no desenvolvimento da hematopoese e organização do

sistema imunológico. Esses receptores são de uma família de sete domínios

transmembranares, que estão na superfície celular acoplados a G-proteína-CXCR1

(MANNELLI et al., 2015).

Figura 0-4: Via de transdução de sinal do receptor FLT3.

17

As quimiocinas são proteínas pequenas que são secretadas e podem ser

agrupadas em duas subfamílias principais com base em dois resíduos de cisteína

conservados, separados por um aminoácido interveniente, representando por CXC ou

quimiocinas CC. Os receptores das quimiocinas estão presentes em muitos tipos

celulares. Inicialmente, foram identificados em leucócitos, desenvolvendo um papel

importante no “homing” dessas células para os locais de inflamação. No entanto,

durante os últimos anos, as células hematopoéticas e não-hematopoéticas foram

encontradas expressando receptores para várias quimiocinas, em tecidos de

microambientes diferentes. As interações entre esses receptores e suas respectivas

quimiocinas ajudam a coordenar o curso e organização de células dentro de vários

compartimentos dos tecidos (BAE, et al. 2015).

CD133: Este antígeno (prominin-1) é uma molécula com cinco domínios

transmembranares em células progenitoras hematopoéticas normais primitivas. Sua

expressão está associada com as funções de crescimento celular, desenvolvimento e

origem de tumores sólidos, bem como a infiltração e resistência a quimioterapia, como

mostra a figura 5 (LI, 2013).

Fonte adaptada: LI, 2013. Figura 0-5: Esquema funcional de células CD133+.

18

TRAILR2 (CD262), TRAILR3 (CD263) e TNFR1: O antígeno CD262 é um marcador

imunofenotípico expresso em células T e Natural Killer (NK), responsável pela indução

de apoptose em células de origem linfoide. Eles agem sobre a regulação do sistema

imune e são responsáveis pela indução de morte celular em células de leucemia

linfoide crônica e linfoma não-Hodgkin. O CD263 é expresso em neutrófilos e

granulócitos e atua sobre a regulação da apoptose por meio da atividade de ligação

competitiva. O TNFR1 é um mediador de citotoxicidade, expresso em granulócitos,

monócitos e linfócitos que também está envolvido em outas funções como ativação

endotelial e adesão, proliferação de células T, dentre outros (SCHMOHL et al., 2015).

19

REFERÊNCIAS

ARBER, D. A. et al. The 2016 revision to the World Health Organization (WHO)

classification of myeloid neoplasms and acute leukemia. Blood, v. 127, n. 20, p. 2391-

2405, 11 abr. 2016.

ATFY, M. et al. Role of urokinase plasminogen activator receptor (CD87) as a

prognostic marker in acute myeloid leukemia. Medical Oncology, v. 29, n. 3, p. 2063-

2069, 2012.

BAE, M. H. et al. VLA-4 and CXCR4 expression levels show contrasting prognostic

impact (favorable and unfavorable, respectively) in acute myeloid leukemia. Annals of

Hematology, v. 94, n. 10, p. 1631–1638, 2015.

BAIN, B. J.; ESTCOURT, L. FAB Classification of Leukemia. Brenner’s Encyclopedia

of Genetics,v. 3, 2013.

BETZ, B. L.; HESS, J. L. Acute myeloid leukemia diagnosis in the 21st century.

Archives of pathology & laboratory medicine, v. 134, n. 10, p. 1427–1433, 2010.

DESANTIS, C. E. et al. Cancer treatment and survivorship statistics, 2014. CA: a

cancer journal for clinicians, v. 64, n. 4, p. 252-271, 2014.

DOGEN, V.; ORFAO, A., EuroFlow: Resetting leukemia and lymphoma

immunophenotyping. Basis for companion diagnostics and personalized medicine.

Leukemia, v.26, p.1899–1907, 2012.

FARAONI, I. et al. BRCA1, PARP1 and γH2AX in acute myeloid leukemia: Role as

biomarkers of response to the PARP inhibitor olaparib. Biochimica et Biophysica

Acta (BBA) - Molecular Basis of Disease, v. 1852, n. 3, p. 462–472, 2015.

FINAK, G., et al. Standardizing Flow Cytometry Immunophenotyping Analysis from the

Human ImmunoPhenotyping Consortium. Scientific Reports. v.6, p.20686, 2016.

20

GRIMWADE, D. & FREEMAN, S. D. Defining minimal residual disease in acute

myeloid leukemia: which platforms are ready for ‘prime time? Hematology American

Society of Hematology. Education Program 2014, p.222–33, 2014.

JEMAL, A. et al. Global cancer statistics. CA: a cancer journal for clinicians, v. 61,

n. 2, p. 69-90, 2011.

FERRARA, F.; SCHIFFER, C. A. Acute myeloid leukaemia in adults. The Lancet, v.

381, n. 9865, p. 484–495, 2013.

HASAN, M. et al. Semi-automated and standardized cytometric procedures for multi-

panel and multi-parametric whole blood immunophenotyping. Clinical Immunology,

v. 157, n. 2, p. 261–276, 2015.

HUANG, X. et al. A robust recognition error recovery for micro-flow cytometer by

machine-learning enhanced single-frame super-resolution processing. Integration,

the VLSI Journal, p. 1–11, 2014.

IKOMA, M. R. V. et al. First proposed panels on acute leukemia for four‐color

immunophenotyping by flow cytometry from the Brazilian group of flow cytometry‐

GBCFLUX. Cytometry Part B: Clinical Cytometry, v. 88, n. 3, p. 194-203, 2015.

ILYAS, A. et al. Next Generation Sequencing of Acute Myeloid Leukemia: Influencing

Prognosis. BMC Genomics, v. 16, n. Suppl 1, p. S5, 2015.

INCA. Estimativa 2016. Disponível em:

<http://www.inca.gov.br/estimativa/2016/mapa.asp?ID=8>. Acesso: 20 janeiro

2017.

KALINA, T. et al. Quality assessment program for EuroFlow protocols: Summary

results of four-year (2010-2013) quality assurance rounds. Cytometry Part A, v. 87,

n. 2, p. 145–156, 2015.

KHAN, S.; BOLTON, W. K. Balancing cancer risk and efficacy of using

cyclophosphamide to treat idiopathic membranous nephropathy. Clinical journal of

the American Society of Nephrology : CJASN, v. 9, n. 6, p. 1001–4, 2014.

21

KLATSKY, A. L. et al. Alcohol Consumption and Risk of Hematologic Malignancies.

Annals of Epidemiology, v. 19, n. 10, p. 746–753, 2009.

LARSEN, H. et al. Expression of the hMICL in acute myeloid leukemia—a highly

reliable disease marker at diagnosis and during follow‐up. Cytometry Part B: Clinical

Cytometry, v. 82, n. 1, p. 3-8, 2012.

LI, Z. CD133: a stem cell biomarker and beyond. Experimental hematology &

oncology, v. 2, n. 1, p. 17, 2013.

LOGAN, G. E. et al. DEK oncogene expression during normal hematopoiesis and in

Acute Myeloid Leukemia (AML). Blood Cells, Molecules, and Diseases, v. 54, n. 1,

p. 123-131, 2015

MAHMOOD, H. et al. A review of AML classification: a single institution experience in

a developing country. Journal of Hematopathology, v. 7, n. 1, p. 3-8, 2014.

MANNELLI, F. et al. CXCR4 expression accounts for clinical phenotype and outcome

in acute myeloid leukemia. Cytometry Part B: Clinical Cytometry, v. 86, n. 5, p. 340-

349, 2014.

MERINO, A. Clasificacion de las leucemias agudas mieloides. Revista del

Laboratorio Clinico, v. 3, n. 3, p. 139–147, 2010.

MESHINCHI, S.; APPELBAUM, F. R. Structural and functional alterations of FLT3 in

acute myeloid leukemia. Clinical Cancer Research, v. 15, n. 13, p. 4263-4269, 2009.

MILLER, K.; PILICHOWSKA, M. Acute Myeloid Leukemia. Reference Module in

Biomedical Sciences, third Edition, 2014.

NASSAR, A. F.; OGURA, H.; WISNEWSKI, A. Impact of recent innovations in the use

of mass cytometry in support of drug development. Drug Discovery Today, v. 00, n.

00, p. 1–7, 2015.

NOLAN, G. P. Flow cytometry in the post fluorescence era. Best Practice and

Research: Clinical Haematology, v. 24, n. 4, p. 505–508, 2011.

22

OMMEN, H. B. Monitoring minimal residual disease in acute myeloid leukaemia: a

review of the current evolving strategies. Therapeutic Advances in Hematology. V.7,

p.3–16, 2016.

O’NEILL, K. et al. Deep profiling of multitube flow cytometry data. Bioinformatics, p.

btv008, 2015.

OUYANG, J. et al. The Clinical Significance of Negative Flow Cytometry Immunophenotypic

Results in a Morphologically Scored Positive Bone Marrow in Patients Following Treatment for

Acute Myeloid Leukemia. The Laryngoscope, p. 2–31, 2014.

PETERS, J. M.; ANSARI, M. Q. Multiparameter flow cytometry in the diagnosis and

management of acute leukemia. Archives of pathology & laboratory medicine, v.

135, n. 1, p. 44–54, 2011.

PUTZU, L.; CAOCCI, G.; DI RUBERTO, C. Leucocyte classification for leukaemia

detection using image processing techniques. Artificial Intelligence in Medicine, v.

62, n. 3, p. 179–191, 2014.

RHOMBERG, L. R. et al. Is exposure to formaldehyde in air causally associated with

leukemia?-A hypothesis-based weight-of- evidence analysis. Critical Reviews in

Toxicology, 41, 555-621, 2011

ROSE-INMAN, H.; KUEHL, D. Acute leukemia. Emergency Medicine Clinics of

North America, v. 32, n. 3, p. 579–596, 2014.

SCHMOHL, J. U. et al. Death receptor expression on blasts in AML is associated with

unfavorable prognosis. Anticancer Research, v. 35, n. 7, p. 4043–4052, 2015.

SHARAWAT, S. K. et al. Increased coexpression of c‐KIT and FLT3 receptors on

myeloblasts: Independent predictor of poor outcome in pediatric acute myeloid

leukemia. Cytometry Part B: Clinical Cytometry, v. 84, n. 6, p. 390-397, 2013.

SHEN Q.; et al. Analysis of soluble urokinase plasminogen activator receptor in

multiple myeloma for predicting prognosis. Oncology Letters, v. 10, n. 4, p. 2403–2409,

2015.

23

STRICKLAND, S. A. et al. Unfavorable-risk acute myeloid leukemia dissected. Current Opinion on Hematology, v. 23, n. 2, p. 144-149, 2016.

TUTE, R. M. Flow cytometry and its use in the diagnosis and management of mature

lymphoid malignancies. Histopathology, v. 58, n. 1, p. 90–105, 2011.

WANG, M. L.; BAILEY, N. G. Acute Myeloid Leukemia Genetics Risk Stratification and

Implications for Therapy. Archives of Pathology & Laboratory Medicine, v. 139, p.

1215–1223, 2015.

WINTERS, N. et al. Exposure to ambient air pollution in Canada and the risk of adult

leukemia. Science of The Total Environment, v. 526, p. 153–176, 2015.

24

CAPÍTULO 1

25

ROLE OF NEW IMMUNOPHENOTYPIC MARKERS ON

PROGNOSTIC AND OVERALL SURVIVAL OF ACUTE

MYELOID LEUKEMIA: A SYSTEMATIC REVIEW AND META-

ANALYSIS

Costa AFO¹, Menezes DL¹, Pinheiro LHS¹, Sandes AF², Nunes MAP³, Lyra Junior DP¹,

Schimieguel DM¹

¹Department of Pharmacy, Laboratory of Hematology, Federal University of Sergipe,

Aracaju, Sergipe, Brazil.

²Fleury Group, Hematology Division, São Paulo, São Paulo, Brazil.

³Department of Medicine, Federal University of Sergipe, Aracaju, Sergipe, Brazil.

*Corresponding author:

[email protected] (AF)

26

Abstract

Despite technological advances, the prognosis and survival of acute myeloid leukemia

(AML) adult patients remain low, compared with other hematologic malignancies.

Some antigens detected by immunophenotyping may soon play a significant role in the

pathophysiologic, prognostic, and overall survival (OS) rate of AML patients. Therefore,

we conducted a systematic review and meta-analysis of PubMed, Scopus, Science

Direct, Web of Science, and the Cochrane Library (using PRISMA guidelines). We

analyzed 11 studies and 13 antigens, detected through the immunophenotyping of 639

patients. From them, twelve exhibited a negative impact with AML prognosis. The

meta-analysis demonstrated a high expression of AML markers, which have been

associated with a decrease in survival over 10 months (RR 2.55; IC 95%; 1.49-4.37)

and over 20 months (RR 2.46; IC 95%; 1.75-3.45). Knowing that the expression of

immunophenotypic markers, which are not used on a routine basis, might be able to

influence disease behavior, looks promising. However, they have been associated with

a poor prognosis as well as a decrease in survival. This may allow for different

chemotherapeutical protocols, including future studies for new therapeutic targets.

Introduction

Acute myeloid leukemia (AML) is an aggressive hematological malignancy

characterized by clonal proliferation of immature myeloid cells at various stages of

maturation 1, 2. The genetic heterogeneity of this group of hematological malignancies

makes it impractical to perform initial analyses that can encompass different genes

involved in AML. This makes diagnoses difficult, which can negatively influence

therapeutic strategy 3, 4. Even with major improvements in the understanding and

treatment of AML over the past several years, few advances have been made in the

27

outcomes and survival of AML patients 5, 6. Complete remission is expected for

approximately 60%‒70% of adults with AML after the induction phase of treatment, but

only about 25% survive three or more years with the possibility of being cured 7. The

5-year relative survival rate for patients from birth to 19 years has been reported to be

62.8%, but declines to 5.4%, for patients older than 65 years 8.

Multiparameter flow cytometry (MFC) immunophenotyping provides relevant

information for AML diagnosis, classification, and monitoring. MFC allows

identification, quantification, and lineage assessment of abnormal blast cells and

disease classification according to the maturation stage to be made 9, 10. AML presents

highly heterogeneous immunophenotypic profiles, which is probably due to genetic

diversity. Leukemia-associated phenotypic markers (LAIPS) are useful to discriminate

between normal/reactive immature myeloid precursors from leukemic cells and is

commonly used in minimal residual disease (MRD) studies. In addition, LAIPS are also

associated with molecular alterations with well-recognized prognostic implications

(such as CD19 expression in AML with RUNX1-RUNX1T1) 11, 12.

Previous studies show that a great number of distinct antigens affect AML

prognosis and prediction. Nevertheless, difficulties are still found in performing

accurate risk stratification for diagnoses based on immunophenotypic features 13.

Improving the accuracy of prognostic assessment of AML may allow the treatment to

be more specific and risk-adapted, increase the probability of cure, and minimize

treatment-related morbidity and mortality 14.

Since there are no clear recommendations and no consistent approaches to the

use of new markers in the immunophenotypic panels for AML evaluations as well as

for the markers' influence on determining prognosis and survival in clinical practice, a

systemic review was done. In this review, we aimed to identify relevant publications

28

about the influence of these new monoclonal antibodies used as immunophenotypic

markers in the prognosis and survival of AML patients.

Material and methods

A systematic review was performed based on a scientific research protocol

describing the aims and methods used. Within the limitations of the research in this

area, this synthesis was performed according to the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) statement 15.

The question of this systematic literature review was: “Are there new

immunophenotypic markers that may aid in the prognosis and survival of acute myeloid

leukemia?”

Search Strategy

The literature search was conducted using Pubmed, Science Direct, Web of

Science, Scopus and Cochrane Library databases for articles published from 2012 to

2015. In addition, the reference lists of relevant papers were searched for additional

AML studies.

The following search terms consisted of a range of pertinent terms: 1) antigens

CD (MeSH); 2) antigens, differentiation (MeSH); 3) biological Markers (MeSH); 4)

tumor markers, 5) biological (MeSH) and prognosis (MeSH); 6) survival rate (MeSH);

7) survival analysis (MeSH) and leukemia myeloid, acute (MeSH); or 8) acute

leukemia.

Study selection

The articles found in the search were compared with the previously defined

inclusion criteria to determine the relevance of the study: (1) papers published from

2012 to 2015; (2) articles published in English, Spanish, and Portuguese; (3) articles

29

that used immunophenotyping in their methodologies; (4) articles assessing

monoclonal antibodies not included in the consensus diagnostic panels for AML

(Euroflow consortium 16); (5) articles assessing AML cases; and (6) articles with

available abstract and full text.

Systematic and literature reviews, meta-analysis, editorials, conference

proceedings and books were excluded from the study.

Two reviewers independently evaluated the titles and abstracts of the identified

publications by applying the inclusion criteria. Potentially relevant articles were

retrieved in full. The final inclusion of articles into our systematic review was based on

agreement between both reviewers. In case of any disagreements between the two

reviewers, a third reviewer inspected the full text article and finalized the decision

whether or not to use the article.

Rating quality of individual studies

The methodological quality of each individual study was evaluated using the

Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)

assessment scale, which consisted of 22 items 17. High scores meant that there was

sufficient information and good design. STROBE was a highly feasible and applicable

method to use for evaluating systematic reviews of observational studies.

Data extraction and management

From the included studies, information regarding several parameters was

obtained: (1) journal of publication; (2) The Journal Citation Reports (JCR) impact

factor; (3) location; (4) study design; (5) aim of the study; (6) number of samples

analyzed; (7) AML classification; (8) most incident subtype; (9) immunophenotypic

marker; (10) prognostic value; (11) first induction treatment protocol (12) follow up; (13)

survival; (14) limitations; and (15) STROBE scores. For inaccessible or incomplete full

30

texts, authors were contacted for additional information.

Statistical analysis

A meta-analysis of the relative risks related to the probability of survival at 10 to

20 months was performed. For analysis purposes, low expression of the

immunophenotypic marker was considered as absent, and high expression was

considered as present.

Survival analysis or time for the event were analyzed by dichotomous data using

the knowledge of the situation of all patients in the study at 10 and 20 months 18. A

contingency table was constructed (Table 1) to analyze every connection and then the

relative risks were calculated using this equation:

𝑅𝑖𝑠𝑘 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝 𝑤𝑖𝑡ℎ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑅𝑖𝑠𝑘 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝 𝑤𝑖𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛=𝑎 𝑎 + 𝑏

𝑐 𝑐 + 𝑑 1

A correction value of 0.5 was used in order to enable the statistical analysis

using the absence of death in the absence of one of the immunophenotypic markers

in a 10 month follow up of survival and no patient survival in the presence of the

markers in a 20 month follow up of survival as effect measures 5, 29

The heterogeneity of the meta-analysis was assessed using the Cochran Q and

Higgins I² tests. We used the relative risk as an effect measure after taking into

consideration the number of people who would be alive in the absence and presence

of the immunophenotypic marker expression at 10 and 20 months. Meta-effect

estimates were reported and relative risks summarized with their 95% confidence

intervals. The funnel graphs and regression testing of asymmetry were used to assess

potential publication bias related to survival at both 10 and 20 months. The bias was

considered significant at p = 0.05. All analyses were performed with the program R

version 3.3.1 19 and the "Metafor" package 20.

31

Results

The literature search

The literature search retrieved 9,950 articles. After screening titles and

reviewing abstracts, we identified 30 potentially relevant articles that focused on

immunophenotypic markers and MFC (Fig. 1). In the final analysis, a total of 11 studies

were included in the qualitative synthesis of this review .One of them was found after

a hand search of reference lists 5, 21‒30. Three of them were used on the meta-analysis

for 10-month survival (21,29,30) and four were used on the 20-month survival

analysis(5,28,29,30).

32

Figure 1: Flow diagram for study identification.

Study Characteristics

An overview of the characteristics of the 11 studies included in the final analysis

is summarized in Tables 2 and 3. The sample size ranged from 12–142 patients with a

33

total of 639 hematological samples analyzed in all studies 22, 23, 25, 28. Two studies used

the World Health Organization (WHO) classification for AML, six used the French-

American-British (FAB) classification, and three used both FAB and WHO to classify

the AML subtypes 5, 21‒30. The most reported subtype in the articles was FAB M2

followed by FAB M4.

Most studies were performed in countries with high scientific and technologic

development, including the United States (US), Germany, and Japan 5, 21‒24, 26, 29. The

Journal Citation Reports (JCR) impact factor found in the search ranged from 1.826 to

22.268 24, 29. There were only two pediatric studies, and the others focused on adults

25, 30. The expression of 13 different antigens was evaluated in all articles (Table 4). All

11 studies were based on proving the impact of novel antigens on AML prognosis while

five of them were cohort studies that also proved the influence of these markers on

patient survival 5, 21, 28‒30. The most common chemotherapy regimen was

anthracycline-based induction therapy (3+7), although other alternative treatments

were chosen by some groups.

The methodological quality of observational studies conducted with the

STROBE tool showed that eight articles scored > 90% revealing a high methodological

quality of the included studies. One article scored 19 points, which was equivalent to

86.4%, four scored 20 points, which was equivalent to 91%, and four scored 21 points,

which was equivalent to 95.4% 5, 21, 24, 25‒30.

Prognostic value and survival

Most articles showed that the expression of the evaluated antigens has a

negative impact on prognosis of AML. Only one article showed that CD263 has a

positive value on prognosis, and two articles showed that the values of CD90 and ILT3

were not determined 25, 26, 29. All five cohort articles showed a decreased survival

34

related to the high expression of the immunophenotypic markers.

Two articles by the same authors discussed CD82, a member of the tetraspanin

superfamily that was originally identified as an accessory molecule in T-cell activation

and in nonimmune cells in integrin-mediated cell adhesion to the extracellular matrix.

Both articles evaluated the expression of CD82 in the self-renewing leukemia stem cell

(LSC) compartments (CD34+/CD38- cells) and the CD34+/CD38+ compartments of

AML cells. They showed that LSC expressed a higher amount of CD82 than

CD34+/CD38+ AML cells; these findings suggested that overexpression of CD82 may

render LSC able to adhere to the bone marrow (BM) niche where it appears to regulate

maintenance of leukemia stem cells within the BM niche. In addition, they showed that

down-regulation of CD82 in LSC may stimulate mobilization of these cells from the BM

niche to PB and sensitize them to chemotherapeutic agents 22, 23.

CD87 is a urokinase plasminogen activator receptor that initiates the conversion

of plasminogen to the protease plasmin. CD87 is involved in signal transduction of

cytoplasmic signals to the cytoskeleton. Atfy et al. showed that high expression of this

antigen is associated with a decrease in AML patients' overall survival. Regarding

prognostic values, the authors presented an association of CD87+ with clinical

features; this association predicted a more aggressive course of the disease with a

negative prognostic impact. They suggested that CD87 expression should be included

in the initial diagnostic AML work-up 5.

CD93 is a C-type lectin transmembrane receptor that is involved in the

modulation of phagocytosis, inflammation, and cell adhesion. Using flow cytometry,

Iwasaki et al. evaluated the CD93 expression profile on CD34+CD38- cells of various

AML subtypes and normal cord blood. They observed that CD93 was expressed on a

significant percentage of cells in the LSC fraction of MLL-rearranged leukemias, while

35

this marker was negative on LSC subpopulations within non-MLL leukemias and

normal cord blood cells. Since MLL rearrangement is associated with a dismal

prognosis in acute leukemia, expression of CD93 in the LSC compartment of AML

cases may be a useful surrogate marker to identify this AML subgroup 24.

CD135 (FLT3) is a tyrosine kinase receptor that has a significant role in

leukemogenesis. Sharawat et al. evaluated CD135 and CD117 expressions in a cohort

of 115 AML patients (64 pediatric and 51 adults) and showed that CD135 was

expressed in 82% of all cases. There was no association of CD135 expression with

the FLT3 internal tandem duplication mutation, a molecular abnormality associated

with unfavorable AML prognosis.. Nevertheless, co-expression of CD135 and CD177

was associated with a decrease in event free survival (EFS) and overall survival (OS)

in multivariable analysis in both age groups 30.

Mannelli et al. investigated the expression of CXCR4 (CD184) in AML. CXCR4

is a receptor for stromal-derived factor 1 (SDF1) that plays a very important role in

hematopoiesis development and organization of immune system. After analyzing

whole blasts and CD34+ cells in 142 adult non-M3 AML cases, the authors used mean

fluorescence intensity (MFI) and showed a correlation between high CXCR4

expression and decrease in EFS and OS in addition to an unfavorable prognosis. In

addition, CXCR4 expression was associated with high leukemic burden, as estimated

by DHL level and white blood cell and peripheral blast cell counts 28.

CD133 is a novel five transmembrane molecule expressed on primitive normal

hematopoietic progenitors. Tolba et el. evaluated the expression of this antigen in 30

AML cases and 30 acute lymphoblastic leukemia patients and observed that CD133

was expressed in 56.6% of AML (n=17). The authors observed an important correlation

between the expression of CD133 and the survival of AML patients and demonstrated

36

a decrease in OS with an increase in CD133 expression. As for the prognostic value,

it was concluded that CD133 expression was highly associated with poor prognosis in

AML patients 21.

In 46 AML patients, Schmohl et al. assessed the expression of the death

receptors, including TRAILR1, 2, and 3 (CD261, 262, and 263, respectively), TNFR1

(CD120a), and FAS (CD95). CD262 is involved in induction of apoptosis in lymphoid

cells. CD263 is a marker of neutrophilic granulocytes that participates in apoptosis

regulation and inhibition of cell death through competitive binding activity. TNFR1 is

expressed on monocytes, lymphocytes, and granulocytes, and is involved in

cytotoxicity mediation. The authors concluded that CD262 and TNFR1 expressions

showed significantly shorter OS, earlier disease onset, and higher probability of

relapse in AML patients. Conversely, CD263 expression exhibited an enhanced OS.

As for prognostic value, high expressions of CD262 and TNFR1 were found to be

associated with unfavorable prognostic groups, and CD263 was found in cases with

favorable risk 29.

Dobrowolska et al. evaluated one member of the immunoglobulin-like

transcripts (ILT3 expression) in normal and leukemic myeloid precursors in 20 healthy

individuals and 37 AML cases. ILT3 is a member of the large family of ILT molecules,

leukocyte Ig-like receptors (LIRs), and monocyte/macrophage Ig-like receptors (MIRs).

The authors showed that ILT3 was expressed in all cases of AML displaying monocytic

differentiation but not in the AML subtypes M1/M2 and M3. It was shown that

expression of ILT3 by leukemic cells contribute to the inhibition of tumor specific T cell

responses. As for the prognostic impact, frequent cytogenetic abnormalities observed

in AML patients with ILT3+ were those associated with intermediate prognosis, but it’s

potential value as a prognostic marker, particularly in cytogenetically normal AML,

37

remains to be determined 26.

Larsen et al. evaluated hMICL expression in one article in 93 AML patients.

hMICL is a heavily glycosylated transmembranal C-type lectin with an unknown

function.. Cryopreserved mononuclear cells and bone marrow samples were used in

the analysis. They showed that hMICL was found to be restricted to the

CD45low/SSClow population of AML cells. The authors suggest that no loss of hMICL

expression in AML patients may be an early indicator of relapse. In addition, hMICL

preserved fluorescence intensity at relapse, suggesting that this antigen could be a

tool for minimal residual disease quantification by flow cytometry in AML 27.

CD90, a cell-surface glycoprotein, seems to be involved in proliferation and

expansion processes, and CD96 is a member of the immunoglobulin superfamily. In

one article, Chaves-Gonzales et al. evaluated the expression of these two antigens in

two distinct primitive cell population compartments from bone marrow. CD34+CD38-

cells (enriched for HSC) and CD34+ CD38+ cells (enriched for HPC) obtained from 12

pediatric AML patients were used for the analysis. The results showed that CD90

showed slight incremental increases in patients who reached remission and did not

relapse. As for CD96, the authors describe greater expression in relapse and higher

levels in AML cells than in normal bone marrow cells before and after chemotherapy

25.

Meta-analysis

Five cohorts were analysed at first, in which the results of quantitation of six

immunophenotypic markers were evaluated (5, 21,28, 29,30). The expression of these

markers are considered independent events, since their pathogenic significance are

not necessarily interconnected within certain pathways. The survival analysis over 10

38

months showed a great heterogeneity with a significant Cochran Q test (Q [df = 5]; =

11.3330; p = 0.0452) and the Higgins I² test showed a result of 83.33%, indicating high

heterogeneity and suggesting an impediment to achieving the meta-analysis. Despite

that impediment, the tests were still performed showing a meta-analytical estimate of

no significant risk (1.49). The funnel plot and regression testing for evaluation of

publication bias showed a large asymmetry (t = 5.0896; df = 4; p = 0.007).

(Supplementary fig. S1‒2).

Therefore, two studies were considered responsible for the asymmetry in the

analysis and withdrawn of the analysis in 10 months, remaining four events in the three

articles included (5, 29, 30). On the 20-month analysis, one article was removed for not

having information regarding 10-month survival, remaining five events in the four

articles included (5, 28-30).

The Q Cochran test for 10 months survival showed that the studies included in

the meta-analysis would be homogeneous (Q (df = 3) = 1.0512; p = 0.7889), and the

Higgins I² test showed a result of 0% indicating no heterogeneity. The same results

were found in relation to the markers collected at 20 months, both in relation to Q

Cochran test (Q (df = 4) = 2.6083; p = 0.6254) and the Higgins I² test (0%). It was

decided then, to perform the two meta-analyses using the fixed effects model.

The meta-analytical estimate represented by the relative risks of survival rate at

10 months (Fig. 2) was 2.55 (95% CI: 1:49‒4:37) when analyzed for the risk of survival

in the absence of the immunophenotypic marker expression and its relationship with

the risk of survival in the presence the immunophenotypic marker expression. The

estimate at 20 months (Fig. 3) was 2:46 (95% CI: 1.75‒3.45). Both sets of values were

significant.

39

Figure 2: Forest Plot of relative risks and confidence intervals of 10-month

survival.

40

Figure 3: Forest Plot of relative risks and confidence intervals of 20-month

survival.

Publication bias potential

After resetting the final models, especially the 10-month survival, the funnel plot

and the regression test for analysis of the asymmetry were used to assess the potential

for publication bias. Both tests showed that publication bias was not significantly

associated with both the 10 and 20 month survival (t = 0.9055, df = 2; p = 0.4608 and

t = 0.2818; df = 3; p = 0.7964, respectively) (Supplementary fig. S3 – 4).

Discussion

MFC has an important role in AML diagnosis, classification, and evaluation of

treatment effectiveness. Over the last several years, important achievements were

obtained in the field, including improvements in flow cytometry instrumentation (> 8

41

colors) and new analytical strategies. However, the discovery of new

immunophenotypic markers for AML diagnosis was limited, and immunophenotypic

panels have remained similar over the last twenty years. Therefore, there is still a need

for new markers for leukemic myeloid cells to be included in clinical routines to increase

the value of MFC not only as a diagnostic but also prognostic tool for monitoring of

MRD and for development of drugs for targeted therapy 31.

In this systematic review, we observed that some markers could be used for

AML diagnosis and during the follow up. For example, the high expression of CD87 is

an indicator of morphologically and antigenically poorly differentiated disease,

especially in the M4 and M5 subtypes 5. The inhibitory receptor ILT3 is a highly

sensitive and specific marker for both diagnosis and monitoring of AML with monocytic

differentiation; ILT3 as a marker is particularly useful in the differential diagnosis of AML

with monocytic differentiation and microgranular acute promyelocitic leukemia, two

leukemia subtypes that require different treatment strategies 26. Another marker,

hMICL, expressed significantly higher fluorescence intensity compared to normal bone

marrow, suggesting suitability of this antigen as a pan-AML marker 27. Regarding cell

adhesion, CD82 has been shown to have a high expression in AML cells suggesting

an increase of adhesion to the BM niche. On the other hand, down-regulation of CD82

in AML cells may stimulate circulation of these cells into peripheral blood 22.

Many prognostic factors have been established in the past few decades in AML,

including age, cytogenetic abnormalities, white blood cell count, serum lactate

dehydrogenase, and the presence of antecedent hematologic disorder. This

systematic review has shown that the high expression of CD87 on peripheral blood

blasts was associated with relapse and poor prognosis and could be incorporated into

the initial diagnostic work-up of AML patients 5. CXCR4 could be also included due to

42

its high expression on the surface of the entire leukemic population and demonstration

of its influence on the overall CR rate and as poor prognostic factor for DFS and OS

28. Another interesting study described the association between high expression of

CD93 and loss of CDKN2B (p15Ink4b) expression; a cell-cycle inhibitor gene that has

been shown to play a prominent role in leukemia pathogenesis and correlate with poor

prognosis 24.

The demonstration that the high expression of these immunophenotypic

markers influence not only the survival of AML patients but also the prognosis, brings

up some questions. Since immunomarkers are signaling those important prognostic

data and it is known that molecular mutation can also have influence on the disease

pathways regarding both survival and prognostic features, how these two information

can be combined on determine better accurate prognostic factors, and what

association could be found between them? We could observe that this data are rarely

combined on the articles included on this systematic review and meta-analysis. It was

evidenced that majority of patients that expressed high CXCR4 also presented the

NPM1 mutated gene, what gives it a worst prognosis 28. Another study showed that

FLT3 receptor (CD135) was associated with the FLT3 Internal tandem duplication (ITD)

mutation, which confers a poor prognosis 30. Since gene mutations are of utmost

importance in deciding the patients' risk-stratification, the knowledge of this association

can bring advancement on treatment decision and give even more precision to it,

raising the chances of cure. From this preliminary information, it is possible to envision

future studies involving the connection of these two types of markers to predict

prognosis and survival of AML.

Despite the advancement of therapeutic progress, the overall survival of AML

patients remains low 5. One method to attempt to increase these patients' survival

43

could be a more specific chemotherapeutic protocol for this heterogeneous group of

diseases. It is also necessary to identify in advance those patients who have greater

resistance to treatment, higher relapse rates, and lower survival. We performed a

meta-analysis using the fixed effects model. Four new immunophenotypic markers,

CD133, CD135, TRAIL2 (CD262), and TNFR1 (CD120a) were demonstrated and

showed correlation with lower survival at 10 and 20 months. Thus, these antigens can

be used as early markers in combination with other prognostic factors for risk

stratification of relapse. CD133 antigen appears to be expressed restrictively in the

more immature cell population, and examination of the articles has made it possible to

observe that expression of the CD133 in acute leukemia could be correlated with an

immature phenotype of the myeloid blasts and highly associated with poor prognosis

5. Proliferation regulators (such as tyrosine kinase receptors) play an important role in

the pathogenesis of acute myeloid leukemia. The high expression of CD135 was

associated with lower EFS and OS 30. As verified by this study, the expression of death

receptors is typically associated with the apoptotic regulation of leukemic blasts that

demonstrated a significant association of TRAILR2 expression on blasts from patients

in adverse risk groups and showed a negative impact on overall survival. Results

concerning TNFR1 showed that this receptor is for the immune-modulating cytokine

TNF. TNFR1 may play a role in initiation and proliferation of AML blasts due to its high

expression, which appears to be related to a lower survival in AML patients 29.

Technically, this meta-analysis demonstrated that meta-analytical estimates,

represented by the relative survival risk at 10 and 20 months, were both significant

when the risk of survival in the absence and presence of the markers was analyzed.

Notably, in our analysis, there was no heterogeneity among the cohort studies, which

implied that the present method to combine the results from these studies was

44

reasonable. Thus, the conclusions from this analysis should be credible. However, due

to the relatively limited number of cases included in these studies, further analyses of

larger series of patients are needed to confirm these preliminary observations.

Minimal residual disease is a term used to describe detection of subclinical

levels of leukemia using multiparameter flow cytometry or molecular-based

approaches. Employing the MFC for minimal residual disease detection appears to be

a reliable method for obtaining rapid and objective patient remission status, provide

early end points in clinical trials, and to inform patient management of a patient's status.

Emerging evidence indicates that MRD detection in patients with AML is also

associated with poor prognosis, and early therapeutic interventions may be of clinical

benefit. In addition, other studies have reported on the progression of new drug

development that target specific areas of the leukemia cells; this is important since the

current treatment can help, but does not always cure, AML patients. In this review, we

observed that some antigens can be useful both as a marker for MRD and potential

therapeutic target. ILT3 is an antigen expressed in AML displaying monocytic

differentiation that supports differentiation and subsequent AML diagnosis of AML. It

may also be a candidate marker for MRD detection in AML patients due to its high

sensitivity, specificity, and stable expression. This antigen also can be a target for

therapy in AML with monocytic differentiation as a result of inhibition of ILT3 signaling

with specific antibodies or antagonists, which may render ILT3+ AML cells more

susceptible to differentiation agents and anti-tumor T cell responses 26. CD93, an AML

with MLL rearrangements marker expressed on leukemia stem cells (LSC), may also

be a useful therapeutic target candidate for anti-LSC therapy and prognostic marker

for quantitation of minimal residual disease 24. hMICL is a pan-AML marker uniformly

present on cells. It can be poorly immunophenotypically lineage-characterized and

45

difficult to monitor for residual disease and development of drugs for targeted therapy

27. The glycoprotein CD82 could be an attractive target for LSC eradication, due to its

important role in regulation of the AML cell survival and their adhesion to bone marrow

microenvironment 22.

There are some limitations that should be noted in our systematic review and

meta-analysis. One of the most important is the lack of actual patient data included in

the analysis. Despite that, it is known that AML is a disease with low incidence. In the

US, the estimate for 2024 predicts that leukemia, including AML, will represent 3% of

all cancers in male and females 8. It was notable that some data discrepancies were

found as in the case with hMICL, in which the author associated its high hMICL

expression with relapse, but its role in the prognosis was not clear. More data are

necessary to establish the extent that hMICL-based immunophenotyping can detect

treatment failure, which is common in most AML patients. The same results were

observed for CD90 and CD96, in which the author also shows an association of its

high expression with relapse, but does not associate either CD90 or 96 with prognosis.

CD96, especially, does not demonstrate high fluorescence in the first diagnosed

sample, only in the normal bone marrow sample.

Regarding the limitations of our systematic review and meta-analysis, survival

information was extracted from survival curves and not from a mortality table.

Secondly, positive and negative expression were considering basing on the MFI of

each study Third, the criteria to determine the positive or negative antigen expression

varied across the included studies. Fourth, from the six immunophenotypic markers

included in the meta-analysis, two were removed as they caused heterogeneity

between the studies, which may have been due to some methodological differences.

Fifth, we only searched for articles published in English, Spanish, and Portuguese and

46

may have missed relevant publications in other languages. Finally, some studies

included in the qualitative synthesis also evaluated M3 AML patients, a subgroup

recognized for its excellent prognosis. However, only two studies included in the meta-

analysis contained M3 AML cases, both with a low number of patients (< 10%, table 3)

and did not cause any heterogeneity on the analysis.

Despite the limitations listed above, the present analysis revealed the prognostic

value of new antigen expression in AML. Although the high expression of CD133,

CD135, TRAIL2 and TNFR1 was not significant in most of the individual studies

regarding the occurrence of the outcome, when they were collected in the meta-

analysis a high correlation was observed with poor prognosis and low DFS and OS.

However, further prospective studies with larger sample sizes are required to include

these new immunomarkers in MFC routine of acute myeloid leukemia.

References

1. Terwijn, M. et al. High prognostic impact of flow cytometric minimal residual

disease detection in acute myeloid leukemia: Data from the HOVON/SAKK AML

42A study. J. Clin. Oncol. 31, 3889–3897 (2013).

2. Ferrara, F. & Schiffer, C. a. Acute myeloid leukaemia in adults. Lancet 381, 484–

495 (2013).

3. Peters, J. M. & Ansari, M. Q. Multiparameter flow cytometry in the diagnosis and

management of acute leukemia. Arch. Pathol. Lab. Med. 135, 44–54 (2011).

4. Hasan, M., et al. Semi-automated and standardized cytometric procedures for

multi-panel and multi-parametric whole blood immunophenotyping. Clin. Immunol.

157, 261–276 (2015).

47

5. Atfy, M., Eissa, M., Salah, H. E. & El Shabrawy, D. A. Role of urokinase

plasminogen activator receptor (CD87) as a prognostic marker in acute myeloid

leukemia. Med. Oncol. 29, 2063–2069 (2012).

6. Yang, M., et al. M. et al. Developing aptamer probes for acute myelogenous

leukemia detection and surface protein biomarker discovery. J. Hematol. Oncol. 7,

5 (2014).

7. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics. 66, 7–30 (2016).

8. Siegel, R.,et al. Cancer Treatment and Survivorship Statistics , 2012. 00, 1–22

(2013).

9. Finak, G., et al.Standardizing Flow Cytometry Immunophenotyping Analysis from

the Human ImmunoPhenotyping Consortium. Sci. Rep. 6, 20686 (2016).

10. van Dongen, J. J. M. & Orfao, a. EuroFlow: Resetting leukemia and lymphoma

immunophenotyping. Basis for companion diagnostics and personalized medicine.

Leukemia 26, 1899–1907 (2012).

11. Grimwade, D. & Freeman, S. D. Defining minimal residual disease in acute myeloid

leukemia: which platforms are ready for ‘prime time’? Hematology Am. Soc.

Hematol. Educ. Program 2014, 222–33 (2014).

12. Ommen, H. B. Monitoring minimal residual disease in acute myeloid leukaemia: a

review of the current evolving strategies. Ther. Adv. Hematol. 7, 3–16 (2016).

13. Zhao, J., Gu, L., Li, C., Ma, W. & Ni, Z. Investigation of a novel biomarker,

neuropilin-1, and its application for poor prognosis in acute myeloid leukemia

patients. Tumour Biol. 35, 6919–24 (2014).

14. García-Dabrio, M. C. et al. Complex measurements may be required to establish

the prognostic impact of immunophenotypic markers in AML. Am. J. Clin. Pathol.

144, 484–492 (2015).

48

15. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Grp, P. Preferred Reporting

Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement

(Reprinted from Annals of Internal Medicine). Phys. Ther. 89, 873–880 (2009).

16. van Dongen, J. J. M. et al. EuroFlow antibody panels for standardized n-

dimensional flow cytometric immunophenotyping of normal, reactive and malignant

leukocytes. Leukemia 26, 1908–1975 (2012).

17. Vandenbroucke, J. P. et al. Annals of Internal Medicine Academia and Clinic The

Strengthening the Reporting of Observational Studies in Epidemiology ( STROBE

) Statement : Guidelines for Reporting. Ann. Intern. Med. 147, 573–578 (2007).

18. Higgins, J. P. T., Green, S. Cochrane Handbook for Systematic Reviews of

Interventions Version 5.1.0 (eds). [updated March 2011]. The Cochrane

Collaboration. Available from www.handbook.cochrane.org. (2011).

19. R Core Team. R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

(2016).

20. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J Stat

Softw. 36(3), 1-48, (2010).

21. Tolba, F. M., Foda, M. E., Kamal, H. M. & Elshabrawy, D. A. Expression of CD133

in acute leukemia. Med. Oncol. 30, (2013).

22. Nishioka, C. et al. CD34+/CD38- acute myelogenous leukemia cells aberrantly

express CD82, which regulates adhesion and survival of leukemia stem cells. Int.

J. Cancer 132, 2006–2019 (2013).

23. Nishioka, C. et al. CD82 regulates STAT5/IL-10 and supports survival of acute

myelogenous leukemia cells. Int. J. Cancer 134, 55–64 (2014).

49

24. Iwasaki, M., Liedtke, M., Gentles, A. J. & Cleary, M. L. CD93 Marks a Non-

Quiescent Human Leukemia Stem Cell Population and Is Required for

Development of MLL-Rearranged Acute Myeloid Leukemia. Cell Stem Cell 17,

412–421 (2015).

25. Chávez-González, A. et al. Expression of CD90, CD96, CD117, and CD123 on

Different Hematopoietic Cell Populations from Pediatric Patients with Acute

Myeloid Leukemia. Arch. Med. Res. 45, 343–350 (2014).

26. Dobrowolska, H. et al. Expression of immune inhibitory receptor ILT3 in acute

myeloid leukemia with monocytic differentiation. Cytometry B. Clin. Cytom. 84, 21–

9 (2013).

27. Larsen, H., Roug, A. S., Just, T., Brown, G. D. & Hokland, P. Expression of the

hMICL in acute myeloid leukemia-a highly reliable disease marker at diagnosis and

during follow-up. Cytom. Part B - Clin. Cytom. 82 B, 3–8 (2012).

28. Mannelli, F. et al. CXCR4 expression accounts for clinical phenotype and outcome

in acute myeloid leukemia. Cytom. Part B - Clin. Cytom. 86, 340–349 (2014).

29. Schmohl, J. U. et al. Death receptor expression on blasts in AML is associated with

unfavorable prognosis. Anticancer Res. 35, 4043–4052 (2015).

30. Sharawat, S. K. et al. Increased coexpression of c-KIT and FLT3 receptors on

myeloblasts: Independent predictor of poor outcome in pediatric acute myeloid

leukemia. Cytom. Part B - Clin. Cytom. 84, 390–397 (2013).

31. van Dongen, J. J. M., van der Velden, V. H. J., Brüggemann, M. & Orfao, A. Minimal

residual disease (MRD) diagnostics in acute lymphoblastic leukemia (ALL): need

for sensitive, fast and standardized technologies. Blood 125, blood–2015–03–

580027 (2015).

50

Author Contributions Statement

Costa, A.F.O performed the systematic research, selected the studies, extracted

an analysed data and wrote the article; Menezes D.L performed the systematic

research, selected the studies and wrote the article; Pinheiro, L.H.S organized the

figures and tables and wrote the article; Sandes, A.F. analysed data, wrote and

reviewed the article; Nunes, M.A.P. did the meta-analytical analysis and wrote the

article; Lyra Junior, D.P. analysed data and reviewed the article and Schmieguel, D.M.

Selected the studies, analysed data, wrote and reviewed the article.

Additional Information

Competing financial interests

The authors declare no competing financial interests.

Figure Legends

Figure 1. Flow diagram for study identification. Flow chart of how the research was

systematically conducted for study identification.

Figure 2. Forest Plot of relative risks and confidence intervals of 10-month

survival. Relative risks and confidence intervals of survival at 10 months after the

withdrawal of the two studies that caused the asymmetry, associated with the non-

detection/detection of the immunophenotypic markers in each study and its meta-

analytical measurements.

Figure 3. Forest Plot of relative risks and confidence intervals of 20-month

survival. Relative risks and confidence intervals of survival at 20 months associated

with the non-detection/detection of the immunophenotypic markers in each study and

their meta-analytical measurements.

51

Tables Table 1: Contingency table (2x2).

Outcome

Total

Alive Dead

Negative Marker a b a + b

Positive Maker b d c + d

a + c b + d a + b + c + d

Table 2: Main characteristics of the individual studies analyzed on the systematic review and meta-analysis.

MARKER ARTICLE JCR LOCATION DESIGN AIM OF THE STUDY STROBE

CD82 Nishioka et al. (Int J

Cancer 2013) 5.085 Japan

Cross-sectional

observational

Analyze the protein expression profile of CD34+/CD38- AML cells and compare it with the expression profile of their CD34+/CD38+ counterparts using isobaric tags for relative and absolute quantitation (iTRAQ) and explored the

function of CD82 in CD34+/CD3- AML cells in vitro as well as in vivo.

17 (77.8%)

CD82 Nishioka et al. (Int J

Cancer 2014) 5.085 Japan

Cross-sectional

observational Explore the regulation of STAT5/IL-10 by CD82 and its impact on the survival of CD34+/CD38- AML cells.

17 (77.8%)

CD87 Atfy et al. (Med Oncol

2012) 2.634 Germany Cohort

Assess the prognostic significance of pretreatment detection of CD87 and the prevalence of its expression and value as a predictor for survival.

20 (91%)

CD93 Iwasaki et al (Cell Stem

Cell 2015) 22.268 USA

Cross-sectional

observational

Report that the cell surface lectin CD93 is a functional marker of LSCs in a specific genetic subtype of AML with rearrangements of the MLL gene.

20 (91%)

CD135 Sharawat et al

(Cytometry B 2013) 2.398 India Cohort Evaluate clinical significance of FLT3 (CD135) and c-KIT (CD117) coexpression on myeloblasts in AML.

21 (95.4%)

CXCR4 Mannelli et al (Cytometry

B 2014) 2.398 Italy Cohort Investigate the expression of connexins in primary human AML cells derived from unselected patients

21 (95.4%)

CD133 Tolba et al (Med Oncol

2013) 2.634 USA Cohort

Assess CD133 expression in patients with acute myeloid or lymphoblastic leukemia and to evaluate its correlation with the different clinical and laboratory data as well as its relation to disease outcome.

20 (91%)

TRAILR2 (CD262) Schmohl et al

(Anticancer research 2015)

1.826 Germany Cohort Evaluate the association of co-expression of TRAILR1-3, TNFR1 and FAS on AML blasts at first diagnosis with different

AML subtypes and risk groups and to combine with clinical data in order to evaluate their prognostic and clinical significance.

21 (95.4%)

TRAILR3 (CD263)

TNFR1

ILT3 Dobrowolska et Al

(Cytometry B 2013) 2.398 USA

Cross-sectional

observational

Investigated ILT3 expression by normal and leukemic myeloid precursors. We report that ILT3 expression identifies normal hematopoietic precursors committed to the monocytic lineage and that ILT3 is a reliable marker that

distinguishes AML with monocytic differentiation from other types of AML

19 (86,4%)

hMICL Larsen et Al (Cytometry

B 2012) 2.398

United Kingdom

Case control Based on data from stem cell research, they hypothesized that the human inhibitory C-type lectin like receptor (hMICL)

might represent a novel diagnostic and prognostic vehicle in a standard flow cytometry (FCM) setting. 20 (91%)

CD90 Chávez-gonzález et al.

(Arc Med Res 2014) 2.645 Mexico Case control

Analyze the expression of CD90, CD96, CD117, and CD123 on CD34+ CD38- cells, CD34+ CD38+ cells and CD34- CD38+ cells.

21 (95,4%)

CD96

AML: Acute myeloid leukemia; JCR: journal citation reports; iTRAQ: isobaric tags for relative and absolute quantification; STAT5: signal transducer and activator of transcription 5; IL-5: interleukin 5; LSCs: leukemic stem cells; MLL gene: mixed lineage leukemia gene; FLT3: fms related tyrosine kinase 3; c-KIT: receptor tyrosine kinase protein; TRAILR1-3: Tumor necrosis factor-related apoptosis-inducing ligand 1-3; TNFR1: Tumor necrosis factor receptor 1; FAS: cell surface death receptor; ILT3: immunoglobulin-like transcript 3; HSC: hematopoietic stem cell.

52

Table 3: Main disease and treatment features of the individual studies included on the systematic review and meta-analysis.

AML: Acute myeloid leukemia; TRAILR2: Tumor necrosis factor-related apoptosis-inducing ligand 2; TRAILR3: Tumor necrosis factor-related apoptosis-inducing ligand 3; TNFR1: Tumor necrosis factor receptor 1; hMICL: human myeloid inhibitory C-type lectin-like receptor; MDS: myelodysplastic syndrome; NR: not related; ATEDox: cytarabine, 6-thioguanine, etoposide, doxorubicin; EFS: Event-Free Survival; OS: Overall survival;

MARKER PATIENTS

(N) CLASSIFICATION TREATMENT PROGNOSIS

FOLLOW-UP

SURVIVAL GENE MUTATION

CD82 12 AML with

myelodysplasia changes: 4

NR POOR. NR NR NR

CD82 14 M4: 4

MDS transformed to AML: 4

NR POOR NR NR NR

CD87 110 M4: 36

Double-induction therapy with thioguanine, cytosine arabinoside (AraC), and daunorubicin (TAD) followed by high-dose Ara-C and mitoxantrone (HAM). M3 cases received therapy protocols that contained all-trans-

retinoic-acid (ATRA).

POOR 17 months High expression of CD87

predict shorter overall survival.

NR

CD93 36 Normal: 11 NR POOR NR NR NR

CD135 115 M2: 66 “3+7 “(Daunorubicin and cytosine arabinoside) with Daunorubicin at 60

mg/m2 for 3 days. POOR

15.5 months

High expression of CD135 predicted poor EFS and OS

FLT3 ITD – 17%

CXCR4 142 M2: 38 M4: 38

“3 + 7” (Cytarabine 100 mg sqm21 over 3-h intravenous infusion bid on days 1–7; Idarubicin 12 mg sqm21 30 min intravenous infusion on days

1–3). POOR 20 months

High expression of CXCR4 predict shorter overall

survival.

FLT3 ITD – 23,9% NPM1 MUTATED – 39,4% CEBPA MUTATED – 11,3%

CD133 30 NR ‘‘3 + 7’’ induction chemotherapy protocol: doxorubicin (30 mg/m2/ day)

for 3 days and cytarabine (100 mg/m2/day as a continuous 24-h intravenous infusion) for 7 days.

POOR 12

months.

Increased CD133 leads to decrease the survival by the

time. NR

TRAILR2

(CD262)

46 M2: 17

POOR

55 - 120 months

Cut-off analyses for TRAILR2 showed

significantly shorter overall survival

NR

TRAILR3

(CD263)

Twenty-six patients received an anthracycline-based induction therapy (idarubicin or daunarubicin), the remaining patients received other

approved therapies or supportive therapy GOOD

Cut-off analyses for TRAILR3 showed a increase in survival.

NR

TNFR1 POOR Cut-off analyses for TNFR1 showed significantly shorter

overall survival NR

ILT3 37 M4/M5: 18 NR POOR NR NR NR

hMICL 55 M4: 7 M2: 7

ND: 29 NR POOR NR NR NR

CD90 12

M2: 4

Following the first course of induction (ATEDox 5 cytarabine, mercaptopurine, doxorubicin), children without evidence of residual

disease were allowed to recover before subjected to a second identical induction course

UNDETERMINED

4-45moths

NR NR

CD96 POOR NR NR

53

54

Table 4: Basic features of each antigen analyzed on this systematic review and meta-analysis

Antigen Molecular Group Function Frequency

in AML

Association with specific disease

features

Prognostic Impact

CD82 A member of

tetraspanin superfamily Cell adhesion NR NR Poor

CD87 Urokinase plasminogen

activator receptor Conversion of

plasminogen to plasmin 72.2% FAB M4 and M5 Poor

CD93 C-type lectin

transmembrane receptor

Phagocytosis, inflammation, and cell

adhesion NR

Leukemia Stem Cells in AML with rearrangements

of the MLL gene Poor

CD135 Tyrosine kinase

receptor

Promote the growth and differentiation of primitive

hematopoietic cells 82% NR Poor

CXCR4 Receptor for stromal-

derived factor 1 (SDF1)

Cell adhesion and hematopoietic

stem cell niche regulation 50%

Hepato-splenomegaly and

extra-hematological disease

Poor

CD133 A novel five

transmembrane molecule

Regeneration, proliferation and differentiation of

Steam cells 56% FAB M4 and M5 Poor

CD262 Death receptor Apoptosis 21,7% Monocytic subtipes, AML

FAB M5 and M6 Poor

CD263 Death receptor Inhibition of cell death through competitive

binding activity NR AML FAB M0 Good

CD120a Death receptor

Mediation of cytotoxicity; signaling of fibroblast growth, endothelial activation/adhesion

21,7% AML FAB M2 and M5 Poor

ILT3 Immunoglobulin-like

transcript (ILT) 3

Inhibitory receptor: down-regulation of immune

responses. 83%

AML with monocytic differentiation and

microgranular acute promyelocitic leukemia

Poor

hMICL A glycosylated

transmembranal C-type lectin

Control of myeloid cell activation during

inflammation 89%

Poorly characterized CD34 negative patient

group Poor

CD90 Cell-surface glycoprotein

Proliferation and expansion processes

NR NR Undetermined

CD96 Member of the

immunoglobulin superfamily

Adhesive interactions of activated T and NK cells during the late phase of the immune response

NR NR Poor

FAB: French-American-British Classification; AML: Acute myeloid leukemia; TRAILR2: Tumor necrosis factor-related apoptosis-inducing ligand 2; TRAILR3: Tumor necrosis factor-related apoptosis-inducing ligand 3; TNFR1: Tumor necrosis factor receptor 1; hMICL: human myeloid inhibitory C-type lectin-like receptor; NK: Natural Killer; NR: not related.

55

ANEXO A – SUPPLEMENTARY INFORMATION

Supplementary figure S 1: Forest plot with relative risks and confidence intervals of survival in 10 month.

Relative risks and confidence intervals of survival at 10 months associated to the non-detection/ detection of the immunophenotypic markers in each study and its meta-analytical measurements before the withdraw of the two studies found to be responsible for the asymmetry.

56

Supplementary figure S 2: Funnel plot of studies on survival in 10 months.

Publication bias potential of 10-month survival associated with the non-detection / detection of the immunophenotypic markers in each study and its meta-analytical measurements before the withdraw of the two studies found to be responsible for the asymmetry.

57

Publication bias potential of 10-month survival associated with the non-detection / detection of the immunophenotypic markers in each study and its meta-analytical measurements after the withdraw of the two studies found to be responsible for the asymmetry.

Supplementary figure S 3: Funnel plot of studies on survival in 10 months.

58

Supplementary figure S 4: Funnel plot of studies on survival in 10 months.

Publication bias potential of 20-month survival associated with the non-detection / detection of

the immunophenotypic markers in each study and its meta-analytical measurements.

59

ANEXO B – CARTA DE ACEITE DO ARTIGO

Scientific Reports: Decision letter for SREP‐16‐34398B

Dear Mrs Costa,

We are delighted to accept your manuscript entitled "ROLE OF NEW

IMMUNOPHENOTYPIC MARKERS ON PROGNOSTIC AND OVERALL SURVIVAL

OF ACUTE MYELOID LEUKEMIA: A SYSTEMATIC REVIEW AND META‐ANALYSIS"

for publication in Scientific Reports. Thank you for choosing to publish your work with

us.

You should have just received another email from [email protected] with

instructions for the next step, which is to complete your publication agreements. To

continue with your publication agreements you will need to create a new account on

this new system. Please complete these as soon as possible so we can start preparing

your manuscript for publication. The agreements include the licence, which defines the

terms of publication, and billing information for your Open Access article. Please see

our FAQs page for further information about article processing charges.

After we've prepared your paper for publication, you will receive a PDF proof for

checking. At that point, please check the author list and affiliations to ensure that they

are correct. For the main text, only errors that have been introduced during the

production process or those that directly compromise the scientific integrity of the

paper may be corrected at this stage. Please ensure that only one author

communicates with us and that only one set of corrections is returned. The

corresponding ﴾or nominated﴿ author is responsible on behalf of all co‐authors for the

accuracy of all content, including spelling of names and current affiliations.

To ensure prompt publication, your proofs should be returned within two working days;

please contact [email protected] immediately if you wish to nominate a

contributing author to receive the proofs on your behalf.

Acceptance of your manuscript is conditional on all authors' agreement with our

publication policies ﴾see http://www.nature.com/srep/policies/index.html﴿. In particular,

your manuscript must not be published elsewhere and there must be no

announcement of this work to any media outlet until the publication date is confirmed.

60

We will inform you by email as soon as your manuscript is scheduled for publication,

which will be after we have received and approved your proof corrections. Advice about

media relations is available from NPG's press office at [email protected].

Your article will be open for online commenting on the Scientific Reports website. You

may use the report facility if you see any comments which you consider inappropriate,

and of course, you can contribute to discussions yourself. If you wish to track

comments on your article, please register for this service by visiting the 'Comments'

section in the full text ﴾HTML﴿ version of your paper.

**A form to order reprints of your article is available at

http://www.nature.com/reprints/author‐reprints.html. To obtain the special author

reprint rate, orders must be made within a month of the publication date. After that,

reprints are charged at the normal ﴾commercial﴿ rate.**

We look forward to publishing your article.

Best regards,

Rafal

Dr Rafal Marszalek

Deputy Managing Editor

Scientific Reports

P.S. If appropriate, you may also consider uploading any biologically‐ or biomedically‐

related protocols used in this manuscript to the protocol exchange, part of our on‐line

web resource, nature.com/protocolexchange. By participating, you are enabling researchers to more readily reproduce or adapt the methodology you use. The protocol exchange is fully searchable, providing your protocols and paper with increased utility and visibility. Please submit your protocol to http://protocols.nature.com/manuscripts. After entering your nature.com username and password you will need to enter your

manuscript number ﴾SREP‐16‐34398B﴿. Further information can be found at

www.nature.com/protocolexchange.

61

AXEXO C – NORMAS DA REVISTA

SUBMISSION GUIDELINES – SCIENTIFIC REPORTS

Submission guidelines

General information for preparing manuscripts

Cover letter

Format of manuscripts

Methods

References

Acknowledgements

Author contributions

Competing financial interests

Supplementary information

Figure legends

Tables

Equations

General figure guidelines

Figures for peer review

62

Figures for publication

Statistical guidelines

Chemical and biological nomenclature and abbreviations

Gene nomenclature

Characterisation of chemical and biomolecular materials

General information for preparing manuscripts

Format of articles

Scientific Reports publishes original research in one format, Article. In most cases we

do not impose strict limits on word count or page number. We do, however, strongly

encourage authors to write concisely and to adhere to the guidelines below.

Articles should ideally be no more than 11 typeset pages in length. As a guide, the

main text (not including Abstract, Methods, References and figure legends) should be

no more than 4,500 words. The maximum Article title length is 20 words. The Abstract

— which must be no more than 200 words long and contain no references — should

serve both as a general introduction to the topic and as a brief, nontechnical summary

of the main results and their implications.

For the main body of the text, there are no explicit requirements for section

organization. According to the authors' preference, the text may be organized as best

suits the research. As a guideline and in the majority of cases, however, we

recommend that you structure your manuscript as follows:

Introduction

Results (with subheadings)

63

Discussion (without subheadings)

Methods

A specific order for the main body of the text is not compulsory and, in some cases,

it may be appropriate to combine sections. Figure legends are limited to 350 words.

As a guideline references should be limited to 60 (this is not strictly enforced).

Footnotes should not be used.

We suggest that Articles contain no more than 8 display items (figures and/or tables).

In addition, a limited number of uncaptioned molecular structure graphics and

numbered mathematical equations may be included if necessary. To enable typesetting

of papers, the number of display items should be commensurate with the word length

— we suggest that for Articles with less than 2,000 words, no more than 4 figures/tables

should be included. Please note that schemes are not used and should be presented

as figures.

Authors must provide a competing financial interests statement within the manuscript

file.

Submissions should include a cover letter, a manuscript text file, individual figure files

and optional supplementary information files. For first submissions (i.e. not revised

manuscripts), authors may incorporate the manuscript text and figures into a single file

up to 3 MB in size; the figures may be inserted in the text at the appropriate positions,

or grouped at the end. Supplementary information should be combined and supplied

as a single separate file, preferably in PDF format.

ONLY the following file types can be uploaded for Article text:

txt, doc, docx, tex

A submission template is available in the Overleaf template gallery to help you prepare

a LaTeX manuscript within the Scientific Reports formatting criteria.

64

Scientific Reports is read by scientists from diverse backgrounds. In addition, many

are not native English speakers. Authors should, therefore, give careful thought to how

their findings may be communicated clearly. Although a shared basic knowledge of

science may be assumed, please bear in mind that the language and concepts that

are standard in one field may be unfamiliar to non-specialists. Thus, technical jargon

should be avoided and clearly explained where its use is unavoidable.

Abbreviations, particularly those that are not standard, should also be kept to a

minimum. Where unavoidable, abbreviations should be defined in the text or legends

at their first occurrence, and abbreviations should be used thereafter. The background,

rationale and main conclusions of the study should be clearly explained. Titles and

abstracts in particular should be written in language that will be readily intelligible to

any scientist. We strongly recommend that authors ask a colleague with different

expertise to review the manuscript before submission, in order to identify concepts and

terminology that may present difficulties to nonspecialist readers.

The format requirements of Scientific Reports are described below.

Scientific Reports uses UK English spelling.

Cover Letter

Authors should provide a cover letter that includes the affiliation and contact

information for the corresponding author. Authors should briefly explain why the work

is considered appropriate for Scientific Reports. Authors are asked to suggest the

names and contact information for scientific reviewers and they may request the

exclusion of certain referees. Please ensure that your cover letter also includes

suggestions for Editorial Board Members who would be able to handle your

submission. Finally, authors should indicate whether they have had any prior

discussions with a Scientific Reports Editorial Board Member about the work described

in the manuscript.

Format of manuscripts

In most cases we do not impose strict limits on word counts and page numbers, but

we encourage authors to write concisely and suggest authors adhere to the guidelines

below. For a definitive list of which limits are mandatory please visit the submission

65

checklist page.

Articles should be no more than 11 typeset pages in length. As a guide, the main text

(not including Abstract, Methods, References and figure legends) should be no more

than 4,500 words. The maximum title length is 20 words. The Abstract (without

heading) - which must be no more than 200 words long and contain no references -

should serve both as a general introduction to the topic and as a brief, nontechnical

summary of the main results and their implications.

The manuscript text file should include the following parts, in order: a title page with

author affiliations and contact information (the corresponding author should be

identified with an asterisk). The main text of an Article can be organised in different

ways and according to the authors' preferences, it may be appropriate to combine

sections.

As a guideline, we recommend that sections include an Introduction of referenced text

that expands on the background of the work. Some overlap with the Abstract is

acceptable. This may then be followed by sections headed Results (with subheadings),

Discussion (without subheadings) and Methods.

The main body of text must be followed by References, Acknowledgements (optional),

Author Contributions (names must be given as initials), Additional Information

(including a Competing Financial Interests Statement), Figure Legends (these are

limited to 350 words per figure) and Tables (maximum size of one page). Footnotes

are not used.

For first submissions (i.e. not revised manuscripts), authors may choose to incorporate

the manuscript text and figures into a single file up to 3 MB in size - the figures may be

inserted within the text at the appropriate positions, or grouped at the end.

Supplementary Information should be combined and supplied as a separate file,

preferably in PDF format. The first page of the Supplementary Information file should

include the title of the manuscript and the author list.

Authors who do not incorporate the manuscript text and figures into a single file should

66

adhere to the following: all textual content should be provided in a single file, prepared

using either Microsoft Word or LaTeX; figures should be provided as individual files.

The manuscript file should be formatted as double-spaced, single-column text without

justification. Pages should be numbered using an Arabic numeral in the footer of each

page. Standard fonts are recommended and the 'symbols' font should be used for

representing Greek characters.

TeX/LaTeX - Authors submitting LaTeX files may use the standard ‘article’ document

class (or similar) or may use the wlscirep.cls file and template provided by Overleaf.

Non-standard fonts should be avoided; please use the default Computer Modern fonts.

For the inclusion of graphics, we recommend graphicx.sty. Please use numerical

references only for citations. Our system cannot accept .bib files. If references are

prepared using BibTeX (which is optional), please include the .bbl file with your

submission (as a ‘related manuscript file’) in order for it to be processed correctly; this

file is included automatically in the zip file generated by Overleaf for submissions.

Please see this help article on Overleaf for more details. Alternatively ensure that the

references (source code) are included within the manuscript file itself. As a final

precaution, authors should ensure that the complete .tex file compiles successfully on

their own system with no errors or warnings, before submission.

Manuscripts published in Scientific Reports are not subject to in-depth copy editing as

part of the production process. Authors are responsible for procuring copy editing or

language editing services for their manuscripts, either before submission, or at the

revision stage, should they feel it would benefit their manuscript. Such services include

those provided by our affiliates Nature Research Editing Service and American Journal

Experts. Please note that the use of Nature Research Editing Service is at the author's

own expense and in no way implies that the article will be selected for peer review or

accepted for publication.

Methods

Where appropriate, we recommend that authors limit their Methods section to 1,500

words. Authors must ensure that their Methods section includes adequate

experimental and characterization data necessary for others in the field to reproduce

67

their work. Descriptions of standard protocols and experimental procedures should be

given. Commercial suppliers of reagents or instrumentation should be identified only

when the source is critical to the outcome of the experiments. Sources for kits should

be identified. Experimental protocols that describe the synthesis of new compounds

should be included. The systematic name of the compound and its bold Arabic numeral

are used as the heading for the experimental protocol. Thereafter, the compound is

represented by its assigned bold numeral. Authors should describe the experimental

protocol in detail, referring to amounts of reagents in parentheses, when possible (eg

1.03 g, 0.100 mmol). Standard abbreviations for reagents and solvents are

encouraged. Safety hazards posed by reagents or protocols should be identified

clearly. Isolated mass and percent yields should be reported at the end of each

protocol.

References

References will not be copy edited by Scientific Reports. References will be linked

electronically to external databases where possible, making correct formatting of the

references essential.

References should be numbered sequentially, first throughout the text, then in tables,

followed by figures; that is, references that only appear in tables or figures should be

last in the reference list. Only one publication is given for each number. Only papers

that have been published or accepted by a named publication or recognized preprint

server should be in the numbered list; preprints of accepted papers in the reference

list should be submitted with the manuscript. Published conference abstracts and

numbered patents may be included in the reference list. Grant details and

acknowledgments are not permitted as numbered references. Footnotes are not used.

BibTeX (.bib) bibliography files cannot be accepted. LaTeX submission must either

contain all references within the manuscript .tex file itself, or (for authors using the

Overleaf template) can include the .bbl file generated during the compilation process

as a ‘related manuscript file’ (see the "Format of manuscripts" section for more details).

Scientific Reports uses standard Nature referencing style. All authors should be

included in reference lists unless there are six or more, in which case only the first

68

author should be given, followed by 'et al.'. Authors should be listed last name first,

followed by a comma and initials (followed by full stops) of given names. Article titles

should be in Roman text, only the first word of the title should have an initial capital

and the title should be written exactly as it appears in the work cited, ending with a full

stop. Book titles should be given in italics and all words in the title should have initial

capitals. Journal names are italicized and abbreviated (with full stops) according to

common usage. Volume numbers and the subsequent comma appear in bold. The full

page range should be given (or article number), where appropriate.

Published papers:

Printed journals

Schott, D. H., Collins, R. N. & Bretscher, A. Secretory vesicle transport velocity in living

cells depends on the myosin V lever arm length. J. Cell Biol. 156, 35-39 (2002).

Online only

Bellin, D. L. et al. Electrochemical camera chip for simultaneous imaging of multiple

metabolites in biofilms. Nat. Commun. 7, 10535; 10.1038/ncomms10535 (2016).

For papers with more than five authors include only the first author’s name followed by

‘et al.’.

Books:

Smith, J. Syntax of referencing in How to reference books (ed. Smith, S.) 180-181

(Macmillan, 2013).

Online material:

Manaster, J. Sloth squeak. Scientific American Blog Network

http://blogs.scientificamerican.com/psi-vid/2014/04/09/sloth-squeak (2014).

69

Acknowledgements

Acknowledgements should be brief, and should not include thanks to anonymous

referees and editors, or effusive comments. Grant or contribution numbers may be

acknowledged. Assistance from medical writers, proof-readers and editors should also

be acknowledged here.

Author contributions

Scientific Reports requires an Author Contribution Statement as described in the

Author responsibilities section of our Editorial and Publishing Policies.

Competing financial interests

A competing financial interests statement is required for all accepted papers published

in Scientific Reports. If there is no conflict of interest, a statement declaring this will still

be included in the paper.

Supplementary Information

Any Supplementary Information should be submitted with the manuscript and will be

sent to referees during peer review. It is published with the online version of accepted

manuscripts. We request that authors avoid "data not shown" statements and instead

include data necessary to evaluate the claims of the paper as Supplementary

Information. Supplementary Information is not edited, typeset or proofed, so authors

should ensure that it is clearly and succinctly presented at initial submission, and that

the style and terminology conform to the rest of the paper. Authors should include the

title of the manuscript and full author list on the first page.

The guidelines below detail the creation, citation and submission of Supplementary

Information - publication may be delayed if these are not followed correctly. Please

note that modification of Supplementary Information after the paper is published

requires a formal correction, so authors are encouraged to check their Supplementary

Information carefully before submitting the final version.

1. Where possible, Supplementary Information (text, tables and images) should be

combined and supplied as a single file, preferably in PDF format. If necessary,

we can also accept supplementary videos, spreadsheets or data files as

70

separate files.

2. Designate each item as Supplementary Table, Figure, Video, Audio, Note,

Data, Discussion, Equations or Methods, as appropriate. Number

Supplementary Tables and Figures as, for example, "Supplementary Table S1".

This numbering should be separate from that used in tables and figures

appearing in the main article. Supplementary Note or Methods should not be

numbered; titles for these are optional.

3. Refer to each piece of supplementary material at the appropriate point(s) in the

main article. Be sure to include the word "Supplementary" each time one is

mentioned. Please do not refer to individual panels of supplementary figures.

4. Use the following examples as a guide (note: abbreviate "Figure" as "Fig." when

in the middle of a sentence): "Table 1 provides a selected subset of the most

active compounds. The entire list of 96 compounds can be found as

Supplementary Table S1 online." "The biosynthetic pathway of L-ascorbic acid

in animals involves intermediates of the D-glucuronic acid pathway (see

Supplementary Fig. S2 online). Figure 2 shows..."

5. Remember to include a brief title and legend (incorporated into the file to appear

near the image) as part of every figure submitted, and a title as part of every

table.

6. File sizes should be as small as possible, with a maximum size of 50 MB, so

that they can be downloaded quickly.

Further queries about submission and preparation of Supplementary Information

should be directed to email: [email protected].

Figure Legends

Figure legends begin with a brief title sentence for the whole figure and continue with

a short description of what is shown in each panel in sequence and the symbols used;

methodological details should be minimised as much as possible. Each legend must

71

total no more than 350 words. Text for figure legends should be provided in numerical

order after the references.

Tables

Please submit tables in your main article document in an editable format (Word or

TeX/LaTeX, as appropriate), and not as images. Tables that include statistical analysis

of data should describe their standards of error analysis and ranges in a table legend.

Equations

Equations and mathematical expressions should be provided in the main text of the

paper. Equations that are referred to in the text are identified by parenthetical numbers,

such as (1), and are referred to in the manuscript as "equation (1)".

If your manuscript is or will be in .docx format and contains equations, you must follow

the instructions below to make sure that your equations are editable when the file

enters production.

If you have not yet composed your article, you can ensure that the equations in your

.docx file remain editable in .doc by enabling "Compatibility Mode" before you begin.

To do this, open a new document and save as Word 97-2003 (*.doc). Several features

of Word 2007/10 will now be inactive, including the built-in equation editing tool. You

can insert equations in one of the two ways listed below.

If you have already composed your article as .docx and used its built-in equation editing

tool, your equations will become images when the file is saved down to .doc. To resolve

this problem, re-key your equations in one of the two following ways.

1. Use MathType to create the equation. MathType is the recommended method

for creating equations.

2. Go to Insert > Object > Microsoft Equation 3.0 and create the equation.

If, when saving your final document, you see a message saying "Equations will be

converted to images", your equations are no longer editable and we will not be able to

72

accept your file.

General figure guidelines

Authors are responsible for obtaining permission to publish any figures or illustrations

that are protected by copyright, including figures published elsewhere and pictures

taken by professional photographers. The journal cannot publish images downloaded

from the internet without appropriate permission.

Figures should be numbered separately with Arabic numerals in the order of

occurrence in the text of the manuscript. When appropriate, figures should include

error bars. A description of the statistical treatment of error analysis should be included

in the figure legend. Please note that schemes are not used; sequences of chemical

reactions or experimental procedures should be submitted as figures, with appropriate

captions. A limited number of uncaptioned graphics depicting chemical structures -

each labelled with their name, by a defined abbreviation, or by the bold Arabic numeral

- may be included in a manuscript.

Figure lettering should be in a clear, sans-serif typeface (for example, Helvetica); the

same typeface in the same font size should be used for all figures in a paper. Use

'symbols' font for Greek letters. All display items should be on a white background, and

should avoid excessive boxing, unnecessary colour, spurious decorative effects (such

as three-dimensional 'skyscraper' histograms) and highly pixelated computer

drawings. The vertical axis of histograms should not be truncated to exaggerate small

differences. Labelling must be of sufficient size and contrast to be readable, even after

appropriate reduction. The thinnest lines in the final figure should be no smaller than

one point wide. Authors will see a proof that will include figures.

Figures divided into parts should be labelled with a lower-case bold a, b, and so on, in

the same type size as used elsewhere in the figure. Lettering in figures should be in

lower-case type, with only the first letter of each label capitalized. Units should have a

single space between the number and the unit, and follow SI nomenclature (for

example, ms rather than msec) or the nomenclature common to a particular field.

Thousands should be separated by commas (1,000). Unusual units or abbreviations

should be spelled out in full or defined in the legend. Scale bars should be used rather

73

than magnification factors, with the length of the bar defined on the bar itself rather

than in the legend. In legends, please use visual cues rather than verbal explanations

such as "open red triangles".

Unnecessary figures should be avoided: data presented in small tables or histograms,

for instance, can generally be stated briefly in the text instead. Figures should not

contain more than one panel unless the parts are logically connected; each panel of a

multipart figure should be sized so that the whole figure can be reduced by the same

amount and reproduced at the smallest size at which essential details are visible.

Figures for peer review

At the initial submission stage authors may choose to upload separate figure files or to

incorporate figures into the main article file, ensuring that any inserted figures are of

sufficient quality to be clearly legible.

When submitting a revised manuscript all figures must be uploaded as separate figure

files ensuring that the image quality and formatting conforms to the specifications

below.

Figures for publication

Each complete figure must be supplied as a separate file upload. Multi-part/panel

figures must be prepared and arranged as a single image file (including all subparts;

a, b, c, etc.). Please do not upload each panel individually.

Please read the digital images integrity and standards section of our Editorial and

Publishing Policies. When possible, we prefer to use original digital figures to ensure

the highest-quality reproduction in the journal. For optimal results, prepare figures to

fit A4 page-width. When creating and submitting digital files, please follow the

guidelines below. Failure to do so, or to adhere to the following guidelines, can

significantly delay publication of your work.

Authors are responsible for obtaining permission to publish any figures or illustrations

that are protected by copyright, including figures published elsewhere and pictures

taken by professional photographers. The journal cannot publish images downloaded

74

from the internet without appropriate permission.

Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

1. Line art, graphs, charts and schematics

For optimal results, all line art, graphs, charts and schematics should be supplied in

vector format, such as EPS or AI, and should be saved or exported as such directly

from the application in which they were made. Please ensure that data points and axis

labels are clearly legible.

2. Photographic and bitmap images

All photographic and bitmap images should be supplied in a bitmap image format such

as tiff, jpg, or psd. If saving tiff files, please ensure that the compression option is

selected to avoid very large file sizes.

Please do not supply Word or Powerpoint files with placed images. Images can be

supplied as RGB or CMYK (note: we will not convert image colour modes).

Figures that do not meet these standards will not reproduce well and may delay

publication until we receive high-resolution images.

3. Chemical structures

Chemical structures should be produced using ChemDraw or a similar program. All

chemical compounds must be assigned a bold, Arabic numeral in the order in which

the compounds are presented in the manuscript text. Structures should then be

exported into a 300 dpi RGB tiff file before being submitted.

4. Stereo images

Stereo diagrams should be presented for divergent 'wall-eyed' viewing, with the two

panels separated by 5.5 cm. In the final accepted version of the manuscript, the stereo

images should be submitted at their final page size.

Statistical guidelines

75

Every article that contains statistical testing should state the name of the statistical test,

the n value for each statistical analysis, the comparisons of interest, a justification for

the use of that test (including, for example, a discussion of the normality of the data

when the test is appropriate only for normal data), the alpha level for all tests, whether

the tests were one-tailed or two-tailed, and the actual P value for each test (not merely

"significant" or "P < 0.05"). It should be clear what statistical test was used to generate

every P value. Use of the word "significant" should always be accompanied by a P

value; otherwise, use "substantial," "considerable," etc.

Data sets should be summarized with descriptive statistics, which should include the n

value for each data set, a clearly labelled measure of centre (such as the mean or the

median), and a clearly labelled measure of variability (such as standard deviation or

range). Ranges are more appropriate than standard deviations or standard errors for

small data sets. Graphs should include clearly labelled error bars. Authors must state

whether a number that follows the ± sign is a standard error (s.e.m.) or a standard

deviation (s.d.).

Authors must justify the use of a particular test and explain whether their data conform

to the assumptions of the tests. Three errors are particularly common:

Multiple comparisons: When making multiple statistical comparisons on a single

data set, authors should explain how they adjusted the alpha level to avoid an

inflated Type I error rate, or they should select statistical tests appropriate for

multiple groups (such as ANOVA rather than a series of t-tests).

Normal distribution: Many statistical tests require that the data be approximately

normally distributed; when using these tests, authors should explain how they

tested their data for normality. If the data do not meet the assumptions of the

test, then a non-parametric alternative should be used instead.

Small sample size: When the sample size is small (less than about 10), authors

should use tests appropriate to small samples or justify their use of large-sample

tests.

76

There is a checklist available to help authors minimize the chance of statistical errors.

Chemical and biological nomenclature and abbreviations

Molecular structures are identified by bold, Arabic numerals assigned in order of

presentation in the text. Once identified in the main text or a figure, compounds may

be referred to by their name, by a defined abbreviation, or by the bold Arabic numeral

(as long as the compound is referred to consistently as one of these three).

When possible, authors should refer to chemical compounds and biomolecules using

systematic nomenclature, preferably using IUPAC. Standard chemical and biological

abbreviations should be used. Unconventional or specialist abbreviations should be

defined at their first occurrence in the text.

Gene nomenclature

Authors should use approved nomenclature for gene symbols, and use symbols rather

than italicized full names (for example Ttn, not titin). Please consult the appropriate

nomenclature databases for correct gene names and symbols. A useful resource is

LocusLink.

Approved human gene symbols are provided by HUGO Gene Nomenclature

Committee (HGNC), e-mail: [email protected]; see also www.genenames.org.

Approved mouse symbols are provided by The Jackson Laboratory, email:

[email protected]; see also www.informatics.jax.org/mgihome/nomen.

For proposed gene names that are not already approved, please submit the gene

symbols to the appropriate nomenclature committees as soon as possible, as these

must be deposited and approved before publication of an article.

Avoid listing multiple names of genes (or proteins) separated by a slash, as in

'Oct4/Pou5f1', as this is ambiguous (it could mean a ratio, a complex, alternative

names or different subunits). Use one name throughout and include the other at first

mention: 'Oct4 (also known as Pou5f1)'.

77

Characterization of chemical and biomolecular materials

Scientific Reports is committed to publishing technically sound research. Manuscripts

submitted to the journal will be held to rigorous standards with respect to experimental

methods and characterization of new compounds. Authors must provide adequate data

to support their assignment of identity and purity for each new compound described in

the manuscript. Authors should provide a statement confirming the source, identity and

purity of known compounds that are central to the scientific study, even if they are

purchased or resynthesized using published methods.

1. Chemical identity

Chemical identity for organic and organometallic compounds should be established

through spectroscopic analysis. Standard peak listings (see formatting guidelines

below) for 1H NMR and proton-decoupled 13C NMR should be provided for all new

compounds. Other NMR data should be reported (31P NMR, 19F NMR, etc.) when

appropriate. For new materials, authors should also provide mass spectral data to

support molecular weight identity. High-resolution mass spectral (HRMS) data are

preferred. UV or IR spectral data may be reported for the identification of characteristic

functional groups, when appropriate. Melting-point ranges should be provided for

crystalline materials. Specific rotations may be reported for chiral compounds. Authors

should provide references, rather than detailed procedures, for known compounds,

unless their protocols represent a departure from or improvement on published

methods.

2. Combinational compound libraries

Authors describing the preparation of combinatorial libraries should include standard

characterization data for a diverse panel of library components.

3. Biomolecular identity

For new biopolymeric materials (oligosaccharides, peptides, nucleic acids, etc.), direct

structural analysis by NMR spectroscopic methods may not be possible. In these

cases, authors must provide evidence of identity based on sequence (when

appropriate) and mass spectral characterization.

4. Biological constructs

78

Authors should provide sequencing or functional data that validates the identity of their

biological constructs (plasmids, fusion proteins, site-directed mutants, etc.) either in

the manuscript text or the Methods section, as appropriate.

5. Sample purity

Evidence of sample purity is requested for each new compound. Methods for purity

analysis depend on the compound class. For most organic and organometallic

compounds, purity may be demonstrated by high-field 1H NMR or 13C NMR data,

although elemental analysis (±0.4%) is encouraged for small molecules. Quantitative

analytical methods including chromatographic (GC, HPLC, etc.) or electrophoretic

analyses may be used to demonstrate purity for small molecules and polymeric

materials.

6. Spectral data

Detailed spectral data for new compounds should be provided in list form (see below)

in the Methods section. Figures containing spectra generally will not be published as a

manuscript figure unless the data are directly relevant to the central conclusions of the

paper. Authors are encouraged to include high-quality images of spectral data for key

compounds in the Supplementary Information. Specific NMR assignments should be

listed after integration values only if they were unambiguously determined by

multidimensional NMR or decoupling experiments.

Authors should provide information about how assignments were made in a general

Methods section.

Example format for compound characterization data. mp: 100-102 °C (lit. 99-101 °C);

TLC (CHCl :MeOH, 98:2 v/v): R = 0.23; [α] = -21.5 (0.1 M in n-hexane); H NMR (400

MHz, CDCl ): δ 9.30 (s, 1H), 7.55-7.41 (m, 6H), 5.61 (d, J = 5.5 Hz, 1H), 5.40 (d, J =5.5

Hz, 1H), 4.93 (m, 1H), 4.20 (q, J = 8.5 Hz, 2H), 2.11 (s, 3H), 1.25 (t, J = 8.5 Hz, 3H); C

NMR (125 MHz, CDCl ): δ 165.4, 165.0, 140.5, 138.7, 131.5, 129.2, 118.6, 84.2, 75.8,

66.7, 37.9, 20.1; IR (Nujol): 1765 cm- ; UV/Vis: λ 267 nm; HRMS (m/z): [M] calcd. For

C H C NO , 420.0406; found, 420.0412; analysis (calcd., found for C H C NO ): C

(57.16, 57.22), H (3.60, 3.61), Cl (16.87, 16.88), N (3.33, 3.33), O (19.04, 19.09).

79

7. Crystallographic data for small molecules

Manuscripts reporting new three-dimensional structures of small molecules from

crystallographic analysis should include a .cif file and a structural figure with probability

ellipsoids for publication as Supplementary Information. These must have been

checked using the IUCR's CheckCIF routine, and a PDF copy of the output must be

included with the submission, together with a justification for any alerts reported.

Crystallographic data for small molecules should be submitted to the Cambridge

Structural Database and the deposition number referenced appropriately in the

manuscript. Full access must be provided on publication.

8. Macromolecular structural data

Manuscripts reporting new structures should contain a table summarizing structural

and refinement statistics. Templates are available for such tables describing NMR and

X-ray crystallography data. To facilitate assessment of the quality of the structural data,

a stereo image of a portion of the electron density map (for crystallography papers) or

of the superimposed lowest energy structures (≳10; for NMR papers) should be

provided with the submitted manuscript. If the reported structure represents a novel

overall fold, a stereo image of the entire structure (as a backbone trace) should also

be provided.