ieee pes general meeting, tampa fl june 24-28, 2007 conferência brasileira de qualidade de energia...

26
IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 1 Chapter 6: Real-Time Digital Time- Varying Harmonics Modeling and Simulation Techniques Contributors: L-F. Pak, V. Dinavahi, G. Chang, M. Steurer, S. Suryanarayanan, P. Ribeiro Tutorial on Harmonics Modeling and Simulation

Upload: joaovictor-mosca

Post on 07-Apr-2016

217 views

Category:

Documents


3 download

TRANSCRIPT

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

1

Chapter 6: Real-Time Digital Time-Varying Harmonics Modeling and Simulation Techniques

Contributors: L-F. Pak, V. Dinavahi, G. Chang, M. Steurer, S. Suryanarayanan, P. Ribeiro

Tutorial on Harmonics Modeling and Simulation

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

2

Need for Sophisticated Tools for Power Quality (PQ) Studies

Proliferation of nonlinear and time-varying loads has led to significant power quality concerns. Traditionally, time-varying harmonics were studies using statistical and probabilistic methods for periodic harmonics.

Cannot describe random characteristics Cannot capture the reality of physical phenomena. A time-dependent spectrum is needed to compute the local power-frequency distribution at each instant.

Significant advances in equipment for PQ monitoring, waveform generation, disturbance detection, and mitigation.

Digital signal processing is widely used. Sophisticated power electronic controllers are used for PQ mitigation. Need for testing and validation of such equipment.

Real-time digital simulation as an advanced tool for PQ analysis and mitigation.

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

3

Real-Time Harmonic Modeling and Simulation Techniques

Wave Digital Filters

Discrete Wavelet Transform

Real-Time Electromagnetic Transient Network Solution

Real-Time Digital Simulators

RTDS PC-Cluster Based Simulators HYPERSIM DSPACE

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

4

(c)

(b)

(a)

AnalogElement

Realization by WDFs

PortResistance

Incident andReflected waves

A

B 0R

TL

2

CT

2

A

B

T

A

B -1T

Wave Digital Filters

Digital Signal Processing tool that transforms analog networks into

topologically equivalent digital filters

Synthesis is based on wave network characterization

Designed to attain low-sensitivity structures to quantization errors in digital filter coefficients

Powerful technique for simulating power system harmonics and transients

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

5

Transient CapacitorModel

Steady-state CapacitorModel

Transient InductorModel

Steady-state InductorModel

dttdi

Ltv)()(

WWTWW VLiLIDLV 0)0(

WVLiL 0)0( TWDL

+ -+-

0cv

SWSWWS IDLV

dttdv

Cti)(

)(

TWINC1

WTWWW IINC

VCvV 10)0(

WVCv 0)0(

+ --+

SDSW IINC

1

jkv )0(0ci

SWSWS IINC

WV 1

+ -+ -+ -

( b ) ( c )

Discrete Wavelet Transform

Time-Frequency representation of time varying

signals.

Wavelet analysis starts by adopting a prototype function. Time Analysis is done with a contracted high-frequency prototype. Frequency analysis is done using a dilated low-frequency prototype.

Operator representation theory is used to model electrical componenets in discrete wavelet domain

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

6

SIEMEN

S

HiN

et WS

4400

1X

6X

13X18

7X12X

19X

24

ST

ATU

Sgree

n = enabled, link O

Kflashin

g green=disa

bled,link O

Koff = link fail

TC

VR

Module

Packet

Status

Packet

Status

13141

51618

1920

2122

2324

13141

51618

1920

2122

2324

12

34

56

78

910

1112

12

34

56

78

910

1112

1717

25X

26X

24242626

10BaseTX

/100Base T

X

PacketSta

tus

UN

IT

12

34

56

78

COL-ACT-STA-

1 2 3 4 5 6 7 8 9101112HS1 HS2 OK1 OK2 PS

CONSOLE

Hosts

Gigabit

Target Cluster

Infini-BandLink

Closed-LoopController Testing

Hardware-in-the-LoopMachine Testing

Ethernet

PC-Cluster Based Real-Time Digital Simulator

Real-Time eXperimental LABoratory (RTX-LAB) at the University of Alberta.

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

7

Fully Flexible and scalable

Fast FPGA based analog and digital I/O and high intra-node communication speed

Varity of synchronization options

Compatible with MATLAB/SIMULINK and other programming languages

Features of the RTX-LAB Simulator

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

8

Target Cluster

Hosts

External Hardware

External Hardware

Host 1

FPGA 1(Signal Conditioning)

FPGA n(Signal Conditioning)

Shared

Memory

CPU1

CPU2

Cluster Node 2 (Dual XEON)

Shared

Memory

CPU1

CPU2

Cluster Node 1 (Dual XEON)

Shared

Memory

CPU1

CPU2

Cluster Node n (Dual XEON)

INFINIBAND

LINK

SIG

NAL

WIRE

GIGABIT

ETHERNET

Host 2

Host n

Two types of computers- Targets and Hosts

Targets are dual CPU based 3.0 GHZ Xeon, work as the main simulation engine and facilitates FPGA based I/Os

Hosts are 3.00 GHZ Pentium IV, used for model development, compilation and loading of the model to the cluster

Hardware Architecture of the RTX-LAB Simulator

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

9

Software Architecture of the RTX-LAB Simulator

Target Cluster

External Hardware

Hosts

SIMULINK

Intra-Node Communication

Real-Time OS- Real-Time Linux- CPU Shielding

- Parallel Simulation- Multi-Rate Simulation

- Real-Time Communication

Signal-WireReal-Time Network Interface

InfinibandCBB

(Constant Bi-Sectional Bandwidth)

Hardware Communication- A/D and D/A Conversion

- Signal Conditioning- Fast DMA Burst Transfer

Using FPGA

Model DevelopmentSystem ModelControl Model

S-functionCustom Solver

Real-Time Communication

SchedulingData Acquisition

I/O Management

TCP/IP SIMULINKLabViewPythonOthers

GUI

CompilationReal-Time

Workshop (RTW)

Cluster NodeTarget OS- RedHawk Linux

Host OS- Windows XP

Model Development- MATLAB/SIMULINK Other programming

Languages C, C++

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

10

InfiniBand Link Maximum Throughput- 10Gbps

Shared Memorybus speed – 2.67Gbps

Signal Wire LinkData Transfer rate-1.2Gbps

Gigabit Ethernet linkTransfer Rate- Up to 1Gbps

I/O signals from real-hardware are connected through FPGA based I/Os

Xilinx Virtex-II Pro is used 100 MHZ operation speed

Communication Links in the RTX-LAB Simulator

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

11

(a)

(b)

I/O Comp. Wait for Sync

One time-step

I/O Comp. Wait for Sync

One time-step

One time-step One time-step

I/O Recv

Sen

d

One time-step

I/O Recv

Sen

d

One time-step

Master Subsystem

Slave Subsystem

I/O Comp.Wait for

SyncSen

d

Rec

v

I/O Comp.Wait for

SyncSen

d

Rec

v

ACQ

ACQ

ACQ

ACQ

ACQ

ACQ

Com

p.

Com

p.

Comp : ComputationACQ : AcquisitionRecv : ReceiveSync : Synchronization

External Hardware

Slave(Subsystem 1)

Controlsystem

Console(Subsystem 3)

User Interface

GatingPulses

Te*

m*

m

Master(Subsystem 2)

Electricalsystem

Iabc

Target Cluster Hosts

Cluster Node 1

Cluster Node 2

Host 1

Subsystems and Synchronization in the RTX-LAB Simulator

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

12

VL-L = 220 kVPower grid

RT1 = 0.002 p.u.LT1 = 0.55 p.u.

220 kV / 45 kVHV/MV Transformer

Y

RT2 = 0.002 p.u.LT2 = 0.55 p.u.

45 kV / 600 VMV/LV Transformer

Y

RS = 0.001 p.u.LS = 0.005 p.u.

Case Study 1: Time-Varying Harmonic Analysis on the RTX-LAB Real-Time Digital Simulator

Single-line Diagram of the Arc Furnace Installation

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

13

ChaoticComponentGeneration

DeterministicComponentGeneration

StochasticComponentGeneration

++

ControlledVoltage Source

Connectionto MV/LV

Transformer

Phase Current Measurement

Case Study 1: Time-Varying Harmonic Analysis on the RTX-LAB Real-Time Digital Simulator

Schematic of the Arc Furnace Model

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

14

1st

3rd

5th 7th9th

Case Study 1: Time-Varying Harmonic Analysis on the RTX-LAB Real-Time Digital Simulator

Voltage and Current for the Arc Furnace

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

15

1st

5th 7th

Case Study 1: Time-Varying Harmonic Analysis on the RTX-LAB Real-Time Digital Simulator

Voltage at the Primary Winding of the MV/LV Transformer

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

16

1st

5th

Case Study 1: Time-Varying Harmonic Analysis on the RTX-LAB Real-Time Digital Simulator

Current in the Primary Winding of the MV/LV Transformer

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

17

3PC-13PC-2

Rack 1

3PC-33PC-43PC-53PC-63PC-73PC-8

3PC-93PC-10

DOPTO-1

RPC

IRCWIF

3PC-13PC-2

Rack 2

3PC-33PC-43PC-53PC-63PC-73PC-8

3PC-9

3PC-10DOPTO-1

RPC

IRCWIF

DOPTO-2

3PC-13PC-2

Rack 3

3PC-33PC-43PC-53PC-63PC-73PC-8

3PC-93PC-10

DOPTO-1

RPC

IRCWIF

3PC-13PC-2

Rack 4

3PC-33PC-43PC-53PC-63PC-73PC-8

3PC-9

3PC-10DOPTO-1

RPC

IRCWIF

DOPTO-2

3PC-13PC-2

Rack 5

3PC-33PC-43PC-53PC-63PC-73PC-8

DOPTO-1

RPC

IRCWIF

GPC

3PC-13PC-2

Rack 6

3PC-33PC-43PC-53PC-63PC-73PC-8

RPC

IRCWIF

GPC

3PC-13PC-2

Rack 7

3PC-33PC-43PC-53PC-63PC-73PC-8

DOPTO-1

RPC

IRCWIF

GPC

3PC-13PC-2

Rack 8

3PC-33PC-43PC-53PC-63PC-73PC-8

RPC

IRCWIF

GPC

3PC-13PC-2

Rack 9

3PC-33PC-43PC-53PC-63PC-73PC-8

DOPTO-1

RPC

IRCWIF

GPC

3PC-13PC-2

Rack 10

3PC-33PC-43PC-53PC-6

IRCWIF

GPC-3

GPC-1

GPC-2

3PC-13PC-2

Rack 11

3PC-33PC-43PC-53PC-6

IRCWIF

GPC-2

GPC-1

3PC-13PC-2

Rack 12

3PC-33PC-43PC-53PC-6

IRCWIF

GPC-2

GPC-1

3PC-13PC-2

Rack 13

3PC-33PC-43PC-53PC-6

IRCWIF

GPC-2

GPC-1

3PC-13PC-2

Rack 14

3PC-33PC-43PC-53PC-6

IRCWIF

GPC-2

GPC-1

• Provides time domain solution in real time with typical time step sizes around 50 μs using the Dommel (EMTP) algorithm

• Features dual time step (<2 μs) capability for PE simulations• Allows up to 54 electrical nodes per rack, but subsystems can be connected through cross-rack

elements (transmission lines, etc.)• Large library of power system and control component models (like EMTDC)• > 350 parallel DSPs• > 2500 analog outputs and over 200 digital inputs and outputs

RPC – Network SolutionIRC – Inter-rack Communication

WIF – Workstation Interface3PC – Controls, system dynamics

GPC – Network solution, fast-switching converters

RTDS at CAPS

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

18

• Largest RT simulator installation in any university worldwide• Systems of up to 250 three-phase buses• Sufficient high-speed I/O to enable realistic HIL and PHIL experiments

14 Rack RTDS Installation at CAPS

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

19

(Controller) hardware in loop (HIL) and power hardware in loop PHIL

Real Time Digital Simulator

Universalcontroller

D/A

A/D Protection relay

M

AC/AC power converter (Motor Drive)

External Hardware

System Data in Simulation

Hardware response

MG

G

G

Controller

Relay

DC Load

Simulated rest of system

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

20

IndustryDC

Load

Real-Time Digital Simulation on RTDSTM

+

-

RL =0.48 LL =1.00 mH

RT = 0.05 p.u.LT = 0.005 p.u.

Rsource = 0.05 p.u.Lsource = 0.005 p.u.

VL-L = 12.47 kV 12.47 kV / 480 VPower Grid Distribution Transformer

6-pulseThyristor Rectifier

YY

Enerpro® FCOF 6100 Three-PhaseThyristor Firing BoardTested Hardware

VoltageSensing

GatingPulses

Case Study 2: Power Quality Sensitivity Study of a Controller on the RTDS

Schematic of the Industrial Distribution System and Rectifier Load

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

21

0.05 0.1 0.15 0.2 0.25

-10

-5

0

5

10

P r i m

a r y

v o l

t a g e

( k V

)

0.05 0.1 0.15 0.2 0.25 0

0.1

0.2

0.3

0.4

Time (s)

D C

v o l

t a g e

( k V

)

Case Study 2: Power Quality Sensitivity Study of a Controller on the RTDS

Single-phase Voltage Sag (40% reduction, no phase shift) and its Impact on Rectifier DC Output

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

22

0.05 0.1 0.15 0.2 0.25

-10

-5

0

5

10

P r i m

a r y

v o l t a

g e (

k V )

0.05 0.1 0.15 0.2 0.25 0

0.1

0.2

0.3

0.4

Time (s)

D C

v o l

t a g

e ( k

V )

Case Study 2: Power Quality Sensitivity Study of a Controller on the RTDS

Phase-Shifted Single-phase Voltage Sag (40% reduction) and its Impact on Rectifier DC Output

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

23

0 0.01 0.02 0.03 0.04 0.05-5

0

5

time (s)

Vol

tage

(kV

)

0 500 1000 1500 20000

0.05

0.1

frequency (Hz)Vol

tage

Mag

nitu

ed (k

V)

Voltage (kV)

Case Study 3: Harmonic Distortion on the RTDSShipboard Power System

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

24

G M

GM

Wind Speed

Local Load

Capacitor Bank

SubstationLine Impedance

System Simulated in Real Time Simulator

To change the stiffness of the grid For reactive

power compensation

User Interaction

Simulated Wind Turbine Model

VSD

VSD

Rotor torque

iGT

Case Study 4: A HIL Simulation for Studying the Transient Behavior of Wind DG

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

25

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2-0.1

-0.05

0

0.05

0.1

time (s)

curre

nt (k

A)

Simulation generator current

0 2 4 6 8 10 12 14 16 18 200

0.05

0.1

Order of Harmonic

Mag

nitu

de

Normalized FFT of the Current

Case Study 4: A HIL Simulation for Studying the Transient Behavior of Wind DG

IEEE PES General Meeting, Tampa FLJune 24-28, 2007

Conferência Brasileira de Qualidade de EnergiaSantos, São Paulo, Agosto 5-8, 2007

26

Conclusions

With rising number of time-varying and nonlinear loads sophisticated harmonics modeling and simulation tools are needed.

A combination of fast topological methods and powerful real-time simulators can overcome limitations of off-line simulation tools.

A general review of current off-line harmonic modeling and simulation tools is presented.

Currently available real-time simulation techniques are discussed.

Two real-time case studies: arc furnace modeling and power quality sensitivity of a controller, are presented.