estruturas metálicas - apostila

137
 RICARDO GASPAR ESTRUTURAS METÁLICAS São Paulo 2008

Upload: alexandre

Post on 31-Oct-2015

513 views

Category:

Documents


30 download

TRANSCRIPT

Page 1: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 1/136

 

RICARDO GASPAR 

ESTRUTURAS METÁLICAS

São Paulo2008

Page 2: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 2/136

 

SUMÁRIO

1.   AÇO ESTRUTURAL................................................................................................................ 1 1.1.   Estruturas metálicas............................................................................................................. 1 1.1.1.  Vantagens......................................................................................................................... 1 1.1.2.   Desvantagens ................................................................................................................... 2 1.1.3.   Normas ............................................................................................................................. 2 1.1.4.   Aplicações......................................................................................................................... 3 1.2.  Formas usuais de metais ferrosos ....................................................................................... 3 1.2.1.   Etapas de fabricação do aço............................................................................................ 3 1.3.  Tipos de aços estruturais...................................................................................................... 4 1.3.1.   Aço carbono ..................................................................................................................... 4 

1.3.2.   Aços de baixa liga e alta resistência................................................................................ 5 1.3.3.   Nomenclatura da ABNT.................................................................................................. 5 1.3.4.   Espessura mínima para peças estruturais....................................................................... 5 1.3.5.   Propriedades dos aços estruturais ................................................................................... 6  1.4.  Tensões e deformações ......................................................................................................... 6  1.5.   Ensaios.................................................................................................................................. 7  1.5.1.   Ensaios de tração ............................................................................................................. 8 1.5.2.   Diagrama tensão - deformação ....................................................................................... 8 1.6.   Lei de Hooke....................................................................................................................... 11 1.6.1.   Ensaios de compressão .................................................................................................. 12 1.6.2.  Coeficiente de Poisson ................................................................................................... 12 1.6.3.  Forma geral da Lei de Hooke........................................................................................ 13 

2.   PRODUTOS SIDERÚRGICOS ............................................................................................. 16  2.1.   Perfis laminados................................................................................................................. 16  2.2.   Perfis Soldados ................................................................................................................... 18 2.3.   Perfis conformados a frio ou de chapas dobradas............................................................ 19 2.4.  Tubos .................................................................................................................................. 20 2.5.  Tabelas de perfis................................................................................................................. 20 2.6.   Principais tipos de concepções estruturais ........................................................................ 22 2.6.1.  Treliças isostáticas ......................................................................................................... 22 2.6.2.  Tesouras isostáticas ....................................................................................................... 23 3.  CRITÉRIOS DE DIMENSIONAMENTO ............................................................................ 24 3.1.   Método das tensões admissíveis ......................................................................................... 24 3.2.   Método dos Estados Limites............................................................................................... 25 

3.2.1.  Carregamentos............................................................................................................... 27  3.2.2.  Coeficientes de majoração das ações ............................................................................ 27  4.   PEÇAS TRACIONADAS ....................................................................................................... 30 4.1.   Dimensionamento no Estado Limite Último (ELU) ......................................................... 30 4.1.1.   Peças tracionadas com furos ......................................................................................... 30 4.1.2.   Peças com extremidades rosqueadas............................................................................. 31 4.1.3.   Peças ligadas por pinos.................................................................................................. 31 4.1.4.   Limitação de esbeltez das peças tracionadas ................................................................ 31 4.1.5.   Diâmetro dos furos......................................................................................................... 32 4.1.6.   Exemplos ........................................................................................................................ 35 5.  TRELIÇAS.............................................................................................................................. 40 

 Definição.......................................................................................................................................... 40  Apoios .............................................................................................................................................. 41  Método do equilíbrio dos nós .......................................................................................................... 42  Dimensionamento............................................................................................................................ 49 

Page 3: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 3/136

 

6.   LIGAÇÕES ............................................................................................................................. 50 6.1.   Ligações com conectores.................................................................................................... 50 6.1.1.   Rebites ............................................................................................................................ 50 

6.1.2.   Parafusos........................................................................................................................ 50 6.2.   Espaçamento entre conectores........................................................................................... 52 6.3.   Dimensionamento............................................................................................................... 53 6.3.1.   Dimensionamento ao corte ............................................................................................ 54 6.3.2.   Dimensionamento ao esmagamento da chapa (pressão de apoio)............................... 54 6.3.3.   Dimensionamento ao rasgamento da chapa ................................................................. 55 6.3.4.   Dimensionamento à tração da chapa............................................................................ 55 6.3.5.   Ruptura por cisalhamento de bloco............................................................................... 56  6.3.6.  Combinação de conectores ............................................................................................ 56  6.3.7.   Dimensionamento à tração e a corte simultâneos – fórmulas de interação ................ 57  6.3.8.   Resistência ao deslizamento em ligações por atrito ...................................................... 57  6.4.   Ligações soldadas............................................................................................................... 63 

6.4.1.  Tipos, qualidade e simbologia de soldas ....................................................................... 63 6.4.2.   Elementos construtivos para projeto ............................................................................. 65 6.4.3.   Resistência das soldas .................................................................................................... 67  7.   PEÇAS COMPRIMIDAS....................................................................................................... 69 7.1.   Introdução .......................................................................................................................... 69 7.1.1.  Flambagem elástica ....................................................................................................... 70 7.1.2.  Flambagem inelástica .................................................................................................... 73 7.2.   Dimensionamento............................................................................................................... 77  7.3.  Flambagem local ................................................................................................................ 80 7.3.1.   Parâmetros de flambagem local .................................................................................... 81 8.   PEÇAS FLETIDAS................................................................................................................ 88 8.1.   Introdução .......................................................................................................................... 88 

8.2.   Dimensionamento à flexão ................................................................................................ 89 8.2.1.   Momento de início de plastificação e momento de plastificação ................................. 89 8.2.2.   Resistência à flexão de vigas com contenção lateral .................................................... 90 8.2.3.   Resistência à flexão de vigas sem contenção lateral contínua..................................... 96  8.3.   Dimensionamento da alma das vigas .............................................................................. 103 8.3.1.  Conceitos ...................................................................................................................... 103 8.3.2.  Tensão de cisalhamento............................................................................................... 103 8.3.3.  Vigas I com um ou dois eixos de simetria sem enrijecedores..................................... 104  

 APÊNDICE ................................................................................................................................... 108  BIBLIOGRAFIA........................................................................................................................... 111 

Page 4: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 4/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  1

ESTRUTURAS METÁLICAS1 

1. AÇO ESTRUTURAL

O aço é uma liga formada basicamente dos elementos ferro (Fe) e carbono (C), comteor máximo de 1,7%. Outros elementos químicos são adicionados para modificar ascaracterísticas mecânicas do aço, de acordo com sua utilização. Estas adições também sãofeitas em baixas porcentagens, por exemplo: manganês 1,65%, cobre 0,60%, etc.

 Na natureza, o elemento ferro é encontrado na hematita, minério de ferro emabundância no Brasil. O carbono acha-se na composição do carvão mineral. A fabricação

do aço é iniciada num forno especial, chamado “alto forno”, onde o minério de ferro e ocarvão mineral são levados a temperaturas bem elevadas (1500ºC). Aí, inicia-se o processode fabricação que dará origem ao aço, naturalmente, após uma seqüência de operaçõessiderúrgicas.

A primeira usina siderúrgica de porte construída no Brasil, foi a CompanhiaSiderúrgica Nacional (CSN), situada na cidade de Volta Redonda, inaugurada em 1946.Até então, a produção de aço do país era insignificante. Nossas construções em EstruturasMetálicas dependiam quase que totalmente, da importação de perfis. As poucas obrasmetálicas existentes na época podiam ser resumidas em pontes ferroviárias, feitas pelosingleses, coberturas de pequeno porte e construções especiais, pouco freqüentes, como o

viaduto Santa Efigênia em São Paulo.A CSN foi construída com assistência técnica da “United States Steel”, na época da

Segunda Guerra Mundial. O programa da empresa visava à fabricação de diversos produtos siderúrgicos, em especial, os perfis metálicos. Assim, foi introduzido no Brasil o“padrão americano” de perfis. Isto acarretou a adoção de normas de fabricação de aço deorigem americana, unidades inglesas para as dimensões dos perfis, etc.

As principais Usinas Siderúrgicas brasileiras são a CSN, Cosipa, Usiminas, Belgo-Mineira, Cofavi (Companhia Ferro e Aço Vitória), Açominas, etc.

A produção das siderúrgicas visa atender toda a demanda nacional nas diferentesáreas de consumo. Assim, algumas siderúrgicas atendem por exemplo, a indústria naval, a

indústria automobilística, outras atendem a construção civil, etc.

1.1. Estruturas metálicas

1.1.1. Vantagens

• construção estruturas com boa precisão, possibilitando alto controle de qualidade;

• garantia de dimensões de propriedades dos materiais;

1 Este trabalho é uma compilação de vários textos sobre Estruturas Metálicas de autores consagrados,indicados na Bibliografia, feito unicamente para Notas de Aulas, com finalidade didática.

Page 5: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 5/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  2

• material resistente a choques e vibrações;

•  possibilidade de execução de obras mais rápidas e limpas;

•  possibilidade de desmontagens e de reaproveitamento das peças estruturais;• alta resistência, o que implica em estruturas mais leves, vencendo grandes vãos.

1.1.2. Desvantagens

• limitação da fabricação das peças em fábricas;

• limitação do comprimento das peças devido aos meios de transportes;

• necessidade de tratamento anticorrosivo;

• necessidade de mão de obra e equipamentos especializados;

• limitação de dimensões dos perfis estruturais.

Um valor econômico para vigas em concreto armado é 6m, ou 1/10 do vão. Paraestruturas metálicas o vão econômico é de 13m a 25m ou aproximadamente 1/20 do vão.

O valor de um projeto de estruturas metálicas é geralmente cobrado 10% do custodo peso da estrutura.

1.1.3. Normas

As Normas que tratam de estruturas metálicas são as seguintes:

ABNT – Projeto e execução de estruturas de aço de edifícios: método dos estados limites –  NBR-8800 (NB14). Rio de Janeiro, ABNT, 1986.

ASTM – American Society for Testing and Materials: especificações para fabricação doaço, acabamento dos perfis, etc.

AISC – American Institute of Steel Construction: especificações para projetos de prédiosindustriais ou residenciais em estruturas metálicas.

AASHO – American Association of State Highway Offcials: especificações para projetode pontes rodoviárias metálicas.

Além das normas de aço, outras normas devem ser consultadas para a elaboração de projetos em estruturas metálicas:

 NBR 6123 (NB599) Forças devidas ao vento em edificações, 1988.

 NBR 6120 (NB5) Cargas para o cálculo de estruturas de edificações, 1980.

 NBR 9763 (EB1742) Aços para perfis laminados, chapas grossas e barras, usados emestruturas fixas, 1987

 NBR 7188 (NB6). Carga móvel em ponte rodoviária e passarela de pedestre, 1984. NBR 7189 (NB7). Cargas móveis para projeto estrutural de obras ferroviárias, 1989.

Page 6: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 6/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  3

1.1.4. Aplicações

As aplicações do aço em Engenharia Civil são muitas como:

telhados; pontes e viadutos; postes;

edifícios comerciais; pontes rolantes; passarelas;

edifícios industriais; reservatórios; indústria naval;

residências; torres; escadas;

hangares; guindastes; mezaninos.

1.2. Formas usuais de metais ferrosos

As formas usuais de metais ferrosos são: ferro fundido, aço e ferro laminado, osquais são produzidos em três etapas de fabricação.

1.2.1. Etapas de fabricação do aço

O processo industrial de obtenção do aço compreende o aproveitamento do ferrocontido no minério de ferro e pela eliminação progressiva de impurezas. Na forma líquida,

 já isento das impurezas do minério, recebe adições que lhe dão as características desejadas,sendo solidificado e preparado para a forma requerida. O processo de fabricação do aço

 pode ser definido em três etapas:

• 1a. fase: produção do ferro gusa (alto forno): o minério de ferro (hematita) ésubmetido a um forno de alta temperatura, cerca de 1500 ºC, juntamente comcarvão mineral, resultando um produto denominado ferro gusa, também conhecidocomo ferro fundido. O ferro gusa não tem aplicação em estruturas metálicas por apresentar grande porcentagem de carbono, sendo por isto, quebradiço. Ascaracterísticas do ferro fundido são as seguintes: teor de carbono: 3% a 4,5%; ferro:96%, mais impurezas;

• 2a. fase: aciaria: o aço é obtido pela diminuição dos teores de carbono, silício eenxofre (refino), em equipamentos apropriados. O ferro gusa é depositado emfornos que os transforma em lingotes, além de reduzir seu teor de carbono,

conforme as especificações. As características aço produzido são: teor de carbono:aproximadamente < 0,7% a 1,7% (pode variar de 0% a 1,7%);

• 3a. fase: laminação: fabricação dos perfis em laminadores padronizados (rolled beam) em medidas americanas e européias. Depois da fase de aciaria (refino doferro gusa) passa-se à produção de lingotes contínuos, na qual se inicia asolidificação do aço no molde, que é retirado continuamente por rolos extratores. Oteor de carbono para os aços laminados é < 0,2%. Na laminação, os lingotes são

 pré-aquecidos e deformados pela passagem sobre pressão em laminadores cilindros,reduzindo sua espessura até a medida desejada para comercialização. As chapassofrem também redução de espessura por laminação.

O carbono aumenta a resistência do aço porém, o torna mais duro e quebradiço.Contudo, o aumento do teor de carbono produz redução na ductilidade do aço, o queacarreta problemas com solda.

Page 7: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 7/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  4

Os aços carbonos podem ser soldados sem precauções especiais, somente até o teor de carbono de 0,30%.

Os aços de baixa liga são aços carbonos acrescidos de elementos de liga (cromo,colúmbio, cobre, manganês, molibdênio, níquel, fósforo, vanádio, zircônio), os quaismelhoram algumas de suas propriedades mecânicas.

As ligas aumentam a resistência do aço devido à modificação da micro-estruturados grãos finos. É possível atingir resistência elevada com 0,20% de carbono e permitir soldagens sem precauções.

1.3. Tipos de aços estruturais

Os aços estruturais para Construção Civil são basicamente: aço carbono e aço de baixa liga.

1.3.1. Aço carbono

É o aço mais indicado para estruturas metálicas, pois é fácil de ser encontrado emtodas as bitolas. Como exemplo de aço carbono fabricado no Brasil, o ASTM A-36 ousimplesmente A-36. Numa terminologia menos técnica pode-se interpretar o aço A-36como aço comum.

Os aços carbono apresentam taxas que variam aproximadamente de 0,15% a 1,7%de carbono.

Tabela 1.1 Tipos de aço carbono

A36

(ASTM)

Usado em perfis, chapas e barras para a construção de edifícios, pontese estruturas pesadas C = 0,25% a 0,29%

f y = 36 ksi ≈ 250 MPa f u = 400 a 550 MPa

A307

(ASTM)

Aço de baixo teor de carbono para fabricação de parafusos comuns(C < 0,15%) f u = 415 MPa

A325

(ASTM)

Aço de médio teor de carbono para fabricação de parafusos de altaresistência (0,30% < C < 0,59%)

f y = 550 MPa f u = 750 MPa

A570

(ASTM)

Empregado para perfis de chapas dobradas devido a sua maleabilidadeGrau 33: f y = 230 MPa f u = 360 MPa

Grau 40: f y = 280 MPa f u = 380 MPa

Grau 45: f y = 310 MPa f u = 410 MPa

1 ksi = 70,3 kgf/cm2 . (kilo-libra por polegada quadrada)

Page 8: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 8/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  5

Em função do teor de carbono, os aços distinguem-se em quatro categorias:

•  baixo carbono C < 0,15%

• moderado 0,15% < C < 0,29%• médio carbono 0,30% < C < 0,59%

• alto carbono 0,60% < C < 1,70%

1.3.2. Aços de baixa liga e alta resistência

São aços de resistência mecânica mais elevadas, possibilitando, assim, redução do peso próprio da estrutura. Devem ser utilizados em obras especiais tais como viadutos ouestruturas de grandes vãos, onde a redução do peso é importante. Evidentemente, são perfisde custo mais elevado que os comuns. Exemplo de aço de alta resistência: ASTM A-242,fabricado pela CSN, sob o nome comercial de aço COR-TEN. Este tipo de aço temtambém elevada resistência à oxidação, não necessitando qualquer pintura de proteção.

O aço de alta resistência, do tipo CORTEN (ou similar) possui tensão deescoamento de 350 MPa.

Tabela 1.2 Aços de baixa liga e alta resistência mecânica e à corrosão.

A242 (ASTM)

f y = 290 MPa a 350 MPaPerfis:Grupo 1 e 2: f y = 345 MPa f u = 480 MPa

Grupo 3 f y = 315 MPa f u = 460 MPaChapas e barras:

19≤t  : f y = 345 MPa f u = 480 MPa3819 ≤< t  : f y = 315 MPa f u = 460 MPa10038 ≤< t  : f y = 290 MPa f u = 435 MPa

t = espessura

1.3.3. Nomenclatura da ABNT

A ABNT prescreve a seguinte nomenclatura para os aços estruturais:

MR 250 f y = 250 MPa f u = 400 MPaAR 290 f y = 290 MPa f u = 415 MPaAR 345 f y = 345 MPa f u = 485 MPa

Módulo de Elasticidade: E = 205 GPa E=205000 MPa 20500 kN/cm2.

1.3.4. Espessura mínima para peças estruturais

A espessura mínima das peças metálicas está ligada à sua proteção contra acorrosão.

• sem necessidade de proteção contra corrosão: 3mm 

• com necessidade de proteção contra corrosão: 5mm 

Page 9: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 9/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  6

1.3.5. Propriedades dos aços estruturais

• Ductilidade: é a capacidade do material de se deformar sob a ação de cargas sem

se romper. Quanto mais dúctil o aço, maior será a redução de área ou oalongamento antes da ruptura. A ductilidade tem grande importância nas estruturasmetálicas, pois permite a redistribuição de tensões locais elevadas. As barras de açosofrem grandes deformações antes de se romper, o que na prática constitui umaviso da presença de tensões elevadas;

• Fragilidade: é o oposto da ductilidade. Os aços podem ter características deelementos frágeis em baixas temperaturas;

• Resiliência: é a capacidade do material de absorver energia mecânica em regimeelástico;

• Tenacidade: é a capacidade do material de absorver energia mecânica comdeformações elásticas e plásticas;

• Dureza: é a resistência ao risco ou abrasão. A dureza pode ser medida pelaresistência que sua superfície se opõe à introdução de uma peça de maior dureza;

• Resistência à Fadiga: é a capacidade do material suportar aplicações repetidas decarga ou tensões. É usualmente expressa como um limite de tensão que causa afalha sob condições de esforços repetidos. Esta tensão pode ocorrer em regimeelástico.

1.4. Tensões e deformações

Os conceitos de tensão e deformação podem ser ilustrados, de modo elementar,considerando-se o alongamento de uma barra prismática (barra de eixo reto e de seçãoconstante em todo o comprimento).

Considere-se uma barra prismática carregada nas extremidades por forças axiais P  (forças que atuam no eixo da barra), que produzem alongamento uniforme ou tração na

 barra. Sob ação dessas forças originam-se esforços internos no interior da barra. Para oestudo desses esforços internos, considere-se um corte imaginário na seção mm, normal aseu eixo. Removendo-se, por exemplo, a parte direita do corpo, os esforços internos na

seção considerada (m-m) transformam-se em esforços externos. Supõe-se que estesesforços estejam distribuídos uniformemente sobre toda a seção transversal.

m

m

σ

L

P

δ

P

P

 Figura 1.1 barra prismática submetida a esforços de tração

Page 10: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 10/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  7

Para que não se altere o equilíbrio, estes esforços devem ser equivalentes àresultante, também axial, de intensidade P .

Quando estas forças são distribuídas perpendiculares e uniformemente sobre toda aseção transversal, recebem o nome de tensão normal , sendo comumente designada pelaletra grega σ (sigma).

Pode-se ver facilmente que a tensão normal, em qualquer parte da seção transversalé obtida dividindo-se o valor da força P pela área da seção transversal, ou seja,

 A

 P =σ    (1)

A tensão possui a mesma unidade de pressão que, no Sistema Internacional deUnidades, é o Pascal (Pa), o qual corresponde à carga de 1N atuando sobre uma superfíciede 1m2, ou seja, Pa = N/m2.

Como a unidade Pascal é muito pequena, costuma-se utilizar com freqüência seusmúltiplos: MPa = N/mm2 = (Pa×106), GPa = kN/mm2 = (Pa×109), etc. Em outros Sistemasde Unidades, a tensão ainda pode ser expressa em quilograma força por centímetroquadrado (kgf/cm2), libra por polegada quadrada (lb/in2 ou psi), etc.

Quando a barra é alongada pela força  P, como indica a Figura acima, a tensãoresultante é uma tensão de tração; se as forças tiverem o sentido oposto, comprimindo a

 barra, tem-se tensão de compressão.

A condição necessária para validar a equação (1) é que a tensão σ  seja uniforme emtoda a seção transversal da barra.

O alongamento total de uma barra submetida a uma força axial é designado pelaletra grega δ  (delta). O alongamento por unidade de comprimento, denominadodeformação específica, representada pela letra grega ε  (epsilon), é dado pela seguinteequação:

 L

δ ε  =   (2)

onde:ε = deformação específicaδ = alongamento ou encurtamento

 L = comprimento total da barra. Note-se que a deformação ε  é uma quantidade adimensional. É de uso corrente no

meio técnico representar a deformação por uma fração percentual (%) multiplicando-se ovalor da deformação específica por 102 ou mesmo até por mil (‰) multiplicando-se por 103.

1.5. Ensaios

Para se conhecer o comportamento estrutural do aço realizam-se ensaios em

laboratório, utilizando-se corpos de prova normalizados, com o intuito de se obter ascaracterísticas mecânicas do material, tais como, módulo de elasticidade, tensão de ruptura,etc. Estas características mecânicas são utilizadas nos projetos estruturais.

Page 11: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 11/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  8

1.5.1. Ensaios de tração

 Nos ensaios de tração do aço distinguem-se dois casos: aços que apresentam

 patamar de escoamento e os aços que não apresentam.O ensaio de tração tem por objetivo o traçado da curva tensão-deformação e a

obtenção das características mecânicas do material. Consiste em tracionar um corpo de prova em uma máquina de ensaio e registrar sucessivamente as tensões (σ ) aplicadas e ascorrespondentes deformações unitárias (ε ).

1.5.2. Diagrama tensão - deformação

As relações entre tensões e deformações para um determinado material são

encontradas por meio de ensaios de tração. Nestes ensaios são medidos os alongamentos δ ,correspondentes aos acréscimos de carga axial P , que se aplicam à barra, até a sua ruptura.

Obtêm-se as tensões (σ ) dividindo as forças pela área da seção transversal da barrae as deformações específicas (ε ) dividindo o alongamento pelo comprimento ao longo doqual a deformação é medida. Deste modo obtém-se um diagrama tensão-deformação domaterial em estudo. Na Figura 1.2 ilustra-se o diagrama tensão-deformação típico do aço.

regiãoelástica

região plástica

C

ε0

L

p

P

f   Ap

e

f σ

escoamento

B

ε

δ

P

εr 

D

E

 

Tensão A

 P =σ   

Deformação específica

 L

δ ε  =  

f r = tensão de rupturaf e ou f y = tensão de escoamentof  p = tensão limite de proporcionalidade

Figura 1.2 Diagrama tensão-deformação do aço

Região elástica: de 0 até  A as tensões são diretamente proporcionais àsdeformações; o material obedece a Lei de Hooke, mais à frente enunciada, e o diagrama élinear. 0 ponto  A é chamado limite de proporcionalidade, pois, a partir desse ponto deixade existir a proporcionalidade.

 Nesta fase, as deformações desaparecem quando retiradas as cargas aplicadas.Portanto, não há deformação permanente nesta fase.

Daí em diante inicia-se uma curva que se afasta da reta  AO , até que em B inicia-seo fenômeno do escoamento.

Região plástica: é aquela situada após o ponto  A até a ruptura. Nesta fase asdeformações no material são permanentes.

Page 12: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 12/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  9

No ponto B inicia-se o escoamento, caracterizado por um aumento considerável dadeformação com pequeno aumento da força de tração.

A presença de um ponto de escoamento pronunciado, seguido de grandedeformação plástica é uma característica do aço, que é o mais comum dos metaisestruturais em uso atualmente. Tanto os aços quanto as ligas de alumínio podem sofrer grandes deformações antes da ruptura. Materiais que apresentam grandes deformações,antes da ruptura, são classificados de materiais dúcteis. Outros materiais como o cobre,

 bronze, latão, níquel, etc, também possuem comportamento dúctil. Por outro lado, osmateriais frágeis ou quebradiços são aqueles que se deformam relativamente pouco antesde romper-se, como por exemplo, o ferro fundido, concreto, vidro, porcelana, cerâmica,gesso, entre outros.

O ponto C  é o final do escoamento o material começa a oferecer resistênciaadicional ao aumento de carga, atingindo o valor máximo ou tensão máxima no ponto D,

denominado limite máximo de resistência. A partir do ponto C verifica-se outro fenômenofísico, chamado encruamento. O aumento de resistência das ligas metálicas ocorrida após oescoamento é chamado encruamento. A fase plástica caracteriza-se pelo endurecimento por deformação a frio, ou seja, pelo encruamento do material. Além deste ponto, maioresdeformações são acompanhadas por reduções da carga, ocorrendo, finalmente, a ruptura docorpo-de-prova no ponto E do diagrama.

O limite de resistência corresponde ao valor máximo de tensão que o material podesuportar (ponto  D). Depois de atingida esta carga máxima, inicia-se a fase de rupturacaracterizada pelo fenômeno da Estricção. A Estricção é uma diminuição acentuada daseção transversal do corpo de prova até a sua ruptura. No ponto  E , verifica-se a ruptura da

 peça após a estricção, que teve início em D. Observa-se, também, queda no valor da tensãoaparente entre D e E .

 Na Figura 1.3 são ilustrados diagramas tensão – deformação de vários tipos de aço,em escala real.

Figura 1.3 Diagramas tensão-deformação em escala real

Page 13: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 13/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  10

O limite de escoamento para o aço A-36 é f y= 250 MPa  e o limite de proporcionalidade ou elasticidade (f  p) ocorre aproximadamente a 80% da tensão deescoamento, portanto, f  p = 200 MPa. O limite de elasticidade corresponde a uma

deformação da ordem de 0,10% no corpo de prova, portanto, trabalhando-se na faseelástica as deformações sofridas são pequenas. O aumento de deformação no escoamentocresce aproximadamente de 1,5% a 2,0%.

Apresenta-se a seguir uma tabela com os valores principais das tensões sofridas por um corpo de prova de aço A-36 de comprimento L= 20 cm, admitidas as deformaçõesindicadas. O quadro abaixo não se prende a um ensaio específico, os seus números têmcomo objetivo fornecer somente uma ordem de grandeza desses valores.

Tabela 1.3 Ensaio do aço A-36

Aço A-36 Tensão (σ

)(MPa)Deformação

Específica (ε) (%) Deformação (δ

)(cm)

Limite de elasticidade 200 0,10 0,02

Início do escoamento 250 0,15 0,03

Fim do escoamento = início do encruamento 250 2,00 0,4

Limite de resistência = tensão máxima 450 16 3,2

Limite de ruptura = tensão de ruptura 290 24 4,8

Há outro tipo de aço que não apresenta patamar de escoamento. O aspecto da curvatensão-deformação para estes aços está indicado na Figura 1.4. Observa-se que a inclinação

da reta referente à fase elástica dos aços é sempre a mesma porque o módulo deelasticidade apresenta valores idênticos para os diferentes tipos de aço.

0

f p

σr f 

f e

εr  ε (%)εp= 0,2

 

Figura 1.4 Diagrama tensão-deformação de aços sem patamar de escoamento

 Nesta curva não existe um limite ou tensão de escoamento definida claramente nográfico. Entretanto, por analogia com os aços que apresentam patamar de escoamento,define-se um limite de escoamento convencional, como sendo aquela tensão que deixa uma

deformação permanente de 0,2%, quando o corpo de prova é descarregado.

Page 14: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 14/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  11

1.6. Lei de Hooke

Os diagramas tensão-deformação ilustram o comportamento de vários materiais,

quando carregados por tração. Quando um corpo-de-prova do material é descarregado, istoé, quando a carga é gradualmente diminuída até zero, a deformação sofrida durante ocarregamento desaparecerá parcial ou completamente. Esta propriedade do material, pelaqual ele tende a retornar à forma original, é denominada elasticidade. Quando a barra voltacompletamente à forma original, diz-se que o material é  perfeitamente elástico; mas se oretorno não for total, o material é  parcialmente elástico.  Neste último caso, a deformaçãoque permanece depois da retirada da carga é denominada deformação residual.

A relação linear da função tensão-deformação foi apresentada por Robert HOOKEem 1678 e é conhecida por  LEI DE HOOKE . Verifica-se que o trecho do diagrama daFigura 1.2, entre os pontos O e A é retilíneo, o que caracteriza a relação linear entre

tensões e deformações. Daí, o conhecido enunciado da Lei de Hooke: “ Na fase elástica, astensões são proporcionais às deformações”, ou seja,

ε σ   E =   (3)ondeσ = tensão normal

 E = módulo de elasticidade do materialε = deformação específica

O Módulo de Elasticidade é o coeficiente angular da região linear do diagramatensão-deformação, sendo diferente para cada material. O Módulo de Elasticidade

representa fisicamente a força de ligação entre as moléculas do corpo em estudo. Mede adeformabilidade do material; quanto maior for o seu valor, menor será a deformaçãosofrida.

O valor do módulo de elasticidade é constante para cada metal ou liga metálica. Éuma característica física do material.

A Lei de Hooke é válida somente para a fase elástica dos materiais. Por estemotivo, quaisquer que sejam os carregamentos ou solicitações sobre o material, vale asuperposição de efeitos, ou seja, pode-se avaliar o efeito de cada solicitação sobre omaterial e depois somá-los.

Alguns valores de Módulo de Elasticidade ( E ) são mostrados na Tabela abaixo.

Para a maioria dos materiais, o valor do Módulo de Elasticidade, sob compressão ou sobtração, são iguais.

Tabela 1.4 Propriedades mecânicas típicas de alguns materiais

MaterialPeso específico

(kN/m3)Módulo de Elasticidade

(GPa)

Aço 78,5 200 a 210

Alumínio 26,9 70 a 80

Bronze 83,2 98

Cobre 88,8 120

Ferro fundido 77,7 100Madeira 0,6 a 1,2 8 a 12

Page 15: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 15/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  12

Deformações elásticas

Quando uma barra é carregada por tração simples, a tensão axial é  A P /=σ  e adeformação específica é  L/δ ε  = . Combinando estes resultados com a Lei de HOOKE,tem-se a seguinte expressão para o alongamento da barra:

 EA

 PL=δ    (4)

Esta equação mostra que o alongamento de uma barra linearmente elástica édiretamente proporcional à carga e ao comprimento e inversamente proporcional aomódulo de elasticidade e à área da seção transversal. O produto  EA é conhecido comorigidez axial da barra.

1.6.1. Ensaios de compressão

 Na determinação das características mecânicas dos aços estruturais, não é freqüenteo emprego do ensaio de compressão, dando-se preferência ao ensaio de tração. Existemdificuldades neste tipo de ensaio, como a possibilidade de flambagem do corpo de prova eoutros problemas práticos ligados especificamente ao ensaio.

Os ensaios de compressão são realizados quase sempre no campo da pesquisa,visando comparar seus resultados com os ensaios de tração. Quando se ensaia àcompressão obtém-se também a curva tensão-deformação, os limites de proporcionalidadee de escoamento, módulos de elasticidade, etc. Os valores encontrados para estas

 propriedades são aproximadamente iguais aos obtidos num ensaio de tração. Nos estudosteóricos e cálculos, admitem-se que as propriedades mecânicas citadas são as mesmas,

quando o material trabalha à tração ou à compressão. Na verdade, as diferençasocasionalmente encontradas para certos tipos de aço são pequenas.

Assim, a validade da Lei de Hooke ocorre tanto para peças comprimidas como paratracionadas, admitindo-se a mesma curva tensão – deformação, com os mesmos valores,nos dois casos. O módulo de elasticidade, limites de escoamento e de elasticidade, etc,apresentam conseqüentemente, os mesmos números para tração ou compressão.

1.6.2. Coeficiente de Poisson

Quando uma barra é tracionada, o alongamento axial é acompanhado por uma

contração lateral, isto é, a largura da barra torna-se menor enquanto cresce seucomprimento. Quando a barra é comprimida, a largura da barra aumenta. A Figura 1.4ilustra essas deformações.

P

P

P

P

 Figura 1.4 Deformações longitudinal e lateral nas barras

Page 16: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 16/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  13

A relação entre as deformações transversal e longitudinal é constante dentro daregião elástica, e é conhecida como relação ou coeficiente de Poisson (v); definido como:

al longitudindeformaçãolateral deformação=υ    (5)

Esse coeficiente é assim conhecido em razão do famoso matemático francês S. D.Poisson (1781-1840). Para os materiais que possuem as mesmas propriedades elásticas emtodas as direções, denominados isotrópicos, Poisson achou ν  ≈ 0,25. Experiências commetais mostram que o valor de v usualmente encontra-se entre 0,25 e 0,35.

Se o material em estudo possuir as mesmas propriedades qualquer que seja adireção escolhida, no ponto considerado, então é denominado, material isótropico. Se omaterial não possuir qualquer espécie de simetria elástica, então é denominado materialanisotrópico. Um exemplo de material anisotrópico é a madeira pois, na direção de suas

fibras a madeira é mais resistente.

1.6.3. Forma geral da Lei de Hooke

Considerou-se anteriormente o caso particular da Lei de HOOKE, aplicável aexemplos simples de solicitação axial.

Se forem consideradas as deformações longitudinal (ε  L) e transversal (ε t ), tem-se,respectivamente:

 E  L σ ε  = e

 E  Lt  υσ νε ε  ==   (6)

No caso mais geral, no qual um elemento do material é solicitado por três tensõesnormais σ  x , σ  y e σ  z , perpendiculares entre si, às quais correspondem respectivamente àsdeformações ε  x , ε  y e ε  z , a Lei de HOOKE é definida como:

σyx

σ

σz

 

( )[ ] z  y x x E 

σ σ υ σ ε  +−=1

 

( )[ ] x z  y y E 

σ σ υ σ ε  +−=1

 

( )[ ] y x z  z  E 

σ σ υ σ ε  +−= 1  

(7)

 

A lei de HOOKE é válida para materiais homogêneos, ou seja, aqueles que possuem as mesmas propriedades (mesmos E e ν ) em todos os pontos.

Page 17: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 17/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  14

Exemplos

1. Determinar a tensão de tração e a deformação específica de uma barra prismática decomprimento L=5,0m, seção transversal circular com diâmetro φ=5cm e Módulo deElasticidade E=20.000 kN/cm2 , submetida a uma força axial de tração P=30 kN.

L= 5 m

P P=30 kN

 

4

2πφ = A 6,19

4

52

=π 

 A cm2 

 A P =σ  53,1

6,1930 ==σ  kN/cm2 ou 15,3 MPa

 EA

 PL=δ  0382,0

6,19000.20

50030=

××

=δ  cm

 L

δ ε  = 0000764,0

500

0382,0==ε  ou × 1000 = 0,0764 (‰)

2. A barra da figura é constituída de 3 trechos: trecho AB=300 cm e seção transversal comárea A=10cm2; trecho BC=200cm e seção transversal com área A=15cm2 e trecho

CD=200cm e seção transversal com área A=18cm2

é solicitada pelo sistema de forçasindicado na Figura. Determinar as tensões e as deformações em cada trecho, bem como oalongamento total. Dado E=21.000 kN/cm2.

300 cm

30kN A

150kN

200 cm200 cm

B C50kN

D170kN

 

Trecho A-B

R=150kN

300 cm

150kN

 A

170kN

50kN

30kN

B

=

 

 A

 P 

=σ  1510

150

==σ  kN/cm

2

 

 EA

 PL=δ  214,0

10000.21

300150=

××

=δ  cm

Page 18: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 18/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  15

 L

δ ε  = 713,01000

300

214,0=×=ε  (‰)

Trecho B-C

R=120kN30kNR=120kN

150kN

=

200 cm

B C

50kN

170kN

=

 

 A

 P =σ  8

15

120==σ  kN/cm2 

 EA

 PL=δ  076,0

15000.21

200120=

×

×=δ  cm

 L

δ ε  = 38,01000

200

076,0=×=ε  (‰)

Trecho C-D

30kNR=170kN

150kN

=

200 cm

50kN

C D170kN

  A

 P =σ  44,9

18170 ==σ  kN/cm2 

 EA

 PL=δ  0899,0

18000.21

200170=

××

=δ  cm

 L

δ ε  = 45,01000

200

0899,0=×=ε  (‰)

Alongamento total38,00899,0076,0214,0 =++=δ  cm

Page 19: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 19/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  16

2. PRODUTOS SIDERÚRGICOS

Os produtos laminados, os perfis soldados e os elementos de ligação são os principais materiais empregados em Estruturas Metálicas.

A indústria siderúrgica oferece ao projetista diversos produtos com aplicações nasconstruções civis e seus acabamentos, dos quais destacam-se:

•  perfis laminados a quente;

•  perfis soldados;

•  perfis conformados a frio (chapa dobrada);

• chapas laminadas a quente;• chapas laminadas a frio;

• tubos de várias formas.

2.1. Perfis laminados

Os perfis laminados recebem esta denominação porque no seu processo defabricação, rolos especiais chamados laminadores, produzem as formas finais dosdiferentes perfis.

São os mais empregados na construção de estruturas metálicas e sua fabricação éfeita em diversas dimensões e modelos padronizados. A tabela abaixo ilustra os produtossiderúrgicos mais utilizados.

Tabela 2.1 Tipos de produtos siderúrgicos:

Cantoneira de abas iguais Cantoneira de abas desiguais C padrão I padrão

Tê laminado Tê cortado de I ou H Tubo quadrado Tubo circular 

Perfil soldado Perfil laminado a frio Chapas e barras

Page 20: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 20/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  17

1– Cantoneiras: são empregadas em treliças, contraventamentos, linhas de transmissão deenergia elétrica e ligações.

2- Perfis T: têm aplicações em estruturas soldadas e podem ser fabricados por processos delaminação ou através do corte de perfis I ou H.

3- Perfis I e U: empregados principalmente como vigas. Suas abas não têm faces paralelase as bordas são arredondadas.

4- Perfis H: são empregados em elementos sujeitos à carga axial de compressão.

5- Barras chatas e redondas: as barras chatas são utilizadas em ligações e as barrasredondas, em elementos tracionados (tirantes).

6- Chapas laminadas (a quente): têm espessura compreendida entre 3mm e 50mm, pois,chapas mais espessas apresentam problemas de soldabilidade. As suas principaisaplicações estão nas ligações, emendas de vigas e pilares, bases de colunas e na fabricaçãode perfis soldados.

7- Chapas laminadas (a frio): são fornecidas em bobinas, com espessura inferior a 3mm elargura em torno de 2,50m. São empregadas na obtenção de perfis conformados a frio,também chamados, perfis de chapa dobrada, usados em estruturas leves, tais como,coberturas industriais tipo arco, Shed, etc. Outras aplicações são: fôrmas para lajes deedifícios, materiais para revestimento de paredes externas, internas e de cobertura.

• Perfis laminados

Perfil I ou perfil de aba estreita

h = 3” a 20”h = 3” a 12” (comerciais)

Inclinação da face interna da aba = 16,67%;São utilizadas como elementos resistentes à flexão(vigas).

Perfil H 

 bf = d(bf = mesa ou flange)d = 4” a 6”

Pouco uso em estruturas.

T

T

Page 21: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 21/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  18

 

Perfil C ou U ou perfil de aba estreita

h = 3” a 15”

Peças submetidas à flexão, vigas, colunas de postos degasolina, etc.

Cantoneiras: 

Fabricadas com abas iguais e desiguais:Abas iguais – (7/8” x 7/8”x 1/8)” → (8 x 8 x 1)”Abas desiguais – (13/4 x 11/4 x 1/8)” → (8 x 4 x 1)”

Utilizadas em peças submetidas à tração ou compressão(treliças, tesouras).

• Combinações de perfis laminados

É muito comum a combinação de perfis em estruturas metálicas. As figuras abaixoilustram algumas das várias possibilidades de combinações de perfis metálicos.

2.2. Perfis Soldados

Como o próprio nome sugere, são perfis fabricados de chapas planas soldadas.Correspondem, no Brasil, aos chamados perfis de abas largas (wide-flange) americanos. Asua seção transversal é semelhante a de um perfil I com abas mais alargadas e as faces dasmesas paralelas. São fabricadas em grande variedade de dimensões de alma e mesa. ACSN padronizou as seguintes séries de perfis soldados:

• Perfil série CS – Colunas Soldadas

• Perfil série VS – Vigas Soldadas

• Perfil série CVS – Colunas e Vigas Soldadas

Page 22: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 22/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  19

Pode-se considerá-los como a continuação das séries I e H de perfis laminados em

dimensões maiores.

São utilizados também quando são necessários perfis de grandes dimensões ou

seções especiais. As aplicações dos perfis soldados são as mesmas dos perfis laminados, ou

seja, vigas de pontes, galpões industriais (pilares e vigas), edifícios de grande altura, etc.

• Perfis de chapas soldadas

Perfis I h > b

VS (Viga Soldada):para peças submetidas à flexão: para vigas

CVS (Coluna Viga Soldada): para peças submetidas à flexo-compressão

Perfil H

CS (Coluna Soldada): h=b para peças submetidas à compressão: colunasCS (altura em mm × massa em kg/m)

2.3. Perfis conformados a frio ou de chapas dobradas

As grandes siderúrgicas abastecem a indústria de menor porte com chapas finas para a obtenção de perfis de chapas dobradas. Os perfis de chapas dobradas são obtidos por meio do dobramento de chapas finas (3; 5; 6) mm a frio e, às vezes, também por meio desolda, embora a solda seja pouco utilizada, pois eleva o custo de fabricação do perfil.

Os perfis de chapas dobradas são utilizados como elementos estruturais emestruturas pouco carregadas, como coberturas e esquadrias. Outra aplicação importante sãoas telhas auto-portantes de seção trapezoidal.

São obedecidos raios mínimos para evitar a fissuração do aço durante o dobramentoa frio.

Page 23: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 23/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  20

2.4. Tubos

 Na construção metálica utilizam-se tubos de seção circular, quadrada ou retangular 

e outros perfis tubulares de formas especiais empregados em esquadrias metálicas.

O tubo circular associa a máxima resistência com o menor peso, em peças sujeitas à

compressão ou à flexão. Normalmente, são utilizados como barras comprimidas de

estruturas leves e como treliças planas ou espaciais. Exemplos: andaimes tubulares para

escoramento de pontes, coberturas espaciais, etc.

.o0o.

Apresentam-se a seguir, algumas tabelas dos perfis mais utilizados em estruturasmetálicas.

2.5. Tabelas de perfis

As tabelas de perfis simples (laminados ou soldados) apresentam as características

geométricas individuais de cada perfil.

Nomenclatura

Chama-se alma de um perfil, a região hachurada da seção transversal, indicada na

Figura abaixo. Denomina-se aba ou mesa de um perfil a região sem hachura. Geralmente, a

alma é parte do perfil que serve de união entre suas abas, como ocorre no caso de perfis I,

H e U.

h = altura do perfil

 b = largura da aba, flange ou mesa

tf = espessura da aba (thickness=espessura)

tw = espessura da alma

Características geométricas dos perfis simples:

As características geométricas de cada perfil são indispensáveis ao projeto e

dimensionamento de qualquer estrutura. Para facilitar o trabalho do engenheiro foram

calculadas e tabeladas para todos os perfis fabricados no Brasil.

tw 

 ALMA

tf 

tf 

b

b

h

Page 24: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 24/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  21

As Tabelas apresentam as seguintes características geométricas dos perfis simples,com o intuito de facilitar e agilizar os cálculos estruturais:

• A: área da seção transversal do perfil (cm²)

• Ix: momento de inércia em relação ao eixo x (cm4)• Iy; momento de inércia em relação ao eixo y (cm4)• r x: raio de giração em relação ao eixo x (cm)• r y: raio de giração em relação ao eixo y (cm)• wx: módulo de resistência em relação ao eixo x (cm³)• wy: módulo de resistência em relação ao eixo y (cm³)•  bf : largura da aba do perfil• tf : espessura da aba do perfil• tw: espessura da alma do perfil• h:altura total do perfil

• xg,yg : coordenadas do centro de gravidade

Estão também tabelados os pesos de cada perfil por metro linear. É útil na avaliação

do peso próprio das peças em estudo.

 Na prática, recomenda-se a utilização das tabelas, pois facilitam o trabalho de

cálculo e diminuem a possibilidade de erro. Entretanto, há casos em que se deve recorrer à

Resistência dos Materiais para a determinação destas características. São casos especiais,

 por exemplo, onde forem usados perfis não padronizados, especialmente fabricados para

um projeto, ou em perfis compostos não previstos nas tabelas, etc.

Coordenadas do Centro de Gravidade (CG)

As características geométricas são fundamentais para a o dimensionamento.

 Notoriamente, aquelas calculadas em relação a eixos (x, y), passando pelo CG da seção do

 perfil. As figuras abaixo ilustram a posição do CG de alguns tipos de perfis.

b

h

 xg 

yg 

CG X 

h

 xg 

 X 

yg 

CG

  xg 

 X 

yg 

CG

 xg 

 X 

yg 

CG

 Perfil I Perfil C Cantoneira de abas iguais Cantoneira de abas desiguais

 

Page 25: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 25/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  22

2.6. Principais tipos de concepções estruturais

2.6.1. Treliças isostáticas

Atingem vãos livres até 30 m. Acima de 30 m utilizar arcos treliçados.Genericamente h = 1/15 do vão.

+ - + -+

  --

+

 Sistema WARREN

Sistema FINK 

Sistema HOWE

Sistema PRATT

Page 26: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 26/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  23

2.6.2. Tesouras isostáticas

WARREN

HOWE

WARREN (com montante)

PRATT

Page 27: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 27/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  24

3. CRITÉRIOS DE DIMENSIONAMENTO

As estruturas devem oferecer segurança a todas as ações, por mais desfavoráveis

que sejam, ao longo de sua vida útil para o qual foi projetada. As estruturas não devem

atingir um estado limite imediato ou em longo prazo, mesmo em condições precárias de

funcionalidade. Além da previsão de todas as ações, do projeto adequado, é necessário

também que a estrutura tenha uma reserva de resistência, garantida por coeficientes de

segurança adequados.

O Método das Tensões Admissíveis foi o primeiro método a ser utilizado paragarantir a segurança. Até meados da década de 1980, o projeto de estruturas metálicas

 NBR 8800 utilizava o Método das Tensões Admissíveis. Com a revisão da norma de

estruturas metálicas em 1986, começou-se a utilizar o Método dos Estados Limites.

A NBR 8680:2003 Ações e Segurança nas Estruturas, define as condições e

critérios do Método dos Estados Limites.

3.1. Método das tensões admissíveis

 Nas estruturas de aço, geralmente se considera o limite de escoamento como início

de ruptura do material. Para se ter segurança contra ruptura por escoamento utilizam-se nos

cálculos, tensões admissíveis que são obtidas dividindo-se o limite de escoamento por 

coeficientes de segurança adequados. Como as tensões admissíveis ficam dentro do regime

elástico, esta teoria de dimensionamento chama-se elástica e os cálculos são efetuados com

segundo a Resistência dos Materiais.

A teoria elástica de dimensionamento é caracterizada por quatro pontos.a) o estado limite de resistência é o início de plastificação da seção, no ponto de maior 

tensão;

 b) o cálculo dos esforços solicitantes é feito em regime elástico, não sendo considerada a

redistribuição de momentos fletores causadas pela plastificação de uma ou mais seções

da estrutura;

c) as cargas atuantes são consideradas com seus valores reais estimados (cargas em

serviço);d) a margem de segurança da estruturas fica embutida na tensão admissível adotada para

cada tipo de solicitação.

Page 28: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 28/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  25

O dimensionamento é considerado satisfatório quando a maior tensão solicitante em

cada seção for inferior ao valor admissível correspondente, ou seja:

σ σ  <  

A tensão admissível de tração ( t σ  ) é relativa à área líquida é 0,6 f  y, exceto em furos

de conexões por pinos.

 y f 6,0=σ   

A relação entre a tensão de escoamento e a tensão admissível à tração é γ  =1,67,

que é o coeficiente de segurança utilizado.

67,16,0

1 ==σ 

 y f    → portanto, γ  =1,67.

3.2. Método dos Estados Limites

Um estado limite ocorre sempre que a estrutura deixa de satisfazer um de seus

objetivos. Eles podem ser divididos em Estados limites últimos (ELU) e Estados limites de

Utilização, ou de Serviço (ELS).

Quando uma seção da estrutura entra em escoamento, duas coisas importantesacontecem:

a) o escoamento começa no ponto de maior tensão e depois de se propaga a outros pontos

da seção, aumentando sua resistência interna;

 b) em estruturas hiperestáticas, o escoamento de uma ou mais seções provoca

redistribuição dos momentos fletores, aumentando a resistência da estrutura.

Diz-se que uma estrutura é segura quando ela possui condições de suportar todas as

ações ao longo de sua vida útil para a qual foi projetada.

Por Ações entendem-se todas as causas que provocam tensões na estrutura. A

estrutura atinge seu estado limite último quando perde a estabilidade ou quando em um de

seus pontos o material atinge a tensão de ruptura ou uma deformação plástica excessiva.

O conceito de segurança abrange o estado limite ao longo de sua vida útil e às

condições de funcionabilidade. Portanto, existem dois tipos de estados limites: estados

limites últimos e estados limites de utilização.

Page 29: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 29/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  26

O método dos estados limites utilizado para o dimensionamento dos componentes

de uma estrutura (barras, elementos e meios de ligação) exige que nenhum estado limite

aplicável seja excedido quando a estrutura for submetida a todas as combinaçõesapropriadas de ações. Quando a estrutura não mais atende aos objetivos para os quais foi

 projetada, um ou mais estados limites foram excedidos. Os estados limites últimos estão

relacionados com a segurança da estrutura sujeita às combinações mais desfavoráveis de

ações previstas em toda a sua vida útil. Os estados limites de utilização estão relacionados

com o desempenho da estrutura sob condições normais de serviço.

A princípio fundamental deste método é que a resistência de cálculo ( Rd ) (o índice d  

 provém da palavra inglesa design) de cada componente ou conjunto da estrutura deve ser igual ou superior à solicitação de cálculo (S d ). A resistência de cálculo é determinada para

cada estado limite e é igual ao produto de um coeficiente de minoração (φ ) pela resistência

nominal ( Rn), ou seja, ( Rd = φ Rn).

As condições analíticas de segurança estabelecem que as solicitações de cálculo

não devem ser maiores que as resistências de cálculo e devem ser verificadas em relação a

todos os estados limites e todos os carregamentos especificados para o tipo da construção

considerada. São expressas por:

nd   RS  φ ≤  

onde:

S d  = solicitação de cálculo

 Rn = resistência nominal do material

φ  = coeficiente de minoração do material

Page 30: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 30/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  27

3.2.1. Carregamentos

As cargas que atuam nas estruturas são chamadas de Ações. A ações a seremadotadas no projeto das estruturas de aço e de seus componentes são as estipuladas pelasnormas apropriadas e as decorrentes das condições a serem preenchidas pela estrutura.Essas ações devem ser tomadas como nominais, devendo ser consideradas como seguintestipos de ações nominais:

• Ações permanentes (G), incluindo peso próprio da estrutura e peso de todos oselementos componentes da construção, tais como pisos, paredes permanentes,revestimentos, acabamentos, instalações e equipamentos fixos, etc.

• Ações variáveis (Q), incluindo as sobrecargas decorrentes do uso e ocupação daedificação, equipamentos, divisórias, móveis, sobrecargas em coberturas, pressão

hidrostática, empuxo de terra, vento, variação de temperatura, etc.• Ações excepcionais (E), explosões, choques de veículos, efeitos sísmicos, etc.

3.2.2. Coeficientes de majoração das ações

 No método dos estados limites, as ações devem ser majoradas de um coeficiente demajoração das ações (γ )

S S d  γ =  

onde:S d  = solicitação de cálculo

γ  = coeficiente de majoração das açõesS  = esforço nominal

A combinação das ações no caso normal e durante a construção é dada por:

( )∑∑=

++=n

 j

 j jqjq g d  QQGS 2

11 ψ γ γ γ   

Para as condições excepcionais, tem-se:( )∑∑ ++= Q E GS  q g d  ψ γ γ   

onde: G = ação permanenteQ = ação variávelQ1 = ação variável predominante

 E  = ação excepcionalψ  = fator de combinação: é um fator estatístico que leva em conta a freqüência

da ocorrência simultânea das cargasγ q1 = coeficiente de ponderação da ação variável predominanteγ  g  = coeficiente de ponderação da ação permanente

Estado limite Último

Os Estados Limites Últimos (ELU) estão associados à ocorrência de cargasexcessiva e conseqüentemente a colapsos das estruturas devido, por exemplo a: perda de

equilíbrio como corpo rígido, ruptura de uma ligação ou seção ou instabilidade em regimeelástico ou não.

Page 31: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 31/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  28

Os coeficientes de majoração das ações indicados pela norma de Ações e Segurançanas estruturas, NBR 8681 são mostrados na Tabela abaixo.

Tabela 3.1. Coeficientes de segurança de solicitações para o estado limite último

Ações permanentes  Ações variáveis 

Ações  Grandevariabilidade

Pequenavariabilidade

(*)

Cargas variáveisdecorrentes do uso daedificação (carga de

utilização) (**)

Outrasações

variáveis

Recalquesdiferenciais

Variação detemperaturaambiental

γ g   γ g   γq  γq  γq  γq 

 Normais 1,4 (0,9) 1,3 (1,0) 1,5 1,4 1,2 1,2

Construção 1,3 (0,9) 1,2 (1,0) 1,3 1,2 1,2 1,0

Excepcionais 1,2 (0,9) 1,1 (1,0) 1,1 1,0 0 0

Os valores entre parênteses correspondem a ações permanentes favoráveis à segurança.(*) Peso próprio de elementos metálicos e de elementos pré-fabricados com controle rigoroso de peso.(**) Sobrecargas em pisos e coberturas, cargas em pontes rolantes ou outros equipamentos, variações detemperatura provocadas por equipamentos, etc.

São consideradas cargas permanentes de pequena variabilidade os pesos próprios deelementos metálicos e pré-fabricados, com controle rigoroso de peso. Excluem-se osrevestimentos destes elementos feitos in loco.

A variação de temperatura citada não inclui a gerada por equipamentos, a qual deveser considerada como ação decorrente do uso da edificação.

Ações decorrentes do uso da edificação incluem sobrecargas em pisos e emcoberturas, cargas de pontes rolantes cargas de outros equipamentos.

Os fatores de combinação (ψ ) da NBR 8681 estão indicados na Tabela abaixo.

Tabela 3.2 Fatores de combinação ψ d no Estado Limite Último

Ações Fatores de combinação (ψ)

Sobrecargas em pisos de bibliotecas, arquivos, oficinas egaragens, conteúdo de silos e reservatórios.

0,75

Cargas de equipamentos, incluindo pontes rolantes esobrecargas em pisos diferentes dos anteriores.

0,65

Pressão dinâmica do vento 0,60Variação de temperatura 0,60

Os coeficientes ψ devem ser tomados iguais a 1,0 para ações variáveis não citadas

nesta tabela e também para as ações variáveis nela citadas, quando forem de mesma

natureza da ação variável predominante Q1; todas as ações variáveis decorrentes do uso de

uma edificação (sobrecargas em piso e em coberturas, cargas de pontes rolantes e de outros

equipamentos), por exemplo, são considerados de mesma natureza.

Page 32: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 32/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  29

Estado Limite de Utilização

Os Estados Limites de Utilização estão associados às cargas em serviço. Evita-se,

assim, a sensação de insegurança dos usuários de uma obra na presença de deslocamentos

ou vibrações excessivas, ou ainda, prejuízo de componentes não estruturais como

alvenarias e esquadrias. No Estado Limite de Utilização, as cargas são combinadas como

anteriormente explanado sem, entretanto, majorar seus valores, ou seja, utilizando(γ =1,0).

Os limites de deslocamentos máximos para o estado limite de utilização, fixados

 pela norma de estruturas metálicas NBR 8800, estão indicados na Tabela abaixo.

Tabela 3.3 Valores limites de deformações elásticas, segundo a NBR 8800.Ações a considerar Elemento estrutural Limite

SobrecargaBarras biapoiadas suportando elementos decobertura inelásticos. 240

1 do vão

SobrecargaBarras biapoiadas suportando elementos decobertura elásticos. 180

1 do vão

Sobrecarga Barras biapoiadas suportando pisos.360

1 do vão

Cargas máximas por roda (sem impacto)

Vigas de rolamento biapoiadas para pontesrolantes com capacidade de 200 kN oumais. 800

1 do vão   D  e  s   l  o  c  a  m  e  n   t  o  s  v  e  r   t   i  c  a   i  s

Cargas máximas por roda (sem impacto)

Vigas de rolamento biapoiadas para pontesrolantes com capacidade inferior a 200 kN. 600

1 do vão

Força transversal da ponte

Vigas de rolamento biapoiadas para pontesrolantes. 600

1 do vão

   E   d   i   f   í  c

   i  o  s   i  n   d  u  s   t  r   i  a   i  s

   D  e  s   l  o  c  a  m  e  n   t  o

  s   h  o  r   i  z  o  n   t  a   i  s

Força transversal da ponte, ou vento

Deslocamento horizontal da coluna relativoà base. 400

1 a200

1 da altura

SobrecargaBarras biapoiadas de pisos e coberturas,suportando construções e acabamentossujeitos à fissuração. 240

1 do vão

   D

  e  s   l  o  c  a  m  e  n

   t  o  s  v  e  r   t   i  c  a   i  s

Sobrecarga Idem, não sujeitos à fissuração.360

1 do vão

VentoDeslocamento horizontal do edifício,relativo à base, devido a todos os efeitos. 400

1  da altura do edifício

Vento

Deslocamento horizontal relativo entre dois pisos consecutivos, devido à forçahorizontal total no andar entre os dois pisosconsiderados, quando fachadas e divisórias(ou ligações com a estrutura) nãoabsorverem as deformações da estrutura.

500

1  da altura do andar     O  u   t  r  o  s  e   d   i   f   í  c   i  o  s

   D  e  s   l  o  c  a  m  e  n   t  o  s   h  o  r   i  z  o  n   t  a   i  s

Vento Idem, quando absorverem.400

1  da altura do andar  

Page 33: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 33/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  30

4. PEÇAS TRACIONADAS

Peças tracionadas são aquelas sujeitas a solicitações axiais de tração, geralmentedenominadas tração simples. As peças tracionadas podem ser empregadas em estruturascomo tirantes, barras tracionadas de treliças, etc.

As peças tracionadas são dimensionadas admitindo-se distribuição uniforme dastensões de tração na seção transversal considerada. Esta condição é obtida na maioria doscasos na prática, principalmente se a peça não apresentar mudanças bruscas na seçãotransversal. Admite-se que a carga de tração axial seja aplicada no centro de gravidade(CG) da seção. No dimensionamento analisam-se primeiramente as condições deresistência e, em seguida, as condições de estabilidade da barra.

As seções transversais das barras tracionadas podem ser simples ou compostascomo, por exemplo:

•  barras redondas;

•  barras chatas;

•  perfis laminados (L, C, U, I);

•  perfis compostos.

As ligações das extremidades das peças tracionadas com outras partes da estruturasão feitas por diversos meios como: soldagem, parafusos e rebites, rosca e porca para

 barras rosqueadas.

4.1. Dimensionamento no Estado Limite Último (ELU)

A resistência de uma peça submetida a tração axial pode ser determinada pelaruptura da seção líquida (que provoca colapso), ou pelo escoamento generalizado da seção

 bruta (que provoca deformações excessivas).

4.1.1. Peças tracionadas com furos

Os furos diminuem a área da seção transversal da peça. Portanto, há umenfraquecimento na peça, que deve ser considerado no dimensionamento.

a) ruptura da seção líquida (condição de resistência):

75,0, ==≤ t uk nt nt dt  com f  A R R φ φ φ   

onde: An = área líquida de uma peça com furos ou entalhes f uk  = tensão de ruptura característica do aço

 b) escoamento da seção bruta (condição de ductilidade):90,0, ==≤ t  y g t nt dt  com f  A R R φ φ φ   

Page 34: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 34/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  31

 

4.1.2. Peças com extremidades rosqueadas

As barras com extremidades rosqueadas, consideradas neste item, são aquelas com

diâmetro igual ou superior a 12 mm (1/2”).

65,0,75,0 ==≤ t uk  g t nt dt  com f  A R R φ φ φ   

onde  A g  = área bruta da barra

4.1.3. Peças ligadas por pinos

 No caso de chapas ligadas por pinos, a resistência é determinada pela ruptura da

seção líquida efetiva.

4.1.4. Limitação de esbeltez das peças tracionadas

O índice de esbeltez (λ ) é definido na Resistência dos Materiais como a relação

entre o comprimento livre (não contraventado) (L) e o raio de giração mínimo (imin) de sua

seção transversal.

mini

 L=λ  (adimensional) com

 A

 I i min

min

=  

onde I é o momento de inércia da seção transversal.

O índice de esbeltez é muito importante no dimensionamento de peças

comprimidas, nas quais pode ocorrer o fenômeno da flambagem.

 Nas peças tracionadas, o índice de esbeltez não tem importância fundamental, pois

o esforço de tração tende a retificar a haste, reduzindo a excentricidade construtiva inicial.

Contudo, as normas fixam valores mínimos de coeficiente de esbeltez, a fim de reduzir efeitos vibratórios provocados por impactos, vento, etc.

O índice de esbeltez de barras tracionadas, excetuando-se tirantes de barras

redondas pré-tensionadas, não pode, em princípio, exceder os seguintes limites:

Tabela 4.1 Valores de esbeltez limites em peças tracionadas

Peças AISC / NBR AASHTO

Vigamentos principais 240 200Contraventamentos e outros vigamentos secundários 300 240

Page 35: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 35/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  32

4.1.5. Diâmetro dos furos

Os furos enfraquecem a seção da peça. O diâmetro total a ser considerado é igual ao

diâmetro nominal do conector (d ), acrescido de 3,5mm. A Norma, o AISC recomenda

considerar os furos com diâmetros 1/8” (3,2mm) maiores que o diâmetro nominal adotado.

Este acréscimo de diâmetro é devido às imperfeições causadas na chapa durante a abertura

do furo, especialmente se forem abertos por punção.

É erro comum, principalmente para os que vêm o assunto pela primeira vez, pensar 

na área líquida como a área bruta, subtraída das áreas de todos os furos existentes na

ligação. Isto é incorreto; a área líquida é estudada, pensando-se numa possível seção de

ruptura, tendo-se em mente a transmissão de esforços (distribuição de tensões no interior 

da peça). Deve ser imaginada como a seção mais provável de ruína. Logo, os furos a serem

considerados serão, somente aqueles contidos na seção de ruptura em estudo.

Seção transversal líquida dos furos

 Numa barra com furos, a área líquida ( An) é obtida subtraindo-se da área bruta ( A g )

as áreas dos furos contidos em uma mesma seção reta da peça.

 d +  3,  5  m  m

 Área bruta (Ag)

 d +  3,  5

  m  m

rea líquid(An)

 

Figura 4.1 Área líquida e área bruta

 No caso de furação em zig-zag, é necessário pesquisar diversos percursos para se

encontrar o menor valor de seção líquida uma vez que a peça pode romper segundoqualquer um desses percursos.

Page 36: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 36/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  33

g b

furação reta

p

b 1

1

1

furação em zig zag

2

3

3

2

s

 

Figura 4.2 Tipos de furações

Os segmentos zig-zag são computados com um comprimento reduzido, dado pela

seguinte expressão empírica:

 g  s4

2

 

onde:

g = espaçamento transversal entre duas filas de furos ( gage)

s = espaçamento longitudinal entre furos de filas diferentes

 p= espaçamento entre furos da mesma fila ( pitch)

A área líquida ( An) de barras com furos pode ser representada pela equação:

( ) t  g 

 smmd b An ⋅

++−= ∑∑

45,3

2

,

adotando-se o menor valor obtido nos diversos percursos pesquisados.

Seção transversal líquida efetiva

 Nas ligações de barras tracionadas em que a solicitação for transmitida apenas em

um dos elementos da seção, utiliza-se uma seção líquida efetiva ( An,ef ) para levar em conta

que, na região da ligação, as tensões se concentram no elemento ligado e não mais se

distribuem uniformemente em toda a seção. No caso de peças ligadas com conectores

aplicam-se os seguintes coeficientes de redução C t :

Page 37: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 37/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  34

Tabela: Coeficientes de redução da área liquida (C t )

C t  Perfis

0,90 I ou H, cujas mesas tenham largura não inferior a 2/3 da altura e em perfis T cortadosdesses perfis, com ligações nas mesas, tendo no mínimo três conectores por linha defuração na direção do esforço.

0,85Demais perfis, tendo no mínimo três conectores por linha de furação na direção doesforço.

0,75Em todas as barras, cujas ligações tenham somente dois conectores por linha defuração na direção do esforço.

 No caso de barras tracionadas com ligações soldadas apenas em alguns dos

elementos da seção, o coeficiente de redução da área depende da relação entre o

comprimento longitudinal l das soldas e a largura b da chapa ligada.

Coef de redução C t  Relação entre l e b (l > b)

1,0 bl  2≥  

0,87 bl b 5,12 ≥>  

0,75 bl b ≥>5,1  

N

N

N

b

h

b < 2h/3

C = 0,85 se

b > 2h/3

C = 0,90 se

t

t

 

N

tC = 0,75

N

 

Page 38: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 38/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  35

4.1.6. Exemplos

1. Calcular a espessura necessária de uma chapa de 100mm de largura, sujeita a um esforço

axial de tração de 100 kN. Resolver o problema utilizando o aço comercial (MR-250), com

tensão admissível  yt   f 6,0=σ  .

Solução: Para o aço MR 250, tem-se a seguinte tensão admissível referente à área bruta:

2151502506,0

cm

kN  MPat  ==×=σ   

Área bruta necessária:

2

67,615

100

cm

 N 

 A t  g  === σ   

Espessura necessária: cmt  67,010

67,6==   → adota-se 5/16” = 7,94 mm

2. Resolver o problema precedente para o dimensionamento no estado limite último.

Solução: Admitindo-se que o esforço de tração seja provocado por uma carga variável de

utilização, a solicitação de cálculo vale:

kN  N  N  qd  1501005,1 =×== γ   

a área bruta necessária é obtida pela expressão: 267,6259,0

150cm

 f 

 N  A

 yt 

d  g  =

×==

φ  

espessura necessária: cmt  67,010

67,6==   → adota-se 5/16” = 7,94 mm

 No caso tração centrada devida a cargas variáveis, os métodos dos Estados Limites e o de

Tensões Admissíveis fornecem o mesmo dimensionamento.

Page 39: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 39/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  36

3. Duas chapas 7/8”×300mm são emendadas por traspasse com 8 parafusos φ 7/8”.Verificar se as dimensões das chapas são satisfatórias para uma carga axial de tração de300 kN, admitindo-se aço MR 250 (ASTM A36).

      3 0 

      0     m    m N=300 kN

t=22mmt=22mm

N=300 kN

22mm 22mm

 

Solução:

O tipo de ligação adotado introduz excentricidade no esforço axial. Contudo, o problemaserá resolvido admitindo-se as chapas sujeitas a esforço axial.

Área bruta: cm22,254,287 =×  

260,6622,230 cm A g  =×=  

A área líquida na seção furada é obtida deduzindo-se a área de quatro furos com diâmetro7/8”+1/8”=2,54 cm.

( ) 204,4422,254,2430 cm An =××−=  

Admitindo-se que a solicitação seja produzida por uma carga permanente de grandevariabilidade, o esforço solicitante de cálculo vale:

kN  N  N  qd  4203004,1 =×== γ   

cálculo dos esforços resistentes:

área bruta: kN  N  resd  5,14982560,669,0, =××=  

área líquida: kN  N  resd  2,13914004,4475,0, =××=  

Os esforços resistentes são superiores aos esforços solicitantes, concluindo-se que

as dimensões satisfazem com folga.

Page 40: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 40/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  37

4. Duas chapas (280mm × 20mm) são emendadas por traspasse com furos d = 20mm,

abertos por punção. Calcular o esforço resistente de projeto das chapas, admitindo-se

submetidas à tração axial. Dado: Aço MR 250.

Aço: MR 250:  f  y = 250 MPa  f u = 400 MPa

7575 75 75

N      2      0

      2      8      0    m    m

1

2

a

1

3

3

3

1

2 3

      2      0

N

      5      0

      5      0

      4      0

      5      0

      5      0

      4      0

 

Solução

O efeito da excentricidade no esforço de tração é desprezado

O diâmetro dos furos é: 20 + 3,5 = 23,5 mm

Seção bruta das chapas: A g = 28 × 2 = 56 cm2 

Seção líquida:

1-1-1: ( ) 26,46235,2228 cm An =××−=  

2-2-2: 22

45,48235,2454

5,7228 cm An =×

 

  

 ×−

××+=  

3-3-3: 22

0,55235,2554

5,7428 cm An =×

 

  

 ×−

××+=  

A menor seção líquida correspondente à reta 1-1-1.

Esforços resistentes

Área bruta: kN  N  resd  126025569,0, =××= (126 tf )

Área liquida: kN  N  resd  1398406,4675,0, =××= (139,8 tf )

Resposta:  N d,res = 1260 kN

 Note-se que neste exemplo, o escoamento da seção bruta ocorrerá antes da ruptura daseção líquida.

Page 41: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 41/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  38

5.

Para o perfil [U381×50,4 kg/m](15”), em aço MR250 da figura,calcular o esforço resistente detração.

O diâmetro dos conectores é

d = 22mm.

Área da seção transversal do perfil A g = 64,2 cm2 

Solução

      3      8      1    m    m

150

      8      5

1

N

      8      5

      8      5

10.2

86.4 1

 

Aço: MR 250:  f  y = 250 MPa  f u = 400 MPa

a) escoamento da seção bruta

 y g resd   f  A N  9,0, =   kN  N  resd  1444252,649,0, =××=  

 b) ruptura da seção líquida

diâmetro do furo considerado: 22 + 3,5 = 25,5 mm

Área líquida: ( ) 28,5302,155,242,64 cm An =××−=  

Área líquida da seção 1-1 = 23,408,5375,0 cm An =×=  

unresd   f  A N  75,0, =   kN  N  resd  1210403,4075,0, =××=  

6. Calcular o diâmetro do tirante em aço ASTM A36 (MR250), capaz de suportar uma

carga axial de 150kN (15tf), sabendo-se que a transmissão da carga será feita por umsistema de rosca e porca. Admite-se que a carga seja do tipo permanente, com grande

variabilidade (γ  f = 1,4).

Solução:

Barras rosqueadas:

ut 

 f 

 g  f 

 N  A

75,0×=φ 

γ   277,10

4075,065,0

1504,1cm A g  =

×××

=  

Adota-se parafuso com diâmetro d = 3,81mm (1½”), cuja área é A g = 11,40 cm2.

Page 42: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 42/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  39

 

7. Para a cantoneira [L 178×102×12,7] (7”×4”×½”) indicada na Figura, determinar:

a) a área líquida, sendo os conectores de diâmetro d = 22 mm (7/8”);

 b) o maior comprimento admissível, para esbeltez máxima λ=240.

      1      7      8    m    m

76

medidas em milímetros

      7      6

102

(a)

      6      4

64

      1      2 .

      7

(b)

76

      3      8

12.7

1 2

(c)

1

2

1

2

2

      7      6

      1      1      5

      3      8

      3      8

 

O cálculo pode ser feito rebatendo-se a cantoneira segundo seu eixo (Figura c).

Comprimentos líquidos dos percursos:

Diâmetro dos furos d = 22 + 3,5 = 25,5 mm.

Percurso 1-1-1: mm5,2165,2527,12102178 =×−−+  

Percurso 2-2-2: mm6,2225,2531154

76

764

767,12102178

22

=×−×

+−+  

O percurso 1-1-1 é crítico.

a) seção líquida: 24,2727,16,21 cm An =×=  

 b) o maior comprimento desta cantoneira trabalhando como tirante será:

Para cantoneira [L 178 × 102 × 12,7], tem-se raio de giração mínimo: imin = 2,21 cm.

Índice de esbeltez máximo para peças tracionadas: 240min

≤=i

l λ   

Logo minmax 240 il  ×=   cml  53021,2240max =×=  

Page 43: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 43/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  40

5. TRELIÇAS

Definição

Treliça é toda estrutura constituída de barras ligadas entre si nas extremidades. O

 ponto de encontro das barras é chamado nó da treliça. Os esforços externos são aplicados

unicamente nos nós.

Denomina-se treliça plana, quando todas as barras de uma treliça estão em um

mesmo plano.

Para se calcular uma treliça deve-se:

a) determinar as reações de apoio;

 b) determinar as forças nas barras.

A condição para que uma treliça de malhas triangulares seja isostática é:

vbn +=2  

onde:

b= número de barras

n= número de nós

v= número de reações de apoio

Adota-se como convenção de sinais:

 barras tracionadas: positivo setas tracionando o nó

 barras comprimidas: negativosetas comprimindo o nó

Os esforços nas barras das treliças podem ser resolvidos por métodos gráficos e

analíticos.

Um dos vários processos analíticos usuais é o Método do Equilíbrio dos Nós,

abaixo exemplificado.

Page 44: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 44/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  41

Apoios

Para o estudo do equilíbrio dos corpos rígidos não bastam conhecer somente as

forças externas que agem sobre ele, mas também é necessário conhecer como este corpo

rígido está apoiado.

Apoios ou vínculos são elementos que restringem os movimentos das estruturas e

recebem a seguinte classificação:

Apoio móvel

ou

• Impede movimento na direção normal (perpendicular)

ao plano do apoio;

• Permite movimento na direção paralela ao plano do

apoio;

• Permite rotação.

Apoio fixo

• Impede movimento na direção normal ao plano do

apoio;

• Impede movimento na direção paralela ao plano do

apoio;

• Permite rotação.

Engastamento

• Impede movimento na direção normal ao plano do

apoio;

• Impede movimento na direção paralela ao plano do

apoio;

• Impede rotação.

As estruturas são classificadas em função do número de reações de apoio ouvínculos que possuem. Cada reação constitui uma incógnita a ser determinada.

Para as estruturas planas, a Estática fornece três equações fundamentais:

0=Σ  x F  0=Σ  y F  0=Σ  A M   

Page 45: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 45/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  42

Método do equilíbrio dos nós

1. Inicialmente devem-se identificar os nós e verificar os tipos de reações de apoio.

 No caso da treliça da figura, nonó  A tem-se um apoio móvel e no nó

 B, um apoio fixo.

Como os apoios móveisrestringem somente deslocamentos os

 perpendiculares ao plano do apoio,tem-se uma reação vertical R A.

Como os apoios fixosrestringem deslocamentos paralelos e

 perpendiculares ao plano do apoio,tem-se uma reação vertical R B e umareação horizontal HE.

C

RA

 A F2 m

B

50 kN 100 kN

D

2 m

RE

E

α

2 m

HE

50 kN

Verificar se a treliça é uma estrutura isostática

 barras b = 9nós n = 6reações v = 3

vbn +=2 Conclusão:

3962 +=× a treliça é uma estrutura isostática

Cálculo do ângulo de inclinação das barras º452

2=

  

  = arctg α   

a) Cálculo das reações de apoioEquação de equilíbrio das forças na horizontal:

0=Σ  H  F  conclusão:  H  E = 0

Equação de equilíbrio das forças na vertical:

0=Σ V  F  05010050 =−−−+  E  A  R R 200=+  E  A  R R kN (1)

Equação de equilíbrio de momentos:

Como a estrutura está em equilíbrio, a somatória dos momentos em relação a qualquer  ponto da estrutura deve ser nula. Tomando-se por exemplo o nó A como referência, tem-se

0=Σ  A M    021004504 =×−×−×  E  R  4

400= E  R   100= E  R kN

Substituindo o valor de R E na equação (1), tem-se:

200100 =+ A R kN logo 100= A R kN

b) Cálculo das forças nas barras

Iniciar a resolução pelo nó que tiver no máximo duas forças incógnitas. As forças

devem estar tracionando o nó. Como não se sabe a priori se as forças nas barras são detração ou de compressão, adotam-se como se fossem tracionadas. Se o valor determinadofor negativo, significa que a barra está comprimida, portanto, o sentido da seta deve ser mudado.

Page 46: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 46/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  43

Nó A

 A

RA

N2

N1

 

0=Σ  H  F    → 02 = N   

0=Σ V  F   

01100 =+ N    → 1001 −= N  kN

Nó B

B

100

45°

N4

50

N3

 

0=Σ  H  F   

0º45cos43 =+ N  N    →  503 −= N  kN

0=Σ V  F   

0º45450100 =−−  sen N    → 7,704 = N  kN

Nó C

N550

100

N6

C

 

0=Σ  H  F   

0550 =+ N    → 505 −= N  kN

0=Σ V  F   

06100 =−−  N    → 1006 −= N  kN

Nó D

45°

50

50

N7 N8

D

 

0=Σ  H  F   

0º45cos750 =− N    → 7,707 = N  kN

0=Σ V  F   

0º45sen7,70850 =+−−  N    → 1008 −= N  kN

Nó E100

100

EN9

 

0=Σ  H  F    →  09 = N   

Nó F Verificação

45° 45°

10070,770,7

0,0 0,0F

 

0=Σ  H  F   

0º45cos7,70º45cos7,70 =+−  

0 = 0 (verificado)

0=Σ V  F    0º457,70º457,70100 =++−  sen sen  0 = 0 (verificado)

Page 47: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 47/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  44

Como a treliça é simétrica, com carregamentos simétricos, os resultados das forçasque agem nos nós D e E são iguais às dos nós B e A, respectivamente. Portanto, não hánecessidade de se calcular as forças nos nós D e E.

Resultados 

 NAB= 100 kN compressão

 NAF= 0

 NBC= 50 kN compressão

 NBF= 70,7 kN tração

 NCF= 100 kN compressão

 NCD= 50 kN compressão

 NDF= 70,7 kN tração

 NDE= 100 kN compressão

 NFE= 0 kN

C

RA

 A F2 m

B

50 kN 100 kN

D

2 m

RE

E

α

2 m

HE

50 kN

 

2. Calcular as forças em cada barra da treliça “mão francesa” da figura.

2.0 m 2.0 mHA

1.0m

 A

1.0m

HB B

RB

40 kN

α

E

θ

C

D

20 kN

 

Cálculo dos ângulos de inclinação das barras

º43,631

2=== arctg α  º56,26

2

1=== arctg θ   

a) Cálculo das reações de apoio

0=Σ  H  F  040 =−−  B A  H  H    → 40=−  B A  H  H  kN

0=Σ V  F  020 =− B R   → 20= B R kN

0=Σ  B M  04201402 =×−×−×+  A H    → 60= A H  kN 20= B H  kN

Page 48: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 48/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  45

b) Cálculo das forças nas barras

Nó B

N2

N1

63.4°

20 kN20 kNB

 

0=Σ H 

 F   

0220 =+− α  sen N    → 4,222 = N  kN

0=Σ V  F   

0cos2120 =−− α  N  N   → 101 = N  kN

Nó A

26.6°60  A

10

N4

N3

 

0=Σ V  F   

0310 =+ θ  sen N    → 4,223 −= N  kN

0=Σ  H  F   

0cos3460 =++ θ  N  N   

0cos4,22460 =−+ θ  N  → 404 −= N  kN

Nó E

40 N6

E

N5

 

0=Σ  H  F   

0640 =− N    →  406 = N  kN

0=Σ V  F    → 05 = N  kN

Nó D

20

D40

26.6°

N7

 

0=Σ V  F   

0720 =+− θ  sen N    → 7,447 = N  kN

0=Σ  H  F   

0cos7,4440 =− θ    → 0 = 0 (verificado)

Nó C

22,4 0,0 44,7

22,4

C26.6°

26.6° 26.6°

40

 

Verificação

0=Σ  H  F   

0cos7,4440cos4,22cos4,22 =+−− θ θ θ   

0=0 kN (verificado)

0=Σ V  F   

0sen7,44sen4,22sen4,22 =−+ θ θ θ   10 + 10 – 20 =0 (verificado)

Page 49: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 49/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  46

Resultados 

 NAB= 10 kN tração

 NAC= 22,4 kN compressão NAE= 40 kN compressão

 NBC= 22,4 kN tração

 NCE= 0

 NCD= 44,7 kN tração

 NED= 40 kN compressão

2  2  ,4  k N   T  

 2 2, 4   k

  N  C

40 kN C

10

kN

T

 A

B

20 kN4 4 ,7   k N   T  

40 kN CE

α

θ0

D

C 40 kN

 

3. Determinar os esforços nas barras da treliça da figura

G HF2m 2m 2m

B

α

RA

 A

100 kN70 kN

C

70 kN

D

2m

HE

   1 .   5

   m

RE

E

 

Verificar se a treliça é uma estrutura isostática barras b = 13nós n = 8reações v = 3

vbn +=2 Conclusão:

31382 +=× a treliça é uma estrutura isostática

Cálculo do ângulo de inclinação das barras º87,362

5,1=

  

  = arctg α   

α=36,87º → sen = 0,600 cos = 0,800 tg = 0,750

a) Cálculo das reações de apoio

Equação de equilíbrio das forças na horizontal:

0=Σ  H  F  conclusão:  H  E = 0

Equação de equilíbrio das forças na vertical:

0=Σ V  F    07010070 =−−−+  E  A  R R   240=+  E  A  R R kN (1)

Equação de equilíbrio de momentos:

Como a estrutura está em equilíbrio, a somatória dos momentos em relação a qualquer  ponto da estrutura deve ser nula. Tomando-se por exemplo o nó A como referência, tem-se

0=Σ  A M  067041002708 =×−×−×−×  E  R  8

960= E  R 120= E  R kN

Substituindo o valor de R E na equação (1), tem-se:240120 =+ A R kN logo 120= A R kN

Page 50: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 50/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  47

b) Cálculo das forças nas barras

Iniciar a resolução pelo nó que tiver no máximo duas forças incógnitas. As forçasdevem estar tracionando o nó. Como não se sabe a priori se as forças nas barras são detração ou de compressão, adotam-se como se fossem tracionadas. Se o valor determinadofor negativo, significa que a barra está comprimida, portanto, o sentido da seta deve ser mudado.

Nó A

N120 AF

 A N AB

α

 

0=Σ V  F   

0sen120 =− α  AF  N    → 200= AF  N  kN

0=Σ  H  F   

0cos =− α  AF  AB  N  N   →  160−= AB N  kN

Nó F200

F

α

N

N

FB

FG

 

0=Σ V  F   

0sen200 =+  FB N α    → 120−= FB N  kN

0=Σ  H  F   

0cos200 =+−  FG N α  → 160= FG N  kN

Nó B

160 α

120 BGN

70

B

BCN

 

0=Σ V  F   

0sen70120 =−−+ α  BG N   

33,83= BG N  kN0=Σ  H  F   

0cos160 =++ α  BG BC   N  N   → 67,226−= BC  N  kN

Nó C

100

66,67

NCG

NCD

C

 

0=Σ  H  F   

067,66 =− CD N    → 67,66=CD N  kN

0=Σ V  F   

0100 =−CG N    → 100=CG N  kN

Nó G

160

83,33

100

G

α α NGH

NGD

 

0=Σ V  F   

0100sen33,83 =−+ α GD N   → 33,83=GD N  kN

0=Σ  H  F   

0160cos33,83cos33,83 =−−+ α α GH  N   

160=GH  N  kN

Page 51: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 51/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  48

Como a treliça é simétrica, com carregamentos simétricos, os resultados das forçasque agem nos nós D, H e E são iguais às dos nós B, F e A, respectivamente. Portanto, nãohá necessidade de se calcular as forças nos nós D, H e E.

160kN C

  2  0  0  k

  N    T

G HF2m 2m 2m

70 kN

   1   2   0   k   N

   Cα

RA

2  0  0  k  N   T   

B A 160kN C

100 kN

160kN T

8  3   ,3  k  N   T      1   0   0   k   N

   C

C266,67kN C

160kN T

  8  3,  3  k  N    T

   1   2   0   k   N

   C

70 kN

D266,67kN C

2m

HE

   1 .   5

   m

RE

E

 

Resultados

Barra Esforço L (m)

 NAB= 160 kN compressão 2,0

 NBC= 266,67 kN compressão 2,0

 NCD= 266,67 kN compressão 2,0

 NDE= 160 kN compressão 2,0

 NFG= 160 kN tração 2,0

 NGH= 160 kN tração 2,0

 NAF= 200 kN tração 2,92

 NBG= 83,33 kN tração 2,92

 NGD= 83,33 kN tração 2,92

 NHE= 200 kN tração 2,92

 NBF= 120 kN compressão 1,5

 NCG= 100 kN compressão 1,5

 NDH= 120 kN compressão 1,5

Page 52: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 52/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  49

Dimensionamento

BARRAS TRACIONADAS

Barra Esforço L (m) Nd (kN) Perfil

 NFG= 160 kN tração 2,0

 NGH= 160 kN tração 2,0

 NAF= 200 kN tração 2,5

 NBG= 83,33 kN tração 2,5

 NGD= 83,33 kN tração 2,5

 NHE= 200 kN tração 2,5

Coeficiente de majoração das ações: 4,1= f γ   

BARRAS COMPRIMIDAS 

Barra Esforço L (m) Nd (kN) Perfil

 NAB= 160 kN compressão 2,0

 NBC= 226,67 kN compressão 2,0

 NCD= 226,67 kN compressão 2,0 NDE= 160 kN compressão 2,0

 NCF= 120 kN compressão 1,5

 NCG= 100 kN compressão 1,5

 NDH= 120 kN compressão 1,5

Coeficiente de majoração das ações: 4,1= f γ   

Page 53: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 53/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  50

6. LIGAÇÕES

6.1. Ligações com conectores

As ligações em estruturas metálicas podem ser feitas por meio dos seguintesconectores:

• Rebites• Parafusos comuns• Parafuso de alta resistência

6.1.1. Rebites

Os rebites são conectores instalados a quente (~1000ºC). Após o resfriamento, orebite se retrai e aperta as chapas entre si. O esforço do aperto é variável, não podendogarantir um valor mínimo para os cálculos.

A partir de 1950 as ligações rebitadas foram substituídas por ligações parafusadasou soldadas.

6.1.2. Parafusos

Parafusos comuns

Os parafusos são conectores com cabeça quadrada ou sextavada, possuindo rosca e porca.

arruela

comprimento do parafuso

comprimento de apertoarruelaporca

rosca

fuste

cabeça

 

Figura __ Parafuso com porca e arruelas

Os parafusos comuns são instalados com aperto, que mobiliza atrito entre aschapas. Entretanto, este aperto é muito variável, não podendo garantir um valor mínimo ase considerar nos cálculos.

Devido a isto, os parafusos comuns são calculados de modo análogo aos rebites, por meio das tensões de apoio e de corte.

Ligações denominadas tipo apoio: transferência de tração entre as chapas ligadas

Page 54: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 54/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  51

σ

σ

d

Ft2

2F

t1

Ft2

τ

τ

τ

τ σ

 

Figura Forças atuantes no parafuso

A transmissão dos esforços se dá por apoio das chapas no fuste do parafuso eesforço de corte na seção transversal do parafuso.

Tensões de corte:

4

2d 

 F 

π τ  = Tensões de apoio:

t d 

 F 

⋅=σ   

onde:

 F = esforço transmitido pelo conector no plano de corte

t = espessura da chapa considerada

d = diâmetro do conector 

Parafusos de alta resistência

Os parafusos de alta resistência são fabricados com aços tratados termicamente. Omais usual é o ASTM A325.

As forças de atrito resultantes entre as chapas, devido ao aperto dos parafusos, podem ser levados em consideração nos cálculos.

FP = Força deprotensão doparafuso

d

2F

t1

Ft2Forças decompressãoentre as chapas

Ft2

2F

P

Forças deatrito (Fat)

F

 

Figura Forças atuantes nas chapas

Page 55: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 55/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  52

6.2. Espaçamento entre conectores

Espaçamentos máximos:

Os espaçamentos máximos entre conectores são utilizados para impedir penetração

de água e sujeita nas interfaces. Eles são da ordem de 15.t para peças comprimidas e 25.t

 para peças tracionadas, sendo t a espessura da chapa.

A distância máxima de um conector à borda da chapa deve ser 12.t, não superior a

150mm.

Espaçamentos mínimos: (ver p.56 do livro do PFEIL)

A Figura abaixo resume as indicações da NBR 8800 para espaçamentos mínimos,

no caso de furos padrão.

a=1,75d

Bordas cortadasou serradascom tesoura

a

a

3d

3d 3d

d

 

Figura __ Espaçamentos construtivos recomendados para conectores, com furos padrão.

Valores de a para bordos laminados ou cortados com maçarico.

( )( )( )( )

≥≤≤+<<+

≤+

=

mmd d 

mmd mmd 

mmd mmd 

mmd mmd 

a

3325,1

33269

26197

196

 

Page 56: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 56/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  53

6.3. Dimensionamento

Dimensionamento dos conectores e dos elementos de ligação (sem efeito de fadiga)

Resistência dos aços utilizados nos conectores

Tipo de conector  f  y (MPa)  f u (MPa)Grau 1 415Rebites ASTM A502

ou EB-49 Grau 2 525Parafusos comuns

ASTM A307d ≤ 102mm (4”) 415

(12,7 ≤ d ≤ 25,4)mm

(½” ≤ d ≤ 1”)635 825

Parafusos de altaresistência ASTM A325 (25,4 ≤ d ≤ 38,1)mm

(1” ≤ d ≤ 1 ½”)560 725

Parafusos de altaresistência ASTM A490

(12,7 ≤ d ≤ 38,1)mm(½” ≤ d ≤ 1½”)

895 1035

ASTM A36 250 400Barras rosqueadas

ASTM A588 345 455

O dimensionamento dos conectores no estado limite último é feito com base nas

modalidades de ruptura da ligação, representadas na Figura abaixo.

Figura: Modalidades de ruptura em ligações com conectores

a) ruptura por corte do fuste do conector;

 b) ruptura por esmagamento da chapa na superfície de apoio do fuste do conector;

c) ruptura por rasgamento da chapa entre o furo e a borda ou entre dois furos consecutivos;

d) ruptura por tração da chapa na seção transversal líquida.

Page 57: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 57/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  54

6.3.1. Dimensionamento ao corte

A resistência de cálculo de conectores ao corte é dada por 0,6 f u, onde f u é a tensão

de ruptura à tração do aço do parafuso.

nvvdv  R R φ =   ( )u g nv  f  A R 6,0=  

onde:

φ v = 0,60 para parafusos comuns e barras rosqueadas

φ v = 0,65 para parafusos de alta resistência e rebites

 Rnv = resistência nominal para um plano de corte

 f u = tensão de ruptura à tração do aço do parafuso

Resistências nominais para um plano de corte

Rebites ( )u g nv  f  A R 6,0=  

Parafusos e barras rosqueadas: ( )u g nv  f  A R 6,07,0=  

Parafusos de alta resistência (A325 ou A490), comrosca fora do plano de corte

( )u g nv  f  A R 6,0=  

Parafusos de alta resistência em ligações por atritoVerificar em adição a resistência ao

deslizamento

A utilização do coeficiente 0,70 para parafusos comuns e barras rosqueadas admite

a situação mais desfavorável de plano de corte passando pela rosca, considerando a área da

seção efetiva da rosca igual a 0,7 da área da seção do fuste.

 No caso de parafusos de alta resistência, em ligações por atrito, é necessário

verificar adicionalmente a resistência ao deslizamento da ligação.

6.3.2. Dimensionamento ao esmagamento da chapa (pressão de apoio)

 No caso de furação padrão, a resistência  Rd  à pressão de apoio entre o fuste do

conector e a parede do furo é dada pela seguinte expressão:

( )ud   f t d  R 3φ = com 75,0=φ   

onde:

d = diâmetro nominal do conector;

t = espessura da chapa; f u = resistência à ruptura por tração do aço da chapa.

Page 58: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 58/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  55

6.3.3. Dimensionamento ao rasgamento da chapa

 No caso de furação padrão, a resistência  Rd  ao rasgamento da chapa entre

conectores ou entre um conector e uma borda, é dada por:

( )ud   f t a R φ = com 75,0=φ   

onde:

a = distância entre o centro do furo e a extremidade da chapa medida na direção da força

solicitante para a resistência ao rasgamento entre um furo extremo e a borda da chapa;

a = distância entre o centro do furo e a borda do furo consecutivo, medida na direção da

força solicitante para a determinação da resistência ao rasgamento da chapa entre furos,

igual a ( s – d / 2), sendo s o espaçamento entre os centros de furos;

t = espessura da chapa;

 f u = resistência à ruptura por tração do aço da chapa.

6.3.4. Dimensionamento à tração da chapa

A resistência de cálculo de conectores a corte é dada por:

nt t dt   R R φ =  

onde:

φ v = 0,65 para parafusos comuns e barras rosqueadas

φ v = 0,75 para parafusos de alta tensão e rebites

 Rnt = resistência nominal à tração

igual a 0,6 f u, onde f u é a tensão de ruptura à tração do aço do parafuso.

Rebites:  u g nt   f  A R =  

Parafusos e barras rosqueadas: para parafusos e barras rosqueadas, com diâmetro

nominal igual ou superior a 12mm, Rnt  pode ser expresso em função da área bruta ( A g ) do

fuste: u g nt   f  A R 75,0= , onde, 0,75 representa a relação entre a área efetiva da parte

rosqueada e a área bruta do fuste.

Parafusos de alta resistência em ligação por atrito: No caso de parafusos de alta

resistência, em ligações por atrito, é necessário verificar adicionalmente a resistência ao

deslizamento da ligação.

Page 59: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 59/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  56

6.3.5. Ruptura por cisalhamento de bloco

Os elementos de ligação também devem ser dimensionados de forma a impedir a

ruptura por cisalhamento de bloco em um perímetro definido pelos furos, envolvendocisalhamento nos planos paralelos à força e tração em um plano normal a força. Conformeilustrado na figura abaixo.

 Av = áreacisalhada

lv

NN

lt

 At = áreatracionada

 

 Av = áreacisalhada

Nlt

lv

 At = áreatracionada

N

 

Figura: Ruptura por cisalhamento de bloco de uma chapa de ligação. O esforço é transferido àchapa pelos conectores, ligados a outra chapa ou perfil.

A ruptura por cisalhamento de bloco pode ocorrer ao longo de uma linha de conectores

Condições para o dimensionamento:

Norma Condição Resistência de cálculo ( Rd )

 NBR 8800 quando t v l l  3≥   ( )( )ut vd   f  A A R 6,0+=φ  com 75,0=φ   

se utnuvn  f  A f  A >6,0 tg  yvnud   A f  A f  R += 6,0φ  com 75,0=φ   

ASIC/95 se vnutnu  A f  A f  6,0>   tnuvg  yd   A f  A f  R += 6,0φ  com 75,0=φ   

onde:  Avg = área cisalhada bruta  Avn = área cisalhada líquida

 Atg = área tracionada bruta  Atn = área tração líquida

6.3.6. Combinação de conectores

O trabalho em conjunto de conectores diferentes depende da rigidez da ligaçãoexecutada com cada tipo.

Em construções novas ou existentes, os parafusos de alta resistência, em ligações por atrito, podem ser considerados trabalhando em conjunto com rebites.

Page 60: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 60/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  57

6.3.7. Dimensionamento à tração e a corte simultâneos – fórmulas de interação

 No caso de incidência simultânea de tração e corte, verifica-se a interação das duas

solicitações por meio de expressões empíricas que fornecem o limite superior da

resistência de cálculo à tração.

• Barras rosqueadas ou parafusos comuns:

d u g nt t  V  f  A R 93,164,0 −<φ   

• Parafusos de alta tensão (d < 38mm), com rosca no plano de corte:

d u g nt t  V  f  A R 93,169,0 −<φ   

• Rebites e parafusos de alta tensão (d < 38mm), com rosca fora do plano de corte:d u g nt t  V  f  A R 50,169,0 −<φ   

onde V d é o esforço cortante solicitante de projeto atuando na seção considerada.

6.3.8. Resistência ao deslizamento em ligações por atrito

A resistência ao deslizamento deve ser mais que a força de corte transmita na

ligação devida à combinação mais desfavorável de carga em um estado limite de utilização

(sem majoração). Nos valores indicados para o coeficiente de atrito está incluído um

coeficiente de segurança contra o deslizamento da ordem de 1,2.

Força máxima de atrito  P  F  F  cat  µ  ==max,  

onde:

 P = força de protensão inicial no parafuso

µ = coeficiente de atrito entre as superfícies

Se, além da força  F  de tração longitudinal, as chapas estiverem também sujeitas a umaforça de tração perpendicular, T a força de compressão F c entre as chapas é reduzida a:

( )T  P  F at  −=max,  

Segundo a NBR 8800, a resistência ao deslizamento pode ser calculada por:

( )T  P  Rv −= µξ   

onde:

 P = força mínima de protensão dada nas Tabelas A-55 do Anexo A (Livro PFEIL p.290)

ξ  = fator de redução que dependo do furo, sendo igual a 1,0 para furo do tipo padrão.

µ = 0,28, exceto no caso de superfície com banho vinílico, quando µ = 0,25.

Page 61: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 61/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  58

Exemplos

1. Duas chapas de 204mm × 12,7mm (½”) em aço ASTM A36 são emendadas com chapaslaterais de 9,5mm e parafusos comuns (A307) φ 22mm. As chapas estão sujeitas às forças

 N  g =200kN, oriunda de carga permanente de grande variabilidade e  N q=100kN, de cargavariável de utilização. Verificar a segurança da emenda. Dados: coeficientes de majoraçãodas ações γ  g =1,4 e γ q=1,5.

51

t=9,5mm

      2      0      4    m    m

N

medidas em milímetros

      6      4

t=9,5mm

N

      3      8

51

      6      4

      3      8

70

t=12,7mm

7051 51

 

Solução• Esforço solicitante de projeto

qq g  g d   N  N  N  γ γ  +=  

kN  N d  4301005,12004,1 =×+×=  

• Esforço resistente de cálculo

O esforço resistente de cálculo à tração ( Rdt ) será o menor dentre os encontrados nosseguintes casos:

a) corte (corte duplo nos parafusos)

nvdt   R R φ = com φ v = 0,60 para parafusos comuns e barras rosqueadas

Chapa de aço A36 = MR250 →   f  y = 250 MPa e  f u = 400 MPa

Parafuso comum A 307 →   f u = 415 MPa

22

88,34

22,2cm A g  =

×=π 

 

( )u g d   f  A R 6,07,0φ = com φ = 0,60

( ) ( ) kN  Rd  487625,416,088,37,060,0 =××××××=  

Page 62: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 62/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  59

 b) ruptura por pressão de apoio

udt   f t d  R 3φ = com 75,0=φ   

( ) kN  Rdt  152264027,122,2375,0 =×××××=  

onde:

d = diâmetro do conector = 2,22 cm

t = espessura da chapa = 1,27 cm (Notar que as espessuras das duas chapas de 9,5mmresultam em (9,5+9,5) 19mm, valor maior do que a espessura da chapa de 12,7mm).

 f u = tensão última do aço A36 da chapa = f u = 40 kN/cm2.

nº de parafusos = 6

c) Ruptura por rasgamento da chapa

udt   f t a R φ = com 75,0=φ   

( ) kN  Rdt  116664027,11,575,0 =××××=  

o valor de a será o menor entre os seguintes valores:

a=5,10a = distância entre o centro do furo e a extremidade da chapa, medida na direção

do esforço para resistir ao rasgamento entre um furo e a borda da chapa.

a=5,89

a = distância entre centros de furos consecutivos, medida na direção da força

solicitante para determinação da resistência ao rasgamento da chapa entrefuros; igual a ( )2/d  sa −= , sendo  s o espaçamento entre centros de furos.

( ) cma 89,52/22,20,7 =−=  

t = espessura da chapa = 1,27 cm

 f u = tensão última do aço A36 da chapa = f u = 40 kN/cm2.

nº de parafusos = 6

d) tração na chapa (12,7mm)• ruptura da seção líquida

undt   f  A R φ = com 75,0=φ   

( )[ ] 212,1627,135,022,234,20 cm An =×+×−=  

kN  Rdt  4844012,1675,0 =××=  

• escoamento da seção bruta

 ydt   f t b R φ = com 90,0=φ   

kN  Rdt  5832527,14,2090,0 =×××=  

Page 63: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 63/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  60

e) ruptura por cisalhamento de bloco

como utnuvn  f  A f  A >6,0 , tem-se:

( ) ( )[ ] 29,20227,135,022,25,11.57 cm Avn =××+×−+=  

( )[ ] 24,627,135,022,20,16,7 cm Atn =×+×−=  

26,927,18,32 cm Atg  =××=  

tg  yvnud   A f  A f  R += 6,0φ  com 75,0=φ   

( ) kN  Rd  5566,9259,20406,075,0 =×+×××=  

Conclusão

Comparando os resultados, verifica-se que o esforço resistente de cálculo à tração da

emenda é determinado pela ruptura da seção líquida da chapa ( Rdt =484 kN) e que o projeto

da emenda é satisfatório para os esforços solicitantes.

Page 64: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 64/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  61

2. O tirante de uma treliça de telhado é constituído por duas cantoneiras (2½”×1/4”) comligação a uma chapa de nó de treliça aço MR250, com espessura de 6,3mm, utilizando

 parafusos comuns φ 12,7mm. Determinar o esforço normal resistente do tirante,

desprezando o pequeno efeito da excentricidade introduzida pela ligação.

40

N

ø12.7

25 40 40 40 25

N

35mm

29mm

12.7

6.3mm

 

Solução: O esforço resistente de cálculo (R d) é o menor entre os valores encontrados nosseguintes casos:

a) corte (corte duplo nos parafusos)

( )u g d   f  A R 6,07,0φ = com φ v = 0,60 para parafusos comuns

Parafuso comum A 307 →   f u = 415 MPa

22

27,14

27,1cm A

 g 

=π 

 

( )u g d   f  A R 6,07,0φ = com φ = 0,60

( ) ( ) kN  Rd  133525,416,027,17,060,0 =××××××=  

 Notar que são dois planos de cortes e cinco parafusos

 b) ruptura por pressão de apoio

Chapa de aço A36 = MR250 →   f  y = 250 MPa e  f u = 400 MPa

udt   f t d  R 3φ = com 75,0=φ   

( ) kN  Rdt  36054063,027,1375,0 =×××××=  

onde:

d = diâmetro do conector = 1,27 cm

t = espessura da chapa = 0,63 cm

 f u = tensão última do aço MR250 da chapa = f u = 40 kN/cm2.

nº de parafusos = 5

c) Ruptura por rasgamento da chapa

udt   f t a R φ = com 75,0=φ   

( ) kN  Rdt  23654063,05,275,0 =××××=  

Page 65: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 65/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  62

o valor de a será o menor entre os seguintes valores:

a=2,50

cm

a = distância entre o centro do furo e a extremidade da chapa, medida na direçãodo esforço para resistir ao rasgamento entre um furo e a borda da chapa.

a=3,36

cm

a = distância entre centros de furos consecutivos, medida na direção da forçasolicitante para determinação da resistência ao rasgamento da chapa entrefuros; igual a ( )2/d  sa −= , sendo  s o espaçamento entre centros de furos.

( ) cma 36,32/27,10,4 =−=  

t = espessura da chapa = 0,63 cm nº de parafusos = 5

 f u = tensão última do aço A36 da chapa = f u = 40 kN/cm2.

d) tração na chapa (6,3mm)

• ruptura da seção líquida

Como o esforço de tração é transmitido apenas por uma aba do perfil, calcula-se a seçãolíquida efetiva aplicando-se um coeficiente redução Ct=0,85.

Diâmetro do furo: d+3,5mm = 12,7+3,5=16,2mm

Área da cantoneira de abas iguais (2½”×1/4”) A=7,68 cm2.

( ) 2, 32,1162,163,068,7285,0 cm A ef n =×−××=  

undt   f  A R φ = com 75,0=φ   

kN  Rdt  3394032,1175,0 =××=  

• escoamento da seção bruta

 ydt   f t b R φ = com 90,0=φ   

( ) kN  Rdt  3452568,768,790,0 =×+×=  

e) ruptura por cisalhamento de bloco

como utnuvn  f  A f  A >6,0 , tem-se:

( )2

2,14263,062,15,45,244 cm Avn =×××−+×=  239,263,062,15,09,2 cm Atn =××−=   265,3263,09,2 cm Atg  =××=  

tg  yvnud   A f  A f  R += 6,0φ  com 75,0=φ   

( ) kN  Rd  324256,3406,02,1475,0 =×+×××=  

Conclusão: Comparando os resultados, verifica-se que o esforço resistente de cálculo da

ligação é determinado pela resistência ao corte dos parafusos: Rd =133 kN.

Page 66: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 66/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  63

6.4. Ligações soldadas

6.4.1. Tipos, qualidade e simbologia de soldas

6.4.1.1 Definição, processos construtivos

A solda é um tipo de união obtida por fusão das partes adjacentes. A fusão pode ser obtida de forma elétrica, química e mecânica.

A solda elétrica é a mais utilizada na indústria da construção. A fusão é produzida por um arco voltaico que se dá entre o eletrodo e o aço a soldar, havendo deposição domaterial do eletrodo.

A ruptura de uma ligação soldada pode se dar na seção do material depositado

(metal da solda), ou na interface entre o material depositado e a peça (metal-base).Cuidados especiais devem ser tomados para que não haja retração da solda após o

seu resfriamento, o que pode causar distorção dos perfis. O aquecimento e o posterior resfriamento entre partes do perfil resultam tensões residuais internas nos perfis.

6.4.1.2 Tipos de eletrodo

Os eletrodos geralmente são varas de aço-carbono ou aço de baixa liga. Oseletrodos podem ser revestidos ou não. Os eletrodos com revestimento são designados pelaASTM por expressões do tipo

E70XXonde:E = eletrodo70 = resistência à ruptura da solda em ksi2 X = número que se refere à posição de soldagem satisfatória (1: qualquer posição; 2:

somente na posição horizontal)

Os principais tipos de eletrodo empregados na indústria são:

E60  f w= 415 MPa e E70  f w= 485 MPa

Eletrodo manual revestido: o revestimento é consumido juntamente com o eletrodo da

solda, transformando-se parte em gases inertes, parte em escória. O eletrodo manualrevestido é o mais utilizado na indústria.

6.4.1.3 Soldabilidade dos aços estruturais

A soldabilidade dos aços reflete a maior ou menor facilidade de se obter uma soldaresistente e sem trincas.

Para o aço A-36 utilizam-se eletrodos E60XX e E70XX do tipo comum ou de baixohidrogênio.

2 ksi = kip per square inches: 1ksi = 6,897 MPa kip = kilo pound = 4,4497 kN.

Page 67: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 67/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  64

Para os aços de baixa liga (A242, A441, A572) recomendam-se eletrodos E70XXou E80XX do tipo baixo hidrogênio.

Deve-se evitar o resfriamento repentino da solda (p. ex. com água), pois nesse caso,se forma no local uma estrutura cristalina dura e quebradiça, com propensão à rupturafrágil, com aparecimento de trincas.

6.4.1.4 Defeitos na solda

Os principais defeitos na solda são os seguintes:

• fusão incompleta e penetração inadequada decorrem em geral de insuficiência decorrente elétrica;

•  porosidade: retenção de pequenas bolhas de ar durante o resfriamento; freqüentemente

causada por excesso de corrente ou distância excessiva entre o eletrodo e a chapa;• inclusão de escória: usual em soldas feitas em camadas, quando não se remove

totalmente a escória em cada passe;

• fissuras causadas por resfriamento rápido do material

6.4.1.5 Controle e inspeção da solda

A NBR 8800 indica as especificações e técnicas para execução de soldasestruturais, qualificação de soldadores e procedimentos de inspeção.

Para as estruturas comuns basta inspeção visual. Nas indústrias de perfis e nasestruturas de grande responsabilidade utilizam-se ultra-som, radiografia ou líquido penetrante para as inspeções.

6.4.1.6 Classificação de soldas de eletrodo quanto à posição do material de solda emrelação ao material-base

Page 68: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 68/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  65

6.4.1.7 Classificação quanto à posição relativa das peças soldadas

Tipos de ligações soldadas segundo a posição relativa das peças

6.4.1.8 Simbologia de solda

6.4.2. Elementos construtivos para projeto

6.4.2.1 Soldas de entalhe

As soldas de entalhe são previstas para total enchimento do espaço entre as peçasligadas. Utiliza-se a seção do metal-base de menor espessura nos cálculos.

6.4.2.2 Soldas de filete

As soldas de filete são assimiladas, para efeito de cálculo, a triângulos retângulos.Os filetes são designados pelos comprimentos de seus lados.

Page 69: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 69/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  66

Um filete 6mm ×10mm designa filete com lado de 6mm e outro de 10mm. Namaioria dos casos, os filetes são iguais.

Denomina-se garganta do filete a espessura desfavorável (t); perna, o menor ladodo filete e raiz, a interseção das faces de fusão.

A área efetiva para o cálculo de um filete de solda de lados iguais (b) ecomprimento (l) é dada por  l bl t  A .7,0. == .

b

    t

b

 

b1

b2

       t

 bt  7,0=  

22

21

21

bb

bbt 

+⋅=  

Os filetes de solda devem ser tomados com certas dimensões mínimas para evitar oresfriamento brusco da solda e assim garantir a fusão dos materiais e minimizar distorções.

A dimensão (lado) mínima do filete é determinada em função da chapa mais grossa,conforme indicado na Tabela abaixo. Entretanto, o lado do filete não precisa exceder aespessura da chapa mais fina, a não ser por necessidade de cálculo.

Tabela: Dimensões mínimas de filetes de solda (AISC, NBR8800)Espessura da chapa mais grossa (mm) Lado do filete (b) (mm)

até 6,3 3

6,3 – 12,5 5

12,5 – 19 6

> 19 8

As dimensões máximas a adotar para os lados dos filetes são condicionadas pelaespessura da chapa mais fina.

 Num filete de solda de comprimento l , em cada extremidade há um pequeno trechoem que a espessura da garganta cai até zero. A norma brasileira especifica que ocomprimento mínimo construtivo do cordão de solda deve ser: mmbl  404 ≤≥ .

Page 70: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 70/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  67

6.4.3. Resistência das soldas

6.4.3.1. Soldas de entalhe:

As resistências de cálculo das soldas são dadas em função de uma área efetiva desolda:

l t  Aw ⋅=  

onde:t  = espessura efetival  = comprimento efetivo

Para soldas de entalhe de penetração total sujeitas a tensões de compressão outração, paralelas ou perpendiculares ao eixo da soldas, as resistências de cálculo sãoobtidas com base na tensão de escoamento ( f  y) do metal-base.

Metal base  ywnd   f  A R R ⋅== 90,0φ  (a)

Para soldas de penetração total sob tração ou compressão, paralelas ou perpendiculares ao eixo da solda, a resistência é determinada com o menor valor entre asequações (a) e (b).

Metal da solda ( )wwnd   f  A R R 6,075,0== φ  (b)

onde f w é a tensão resistente do metal da solda

Para tensões de cisalhamento, as tensões atuantes em direções diferentes sãocombinadas vetorialmente. A resistência de projeto ( Rd ) é dada pelas seguintes expressões,

adotando-se o menor valor:Metal-base:  ymnd   f  A R R 6,090,0== φ   

Metal da solda ( )wwnd   f  A R R 6,075,0== φ   

6.4.3.1. Soldas de filetes:

As resistências de cálculo das soldas são dadas em função das áreas:

 Am = área do metal-base = b.l ;  Aw = área da solda = t.l  

onde: t é a espessura da garganta

Page 71: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 71/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  68

Para esforços solicitantes de tração ou compressão atuando na direção paralelas aoeixo longitudinal da solda, a resistência de cálculo do filete pode ser determinada com os

 parâmetros do metal-base.

Os esforços solicitantes em qualquer direção no plano perpendicular ao eixolongitudinal da solda são considerados, para efeitos de cálculo, como esforços cisalhantes.A resistência de cálculo pode ser obtida por meio das seguintes expressões, adotando-se omenor valor.

Metal-base:  ymnd   f  A R R 6,090,0== φ   

Metal da solda ( )wwnd   f  A R R 6,075,0== φ   

Quando a solda estiver sujeita a tensões não uniformes, a resistência pode ser determinada em termos de esforço por unidade de comprimento, com o menor valor entre

os dois seguintes:Metal-base:  ynd   f b R R 6,090,0== φ   

Metal da solda ( )wnd   f t  R R 6,075,0== φ   

Para um filete de lados iguais a×b, garganta t e comprimento l  tem-se, na Tabelaabaixo os valores da resistência (tensões em MPa), referidas à área de solda l t  Aw ⋅= (em

mm2).

Tabela: Tensões resistentes de cálculo

l t  R resn ⋅=τ φ  , )( MParesτ   Aço Eletrodo

Metal-base Metal da solda

MR250 E60 tl ⋅8,192 tl ⋅8,186 *

MR250 E70 tl ⋅8,192 * tl ⋅3,218

AR345 E70 tl ⋅1,266 tl ⋅3,218 *

* determinante no dimensionamento

6.4.3.3 Combinação de soldas com conectores

Em construções novas, os parafusos de alta resistência, em ligações por atrito, podem ser considerados trabalhando em conjunto com soldas.

 Nas combinações com parafusos comuns, as soldas devem ser dimensionadas pararesistir ao total das solicitações de cálculo da ligação.

Em construções existentes, reforçadas com soldas, os parafusos de alta resistênciaexistentes podem ser considerados para resistir às solicitações da carga permanente jáatuante. As solicitações devidas aos novos carregamentos devem ser resistidas pelas soldas

de reforço que forem acrescentadas à ligação.

Page 72: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 72/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  69

7. PEÇAS COMPRIMIDAS

7.1. Introdução

Considerando as barras retas axialmente comprimidas, verifica-se

experimentalmente que, sob a ação de carregamentos crescentes, pode ser atingido um

estado limite, a partir do qual a forma reta de equilíbrio é instável. A carga correspondente

a esse estado limite é dita carga crítica P crit , ou carga de flambagem.

Em regime elástico, para cargas maiores do que a crítica aplicada em barras, cujo

material apresenta comportamento elástico linear, a forma estável de equilíbrio passa a ser 

a configuração fletida (Figura 1), ou seja, uma curva, denominada linha elástica.

Px

x

P y

L

y

 

Figura 1 Flambagem de Euler  

A Figura 1 ilustra o Caso Fundamental da flambagem apresentado pelo matemático

suíço Leonhard EULER (1707-1783) para barras articuladas nas extremidades.

A barra pode perder a sua estabilidade sem que o material tenha atingido seu limite

de escoamento. O colapso ocorrerá sempre na direção do eixo de menor momento de

inércia de sua seção transversal.

Para materiais estruturais como, madeira, concreto e aço, o estado limite deflambagem é um estado limite último. De fato, para cargas pouco superiores à carga

crítica, o deslocamento horizontal máximo corresponde a uma fração apreciável do

comprimento da barra, a qual se rompe por flambagem.

Em certos materiais, principalmente nas chamadas matérias plásticas como, por 

exemplo, o celulóide e o acrílico, a barra pode resistir a cargas sensivelmente superiores à

carga crítica de flambagem, pelo que o estado limite de flambagem deixa de ser um estado

limite último.

Page 73: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 73/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  70

As barras comprimidas devem ser verificadas tanto para a possibilidade de ruptura

 por compressão, como também por flambagem.

7.1.1. Flambagem elástica

A carga crítica de flambagem (P crit  ) foi deduzida por Euler a partir da equação

diferencial da linha elástica de uma barra axialmente comprimida, considerando o

comportamento de um  pilar ideal, que se supõe perfeitamente reto, comprimido

axialmente por uma carga centrada, e constituído de material isótropo e elástico linear.

A determinação dos deslocamentos horizontais da barra da Figura 1 exige que se

empregue a expressão exata da equação diferencial da linha elástica para barras fletidas:

 EI 

 M 

dx

dy

dx

 yd 

r =

  

  +

= 2/32

2

2

1

Contudo, é possível obter-se boa aproximação se, em lugar da equação exata, for 

empregada a equação aproximada da linha elástica:

 EI  M 

dx yd 

r  =≅ 2

2

1  

da Figura 1 verifica-se que o momento fletor produzido pela carga P é:  Py M = , então:

 EI 

 Py

dx

 yd =

2

2

 

indicando EI 

 P k  =2 , chega-se à seguinte equação diferencial:

 yk dx

 yd  2

2

2

=  

A resolução da equação diferencial acima fornece o valor da carga crítica de

flambagem (P crit  ), embora fiquem indeterminados os deslocamentos da configuração

fletida.

2

2

 L

 EI  P crit 

π = (1)

A carga crítica de flambagem,  P crit  é o valor da força de compressão capaz de

 provocar o início da flambagem. Este valor depende somente do módulo de elasticidade domaterial (E) e da geometria da barra (momento de inércia I e comprimento L).

Page 74: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 74/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  71

A fórmula da carga crítica de Euler foi deduzida considerando uma barra articulada

nas extremidades. Entretanto, esta fórmula pode ser adaptada para outras condições de

contorno tomando, em lugar do comprimento real  L, um comprimento modificado (Le ),também chamado comprimento equivalente de flambagem, onde )(  Lk  Le ⋅= . Assim, a

fórmula de Euler pode ser reescrita:

2

2

e

crit  L

 EI  P 

π = (2)

A Figura ao lado ilustra

diversas formas de linhas elásticas,

conforme o tipo de fixação de suas

extremidades, ou seja, conforme as

condições de contorno da barra, com

seus respectivos coeficientes de

flambagem (k) para barras: a)

articuladas nas extremidades; b)

engastada e articulada; c) engastada

nas extremidades e d) engastada em

uma extremidade e a outra livre.

L

k=1,0a k=0,5ck=0,7b k=2,0d

Figura 2 Coeficientes de flambagem

A tensão crítica ( σ crit  ) em peças comprimidas é obtida pela divisão da carga axial

crítica pela área da seção comprimida.

 A

 P cr crit  =σ   

Substituindo a formulação da carga crítica de Euler na expressão acima, obtém-se:

2

2

e

crit  AL

 EI π σ  = (3)

Do estudo das características geométricas de figuras planas, sabe-se que o raio de

giração é definido pela expressão:

 A

 I i = (4)

onde: i = raio de giração

 I = momento de inércia

 A= área da seção transversal

Page 75: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 75/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  72

Relacionando o comprimento da barra com as dimensões da seção transversal,

introduz-se o conceito de índice de esbeltez ( λ ), definido como a razão entre o

comprimento da barra e seu raio de giração, ou seja:

i

 L=λ  (adimensional) (5)

onde: λ = índice de esbeltez

L = comprimento da barra

i = raio de giração da seção transversal 

Logo, a tensão crítica de flambagem de barras axialmente comprimidas pode ser 

expressa por:

2

2

λ 

π σ 

 E crit  = (6)

A equação acima só é válida no regime elástico, ou seja, enquanto a tensão crítica

de compressão crit σ  for inferior ao limite de proporcionalidade f  p do material.

Isolando-se o índice de esbeltez, obtém-se:

crit 

 E 

σ π λ =  

Quando  pcrit   f =σ  , atingi-se um valor limite de esbeltez:

 p f 

 E π λ λ  == lim  

Portanto, a fórmula de Euler é válida para limλ λ ≥ , pois nesse caso a flambagemocorre em regime elástico.

As normas de dimensionamento de estruturas metálicas estabelecem limites para o

índice de esbeltez:

• Edifícios (AISC, NBR8800) λ ≤ 200

• Pontes (AASHTO) λ ≤ 120

Page 76: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 76/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  73

7.1.2. Flambagem inelástica

Entre a tensão limite de proporcionalidade ( f  p) e a tensão de escoamento ( f  y) do

material pode ocorrer a flambagem inelástica. O termo flambagem inelástica é usado pelo

fato de, neste trecho, não ter mais validade a Lei de Hooke.

Relacionando a tensão crítica

de flambagem com índice de

esbeltez, obtém-se o gráfico

ilustrado ao lado.

 Neste gráfico, tem-se:

 f  y = tensão de escoamento do aço

 f  p = tensão limite de proporcionalidadeflambagem elástica

curva de Euler 

lim

inelástica

f p

λ

flambagem

cr σ

yf 

λ  Figura 3. Diagrama tensão–índice de esbeltez

Quando a tensão de flambagem ultrapassa a tensão de proporcionalidade do

material, a fórmula de Euler perde a sua validade. Para estes casos, utilizam-se

formulações apresentadas por algumas normas, como, por exemplo, a fornecida pela

 NBR8800 — Projeto e execução de estruturas de aço de edifícios, antiga NB-14:

20046,0240 λ σ  −=crit  para 105<λ   

2

2

λ 

π σ 

 E crit  = para 105>λ   

Outra é a formulação para o cálculo de peças com índice de esbeltez menor do que

o limite limλ λ < é aquela apresentada pelo  AISC - American Institute of Steel 

Construction.

20341,01195 λ σ  −=crit  (kgf/cm2)

aplicável para 120<λ  para peças principais.

Para peças secundárias, com 200120 << λ  , a tensão crítica é dada por:

12661

12662

λ 

σ 

+

=crit  (kgf/cm2)

Page 77: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 77/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  74

A fórmula do AISC fornece a tensão admissível de flambagem, ou seja nela já está

considerado um coeficiente de segurança.

O valor da carga crítica ( P crit ) de Euler corresponde a uma carga de ruptura,

conseqüentemente é necessário aplicar coeficientes de segurança apropriados para o

dimensionamento.

Exemplos

1. Determinar o índice de esbeltez limite (λ lim) para o aço com tensão limite de

 proporcionalidade  f  p=19 kN/cm2 e Módulo de Elasticidade E =21000 kN/cm2.

 p f 

 E π λ  =lim 105

19

21000lim ≅= π λ   

Portanto, para peças de aço, a fórmula de Euler é válida para índice de esbeltez 105>λ  .

2. Determinar o índice de esbeltez de uma barra articulada nas extremidades, com 8m de

comprimento e seção transversal retangular de a=20cm e b=25cm.

Solução: Como a barra é articulada nas extremidades, o coeficiente de flambagem é k=1,

logo o comprimento equivalente é o próprio comprimento da barra.

Sendo a menor que b, o momento de inércia mínimo da seção transversal é:12

3

min

ab I 

×=  

e a área da seção transversal é ba A ⋅=  

e o raio de giração mínimo é: A

 I i minmin =  

46,31212

3

min

aa

ba

abi ≅=

⋅⋅⋅=  

como,min

mini

 L=λ  , tem-se:

a

 L46,3min =λ  4,138

20

80046,3min =×=λ   

Resposta: 4,138min =λ   

Page 78: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 78/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  75

3. Uma barra prismática de aço de seção transversal retangular medindo (4×5)cm, é

articulada nas extremidades e está submetida a uma carga axial de compressão. Sendo a

tensão limite de proporcionalidade do aço  f  p=19 kN/cm2 e o Módulo de Elasticidade E =21000 kN/cm2, determinar o comprimento mínimo  L desta barra para não ocorrer o

fenômeno da flambagem.

 p f 

 E π λ  =lim 4,104

19

21000lim ==π λ   

 A

 I i min

min

=   cmi 15,145

12

45 3

min

×

=  

minmin

i

 Le=λ    minmin i Le ⋅= λ    cm Le 12015,14,104 =×=  

Como a barra é articulada nas extremidades, o coeficiente de flambagem k=1. Logo,

L = Le/k = 120cm. Este é o comprimento mínimo da barra para não ocorrer flambagem.

Se a barra fosse engastada na base e a outra extremidade livre, então k=2, logo,

L = Le/2 = 60cm.

4. Uma barra de aço é articulada nas extremidades, com comprimento L=160cm e seção

transversal quadrada, com lado igual a 22cm. Determinar a carga máxima de compressão

 pela formulação de Euler. Dado: E =21000 kN/cm2.

Área: 22555 cm A =×=  

Momento de Inércia:12

4a I =   4

4

08,5212

5cm I  ==  

Raio e giração: A

 I i =   cmi 44,1

25

08,52==  

Índice de esbeltez:i

 Le=λ   i

 Lk ⋅=λ  1=k  1051,111

44,1

160>==λ   

Portanto, trata-se de flambagem elástica

Tensão crítica:2

2

λ 

π σ 

 E crit  =  

22

2

79,16

1,111

21000

cm

kN crit  =

×=π 

σ   

 A

 P crit crit  =σ     A P  crit crit  ×=σ    kN  P crit  4202579,16 =×=  

Page 79: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 79/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  76

5. Uma barra de aço, com comprimento L=135cm, articulada nas extremidades, possui

seção transversal circular com diâmetro igual a 5cm. Determinar a carga máxima de

compressão pela formulação do AISC .

4

2d  A

⋅=π 

  22

63,194

5cm A =

⋅=π 

 

64

4d  I 

⋅=π 

  44

68,3064

5cm I  =

×=π 

 

 A

 I i =   cmi 25,1

63,19

68,30==  

i

 Le=λ   i

 Lk ⋅=λ  1=k  10825,1

135 ==λ  < 120

20341,01195 λ σ  −=crit  (kgf/cm2) 3,7971080341,01195 2 =×−=crit σ  (kgf/cm2)

 A

 P crit crit  =σ     A P  crit crit  σ = 1565163,193,797 =×=crit  P  (kgf)

65,15=crit  P  tf = 156,5 kN

Exercícios

1. Duas barras de mesmo comprimento e materiais iguais são submetidas à ação de uma

carga axial  P  de compressão. Uma das barras possui seção transversal circular com

diâmetro a e a outra possui seção transversal quadrada de lado a. Verificar qual das barras

é a mais resistente, segundo a formulação de Euler. As barras possuem o mesmo tipo de

fixação nas extremidades.

 Resposta: a barra de seção transversal quadrada é a mais resistente (Melconian, 2002).

2. Uma barra de aço com 1,2m de comprimento e diâmetro d=34mm, é articulada nas

extremidades. Determinar a máxima carga de compressão axial que a barra suporta. Dado:

 E =21000kN/cm2.  Resposta: 94,42kN .

3. Determinar o diâmetro de uma barra de aço com 1,2 de comprimento, articulada nas

extremidades e submetida a uma carga axial de compressão de 200kN. Dados:

 E =21000kN/cm2

.  Resposta: d=41mm.

Page 80: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 80/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  77

7.2. Dimensionamento

A carga resistente de cálculo, para peças axialmente comprimidas, sem efeito de

flambagem local é dada pela equação:

c g cd   f  A N  ⋅⋅=φ  com φ = 0,90

onde:  A g = área da seção transversal bruta da seção

 f c = tensão resistente à compressão simples com flambagem por flexão

A tensão  f c considera o efeito de imperfeições geométricas e excentricidade de

aplicação das cargas dentro das tolerâncias de norma, além das tensões residuais existentes

nos diferentes tipos de perfis.

As normas apresentam tabelas com valores da relação f c / f  y em função do índice de

esbeltez, apresentado mais à frente. A norma brasileira incluiu quatro curvas (a,b,c,d),

aplicáveis a diversos tipos de perfis.

Para usos correntes da prática, as curvas mais utilizadas são as curvas b e c, que

servem para perfis laminados e soldados com espessuras de chapa inferiores a 40mm.

Para os aços de uso corrente obtêm se com a expressão de λ.

Aço MR 250 ikl /0111,0 ⋅=λ   

Aço AR 345 ikl /0131,0 ⋅=λ     E 

 f Q

i

kl   y

⋅=

2π λ   

Peças de seções múltiplas:

Denominam-se peças de seções múltiplas, as formadas pela associação de peças

simples, com ligações descontínuas. Quando uma peça múltipla se deforma lateralmente,

sob efeito de uma força de compressão axial, as ligações descontínuas não conseguem

obrigar uma seção inicialmente plana a se manter plana.

Page 81: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 81/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  78

Classificação das curvas de flambagem para diferentes tipos de seções

x – x

y – y

Page 82: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 82/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  79

Ábaco para cálculo de f c em função de λ.

Page 83: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 83/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  80

7.3. Flambagem local

A flambagem local pode ocorrer em perfis que são constituídos de chapas. As

chapas podem sofrer deslocamentos transversais que produzem empenamento. Pode

ocorrer flambagem local na alma ou na mesa.

A flambagem local depende da esbeltez da chapa, ou seja, a relação b/t. Se esta

relação (b/t) for maior que (b/t)limite, então deve-se verificar a flambagem local. A tabela

abaixo indica os valores adotados pela NBR 8800 e AISC para os valores limites da

relação (b/t).

Tabela: Valores limites de b/t em peças comprimidas para impedir flambagem local antesdo escoamento do material (AISC e NBR8800).

b1/t b2/t b3/t b4/t b5/t

Caso de ligação

 y f 

 E 44,0

 y f 

 E 55,0

 y f 

 E 74,0

 y f 

 E 47,1

 y f 

 E 85,1

Aço MR 250 13 16 21 42 53

Aço AR 345 11 13 18 36 45

onde:

 b1, b2, e b3 são para perfis não enrijecidos

 b4, e b5 são para perfis enrijecidos 

Page 84: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 84/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  81

Dimensionamento de peças múltiplas

7.3.1. Parâmetros de flambagem local

O parâmetro de flambagem local depende de dois parâmetros e é definido como:

a s QQQ ⋅=  

onde: Qs é um parâmetro relacionado a elementos não enrijecidos

Qa é um parâmetro relacionado a elementos enrijecidos

Parâmetro de flambagem local Qs: 

Este parâmetro é utilizado em elementos não enrijecidos (b1, b2 e b3), ou seja,elementos que possuem uma borda livre e outra borda apoiada, paralela às tensões de

compressão.

A flambagem local nestes elementos pode ocorrer na fase elástica ou na fase

inelástica.

Flambagem local inelástica

Os limites adotados na NBR8800 para a flambagem inelástica são:

 y y  f 

 E 

b

 f 

 E 018,155,0 <

  

  ≤  

Introduzindo as tensões de escoamento dos aços MR250 e AR345 na formulação acima,tem-se os seguintes limites:

MR 250 3016 <≤t 

bAR 345 2513 <≤

e o parâmetro de flambagem local Q s é dado por:

1755,0415,1 ≤××−=  E 

 f 

b

Q

 y

 s  Flambagem elástica

O limite adotado na NBR8800 para a flambagem elástica é: 

 y f 

 E 

b018,1>  

e o parâmetro de flambagem local Q s é dado por:

1670,0

2

  

  ⋅

⋅=

b f 

 E Q

 y

 s  

Page 85: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 85/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  82

Parâmetro de flambagem local Qa: 

Este parâmetro é utilizado em elementos enrijecidos (b4 e b5), ou seja, elementos

que possuem bordas apoiadas em toda a sua extensão, com a tensão de compressão

atuando paralelamente à sua extensão.

 No elemento enrijecido, a distribuição de tensões não é uniformemente distribuída,

ou seja, apresenta elevados valores nos bordos e valores bem reduzidos na região central,

conforme apresentado na figura abaixo. Contudo, pode-se definir uma largura efetiva (bef )

menor que a largura b do elemento, de maneira tal que, a distribuição de tensões seja

considerada constante. Esta largura efetiva (bef ) deve ser constituída por duas partes,

localizando-se nas bordas enrijecidas do elemento.

Determinação da largura efetiva da alma (be) b

t b

t b

cd cd 

e <

⋅−=

σ σ 

11401

797 

com: b e t  em centímetros e a tensão cd σ  em MPa.

deve-se adotar uma tensão inicial e conferir se é menor do que a tensão resultante, mais

abaixo definida.

Por definição, o coeficiente Qa é a relação entre a área efetiva e a área bruta da seção.

 g 

ef 

a A

 AQ =  

Índice de esbeltez (λ): o parâmetro de flambagem local (Q) interfere também na

determinação do índice de esbeltez da peça:

 E 

 f Q

i

l k   y

⋅⋅

= 2π λ   

Page 86: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 86/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  83

Definido o índice de esbeltez para elementos sujeitos à flambagem local e o tipo de

curva (a,b,c,d), determina-se a relação y

cr 

 f 

 f = ρ  por meio do Ábaco para cálculo de f c em

função de λ.

Em seguida, determina-se a tensão de compressão:

 yc  f  f  ⋅= ρ   

Tensões resistentes

O valor da tensão resistente calculada deve ser menor do que a tensão admitida

inicialmente. A tensão resistente na chapa em elementos não-enrijecidos é dada por:

ef 

d cd 

 A

 N =σ  = c sccd   f Q ⋅⋅= φ σ  com 9,0=cφ   

onde Q s é o menor coeficiente dos diversos elementos não-enrijecidos da seção.

O cálculo é iterativo já que o esforço normal resistente  N d  depende da largura

efetiva que, por sua vez, dependa da tensão σ cd , função de N d .

Carga axial de cálculo 

Finalmente, a carga axial resistente de cálculo é dada por:

c g cd   f  AQ N  ⋅⋅⋅= φ  com 9,0=cφ   

onde: Q = parâmetro de flambagem local

Page 87: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 87/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  84

Exemplos

1. Uma coluna tem seção transversal em forma de perfil H, fabricado com duas chapas

8mm×300mm para os flanges e uma chapa 8mm×400mm para a alma, todos em aço

ASTM A-36. O comprimento de flambagem é k.l  = 9,84m. Calcular a resistência de

cálculo à compressão axial, considerando a flambagem em torno do eixo mais resistente

(x-x). Admite-se que a peça tenha contenção lateral impedindo flambagem em torno do

eixo de menor resistência (y-y).

Solução:

a) valores de b/talma:

42508

4004 >==t 

b → pode ocorrer flambagem local

flange:

1675,188

1502 >==t 

b → pode ocorrer flambagem local

8mm

      8     m    m

      b       4

    =      4      0       0 

    m    m

y

x

      8     m    m

y

x

b2=150mm

b) coeficiente Qs chapa não enrijecida

flange: 3016 <<t 

bentão 1755,0415,1 ≤−=

 E 

 f 

bQ

 y

 s  

192,0205000

250

8

150755,0415,1 <=×−= sQ 92,0= sQ  

c) largura efetiva da alma: admitindo-se inicialmente  MPacd  180=σ  , obtém-se:

b

t b

t b

cd cd 

e <

⋅−=

σ σ 

11401

797onde: b=cm; t=(cm); σcd=MPa

cmcmbe 406,37180

8,0

40140

1180

8,0797<=

×−×

×=  

adota-se be =37,6 cm a ser verificado posteriormente com o valor calculado para σcd.

Page 88: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 88/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  85

( ) ( ) 280408,0308,02 cm A g  =×+××=  

( ) ( ) 2786,378,0308,02 cm Aef 

=×+××=  

98,080

78===

 g 

ef 

a A

 AQ  

d) parâmetro de flambagem local

 sa QQQ ⋅= 90,092,098,0 =×=Q  

e) Propriedades geométricas da seção

Momento de inércia 4

3

2 2424212408,04,20308,02 cm I  x =×+×××=  

Raio de giração: cm A

 I i

 g 

 x x 4,17

80

24242===  

f) parâmetro de esbeltez

 E 

Qf 

i

kl   y

2π λ = 60,0

205000

2509,0

4,17

9842 =××

×=π 

λ   

g) tensão resistente (curva b da norma brasileira) e tensão de cálculo cd σ   

 yc  f  f  . ρ = 838,0= ρ   

 MPa f c 210250838,0 =×=  

c sccd   f Q ⋅⋅= φ σ  com φ c = 0,90

 MPacd  17421092,09,0 =××=σ   

Como a largura efetiva da alma foi calculada para a tensão σ cd  = 180 MPa, não há

necessidade de repetir esse cálculo com σ cd  = 174 MPa. Se σ cd  fosse maior que 180 MPa,

seria necessário fazer um novo cálculo de largura efetiva.

h) carga axial resistente de projeto

c g cd   f  AQ N  ⋅⋅⋅=φ    kN  N d  1361218090,090,0 =×××=  

Page 89: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 89/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  86

2. Uma coluna tem seção transversal em forma de perfil H, fabricado com duas chapas

6mm×240mm para os flanges e uma chapa 6mm×280mm para a alma, todos em aço

ASTM A-36. O comprimento de flambagem é k.l = 6,5m. Calcular a resistência de cálculo para compressão axial, considerando a flambagem em torno do eixo mais resistente (x-x).

Admite-se que a peça tenha contenção lateral impedindo flambagem em torno do eixo de

menor resistência (y-y).

Solução:

a) valores de b/t

alma:

427,466

2804 >==t 

b → pode ocorrer flambagem local

flange:

16206

1202 >==t 

b → pode ocorrer flambagem local

x x

6mm

6mm

6mm

y

y

b2=120mm

b4=280mm

b) coeficiente Qs 

flange: 3016 <<t 

bentão 1755,0415,1 ≤−=

 E 

 f 

bQ

 y

 s  

189,0205000

250

6

120755,0415,1 ≤=×−= sQ 89,0= sQ  

206

120==

bComo 15,29

250

205000018,1 =<

btem-se flambagem inelástica

c) largura efetiva da alma: admitindo-se inicialmente  MPacd  180=σ  , obtém-se:

b

t b

t b

cd cd 

e <

⋅−=

σ σ 

11401

797onde: b=cm; t=(cm); σcd=MPa

cmcmbe 2867,27180

6,0

28140

1180

6,0797<=

×−×

×=  

adota-se be =27,67cm a ser verificado posteriormente com o valor calculado para σcd.

Page 90: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 90/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  87

( ) ( ) 26,45286,0246,02 cm A g  =×+××=   ( ) ( ) 24,4567,276,0246,02 cm Aef  =×+××=  

996,06,45

4,45===

 g 

ef a A

 AQ  

d) parâmetro de flambagem local

 sa QQQ ⋅= 886,089,0996,0 =×=Q  

e) Propriedades geométricas da seção

Momento de inércia: ( )333

1212

h H  Bah

 I  x −+= a=0,6cm, B=24cm, h=28cm,

H=29,2cm

( ) 4333

78,6978282,2912

24

12

286,0cm I  x =−×+

×=  

raio de giração: cm A

 I i  x x 38,12

6,45

78,6978===  

f) parâmetro de esbeltez

 E 

Qf 

i

kl   y

2π λ = 55,0

205000

250886,0

38,12

6502 =×

××=

π λ   

g) tensão resistente (curva b da norma brasileira) e tensão de cálculo cd σ   

λ = 0,55 → tabela, curva b → 86,0= ρ   

 MPa f c 21525086,0 =×= 838,0= ρ   

c sccd   f Q ⋅⋅= φ σ  com φ c = 0,90  MPacd  3,17221589,09,0 =××=σ   

Como a largura efetiva da alma foi calculada para a tensão σ cd  = 180 MPa, não há

necessidade de repetir esse cálculo com σ cd = 172,3 MPa. Se σ cd fosse maior que 180 MPa,

seria necessário fazer um novo cálculo de largura efetiva.

h) carga axial resistente de projeto

c g cd 

 f  AQ N  ⋅⋅⋅=φ    kN  N d 

8,7815,216,45886,090,0 =×××=  

Page 91: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 91/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  88

8. PEÇAS FLETIDAS

8.1. Introdução

Os conceitos fundamentais da flexão normal de barras prismáticas são aqui

apresentados para os perfis de aço correntemente utilizados para resistir à flexão normal: as

vigas. São consideradas as seguintes hipóteses:

a. cargas aplicadas ao longo de um dos planos principais de inércia de modo que não

há flexão oblíqua;

 b. a viga não é solicitada à torção;

c. a viga está devidamente protegida contra qualquer tipo de instabilidade;

d. a viga é considerada homogênea, isto é, constituída de um só tipo de material.

Conceitos gerais

 No projeto no estado limite ultimo de vigas sujeitas à flexão simples, calculam-se

 para as seções críticas, o momento fletor e o esforço cortante resistentes para compará-losaos respectivos esforços solicitantes de projeto. Além disso, devem-se verificar os

deslocamentos no estado limite de utilização.

A resistência à flexão das vigas pode ser afetada pela flambagem local e pela

flambagem lateral.

A flambagem local é a perda da estabilidade das partes comprimidas do perfil, a

qual reduz o momento resistente da seção.

 Na flambagem lateral a viga perde seu equilíbrio no plano principal de flexão (em

geral vertical) e passa a apresentar deslocamentos laterais e rotações de torção. Para se

evitar a flambagem lateral de vigas I, cuja rigidez à torção é muito pequena, é preciso

 prever contenção lateral à viga. As vigas I são as mais indicadas para resistir à flexão,

devendo, entretanto, seu emprego obedecer às limitações de flambagem.

Page 92: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 92/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  89

8.2. Dimensionamento à flexão

8.2.1. Momento de início de plastificação e momento de plastificação

Considere-se o diagrama de momento × curvatura de uma viga simplesmente

apoiada sob carregamento crescente, como indicado na Figura abaixo.

k = ddx

θ

M

M

My

p

σ < f y

f y

f y

L

 

Diagrama momento × curvatura

Hipóteses

• Admite-se que não há flambagem local ou lateral da viga;

•  M  y é o momento de início de plastificação;

•  M  p é o momento resistente igual ao momento de plastificação total da seção.

dy

h M

b

CGyM

fyfy

pM

 

A equação tensões normais na flexão normal é dada por: σ = M / W .onde W é o módulo resistente da seção transversal. Para seções transversais retangulares, o

módulo resistente é: W=bh2 /6 .

Para as peças metálicas, a tensão limite do regime elástico, ou seja, a tensão de

início de plastificação é f  y. Assim, o momento de início de plastificação M  y é definido por:

W  f  M   y y .=  

O momento de plastificação total  M  p é o esforço total resultante do diagrama de

tensões e é definido por: Z  f  M   y p .= onde  Z=bh2 /4 é o módulo plástico da seção retangular.

Page 93: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 93/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  90

Coeficiente de forma

A relação entre momentos de plastificação total e momento de início de

 plastificação denomina-se coeficiente de forma da seção.

Coeficiente de forma:W 

 Z 

 M 

 M 

 y

 p =  

Tabela 1: Módulo plástico (Z) e coeficiente de forma (Z/W) de seções de vigas

Seção Módulo plástico (Z) (Z/W)

b

h

 

4

2bh  1,5

( x-x) ( ) ( )20 24  f  f  f  t ht 

t hbt  −+−   ≈ 1,12h

b

t 0

tf 

  ( y-y) ( ) 20

2

24

1

2t t h

t b f 

 f  −+   ≈ 1,55

h

 6

3h  1,7

  

   −−

33 211

6 h

t h  

  

   −−

 

 

 

  −−

4

3

211

211

316

h

h

π  

ht

 

( )ht th <<2   1,27 (t << h)

b

h

t f 

t 0

 

 

  

 −

  

   −−

2

02 2

12

114 h

b

t bh  f    ≈ 1,12

h

b  12

2bh  2

8.2.2. Resistência à flexão de vigas com contenção lateral

Disposições construtivas de contenção lateral de vigas

a) contenção lateral contínua: embebimento da mesa comprimida em laje de concreto ou

ligação mesa-laje por meio de conectores;

Page 94: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 94/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  91

 b) contenção lateral discreta: apoios laterais discretos, formados por quadros transversais,

treliças de contraventamento, etc.

 Nos pontos de apoio vertical das vigas, admite-se sempre a existência de contenção

lateral que impede o tombamento do perfil.

Flambagem local

A resistência de vigas metálicas à flexão pode ser reduzida por efeito de flambagem

local das chapas que constituem o perfil.

Classificação das seções quanto à ocorrência de flambagem local. 

 Na Tabela abaixo são apresentados os comportamentos das vigas sujeitas a

carregamento crescente, mostrando a influência da flambagem local sobre o momento

resistente das vigas e sobre as suas deformações.

Tabela 2 Resistência à flexão de vigas com contenção lateral

Classe Designação Comportamento

1 Seção supercompacta

φ

M

y

p

M

M

 

2 Seção compacta

φ

M

My

p

M

 

3 Seção não compacta

φ

yM

pMM

flambagem local

 

4 Seção esbelta

φ

My

flambagem local

M

M

p

 

Page 95: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 95/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  92

Exemplo: Para o perfil da figura, calcular o coeficiente de forma paraflexão em torno do eixo x-x.A = 45cm2.

Momento de inércia ( I  x)

( ) 43

2 12090312

1,888,052,4495,0202 cm I  x =×+×××=  

Módulo elástico: 37,268645

120903cmW  x ==  

Momento plástico:

( ) 32

32442

05,448,0252,4495,0202 cm Z  x =

 

  

 ××+×××=  

Coeficiente de forma: 21,17,2686

3244

== x

 x

 Z 

 

200mm

8mm

      9 .      5    m    m

      9      0      0    m    m

 Tabela 3 Valores limites da relação largura-espessura de seções I ou H com um ou doiseixos de simetria fletidas no plano da alma

Local daFlambagem local

AçoSuper compacta

classe 1Compacta

classe 2 (λbp)

Não compacta

classe 3 (λbr )

MR250 8,5 11 39k *Mesa: f 

 f 

bt 

b

2

1=λ   

AR350 7 9 30k *

MR250 67 100 160Alma

hb

0=λ   

AR350 57 85 136* Valores de k:k = 0,82 para perfis laminadosk = 0,62 para perfis soldados

Exemplo: Verificar a classe dos perfis laminados a seguir:

Perfil f 

 f 

bt 

b

2

1=λ   

hb

0=λ    classe

I (254 × 37,7) 4,7 29 1I (508 × 121,2) 3,8 30 1

U (254 × 22,7) 6,0 38 1U (381 × 50,4) 5,2 38 1

OBS: para a mesa do perfil U adota-se: f 

 f 

bt 

b=λ   

Exemplo: Verificar a classe dos perfis soldados a seguir:

Perfil f 

 f 

bt 

b

2

1=λ   

hb

0=λ    classe

CS (250 × 52) 13 29 3CS (650 × 305) 14,5 38 3VS (400 × 49) 10,5 61 2

VS (1400 × 260) 15,6 109 3

Page 96: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 96/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  93

Momento resistente de projeto

O momento resistente de projeto de vigas metálicas simplesmente apoiadas com

momento fletor constante é dado por:

 M dres = φ b.M n com φ b = 0,90

onde:

 M n = momento resistente nominal, obtido por análise, sendo seu valor determinado pelo

limite de escoamento do aço, ou por flambagem, conforme a tabela abaixo.

Tabela 4 Momento nominal Mn:

Classe Designação Momento nominal ( M n)

1 Seção supercompacta  M  p = Z.f  y 

2 Seção compacta  M  p = Z.f  y 

3 Seção não compacta  Interpolar entre M  p e M r  

4 Seção esbelta  M r = W.f cr  

onde: f cr = tensão resistente à flexão determinada pela flambagem local elástica, tomado como f cr =115MPa M r = momento resistente nominal para a situação limite entre as classes 3 e 4, isto é, para λ b = λ br  

cr r  M

bpλ br λ

Mp

M

Mseção

compactaseção nãocompacta

seçãoesbelta

λ

 

Figura Variação do momento resistente nominal de vigas I ou H, carregadas no plano da alma com efeito deflambagem local da mesa ou da alma (admite-se contenção de flambagem lateral).

 Na situação limite entre seções não compactas (classe 3) seções esbeltas (classe4).

isto é, para λ b = λ br , o momento resistente nominal denomina-se  M r . Para perfis I ou H

com um ou mais eixos de simetria, M r é dado pelas expressões:

Page 97: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 97/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  94

Flambagem local da mesa

 yt c ycr   f W  f  f W  M  <−=  

onde:

 f cr = tensão residual em perfis laminados ou soldados, considerada como f cr =115MPa

W c , W t  = módulos elásticos da seção, referidos às fibras mais comprimidas e maistracionadas, respectivamente.

Flambagem local da alma

 yr  Wf  M  =  

onde: W é o menor módulo resistente da seçãoPara seções não compactas (classe 3), os momentos nominais podem ser 

interpolados linearmente entre os valores limites das classes 2 e 3.

( )r  p

bpbr 

bpb

 pn  M  M  M  M  −−

−−=

λ λ 

λ λ  

Limitação do momento resistente

Quando a determinação dos esforços solicitantes, deslocamentos, flechas, etc, éfeita com base no comportamento elástico, o momento resistente de projeto fica limitado a:

 ybdres  f W  M  ...25,1 φ = com φ b = 0,90

Influência dos furos na resistência da seção

 Na determinação das propriedades geométricas de vigas laminadas ou soldadas,

com ou sem reforço de mesa, podem ser desprezados furos para parafusos de montagem

em qualquer das mesas, exceto quando a redução da área devida a esses furos, em qualquer das mesas, exceder 15% da área bruta da mesa, caso em que se desconta a área excedente

de 15%.

Page 98: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 98/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  95

Exemplos:

1. Calcular o momento resistente de projeto de um perfil I (305 × 60,6) (12”) em aço

MR250, com contenção lateral contínua. O perfil é super compacto.

ho=271,4mm; to=11,7mm; bf =133,4mm; tf =16,7mm; Wx=870cm3.

Flambagem local

Mesa: f 

 f 

bt 

b

2=λ  5,84

7,162

4,133<=

×=bλ    → perfil classe 1 super compacto

Alma: 0

0

hb =λ  672,237,11

4,271

<==bλ    → perfil classe 1 super compacto

 ybdres  Zf  M  φ =   cmkN  M dres .19575258709,0 =××= = 195,75 kN.m 

2. Calcular o momento resistente de projeto de um perfil soldado VS (400 × 49) em aço

MR250, com contenção lateral contínua. O perfil é compacto. Não havendo valores

tabelados de Z, pode adotar-se em perfis I a relação aproximada (Z ≈ 1,12W).

ho=381mm; to=6,3mm; bf =200mm; tf =9,5mm; Wx=870cm3.

Flambagem local

Mesa: f 

 f 

bt 

b

2=λ  115,10

5,92

200<=

×=bλ    → perfil classe 2 compacto

Alma:0

0

hb =λ  6761

3,6

381<==bλ    → perfil classe 1 super compacto

Conclusão: o perfil é compacto, classe 2

( )  yb ybdres  f W  Zf  M  12,1φ φ  ≅=   cmkN  M dres .219242587012,19,0 =×××= = 219,24 kN.m 

3. Calcular o momento resistente de projeto de um perfil soldado VS (1400 × 260) em aço

MR250, com contenção lateral contínua. O perfil é não compacto (classe 3) devido aa

dimensões da mesa.

ho=1368mm; to=12,5mm; bf =500mm; tf =16mm; Wx=14756cm3.

Page 99: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 99/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  96

Flambagem local

Mesa:  f 

 f 

b t 

b

2=λ    k b 396,15162

500

<=×=λ  onde k=0,62 para perfil soldado

então 2462,03939 =×=k    → perfil classe 3 não compacto

Alma:0

0

hb =λ  1604,109

5,12

1368<==bλ    → perfil classe 3 não compacto

cmkN  M  p .413168251475612,1 =××= = 4131,7 kN.m 

( ) cmkN  M r  .1992065,112514756 =−×= = 1992,1 kN.m 

6,15=bλ  24=br λ  11=bpλ   

( ) mkN  M n .6,33741,19927,41311124

116,157,4131 =−×

−−

−=  

mkN  M  M  nbdres .1,30376,33749,0 =×==φ   

8.2.3. Resistência à flexão de vigas sem contenção lateral contínua

Flambagem lateral de viga simplesmente apoiada com momento fletor constante

• Resistência à flexão de vigas sem contenção lateral contínua

O fenômeno da flambagem

lateral pode ser entendido a partir daflambagem por flexão de uma coluna.

Em uma viga, o momento fletor que

causa flambagem lateral depende da

esbeltez da mesa comprimida no seu

 próprio plano. A flambagem da mesa no

 plano da alma é impedida pela própria

alma.

flambagemlateral

Figura: Flambagem lateral de viga com contençãolateral que impede o tombamento do perfil. 

Page 100: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 100/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  97

Categorias de vigas sem contenção lateral

a) vigas curtas: o efeito da flambagem lateral pode ser desprezado. A viga atinge o

momento defino por escoamento ou flambagem local;

 b) vigas longas: atingem o estado limite de flambagem lateral em regime elástico, com

momento crítico M cr .

c) vigas intermediárias: as vigas intermediárias apresentam estado limite de flambagem

lateral inelástica, a qual é muito influenciada por imperfeições geométricas da peça e

 pelas tensões residuais embutidas durante o processo de fabricação da viga.

Flambagem lateral de viga simplesmente apoiada com momento fletor constante

Para a solução da flambagem lateral de vigas simplesmente apoiadas com momento

fletor constante, admite-se contenção lateral nos extremos.

w y ycr   EC  EI  L

GJ  EI  L

 M 2

2π π +=  

onde:

 L = comprimento da viga

 I  y = momento de inércia em torno do eixo y

 J = constante de torção pura (Saint-Venant)

C w = constante de empenamento

Para perfil I ou H duplamente simétrico, tem-se:

( )300

323

1t ht b J   f  f  +=   ( )

42  y

 f w

 I t hC  −=  

Resistência à flexão de vigas I com dois eixos de simetria no plano da alma.

O momento resistente nominal depende do comprimento sem contenção lateral (l b)

a) viga curta:

 y pr   Zf  M  M  ==  

condições para se ter viga curta: y

 ybpb f 

 E il l  75,1=≤  

onde i y é o raio de giração em torno do eixo de menor inércia para: aço MR250: l bp = 50i y; aço AR350: l bp = 43i y;

Page 101: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 101/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  98

b) viga longa 

O momento resistente nominal é próprio momento crítico M cr .

221 1

  

  

+==

 y

b y

bbcr n

il 

il 

C  M  M  β  β   

onde:  EAGJ π  β  =1   ( )22

2 4  f t hGJ 

 EA−=

π  β   

C b = é o coeficiente que leva em conta o efeito favorável de o momento não ser 

uniforme no segmento l b, dado por:

3,23,005,175,1

2

2

1

2

1 ≤  

  +

  

  +=

 M  M 

 M  M C b  

sendo  M 1 e  M 2 os momentos nas extremidades do trecho sem contenção lateral,

 M 1< M 2. Os momentos  M 1 e  M 2 têm o mesmo sinal. Quando produzem curvatura

reversa na viga e sinais opostos em caso de curvatura simples.

b

M1 MM 2

C = 1

 1M = 0 2M = M   M1 M2

 Figura: condições para determinação do coeficiente C b.

Adota-se C b = 1 nas vigas em balanço e quando o momento num trecho

intermediário do trecho l b é maior que M 1 e M 2. Além disso, C b deve ser igual a 1 quando

há carregamento aplicado ao longo do trecho não contraventado. Em qualquer caso, pode-

se tomar C b = 1, que estará correto ou a favor da segurança.

bl 

2

l bp br l 

escoamentoou flambagem

local

Mn

M

Mp

vigacurta

flambageminelástica

vigaintermediária

vigalonga

flambagemelástica

cr M

MM1

1M

l b

2M

l b

 

Figura: Momento nominal de ruptura de vigas por flambagem lateral

Page 102: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 102/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  99

Expressão aproximada para obtenção de

 M cr segundo a NBR 8800

2

2

2

7,969,0

 

 

 

 

    

+

 

 

 

 

==

b

 f  f 

b

 xbcr n

il 

 E 

t bhl 

 E W C  M  M 

 onde: iT  é o raio de giração da seção formada pela mesa

comprimida mais 1/3 da região comprimida da alma

(aproximadamente igual a 1/6 da área total da alma), calculado em

relação ao eixo situado no plano médio da alma. 6

1200

3

t hbt 

bt 

i

 f  f 

 f  f 

+=  

Condição para se ter viga longa: l b > l br  

22

12

21 411

2r 

br 

b y

br   M C  M 

C il 

 β 

 β  β ++=  

Com o momento crítico calculado pela expressão simplificada acima, chega-se à:

22

1119,19

 X  X t b

hil 

 f  f 

T br  ++= com ( )

2

75,40 

  

 −=

 f  f 

T r  y

b t b

hi f  f 

 E C  X   

b) viga intermediária  Neste caso M n é obtido por interpolação linear entre M  p e M r .

( )bpbr 

bpb

r  p pnl l 

l l  M  M  M  M 

−−

−−= com: r  y xr   f  f W  M  −=  

onde: f r = tensão residual considerada igual a 115 MPa.

Condição para se ter viga intermediária: l bp < l b < l br  

Exemplos:

1. Comparar os momentos resistente de projeto de uma viga I (457 × 89,3) (18”) com uma

viga soldada VS (500 × 86), de mesmo peso próprio aproximadamente, supondo as vigas

contidas lateralmente. Aço MR250.

Solução:

a) viga laminada I (457 × 89,3) (18”)

b f =154,6 mm; t  f =17,6 mm; h0 =422 mm; t 0 =13,9 mm;

flambagem local da mesa: 5,84,46,172

6,154

2<=

×==

 f 

 f 

bt 

bλ    → super-compacto: classe 1

Page 103: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 103/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  100

flambagem local da alma: 673,309,13

422

0

0 <===t 

hbλ    → super-compacto: classe 1

O perfil é supercompacto (classe 1)Módulo resistente W  x = 1541 cm3 Módulo plástico:  xW  Z  ×≅ 12,1

Momento resistente de projeto:  ybdres  f  Z  M  φ = com φ b = 0,90

cmkN cm

kN cm M dres .3883325154112,19,0

23 =×××=  

b) viga soldada VS (500 × 86)

flambagem local da mesa: 5,88,7162

250

2<=

×==

 f 

 f 

b t 

bλ    → supercompacto: classe 1

flambagem local da alma: 100743,6

468

0

0 <===t 

hbλ    → compacto: classe

2

O perfil é compacto (classe 2)

Módulo resistente W  x = 2090 cm3 Módulo plástico:  xW  Z  ×≅ 12,1

Momento resistente de projeto:  ybdres  f  Z  M  φ = com φ b = 0,90

cmkN cm

kN cm M dres .5266825209012,19,0

23 =×××=  

Conclusão: O perfil soldado tem altura maior que o perfil laminado de peso equivalente e,

sendo compacto, possui maior eficiência à flexão.

2. Um perfil VS (400 × 49) foi

selecionado para uma viga contínua

de quatro vãos de 8m, conforme

ilustrado na figura. A viga é de aço

MR250 e só possui contenção

lateral nos apoios. Calcular a

máxima carga P permanen-te a ser 

aplicada nos vãos da viga (γ  f =1,3).

 A B C D

4

M = 0,17PL

M = 0,161PL

M = 0,107PL

8m 8m

4

8m 8m

4 4

P P P P

E

 

Page 104: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 104/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  101

Solução:

ho=381mm; to=6,3mm; bf =200mm; tf =9,5mm; Wx=870cm3.

6

1200

3

t hbt 

bt 

i

 f  f 

 f  f 

+=   cmiT  25,5

6

1,3863,02095,0

122095,0 3

×=  

Classificação quanto a flambagem lateral: l b = 800cm

C b = 1 (o momento máximo ocorre em seção não contraventada lateralmente)

( )

2

75,40

 

 

 

 

−=  f  f 

r  yb t b

hi

 f  f  E C  X    ( ) 28,32095,0

4025,5

5,1125205000,1

75,402

 

 

 

×

×

×−××= X   

22

1119,19

 X  X t b

hil 

 f  f 

T br  ++=   cml br  74128,311

28,3

1

2095,0

4025,59,19 22

=++×

××=  

Como l b > l br , a viga é longa, portanto, o momento resistente de projeto é:

2

2

2

7,969,0

 

 

 

 

 

  

 +

 

 

 

 

=

b

 f  f 

b xbvdres

i

 E 

t b

hl 

 E W C  M  φ   

cmkN  M dres .9393

25,5800

205007,9

95,02040800

2050069,08700,19,0

2

2

2

=

 

 

 

 

  

  

×+

 

 

 

 

××

××××=  

 M máx = 0,17 Pl = 0,17×800 = 136 P  

Admitindo-se carga do tipo permanente, calcula-se M d com γ  f =1,3.

Assim,  M d 

=1,3×136 P =176,8 P  

Igualando-se os momentos solicitante e resistente de projeto, obtém-se o máximo valor de P .

 M d = M dres =176,8 P = 9393 →   P = 53,1 kN

Estado Limite de Utilização: flecha máxima:

 EI 

 PL3

012,0=δ    m009,010173931005,2

81,53012,0

88

3

=×××

××= −δ  = 9 mm 

Limite de flecha pela NBR 8800 – barra suportando piso:

cm L 2,2360800

360max ===δ  = 22 mm > δ portanto, atende.

Page 105: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 105/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  102

3. Admitindo-se que na viga do problema anterior as cargas concentradas P sejam

aplicadas por vigas transversais apoiadas nos centros dos vãos, calcular o momento fletor 

resistente na região do momento máximo solicitante.

Solução: com contraventamento lateral nos apoios e nos pontos de aplicação das cargas

concentradas, tem-se l b = 400 cm e C b > 1.

Cálculo de C b. Trecho AB: 02

1 = M 

 M   →  C b = 1,75

Trecho BC: 95,0170,0

161,0

2

1 == M 

 M   →  C b = 30 > 2,3 → C b=2,3

Cálculo dos comprimentos limites l bp e l br .

 y

 ybp f 

 E il  75,1=   cml bp 226

250

2050052,475,1 =××=  

87,10,1

28,328,3===

bC  X    cml br  108987,111

87,1

1

2095,0

4025,59,19 22

=++×

××=  

A viga é do tipo intermediária: l bp < l b < l br  226cm < 400cm < 1089cm

O momento resistente no vão lateral é obtido por interpolação entre M r e M  p.

r  y xr   f  f W  M  −=   ( ) cmkN  M r  .117455,1125870 =−×=  

 f r = tensão residual considerada igual a 115 MPa.

 y p  f  Z  M  .=   cmkN  M  p .242652587012,1 =××=  

( )bpbr 

bpb

r  p pnl l 

l l  M  M  M  M 

−−

−−=  

( ) cmkN  M n .21741

2261089

226400117452426524265 =

−×−−=  

nbdres  M  M  .φ =   cmkN  M dres .19567217419,0 =×= = 195,7 kN.m.

Conclusão: com as novas condições de contenção lateral, a viga do problema anterior teve

um grande acréscimo de momento resistente: (195,7 > 93,9) kN.m.

Page 106: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 106/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  103

8.3. Dimensionamento da alma das vigas

8.3.1. ConceitosAs almas das vigas servem principalmente para ligar as mesas e absorver os

esforços cortantes.

 Nos perfis laminados, as almas são pouco esbeltas (h0/t0 moderado), tendo

geralmente resistência à flambagem suficiente para atender aos esforços solicitantes, de

modo que a resistência é determinada pelo escoamento ao cisalhamento do material ( f v ≈ 

0,6 f  y).

 Nos perfis fabricados, as almas são geralmente mais esbeltas (h0/t0 elevado), de

modo que a resistência da viga limitada pela flambagem alma. Nestes casos, para aumentar 

a resistência à flambagem, utilizam-se enrijecedores transversais.

8.3.2. Tensão de cisalhamento

As tensões de cisalhamento (τ ) em peças de altura constante, solicitadas por esforço

cortante (V ), são dadas pela conhecida fórmula da Resistência dos Materiais:

tI 

VS =τ   

onde:

t = espessura da chapa no ponde onde se mede a tensão

S = momento estático referido ao centro de gravidade da seção bruta, da parte da área da

seção entre a borda e o ponto onde se mede a tensão

 I = momento de inércia da seção bruta, referido ao centro de gravidade respectivo

Para o cálculo das tensões solicitantes de cisalhamento utiliza-se a relação:

w

d d 

 A

V =τ   

onde: V d = esforço de cisalhamento solicitante de cálculo Aw = área efetiva de cisalhamento dada por:

ht 0 em perfis laminadosh0t 0 em perfis soldados

2/3 A g em perfis de seção retangular cheia¾ A g em perfis de seção circular cheia½ A g em perfis tubulares de seção circular 

Page 107: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 107/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  104

τ

 

maxτ

 

maxτ

 

méd τ τ 2

3max =   méd τ τ 

3

4max =  

8.3.3. Vigas I com um ou dois eixos de simetria sem enrijecedores

Vigas I com valores moderados de h0/t0.Para vigas I com alma pouco esbelta (valores baixos de h0/t0), a flambagem da alma

 por cisalhamento não é determinante (o material entra em escoamento para cargas

inferiores à carga crítica de flambagem). Os valores limites de h0/t0 para esta categoria de

almas são dados pela expressão.

 y f 

 E 

h5,2

0

0 ≤  

 para aço MR250 = 71 aço AR345 = 60

Esforço cortante resistente de cálculo é dado por:

 ywvdres  f  AV  6,0φ = com φ v = 0,9

Vigas I com valores elevados de h0/t0.

Em vigas I com valores h0/t0 superiores elevados, a resistência ao cisalhamento é

reduzida por efeito da flambagem da alma.

Esforço cortante resistente de cálculo é dado por:

v ywvdres C  f  AV  6,0φ =  

flambagem elástica:

 para y f 

 E 

h23,3

0

0 >  2

0

0

97,7

 

  

 =

h f 

 E C 

 y

v  

 para aço MR250 = 92 aço AR345 = 79

Page 108: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 108/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  105

flambagem inelástica:

 para  y y  f 

 E 

h

 f 

 E 

23,35,2 0

0

≤<    yv  f 

 E 

t hC 

0

0

5,2

=  

O limite superior de h0/t0 é dado pela seguinte equação com tensões em MPa:

( )115

48,0

max0

0

+=

 

  

 

 y y  f  f 

 E 

 para aço MR250 = 326 aço AR345 = 247

 Na prática, as relações h0/t0 de vigas sem enrijecedores transversais intermediários

são limitados aos seguintes valores:

edifícios (AISC) h0/t0 ≤ 260 pontes (AASHTO) h0/t0 ≤ 150

Exemplo:

Calcular a carga máxima permanente q (kN/) que pode ser aplicada na viga da figura, com

vão de 6m, contida lateralmente. Dados: aço MR250; perfil soldado VS (500×86). A seção

da viga é compacta; classe 2.

      1      6    m    m

6.3mm

250mm

VS (500 x 86)

L (m)

q (kN/m)

      5      0      0    m    m

 

Page 109: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 109/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  106

Solução:

a) Flexão – Estado Limite de Último

Momento fletor resistente: seção compacta, viga contida lateralmente.

W  x = 2090 cm3   Z  x = 1,12 W  x   I  x = 52250 cm4 

 ybdres  Zf  M  φ = com φ b = 0,9

cmkN  M dres .5266825209012,19,0 =×××= = 526,7 kN.m 

Momento fletor solicitante de projeto

8

2 Lq M  d 

d  =   d d 

d  qq

 M  5,48

62

==  

Igualando M dres = M d , determina-se o valor de qd :

7,5265,4 =d q  m

kN qd  117

5,4

7,526==  

 b) Cisalhamento – Estado Limite de Último

Esforço cortante resistente de cálculo (viga sem enrijecedores intermediários)

 y y  f 

 E 

h

 f 

 E 23,35,2

0

0 ≤<   9274710

0 < 

  

 =<

 y

v f 

 E 

t h

0

0

5,2= 97,0

250

205000

74

5,2==vC   

área da alma  f w t h A ×= 0  

2

48,2963,08,46 cm Aw =×=  

v ywvdres C  f  AV  6,0φ =   kN V dres 38697,0256,048,299,0 =××××=  

Esforço cortante solicitante de cálculo

2

 LqV  d 

d  =   d d 

d  qq

V  32

6=

×=  

Igualando V dres = V d , determina-se o valor de qd :

kN qd  3863 =  m

kN qd  7,128

3

386==  

Page 110: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 110/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  107

c) Deslocamento – Estado Limite de Utilização

Deslocamento máximo permitido pela NBR 8800

300max

 L=δ    m02,0

300

6max ==δ   

Deslocamento no meio do vão

 EI 

 Lqd 

384

5 4

=δ    d d  q

q 488

4

1058,110522501005,2384

65 −− ×=

××××=δ   

Igualando δ max = δ , determina-se o valor de qd :

02,01058,1 4 =× −d q  

m

kN qd  6,126

1058,1

02,04 =

×= −  

Conclusão: a carga permanente máxima qd = 117 kN/m foi determinada pela flexão, no

estado limite de último.

Page 111: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 111/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  108

APÊNDICE

Momento fletor máximo de vigasViga Força Cortante Momento fletor

L

P

 

 P V  =max    PL M  −=max  

L

q (kN/m)

 

qLV  =max   2

2

max

qL

 M  −=  

P

L / 2 L / 2

 

2max

 P V  =  

4max

 PL M  =  

 A B

a b

L

P

 

 L

 Pb

V  A =  

 L

 PaV  B =  

 L

 Pba M  =max  

q (kN/m)

2max

qLV  =  

8

2

max

qL M  =  

L

M

 

 L

 M V  =max    M  M  −=max  

 A

L

B

M

 

 L

 M V  A −=  

 L

 M V  B +=  

 M  M  −=max  

Page 112: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 112/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  109

Deslocamentos máximos em vigas

Viga Deslocamento vertical máximo

P

Lvmax

  EI 

 PLv

3

3

max =  

vmax

L

q (kN/m)

  EI 

qLv

8

4

max =  

P

L/2 L/2

vmax

  EI 

 PLv

48

3

max =  

P

vmax

a

x

b

a>b

  EI 

b L Pbv

39

)( 2

322

max

−=  

3

22 b L x

−=  

q (kN/m)

L

vmax

  EI 

qLv

384

5 4

max =  

L

M

vmax

  EI 

 MLv

2

2

max =  

Mx

 EI  MLv

39

2

max =  3

 L x =  

Page 113: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 113/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  110

Características geométricas de figuras planas

Figura Área CG Momento de Inércia Módulo Resistente

CGh

h

y

x

 

2h  2

h y x CGCG ==  

12

4h I  I   y x ==  

6

3hW W   y x ==  

CGh

b

x

y

 

hb ⋅  2

b xCG =  

2

h yCG =  

12

3hb I  x

⋅=  

12

3bh I  y

⋅=  

6

2hbW  x

⋅=  

6

2bhW  y

⋅=  

CG

x

y

D

 

4

2 D⋅π    r 

 D=

64

4 D I  I   y x

⋅==π   

32

3 D

W W   y x

⋅==π   

CGd

xD

y

 

( )4

22 d  D −π 

  2

 D   ( )64

44d  D

 I  I   y x

−==π    ( )

32

33 d  DW W   y x

−==π   

b/3

h/3

h

y

b

CG

x

 

2hb ⋅   3

b xCG =  

3

h yCG =  

36

3hb

 I  x⋅

=  

36

3bh

 I  y⋅

=  12

2hbW  x

⋅=  

12

2bhW  y

⋅=  

B

H ha

CG

y

x

 

( )h H  Bah −+

 2

 B xCG =  

2

 H  yCG =  

( )

[ ]h H  Bah

 I 

h H  Bah

 I 

 y

 x

−+=

−+=

1212

1212

33

333

 ( )

( )h H  B

 B

haW 

h H  H 

 B

 H 

ahW 

 y

 x

−+=

−+=

66

66

23

333

 

y´1

y1

H

b

CG

x

B

y

c

 

( ) bH cb B +− 

( )( )

11

22

1 21

2

 y H  y

bH cb B

bH cb B y

 B xCG

′−=+−+−=′

=

 

( )[ ]

( )[ ]c H bc B I 

 A ybhcb B I 

 y

 x

−+=

−+−=

33

21

33

12

13

1

 ( )[ ]c H bc B

 BW 

 y

 I 

W  y

 I 

 y

 x

 x

 x

 x

++=

=′=33

1inf ,

1sup,

6

B

b

H hCG

x

y

 

bh BH −  2

 H  yCG =  

12

33 bh BH  I  y

−=  

 H 

bh BH W  x 6

33 −=  

Page 114: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 114/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  111

BIBLIOGRAFIA

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – (ABNT). Projeto e

execução de estruturas de aço de edifícios: método dos estados limites - NBR 8800. 

Rio de Janeiro: 1986. (NB14).

PFEIL W., PFEIL M. Estruturas de aço: dimensionamento prático. 7ed. Rio de Janeiro,

LTC, 2000.

PINHEIRO, A. C. F B. Estruturas metálicas: detalhes, exercícios e projetos. 2ed. SãoPaulo, Edgard Blücher, 2005.

Page 115: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 115/136

 Estruturas Metálicas, de Madeiras e Especiais Ricardo Gaspar  112

 

TABELAS

Page 116: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 116/136

Page 117: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 117/136

Page 118: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 118/136

Page 119: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 119/136

Page 120: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 120/136

Page 121: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 121/136

Page 122: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 122/136

Page 123: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 123/136

Page 124: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 124/136

Page 125: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 125/136

Page 126: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 126/136

Page 127: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 127/136

Page 128: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 128/136

Page 129: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 129/136

Page 130: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 130/136

Page 131: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 131/136

Page 132: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 132/136

Page 133: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 133/136

Page 134: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 134/136

Page 135: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 135/136

Page 136: Estruturas Metálicas - Apostila

7/16/2019 Estruturas Metálicas - Apostila

http://slidepdf.com/reader/full/estruturas-metalicas-apostila-5634fb44e0ef1 136/136