fainor sapatas - estacas - tubulões

27
Sapatas Cáp 03 Tab. 3.3.1.3 Pressões (admissíveis) NBR 6122 - SPT=N 72 Ampliada por Berberian (2011) CLASSE DESCRIÇÃO MPa Kg/cm 2 1 Rocha sã, maciça, sem laminações ou sinais de decomposição 3,0 30 2 Rochas estratificadas, com pequenas fissuras, 1,5 15 3 Rochas alteradas ou em decomposição (Saprolito) Ver nota 3 4 Solo granulares concrecionado conglomerado 1,0 10 5 Solo pedregulhoso Compactos a Muito Compactos 0,6 6,0 6 Solo pedregulhoso fofo 0,3 3,0 Areias 7 S Areia Muito Compacta SPT >40 0,5 5,0 8 S Areia Compacta 19 SPT < 40 0,4 4,0 9 S Areia Mediamente Compacta 9 SPT < 19 0,2 2,0 10 S5C Areia Argilosa Mto. Comp SPT > 40 0,4 4,0 11 S5C Areia Argilosa Comp 19 SPT < 40 0,3 3,0 12 S Areia Medianamente. Comp 9 SPT < 19 0,4 1,5 13 SMC Areia Silto Argilosa Mto Comp SPT > 40 0,4 4,0 14 SMC Areia Silto Argilosa Comp. 19 SPT < 40 0,3 3,0 15 S5M Areia Siltosa Med. Comp 9 SPT < 19 0,15 1,5 Argilas 16 C Argila Dura 20 SPT < 50 0,3 3,0 17 C Argila Rija 11 SPT < 20 0,2 2,0 18 C Argila Média 6 SPT < 10 0,1 1,0 19 C5S Argila Arenosa Dura 20 SPT < 50 0,4 4,0 20 C5S Argila Arenosa Rija 11 SPT < 20 0,3 3,0 21 C5S Argila Arenosa Media 6 SPT < 10 0,15 1,5 22 C5M Argila Siltosa Dura 20 SPT < 50 0,4 4,0 23 C5M Argila Arenito Siltoso Rija 10 SPT < 20 0,3 3,0 24 C5M Argila Siltoso Média 6 SPT <10 0,15 1,5 Siltes 25 M Silte Duro 20 SPT < 50 0,3 3,0 26 M Silte Rijo 11 SPT < 20 0,2 2,0 27 M Silte 6 SPT < 10 0,1 1,0 28 M5S Silte Arenoso Mto. Comp. SPT > 40 0,4 4,0 29 M5S Silte Arenoso Compacto 19 SPT < 40 0,3 3,0 30 M5S Silte Arenoso Med. Comp 9 SPT < 19 0,15 1,5 31 M5C Silte Argiloso Duro 20 SPT < 50 0,3 3,0 32 M5C Silte Argiloso Rígido 11 SPT < 20 0,2 2,0 33 M5C Silte Argiloso Médio 6 SPT < 10 0,1 1,0

Upload: ramon-dutra-lobo-lobo

Post on 23-Jun-2015

764 views

Category:

Engineering


44 download

TRANSCRIPT

Page 1: Fainor   sapatas - estacas - tubulões

Sapatas Cáp 03

Tab. 3.3.1.3 Pressões (admissíveis) NBR 6122 - SPT=N72 Ampliada por Berberian (2011)

CLASSE

DESCRIÇÃO

MPa

Kg/cm

2

1 Rocha sã, maciça, sem laminações ou sinais de decomposição

3,0

30

2 Rochas estratificadas, com pequenas fissuras, 1,5 15

3 Rochas alteradas ou em decomposição (Saprolito) Ver nota 3

4 Solo granulares concrecionado conglomerado 1,0 10

5 Solo pedregulhoso Compactos a Muito Compactos 0,6 6,0

6 Solo pedregulhoso fofo 0,3 3,0

Areias

7 S Areia Muito Compacta SPT >40 0,5 5,0

8 S Areia Compacta 19 SPT < 40 0,4 4,0

9 S Areia Mediamente Compacta 9 SPT < 19 0,2 2,0

10 S5C Areia Argilosa Mto. Comp SPT > 40 0,4 4,0

11 S5C Areia Argilosa Comp 19 SPT < 40 0,3 3,0

12 S Areia Medianamente. Comp 9 SPT < 19 0,4 1,5

13 SMC Areia Silto Argilosa Mto Comp SPT > 40 0,4 4,0

14 SMC Areia Silto Argilosa Comp. 19 SPT < 40 0,3 3,0

15 S5M Areia Siltosa Med. Comp 9 SPT < 19 0,15 1,5

Argilas

16 C Argila Dura 20 ≤ SPT < 50 0,3 3,0

17 C Argila Rija 11 ≤ SPT < 20

0,2 2,0

18 C Argila Média 6 ≤ SPT < 10 0,1 1,0

19 C5S Argila Arenosa Dura 20 SPT < 50 0,4 4,0

20 C5S Argila Arenosa Rija 11 SPT < 20 0,3 3,0

21 C5S Argila Arenosa Media 6 SPT < 10 0,15 1,5

22 C5M Argila Siltosa Dura 20 SPT < 50 0,4 4,0

23 C5M Argila Arenito Siltoso Rija 10 SPT < 20 0,3 3,0

24 C5M Argila Siltoso Média 6 SPT <10 0,15 1,5

Siltes

25 M Silte Duro 20 SPT < 50 0,3 3,0

26 M Silte Rijo 11 ≤ SPT < 20 0,2 2,0

27 M Silte 6 ≤ SPT < 10 0,1 1,0

28 M5S Silte Arenoso Mto. Comp. SPT > 40 0,4 4,0

29 M5S Silte Arenoso Compacto 19 ≤ SPT < 40 0,3 3,0

30 M5S Silte Arenoso Med. Comp 9 ≤ SPT < 19 0,15 1,5

31 M5C Silte Argiloso Duro 20 ≤ SPT < 50 0,3 3,0

32 M5C Silte Argiloso Rígido 11 ≤ SPT < 20 0,2 2,0

33 M5C Silte Argiloso Médio 6 ≤ SPT < 10 0,1 1,0

Page 2: Fainor   sapatas - estacas - tubulões

Tab.3. 3.1.5 Valores de KBerb, Segundo Berberian

SOLO

Solo

Berb. Solo

Aok/Ve Solo Berb.

Solo USCS kBerb

Kg/cm2

Areia ( Sand ) S 100 1 S 5,7

Areia Mto Pouco Siltosa S3M 120 2 SM 5,7

Areia Pouco Siltosa S4M 120 3 SM 5,9

Areia Siltosa S5M 120 4 SM 6,0

Areia Muito Siltosa S6M 120 5 SM 6,2

Areia Silto Argilosa SMC 123 6 SMC 6,2

Areia Mto Pouco Argilosa S3C 132 7 SC 5,9

Areia Pouco Argilosa S4C 130 8 SC 6,2

Areia Argilosa S5C 130 9 SC 6,4

Areia Muito Argilosa S6C 130 10 SC 5,6

Areia Argilo Siltosa SCM 130 11 SCM 5,3

SOLO

Solo

Berb. Solo

Aok/Ve Solo Berb.

Solo USCS kBerb

Kg/cm2

Silte ( Mó ) M 200 12 M 6,0

Silte Muito Pouco Aren. M3S 210 13 MS 5,7

Silte Pouco Arenoso M4S 210 14 MS 5,7

Silte Arenoso M5S 210 15 MS 4,3

Silte Muito Arenoso M6S 210 16 MS 5,6

Silte Areno Argiloso MSC 213 17 MC 5,9

Silte Muito Pouco Argil. M3C 230 18 MC 6,2

Silte Pouco Argiloso M4C 230 19 MC 6,2

Silte Argiloso M5C 230 20 MC 5,9

Silte Muito Argiloso M6C 230 21 MC 6,2

Silte Argilo Arenoso M5C5S 231 22 MCS 6,4

SOLO

Solo

Berb. Solo

Aok/Ve Solo Berb.

solo USCS kBerb

Kg/cm2

Argila ( Clay ) C 300 23 C 6,7

Argila Mto Pouco Aren. C3S 310 24 C5 6,6

Argila Pouco Arenosa C4S 310 25 CS 6,2

Argila Arenosa C5S 310 26 CS 5,7

Argila Muito Arenosa C6S 310 27 CS 5,7

Argila Areno Siltosa C5S5M 312 28 CSM 5,6

Argila Mto Pouco Siltosa C3M 320 29 CM 6,2

Argila Pouco Siltosa C4M 320 30 CM 5,2

Argila Siltosa C5M 320 31 CM 6,2

Argila Muito Siltosa C6M 320 32 CM 5,7

Argila Silto Arenosa

Turfa

CMS Pt

321 -

33 34

CMS Pt

4,3 0,0

Condicionantes

1. SPT ≤ 50

2. O autor não recomenda implantar sapata em areia com menos de 15 golpes no SPT

e menos de 20 golpes em argilas.Abaixo destes valores é preciso consulltar a experiência

loca para obras semelhantes após vários anos submetida a garga plena.l

3. Para capacidade de carga admissível considera-se um fator de segurança

FS = 3,0 aplicada ao valor da tensão de rutura - ELU (estado de limite último).

Page 3: Fainor   sapatas - estacas - tubulões

a = N72 / KBerb. a = em Kg/cm² ou a = 100 N72 / KB em KPa

METODO 04: Albieiro e Cintra (1996) - Solo Qualquer

Albieiro e Cintra recomendam como sendo a prática de projetos para tensão

admissível no Brasil,:

σa = (N72 / 5 ) em Kg/cm²

σa = (N72 / 0,05) em KPa

σa KPa tensão admissível para base de sapatas

N72 adm número de golpes médio da sondagem SPT brasileira, na camada de apoio da

sapatas , com espessura aprox. igual a 1,5 a 2 vezes ao provável diâmetro da base.

MÉTODO 05: Recomendações de Terzaghi e Peck (1962): Solos Arenosos

Pontos a ponderar

1. Terzaghi construiu este ábaco (Fig.3.3.1.6) de tal forma que nas areias o

recalque para a pressão admissível a fosse igual a 2,5 cm.

2. Na Fig.3.3.1.6, os valores do SPT deverão acompanhar a curva

correspondente inclusive para os valores interpolados, ate interceptar o eixo

vertical da largura B da sapata. A tensão admissível será então lida na

horizontal

3. A recomendação de Terzaghi e Peck resulta em valores considerados de uma

maneira geral conservativos, mas ainda hoje não podem deixar de ser

referencia.

Condicionantes

1. Solos Granulares

2. Numericamente a recomendação de Terzaghi mostrada na Fig 3.3.1.6

pode ser expressa por:

2

2B30)+(B

10

3)60

(N4,4=

admσ

-

adm.

kg/cm2 Taxa do Terreno ou Capacidade de Carga Admissível

N60 . golpes SPT (USA) com 60% de eficiência e N72 , SPT brasileiro com = 72%

B . cm Menor dimensão ou diâmetro da sapata

Para os casos onde não se desejar o valor da pressão admissível para

recalques diferentes de 2,5 cm, como pré-estipulou Terzaghi, pode-se obtê-la para

outro valor recalque, da seguinte forma:

)1(raσ.2,5r=(r)aσ

Page 4: Fainor   sapatas - estacas - tubulões

a(r1)

Fig. 3.3.1.6 Método de Terzaghi

sendo:

a(r) . kg/cm2 Pressão admissível para o recalque desejado

r . cm

Recalque desejado qualquer

a(r1) . kg/cm

2 Pressão admissível para recalque r1 = 2,5cm.

q a Kpa

Tensão admissível do solo

Zf . adm Profundidade da sapata

B

N55 .

. cm

. golpes

Menor dimensão (ou diâmetro) da sapata

SPT médio, com eficiência de 55%, obtido a 0,5B acima e 2B abaixo da base.

F1 . adm Fator de correção, função única da eficiência da sondagem.

F2 . adm Fator de correção, função única eficiência da sondagem.

F3 . cm Penetração padrão do SPT (30cm ou 1 pé)

Fatores

F

Sondagens Metodologias

Brasil N72 USA N60

F1 0,05 0,04

0 1.0 2.0 3.0 4.0 5.0 6.0

10

15

20

25

30

35

40

45

50

N72

LARGURA da SAPATA em MEROS . B m

0

1

2

3

4

5

6

7

N60

12

18

24

30

36

42

48

54

60

N60 (U

SA

)/1,2

= N

72 S

PT

(B

rasil)

-

1 k

g/c

= 1

00 K

Pa

Muito Compacta

Compacta

Média

Fofa

Tab. 3.3.1.8 Fatores de Correção do SPT. Bowles/Meyerhof

Page 5: Fainor   sapatas - estacas - tubulões

F2 0,08 0,06

F3 33 cm 33 cm (1 pé)

MÉTODO 07: Recomendações de Parry (1977) - Solos Arenosos - ZfB

Parry recomenda para solos arenosos, e sapatas com profundidades

Zf < B:

a = 0,12 N72 em km/cm2

SPT . adm obtido no ensaio brasileiro N72 tomado como a média dos golpes dentro da zona de plastificação Zp (B abaixo da base).

MÉTODO 08: Recomendações de Milton Vargas(1960) – Todos os Solos

a=N72/K em Kg/cm²

Tab. 3.3.1.9 Fatores Empíricos de Vargas

KMV = 5 para areias (S) KMV = 5,5 areias siltosas S3M, S4M, S5M, S6M, S7M

KMV = 6 para siltes (M) KMV = 6,5 siltes argilosos M3C, M4C, M5C, M6C,M7C

KMV = 7 para argilas (C) KMV = 6,0 areias argilosas S3C, S4C, S5C, S6C, S7C

MÉTODO 09: Recomendações de Teixeira (1996) - Argilas e Areias de São Paulo

Pontos a ponderar

1. Para solos argilosos da bacia terciária, pouco a medianamente plásticos

(IP < 30%) e de atividade coloidal inativa.

2. Teixeira recomenda adotar-se uma tensão admissível, considerando-se

coeficiente de segurança 3 em relação a rutura:

a = N72 / 5 em Kg/cm² com 5 <N72<20 ou a = 100 N72 / 5 em Kpa

Condicionantes

1. Areias da Bacia de São Paulo

2. Não se recomenda utilizar estes valores para as argilas porosas vermelhas.

3. Para sapatas quadradas de lado B (entre 1 e 3m)

4. Assente sobre solo com peso específico natural = 1,80 t/m3

5. Assente a profundidades de 1,5m

6. 5 < N72 < 25

Considerando o ângulo de atrito interno dado por:

)°15+(20.N ( =φ

Page 6: Fainor   sapatas - estacas - tubulões

a = 0,5 + (0,1 + 0,04B) N72 em Kg/cm²

a = 50 + (10 + 4B) N72 em Kpa com B em metros

MÉTODO 10: Recomendações de Terzaghi e Peck (1962) - Solos Argilosos e

Arenosos

Pontos a ponderar

1. As tabelas de pressões admissíveis apresentadas a seguir tomaram como base

(para efeito dos recalques e da forma) sapatas quadradas de 3m x 3m

Tab. 3.3.1.10 Pressões Admissíveis para Sapatas em Argilas

ARGILAS sapatas quadradas

SPT (N72) Consistências

a kg/cm

2

0 a 2 3 a 5 6 a 9 9 a 16 16 a 30

30

Muito mole

Mole Média Rija Dura Muito Dura

0 - 0,45 0,45 - 0,90 0,90 - 1,80 1,80 - 3,60 3,60 - 7,20

> 7,20

Tab. 3.3.1.12 Pressões Admissíveis para Sapatas em Areias

AREIAS

SPT . N72

Compacidade a kg/cm2

0 a 4 5 a 10 11 a 30 31 a 50

50

Muito fofa

Fôfa Média Compacta Muito Compacta

------- 0,8 0,8 - 3,0 3,0 - 5,0

> 5,0

Condicionantes

1. Quando o nível do lençol freático atinge a CAF - Cota de Assentamento da

Fundação, os valores das Tab. 3.3.9 e Tab. 3.3.10 devem ser reduzidos.

2. Os autores não recomendam implantar-se fundações em terrenos com SPT

inferior a 4. MÉTODO 11: Recomendações de Victor de Mello (1975) : Todos os Solos

Mello (1975) relata o uso na pratica profissional, de outra correlação, sem

distinção do tipo de solo.

Condicionantes

Page 7: Fainor   sapatas - estacas - tubulões

1. 4 ≤ N72 ≤ 16

1 72N=aσ - em Kg/cm² ou 100 1 72N em KPa

ESTACAS - Cáp 06

Page 8: Fainor   sapatas - estacas - tubulões

Fig. 6.5.2 Considerações sobre as áreas de ponta e lateral

Fig. 6.5.3 Considerações sobre geometria das bases

1. Definição do que deve ser considerada como uma camada.

Como em todas as formulações dos métodos aqui analisados leva-se em conta o

SPT e o tipo de solo, sugere-se portanto para agilizar os cálculos manuais,

agrupar como sendo uma camada de calculo aquela que contenha o mesmo

solo e o mesmo SPT ( 2 golpes).

Volume da base (l)

Area da base (m²)

Db (m)

90 0,212 0,52

150 0,292 0,61

180 0,332 0,65

270 0,430 0,74

300 0,478 0,78

360 0,528 0,82

450 0,608 0,88

540 0,694 0,94

600 0,739 0,97

630 0,785 1,00

750 0,866 1,05

900 0,985 1,12

1050 1,112 1,19

Vol. Injetado e Compactado

Df

FRUSTE DA ESTACA

DIÂMETRO

DA BASE

ÁREA DA BASE

VOLUME DA BASE

(V Compactado ≅ 0,8 V-injetado)

BASE

ALARGADA

SOLO FORTEMENTE COMPACTADO

Page 9: Fainor   sapatas - estacas - tubulões

2. Para refinar as correlações, Berberian (1972) ampliou o sistema unificado de

classificação de solos, propondo:

Tab. 6.5.5 Classificação dos solos. USCS/Berberian

Tipos de Solo Intensidade de Mistura

Umidade Tactil/Visual Plasticidade

C. Argila

3. Mto. Pouco

3. Seca

L. Baixa

M. Silte 4. Pouco 4. Pouco umida H. Alta

S. Areia 5. Medianamente 5. Umida I.Intermediaria

G. Pedregulho 6. Muito 6. Muito umida

K. Argila Kaolinítica

L. Argila Laterítica

Porosa

7. Demasiadamente 7. Saturada

9. Submersa

Não se dispondo do fator de intensidade da mistura, adotar o valor 5 ou seja S5M, seria uma Areia Medianamente Siltosa, ou simplesmente SM Areia Siltosa, subtendendo tratar-se de Areia Medianamente Siltosa.

Definições:

Estacas Cravadas (de Deslocamento) são aquelas executadas sem a retirada do

solo, produzindo uma densificação (melhoria) do terreno adjacente. Enquadram-

se neste grupo as Pré-Moldadas de Concreto maciças ou vazadas, de Aço, de

Madeira, de Concreto apiloado, Tubulares com ponta fechada, Franki e Omega.

As estacas de deslocamento geram no maciço adjacente a estaca um ambiente de

Fig. 6.5.4 Camada menos resistente dentro do bulbo

de influência do grupo

Ocorrendo a existência de

camada de menor resistência

abaixo da ponta de um grupo de

estacas, e se esta camada estiver

dentro do bulbo de influência do

grupo, ver Fig. 6.5.4 , deve-se

calcular o valor da parcela de

ponta RP dentro desta camada

fraca. Este valor não poderá ser

menor do que aquele calculado

para o nível da ponta da estaca

previamente calculada. Caso

ocorra este fato, aprofunde a

estaca até que RP ou SPT seja

crescente com a profundidade,

(perfil tipicamente residual).

Page 10: Fainor   sapatas - estacas - tubulões

empuxo entre o repouso e o passivo. Décourt adota como estacas de “referência”

as estacas pré-moldadas, como consequência KPDQ = KLDQ = 1.0

Estacas Escavadas são aquelas em cuja execução o solo sai, gerando um

ambiente de empuxos próximos do ativo. Enquadram-se nesta categoria as

estacas do tipo Broca, Mini-tubulões (brocas com uma ou mais bases alargadas),

Straus, Tubulões e Estacas Escavadas Mecanicamente ou com lama bentonítica.

Escavadas com Bentonita são fundações escavadas com emprego de lama

bentonítica, com a finalidade precípua de garantir a estabilidade da escavação.

Enquadram-se neste grupo as estacas Barrete e Estacões.

Estacas Injetadas são aquelas escavadas por rotação e executadas por meio de

injeção de pasta de cimento. As estacas Raiz são estacas injetadas a baixas

pressões (até 4 kg/cm²), perfuradas por rotação revestida ou estabilizadas por

circulação de lama Bentonítica, com diâmetros variando entre 10 e 40cm. São

armadas e a pressão de injeção é aplicada de uma só vez no topo da estaca.

As Micro.Estacas são aquelas escavadas por rotação, executadas através da

injeção de pasta de cimento sob altas pressões, através de um tubo alma, dotada

de furos (manchetes) a cada metro, por onde se processarão as injeções. O tubo

alma é considerado como parte da armação. As injeções são realizadas em várias

etapas, através das manchetes, previamente instaladas no tubo alma.

Para facilitar a aplicação deste método na prática da engenharia, recomendamos

navegar no fluxograma da Fig. 6.5.4.2

6.5.1 MÉTODO 01 : Aoki / Velloso

Aoki e Velloso apresentaram em (1975) e Velloso et al. (1978) uma formulação

semi.empírica para o cálculo da capacidade de Carga de Estacas.

Condicionantes

1. Os autores consideram N72 ≤ 50

2. Para o calculo da resistência de ponta RP e tomada como sendo a media de três

valores: ao nível da ponta, 1m acima e 1m abaixo.

A popularização dos métodos semi-empíricos cabe aos professores Dirceu

Velloso e Nelson Aoki, quando apresentaram o seu método em 1975, no congresso

Pan-americano em Buenos Aires

RT = RP + RL onde,

A formula original sugerida pelos autores era:

RT = AL2F

72KN α+Ap1F

72KN

RT . t Carga total a Rutura da Estaca (sob o ponto de vista geotécnico)

Page 11: Fainor   sapatas - estacas - tubulões

RP . t Carga de Rutura da Ponta

RL . t Carga de Rutura Lateral

Para facilitar as metodologias dos cálculos, Berberian procurou, na medida do

possível, homogeneizar e simplificar as formulas substituindo:

K por KPAV e K por KLAV F1 por EP e F2 por EL

RP = P

72AV

P E

N K

AP

RL = L

72LAVL E

N KA

AP . m² Área da ponta ou base da estaca. Para estacas de aço e de concreto vazado

considerar como área o perímetro cheio. Para estacas Franki assimile a base alargada a

uma esfera

N72 .adm Número de golpes necessários à cravação de 30 cm do amostrador padrão SPT, com

eficiência média de 72%. Ver Berberian (1986).

KPAV. t/m² Coeficiente de correlação entre a resistência de ponta qc do Cone (Diepsonderingen) e

o número de golpes SPT Sanglerat (1965), Berberian (1986), dado na Tab. 6.5.1.3

KLAV . adm Fator de correlação entre a resistência lateral do cone com o SPT. KLAV=.K

EP, EL adm ( F1 e F2 )Fatores de correção do tipo de fundação devido ao efeito da escala e do

método de execução, gerados pela diferença entre as geometrias do Cone e da Estaca

Menzenbach (1961) e Schenk (1966). Tab. 6.5.1.5

AL . m² Área lateral da estaca em cada camada, ou por metro de estaca, onde se admite RL

constante

Para facilitar as metodologias dos cálculos, Berberian procurou, na medida do

possível, homogeneizar e simplificar as fórmulas substituindo:

K por KPAV e .K por KLAV ficando então na forma final simplificada:

RT = P

72AV

P E

N K

AP

+ L

72LAVL E

N KA , resistência total admissível

Tab. 6.5.1.3 Tabela Simplificada por Berberian (2013) Valores de KPAV e KLAV, Simplificados por Berberian (2013)

segundo Aoki & Velloso, Laprovitera & Benegas e Monteiro

Page 12: Fainor   sapatas - estacas - tubulões

Aoki/Velloso Laprovitera Monteiro

1975 1988 1997

SOLO

KPAV KLAV KPLB KLLB KPM KLM

t/m² t/m² t/m² t/m² t/m² t/m²

Areia ( Sand ) S 100 1,40 60 0,84 73 1,53

Areia Siltosa S3M, S4M, S5M, S6M,S7M

80 1,60 53 1,90 68 1,56

Areia Siltoargilosa 70 1,68 53 1,27 63 1,51

Areia Argilosa S3C, S4C, S5C, S6C, S7C

60 1,80 53 1,59 54 1,51

Areia Argilosiltosa SCM 50 1,40 53 1,48 57 1,65

SOLO

KPAV KLAV KPLB KLLB KPM KLM

t/m² t/m² t/m t/m² t/m² t/m²

Silte ( Mó ) M 40 1,20 48 1,44 48 1,53

Silte Arenoso M3S, M4S, M5S, M6S, M7S

55 1,21 48 1,44 50 1,50

Silte Arenoargiloso 45 1,26 38 1,14 45 1,44

Silte Argiloso M3C, M4C, M5C, M6C, M7C

23 0,78 30 1,02 32 1,15

Silte Argiloarenoso MCS 25 0,75 38 1,14 40 1,32

SOLO KPAV KLAV KPLB KLLB KPM KLM

t/m² t/m² t/m² t/m² t/m² t/m²

Argila ( Clay ) C 20 1,20 25 1,50 25 1,37

Argila Arenosa C3S, C4S, C5S, C6S, C7S

35 0,84 48 1,92 44 1,40

Argila Arenosiltosa 30 0,84 30 1,35 30 1,14

Argila Siltosa C3M, C4M, C5M, C6M, C7M

22 0,88 25 1,37 26 1,17

Argila Siltoarenosa CMS 33 0,99 30 1,50 33 1,35

Toma-se como área da ponta igual à área da projeção do fuste da estaca, como

mostra a Fig. 6.5.2

step 4. Obtenção dos parâmetros EP e EL

Os valores de EP e EL, foram obtidos pelos autores, com base na análise dos

resultados de provas de carga sobre centenas de estacas.

Vide Tab.6.5.1.5

Observa-se que para obtenção dos fatores EP e EL, extrapolou-se alguns resultados

das provas de carga que não atingiram a rutura, empregando-se para tanto as

recomendações da Van der Veen (1953).

Tab. 6.5.1.5 Fatores da estaca EP e EL Aoki/Velloso (2010) e Vários Autores

Tipo de estaca Aoki Velloso Monteiro Laprovitera Berberian

* Simbologia alfanumérica adotada por Berberian com base no Sistema Unificado de

Classificação dos Solos. Cobre de forma mais abrangente os dados extraídos diretamente

dos Laudos de Sondagens SPT, facilitando a transposição para os programas de

computadores.

Page 13: Fainor   sapatas - estacas - tubulões

EP EL EP EL EP EL EP EL

Franki de fuste apiloado 2,5 5,0 2,3 3,0 2,5 3,0 2,4 4,0

Franki de fuste vibrado - - 2,3 3,2 - - 2,4 4,2

Perfis metálicos cravados 1,75 3,5 1,75 3,5 1,7 3,0 2,0 3,2

Pré-moldada de concreto cravada a percussão

1+1,2D 2EP 2,5 3,5 2,0 3,5 1+1,25D 1,75 +2,19D

Escavada mecan. sem lama e Velloso (1978)

3,0 2EP - - - - 4,0 4,6

Mega de concreto prensada

- - 1,2 2,3 - - 1+1,25D 1,75 +2,19D

Escavada com lama bentonítica (Estacão)

- - 3,5 4,5 4,5 4,5 3,5 5,0

Escavada (Barrete) 3,0 6,0 - - - 4,5 5,0

Raiz 2,0 2EP 2,2 2,4 - - 2,8 2,4

Strauss - - 4,2 3,9 - - 4,0 3,0

Solo.Cimento Plástico e Broca

- - - - - 3,0 5,0

Hélice contínua, Ômega 2,0 2Ep 3,0 3,8 - - 3,0 3,8

Obs. D em metros - -

step 5. Obtenção da carga admissível ou de projeto da estaca. Ver planilha 6.5.1.6

Em 1978 os valores para estacas escavadas foram readaptados por Velloso et al.

Page 14: Fainor   sapatas - estacas - tubulões

INFRASOLO / FUNDEX OBRA: N°:

Tipo de Estaca: Nº da Estaca: AL: m²/metro Ap : m2 Dtabela: m Dcalculo : m

Comp. mínimo do Fuste ZF : m Furo Sond. + Próximo (m) SPT à m da estaca KPAV (adm) = KLAV (adm) =

Carga máx. [concreto] / ideal : t Carga de Projeto : t Carga Rutura da Prova, se houver : t

Aoki/Velloso Decourt / Quaresma

A B C D E F G H I J K L M N O P Q R S

Cam

ad

a

Pro

f. Z

(m

)

N72

Esp

essu

ra

cam

ad

a

Solo Berber.

KPAv

(t/m²)

KLAv (t/m²))

RLa

(t)

RL (t)

RPa

(t)

RTa

(t) Es

tac

a

KLDQ (t/m²)

RLa

(t)

RLa

(t) KPDQ

(t/m²) RP

a

(t)

RT

a

(t)

Es

tac

a

1 5

2

3

Aoki / Velloso, Berberian RT = RP+RL RPa = kPAV.N72 AP / 2.EP RL

a = kLAV N72 AL /2.EL Radm= Rr/2 KPAv, KLAv,EP ,EL Tabelados

Décourt /Quaresma RT = RL + RP RLa = (SPT / 3 + 1) kLDQ . AL/1,3 RP

a = kPDQ . N72 . AP/4

Para estacas pré-moldadas KL, KP = 1.0 para todos os solos kLDQ, kPDQ EL, EP Tabelados ,

6

.63

Cap.6

todos : A

oki / V

ello

so : D

ecourt / Q

uare

sm

a : P

edro

Paulo

C. V

ello

so

Tab. 6.5.1.6 Planilha de cálculo para o método Aoki/Velloso e Décourt/Quaresma, Berberian e Monteiro

Page 15: Fainor   sapatas - estacas - tubulões

Tab.6.5.2.1 Tabela Original: Valores de KPLB e KLLB Laprovitera (1988)

Tipo de Solo Classificação KPLB

(t/m2)

KPLB

(k/cm2)

α (adm)

AREIA S 60 6,0 0,014 Areia Siltosa S5M 53 5,3 0,019 Areia Silto Argilosa S5M5C 53 5,3 0,024 Areia Argilo Siltosa S5C5M 53 5,3 0,028 Areia Argilosa S5C 53 5,3 0,030

SILTE M 48 4,8 0,030 Silte Arenoso M5S 48 4,8 0,030 Silte Areno Argiloso M5S5C 38 3,8 0,030 Silte Argilo Arenoso M5C5S 38 3,8 0,030 Silte Argiloso M5C 30 3,0 0,034

ARGILA C 25 2,5 0,060 Argila Arenosa C5S 48 4,8 0,040 Argila Areno Siltosa C5S5M 30 3,0 0,045 Argila Silto Arenosa C5M5S 30 3,0 0,050 Argila Siltosa C5M 25 2,5 0,055

6.5.3 MÉTODO 03: Contribuição de Monteiro (1997)

Utilizando o banco de dados e a experiência da empresa Estacas Franki Ltda,

Monteiro estabeleceu novas correlações para KLM e KPM Tab. 6.5.1.3 e também para

EP (F1) e EL (F2) Tab. 6.5.3.1

Tab 6.5.3.1 Tabela Original: Valores de KPM e KLM Monteiro (1997)

USCS Berberian Tipo de solo KM α

(adm) (t/m²)

S S Areia 7,3 0,021 SM S5M Areia siltosa 6,8 0,023

SMC S5M5C Areia silto-argilosa 6,3 0,024

SCM S5C5M Areia argilo-siltosa 5,7 0,029

SC S5C Areia argilosa 5,4 0,028

MS M5S Silte arenoso 5,0 0,030

MSC M5S5C Silte areno-argiloso 4,5 0,032

M M Silte 4,8 0,032

MCS S5C5S Silte argilo-arenoso 4,0 0,033

MC M5C Silte argiloso 3,2 0,036

CS C5S Argila arenosa 4,4 0,032

CSM C5S5M Argila areno-siltosa 3,0 0,038

CMS C5M5S Argila silto-arenosa 3,3 0,041

CM C5M Argila siltosa 2,6 0,045

C C Argila 2,5 0,055

Page 16: Fainor   sapatas - estacas - tubulões

Pontos a ponderar

O valor 7B acima da base parece ser um pouco exagerado. É fácil entender a

razão pela qual Monteiro optou por este valor (7B). Monteiro é oriundo da empresa

Estacas Franki que desenvolveu e executou dezenas de milhares destas estacas, que

alem de possuir base alargada energeticamente compactada, e cravada produzindo

uma melhoria do solo adjacente, acentuadamente na região da ponta. Este solo de

elevada compacidade, produzira uma rutura generalizada.

É fácil entender que em solos menos consistentes (SPT≤ 14) a rutura se dara por

puncionamento, simplesmente recompactando o solo abaixo da ponta, fato inclusive

predominante nas estacas escavadas.

Como a ideia tem sustentação técnica, e preciso pesquisar a relação entre o

método de execução da estaca, o tipo de solo e o SPT, para então sugerir novos

valores para a espessura da cunha superior de rutura.

Condicionantes

1. Para o cálculo da resistência de ponta rP, a parcela acima (rPS) deverá ser 7 vezes o diâmetro da base e a parcela abaixo (rPi) 3,5 vezes o diâmetro da base (Fig 6.5.3.1). O valor total a ser adotado será:

rP = (rPs + rPi) / 2

Então teremos:

KPM N72 =

RP= A .E 2

iPN .k

MP

Ni . K+ss

P

2. valor de N é limitado a 40. N72 40

6.5.4 MÉTODO 04 : Décourt Quaresma (1986)

Décourt e Quaresma apresentaram em 1982 um artigo técnico ao VI congresso

brasileiro de Mec dos Solos, um método para estimar a capacidade de carga de estacas

a partir do SPT (N72

)

O método Décourt / Quaresma (1986) e Décourt (1986) está dentro do grupo de

métodos semi.empíricos por não estar ligado a nenhuma base teórica ou paramétrica.

Em 1986 Décourt recomenda em comunicação ao Instituto de Engenharia, novos

valores para o calculo da parcela de ponta das estacas escavadas

com lama bentantica ( Estações, e estacas barretes).

rPs

rPi

Fig. 6.5.3.1 Adoção do SPT médio

Page 17: Fainor   sapatas - estacas - tubulões

Berberian (2014), procurando uniformizar e simplificar os cálculos, recomenda fazer:

. K = KPDQ e 10 = KLDQ em KN / m2 (KPa)

ou em Kg/ cm

2 , na unidade de KPDQ e KLDQ

rL . kg/cm ² Atrito unitário lateral

SPT médio de três valores: ao nível da ponta da estaca (imediatamente acima e imediatamente

abaixo).

Rp . t Carga de rutura do solo na ponta da estaca.

rp . k/cm² Tensão de rutura ao nível da ponta.

Quando a rutura não é claramente definida, considera-se a rutura

convencional, definida como sendo a carga que produz um recalque vertical no topo

das estacas igual a 10% do seu diâmetro quando cravadas (de deslocamento). No caso

de estacas escavadas (sem deslocamento) considera-se 10% para estacas em argilas e

30% em areias. Décourt (1996)

Fórmula Geral

RTa

= KPDQ. N72 . Ap /4 + KLDQ (N72 / 3 + 1) AL / 1,3

Tab 6.5.4.1 Valores de KLDQ e KPDQ: Método de Décourt/Quaresma (1982)

em t/m² Para estacas pré-moldadas todos KP = KL= 1.0 t/m2

Solo Berb

Escavada em Geral

Straus Tub

Escavada com

Betonita Hélice Cont Raiz*

Micro -Estacas

Solo Cimento Plástico

KPDQ KLDQ KPDQ KLDQ KPDQ KLDQ KPDQ KLDQ KPDQ KLDQ KPDQ KLDQ

KPDQ = . k t / m2

Todas as Areias e/ou solos granulares KLDQ = t / m2

S 20 0,5 20 0,6 12 1 20 1,5 40 3 - -

Todos os Siltes Argilosos e/ou solos intermediários

MC 10 0,65 15 0,75 6 1 15 1,5 25 3 15 0,6

Todos os Siltes Arenosos e/ou solos intermediários

MS 13 0,65 13 0,75 8 1 13 1,5 25 3 15

Todas as Argilas e/ou solos coesivos

C 6 0,8 6 0,9 4 1 10,2 1,5 12 3 10,2 0,8

Page 18: Fainor   sapatas - estacas - tubulões

Tab. 6.5.5.1 Valores de KPDB e KLDB segundo Berberian,

kBASE para sapatas e Tubulões. (1 t/m2

= 0,1kg/cm2 = 10 kPa)

SOLO

*Clas

Berb. Clas Berb.

Clas USCS

KPDB t/m

2

KLDB t/m

2

kBERB Kg/cm

2

Areia ( Sand ) S 1 S 100 1.40 5,6

Areia Mto Pouco Siltosa S3M 2 SM 80 1.28 5,3

Areia Pouco Siltosa S4M 3 SM 84 1.51 6,2

Areia Siltosa S5M 4 SM 80 1.60 6,3

Areia Muito Siltosa S6M 5 SM 75 1.65 6,1

Areia Silto Argilosa SMC 6 SMC 70 1.68 6,1

Areia Mto Pouco Argilosa S3C 7 SC 60 1.68 6,4

Areia Pouco Argilosa S4C 8 SC 58 1.62 5,6

Areia Argilosa S5C 9 SC 60 1.80 6,6

Areia Muito Argilosa S6C 10 SC 50 1.50 8,1

Areia Argilo Siltosa SCM 11 SCM 50 1.40 6,6

SOLO

*Clas

Berb. Clas Berb.

Clas USCS kPDB

t/m2

KLDB t/m

2

kBERB Kg/cm

2

Silte ( Mó ) M 12 M 40 1.20 5,6

Silte Muito Pouco Arenoso M3S 13 MS 45 1.26 4,4

Silte Pouco Arenoso M4S 14 MS 50 1.25 5,3

Silte Arenoso M5S 15 MS 55 1.21 6,1

Silte Muito Arenoso M6S 16 MS 60 1.20 5,3

Silte Areno Argiloso MSC 17 MC 45 1.26 6,0

Silte Muito Pouco Argiloso M3C 18 MC 38 1.14 5,6

Silte Pouco Argiloso M4C 19 MC 30 0.96 6,4

Silte Argiloso M5C 20 MC 23 0.78 5,7

Silte Muito Argiloso M6C 21 MC 20 0.72 6,7

Silte Argilo Arenoso M5C5S 22 MCS 25 0.75 5,8

SOLO

* Clas

Berb. Clas Berb.

Clas USCS kPDB

t/m2

KLDB t/m

2

kBERB Kg/cm

2

Argila ( Clay ) C 23 C 20 1.20 6,8

Argila Mto Pouco Arenosa C3S 24 CS 25 1.20 5,4

Argila Pouco Arenosa C4S 25 CS 30 1.08 5,7

Argila Arenosa C5S 26 CS 35 0.84 5,5

Argila Muito Arenosa C6S 27 CS 40 0.56 6,0

Argila Areno Siltosa C5S5M 28 CSM 30 0.84 5,3

Argila Mto Pouco Siltosa C3M 29 CM 20 1.04 6,3

Argila Pouco Siltosa C4M 30 CM 21 0.96 5,7

Argila Siltosa C5M 31 CM 22 0.88 6,5

Arila Muito Siltosa C6M 32 CM 23 0.78 6,7

Argila Silto Arenosa

Turfa

CMS Pt

33 34

CMS Pt

33 00

0.99 0.0

5,9 0,0

* Simbologia alfanumérica adotada por Berberian com base no Sistema Unificado de Classificação dos

Solos. Cobre de forma mais abrangente os dados extraídos diretamente dos Laudos de Sondagens SPT,

facilitando a transposição para os programas de computadores.

** Simbologia numérica adotada por Aoki / Velloso

Page 19: Fainor   sapatas - estacas - tubulões

TUBULÕES

METODO 01: Berberian (2007) - Todos os Solos

Pontos a ponderar

1. Recomenda-se σa 12 kg/cm², (ou 1200 Kpa ou 120 t/m²).Em argilas saturadas

recomenda-se que σa

seja menor do que a pressão de pré-adensamto obtida no

ensaio de adensamento. Cintra & Aoki (1999).

2. N72 é o SPT brasileiro, obtido em cada camada de apoio da base do tubulão,

dentro da zona de plastificação com uma espessura de 1,5B abaixo da base

Condicionantes

1. O valor de N/KB é a média dos valores da relação N/KB obtido na cada

camada de apoio da base do tubulão, dentro da zona de plastificação com

uma espessura de 1,5B abaixo da base.

2. Considerou-se uma profundidade média de 8m, corresponde a uma tensão

geostática de aproximadamente 100KPa, e SPT no entorno de 5 a 10 golpes

acima da base.

3. Recomenda-se N72 ≤ 40

Para solos com N72≥15 (ideal seria N72≥20)

Berberian recomenda: σa = (N72 / k BASE) + σ’0

σa = (N72 / k BASE) + 1,0 sendo σ’0 no Maximo 1 kg/cm2 ou 100 KPa

σa = 100 (N72 / KBASE) + 100 em KPa

KBASE Fator de correlação de Berberian, função do tipo de solo. Tab 9.6.3

Para solos fracos, N72 abaixo de 15 σa = N72 / KBASE, em Kg/cm²

METODO 02: Albieiro e Cintra (1996) - Solo Qualquer

Pontos a ponderar

1. σ0 limitado a um máximo de 40 KPa (0,40 Kg/cm² ou 4t/m2)

Condicionantes

N72 adm número de golpes médio da sondagem SPT brasileira, na camada de apoio do tubulão,

com espessura aproximadamente igual a 1,5 a 2 vezes ao provável diâmetro da base.

Para N72 15 deve-se tomar cuidados especiais com recalques a médio

prazo. Neste caso desconsiderar σ’0 = 0

Page 20: Fainor   sapatas - estacas - tubulões

Albieiro e Cintra recomendam como sendo a prática de projetos para tensão

admissível no Brasil:

σa = (N72 / 5 ) + σ0’ em Kg/cm² com σ0

0,4 Kg/cm2 , Kac=5 constante

σa = (N72 / 0,05) + σ0’ em KPa, σ0

40 KPa, σ '0 = n Zf,

Recomenda-se N72 ≤ 40

adotando-se n 1,6 t/m3 onde:

σa KPa tensão admissível para base de tubulões

σ0 KPa tensão geostática efetiva (h) ao nível da base

step 1. Obtenção da sobrecarga ao nível da base

Adotando-se médio = 1,6 t/m3

σ0 = 15 x 1,6 = 24,0 t/m

2 = 2,4 kg/cm

2, adota-se o limite de 0,4 kg/cm2

step 2. Cálculo da Tensão Admissível, pelo método 02: Albieiro e Cintra

σa = 28 / 5 + 0,4 = 5,6 + 0,4 = 6Kg/cm2 = 600 KPa

step 3. Pelo método 01: Berberian

Entrando-se com argila C, na tabela 9.5.3, tem-se Kbase = 6,0

σa = 23 / 6 + 1,0 = 4,83 Kg/cm2 = 483 KPa

Page 21: Fainor   sapatas - estacas - tubulões

Tab. 9.6.3 Valores de KBASE para Tubulões, segundo Berberian (2014)

Coeficiente KBASE de acordo com o tipo de solo e o SPT

SOLO Class. Berb.

SPT ( N72,Brasileiro)

5 10 15 18 20 22 25 28 30 35 40 45 50

AREIA ( Sand ) S 2,92 2,78 2,86 3,12 3,19 4,49 5,00 5,60 5,56 5,47 4,08 4,44 4,78

Areia Mto Pouco Siltosa S3M 3,48 2,97 3,19 3,12 4,08 4,49 5,10 5,60 5,70 5,47 5,41 4,44 4,78

Areia Pouco Siltosa S4M 3,48 2,97 3,19 3,12 4,08 4,49 5,10 5,60 5,70 5,47 5,41 4,44 4,78

Areia Siltosa S5M 3,48 2,97 3,19 3,12 4,08 4,49 5,10 5,60 5,70 5,47 5,41 4,44 4,78

Areia Muito Siltosa S6M 3,48 2,97 3,19 3,12 4,08 4,49 5,10 5,60 5,70 5,47 5,41 4,44 4,78

Areia Silto Argilosa SMC 3,48 3,34 3,19 3,12 4,08 4,49 5,10 5,60 5,70 5,47 5,41 4,44 4,78

Areia Mto Pouco Argilosa S3C 3,23 3,34 3,45 3,12 4,08 4,49 5,10 5,60 5,70 5,47 5,41 4,44 4,78

Areia Pouco Argilosa S4C 3,23 3,34 3,45 3,12 4,08 4,49 5,10 5,60 5,70 5,47 5,41 4,44 4,78

Areia Argilosa S5C 3,23 3,34 3,45 3,12 4,08 4,49 5,10 5,60 5,70 5,47 5,41 4,44 4,78

Areia Muito Argilosa S6C 3,23 3,34 3,45 3,12 4,08 4,49 5,10 5,66 5,70 5,47 5,41 4,44 4,78

Areia ArgiloSiltosa SCM 3,45 3,34 3,45 3,86 4,08 4,49 5,10 5,66 5,70 5,47 5,41 4,44 4,78

SILTE( Mó ) M 3,88 3,53 3,54 3,26 3,68 3,87 4,13 4,78 5,70 5,47 5,41 4,44 4,78

Silte Mto Pouco Arenoso M3S 3,46 3,73 3,86 3,58 3,68 3,87 4,13 4,78 5,70 5,47 5,41 4,44 4,78

Silte Pouco Arenoso M4S 3,46 3,73 3,86 3,58 3,68 3,87 4,13 4,78 5,70 5,47 5,41 4,44 4,78

Silte Arenoso M5S 3,46 3,73 3,86 3,58 3,68 3,87 4,13 4,78 5,70 5,47 5,41 4,44 4,78

Silte Muito Arenoso M6S 3,46 3,73 3,86 3,58 3,68 3,87 4,13 4,78 5,70 5,47 5,41 4,44 4,78

SilteAreno Argiloso MSC 4,12 3,59 3,59 3,60 3,37 3,87 4,63 4,78 5,70 5,47 5,41 4,44 4,78

Silte Mto Pouco Argiloso M3C 6,94 4,99 4,44 4,37 4,40 4,71 4,92 5,04 5,10 5,24 5,00 4,48 4,78

Silte Pouco Argiloso M4C 6,94 4,99 4,44 4,37 4,60 4,71 4,92 5,04 5,10 5,24 5,00 4,95 4,78

Silte Argiloso M5C 6,94 4,99 4,44 4,37 4,60 4,71 4,92 5,04 5,10 5,24 5,00 4,95 4,78

Silte Muito Argiloso M6C 6,94 4,99 4,44 4,37 4,60 4,71 4,92 5,04 5,10 5,24 5,00 4,95 4,78

SilteArgilo Arenoso M5C5S 4,87 4,50 4,69 4,65 4,74 4,70 4,83 4,94 5,01 4,86 4,82 4,44 4,78

ARGILA ( Clay ) C 8,43 5,75 4,96 4,87 4,91 5,01 5,13 5,24 5,04 5,63 5,76 4,96 4,85

Argila Mto Pco Arenosa C3S 3,93 4,03 4,04 4,04 3,87 4,46 5,21 5,40 5,50 5,44 5,00 4,48 4,78

Argila Pouco Arenosa C4S 3,93 4,03 4,04 4,04 3,87 4,46 5,21 5,40 5,50 5,44 5,00 4,95 4,78

Argila Arenosa C5S 3,93 4,03 4,04 4,04 3,87 4,46 5,21 5,40 5,50 5,44 5,00 4,48 4,78

Argila Muito Arenosa C6S 3,93 4,03 4,04 4,04 3,87 4,01 5,21 5,40 5,50 5,44 5,00 4,48 4,78

Argila ArenoSiltosa C5S5M 6,56 4,96 4,42 4,35 4,38 4,46 5,21 5,40 5,50 5,73 5,00 4,95 4,78

Argila Mto Pouco Siltosa C3M 4,63 5,62 4,87 4,78 4,82 4,92 5,04 4,91 4,94 5,23 5,29 4,83 4,78

Argila Pouco Siltosa C4M 4,63 5,62 4,87 4,78 4,82 4,92 5,04 4,91 5,13 5,51 5,64 4,83 4,78

Argila Siltosa C5M 4,63 5,62 4,87 4,78 4,82 4,92 5,04 4,91 4,94 5,23 5,29 4,83 4,78

Argila Muito Siltosa C6M 4,63 5,62 4,87 4,78 4,82 4,92 5,04 4,91 5,13 5,51 5,64 4,83 4,78

Argila Silto Arenosa CMS 6,44 4,76 4,28 4,70 4,85 4,85 4,79 5,40 5,50 5,73 5,00 4,95 4,78

Turfa Pt 0 0 0 0 0 0 0 0 0 0 0 0 0

ex.: 9.6.1 Definir a taxa do terreno (capacidade de carga admissível) do tubulão com 15m de

profundidade, implantado sobre uma argila rija, cujo SPT médio na zona de plastificação é igual a 23 golpes.

Page 22: Fainor   sapatas - estacas - tubulões

METODO 03: Décourt (1996) - Sem distinção de solo

Pontos a ponderar

1. Décourt (1989) apresenta uma formulação semelhante àquela para fundações

superficiais, estendida para fundações profundas adicionando-se ao valor de σa, a

sobrecarga σ'0

2. Décourt ampliou seu método inicialmente apresentado em 1978, introduzindo os

fatores α e β que levam em conta o tipo de estaca e a influencia do processo de

execução na capacidade de carga.

3. Tem-se utilizado também para tubulões o fator α referente estacas escavadas

em geral.

4. Décourt não limita σa. Berberian não recomenda σa 12 Kg/cm²

5. N72 media dos valores:ao nível da base,imediatamente acima e abaixo da base.

6. Recomenda-se N72 ≤ 40

σa= KPDQ . N72

Pelo método original, Décourt & Quaresma (1978) e na versão atualizada de

Décourt (1996), a resistência da base, em termos de tensão pode ser expressa por:

σr = CDQ .N72 , ao valor de σr aplica-se um fator de segurança 4

σa = CDQ .N72 /4

em 1996 Décourt refinou seu método fazendo, σr = CDQ N72, originalmente

σa= αKNAp/4

Sendo e C tabelados. Ao valor de σr aplica-se um fator de segurança, FS =

4,0. Simplificando e fazendo:

KPDQ = CDQ/4 , tem-se finalmente σa= KPDQ . N72

Fator de redução Tab. 9.5.4, para fundações escavadas.

CDQ Coeficiente característico do solo Tab. 9.5.4

Page 23: Fainor   sapatas - estacas - tubulões

Tab 9.6.4 Valores de KPDQ: Método de Décourt (1986) em Kg/cm²

CLASSIFICAÇÃO do SOLO Tubulões KPDQ

Valor Original

Berberian KPDQ = CDQ/4 Kg/cm

2

K

Kg/cm2

AREIAS S

S3M, S4M, S5M, S6M, S7M

0,500

4,0

S3C, S4C, S5C, S6C, S7C

SILTES M

M3S, M4S, M5S, M6S, M7S

0,375 2,5

M3C, M4C, M5C, M6C, M7C

0,300 2,0

ARGILAS C

C3M, C4M, C5M, C6M, C7M

0,255

1,2

C3S, C4S, C5S, C6S, C7S

METODO 04: Prática Brasileira (1998) – Sem distinção do tipo de Solo

Pontos a ponderar

1. Vários profissionais brasileiros determinam o valor da tensão admissível para o

terreno de apoio da base de tubulões, por meio de expressões empíricas

aplicadas a qualquer tipo de solo:

σa = 20 N72 + σ0’ (KPa) σ0’ ≤ 40 KPa ou,

para 5 N72 20 σa= 5

N+ σ0’ (kg/cm²) ou ainda,

para 6 N72 18 σa =

3

72N (kg/cm²)

2. Vale observar que a redução do denominador de 50 para 30 leva em conta o

efeito do aumento da profundidade σ’0, no aumento da capacidade de carga.

3. Cintra e Aoki (1999) mostram que Skempton (1951) já levava em conta o efeito

da profundidade considerando o fator de capacidade de carga Nc=6,2 para

fundações superficiais (Zf 1,50) e Nc=9,0 para fundações profundas

(Zf ≥ 4,0B) assentes em solos puramente argilosos. A titulo de exemplo

Skempton recomenda σr=c.Nc ou

σa= c.Nc/3, com Fs=3,0 adotando c=0,01N60 (Mpa) c=0,083N72 (kg/cm²) e

σa= 0,083N.9/3 = 0,027N72 (kg/cm²) onde:

σa tensão admissível na cota de apoio do tubulão

N72 resistência à penetração (SPT) média abaixo da cota de apoio do tubulão (usualmente

numa camada de espessura igual a B abaixo da cota de apoio), obtida pelos padrões brasileiros.

σ0’ tensão geostática efetiva na cota de apoio do tubulão.

Page 24: Fainor   sapatas - estacas - tubulões

MÉTODO 05: Teixeira (1998) -– Sem Distinção do Tipo de Solo

Pontos a ponderar

1. Teixeira utiliza para tubulões o mesmo modelo para sapatas, somando-se a

parcela da tensão geostática, que se torna significativa face a elevada

profundidade dos tubulões.

Condicionantes

1. 5 N72 20 σa = kTN72 ,com kT =0,20

σa = N72/5 + σ0’ (kg/cm²) se N72 < 5, adotar 5, se N72 >20 adotar 20, ou

σa = 20N72 + σ0’ (KPa) Kt=5, constante

O SPT é valor médio dentro do bulbo de pressões (B a 2B abaixo da base)

MÉTODO 06: Alonso (1983) -– Sem Distinção do Tipo de Solo

Pontos a ponderar

1. Alonso já leva em conta o efeito da profundidade, e N72 é obtido dentro da camada

de espessura 2B, abaixo da base do tubulão

Condicionantes

para 6 N72 18 σa= KAN72 com KA=0,33

σa = N72 /3 (kg/cm²) para a σa = 33N72 ≤ 18 ou σa = 33N72 (KPa)

se N72 < 6 adotar 6, se N72 >18adotar 18 20

MÉTODO 07: Aoki / Velloso (1975) – SPT -– Sem Distinção do Tipo de Solo

σa = KPAV N72 / 9 (Kg/cm²) originalmente apresentou a tensão na rutura

σr = KPAV . N72 , no qual σa = KPAV N72 / Fs. FP Não se recomenda σa >12 Kg/cm²

Recomenda-se N72 ≤ 40

FP. Fator de transformação adimensional, igual a 3 para fundações escavadas

KPAV Coeficiente que depende do tipo de solo Tab. 9.5.5

FS = 3.0 Fator de segurança aplicado a tensão de ruptura.

Tab. 9.6.5 Valores de KP e KL segundo Aoki / Velloso, Laprovitera e Monteiro

(1 t/m2

= 0,1kg/cm2 = 10 kPa)

KLAV Usado somente para fundações capazes de transferir cargas por atrito

lateral

MÉTODO 08: Laprovitera (1988) – SPT -– Sem Distinção do Tipo de Solo

σa = KPLB N72 / 9 (Kg/cm²) originalmente apresentou a tensão na rutura

Page 25: Fainor   sapatas - estacas - tubulões

σr = KPLB . N72 , no qual σa KPLB N72 / Fs. FP Não se recomenda σa >12 Kg/cm²

Recomenda-se N72 ≤ 40

FP. Fator de transformação adimensional, igual a 3 para fundações escavadas

KPLB Coeficiente que depende do tipo de solo Tab. 9.5.5

FS = 3.0 Fator de segurança aplicado a tensão de ruptura.

Tab. 9.6.5 Valores de KP e KL segundo Aoki / Velloso, Laprovitera e Monteiro

(1 t/m2

= 0,1kg/cm2 = 10 kPa)

KLLB Usado somente para fundações capazes de transferir cargas por atrito

lateral

MÉTODO 09: Monteiro (1997) – SPT -– Sem Distinção do Tipo de Solo

σa = KPM N72 / 9 (Kg/cm²) originalmente apresentou a tensão na rutura

σr = KPM . N72 , no qual σa = KPM N72 / Fs. FP Não se recomenda σa >12 Kg/cm²

Recomenda-se N72 ≤ 40 FP. Fator de transformação adimensional, igual a 3 para fundações escavadas

KPM Coeficiente que depende do tipo de solo Tab. 9.5.5

FS = 3.0 Fator de segurança aplicado a tensão de ruptura.

Tab. 9.6.5 Valores de KP e KL segundo Aoki / Velloso, Laprovitera e Monteiro

Page 26: Fainor   sapatas - estacas - tubulões

(1 t/m2

= 0,1kg/cm2 = 10 kPa)

KLM Usado somente para fundações capazes de transferir cargas por atrito

lateral

Aoki/Velloso Laprovitera Monteiro

1975 1988 1997

SOLO

KPAV KLAV KPLB KLLB KPM KLM

Kg/cm²

Kg/cm² Kg/cm²

Areia ( Sand ) S 10,0 0.014 6,0 0,014 7,3 0,021

Areia Siltosa S3M, S4M, S5M, S6M, S7M 8,0 0,020 5,3 0,019 6,8 0,023

Areia Siltoargilosa 7,0 0,024 5,3 0,024 6,3 0,024

Areia Argilosa S3C, S4C, S5C, S6C, S7C 6,0 0,030 5,3 0,030 5,4 0,028

Areia ArgiloSiltosa SCM 5,0 0,028 5,3 0,028 5,7 0,029

SOLO

KPAV KLAV KPLB KLLB KPM KLM

Kg/cm² Kg/cm² Kg/cm²

Silte ( Mó ) M 4,0 0,030 4,8 0,030 4,8 0,032

Silte Arenoso M3S, M4S, M5S, M6S, M7CS 5,5 0,022 4,8 0,030 5,0 0,03

Silte Arenoargiloso 4,5 0,028 3,8 0,030 4,5 0,032

Silte Argiloso M3C, M4C, M5C, M6C, M7C 2,3 0,034 3,0 0,034 3,2 0,036

Silte ArgiloArenoso MSC 2,5 0,030 3,8 0,030 4,0 0,033

SOLO KPAV KLAV KPLB KLLB KPM KLM

Kg/cm² Kg/cm² Kg/cm²

Argila ( Clay ) C 2,0 0,060 2,5 0,060 2,5 0,055

Argila Arenosa C3S, C4S, C5S, C6S, C7S

3,5

0,024 4,8

0,040 4,4 0,032

Argila Arenosiltosa 3,0 0,028 3,0 0,045 3,0 0,038

Argila Siltosa C3M, C4M, C5M, C6M, C7M

2,2 0,040 2,5 0,055 2,6 0,045

Argila SiltoArenosa CMS 3,3 0,030 3,0 0,050 3,3 0,041

Método que utiliza o cone estático de Bengemman

MÉTODO 10: Costa Nunes / Velloso (1960) - CPT solos arenosos e argilosos.

Condicionantes

1. qc o valor médio da resistência de ponta do ensaio do cone estático CPT, obtido

pelo menos a 4 ou 5 m abaixo da cota de implantação dos tubulões, desde que não

ocorram camadas moles abaixo.

σa = qc / 6 a 8

Page 27: Fainor   sapatas - estacas - tubulões

2. Cintra, Aoki e Albiero (2011) recomendam limitar qc 10 MPa ou

qc 10.000 KPa

Tab. Valores de KPAV de AOKI/VELOSO

A.2. Utilizando o CPT- Cone Penetration Test

MÉTODO 11: Décourt (1991) -– CPT -– Sem Distinção do Tipo de Solo

Para o ensaio do cone estático, Décourt recomenda

σa = (0,10 a 0,14) qc + σ0'

ex.: 9.6.2 Projetar as fundações do pilar P1 a serem executadas no terreno cujas

características estão dados abaixo, sendo que o pilar P1 está a 2cm da divisa. (Ver figura 9.5.6)

P1 (110 x 110cm) = 510t P2 (80 x 80cm) = 200t Vão P1 / P2 L = 4,90m Solo 01- S6Ca4(Areia muito argilosa, amarela, pouco úmida) Profundidade: 0 a 5m SPT=8 Solo 02-M3Cm5(Silte muito pouco Argiloso, marrom, Úmido) Profundidade: 5 a 16m SPT=12 Solo 03- M5Sm6(Silte, Arenoso, Marrom muito úmido) Profundidade: 16 a 25m SPT=24 N.A - Nível de água: Não encontrado em 07/Junho/2013 às 10:00 hs Fig. 9.6.6 Figura esquemática