estudo da propagaÇÃo de ondas na planÍcie de marÉ do...

97
ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO RIO AMAZONAS, MACAPÁ - AP Betina Carla Ribeiro Lima Rio de Janeiro

Upload: others

Post on 16-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ

DO RIO AMAZONAS, MACAPÁ - AP

Betina Carla Ribeiro Lima

Rio de Janeiro

Page 2: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ

DO RIO AMAZONAS, MACAPÁ - AP

Betina Carla Ribeiro Lima

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Oceânica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do título de Mestre em

Engenharia Oceânica.

Orientadora: Susana Beatriz Vinzon

Co-orientador: Marcos Nicolas Gallo

Rio de Janeiro

Setembro de 2011

Page 3: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO RIO

AMAZONAS, MACAPÁ - AP

Betina Carla Ribeiro Lima

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO

LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM

CIÊNCIAS EM ENGENHARIA OCEÂNICA.

Examinada por:

________________________________________________

Profª. Susana Beatriz Vinzon, D.Sc.

________________________________________________

Prof. Marcos Nicolás Gallo, D.Sc.

________________________________________________ Profª. Josefa Varela Guerra, D.Sc

________________________________________________ Profª. Valéria da Silva Quaresma, D.Sc

________________________________________________ Prof. Nelson Violante-Carvalho, D.Sc

RIO DE JANEIRO, RJ - BRASIL

SETEMBRO DE 2011

Page 4: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

iii

Lima, Betina Carla Ribeiro

Estudo da propagação de ondas na planície de maré

do Rio Amazonas, Macapá - AP/ Betina Carla Ribeiro

Lima. – Rio de Janeiro: UFRJ/COPPE, 2011.

XIII, 96 p.: il.; 29,7 cm.

Orientadora: Susana Beatriz Vinzon

Co-orientador: Marcos Nicolas Gallo

Dissertação (mestrado) – UFRJ/ COPPE/ Programa

de Engenharia Oceânica, 2011.

Referências Bibliográficas: p. 94-96.

1. Propagação de ondas. 2. Planícies de maré I.

Vinzon, Susana Beatriz. II. Universidade Federal do Rio

de Janeiro, COPPE, Programa de Engenharia Oceânica.

III. Título.

Page 5: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

iv

“Se um dia tiver que escolher entre o mundo e o amor, lembre-se: se escolher o

mundo ficará sem amor, mas se escolher o amor, com ele conquistará o mundo...”

Albert Einstein

Page 6: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

v

Agradecimentos

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES e a

Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro- FAPERJ, pelo apoio

financeiro através da concessão de bolsa de estudos durante parte deste trabalho.

À minha orientadora Susana, pela paciência excepcional e compreensão. Ao meu co-

orientador Marcos, pelos conselhos e dicas essenciais. Aos dois pelas revisões

instantâneas.

A todos do LDSC, e isto inclui a Marise; a companhia de vocês foi especial.

Agradeço a Deus, que me ilumina e me guia em todas as etapas da minha vida.

À minha família por acreditar sempre em mim, pela dedicação, pelas orações, enfim

obrigada por sempre estarem comigo.

À Tia Penha, pelo suporte e carinho a mim dedicados.

Aos meus amigos que fizeram da minha estadia no Rio a melhor, além de me

auxiliarem em várias etapas deste trabalho: Ana, Soyla, Thiago, Theo, Mill, Flávia e

Marcelo, tenham certeza que parte deste trabalho é de vocês também.

Aos meus colegas de trabalho pela torcida! Pri, Uggo e Lia obrigada pela ajuda nesta

etapa final.

Ao meu namorado, Arthur, pela sua companhia, por me incentivar e pelo carinho: você

foi muito importante! À minha sogra, Tani, que me ajudou nesta parte final.

Um amigo nos empresta sentimentos, doa carinho, atenção e gestos. Tenho privilégio

de tê-los em minha vida. Todos eles, longe ou perto, todos foram importantes para a

conclusão. A todos o meu sincero, Muito Obrigada!

Page 7: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

vi

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO RIO

AMAZONAS, MACAPÁ - AP

Betina Carla Ribeiro Lima

Setembro/2011

Orientadora: Susana Beatriz Vinzon

Co-oriendador: Marcos Nicolas Gallo

Programa: Engenharia Oceânica

Este trabalho teve como objetivo estudar a propagação de ondas na planície de

maré do rio Amazonas, adjacente à cidade de Macapá, AP. Para tanto, foram

realizadas medições de ondas durante o período de seca do Rio (dezembro/2006) e

período de cheia do Rio (agosto/2007), com 3 equipamentos dispostos

perpendicularmente à planície (1 AWAC e 2 ADVs) de modo a descrever a evolução

da onda à medida que se aproxima da margem. Inicialmente, realizou-se uma

caracterização das ondas, ventos, maré e descarga fluvial. As ondas adjacentes à esta

planície podem ser classificadas como ondas de águas intermediárias, de alta

frequência e geradas pelo vento local, com médias de alturas significativas de 0,36m

(2006) e 0,21m (2007), médias de período de pico de 3,1s (2006) e 2,8s (2007). A

direção predominante da onda é sudeste/sudoeste resultante da reflexão com o muro

de contenção na margem do Rio. No canal, a relação com o vento é mais nítida em

2006 quando os ventos são intensos e constantes na direção E resultando em maiores

alturas.

De forma geral, na planície, a onda é atenuada durante o período de maré

enchente e aumenta sua altura na maré vazante. Um crescimento notável na altura

significativa de onda pode estar associado aos picos de ventos, entretanto, apenas em

conjunto com níveis maiores da maré (preamar). Concluiu-se que, o vento é uma

forçante influenciadora na transformação da onda, e o nível de maré e o sentido de

alagamento/seca da planície são fatores moduladores da transformação da onda.

Page 8: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

vii

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

STUDY OF WAVE PROPAGATION IN THE AMAZON RIVER TIDAL FLAT,

MACAPÁ - AP

Betina Carla Ribeiro Lima

September/2011

Advisor: Susana Beatriz Vinzon

Co-advisor: Marcos Nicolas Gallo

Department: Ocean Engineering

The purpose of this study was evaluate wave propagation in the Amazon River

tidal flat, adjacent to Macapá city (AP). In order to achieve this goal, wave measures

were made during two different periods, December 2006 and August 2007. Three

equipments (1AWAC and 2 ADVs), arranged perpendicular to the flat, were used to

obtain a description of wave evolution during its approach to the shore. Initially, waves,

wind, tide and river discharge characterization were made. Waves adjacent to the flat

can be classified as intermediate water waves, with average significant heights of 0.36

m (2006) and 0.21 m (2007). Peak periods average found to these waves were 3.1 s

(2006) and 2.8 s (2007). The predominant waves direction is south/southwest and is a

result of reflection with bank river. These informations reveal a positive skewness

distribution. These are high frequency waves driven by local winds. The relation

between waves and wind was particularly clear during 2006 period, when winds were

stronger and constantly from eastward, resulting in greater wave heights.

In general, in the flat, the wave was attenuated during flood tide, while during ebb tide,

the wave increased. Peak winds may be associated with a more remarkable wave

increase, but only if in conjuction with higher water levels.

So, it can be concluded that wave increase and attenuation are forced by water level

and flood / ebb variations, while the wind plays a role in modulating these wave

transformations.

Page 9: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

viii

SUMÁRIO

1. INTRODUÇÃO ................................................................................................. 14

2. ESTADO DA ARTE ......................................................................................... 16

2.1. PLANÍCIES DE MARÉ .......................................................................................... 16

2.2. MARÉS NA PLANÍCIE .......................................................................................... 16

2.3. ONDAS NA PLANÍCIE .......................................................................................... 17

2.3.1. PROPAGAÇÃO DE ONDAS EM PLANÍCIES DE MARÉ ....................................... 18

3. ÁREA DE ESTUDO.......................................................................................... 21

3.1. LOCALIZAÇÃO ................................................................................................... 21

3.2. CARACTERÍSTICAS E FORÇANTES METEO-OCEANOGRÁFICAS DA REGIÃO ........... 22

3.2.1. MARÉ ........................................................................................................ 22

3.2.2. DESCARGA FLUVIAL ................................................................................... 23

3.2.3. CONDIÇÕES CLIMÁTICAS ............................................................................ 24

3.2.3.1. REGIME DE VENTOS ............................................................................... 25

3.2.3.2. CARACTERIZAÇÃO MORFOLÓGICA .......................................................... 25

4. METODOLOGIA .................................................................................................. 27

4.1. DADOS HIDRODINÂMICOS ................................................................................. 27

4.2. MEDIÇÕES NO CANAL ....................................................................................... 28

4.3. MEDIÇÕES NA PLANÍCIE .................................................................................... 28

4.4. TRATAMENTO DOS DADOS ................................................................................. 30

5. RESULTADOS E DISCUSSÃO ...................................................................... 34

5.1. PADRÕES DE VENTOS LOCAIS ........................................................................... 34

5.2. CARACTERIZAÇÃO DA ONDA .............................................................................. 39

5.2.1. ANÁLISE DE DADOS .................................................................................... 39

5.2.2. CARACTERIZAÇÃO DAS ONDAS NO CANAL .................................................. 44

5.2.2.1. MODELOS TEÓRICOS PARA A OBTENÇÃO DE ALTURA SIGNIFICATIVA DE

ONDA .............................................................................................................. 51

5.2.2.2. RELAÇÃO VENTOS X ONDAS .................................................................... 58

5.2.2.3. INTERAÇÃO DAS ONDAS NO CANAL COM AS CORRENTES DE MARÉ ....... 60

5.2.3. CARACTERIZAÇÃO DAS ONDAS NA PLANÍCIE DE MARÉ ................................ 64

5.2.4. PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ ......................................... 67

5.2.4.1. EVOLUÇÃO DA ONDA .............................................................................. 67

5.2.4.2. EMPINAMENTO ....................................................................................... 74

5.2.4.3. INFLUÊNCIA DOS VENTOS ....................................................................... 76

5.2.4.4. VARIAÇÃO DO NÍVEL DA ÁGUA ................................................................. 81

5.2.4.5. INTERAÇÃO DA ONDA COM AS CORRENTES DE MARÉ ............................... 87

Page 10: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

ix

6. CONCLUSÃO .................................................................................................. 92

7. REFERÊNCIAS ............................................................................................... 94

Page 11: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

x

LISTA DE FIGURAS

FIGURA 1: TENSÃO DE CISALHAMENTO DO FUNDO. .......................................................... 15

FIGURA 2: MAPA DA ÁREA DE ESTUDO. ................................................................................ 21

FIGURA 3: MAPA DA PLANÍCIE. ............................................................................................... 22

FIGURA 4: VAZÃO DO RIO AMAZONAS. ................................................................................. 24

FIGURA 5: PERFIL TOPOGRÁFICO E ZONEAMENTO DOS NÍVEIS DE MARÉ. ................... 26

FIGURA 6: ARRANJO ESQUEMÁTICO DOS SENSORES. ...................................................... 27

FIGURA 7: INSTALAÇÃO DO AWAC. ........................................................................................ 28

FIGURA 8: ACOUSTIC DOPPLER VELOCIMETERS (ADV). .................................................... 29

FIGURA 9: FREQUÊNCIA DE DIREÇÃO DO VENTO PARA OS DOIS PERÍODOS DE

ANÁLISE. ............................................................................................................................ 35

FIGURA 10: ROSA DOS VENTOS. ............................................................................................ 36

FIGURA 11: DIREÇÃO DOS VENTOS DA ÁREA DE ESTUDO. ............................................... 37

FIGURA 12: ROSA DOS VENTOS. ............................................................................................ 39

FIGURA 13: ALTURA SIGNIFICATIVA DE ONDA DO ADV1 PARA SECA/2006. .................... 41

FIGURA 14: ALTURA SIGNIFICATIVA DE ONDA NO ADV2 PARA CHEIA/2007. ................... 42

FIGURA 15: PROFUNDIDADE MÉDIA PARA 2006 E 2007. ..................................................... 45

FIGURA 16: ALTURA SIGNIFICATIVA DE NO CANAL PARA SECA/2006 E CHEIA/2007...... 47

FIGURA 17: PERÍODO DE PICO DE ONDA PARA SECA/2006 E CHEIA/2007. ..................... 48

FIGURA 18: DIREÇÃO PRINCIPAL DA ONDA PARA SECA/2006 E CHEIA/2007. ................. 49

FIGURA 19: DISTRIBUIÇÃO DE ALTURAS SIGNIFICATIVAS DURANTE A SECA/2006 E A

CHEIA/2007. ....................................................................................................................... 50

FIGURA 20: DISTRIBUIÇÃO DE PERÍODO DE PICO DE ONDA DURANTE A SECA/2006 E A

CHEIA/2007. ....................................................................................................................... 51

FIGURA 21: FORMULAÇÃO DE JONSWAP – VALORES MÉDIOS. ........................................ 53

FIGURA 22: FORMULAÇÃO DE JONSWAP – VALORES MÁXIMOS. ..................................... 53

FIGURA 23: APLICAÇÃO DO MODELO DE HASSELMANN PARA SECA/2006. .................... 56

FIGURA 24: APLICAÇÃO DO MODELO DE HASSELMANN PARA CHEIA/2007. ................... 57

FIGURA 25: ANÁLISE DA ALTURA SIGNIFICATIVA DE ONDA COM A VELOCIDADE MÉDIA

DO VENTO. ........................................................................................................................ 59

FIGURA 26: ANÁLISE DA ALTURA SIGNIFICATIVA DE ONDA COM A DIREÇÃO DO VENTO.

............................................................................................................................................ 60

FIGURA 27: PERÍODO DE PICO DE ONDA X CORRENTE DE MARÉ. ................................... 61

FIGURA 28: ALTURA SIGNIFICATIVA DE ONDA X CORRENTE DE MARÉ. .......................... 63

FIGURA 29: DISTRIBUIÇÃO DE ALTURA SIGNIFICATIVA PARA O ADV1 (FIGURA

SUPERIOR) E PARA O ADV2 (FIGURA INFERIOR). ....................................................... 64

FIGURA 30: RELAÇÃO ENTRE A ALTURA SIGNIFICATIVA DE ONDA E A PROFUNDIDADE

LOCAL – SECA/2006. ........................................................................................................ 66

FIGURA 31: RELAÇÃO ENTRE A ALTURA SIGNIFICATIVA DE ONDA E A PROFUNDIDADE

LOCAL – CHEIA/2007. ....................................................................................................... 66

Page 12: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

xi

FIGURA 32: ALTURA SIGNIFICATIVA DE ONDA DURANTE A SECA/2006. .......................... 68

FIGURA 33: RAZÃO ENTRE ALTURAS SIGNIFICATIVAS DURANTE A SECA/2006. ............ 69

FIGURA 34: DIFERENÇA ENTRE AS ALTURAS SIGNIFICATIVAS PARA OS DOIS TRECHOS

DURANTE A SECA/2006. .................................................................................................. 70

FIGURA 35: ALTURA SIGNIFICATIVA DE ONDA DURANTE A CHEIA/2007. ......................... 71

FIGURA 36: RAZÃO ENTRE ALTURAS SIGNIFICATIVAS DURANTE A CHEIA/2007. ........... 72

FIGURA 37: DIFERENÇA ENTRE AS ALTURAS SIGNIFICATIVAS PARA OS DOIS TRECHOS

– CHEIA/2007. .................................................................................................................... 73

FIGURA 38: RELAÇÃO ENTRE COMPORTAMENTO DA ONDA NA PLANÍCIE E A ONDA NO

CANAL. ............................................................................................................................... 74

FIGURA 39: COEFICIENTE DE EMPINAMENTO. ..................................................................... 76

FIGURA 40: CRESCIMENTO DAS ONDAS NA PLANÍCIE X VENTOS. ................................... 77

FIGURA 41: RELAÇÃO VENTO X PROFUNDIDADE LOCAL X RAZÃO ENTRE HS, DURANTE

A SECA/2006. ..................................................................................................................... 79

FIGURA 42: RELAÇÃO VENTO X PROFUNDIDADE LOCAL X RAZÃO ENTRE HS, DURANTE

A CHEIA/2007. ................................................................................................................... 80

FIGURA 43: RELAÇÃO ENTRE A PROFUNDIDADE E HS PARA DIFERENTES CICLOS DE

MARÉ.................................................................................................................................. 82

FIGURA 44: RELAÇÃO ENTRE A VARIAÇÃO DA MARÉ E DIFERENÇA ENTRE AS

ALTURAS DO ADV1 E DO AWAC, PARA OS CICLOS DE MARÉ, 2006. ....................... 83

FIGURA 45: RELAÇÃO ENTRE A VARIAÇÃO DA MARÉ E DIFERENÇA ENTRE AS

ALTURAS DO ADV2 E DO ADV1 PARA OS CICLOS DE MARÉ, 2006. .......................... 84

FIGURA 46: RELAÇÃO ENTRE A VARIAÇÃO DA MARÉ E DIFERENÇA ENTRE AS

ALTURAS DO ADV1 E DO AWAC, PARA OS CICLOS DE MARÉ, EM 2007. ................. 85

FIGURA 47: RELAÇÃO ENTRE A VARIAÇÃO DA MARÉ E DIFERENÇA ENTRE AS

ALTURAS DO ADV2 E DO ADV1, PARA OS CICLOS DE MARÉ, 2007. ......................... 86

FIGURA 48: PROPAGAÇÃO DE ONDA X CORRENTE DE MARÉ, DURANTE A SECA DO RIO

(2006).................................................................................................................................. 88

FIGURA 49: NÍVEL DA MARÉ X PROPAGAÇÃO DE ONDA DURANTE A SECA DO RIO

(2006).................................................................................................................................. 89

FIGURA 50: PROPAGAÇÃO DE ONDA X CORRENTE DE MARÉ DURANTE A CHEIA DO

RIO (2007). ......................................................................................................................... 90

FIGURA 51: NIVEL DA MARÉ X PROPAGAÇÃO DE ONDA DURANTE A CHEIA DO RIO

(2007).................................................................................................................................. 91

Page 13: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

xii

LISTA DE TABELAS

TABELA 1: COORDENADAS GEOGRÁFICAS DOS EQUIPAMENTOS ................................... 29

TABELA 2: PARÂMETROS ESTATÍSTICOS PARA OS DADOS DE VENTO ........................... 37

TABELA 3: PROFUNDIDADE DA COLUNA DE ÁGUA NA PLANÍCIE DO CANAL NORTE DO

RIO AMAZONAS ................................................................................................................ 40

TABELA 4: VALORES DE PERÍODO DE PICO DE ONDAS NA PLANÍCIE.............................. 40

TABELA 5: RAZÃO ENTRE PROFUNDIDADE E COMPRIMENTO DE ONDA PARA

DIFERENTES PERÍODOS DE ONDA .............................................................................. 40

TABELA 6: PROFUNDIDADE MÉDIA E KAPPA RESULTANTE ............................................... 43

TABELA 7: ERRO MÉDIO QUADRÁTICO ................................................................................. 43

TABELA 8: PROFUNDIDADE DO CANAL DO RIO AMAZONAS ............................................. 44

TABELA 9: PARÂMETROS ESTATÍSTICOS DAS ONDAS NO CANAL ................................... 46

TABELA 10: VALORES MEDIDOS DE VENTO E ONDA .......................................................... 52

TABELA 11: PARÂMETROS ESTATÍSTICOS DA ALTURA SIGNIFICATIVA DA ONDA NA

PLANÍCIE ........................................................................................................................... 65

TABELA 12: MÉDIAS DE ALTURAS SIGNIFICATIVAS ............................................................ 81

Page 14: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

xiii

LISTA DE EQUAÇÕES

EQUAÇÃO 1: ALTURA DE ONDA .............................................................................................. 17

EQUAÇÃO 2: RELAÇÃO DE WEGEL ........................................................................................ 19

EQUAÇÃO 3: RELAÇÃO DE LE HIR.......................................................................................... 20

EQUAÇÃO 4: CÁLCULO DO ESPECTRO DE ONDA................................................................ 30

EQUAÇÃO 5: CÁLCULO DO ESPECTRO DE ONDA................................................................ 30

EQUAÇÃO 6: CÁLCULO DA FUNÇÃO DE TRANSFERÊNCIA ................................................ 31

EQUAÇÃO 7: CÁLCULO DO NÚMERO DE ONDA ................................................................... 31

EQUAÇÃO 8: CÁLCULO DO NÚMERO DE ONDA ................................................................... 31

EQUAÇÃO 9: CÁLCULO DO NÚMERO DE ONDA PELO MÉTODO ITERATIVO .................... 32

EQUAÇÃO 10: FORMULAÇÕES DO MÉTODO ITERATIVO .................................................... 32

EQUAÇÃO 11: ALTURA SIGNIFICATIVA DE ONDAS – MÉTODO ITERATIVO ...................... 32

EQUAÇÃO 12: CÁLCULO DA DIREÇÃO PRINCIPAL DA ONDA ............................................. 32

EQUAÇÃO 13: MÉDIA ................................................................................................................ 33

EQUAÇÃO 14: MEDIANA ........................................................................................................... 33

EQUAÇÃO 15: MODA ................................................................................................................. 33

EQUAÇÃO 16: CONVERSÃO DA VELOCIDADE DO VENTO .................................................. 34

EQUAÇÃO 17: COMPRIMENTO DE ONDA .............................................................................. 40

EQUAÇÃO 18: CÁLCULO DA ALTURA SIGNIFICATIVA DE ONDA ATRAVÉS DO MODELO

DE HASSELMANN ............................................................................................................. 54

EQUAÇÃO 19: CÁLCULO DA VELOCIDADE DE ATRITO DO VENTO .................................... 54

EQUAÇÃO 20: COEFICIENTE DE EMPINAMENTO ................................................................. 74

EQUAÇÃO 21:............................................................................................................................. 75

EQUAÇÃO 22:............................................................................................................................. 82

Page 15: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

14

1. INTRODUÇÃO

Águas costeiras são regiões que ocupam 15% de toda a área coberta pelo

oceano, como praias, planícies de maré e estuários (BROWN et al., 1999). Estas

regiões são ambientes complexos, com morfologia e deposição que reflete a interação

de muitos processos configurando ambientes de energia mista, sendo influenciadas

por ondas, marés e rios (DALRYMPLE et al., 2006).

As planícies de maré podem ser definidas como áreas planas, com baixos

gradientes de declividade, formadas com o acúmulo de sedimento devido à ação

conjunta de ondas, correntes de maré e, por vezes, fluxo do rio e que sofrem fortes

flutuações da elevação do nível de água (DALRYMPLE et al., 2006; FAN et al, 2006;

Le HIR et. al, 2000).

Maré é, naturalmente, o processo mais importante, já que determina a existência

desta planície. Entretanto, Le Hir e colaboradores (2000) relatam que mesmo em

áreas abrigadas, as ondas não podem ser ignoradas, pois podem ser suficientes para

suspender sedimentos em muitas áreas rasas e, frequentemente, contribuir para a

estabilidade ao longo do tempo (SHEREMET & STONE, 2003).

As ondas à que estas regiões são expostas podem ser geradas localmente ou

propagadas desde regiões remotas. As vagas são aquelas que recebem a energia do

vento local e ondas do tipo swell referem-se a ondas em locais distantes que não

estão recebendo a energia do vento, pois saíram do seu local de formação (CARTER,

1988; POND; PICKARD, 1989, LE HIR et al., 2000).

Segundo Dalrymple e colaboradores (2006) a sedimentação nestes ambientes é

controlada pelas ondas, mas a variação da maré e o baixo gradiente local criam fácies

distintas daquelas encontradas em outras regiões costeiras.

Planícies de maré são ambientes de grande relevância ecológica e econômica

tendo em vista a sua função como barreira contra o mar e sumidouro de poluentes,

bem como apresentam grande quantidade de nutrientes e, consequentemente, de

organismos (FAN et al., 2006). Tais regiões apresentam uma dinâmica complexa

devido à interação de diferentes forçantes.

Esta interação induz o atrito no fundo e, por sua vez, o efeito da fricção com o

fundo é oposto ao escoamento e remove energia do movimento. No perfil vertical da

corrente há um decréscimo da intensidade nas camadas mais próximas ao fundo e no

perfil vertical da onda há um achatamento das órbitas em direção ao fundo. A

turbulência resulta em uma mistura vertical na coluna d água, sendo capaz não só de

remobilizar os sedimentos do fundo, mas também suspendê-los. Como consequência

Page 16: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

15

tem-se o transporte sedimentar e a alteração da morfologia do fundo (BROWN et al.

1999; PUGH,1987; NICHOLS 1999) (FIGURA 1).

Figura 1: Tensão de cisalhamento do fundo. Esta tensão é resultado da fricção do escoamento com o fundo que pode remobilizar e suspender o sedimento que estava depositado. Fonte: QUARESMA, 2007.

Neste cenário, encontra-se a planície de maré do rio Amazonas, adjacente à

Macapá (AP) onde forçantes como a maré e a maior vazão fluvial do mundo interagem

com as ondas, fornecendo uma dinâmica peculiar.

O rio Amazonas é uma importante rota de navegação da região norte brasileira

com intenso tráfego de barcos e condições extremas de correntes. Entretanto, são

escassos os estudos sobre ondas nesta planície ou em regiões adjacentes.

O presente estudo propõe caracterizar as ondas na planície de maré do rio

Amazonas, em Macapá (AP), e avaliar suas transformações neste peculiar ambiente.

Para alcançar o resultado foram definidos objetivos específicos:

• Caracterizar fisicamente as regiões de planície de maré no canal Norte

do rio Amazonas no que se refere ao clima de ondas;

• Avaliar as modificações das ondas nas planícies de maré;

• Investigar diferenças no comportamento das ondas decorrentes da

influência dos ventos locais e da análise de dados em períodos de

enchente/vazante, sizígia/quadratura e cheia/seca do rio Amazonas;

Page 17: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

16

2. ESTADO DA ARTE

2.1. PLANÍCIES DE MARÉ

As planícies de maré são caracterizadas pela rápida variação de profundidade da

coluna de água, no tempo e no espaço, com a exposição adicional ao ar. A maré, as

ondas e a descarga fluvial em conjunto com a morfologia e o tipo de sedimento local

induzem fortes flutuações da elevação da água e geram eventos sedimentares

próprios (KIM, 2003; LE HIR et al., 2000; WHITEHOUSE et al.,2000).

A região foco do presente estudo, a planície de maré do rio Amazonas, possui uma

maré classificada como macromaré semidiurna que interage com a maior vazão fluvial

do mundo e com ventos intensos, processos que serão discutidos posteriormente.

Assim, a região apresenta uma hidrodinâmica especial sendo difícil encontrar estudos

com dinâmica similar e efeitos comparáveis. Este estudo visa entender a propagação

de ondas em um ambiente dominado por maré e, por isso, o comportamento destas

duas forçantes será rapidamente descrito.

2.2. MARÉS NA PLANÍCIE

Marés são o principal fator no controle da hidrodinâmica e dos processos

sedimentares de planícies de maré, já que isto determina a sua existência. As

correntes induzidas pela maré podem ser divididas na componente perpendicular à

costa que é responsável pelo alagamento e secamento da planície (KIM, 2003; LE HIR

et al., 2000), e na componente paralela, a qual depende da circulação de larga escala

ao redor da planície, que neste caso, também é fortemente influenciada pela vazão

fluvial (GALLO, 2009).

O comprimento da onda de maré é muito maior que a largura da planície, então, a

elevação da água é quase horizontal na escala da planície. Mas, o efeito da fricção

com o fundo pode retardar a propagação da onda de maré, especialmente em águas

costeiras e através do declive suave da planície (LE HIR et al., 2000). As correntes

geradas pela interação da propagação da onda de maré com a morfologia do fundo

tendem a estar 90° fora de fase com as flutuações d e níveis durante um ciclo de maré,

isto é, as velocidades máximas acontecem na meia-maré, com a estofa da maré

próxima à preamar. Variações consideráveis deste padrão podem ocorrer de região

para região (GALLO, 2009). Estas correntes são responsáveis pelo transporte

sedimentar, desenvolvimento de formas de fundo além de outras interações (BROWN

et al., 1999; CARTER, 1988).

Page 18: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

17

2.3. ONDAS NA PLANÍCIE

As ondas superficiais marinhas geradas pelo vento apresentam três fatores

limitantes: a “pista” (distância onde o vento sopra livremente), a velocidade e a

duração do vento (POND; PICKARD, 1989; CARTER, 1988). Entretanto, à medida que

a onda avança para regiões de águas rasas, outros parâmetros se tornam importantes

para determinar a altura da onda, pois as órbitas das partículas de água, que são

quase circulares em águas profundas, começam a se tornar aplainadas perto do fundo

resultando em um movimento horizontal dos sedimentos o que acarreta na perda de

energia da onda (BROWN et al., 1999; LEEDER, 1994). Esta perda é manifestada

pelo retardo da onda e pela alteração da forma da onda (empinamento, refração e

difração). A perda de energia pela onda é responsável pela principal entrada de

energia para o transporte sedimentar cuja variabilidade está intimamente relacionada

ao clima de ondas (CARTER, 1988).

Ao se analisar as ondas quatro parâmetros são relevantes: altura, período, direção

e espectro da onda. A altura da onda (H) é definida como a distância vertical entre a

crista e a cava da onda. Em um conjunto de dados de ondas com N ondas a altura

média da onda é definida como:

� = 1� ∑ ���

Equação 1: Altura de onda

A medida de altura de onda é relevante, pois sua energia é proporcional ao

quadrado de sua altura. E a medida mais utilizada é a altura significativa de onda (Hs),

que é a média do terço das ondas mais altas, ou então, faz-se o cálculo com base no

espectro de onda, neste caso, chamada de Hm0. Salienta-se que esta forma de calcular

tende a ser de 5 – 10% maior que a Hs (HOLTHUIJSEN, 2007).

O período de onda é o intervalo de tempo entre a passagem de dois pontos

iguais consecutivos (duas cristas, dois vales ou dois zeros). O período de pico de onda

(Tp) indica o período da onda com maior densidade espectral: ele representa as ondas

mais energéticas do local (HOLTHUIJSEN, 2007).

A direção da onda é a direção na qual esta se propaga inicialmente

determinada por sua forçante geradora, mas tende a mudar devido à interação com a

batimetria do fundo e com o desenho da costa.

O espectro da onda descreve as variações da superfície como um processo

estocástico, ou seja, caracteriza todas as possíveis observações feitas sob as mesmas

condições (HOLTHUIJSEN, 2007). Um conjunto de dados de ondas pode ser

Page 19: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

18

reproduzido como a somatória de grandes números de componentes harmônicos da

onda, ou seja, uma Série de Fourier.

2.3.1. PROPAGAÇÃO DE ONDAS EM PLANÍCIES DE MARÉ

Estudos sobre propagação de ondas em planícies de maré são muitos escassos e,

portanto, os trabalhos que serão abordados aqui independem da magnitude dos

processos envolvidos, i.e., em regiões dominadas por ondas ou por maré, abrigadas

ou expostas.

Quando a onda se propaga sobre a planície, ela fica suscetível ao aumento de

altura devido à diminuição da profundidade e aumento da extensão da pista. Da

mesma forma a onda pode decrescer, tendo em vista a fricção com o fundo ou o

entranhamento visco-elástico no fundo. À medida que a onda se propaga em regiões

mais rasas, ocorre uma assimetria das componentes da velocidade e estas aumentam

devido à influência de não-linearidades.

Mesmo em áreas abrigadas, as ondas são raramente ignoradas, ou seja,

mesmo com amplitudes pequenas elas podem ser suficientes para ressuspender

sedimentos finos em muitas áreas rasas e, frequentemente, contribuir para a

estabilidade ao longo do tempo (LE HIR et al., 2000). Já entre uma planície de maré e

outra, o regime de ondas pode ser bem diferente: planícies expostas às ondas do tipo

swell geralmente são arenosas como praias. Em caso de planícies expostas a apenas

ondas locais, a composição sedimentar é principalmente lama e, estas ondas têm

grande influência no transporte de sedimento, pois a tensão causada por elas no fundo

pode ser comparável ou maior à causada pela corrente de maré (LE HIR et al. 2000).

Evidências observacionais e modelos matemáticos têm demonstrado que há uma

relação crucial entre as ondas geradas pelos ventos e o sedimento em suspensão em

regiões onde a maré não é suficiente para remobilizar os sedimentos e, a combinação

de maré e onda descreve os padrões de erosão e deposição destas planícies

(CARNIELLO, et al., 2011; TELES et al., 2003 apud RUSU et al., 2011;).

Como exposto acima, estudos de Carniello e colaboradores (2011) em regiões

costeiras de micromaré, encontraram que as correntes de maré e ondas geradas pelos

ventos são os principais processos responsáveis pela evolução morfológica.

Entretanto, em estuários de mesomaré, com a circulação dirigida

principalmente pela maré, Rusu e colaboradores (2011) encontraram que o vento é a

forçante secundária do local. Trabalhos realizados no Mar de Wadden (região de

meso-maré) encontraram valores de Hs; entre 1.1 -1.2 m; e, período de pico de onda,

entre 5.5 e 5.6s (HERMAN et al., 2009). Neste estudo, durante eventos de

Page 20: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

19

tempestades no Mar do Norte, as ondas penetravam na planície interagindo com o

fundo e sendo a forçante principal. Entretanto, em eventos de clima calmo, a

variabilidade e a propagação da onda são fortemente dependentes do vento e do nível

da água (diferentes fases da maré).

Kim (2003) estudou a influência de eventos de tempestades em região de

macromaré, em situações de maré de sizígia e de quadratura, em uma planície aberta

no Mar Amarelo (costa da Coréia). O autor estudou a relação linear da altura

significativa de onda com a profundidade local (Hs/h), e seus dados (com coeficiente

de correlação de 0.7) se apresentaram sempre muito próximo ao limite de quebra da

onda ou abaixo dele. Neste estudo foi usada a condição incipiente de quebra da onda

pela relação de Wegel (1972, apud KIM, 2003):

�� � = ���� − ����∗��

��� ; Equação 2: Relação de Wegel

Onde:

a(β) = 43.8 (1.0 -e-19β)

b(β) = 1.56/ (1.0 + e-19.5β)

β = declividade local – adimensional;

Hb = altura da onda local – unidade: m;

h = profundidade local – m;

g = aceleração da gravidade – m/s²

T = período da onda – s;

e b denota a condição de quebra;

Para exemplicar:

Se:

β = 1/1000;

T = 5s;

H = 0-3m

A Equação remete ao valor de 0.8.

Outro ponto relevante neste estudo é que o autor indica que mesmo em

eventos mais energéticos as ondas estão sob o controle da maré, ou seja, o processo

de quebra é similar ao da zona de espraiamento, mas o local onde ocorrerá variará

espacialmente, se movendo, vertical e harmonicamente com a maré (KIM, 2003).

Page 21: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

20

Wells e Kemp (1986) em seu estudo utilizaram o limite de quebra (H/h)

aproximadamente 0.8 e, observaram que as ondas nunca quebram, pois sua altura

permanece menor que este limite. Este comportamento foi atribuído à severa

atenuação das ondas por dissipação.

Para locais com baixos valores de fricção ou declividades acentuadas, a

dissipação é negligenciada e a altura da onda é mantida ou mesmo acrescida até a

quebra.

Por outro lado, para altos valores de fricção ou declive suave, a dissipação se

torna dominante e a altura da onda tende a uma relação constante da profundidade

local, qualquer que seja a altura da onda incidente. Supondo que haja uma proporção,

haverá um máximo de altura de onda para tal planície de maré em função de uma

dada profundidade (LE HIR et al., 2000). Assumindo que esta proporção (H/h)lim

existe, pode ser calculada por meio da equação seguinte:

�����∗��/��� = �

!" #$� ��� ∗ �!/�

Equação 3: Relação de Le Hir

Sendo:

H = altura da onda;

h0 = altura da onda fora da planície

H0 = H/h0;

x = distância da costa;

β = declividade do local;

fw = fricção com o fundo;

X = x β /h0;

Estudos relevantes sobre a modificação do comportamento da onda devido à

variação fluvial (cheia e seca) e devido à alteração das correntes de maré não foram

encontrados. Entretanto, estes tópicos serão discutidos no resultados deste trabalho.

Considerando a escassez de estudos de ondas na região e a importância destas para

o transporte sedimentar e para a hidrodinâmica local, este estudo visa entender o

comportamento das ondas na planície de maré, adjacente à cidade de Macapá (AP) e

sua transformação à medida que as mesmas se propagam. Isto será possível

avaliando os principais parâmetros estatísticos das ondas e suas variações devido às

flutuações do nível da água, do vento e das correntes.

Page 22: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

21

3. ÁREA DE ESTUDO

3.1. LOCALIZAÇÃO

A planície de maré em estudo está localizada na margem esquerda do canal norte

do rio Amazonas, próxima à capital, Macapá, no Estado do Amapá. Estende-se ao

longo da orla da cidade e é delimitada ao norte pelo píer de captação de água

(CAESA) a ao sul pelo bairro Atúria. Esta região está a 150 km da boca do estuário,

entre as coordenadas 0° 1'18.37" e 0° 1'13.01"N; 5 1° 3'14.48" e 51° 2'57.67"W

(FIGURAS 2 e 3). O estudo se dará em 628 metros de extensão.

Figura 2: Mapa da área de estudo . A planície de maré estudada está indicada por um x e está localizada no rio Amazonas, próxima a capital do Estado do Amapá, Macapá. Fonte : Google Earth, 2008.

Page 23: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

22

Figura 3: Mapa da planície. A planície de maré estudada segue a linha vermelha e apresenta 628m de extensão. Há píer de captação de água a norte e o muro de contenção na margem, a oeste. Fonte: Google Earth, 2008.

A planície possui uma declividade suave com média de 1/285 (GALLO, 2009) e

sua profundidade varia diariamente em função da maré e, sazonalmente, devido às

flutuações do Rio.

3.2. CARACTERÍSTICAS E FORÇANTES METEO -OCEANOGRÁFICAS DA REGIÃO

3.2.1. MARÉ

A maré local é classificada como macromaré semidiurna, podendo chegar a

3.8m de altura. As componentes M2 (período de 12,4 horas) e S2 (período de 12 horas)

são as predominantes. Na penetração da maré em um estuário há interação

considerável com a morfologia e com a vazão fluvial implicando em processos

sedimentares e flutuações de nível d´água características (WHITEHOUSE et al.,2000;

PIATAM OCEANO, 2008; POND; PICKARD, 1989; GODIN,1999).

Neste ambiente, os efeitos da maré se propagam 800 km à montante do rio

Amazonas e a interação com estes diferentes processos gera assimetria, pois há

amortecimento de alguns componentes harmônicos e a geração de outros,

principalmente os componentes M4 e Msf. Estes harmônicos são responsáveis pelas

diferenças no período de enchente e vazante da maré na região estuarina do rio

Page 24: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

23

Amazonas (assimetria positiva de níveis), sendo as correntes de vazantes dominantes

no canal devido à influência fluvial (GALLO; VINZON, 2005; NITTROUER et al., 1991).

Entretanto a planície de maré é classificada como sistema enchente-

dominante, ou seja, as máximas correntes de enchente são maiores que as máximas

de vazante (GALLO, 2009).

As principais características da propagação da maré no rio Amazonas são:

a) A maré se comporta de forma dispersiva, ou seja, as componentes de maior

frequência se propagam mais rápido e são anteriormente amortecidas do que as de

baixa frequência. E assim, pode-se definir três regiões distintas dentro do estuário, que

se movimentam à jusante com o aumento da vazão (GALLO, 2004):

1- Na foz, onde há predomínio das componentes semidiurnas, principalmente

M2 e S2;

2- Uma zona intermediária, até 300km à montante, onde surgem componentes

de alta frequência (M4) e de longo período (Msf). É a região que engloba a

área de estudo deste trabalho e, por último,

3- Trecho com maior influência do Rio, onde há o predomínio das

componentes de longo período (Mm e Msf) uma vez que as outras sofreram

amortecimento. Seus valores são comparáveis à M2.

b) A maior influência da vazão ocorre no período de cheia quando as

componentes semidiurnas sofrem um decréscimo e as de alta frequência são quase

extintas (GALLO, 2004);

c) A presença de sedimentos finos em suspensão e em altas concentrações no

fundo reduz o atrito, o que resulta num acréscimo nas amplitudes de maré na

plataforma continental Amazônica conforme confirmam estudos numéricos realizados

por Gabioux e colaboradores (2005).

3.2.2. DESCARGA FLUVIAL

O rio Amazonas se estende por 6.570km, possui a maior vazão fluvial no

mundo (15% de toda a água doce dos oceanos) e é o terceiro maior transportador de

sedimentos em suspensão (~1,2x109 toneladas de sedimentos), sendo uma

importante forçante hidráulica e modificadora das feições sedimentares locais

(PIATAM OCEANO, 2008; MEADE et al., 1985).

A sazonalidade do Rio Amazonas gera uma flutuação na vazão fluvial do rio

Amazonas resultando em máximas em maio\junho, na ordem de 270x103 m3/s e

Page 25: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

24

mínimas em outubro\novembro, de aproximadamente 60x103 m3/s, medidas obtidas na

cidade de Óbidos, PA (localizada na margem esquerda do rio, a 1.100 km da capital

Belém e a 800 km da foz do rio) (FIGURA 4).

Figura 4: Vazão do rio Amazonas. A vazão do rio possui máximas no período de maio/junho e mínimas no período de outubro/novembro medidas pela Agência Nacional de Água, na cidade de Óbidos, PA. Fonte: ANA, 2011.

Os principais canais do Rio Amazonas (Canal Norte e Canal Sul) apresentam

profundidades de 20m ou mais, no entanto, na embocadura a profundidade pode

diminuir para valores inferiores a 5 metros.

3.2.3. CONDIÇÕES CLIMÁTICAS

O clima na região do Amapá é, segundo a classificação de Koppen, equatorial

superúmido, com temperaturas médias entre 25° e 27° C e máxima de 36°C. O índice

pluviométrico é elevado, por volta de 2500mm/ano. A área apresenta duas estações

bem definidas: o inverno durante os meses de dezembro e agosto, com fortes chuvas,

e o verão, nos meses de setembro a dezembro (GOVERNO DO ESTADO DO

AMAPA, 2008).

Page 26: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

25

3.2.3.1. REGIME DE VENTOS

Os ventos alíseos, presentes durante o ano todo nesta região, são formados

em uma grande extensão de área livre de obstáculos no oceano, caracterizando uma

peculiar constância, intensidade e turbulência relativamente baixa. Não obstante, a

região sofre intensa influência do Anticiclone Subtropical do Atlântico Sul (ASAS) que

gera ventos de sudeste (SE) e leste (E). Nesta região, os alíseos apresentam

variações sazonais associadas à Zona de Convergência Intertropical (ZCIT) (FISCH,

2008; FONTES, 2000).

A ZCIT é consequência do aquecimento intenso e uniforme desta região pela

radiação solar. Como resultado, os alíseos de SE, oriundos do Hemisfério Sul, e os de

nordeste (NE), vindos do Hemisfério Norte, convergem para ela em níveis mais baixos.

A ZCIT se movimenta pelos hemisférios seguindo o deslocamento ou migração

sazonal do sol e, geralmente, está ligada às regiões de altas temperaturas da

superfície do mar (TSM). No verão austral a ZCIT pode estar até em 5° a 6° S,

indicando ventos alíseos de SE mais fracos, enquanto os alíseos de NE (Hemisfério

Norte) estão mais intensos. No inverno austral, com a intensificação dos alíseos de

SE, a ZCIT pode chegar a 14°N.

Tendo em vista o seu posicionamento, a ZCIT é importante para a precipitação

nos trópicos, mantém o balanço térmico local e é responsável pelo alto índice

pluviométrico na região amazônica (FISCH, 2008).

Devido à migração da ZCIT, a região de estudo fica sob influência dos alíseos

de nordeste, entre março e abril, e sob influência dos alíseos de sudeste entre agosto

e setembro. Aliado a esta dinâmica, há o regime de brisas terrestres e marinhas. Esta

interação resulta em ventos de 5 e 7,5m/s na costa norte (nos estados do Amapá e do

Pará) (FISCH, 2008; FONTES, 2000).

Não há dados de ondas na região, contudo, estudos de Fisch (2008) no Estado

do Ceará, indicam que ondas de gravidade geradas pelos alíseos e, eventualmente,

ondas de longo período provocadas por tempestades no Atlântico Norte possam

influenciar no clima de ondas da região da foz do Amazonas.

3.2.3.2. CARACTERIZAÇÃO MORFOLÓGICA

O local escolhido para o estudo está orientado aproximadamente na direção

Oeste-Leste (o ângulo do eixo transversal à planície é 100º E) e apresenta uma

declividade média do perfil de 1/285 como mostra a figura abaixo. Nesta são

demonstrados os 4 níveis principais de maré no local durante os dois anos de estudo

(2006 e 2007): MHWS – média do nível alto na maré de sizígia, MHW - média do nível

Page 27: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

26

alto na maré de quadratura, MLWS - média do nível baixo na maré de sizígia e MLWN

– média do nível baixo na maré de quadratura. Também são determinados os níveis

médios para os anos de 2006 (período de seca) e 2007 (período de cheia) (GALLO,

2009). A região cinza a oeste está representado o muro da orla da cidade (feição que

altera o perfil topográfico da região).

Figura 5: Perfil topográfico e zoneamento dos níveis de maré . Os 4 níveis de maré principais (MHWS, MHWN, MLWN e MLWS, média do nível mais alto na sizígia, média do nível mais alto na quadratura, média do nível mais baixo na sizígia e média do nível mais baixo na quadratura, respectivamente), para os anos de 2006 (seca) e 2007 (cheia), estão identificados. Os níveis de maré principais foram calculados por GALLO (2009) através da análise harmônica das séries de níveis da água registrados na estação AWAC. Os níveis médios (NM) também são indicados. As altitudes são fictícias, sendo que o nível médio encontra-se em cota 96.8 m. Fonte: GALLO, 2009.

Sobre os sedimentos que formam o fundo, a planície pode ser caracterizada

com silte e areia muito fina. Foi constatado que a fração de areia aumenta em direção

ao canal, variando entre 10% e 80%, com diâmetro médio (d50) de 0.065mm. A

hipótese é que há um decréscimo da intensidade das correntes em direção à margem.

Na parte inferior é composta principalmente por areias e na parte superior há uma

mistura de areias finas e silte (GALLO, 2009).

Page 28: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

27

4. METODOLOGIA

Para alcançar os objetivos deste trabalho, foram realizadas duas campanhas:

uma no ano de 2006 e outra no ano de 2007. Em 2006, os dados foram adquiridos

entre os dias 29 de novembro e 07 de dezembro, durante o período de seca do rio

Amazonas e variações lunares (sizígia e quadratura); em 2007, as coletas foram

realizadas entre os dias 01 a 18 de agosto de 2007, durante o período de cheia do rio

Amazonas com variações lunares.

Os dados analisados nesta dissertação foram coletados com o objetivo de

caracterizar as velocidades e níveis de maré nas planícies de maré do Rio Amazonas

(GALLO,2009)¹.

4.1. DADOS HIDRODINÂMICOS

Foram utilizados três equipamentos para a medição de ondas na planície,

arranjados segundo a Figura 6:

Figura 6: Arranjo esquemático dos sensores. Pontos de fundeio do AWAC e dos ADVs, para a medição de ondas e correntes na planície de maré. A planície de maré é compreendida entre as linhas de preamar (MHLS, média do nível mais alto na sizígia) e baixa-mar (média do nível mais baixo na sizígia). A linha tracejada indica a linha perpendicular à margem, de localização dos equipamentos. Fonte: GALLO, 2009.

¹ O estudo teve financiamento do Projeto do MCT/CNPq/CT-HIDRO, 2005. (“Estudo comparativo da hidrodinâmica e sedimentação nas várzeas e planícies de maré do sistema hídrico do Amazonas”).

Page 29: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

28

4.2. MEDIÇÕES NO CANAL

Com o intuito de descrever a condição de entrada das ondas na planície, o

perfilador acústico de ondas e correntes - Acoustic Wave and Current profiler (AWAC)

fabricado pela NORTEK-AS - de 600 kHz foi instalado na área de submaré da orla de

Macapá (MCP). Um exemplo do local de instalação é mostrado na Figura 7.

A medição de ondas e correntes feita pelo AWAC usa o princípio do Doppler

para medir a velocidade das correntes através da transmissão de um pulso curto de

som, que é refletido ao encontrar partículas em suspensão. Variações na frequência

indicam a velocidade (NORTEK, 2010). A extração do dado de onda foi feita através

do cálculo do espectro cruzado das componentes da velocidade com a pressão.

Este sensor possui um período de corte para período de onda de 2,5 s

(profundidade de 5 m), precisão de menos que 1% do valor medido para altura e 0,5%

para pressão (NORTEK, 2010).

O sensor estava localizado a 0.9 m do fundo. As ondas foram medidas a cada

1 hora, sendo que o intervalo de aquisição dos dados foi de 512 segundos, com uma

taxa de amostragem de 1 segundo. A medição de correntes foi realizada a cada 10

minutos, sendo o intervalo de medição de 1 minuto com a mesma taxa de amostragem

das ondas. As coordenadas do aparelho foram: 0° 1'1 8.37"N e 51° 2'57.67"W.

Figura 7 : Instalação do AWAC. Trabalho de fundeio do AWAC para a medição de ondas e correntes na região externa à planície de maré. Fonte: GALLO, 2009

4.3. MEDIÇÕES NA PLANÍCIE

Dois sensores do tipo velocímetro de Doppler acústico - Acoustic Doppler

velocimeters (ADV) fabricado pela Sontek, de 6 MHz, foram instalados na planície de

maré com o objetivo de avaliar o comportamento das ondas no interior da planície. O

ADV1 estava localizado à 459 m do AWAC, no sentido oeste e, o ADV2 estava

Page 30: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

29

instalado 200 m à oeste do ADV1. Este equipamento utiliza o mesmo principio de

Doppler para calcular as velocidades, mas possui transdutores e receptores diferentes,

o primeiro está localizado no centro e os três receptores estão localizados num arranjo

de 120º, como mostra a Figura 8 (SONTEK, 2010). A altura das ondas é medida

através da combinação dos dados adquiridos por um sensor de pressão, mesmo

processo descrito no item acima.

Neste estudo, as medições de velocidade foram feitas a 0,15 metros do fundo e

as de pressão a 0,35 metros do fundo, com um intervalo de amostragem de 10

minutos, adquirindo dados durante 64 segundos com taxa de 4Hz. Os equipamentos

foram instalados nas seguintes coordenadas: ADV1: 0° 1'12.08"N 51° 3'8.94"W e ADV

2: 0° 1'13.01"N 51° 3'14.48"W.

Figura 8: Acoustic Doppler velocimeters (ADV). Utilizado para medir ondas e correntes dentro da planície de maré. Fonte : SONTEK, 2010.

Os dados medidos pelos dois ADVs foram utilizados para a caracterização da

onda na planície, utilizaram. O ADV1 está localizado mais próximo ao AWAC e está

mais profundo que o ADV2 como pode ser observado na tabela seguinte:

Tabela 1

Coordenadas geográficas dos equipamentos

Latitude Longitude

AWAC 0° 1'18.37"N 51° 2'57.67"W

ADV1 0° 1'12.08"N 51° 3'8.94"W ADV2 0° 1'13.01"N 51° 3'14.48"W.

Page 31: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

30

Através dos dados medidos pelo AWAC na região externa à planície de maré e

dos dados adquiridos pelos ADVs na região interna à planície, espera-se analisar a

propagação das ondas entre estes pontos (FIGURA 6). Esta análise será feita a partir

de comparações entre os dados dos diferentes sensores com base em parâmetros

como: pressão, nível d´água, período e altura de onda, nas diferentes fases da maré.

As análises posteriores serão divididas entre primeiro trecho (planície inferior)

que compreende a região entre o AWAC e o ADV1 e segundo trecho (planície

superior) que compreende a região entre o ADV1 e ADV2.

4.4. TRATAMENTO DOS DADOS

Os principais parâmetros das ondas (altura, período, direção e espectro) foram

calculados através de rotinas no programa MatlabTM e são:

a) Espectro de onda:

O espectro de onda foi calculado através da função spectrum aplicada aos dados.

%& = '()*+,-.�(, �, �� Equação 4: Cálculo do Espectro de onda

%# = � ∗ �+ ∗ �%&��: )&�, ���

Equação 5: Cálculo do Espectro de onda

Onde:

p = pressão total – média da pressão

a = janela de hanning : 64 para os dados extraídos dos ADVs e 128 para os dados

extraídos do AWAC. Estes valores de janela de hanning foram escolhidos tendo em

vista que apresentaram um grau satisfatório de suavização sem interferir no resultado

encontrado.

b = janela de sobreposição: usada apenas nos dados do AWAC (b= 64) uma vez que

a taxa de amostragem dos ADVs era muito inferior.

dt = intervalo de tempo. Para os dados extraídos do AWAC, 1s e para os dados

extraídos dos ADVs 0.25s

Para que os dados remetessem à medição na superfície é necessário aplicar a função

de transferência:

Page 32: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

31

1( = 2345 6∗�78��2345 6∗�

Equação 6: Cálculo da Função de Transferência

Onde:

z = a posição do sensor de pressão na coluna de água. Para o sensor de pressão do

AWAC, 0.9m e para o sensor de pressão dos ADVs 0.35m.

h = profundidade local (m)

k = número de onda. Foi calculado de 2 formas , pelo método teórico e pelo método

iterativo.

Método teórico:

Compreende no cálculo do comprimento de onda através da dispersão da

teoria de onda linear pela fórmula de Hunt (1979) conforme descrito por Dean &

Dalrymple (1991) e através desta pode ser calculado o número de onda (k):

�6��� = 9² + 9�;∑ ��&9&�<&=>

Equação 7: Cálculo do número de onda

Onde:

? = @∗��

Equação 8: Cálculo do número de onda

h: profundidade

g = aceleração da gravidade

σ = 2*π*f

f = freqüência

d1 = 0.666... ; d2 = 0.355... ; d3 = 0.1608465608 ; d4 = 0.0632098765 ;

d5 = 0.0217540484 ; d6 = 0.0065407983

Método Iterativo:

Compreende no uso de iteração para chegar ao valor do número de onda (k),

da seguinte forma:

Page 33: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

32

6> = �"∗#>�∗ABC5�6>∗��

Equação 9: Cálculo do número de onda pelo método iterativo

Além disso, é preciso dividir o espectro calculado no fundo pela função de

transferência ao quadrado:

%# = �%′�1(�

Equação 10: Formulações do método iterativo

A altura significativa de onda obedece à seguinte equação:

�' = D. �� ∗ F��# ∗ ∑ %#�

Equação 11: Altura significativa de ondas – método iterativo

O período de pico de onda é obtido através do ponto máximo no espectro, pois

o período de pico de onda é o inverso da frequência mais energética do espectro de

onda.

A direção principal da onda foi calculada através da soma entre as

componentes reais dos espectros das componentes do eixo x e y da velocidade

seguindo as formulações a seguir:

GG = HIGJ�K�LHIM, N�� OO = HIGJ�K�LHIM, P�� Q = GRSJI�GG + OO ∗ T�

Equação 12: Cálculo da Direção principal da onda

Sendo que:

aa = componente real do espectro cruzado entre o desvio da pressão (pres), ou

seja, a subtração do valor real da pressão e sua média ao longo do tempo, e a

componente u da velocidade do fluido.

bb = componente real do espectro cruzado entre o desvio da pressão (pres) e a

componente v da velocidade do fluido.

Assim a direção principal será o valor que possui a componente real aa e a

componente imaginária bb.

Page 34: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

33

b) Parâmetros estatísticos

Durante o trabalho foram utilizados alguns parâmetros estatísticos como meio

de comparação, dentre eles tem-se:

Média ( U) : representa a soma das observações divida pelo número de amostragem.

U = ∑ V&=�V

Equação 13: Média

Mediana ( MiMiMiMi): representa a posição central de uma série de dados ordenados, ou

seja, 50% das amostras são menores que o valor da mediana e 50% são maiores que

o valor da mediana.

Y> = Z> + V �8#�[#*∗>

Equação 14: Mediana

Em que:

Mi = mediana

li = limite inferior da classe que deve conter a Mi

N = total

fa = frequência acumulada anterior à classe que deve conter a Mi

i = intervalo de classe

fc = frequência da classe que deve conter a Mi

Erro médio quadrático: representa uma medida de erro da amostragem e é

calculado a partir da somatória da média dos quadrados dos erros verdadeiros:

\Y] = ∑ �^,8^(��V&=� V

Equação 15: Moda

Onde:

vr: valor real

vp: valor previsto

N: total de amostragens

Page 35: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

34

5. RESULTADOS E DISCUSSÃO

5.1. PADRÕES DE VENTOS LOCAIS

Os dados de direção e velocidade do vento (média e máxima) foram obtidos

através da Rede de Meteorologia do Comando da Aeronáutica (REDEMET, 2009).

Estes dados estão disponíveis no site da REDEMET e são medidos com uma

frequência horária a 16 metros de altura no aeroporto de Macapá, AP.

A conversão para a altura padrão de 10 metros foi realizada com a relação

(CERC, 1984):

_���� = _�7� ∗ ��7

�`

Equação 16: Conversão da velocidade do vento

Onde:

U(10) = velocidade do vento a 10 metros de altura

U(Z) = velocidade do vento medida

z = altura da medição

Os dados de vento apresentados nas análises tratam da velocidade corrigida

para 10 metros de altura e, representam médias móveis de três em três horas, tanto

para os dados de velocidade como de direção do vento.

A direção do vento durante os dois períodos de medição (novembro/dezembro

de 2006 - seca e agosto de 2007 - cheia) pode ser observada na Figura 9 na qual se

nota que, para o ano de 2006, os ventos são predominantes do quadrante NE/E,

sendo os de E mais intensos (FIGURA 10). Esta intensificação ocorre, pois em

novembro e dezembro, durante o inverno boreal, há a presença dos alíseos de leste

que colaboram com a constância na direção do vento intensificando-o. No ano de

2007, a variabilidade na direção do vento é maior com duas componentes de direção

mais presentes (N e E) não permitindo a intensificação devido à constância, como

também pode ser observado nas figuras 9 e 10. Os resultados deste estudo

concordam com Fisch (2008), que afirma que os ventos nesta região são controlados

principalmente pelos alíseos de leste e pelo regime de brisas terrestres e marinhas.

Esta interação resulta em ventos de 5 e 7.5 m/s na costa norte brasileira (que inclui os

estados do Amapá e do Pará).

Page 36: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

35

Figura 9: Frequência de direção do vento para os dois período s de análise. Os gráficos indicam a maior ocorrência dos ventos em uma dada direção, de cima no período de seca do Rio (novembro/dezembro de 2006) e de baixo no período de cheia do Rio (agosto de 2007). Pode ser percebida a maior relevância dos ventos de nordeste e de leste, sendo que em 2006, durante o período de medição, há maior predominância de ventos de nordeste e em 2007 há maior predominância dos ventos de leste.

30

210

60

240

90270

120

300

150

330

180

Número de ocorrências

Direção do vento - Seca 20060

20

40

60

80

30

210

60

240

90270

120

300

150

330

180Número de ocorrências

Direção do vento - Cheia 20070

25

50

Page 37: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

36

Figura 10: Rosa dos Ventos. Os gráficos indicam a intensidade do vento através do tamanho do vetor (m/s) e a direção (graus) que este vento apresenta. Durante o período de seca/2006 do Rio (gráfico de cima, em vermelho) é percebido claramente que as maiores intensidades do vento ocorrem com ventos de leste, perpendiculares à costa. Este comportamento também ocorre no período de cheia/2007 do Rio (gráfico de baixo em azul), mas com a adição de uma componente norte tão intensa quanto a componente leste.

A comparação entre os períodos do estudo pode ser constatada também pelo

cálculo da média, mediana, máxima e moda dos valores de direção e intensidade

(TABELA 2).

2 4

30

210

60

240

90270

120

300

150

330

180

Direção do vento - Seca 20060

6

8

Velocidade do vento (m/s)

2

4

2

30

210

60

240

90270

120

300

150

330

180

Direção do vento - Cheia 20070

4

6

8

Velocidade do vento (m/s)

2

Page 38: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

37

Tabela 2

Parâmetros estatísticos para os dados de vento

Direção do vento (graus) Velocidade do vento (m/s)

2006 2007 2006 2007

Média - - 3,86 2,70

Mediana 70 90 4,12 2,41

Moda - - 4,81 1,44

Máxima - - 7,7 7,6

É interessante notar que mesmo apresentando diferenças de direção e

intensidade, a variação do vento parece ser cíclica modificando diariamente, com

ventos de leste no final da tarde e ventos de Norte no começo da manhã (FIGURA 11).

Figura 11: Direção dos Ventos da área de estudo. O gráfico acima representa o comportamento da direção do vento durante o período de seca do Rio, 2006. O gráfico abaixo representa a direção do vento para o período de cheia do Rio, 2006. Note a variação diária da direção do vento para os dois períodos de medição com ventos de Norte durante o começo da manhã alternando para Leste no final da tarde ciclicamente.

0

45

90

135

180

225

270

315

360

1/12 0:00 2/12 0:00 3/12 0:00 4/12 0:00 5/12 0:00 6/12 0:00 7/12 0:00 8/12 0:00

Dire

ção

(gra

us)

Tempo (dias)

Direção do vento - Seca/2006

0

45

90

135

180

225

270

315

360

1/8 12:00 2/8 12:00 3/8 12:00 4/8 12:00 5/8 12:00 6/8 12:00 7/8 12:00 8/8 12:00

Dire

ção

(gra

us)

Tempo (dias)

Direção do vento - Cheia/2007

Page 39: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

38

Este fenômeno foi encontrado nos dois anos e tem o mesmo princípio básico

da formação de brisas terrestres e marinhas em regiões costeiras.

A radiação solar não se distribui igualmente pela superfície da Terra. Algumas

partes da atmosfera são mais facilmente aquecidas onde o ar tende a formar correntes

convectivas ascendentes uma vez que o ar quente é menos denso. Assim, o espaço

deixado é ocupado por massas de ar menos aquecidas em regiões com pressões

atmosféricas relativamente maiores formando correntes de vento. Em regiões com

grandes porções de água, e a área deste estudo se inclui nestes casos, a energia

solar é absorvida durante o dia mantendo o ar que as encobre relativamente frio e a

pressão atmosférica maior, enquanto que o ar sobre porções de terra mantêm-se mais

quentes formando correntes de vento em direção a terra (brisas marinhas). Em

contrapartida, durante a noite a porção de água se mantém aquecida, tendo em vista o

alto calor específico da água quando comparado ao da terra, assim como mantém

aquecida a faixa de baixa pressão sobre o oceano. Assim a massa de ar sobre ele

converge para camadas mais altas sendo preenchidas por massas de ar oriundas da

terra (mais frias), resultando em correntes de vento em direção ao mar (brisas

terrestres). Geralmente, a brisa terrestre é mais fraca que a brisa marinha (VAREJÃO-

SILVA, 2006). A diferença é que nesta área de estudo este processo ocorre entre o rio

e o continente.

A área de estudo é uma região influenciada pelos dois sistemas de alta

pressão do Atlântico: o Sistema de Alta Pressão do Atlântico Norte e o Sistema de Alta

Pressão do Atlântico Sul (VAREJÃO-SILVA, 2006). Estes sistemas são intensificados

quando há o inverno em cada hemisfério, e esta dinâmica de variação na intensidade

destes campos de ventos resulta na migração vertical da ZCIT.

Como em dezembro de 2006 é inverno na área de estudo a ZCIT está

posicionada mais ao sul do Equador explicando a ocorrência de ventos de NE/E, e

suas maiores velocidades (ver Figura 9). Em agosto de 2007, a ZCIT é encontrada

mais ao norte do Equador e, como foi constatado nos resultados, há a presença da

componente de SE no vento (ver Figura 9).

Entretanto, ao serem analisados os valores de velocidade e direção do vento,

sem considerar médias, é percebida a existência da componente SE nos dois anos.

Além disso, para o ano de 2007, dados medidos no verão local, a direção N/NW

também é notada (FIGURA 12).

Page 40: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

39

Figura 12: Rosa dos ventos. Há predominância de ventos de NE/E para os dois anos de coleta, embora a componente SE esteja presente de forma relevante. Para o ano de 2007, ainda, pode ser notado ventos de N/NW.

5.2. CARACTERIZAÇÃO DA ONDA

5.2.1. ANÁLISE DE DADOS

A relação entre a profundidade local e o comprimento de onda indica como a

onda se comporta em ambiente profundo ou em ambiente raso: se a água é profunda

(maior que a metade do comprimento de onda) a topografia local não alterará a onda

nem sua velocidade, mas se a água é rasa (profundidade menor que um vigésimo do

comprimento de onda) a sua velocidade será limitada pela profundidade. Tal

classificação é importante, pois norteará os cálculos deste estudo. Para tanto, foram

utilizados valores de profundidade entre 0,5 m e 3 m (variação do nível na planície,

Tabela 3) e períodos de 2, 5s, 3,0 s 3,5 s (o período de pico médio e os extremos

como pode ser observado na Tabela 4). Os valores medidos em profundidade

menores que 0,5 m, para os três equipamentos, foram descartados das análises.

Page 41: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

40

Tabela 3

Profundidade da coluna de água na planície do Canal Norte do rio Amazonas

2006 2007

ADV1 ADV2 ADV1 ADV2

Média (m) 1,23 0,93 1,63 1,23

Mínima (m) 0,35 0,19 0,31 0,39

Máxima (m) 2,75 2,33 3,32 2,67

Tabela 4

Valores de período de pico de ondas na planície

2006 2007

Média

(segundos)

3,04 2,88

Desvio padrão 0,56 0,49

O comprimento de onda foi calculado através da relação de dispersão de acordo com

a teoria linear:

a = � ∗ ���" ∗ ABC5 b�" ∗ �

ac

Equação 17: Comprimento de onda

Onde:

L = Comprimento de onda (m)

g = aceleração da gravidade (m/s²)

T = período de onda (s)

h = profundidade (m)

Para as variáveis apresentadas, o resultado encontrado é que a área de estudo

é um ambiente de água intermediária, uma vez que a razão (h/L) se encontra entre os

valores os limites de 1/20 ou 0,05 (Águas Rasas) e ½ ou 0,5 (Águas Profundas), como

pode ser observado na Tabela 5.

Tabela 5

Razão entre profundidade e comprimento de onda para diferentes períodos de onda

Período de onda /Profundidade 0,5 m 3,0m

2,5s 0,095 0,319

3,0s 0,078 0,237

3,5s 0,063 0,182

Page 42: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

41

A Função de Transferência (ver item 4.4) foi utilizada para os cálculos dos

dados do AWAC. Nas Figuras 13 e 14 é apresentada a comparação do cálculo das

ondas para ADV1 (em 2006) e ADV2 (em 2007), respectivamente, empregando os três

métodos descritos no item 4.4. Os períodos com ausência de dados se devem à

presença de valores medidos com profundidade menor que 0,5 m. Na análise dos

gráficos é percebido que os dados resultantes da aplicação dos métodos (iterativo e

teórico) apresentam valores semelhantes aos dados, nos quais não se aplicou método

algum para a obtenção da altura significativa de onda (calculada diretamente do

espectro de pressão). Comportamento notado para os dois anos de medição.

Figura 13: Altura significativa de onda do ADV1 par a seca/2006. Tanto para o cálculo da função de transferência utilizando o método iterativo quanto para o cálculo utilizando o método teórico os resultados são semelhantes entre si e quando comparados aos dados sem aplicação de método algum. Os períodos sem dados no gráfico indicam que a profundidade local era menor que 0,5 m.

29/11 30/11 01/12 02/12 03/12 03/12 04/12 05/12 06/12 06/12 07/12 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5ADV1 - Seca 2006

Tempo (dias)

Altu

ra s

igni

ficat

iva

de o

nda

(m)

Método teóricoMétodo IterativoPressão

Page 43: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

42

Figura 14: Altura significativa de onda no ADV2 par a cheia/2007. Tanto para o cálculo da função de transferência utilizando o método iterativo quanto para o utilizando o método teórico os resultados são semelhantes entre si e quando comparados aos dados sem aplicação de método algum. Os períodos sem dados no gráfico indicam que a profundidade local era menor que 0,5 m.

Deste modo, para a evolução do estudo, a altura significativa de onda

calculada pelos dois ADVs nos dois anos foi retirada diretamente do espectro de

pressão (sem o uso da função de transferência). A fim de comprovar que tal

comparação não seria um equívoco, foi calculada a função de transferência (Kappa)

com valores fixos:

z = Altura do fundo do equipamento: 0,35m

h = profundidade local. Valores utilizados: média de períodos de marés de sizígia e de

quadratura, para os dois anos.

O erro embutido encontrado na comparação direta entre os espectros de

pressão (entre os ADVs), para o pior caso é de 2,3% (TABELA 6), considerado

irrelevante.

01/08 02/08 03/08 04/08 05/08 06/08 07/08 08/08 09/08 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5ADV2 - Cheia 2007

Tempo (dias)

Altu

ra s

igni

ficat

iva

de o

nda

(m)

Método TeóricoMétodo IterativoPressão

Page 44: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

43

Tabela 6

Profundidade média e Kappa resultante

Profundidade média

2006 2007

Sizígia Quadratura Sizígia Quadratura

Média ADV1 1,32 m 1,22 m 1,80 m 1,53 m

Média ADV2 0,99 m 0,94 m 1,36 m 1,16 m

Kappa (Função de Transferência)

2006 2007

Sizígia Quadratura Sizígia Quadratura

ADV1 0,713 0,716 0,702 0,707

ADV2 0,730 0,733 0,711 0,719

Também para corroborar o não uso da função de transferência no

processamento dos dados dos ADVs foi calculado o erro médio quadrático. A Tabela 7

mostra o erro médio entre o valor de Hs resultante do espectro medido com a

aplicação da função de transferência (método teórico e iterativo) e o medido pelo

espectro calculado diretamente da pressão. Nota-se o erro foi de 0,001 para o maior

caso. Sendo assim, fica exposto que, para os resultados dos ADVs, todos os dados

podem ser extraídos direto do espectro de pressão (sem o uso de função de

transferência). Além disso, foi verificado (ver Figuras 13 e 14) que os dois métodos

para calcular o número de onda e, consequentemente, a função de transferência

(Método Teórico e Método Iterativo) foram satisfatórios e concordaram em todas as

análises. Por isso, para os cálculos dos dados do AWAC apenas o método iterativo

será demonstrado nas Figuras e Tabelas daqui em diante.

Tabela 7

Erro Médio Quadrático

2006 2007

ADV1

Entre o Método Teórico e a Pressão 0,0014 -

Entre o Método Iterativo e a Pressão 0,0012 -

ADV2 Entre o Método Teórico e a Pressão - 0,0009

Entre o Método Iterativo e a Pressão - 0,0007

A seguir, serão discutidos os resultados, separando-os em ondas no canal -

onde os dados foram medidos pelo AWAC - e ondas na planície, onde estavam

Page 45: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

44

instalados os ADVs. No estudo da evolução da onda, dois trechos são referenciados: o

trecho entre o AWAC e o ADV1, com 459 m de extensão e o trecho entre o ADV1 e o

ADV2 que tem aproximadamente 200 m de extensão.

5.2.2. CARACTERIZAÇÃO DAS ONDAS NO CANAL

O canal norte do rio Amazonas apresentou uma profundidade média de 3,02 m

no período de seca do rio Amazonas (ano de 2006), variando entre 1,68 e 4,61 m e,

durante o período de cheia do rio Amazonas (ano de 2007), a profundidade média foi

de 3,46m, com valores entre 2,15 e 5,35m, como mostra a Tabela 8. Devido ao maior

nível de água no Rio durante a sua cheia, as maiores profundidades são atingidas

neste período o que remete a um maior tempo de alagamento da planície em 2007 e

consequentemente menor exposição ao ar (FIGURA 15).

A variação da maré pode ser observada nos três equipamentos e é notável que

o equipamento AWAC está mais profundo, enquanto que, o ADV 2 está mais próximo

à margem (FIGURA 15).

Em 2006, o período de quadratura está compreendido entre os dias 28/11 e

03/12 e o período de sizígia e ocorre entre os dias 4/12 e 11/12.

Em 2007, o periodo de sizígia foi do dia 01/08 ao dia 04/08 e o de quadratura

foi do dia 05/08 e 11/08.

É interessante notar que a maré atinge os maiores níveis nas preamares de

sizígia, mas os níveis de baixamar da sizígia e da quadratura são bem próximos. Isto

ocorre, pois há uma componente harmônica da maré que modula os limites inferiores,

a Msf descrita por Gallo, 2009 (FIGURA 15).

Tabela 8

Profundidade do Canal do Rio Amazonas

2006 2007

Profundidade média (m) 3,02 3,46

Profundidade mínima (m) 1,68 2,15

Profundidade máxima (m) 4,61 5,35

Page 46: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

45

Figura 15: Profundidade média para 2006 e 2007. Na figura superior está a variação da profundidade nos três pontos de medição para o ano de 2006 e, no inferior para 2007. Pode ser verificado que os maiores níveis são encontrados durante o período de cheia do Rio Amazonas e, neste ano, também a planície fica menos tempo exposta.

Com a finalidade de caracterizar a onda incidente à planície foram usados os

dados coletados pelo AWAC. Nas Figuras 16, 17 e 18 estão a altura significativa de

onda ao longo do tempo, para o ano de 2006 e 2007 e a série temporal do período de

pico de onda, para os dois anos. Na Tabela 9, os parâmetros estatísticos da onda.

0,0

1,0

2,0

3,0

4,0

5,0

29/11 30/11 1/12 2/12 3/12 4/12 4/12 5/12 6/12 7/12

Pro

fund

idad

e m

édia

(m

etro

s)

Tempo (dias)

Período de seca do Rio - 2006

AWAC ADV1 ADV2

0,0

1,0

2,0

3,0

4,0

5,0

1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8

Pro

fund

idad

e m

édia

(m

etro

s)

Tempo (dias)

Período de cheia do Rio - 2007

AWAC ADV1 ADV2

Page 47: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

46

Tabela 9 Parâmetros estatísticos das ondas no canal

2006

Mediana Média Desvio Padrão Variância Erro Médio

Quadrático Altura Significativa 0,31 m 0,33m 0,16 0,03 0,01

Período de Pico 2,9 s 3,1 s 0,6 0,3 0,22

Direção

principal da onda

190° - 82,7° - -

2007

Mediana Média Desvio Padrão Variância Erro Médio

Quadrático Altura Significativa 0,15 m 0,21m 0,14 0,02 0,01

Período de Pico 2,7 s 2,8 s 0,5 0,21 0,19

Direção principal da

onda 179° - 87,6° - -

Page 48: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

47

Figura 16: Altura significativa de no canal para se ca/2006 e cheia/2007. Na Figura superior, está a evolução da altura significativa durante o período de seca de 2006 e, na figura inferior está a variação para o período de cheia de 2007. As maiores alturas são encontradas em 2006.

Page 49: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

48

Figura 17: Período de pico de onda para seca/2006 e cheia/2007. Na Figura superior está representada a variação do período de pico durante a seca 2006 e, na figura inferior está a variação para o período de cheia de 2007. Os períodos de pico encontrados em 2006 são maiores que em 2007.

Durante os dois períodos de medição há incidência de ondas de todas as

direções com predominância apenas, no período de seca em 2006, de ondas

incidentes de SW. Em 2007 não foi observada predominância em nenhuma das

direções. Como foi demonstrada, a direção principal do vento da região, forçante

geradora da onda na área de estudo, é de NE/E para 2006 e N/E para 2007. A

discrepância entre a direção do agente gerador e a forçante gerada indica que outros

fatores influenciam a direção da onda. Ao se analisar a área de estudo é possível

descartar a batimetria local como fator modificador da direção da onda uma vez que

não há variação espacial substancial. Entretanto, modificações antrópicas como a

construção de um píer e um muro de contenção na região (ver Figura 3 – Item 3.1)

Page 50: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

49

podem alterar a direção das ondas. O píer de captação de água posicionado a norte

das medições pode explicar a ausência de predominância de ondas incidentes do

norte já que funciona como uma barreira para a formação e propagação da onda (ver

Figura 3 – Item 3.1). O muro de contenção ao longo da margem do Rio permite a

reflexão das ondas do segundo e terceiro quadrante ao se contrapor com o muro

resultando em componentes de ondas oriundas de sudoeste. Estas ondas foram as

predominantes durante o período de seca (2006) quando os níveis de água são mais

baixos como visto nos dias da medição. Este processo de reflexão foi observado nos

dias de medição (informação verbal).

Figura 18: Direção principal da onda para seca/2006 e cheia/2007. A figura à esquerda apresenta a distribuição da direção principal da onda durante o período de seca do Rio, no mês de dezembro (2006) e, na figura à direita está a distribuição da direção principal da para o ano de 2007, durante a cheia do Rio.

Para a análise, as séries temporais desses parâmetros foram divididas em

classes e determinou-se a mais ocorrente (FIGURAS 19 e 20).

Em 2006, a distribuição entre as classes de altura significativa de onda (Hs) é

homogênea apresentando uma assimetria positiva. O valor médio para o período de

seca de Hs foi de 0,36 m (em 2006) enquanto que, para o período de cheia (ano de

2007) foi de 0,21 m. Isto é percebido também na distribuição, uma vez que em 2006

são encontrados maiores valores de altura significativa de ondas que no período de

cheia, no qual a distribuição da altura significativa é fortemente modal com alturas de

até 0,2m (2007). Os valores de período de pico das ondas mostram uma distribuição

fortemente modal com assimetria positiva, para dois anos, com picos de 2,5 s de

30

60

240

90270

300

150

330

180

120

210

Direção da ondaSeca 2006

0

40 20

Número de ocorrências

30

210

60

240

90270

120

300

150

330

180

0

Direção da ondaCheia 2007

40 20

2 Informação fornecida pelo Prof. Dr. Marcos Nicolas Gallo que participou das campanhas de medição dos dados utilizados neste estudo.

Page 51: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

50

período de pico (2006). Entretanto, a média encontrada foi de 3,1 s (2006) e 2,8 s

(2007), explicado pela relevante assimetria positiva da distribuição. Isto indica que as

ondas mais energéticas na área de estudo são ondas de alta frequência. Estes

resultados são bem inferiores aos encontrados por Herman e colaboradores (2009)

tendo em vista que a região do Mar de Wadden é exposta a ondas de swell

acarretando em maiores alturas e períodos de onda.

Nas Figuras a seguir, o eixo y indica o número de ocorrências de certa classe

(de altura ou período): em 2006 têm-se um total de 187 ocorrências e, no ano de 2007,

235 ocorrências.

Figura 19: Distribuição de alturas significativas d urante a seca/2006 e a cheia/2007. Na Figura superior, a distribuição deste parâmetro para 2006 e, na figura inferior, está a variação para o ano de 2007. Note que no eixo y é número de ocorrências que em 2006 tem um total de 187 ocorrências e no ano de 2007, 235 ocorrências. A distribuição com assimetria mais positiva em 2006 indica que as maiores alturas são encontradas neste ano.

Page 52: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

51

Figura 20: Distribuição de período de pico de onda durante a seca/2006 e a cheia/2007. Na Figura superior, a distribuição deste parâmetro para 2006 e, na figura inferior, está a variação para o ano de 2007. Note que o eixo y é número de ocorrências, que em 2006 tem um total de 187 e, no ano de 2007, 235 ocorrências. A distribuição com assimetria mais positiva em 2006 nos indica que ondas de maior período são encontradas no ano de 2006.

5.2.2.1. MODELOS TEÓRICOS PARA A OBTENÇÃO DE ALTURA

SIGNIFICATIVA DE ONDA

Dois modelos foram escolhidos para serem aplicados ao local de estudo e

calcular as alturas significativas de onda com a finalidade de entender a geração da

onda local através da comparação das alturas significativas de ondas medidas pelos

equipamentos. O primeiro método é o Modelo de Jonswap que é aplicado para a

condição de mar completamente desenvolvido para regiões de águas profundas. O

segundo é o Modelo teórico revisado por Hasselmann (1973 apud CERC, 1984) que é

usado para regiões de águas rasas. A principal diferença entre eles é que o segundo

leva em consideração a influência da profundidade na geração das ondas.

• MODELO DE JONSWAP

O modelo de Jonswap foi desenvolvido para um mar com limitação de pista e,

através de sua formulação, pode ser feita uma estimativa da altura significativa de

Page 53: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

52

onda encontrada no ambiente, segundo a pista e a velocidade do vento. Para os

dados deste trabalho, a estimativa calculada se encontra na Tabela 10. Foram

estimadas médias de altura significativa de onda e velocidade do vento e máximas

desses dois parâmetros para as direções de pista de vento mais relevantes (NE, E,

SE, S).

Tabela 10 Valores medidos de vento e onda

Na Figura 21 os valores de Hs médios em rosa são do período de seca (ano

de 2006), medidos em novembro e dezembro, e os valores em branco são durante o

período de cheia, no ano seguinte, medidos em agosto. Deste modo, pode ser

percebido que os valores estimados pela equação de JONSWAP tendem a

superestimar os medidos. A Figura 22 mostra as maiores alturas significativas de

ondas encontradas para cada pista de vento e a maior velocidade de vento na mesma

direção.

2006 Pista de Vento NE (60 km) E(20 km) SE (10 km) S (30 km)

Hs (m) Velocidade

do vento (m/s)

Hs (m) Velocidade do vento

(m/s) Hs (m)

Velocidade do vento

(m/s) Hs (m)

Velocidade do vento

(m/s)

Média 0,32 3,09 0,36 5,32 0,15 4,12 0,14 1,03

Máxima 0,55 5,66 0,61 8,23 0,19 6,17 0,14 1,03

2007 Pista de Vento NE (60 km) E(20 km) SE (10 km) S (30 km)

Hs (m) Velocidade

do vento(m/s)

Hs (m) Velocidade

do vento(m/s)

Hs (m) Velocidade

do vento(m/s)

Hs (m) Velocidade

do vento(m/s)

Média 0,24 1,86 0,26 4,20 0,29 2,93 0,41 3,81

Máxima 0,53 2,57 0,73 8,23 0,51 5,14 0,88 5,14

Page 54: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

53

Pista de vento (m)

Vel

ocid

ade

do v

ento

(m/s

)

Altura significativa (m)

1 2 3 4 5 6 7 8

x 104

1

2

3

4

5

6

7

8

9

0.2

0.4

0.6

0.8

1

1.2

0.32

0.36

0.15

0.14

0.24

0.26

0.29

0.41

Figura 21: Formulação de Jonswap – valores médios. A Figura apresenta valores calculados para altura significativa de ondas através da formulação de Jonswap. Os valores em rosa foram medidos durante o período de seca e os valores em branco durante o período de cheia. São médias de vento e de altura significativa de onda. A pista de vento de Sudeste possui ~104 m; a de Leste possui ~2x104 m; a de Sul ~3x104 m e a de Nordeste possui ~6x104 m .

Figura 22: Formulação de Jonswap – valores máximos. O gráfico apresenta valores calculados para altura significativa de onda através da formulação de Jonswap. Os valores em rosa foram medidos durante o período de seca e os valores em branco durante o período de cheia. São máximas de vento e de altura significativa de onda. A pista de vento de Sudeste possui ~104 m; a de Leste possui ~2x104 m; a de Sul ~3x104 m e a de Nordeste possui ~6x104 m .

Pista de vento (m)

Vel

ocid

ade

do v

ento

(m/s

)

Altura significativa (m)

1 2 3 4 5 6 7 8

x 104

1

2

3

4

5

6

7

8

9

0.2

0.4

0.6

0.8

1

1.2

0.55

0.61

0.19

0.14

0.53

0.73

0.51 0.88

Page 55: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

54

• MODELO TEÓRICO DE HASSELMANN

Este modelo foi revisado por Hasselmann (1973, 1976), recomendado pelo

CERC (1984) e permite a determinação de altura significativa de onda através da

geração de certo estado de mar limitado pela extensão da pista de vento, intensidade

do vento e a profundidade local. Por esta razão é usado em condições de águas rasas

com a seguinte formulação:

�' = �. �d! ∗ _�².� ∗ ABC5

fggh �. ��i<i � ∗ j_�² �/�

ABC5��. i!� b� ∗ �_�² c!/D�kllm

Equação 18: Cálculo da altura significativa de onda através do Modelo de Hasselmann

Onde:

Ua = velocidade de atrito do vento adquirida através da relação com a velocidade a 10

metros em qualquer altura:

_� = �. `� ∗ n_����

�����̀ o�.�!

Equação 19: Cálculo da velocidade de atrito do vento

Onde:

g: aceleração da gravidade;

F: Extensão da pista do vento; os mesmos valores utilizados no modelo anterior

h: profundidade local

Através da série temporal de dados de vento e de profundidade local medida

pelos equipamentos foi obtida uma série de altura significativa de onda segundo o

modelo descrito acima e esta foi comparada com as alturas significativas de onda

medidas in situ (FIGURA 23, FIGURA 24). Para os dois anos os resultados do modelo

acompanham o padrão da altura significativa de onda medida. Nota-se que:

O aumento na profundidade local acarreta no aumento da onda calculada pelo

modelo independente do ponto de medição (AWAC, ADV1 e ADV2).

Para valores de extensão de pista de vento semelhantes (em períodos de cheia

e seca) a altura significativa de onda será maior onde a velocidade do vento for mais

intensa

Page 56: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

55

Portanto, a extensão da pista de vento se comportou como um fator

secundário, ou seja, provavelmente a maior intensidade do vento e a maior

estabilidade de sua direção em 2006/seca pode explicar o aumento da onda neste

período. Este comportamento não foi notado no modelo, pois este não leva em

consideração a duração do vento.

No canal, o modelo subestima a altura significativa de onda, enquanto que, na

planície os valores de alturas significativas de onda apresentam valores próximos dos

medidos na maior parte do tempo.

Page 57: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

56

Figura 23: Aplicação do modelo de Hasselmann para s eca/2006. A Figura apresenta valores calculados de altura significativa de onda utilizando o modelo de Hasselmann e os dados medidos pelos três equipamentos durante o período de seca do rio. Na figura superior está o AWAC, no meio o ADV1 e, na inferior o ADV2. O comportamento dos dados medidos é acompanhado satisfatoriamente pelo modelo. Mas para as ondas no canal (AWAC) as alturas são subestimadas.

0,00,51,01,52,02,53,03,54,04,55,0

0

0,10,20,30,4

0,50,60,7

0,80,9

29/11 21:00

30/11 21:00

1/12 21:00

2/12 21:00

3/12 21:00

4/12 21:00

5/12 21:00

6/12 21:00

Pro

fund

idad

e m

édia

(m

)

Altu

ra S

igni

ficat

iva

de o

nda

(m)

Seca/2006

Hs modelo Hs medido AWAC Profundidade média (m)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

29/11 21:00

30/11 21:00

1/12 21:00

2/12 21:00

3/12 21:00

4/12 21:00

5/12 21:00

6/12 21:00

Altu

ra S

igni

ficat

iva

de

onda

(m

)

Hs modelo Hs medido ADV1

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

29/11 21:00

30/11 21:00

1/12 21:00

2/12 21:00

3/12 21:00

4/12 21:00

5/12 21:00

6/12 21:00

Altu

ra S

igni

ficat

iva

de o

nda

(m)

Tempo (dias) Hs modelo Hs medido ADV2

Page 58: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

57

Figura 24: Aplicação do modelo de Hasselmann para c heia/2007. A Figura apresenta valores calculados de altura significativa de onda utilizando o modelo de Hasselmann e os dados medidos pelos três equipamentos na cheia do rio. Na figura superior está o AWAC, no meio o ADV1 e, na inferior o ADV2. O comportamento dos dados medidos é acompanhado satisfatoriamente pelo modelo. Mas para as ondas no canal (AWAC) as alturas são subestimadas.

0,0

1,0

2,0

3,0

4,0

5,0

6,0

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1/8 15:00

2/8 15:00

3/8 15:00

4/8 15:00

5/8 15:00

6/8 15:00

7/8 15:05

8/8 15:00

9/8 15:00

10/8 15:00

Pro

fund

idad

e m

édia

(m

)

Altu

ra S

igni

ficat

iva

de o

nda

Cheia/2007

Hs modelo Hs medido AWAC Profundidade média (m)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

1/8 15:00

2/8 16:00

3/8 17:00

4/8 18:00

5/8 19:00

6/8 20:05

7/8 21:00

8/8 22:00

9/8 23:00

11/8 0:00

Altu

ra S

igni

ficat

iva

de o

nda

Hs modelo Hs medido ADV1

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

1/8 14:00

2/8 14:00

3/8 14:00

4/8 14:00

5/8 14:00

6/8 14:00

7/8 14:05

8/8 14:00

9/8 14:00

10/8 14:00

Altu

ra S

igni

ficat

iva

de o

nda

Tempo (dias) Hs modelo Hs medido ADV2

Page 59: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

58

É sabido que os modelos são usados para locais de ventos estáveis e, como

foi demonstrado nos resultados, a região deste estudo é dinâmica e apresenta

modificações diárias. Entretanto, mesmo com esta limitação os modelos indicaram

uma íntima relação entre o comportamento da onda medida e a profundidade local

(limitante), pois a superestimação do primeiro modelo foi devido à negligência da

fricção com o fundo, bem como o fato do segundo apresentar valores de mesma

grandeza que os medidos. Não se pode menosprezar outros fatores, uma vez que,

esta relação não ocorre durante todo o período de medição.

5.2.2.2. RELAÇÃO VENTOS X ONDAS

As Figuras 25 e 26 mostram a relação entre os ventos locais (direção e

velocidade) e as ondas no canal (altura significativa). Nas séries temporais

apresentadas, foi realizada uma média móvel das variáveis a cada três horas de

medição. No inverno de 2006 (novembro/dezembro), há uma variação na direção dos

ventos de leste (E) para norte/nordeste (NNE), e, quando o vento é de E, são

encontradas as maiores alturas. É importante ressaltar que para este ano houve um

maior período de incidência de ventos na direção E, como já foi visto, estes são os

ventos mais intensos, que resultaram no maior pico de altura do registro: ~0,7 m. No

caso de 2007 (verão), não há um padrão definido.

A maior constância nos ventos de 2006, principalmente dos ventos de E,

possibilitaram o desenvolvimento das ondas resultando em medidas de altura

significativa maiores neste ano.

Page 60: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

59

Figura 25: Análise da altura significativa de onda com a velocidade média do vento. Na parte superior mostra o período de novembro e dezembro de 2006 e na inferior, de agosto de 2007. Picos de velocidades do vento em 2006 são acompanhados por picos de alturas significativas da onda. No entanto, em 2007 o comportamento não é nítido. Dados medidos no Canal.

0

1

2

3

4

5

6

7

8

0,0

0,2

0,4

0,6

0,8

1,0

29/11 22:00

30/11 22:00

01/12 22:00

02/12 22:00

03/12 22:00

04/12 22:00

05/12 22:00

Vel

ocid

ade

méd

ia (

m/s

)

Altu

ra s

igni

ficat

iva

de o

nda

(met

ros)

Tempo (dias)

Seca 2006

Altura de onda (AWAC) Velocidade do vento

0

1

2

3

4

5

6

7

8

0,0

0,2

0,4

0,6

0,8

1,0

01/8 14:00

02/8 14:00

03/8 14:00

04/8 14:00

05/8 14:00

06/8 14:00

07/8 14:05

08/8 14:00

Vel

ocid

ade

méd

ia (

m/s

)

Altu

ra s

igni

ficat

iva

de o

nda

(m)

Tempo (dias)

Cheia 2007

Altura de onda (AWAC)Velocidade do vento

Page 61: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

60

Figura 26: Análise da altura significativa de onda com a direção do vento. A parte superior apresenta o período de novembro e dezembro de 2006; e a inferior, de agosto de 2007. A variação cíclica na direção do vento em 2006 parece ser acompanhada pelo aumento na altura significativa de onda. Em 2007 não há constância nos ventos. Dados medidos no Canal

5.2.2.3. INTERAÇÃO DAS ONDAS NO CANAL COM AS CORRENTES DE MAR É

Na análise dos dados de período de pico das ondas percebe-se que as

correntes de maré enchente foram mais intensas no período de seca do rio Amazonas,

em 2006 (FIGURA 27) como descreveu Gallo (2009). Dados coletados no canal

mostram que no período de cheia (2007), as correntes vazantes aumentam devido ao

acréscimo de vazão fluvial.

O sentido da corrente de maré interage com as ondas e altera o seu

comportamento. Tal fato pode ser demonstrado ao relacionar o período da onda e a

direção da corrente. Para os dois anos, à medida que a maré está vazando (valores

negativos de corrente), o período de onda diminui e, quando a maré está enchendo, o

0

45

90

135

180

225

270

315

360

0,0

0,2

0,4

0,6

0,8

1,0

29/11 22:00

30/11 22:00

01/12 22:00

02/12 22:00

03/12 22:00

04/12 22:00

05/12 22:00

Dire

ção

méd

ia (

grau

s)

Altu

ra s

igni

ficat

iva

de o

nda

(m)

Tempo (dias)

Seca 2006

Altura de onda (AWAC) Direção do vento

0

45

90

135

180

225

270

315

360

0,0

0,2

0,4

0,6

0,8

1,0

01/8 14:00

02/8 14:00

03/8 14:00

04/8 14:00

05/8 14:00

06/8 14:00

07/8 14:05

08/8 14:00

Dire

ção

do v

ento

(gr

aus)

Altu

ra s

igni

ficat

iva

de o

nda

(m)

Tempo (dias)

Cheia 2007

Altura de onda (AWAC) Direção do vento

Page 62: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

61

período aumenta. Esta variação ocorre a cada ciclo de maré, com intervalo entre 2,5 e

4 segundos. É interessante notar que para cada ciclo da maré o maior valor de

período de pico de onda acompanha os maiores valores de velocidade da corrente de

maré (positiva). Ou seja, quando o sentido da corrente de maré é o mesmo da onda se

propagando em direção à margem do rio, o período aumenta e, quando o sentido é

inverso, o período decai.

Em 2007 o período de pico de onda permanece a maior parte do tempo com

valores menores que os valores encontrados em 2006. Isto pode ser explicado pela

menor intensidade do vento e menor duração na geração da onda, resultando em

ondas mais curtas.

Figura 27: Período de pico de onda x Corrente de Ma ré. A Figura superior representa o período durante a seca/2006 e a inferior, durante a cheia/2007. Fica exposto que os maiores valores de período de pico de onda são encontrados quando a maré é enchente, quando as duas forçantes possuem o mesmo sentido (onda e corrente de maré).

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

0

1

2

3

4

5

6

7

29/11 12:00 01/12 12:00 03/12 12:00 05/12 12:00 07/12 12:00

Ve

loci

da

de

da

co

rre

nte

de

ma

(m/s

)

Pe

río

do

de

pic

o d

a o

nd

a (

s)

Tempo (dias)

Período de pico X Corrente de maré - seca/2006

Período de pico Velocidade da corrente

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

0

1

2

3

4

5

6

7

1/8 12:00 2/8 12:00 3/8 12:00 4/8 12:00 5/8 12:00 6/8 12:00 7/8 12:00

Vel

ocid

ade

da c

orre

nte

de m

aré

(m/s

)

Per

íodo

de

pico

da

onda

(s)

Tempo (dias)

Período de pico x Corrente de maré - cheia/2007

Período de pico Velocidade da corrente

Enchente

Vazante

Enchente

Vazante

Page 63: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

62

Embora se observe transformações da altura e do comprimento da onda

durante a interação com a corrente na literatura não há registros de alteração no

período. Quando se inicia o movimento da corrente, se o sentido de propagação da

onda e da corrente for o mesmo, a onda que se movimentava sobre um fluido “parado”

começará a se movimentar sobre um fluido em movimento e isso resultará na soma da

velocidade da corrente com a velocidade da onda. Para compensar este ganho de

velocidade o comprimento de onda aumentará e não haverá modificação no período

(BROWN et. al, 1999; DE PINHO, 1996).

Ambos os autores concordam que se a onda se propaga no sentido contrário à

corrente, esta funcionará como uma barreira, “freando-a”. De modo a conservar o

volume inicial, a onda tende a diminuir o seu comprimento e a aumentar a sua altura

(BROWN et. al, 1999; DE PINHO, 1996). Deste modo, supõe-se que o período sofra

alguma alteração, possivelmente decréscimo, como foi mostrado nos resultados deste

estudo.

Os trabalhos citados anteriormente consideram regiões de águas profundas

onde as forçantes de águas intermediárias/rasas são ausentes. Em ambientes

costeiros tais forçantes possuem um grande potencial modificador na propagação da

onda podendo ser responsáveis pela alteração do período de pico de onda encontrada

neste estudo.

Uma relação nítida não foi observada no que se refere à influência das

correntes nas alturas significativas das ondas (FIGURA 28). Durante a seca (2006), a

média de altura significativa encontrada durante a maré enchente foi de 0,35m com

máxima de 0,69 m; a média de altura significativa para a maré vazante foi de 0,26 m,

com máxima de 0,56 m. Em 2007, a média de Hs para a enchente foi de 0,18 m e a

máxima foi de 0,56 m; na maré vazante a média de Hs foi de 0,20m e a máxima de

0,63 m. Isto pode ser explicado pelo aumento da intensidade das correntes de vazante

no canal.

Page 64: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

63

Figura 28: Altura significativa de onda x Corrente de Maré. A Figura superior se refere ao período de seca (2006) e a inferior ao período de cheia (2007). Não foi observada nenhuma relação nítida entre a variação da altura devido a alternação no sentido da corrente de maré, embora as maiores alturas no canal sejam encontradas em picos positivos de velocidade.

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

29/11 16:48 30/11 16:48 1/12 16:48 2/12 16:48 3/12 16:4 8 4/12 16:48 5/12 16:48 6/12 16:48 7/12 16:48

Vel

ocid

ade

da c

orre

nte

de m

aré

(m/s

)

Altu

ra s

igni

ficat

iva

de o

nda

(m)

Tempo (dias)

Altura Significativa x Corrente de maré - Seca/2006

Altura de onda (AWAC) Velocidade da corrente de maré

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1/8 09:36 2/8 09:36 3/8 09:36 4/8 09:36 5/8 09:36 6/8 09:36 7/8 09:36 8/8 09:36

Vel

ocid

ade

da c

orre

nte

de m

aré

(m/s

)

Altu

ra s

igni

ficat

iva

de o

nda

(m)

Tempo (dias)

Altura Significativa x Corrente de maré - Cheia/2007

Altura de onda (AWAC) Velocidade da corrente

Vazante

Enchente

Enchente

Page 65: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

64

5.2.3. CARACTERIZAÇÃO DAS ONDAS NA PLANÍCIE DE MARÉ

Pode ser observado, na Figura 29 e na Tabela 11, que as alturas de ondas

mais frequentes estão entre 0.05-0.15m para os dois períodos (seca/2006 e

cheia/2007). Entretanto, a distribuição de alturas é fortemente modal e cerca de 50%

das ocorrências estão na classe de 0.1m (entre 0,075 e 0,125m). As maiores alturas

foram registradas no ADV2 durante o período de seca do Rio indicando algum

processo de crescimento. Para o período de cheia, as maiores alturas são

encontradas no ADV1 indicando um processo de atenuação.

Figura 29: Distribuição de altura significativa par a o ADV1 (figura superior) e para o ADV2 (figura inferior). Na Figura superior (ADV1), as principais alturas encontradas para os dois anos são menores que 0,15m. Mas, para a cheia (2007), a distribuição apresenta-se modal na classe de 0,1m (alturas entre 0.075 e 0.125m). Já na figura inferior (ADV2), as maiores alturas são encontradas no período de seca do rio (2006), e, no período de cheia (2007), a maior parte do tempo as alturas são menores de 0.125m.

Page 66: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

65

Tabela 11

Parâmetros estatísticos da altura significativa de onda na planície

Mediana (m) Máxima

(m)

Média (m) Desvio Padrão Variância

(m²)

ADV1 – 2006 0,09

0,21 0,10 0,05 0,003

ADV2 – 2006 0,16

0,37 0,16 0,05 0,002

ADV1 – 2007 0,10

0,27 0,11 0,04 0,001

ADV2 – 2007 0,06

0,23 0,07 0,04 0,002

A seguir é apresentada a relação entre altura significativa de onda e a

profundidade na qual ela se encontra considerando todos os dados (medidos no canal

e os medidos na planície), Esta relação é importante para a determinação das

condições para que ocorra a quebra da onda (FIGURAS 30 e 31). Valores maiores

que 0.7 indicam que ocorrerá a quebra da onda (KIM, 2003; LE HIR et al., 2000). Para

os dois anos, todos os valores se encontram abaixo desta relação, ou seja, não ocorre

a quebra da onda, mesmo para locais mais rasos da planície. Kim (2003) descreveu

que a relação altura/profundidade encontrada no Mar Amarelo apresentava valor muito

próximo à 0.7, maior que os encontrados neste estudo. Isto pode ter ocorrido, pois o

ambiente estudado por Kim (2003) é suscetível às ondas de tempestade, as quais

possuem maiores alturas.

Page 67: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

66

Figura 30: Relação entre a altura significativa de onda e a profundidade local – seca/2006. Nesta figura estão as medidas dos três equipamentos para o período de seca do rio (2006). Todos os valores se encontram abaixo da razão de 0.7.

Figura 31: Relação entre a altura significativa de onda e a profundidade local – cheia/2007. Nesta figura estão as medidas dos três equipamentos para o período de cheia do rio (2007). E, como encontrado no período de seca, todos os valores se encontram abaixo da razão de 0.7

Page 68: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

67

5.2.4. PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ

5.2.4.1. EVOLUÇÃO DA ONDA

Alguns processos podem ocorrer durante a propagação da onda, entre eles: o

aumento da altura da onda e a atenuação. O aumento da altura pode ser devido ao

empinamento da onda, à influência do vento ou outros fatores e ocorre quando estas

forçantes se tornam dominantes sobre o processo de perda de energia para o atrito

com o fundo. Por outro lado, a atenuação pode ser devido à perda de energia que a

onda sofre por atrito com o fundo.

• ANÁLISE DOS DADOS COLETADOS DURANTE A SECA DO RIO

AMAZONAS (DEZEMBRO/2006)

Na Figura 32 são apresentadas as medições para os três equipamentos,

durante o período medido. A Figura não mostra os dados medidos na planície em

profundidades menores que 0,5 m, uma vez que o sensor ficava exposto durante o

secamento da planície. A altura significativa máxima de onda encontrada foi de 0,8m e

o padrão encontrado mostrou que no primeiro trecho a onda (AWAC – ADV1) perde

energia e atenua. Isto pode ser observado na figura, pois na maior parte do tempo a

Hs medida pelo AWAC é maior que a Hs medida pelo ADV1, enquanto que no

segundo trecho (ADV1 – ADV2) observa-se o aumento da altura, tendo em vista que

na maior parte do tempo a Hs medida pelo ADV1 é menor que a medida pelo ADV2.

Page 69: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

68

Figura 32: Altura Significativa de onda durante a s eca/2006. A altura significativa máxima é de 0,8m e, o padrão encontrado é que no primeiro trecho (do AWAC para o ADV1) a onda perde energia e atenua, enquanto que no segundo trecho (do ADV1 para o ADV2) o processo de dissipação de energia, devido à fricção, não é suficiente para atenuar a onda e o resultado é o aumento da altura.

Page 70: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

69

O comportamento encontrado na figura acima pode ser corroborado quando

calculamos a razão entre as Hs dos dois equipamentos. Para o primeiro trecho (AWAC

até o ADV1, Figura 33 superior) pode ser observado que a razão ADV1/AWAC é

sempre menor que 1, sob qualquer circunstância. Entretanto, para o segundo trecho

(ADV1 até o ADV2, Figura 33 inferior) a maior parte dos dados esta razão está acima

de 1, o que indica que Hs no segundo equipamento (neste caso, ADV2) é maior, em

alguns casos até 7 vezes.

Figura 33: Razão entre alturas significativas duran te a seca/2006. Na Figura superior, a razão é entre a altura do ADV1 e do AWAC. Valores maiores que 1 remetem a alturas de ondas maiores no ADV1 que no AWAC e, valores menores que 1 indicam que a altura no AWAC é maior. A Figura inferior é a razão entre o ADV2 e o ADV. Valores maiores que 1 remetem à alturas de ondas maiores no ADV2 que no ADV1, e valores menores que 1 indicam que a altura no ADV1 é maior. No primeiro trecho, as ondas sempre atenuam, enquanto que no segundo trecho o crescimento da altura de onda é dominante. Deve-se ressaltar que o eixo y das duas figuras não é o mesmo.

Para quantificar o acréscimo registrado na altura significativa de onda, foi

confeccionada a Figura 34 que mostra o número de ocorrências (em porcentagem)

para cada classe de diferença de altura significativa (também em porcentagem),

retirando os valores espúrios (com profundidades menores que 0,5m) que somam

aproximadamente 35% para o primeiro trecho (AWAC – ADV1) e 46% para o segundo

Page 71: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

70

trecho (ADV1 – ADV2). Por exemplo, no primeiro trecho (em vermelho), 6% das

ocorrências apresentam -90%, ou seja, 90% de atenuação (quando a diferença entre a

altura significativa de onda do ADV1 e do AWAC resulta em valores negativos). Já

para o segundo trecho, a primeira classe que aparece é a de -20%, ou seja, 0,5% das

amostras possui a altura significativa de onda do ADV2 20% menor que a altura do

ADV1. Isto posto, pode-se concluir que durante o período analisado as ondas sempre

são atenuadas no primeiro trecho e, no segundo, apenas 2,7% das ondas sofrem

atenuação.

Figura 34: Diferença entre as alturas significativa s para os dois trechos durante a seca/2006. Em vermelho, é representado o primeiro trecho (do AWAC até o ADV1) e, em azul, o segundo trecho (do ADV2 até o ADV1). Classes de alturas negativas indicam que a onda foi atenuada; classes de alturas positivas indicam crescimento da altura significativa de onda. Por exemplo, no primeiro trecho 6% das ocorrências apresentam -90%, ou seja, 90% de atenuação (quando a diferença entre a altura significativa de onda do ADV1 e do AWAC resulta em valores negativos). No primeiro trecho todas as ondas são atenuadas sendo que mais do que 60% tem sua Hs decrescida para metade ou mais. No segundo trecho, a maior parte aumenta sua altura significativa (51% desses), 24% dobra ou mais de tamanho. Valores espúrios correspondem a 35% no primeiro trecho e 46% no segundo.

0

5

10

15

20

25

Por

cent

agem

das

Oco

rrên

cias

(%

)

Classe de Altura Significativa de onda (%)

Diferença entre as Alturas Significativas - Seca/200 6

ADV1 -AWAC ADV2 - ADV1

Page 72: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

71

• ANÁLISE DOS DADOS COLETADOS DURANTE A CHEIA DO RIO

AMAZONAS (AGOSTO/2007)

No primeiro trecho, grande parte das ondas atenua entre o AWAC e o ADV1

(FIGURA 35). Entretanto, são observados casos em que ocorre crescimento da onda

entre os dois sensores, o que não existe durante a seca do rio (melhor observado na

Figura 36). Na evolução da onda do ADV1 para o ADV2 esta continua a perder

energia e atenuar, como mostra a Figura 35, diferente do que foi encontrado no ano

anterior, onde é observado um crescimento da onda na maior parte do tempo entre

estes dois últimos sensores.

Figura 35: Altura Significativa de onda durante a cheia/2007. A altura significativa máxima é um pouco maior que 0,6m, o padrão encontrado é de atenuação para os dois trechos, uma vez que, de um modo geral, a altura significativa de onda do AWAC é, na maior parte do tempo, maior que a do ADV1 e, por sua vez, a altura do ADV1 é, na maior parte do tempo, maior que a do ADV2.

Page 73: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

72

Figura 36: Razão entre alturas significativas duran te a cheia/2007. Na Figura superior, a razão é entre Hs do ADV1 e do AWAC. Valores maiores que 1 remetem a alturas de ondas maiores no ADV1 que no AWAC, e valores menores que 1 indicam que a altura no AWAC é maior. A Figura inferior é a razão entre o ADV2 e o ADV1. Valores maiores que 1 remetem a alturas de ondas maiores no ADV2 que no ADV1, e valores menores que 1 indicam que a altura no ADV1 é maior. De um modo geral, a maior parte das ondas atenua durante todo o trecho da planície estudada.

Na Figura 37 pode ser observado o padrão da propagação nos dados de 2007

indicando que a onda atenua durante a maior parte do período analisado: ~67% das

ocorrências para o primeiro trecho e 57% para o segundo trecho. Entretanto, eventos

de crescimento no primeiro trecho são notados e a onda chega a aumentar em 70% o

seu tamanho. Não foram constatados elevados valores de crescimento (de até 7 vezes

a altura inicial) no segundo trecho, como ocorreu em 2006. Em 2007, no segundo

trecho, a onda acresceu no máximo 60%.

Page 74: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

73

Figura 37: Diferença entre as alturas significativa s para os dois trechos – cheia/2007. Em vermelho, é representado o primeiro trecho (do AWAC até o ADV1) e, em azul, o segundo trecho (do ADV2 até o ADV1). Classes de alturas negativas indicam que a onda atenuou; classes de alturas positivas indicam o crescimento da onda. Por exemplo, no primeiro trecho ~2% das ocorrências apresentam -80%, ou seja, 80% de atenuação. Na evolução da onda em 2007, o principal processo ocorrente é a atenuação, independentemente do trecho. Entretanto, o aumento da altura significativa de onda pode ocorrer nos dois trechos. Valores espúrios correspondem a 11,5% no primeiro trecho e 31,5% no segundo.

Na Figura 38 é mostrado o comportamento das ondas entre os dois sensores

sobre a planície, em função da altura significativa de onda registrada no canal

(AWAC). Note que o processo de crescimento e de atenuação das ondas, nas

medições de seca/2006 e cheia/2007 respectivamente, é mais acentuado para as

ondas de menor altura significativa.

0

5

10

15

20

25P

orce

ntag

em d

as O

corr

ênci

as (

%)

Classe de Altura Significativa (%)

Diferença entre as Alturas Significativas - Cheia/20 07

ADV1 -AWAC ADV2 - ADV1

Page 75: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

74

Figura 38: Relação entre comportamento da onda na p lanície e a onda no canal. Em vermelho estão as alturas registradas em 2006 e em azul as registradas em 2007. São encontrados maiores valores de crescimento em 2006 e que as ondas de menor tamanho (registradas pelo AWAC) são as que mais crescem. Para 2007 as ondas de menor tamanho atenuam mais.

Visando explicar os processos de crescimento e decréscimo das alturas de

ondas na planície são analisados quatro fatores: o empinamento (Shoalling), variações

na profundidade (devido às oscilações de maré ou vazão fluvial), influência do vento

ou a influência das correntes de maré.

5.2.4.2. EMPINAMENTO

O empinamento é o processo pelo qual a onda, ao se propagar por águas mais

rasas que sua formação, tem o seu comprimento decrescido e sua altura aumentada.

Isto ocorre em locais com baixos valores de fricção ou declividades acentuadas, em

que a dissipação é negligenciada.

Para entender a influência do empinamento devido à diminuição da

profundidade, inicialmente foi calculado o coeficiente de empinamento segundo a

teoria linear:

% = p�&�∗ q���&�∗ q��

Equação 20: Coeficiente de empinamento

-200

-100

0

100

200

300

400

500

600

700

0,0 0,2 0,4 0,6 0,8 1,0

(Hs

AD

V2-

Hs

AD

V1)

/Hs

AD

V1

Hs Awac (m)

2006 seca 2007 cheia

Page 76: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

75

Onde:

& = �� ∗ � + �∗6∗�

'>&���∗6∗�� Equação 21:

h= profundidade local

k= número de onda

Assumindo que o período de onda é constante, o comprimento de onda (L) é

calculado segundo a relação de dispersão de acordo com a teoria linear

Assim, a Figura 39 mostra que entre o primeiro trecho (AWAC –ADV1), durante

os dois períodos do estudo (seca/2006 e cheia/2007), para qualquer condição de

maré, ocorrerá atenuação da onda, quando o coeficiente é menor que 1. A exceção é

para ondas mais longas, com períodos maiores que 3,9s. Estas ondas correspondem

a aproximadamente 8% (15 medições) das amostras em 2006 e 3,4% (8 medições)

para o ano de 2007.

Enquanto que, no segundo trecho (entre o ADV1 e ADV2), as ondas com

períodos por volta de 3s aumentam de tamanho e as de 2,5s podem ou não aumentar

de tamanho (encontram-se no limite). Novamente, as ondas mais longas aumentariam

o seu tamanho. É interessante notar que no segundo trecho o processo de

empinamento é ligeiramente maior na seca (aproximadamente 1%, para 2,5s e 3s).

De uma forma geral, a onda não aumenta mais do que 10% do seu tamanho e

não diminui mais que 15% para qualquer período de pico de onda ou profundidade

local, considerados na análise. Portanto, espera-se que no primeiro trecho a onda

sempre sofra dissipação e no segundo trecho haja algum empinamento, mais

destacado para o ano de 2006. Possivelmente, isto ocorreu devido às menores

profundidades durante o período de seca do rio.

Page 77: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

76

Figura 39: Coeficiente de empinamento. O coeficiente de empinamento quando maior que 1 indica que a altura significativa de onda aumentará; enquanto que valores menores que 1 indicam que a onda sofrerá o processo de atenuação. De um modo geral, a onda não aumenta mais que 10% do seu tamanho e não diminui mais que 15% para qualquer período de pico de onda ou profundidade local. E o empinamento ocorre mais acentuadamente em ondas com períodos maiores.

O padrão acima descrito explica, para o período de seca do Rio (2006), o que

foi encontrado nos dados, a diminuição da altura de onda no primeiro trecho e o

aumento da altura de onda no segundo trecho. Porém, os valores encontrados de

crescimento de onda na análise dos dados medidos são muito superiores aos obtidos

a partir apenas do coeficiente de empinamento. Em 2007 para o primeiro trecho, o

coeficiente de empinamento novamente explica como deve ser o comportamento de

atenuação da onda, mas a quantificação encontrada nos dados é bem maior do que a

descrita pelo coeficiente de empinamento. Portanto, outros fatores estão afetando o

processo na propagação da onda nesta planície.

5.2.4.3. INFLUÊNCIA DOS VENTOS

Durante o inverno quando ocorre o período de seca do rio Amazonas os ventos

foram regulares em sua direção com velocidades máximas próximas a direção

perpendicular à planície (linha tracejada indicada na Figura 40). As ondas geradas

com maior altura significativa no AWAC, não crescem na planície em 2007 (cheia do

Rio e ventos mais brandos) e, o fato de não haver uma direção bem definida resulta na

ausência de crescimento da altura significativa de onda na planície.

0,80,85

0,90,95

11,05

1,11,15

1,2

T=2,5s T= 3s T= 3,9s T=2,5s T= 3s T= 3,9s

Período de Sizígia Período de Quadratura

Coeficiente de Empinamento

Trecho entre AWAC e ADV1 2006 Trecho entre ADV1 e ADV2 2006

Trecho entre AWAC e ADV1 2007 Trecho entre ADV1 e ADV2 2007

Page 78: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

77

Figura 40: Crescimento das ondas na planície x ventos. A figura acima indica os valores para o ano de 2006, durante a seca do Rio Amazonas, onde há regularidade na direção dos ventos e com ventos máximos próximos à direção perpendicular à costa (linha tracejada), o que possibilita o crescimento da onda na planície. No entanto, em 2007 (figura abaixo) durante o período de seca e verão, não há uma direção bem definida dos ventos o que não acarreta o crescimento da onda na planície.

-100

-50

0

50

100

150

200

250

300

350

00,5

11,5

22,5

33,5

44,5

55,5

66,5

77,5

8

29/11 30/11 1/12 2/12 3/12 4/12 5/12 6/12 7/12

Dire

ção

do v

ento

(gr

aus)

e

(HsA

DV

2 -

HsA

DV

1)*1

00/A

DV

1

Vel

ocid

ade

do v

ento

(m

/s)

eA

ltura

sig

nific

ativ

a de

ond

a (m

)

Tempo (dias)

Velocidade do vento Hs AWAC(Hs ADV2 - HsADV1)*100/HsADV1 Direção do vento

-100

-50

0

50

100

150

200

250

300

350

00,5

11,5

22,5

33,5

44,5

55,5

66,5

77,5

8

1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8

Dire

ção

do v

ento

(gr

aus)

e

(HsA

DV

2 -

HsA

DV

1)*1

00/A

DV

1

Vel

ocid

ade

do v

ento

(m

/s)

e A

ltura

sig

nific

ativ

a de

ond

a (m

)

Tempo (dias)

Velocidade do vento Hs AWAC(Hs ADV2 - HsADV1)*100/HsADV1 Direção do vento

Page 79: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

78

Para avaliar a relação entre os ventos e evolução das ondas na planície foram

confeccionadas as Figuras 41 e 42, onde são mostrados os valores da média da

velocidade do vento, a profundidade local e a razão de alturas significativa de onda

medidas pelos ADV2 e ADV1. Valores maiores que 1 desta razão indicam o

crescimento da onda (quando a onda medida pelo ADV2 é maior que a medida pelo

ADV1) e valores menores que 1 indicam atenuação (quando a onda medida pelo

ADV2 é menor que a medida pelo ADV1).

Para o ano de 2006, só ocorre o crescimento da onda e não há relação direta

entre o aumento da velocidade do vento e um possível aumento de sua Hs. Visando a

um melhor entendimento, foram separados quatro casos (A, B, C e D) definidos na

Figura 39 conforme segue:

• em A, o vento é mediano e constante, o nível da água é alto e o

crescimento da onda é o maior do período medido neste ano;

• em B, a velocidade do vento decai, o nível aumenta, e o crescimento é

menor;

• em C, a velocidade do vento é alta e constante, o nível decai e o

crescimento é menor.

• em D, a velocidade do vento decai, o nível aumenta e o crescimento é

maior do que em C e D.

Logo se percebe que como resultado do conjunto entre velocidade do vento

alta e nível de água maior a onda aumenta a sua altura na planície mais facilmente.

Page 80: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

79

Figura 41: Relação vento x profundidade local x razão entre Hs , durante a seca/2006. A Figura superior indica a média da velocidade do vento, o intermediário a profundidade local e o inferior a razão entre altura significativa do ADV2 sobre a altura significativa do ADV1 para o ano de 2006. Neste ano, só ocorre crescimento da altura significativa de onda e não há relação direta entre o aumento da velocidade do vento e um possível crescimento maior. Quatro casos foram definidos Na Figura A, B, C e D.

Page 81: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

80

Na cheia do Rio (2007), o padrão de ventos é mais variável (FIGURA 42). Pôde

ser observado que picos de ventos remetem ao crescimento da onda, sempre na

preamar. Foram separados três casos (A, B e C) para serem avaliados

separadamente:

• em A, ocorre um pico do vento e este é acompanhado pelo aumento da

altura de onda (o nível da água é alto); então, a velocidade do vento

cessa e a onda volta a atenuar;

• em B, a velocidade estava parcialmente constante em 4m/s; há um pico

de aumento da altura significativa de onda , quando o nível é alto. O

vento cessa, o nível da água decresce, mas a altura significativa de

onda torna a aumentar

• em C, a velocidade de vento é baixa, o nível da água é alto e a

atenuação é notável.

Figura 42: Relação vento x profundidade local x razão entre Hs, durante a cheia/2007. A Figura superior indica a média da velocidade do vento; o intermediário, a profundidade local, e o inferior a razão entre altura significativa do ADV2 sobre a altura significativa do ADV1, para o ano de 2007. Neste ano, ocorre tanto o crescimento como atenuação das ondas, os ventos são mais fracos e inconstantes. Nota-se uma relação indireta entre os picos de velocidade e a ocorrência de crescimento e três casos foram definidos Na Figura A, B e C.

Page 82: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

81

5.2.4.4. VARIAÇÃO DO NÍVEL DA ÁGUA

A profundidade na área de estudo varia segundo dois fatores: a maré, além

das flutuações diárias, os maiores níveis são encontrados durante o período de sizígia

e; a descarga fluvial, que causa o aumento e a diminuição do nível de água

caracterizando o período de seca (2006) e cheia (2007).

Durante a cheia do Rio são encontrados os maiores níveis de profundidade,

mas diferenças pequenas entre as variações lunares que é devido ao amortecimento

que a vazão fluvial causa na propagação da maré. Na tabela 12 são mostradas as

médias das alturas para os períodos analisados.

Tabela 12

Médias de Alturas Significativas

2006 2007

Sizígia Quadratura Sizígia Quadratura

AWAC 0,37m 0,27m 0,20m 0,22m

ADV1 0,10m 0,08m 0,10m 0,12m

ADV2 0,17m 0,16m 0,07m 0,08m

A relação entre a altura da onda e a profundidade local apresentou o mesmo

padrão para a sizígia ou quadratura nos dois anos de medição, com alturas maiores

no canal e no ano de 2006 (FIGURA 43). Em qualquer situação a relação entre altura

e profundidade foi menor que 0.7.

Page 83: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

82

Figura 43: Relação entre a profundidade e Hs para diferentes ciclos de maré. As duas figuras superiores se referem ao período de 2006 e os dois inferiores ao período de 2007. Em, 2006, é interessante notar que o ADV2 apresenta maior esbeltez (H/L) que o ADV1, este padrão é invertido em 2007. Considerando que a profundidade entre os dois ADVs varia muito pouco e este resultado é devido à maior altura significativa da onda no ADV2 em 2006 e no ADV1 em 2007.

As análises a seguir mostram a relação entre a maré e a diferença entre as

alturas significativas dos dois equipamentos, em porcentagem segundo a razão:

% = ��'#8�'>�∗����'>

Equação 22

Os subíndices f e i indicam os pontos final e inicial de cada trecho,

respectivamente.

Os dados foram separados por campanha (2006 e 2007) e por trecho (primeiro

e segundo). No primeiro trecho Hsf corresponde à altura significativa medida pelo

ADV1 e Hsi à altura significativa medida pelo AWAC. No segundo trecho Hsf

corresponde à altura significativa medida pelo ADV2 e Hsi à altura significativa medida

pelo ADV1.

Page 84: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

83

• PERÍODO DE SECA DO RIO AMAZONAS (DEZEMBRO/2006)

Os dados também foram separados em um período durante a maré de sizígia (4/12 -

07/12) e um período durante a maré de quadratura (01/12 -03/12).

No primeiro trecho da planície, não há diferenciação entre o período de sizígia

e de quadratura. Os maiores valores de atenuação ocorrem, geralmente, no período

de maré enchente ou próximo à estofa (na Figura 44, B, C, E e G), enquanto que, os

maiores valores de acréscimo da altura significativa de onda ocorrem, principalmente,

na maré vazante com níveis menores de profundidade (Na Figura 44, A, D, F e H).

Figura 44: Relação entre a variação da maré e dife rença entre as alturas do ADV1 e do AWAC, para os ciclos de maré, 2006. As duas figuras superiores se referem ao período de sizígia de 2006 e os dois inferiores ao período de quadratura de 2006. Os maiores valores de atenuação ocorrem principalmente no período de maré enchente ou próximo à estofa (B, C, E e G), enquanto que, os maiores valores de aumento da altura significativa de onda ocorrem, geralmente, na maré vazante com níveis menores de profundidade (A, D, F e H).

Page 85: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

84

No segundo trecho da planície, na sizígia, a onda sempre aumenta sua altura,

mas este processo é maior quando o nível de água é menor, principalmente durante

maré vazante (Figura 45 - A e C), mas pode ocorrer na maré enchente também

(Figura 45 – B). Em contrapartida, o acréscimo da altura de onda é menor nos

períodos de estofa da maré enchente, mesmo comportamento encontrado no primeiro

trecho. Não há dados na estofa de maré vazante, pois o sensor ficava emerso.

Na quadratura, os quatro maiores valores de aumento na altura significativa de

onda foram encontrados durante níveis maiores de profundidade (Figura 45, D e E).

Tal comportamento pode ter se invertido, em função do vento intenso e constante (ver

Figura 10).

Figura 45: Relação entre a variação da maré e difer ença entre as alturas do ADV2 e do ADV1 para os ciclos de maré, 2006. As duas figuras superiores se referem ao período de sizígia de 2006 e os dois inferiores ao período de quadratura de 2006. Durante a sizígia, a onda sempre aumenta o seu tamanho, mas este processo é maior quando o nível de água é menor, principalmente na maré vazante (A e C). Em contrapartida, o acréscimo na altura significativa de onda é menor nos períodos de estofa da maré enchente. Não há dados na estofa de maré vazante, pois o sensor ficava emerso. Os maiores valores de aumento na altura significativa da onda na quadratura estão marcados pelas letras D e E.

Page 86: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

85

• PERÍODO DE CHEIA DO RIO AMAZONAS (AGOSTO/2007)

Foram escolhidos um período de sizígia (do dia 02/08 ao dia 04/08) e um

período (do dia 07/08 ao dia 10/08).

No primeiro trecho, durante a maré de sizígia, a maior parte do tempo ocorre

atenuação, mas quando há um acréscimo na altura significativa de onda este ocorre

no período de maré vazante com o nível de água menor (Figura 46 - A, B e C).

O mesmo padrão é encontrado no período de quadratura (Figura 46 - D e E). A

exceção é um evento seguido do aumento na altura significativa da onda que ocorreu

no dia 10/08 (Figura 46 - F) com a maré enchente e durante a estofa. Neste período, o

vento estava intenso e constante, evento incomum para o mês de agosto, o que pode

explicar o aumento da onda na planície independentemente da variação da maré.

Figura 46: Relação entre a variação da maré e difer ença entre as alturas do ADV1 e do AWAC, para os ciclos de maré, em 2007. As duas figuras superiores se referem ao período de sizígia de 2007 e os dois inferiores ao período de quadratura de 2007. Durante a maré de sizígia, a maior parte do tempo ocorre atenuação, mas quando há crescimento da altura significativa da onda este ocorre no período de maré vazante com o nível de água menor. O mesmo padrão é seguido na quadratura (A, B, C, D e E).

Page 87: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

86

No segundo trecho, em2007, a atenuação é a principal transformação que a

onda sofre. Deste modo, eventos de acréscimo na altura significativa de onda foram

raros. Na época da sizígia estes eventos foram pouco expressivos e só ocorreram

durante a maré vazante, principalmente, com níveis baixos (Figura 47 - A, B e C). Este

padrão é seguido na quadratura (Figura 47 – E e F). A ocorrência de atenuação mais

proeminente ocorre com os níveis mais altos de maré (FIGURA 47 - D e G).

Figura 47: Relação entre a variação da maré e difer ença entre as alturas do ADV2 e do ADV1, para os ciclos de maré, 2007. As duas figuras superiores se referem ao período de sizígia de 2007 e as duas inferiores ao período de quadratura de 2007. Durante a maré de sizígia, a maior parte do tempo ocorre atenuação, mas quando há o aumento da altura significativa de onda este ocorre no período de maré vazante com o nível de água menor. O mesmo padrão é seguido na quadratura (A, B, C, D e E).

Page 88: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

87

As observações de altura significativa de onda no canal apresentam uma

modulação cíclica em função das variações semidiurnas do nível d´água devidas a

maré. As maiores ondas, independentemente do período lunar, do ano e do trecho, a

onda tem a sua altura significativa acrescida no interior da planície quando o nível da

água é menor. Isto indica que a fricção com o fundo não é suficiente para atenuar a

onda. Comportamentos fora deste padrão, com aumento da altura de onda ocorrendo

durante a maré cheia, podem ser explicados pela maior intensidade do vento e

constância em sua direção.

Os resultados até aqui apresentados corroboram com os encontrados por Kim

(2003) para épocas de clima calmo quando ele descreve que a propagação da onda é

dependente das variações do vento e do nível d´água.

Um fator interessante é que a onda aumenta principalmente quando a maré

está secando e, visando a entender esta relação o tópico seguinte foi inserido.

5.2.4.5. INTERAÇÃO DA ONDA COM AS CORRENTES DE MARÉ

• PERÍODO DE SECA DO RIO AMAZONAS /2006

Ao se propagar pelo primeiro trecho da planície a onda é atenuada mais

significativamente quando as correntes de maré estão enchendo, sendo que o pico de

atenuação ocorre quando há o máximo de velocidade, independentemente se é

vazante ou enchente (FIGURA 48). Mas, predominantemente, o mínimo de atenuação

ocorre na maré vazante.

No segundo trecho há de um modo geral apenas o aumento da altura

significativa de onda, e o mesmo comportamento (maiores valores de aumento

enquanto a maré é vazante) é notado mais timidamente, pois este trecho tem no nível

seu principal fator modulador de transformação da onda.

Page 89: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

88

Figura 48: Propagação de onda x Corrente de Maré, d urante a seca do rio (2006). A Figura superior se refere à diferença entre as alturas significativas do ADV1 e do AWAC. Valores positivos indicam crescimento da onda (altura no ADV1 maior que no AWAC); valores negativos indicam atenuação da onda (altura no AWAC maior que no ADV1). A Figura se refere à diferença entre as alturas significativas do ADV2 e do ADV1, em porcentagem. O eixo y das duas figuras é diferente. No superior, há apenas atenuação da onda e, Na Figura inferior, o processo principal é o crescimento. De forma geral, durante as correntes de maré vazante a onda é menos atenuada.

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

29/11 12:00 1/12 12:00 3/12 12:00 5/12 12:00 7/12 12:00

Ve

loci

da

de

da

co

rre

nte

de

ma

ré (

m/s

)

Po

rce

nta

ge

m (

%)

Tempo (dias)

Diferenças entre alturas (ADV1 - AWAC) Seca/2006

"ADV1 - AWAC" Velocidade da corrente de maré

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

-100

0

100

200

300

400

500

600

700

29/11 12:00 1/12 12:00 3/12 12:00 5/12 12:00 7/12 12:00

Ve

loci

da

de

da

co

rre

nte

de

ma

ré (

m/s

)

Po

rce

nta

ge

m (

%)

Tempo (dias)

Diferença entre alturas (ADV2 - ADV1) Seca/2006

ADV2 - ADV1 Velocidade da corrente de maré

Enchente

Vazante

Enchente

Vazante

Page 90: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

89

Nota-se na Figura 49 que a diferença entre a altura significativa do ADV2 e a

altura significativa do ADV1 é maior quando o nivel da maré é positivo, ou seja, há o

crescimento da onda. Isto indica que além do crescimento da onda ocorrer durante as

correntes de maré vazante este ocorre, principalmente com o nivel positivo, ou seja, o

nivel da maré funciona como fator modulador para o crescimento da onda.

Figura 49: Nível da maré x Propagação de onda duran te a seca do rio (2006). Na Figura “rel Hs” é a relação entre as alturas significativas de onda do ADV2 e do ADV1 segundo a relação: (Hs ADV2 – Hs ADV1)/Hs ADV1; “maré” indica o nível da maré (linha tracejada) e; “Hs” é a altura significativa de onda no canal. A figura mostra que o crescimento da onda na planície é maior quando o nível da maré é positivo.

• PERÍODO DE CHEIA DO RIO AMAZONAS /2007

O principal comportamento da propagação da onda sobre a planicíe durante a

cheia do rio é de atenuação e, com poucas exceções, ocorre aumento da altura

significativa de onda durante o período de maré vazante (FIGURA 50). Os picos de

atenuação são predominantemente encontrados durante o máximo de maré enchente.

Assim como no ano anterior, a transformação da onda no segundo trecho parece

acompanhar o nível da água. Para tentar entender como o nível da água influencia na

propagação da onda foi confeccionada a Figura 51, esta nos indica que o crescimento

da onda na planície ocorre geralmente quando o nivel é positivo, assim como ocorre

durante a seca do rio do ano anterior.

-10,0

-8,0

-6,0

-4,0

-2,0

0,0

2,0

4,0

6,0

8,0

10,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

30/11 00:00 1/12 00:00 2/12 00:00 3/12 00:00 4/12 00:00 5/12 00:00 6/12 00:00 7/12 00:00 8/12 00:00

(Hs

AD

V2

-H

s A

DV

1)/

Hs

AD

V1

Mar

é e

Hs

(m)

Tempo (dias)

Seca 2006

Hs AWAC Maré rel Hs

Page 91: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

90

Figura 50: Propagação de onda x Corrente de Maré du rante a cheia do rio (2007). A Figura superior se refere à diferença entre as alturas significativas do ADV1 e do AWAC. Valores positivos indicam crescimento da onda (altura no ADV1 maior que no AWAC); valores negativos indicam atenuação da onda (altura no AWAC maior que no ADV1). A Figura inferior se refere à diferença entre as alturas significativas do ADV2 e do ADV1, em porcentagem. O eixo y das duas figuras é diferente. Nos dois trechos na maior parte do tempo ocorre atenuação e os pontos onde há crescimento da altura significativa de onda são, principalmente, durante a maré vazante.

-1,8

-1,4

-1,0

-0,6

-0,2

0,2

0,6

1,0

1,4

1,8

-200

-150

-100

-50

0

50

100

150

200

1/8 13:55 2/8 13:55 3/8 13:55 4/8 13:55 5/8 13:55 6/8 13:55 7/8 13:55 8/8 13:55

Vel

ocid

ade

da c

orre

nte

de m

aré

(m/s

)

Por

cent

agem

(%

)

Tempo (dias)

Diferença entre alturas significativas - (ADV1 - AWAC) Cheia/2007

ADV1 - AWAC Velocidade da corrente

-1,8

-1,4

-1,0

-0,6

-0,2

0,2

0,6

1,0

1,4

1,8

-100

-80

-60

-40

-20

0

20

40

60

80

100

1/8 13:55 2/8 13:55 3/8 13:55 4/8 13:55 5/8 13:55 6/8 13:55 7/8 13:55 8/8 13:55 Vel

ocid

ade

da c

orre

nte

de m

aré

(m/s

)

Por

cent

agem

(%

)

Tempo (dias)

Diferença entre alturas significativas - (ADV2- ADV1 ) Cheia/2007

ADV2 - ADV1 Velocidade da corrente

Enchente

Vazante

Enchente

Vazante

Page 92: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

91

Figura 51: Nível da maré x Propagação de onda duran te a cheia do rio (2007). Na Figura “rel Hs” é a relação entre as alturas significativas de onda do ADV2 e do ADV1 segundo a relação: (Hs ADV2 – Hs ADV1)/Hs ADV1; “maré” indica o nível da maré (linha tracejada) e; “Hs” é a altura significativa de onda no canal. É interessante notar que o nível funciona como fator modulador para o crescimento da onda e que, quando a altura significativa de onda no canal é maior esta onda se propaga de tal forma que há crescimento na planície.

-10

-8

-6

-4

-2

0

2

4

6

8

10

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

1/8 00:00 2/8 00:00 3/8 00:00 4/8 00:00 5/8 00:00 6/8 00:00 7/8 00:00 8/8 00:00 9/8 00:00

(Hs

AD

V2

-H

s A

DV

1)/

Hs

AD

V1

Mar

é(m

) -H

s A

WA

C (

m)

Tempo (dias)

Cheia / 2007

Hs AWAC Maré rel Hs

Page 93: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

92

6. CONCLUSÃO

As ondas adjacentes à planície de maré do rio Amazonas, próxima à cidade de

Macapá (AP), podem ser classificadas como ondas curtas (períodos da ordem de 3

segundos), geradas por ventos locais e de águas intermediárias. A direção de

propagação da onda é alterada pela presença do muro de contenção na margem do

Rio e pela presença do pier de captação de água a norte das medições. As ondas

interagem e são refletidas por estas construções resultando em uma direção

predominante de SW.

As maiores alturas foram encontradas no inverno durante o período de seca do

Rio (meses de novembro e dezembro).

As ondas no interior da planície não quebram, pois sua relação

altura/profundidade é menor que o limite teórico de 0,7. Durante a sua propagação, a

onda é influenciada por diferentes fatores, apresentando crescimento e atenuação. Na

análise do primeiro trecho da planície (canal-planície inferior) a onda sempre sofre

atenuação uma vez que o empinamento e o input do vento não são suficientes para

suprir a perda pela fricção com o fundo. Entretanto, no segundo trecho (planície

superior) não houve um padrão a ser seguido nos dois anos de estudo.

O empinamento explica apenas o comportamento da onda durante sua

propagação, mas não a quantificação. E, simplesmente o aumento na intensidade no

vento não acarreta diretamente no aumento na altura significativa de onda na planície.

Os principais fatores que podem ser responsáveis pela transformação da onda

nesta planície são: a variação do nível da água e as correntes de maré, além da

influência dos ventos.

Na planície, o processo de atenuação ocorre durante a maré enchente. Picos

de ventos podem estar associados ao aumento da altura significativa de onda,

entretanto, apenas durante a preamar. O processo de crescimento da onda é mais

atuante, durante o período de seca do rio Amazonas e, está associado às correntes de

maré vazante, neste caso, a fricção com o fundo não seria suficiente para atenuar a

onda. A transformação da onda parece acompanhar o nível da água.

A interação onda – corrente não é apenas sentida no acréscimo/diminuição da

altura, pois alterações no período de pico de onda também foram encontradas.

Quando o sentido é o mesmo, inicialmente, o período de onda aumentará. Para o

sentido contrário a corrente de maré é uma barreira à propagação da onda, resultando

no decréscimo do período de onda.

Page 94: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

93

Portanto, a maré através das variações do nível d´água e o sentido de

alagamento/secamento da planície pode ser considerada como um agente modulador

na transformação da onda sendo o vento a forçante geradora na planície.

Page 95: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

94

7. REFERÊNCIAS

ANA. Agência Nacional de Águas. Disponível em: http<www.ana.gov.br>. Acesso em:

2011.

BROWN, E. et al. Waves, Tides and Shallow-water Processes. 2ed. England:

Butterworth-Heinemann. 227p.,1999.

CARNIELLO, L; D´ALPAOS, A.; DEFINA, A. Modeling Wind waves and tidal flows in

shallow micro-tidal basins. “Estuarine, Coastal and Shelf Science”.v.92, pp.263 – 276,

2011.

CARTER, R.W.C., Coastal environments, London: Academic Press. 617p. 1988

CERC; Coastal Engineering Research Center. Shore Protection Manual. US Army

Corps of Engineers, 1984.

DALRYMPLE, R. W.; YANG, B. C.; CHUN, S. S. Sedimentation on a wave-dominated,

open-coast tidal flat, south-western Korea: summer tidal flat – winter shoreface – reply.

“Sedimentology”. v.53, pp 693–696, 2006.

DEAN, R.G.; DARLYMPLE, R.A. Water wave mechanics for engineers and scientists.

2 ed. Singapore: World Scientific. pp.72,1991.

DE PINHO, U.F. Fundamentos de interação onda–corrente. Monografia, Universidade

Estadual do Rio de Janeiro, Rio de Janeiro, 1996.

FAN et al. Cross-shore variations in morphodynamic processes of an open-coast

mudflat in the Changjiang Delta, China: With an emphasis on storm impacts.

“Continental Shelf Research”. V.26, pp.517–538, 2006.

FISCH, C.I. Caracterização do Clima de Ondas na Costa no Ceará. Dissertação

(Mestrado em Engenharia Oceânica) – Programa de Pós-Graduação de Engenharia,

Universidade Federal do Rio de Janeiro. Rio de Janeiro, 2008.

FONTES, C.R.F. Estudo numérico da circulação na Plataforma Continental

Amazônica. Tese de Doutorado , Universidade Federal de São Paulo, São Paulo,

2000.

GABIOUX, M. Tidal Propagation over fluid mud layers on the Amazon shelf.

“Continental Shelf Research”, v.25, pp.113-125, 2005.

GALLO, M.N.A Influência da Vazão Fluvial sobre a Propagação da Maré no Estuário

do Rio Amazonas. Dissertação (Mestrado em Engenharia Oceânica) – Programa de

Page 96: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

95

Pós-Graduação de Engenharia, Universidade Federal do Rio de Janeiro. Rio de

Janeiro, 2004.

GALLO, M. N.; VINZON, S. B. Generation of overtides and compound tides in Amazon

estuary. “Ocean Dynamics”, v.55 (5-6), pp.441-448, 2005.

GALLO,M.N. Escoamentos em planícies de marés com influência fluvial – Canal Norte

do Rio Amazonas. Tese (Doutorado em Engenharia Oceânica) – Programa de Pós-

Graduação de Engenharia, Universidade Federal do Rio de Janeiro. Rio de Janeiro,

2009.

GODIN, G. The Propagation of tides up Rivers with special considerations on the

Upper Saint Lawrence River. “Estuarine, Coastal and Shelf Science”. v.48, pp.307-324,

1999.

GOOGLE EARTH. Disponível em: http<www.maps.google.com>. Acesso em: mar,

2011.

GOVERNO DO ESTADO DO AMAPÁ. Clima. Disponível em:

<http://www4.ap.gov.br/Portal_Gea/Perfil/dadosestado-perf-clima.htm>. Acesso em:

jan, 2011.

HERMAN, A.; KAISER, R.; NIEMEYER, H.D. Wind-wave variability in a shallow tidal

sea – Spectral modeling combined with neural network methods. Coastal Engineering

v.56, pp.759 – 772, 2009.

HOLTHUIJSEN, L.H. Waves in Oceanic and Coastal Waters. 1 ed. New York:

Cambridge University Press. 379p. 2007.

KIM, B.O. Tidal modulation of storm waves on a macrotidal flat in the Yellow Sea.

“Estuarine and Coastal and Shelf Science”. v.57,pp.411–420, 2003.

LE HIR, P. et al. Characterization of intertidal flat hydrodynamics. “Continental Shelf

Research”.v.20, pp.1433 – 1459, 2000.

LEEDER, M.R. Sedimentology. 4ed. Londres, Inglaterra: Chapman & Hall, 344p.1994.

MEADE, R.H.; DUNNE,T.;RICHEY,J.E.; SANTOS, U.DE M.;SALATI. Storage and

remobilization of suspended sediment in the lower Amazon River of Brazil. “Science”.

v.228, pp.480-499,1985.

NICHOLS, G. Processes of transport and sedimentary structures. In: ___.

Sedimentology and Stratigraphy. Ireland: Blackwell Publishing, cap. 3, pp.37-57, 1999.

NITTROUER, C. DEMASTER, D., FIGUEIREDO, A.G., RINE, J.M., AmasSedS: An

Interdisciplinary Investigation of a Complex coastal Enviroment. “Oceanography”.1991.

Page 97: ESTUDO DA PROPAGAÇÃO DE ONDAS NA PLANÍCIE DE MARÉ DO …objdig.ufrj.br/60/teses/coppe_m/BetinaCarlaRibeiroLima.pdf · caracterização das ondas, ventos, maré e descarga fluvial

96

NORTEK AS. Nortek Brasil. Disponível em:<http://www.nortekbrasil.com.br>. Acesso

em: ago, 2010.

PIATAM OCEANO. Processos físicos na plataforma continental amazônica. Rio de

Janeiro, 2008.

POND, S.; PICKARD,G.L. Introductory Dynamical Oceanography. 2 ed. England:

Butterworth-Heinemann.321p.,1989.

PUGH, D.T. Tides, Surges and Mean Sea Level. John Wiley & Sons. 472p., 1987.

QUARESMA, V.S. Aula Introdução . 2007.

RUSU,L., BERNARDINO, M., GUEDES SOARES,C. Modelling the influence of

currents on wave propagation at the entrance of the Tagus estuary. “Ocean

Engineering”, 2011.

SHEREMET, A.; STONE, G.W. Observations of nearshore wave dissipation over

muddy sea beds. “Journal of Geophysical Research”, 2003.

SONTEK. Sontek . Disponível em: <http://www.sontek.com >, Acesso em: ago,2010.

VAREJÃO-SILVA, M.A. Meteorologia e Climatologia. Versão Digital 2. Recife, 2006.

WELLS, J.T.; KEMP,G.P. Interation of surface waves and cohesive sediments: field

observations and geologic significance. In: A.J. Mehta (Editor), “Estuarine Cohesive

Sediment Dynamics, Series on Coastal and Estuarine Studies” New York: Springer-

Verlag, pp.775-788, 1986.

WHITEHOUSE, R. J. S., BASSOULLET, P., DYER, K. R., MITCHENER, H. J.,

ROBERTS, W. & WALLIN H. R. The influence of bedforms on flow and sediment

transport over intertidal mudflats., Continental Shelf Research. v.20, pp.1099-1124,

2000.