escola estadual de educação profissional - eeep€¦ · adequada, de: aglomerantes, agregados e...

77
Escola Estadual de Educação Profissional - EEEP Ensino Médio Integrado à Educação Profissional Curso Técnico em Edificações Projetos de Estruturas I e II

Upload: others

Post on 01-Dec-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual deEducação Profissional - EEEPEnsino Médio Integrado à Educação Profissional

Curso Técnico em Edificações

Projetos de Estruturas I e II

Page 2: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral
Page 3: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Governador

Vice Governador

Secretário Executivo

Assessora Institucional do Gabinete da Seduc

Cid Ferreira Gomes

Francisco José Pinheiro

Antônio Idilvan de Lima Alencar

Cristiane Carvalho Holanda

Secretária da Educação

Secretário Adjunto

Coordenadora de Desenvolvimento da Escola

Coordenadora da Educação Profissional – SEDUC

Maria Izolda Cela de Arruda Coelho

Maurício Holanda Maia

Maria da Conceição Ávila de Misquita Vinãs

Thereza Maria de Castro Paes Barreto

Page 4: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral
Page 5: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

SUMÁRIO

Introdução......................................................................................................................... 02

Definições (aglomerantes, agregados, pasta, argamassa, concretos) ............................. 03

Conceito de Concreto Protendido..................................................................................... 06

Sistema de Aplicação de Protensão................................................................................. 10

Materiais Utilizados em Concreto Protendido................................................................... 14

Equipamentos de Protensão. ........................................................................................... 16

Traçado Geométrico das Armaduras de Protensão. ........................................................ 18

Aplicações Práticas do Concreto Protendido.................................................................... 19

Estruturas de Concreto..................................................................................................... 25

Estruturas de Concreto – Aços para Armaduras. ............................................................. 34

Estruturas de Concreto – Concepção Estrutural. ............................................................. 39

Pré-dimensionamento....................................................................................................... 44

Aderência e Ancoragem. .................................................................................................. 49

Resumo. ........................................................................................................................... 60

Bibliografia........................................................................................................................ 70

Page 6: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

2

INTRODUÇÃO:

Este é o capítulo inicial de um curso cujos objetivos são:

• os fundamentos do concreto; • as bases para cálculo de concreto armado; • a rotina do projeto estrutural para edifícios de pequeno porte.

É um trabalho dedicado a alunos de graduação e a iniciantes em Engenharia

Estrutural, tais como Técnicos em Edificações, interessados em aprofundar conhecimentos. No entanto, para uma formação mais profunda e especializada deverão consultar bibliografia complementar mais adequada.

Para o momento atual, isto é, para a formação de Técnico em Edificações

integrado ao Ensino Médio, acreditamos ser suficientemente adequado. Portanto, vamos ao estudo e bons projetos!

Page 7: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

3

DEFINIÇÕES

Concreto é um material de construção proveniente da mistura, em proporção adequada, de: aglomerantes, agregados e água.

AGLOMERANTES

Unem os fragmentos de outros materiais. No concreto, em geral se emprega cimento portland, que reage com a água e endurece com o tempo.

AGREGADOS

São partículas minerais que aumentam o volume da mistura, reduzindo seu custo. Dependendo das dimensões características φ, dividem-se em dois grupos: • Agregados miúdos: 0,075mm < φ < 4,8mm. Exemplo: areias. • Agregados graúdos: φ ≥ 4,8mm. Exemplo: pedras. PASTA

Resulta das reações químicas do cimento com a água. Quando há água em excesso, denomina-se nata.

PASTA ↔ CIMENTO + ÁGUA

Page 8: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

4

ARGAMASSA

Provém da pela mistura de cimento, água e agregado miúdo, ou seja, pasta com agregado miúdo.

ARGAMASSA ↔ CIMENTO + AREIA + ÁGUA CONCRETO SIMPLES

É formado por cimento, água, agregado miúdo e agregado graúdo, ou seja, argamassa e agregado graúdo.

CONCRETO SIMPLES ↔ CIMENTO + AREIA + PEDRA + ÁGUA

Depois de endurecer, o concreto apresenta: • boa resistência à compressão; • baixa resistência à tração; • comportamento frágil, isto é, rompe com pequenas deformações.

Na maior parte das aplicações estruturais, para melhorar as características do concreto, ele é usado junto com outros materiais.

Page 9: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

5

CONCRETO ARMADO

É a associação do concreto simples com uma armadura, usualmente constituída por barras de aço. Os dois materiais devem resistir solidariamente aos esforços solicitantes. Essa solidariedade é garantida pela aderência.

CONCRETO ARMADO ↔ CONCRETO SIMPLES + ARMADURA + ADERÊNCIA ARGAMASSA ARMADA

É constituída por agregado miúdo e pasta de cimento, com armadura de fios de aço de pequeno diâmetro, formando uma tela. No concreto, a armadura é localizada em regiões específicas, Na argamassa, ela é distribuída por toda a peça.

CONCRETO DE ALTO DESEMPENHO – CAD

Pode ser obtido, por exemplo, pela mistura de cimento e agregados convencionais com sílica ativa e aditivos plastificantes. Apresenta características melhores do que o concreto tradicional. Em vez de sílica ativa, pode-se também utilizar cinza volante ou resíduo de alto forno.

CONCRETO CICLÓPICO

Concreto ciclópico:- Concreto onde se usa pedras de mão (pedra marroada) para aumentar seu volume e peso. Estas pedras de mão, pode variar de 10 a 30 centímetros. É um concreto de baixa resistência á tração, mas com boa resistência à compressão. O volume de pedra de mão no concreto pode variar em função da resistência desejada. Na arquitetura, pode-se querer dar a um muro de concreto ciclópico um valor estético. Neste caso é desejável que as pedras sejam grandes com suas faces mais planas voltadas para fora, e o volume de pedras marroadas pode chegar a até 80%, na medida em que se está valorizando o aspecto estético e não o estrutural.

Em muros de arrimo, igualmente podemos ter grande volume de pedras marroadas, na medida em que o fator que se busca com o muro é obter o máximo peso com o menor volume de material cimentante. Uma das vantagens do concreto ciclópico

Page 10: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

6

é o fato de que pedras locais podem ser quebradas com a marreta, o que barateia a obra. As pedras a serem usadas no concreto ciclópico devem ser sãs (não alteradas) e limpas de poeira, terra ou argila, para garantir a adesão do cimento.

CONCEITO DE CONCRETO PROTENDIDO

DEFINIÇÃO DE PROTENSÃO

A protensão pode ser definida como o artifício de introduzir, numa estrutura, um estado prévio de tensões, de modo a melhorar sua resistência ou seu comportamento, sobre ação de diversas solicitações.

PROTENSÃO APLICADA AO CONCRETO

O artifício de protensão tem importância particular no caso do concreto, pelas seguintes razões:

a) O concreto é um dos materiais de construção mais importantes. Seus ingredientes são disponíveis a baixo custo em todas as regiões habitadas na terra.

b) O concreto tem boa resistência a compressão. c) O concreto tem pequena resistência a tração, da ordem de 10% de resistência à

compressão. Além de pequena, é pouco confiável. De fato, quando não é bem executado sua retração pode provocar fissuras, que eliminam a resistência a tração do concreto, antes mesmo de atuar qualquer solicitação.

Sendo o concreto um material de propriedades tão diferentes a compressão e a

tração, o seu comportamento pode ser melhorado aplicando-se uma compressão prévia (isto é, protensão) nas regiões onde as solicitações produzem tensões de tração.

O artifício da protensão, aplicada ao concreto, consiste em introduzir na viga esforços prévios que reduzam ou anulem as tensões de tração no concreto sobre a ação das solicitações em serviço. Nessas condições, minimiza-se a importância da fissuração como condição determinante de dimensionamento da viga.

A protensão do concreto é realizada, na prática, por meio de cabos de aço de alta resistência, tracionados e ancorados no próprio concreto.

Page 11: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

7

Fig.1 - Viga de concreto armado convencional, sujeita a uma solicitação de flexão simples. A parte superior da seção de concreto é comprimida e a inferior é tracionada, admitindo-se fissurada para efeito de análise. Os efeitos de tração são resistidos pelas armaduras de aço.

Fig.2 - Aplicação de um estado prévio de tensões na viga de concreto, mediante

cabos de aço esticados e ancorados nas extremidades. P = esforço transmitido ao

concreto pela ancoragem do cabo, geralmente denominado esforço de protensão.

Como as tensões de tração são desprezadas por causa da fissuração do concreto, verifica-se que uma parte substancial da área da seção da viga não contribui para inércia da mesma. Com a protensão aplicam-se tensões prévias de compressão que pela manipulação das tensões internas, pode-se obter a contribuição da área total da seção da viga para a inércia da mesma.

Sendo os cabos de aço tracionados e ancorados, pode-se empregar neles aços com

alta resistência, trabalhando com tensões elevadas, assim temos:

- concreto com elevada resistência a compressão, - aços com elevada resistência a tração,

Page 12: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

8

O estado prévio de tensões, introduzido pela protensão na viga de concreto, melhora o comportamento da mesma, não só para solicitações de flexão, como também para solicitações de cisalhamento.

ARMADURAS DE VIGAS PROTENDIDAS

As armaduras de vigas protendidas são de dois tipos:

- armaduras protendidas; - armaduras não protendidas.

As armaduras protendidas são constituídas pelos cabos de aço, pré-esticados e ancorados nas extremidades. Os diversos tipos de armaduras protendidas serão analisados mais adiante.

As armaduras não protendidas são constituídas pelos vergalhões usuais de concreto armado, utilizados nas seguintes posições:

a) Armaduras longitudinais, geralmente denominadas suplementares; destinam-se a melhorar o comportamento da viga e controlar a fissuração da mesma, para cargas elevadas.

b) Armaduras da alma, geralmente constituídas por estribos, e denominadas armaduras transversais; destinam-se a resistir aos esforços de cisalhamento.

c) Armaduras locais, nos pontos de ancoragem dos cabos de protensão, denominadas armaduras de fretagem; destinam-se a evitar ruptura local do concreto nos pontos sujeitos a tensões muito elevadas.

d) Armaduras regionais, denominadas armaduras de introdução de tensões; destinam-se a garantir o espalhamento de tensões, aplicadas localmente, para a seção total da viga.

COMPORTAMENTO DE VIGAS PROTENDIDAS SOB AÇÃO DAS SOLICITAÇÕES

Sob ação de cargas, uma viga protendida sofre flexão, alterando-se as tensões de compressão aplicadas previamente. Quando a carga é retirada, a viga volta à sua posição original e as tensões prévias são restabelecidas.

Se as tensões de tração provocadas pelas cargas forem inferiores às tensões prévias de compressão, a seção continuará comprimida, não sofrendo fissuração.

Page 13: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

9

Sob ação de cargas mais elevadas, as tensões de tração ultrapassam as tensões prévias, de modo que o concreto fica tracionado e fissura. Retirando-se a carga, a protensão provoca o fechamento das fissuras.

SENTIDO ECONÔMICO DO CONCRETO PROTENDIDO

As resistências de concreto, utilizadas em concreto protendido, são duas a três vezes maiores que as utilizadas em concreto armado. Os aços utilizados nos cabos de protensão têm resistência três a cinco vezes superiores às dos aços usuais de concreto armado.

O sentido econômico do concreto protendido consiste no fato de que os aumentos percentuais de preços são muito inferiores aos acréscimos de resistência utilizáveis, tanto para o concreto como para o aço de protensão.

VANTAGENS TÉCNICAS DO CONCRETO PROTENDIDO

a) Reduz as tensões de tração provocadas pela flexão e pelos esforços cortantes. b) Reduz a incidência de fissuras. c) Reduz as quantidades necessárias de concreto e aço, devido ao emprego eficiente

de materiais de maior resistência. d) Permite vencer vãos maiores que o concreto armado convencional; para o mesmo

vão, permite reduzir a altura necessária da viga. e) Facilita o emprego generalizado de pré-moldagem, uma vez que a protensão elimina

a fissuração durante o transporte das peças. f) Durante a operação da protensão, o concreto e o aço são submetidos a tensões em

geral superiores às que poderão ocorrer na viga sujeita às cargas de serviço. A operação de protensão constitui, neste caso, uma espécie de prova de carga da viga.

Page 14: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

10

SISTEMAS DE APLICAÇÃO DA PROTENSÃO

INTRODUÇÃO

A protensão do concreto é feita por meio de cabos de aço, que são esticados e ancorados nas extremidades.

Os cabos de aço, também denominados armaduras de protensão, podem ser pré-tracionados ou pós-tracionados.

As vigas com armaduras pré-tracionadas são executadas seguindo os esquemas da Fig.3. A armadura protendida fica aderente ao concreto, em toda a extensão da viga.

Nas vigas com armaduras pós-tracionadas, os cabos são esticados após a cura do concreto. A armadura protendida é ancorada nas extremidades, podendo ficar aderente ao concreto, ao longo da viga, por meio de uma injeção de nata de cimento.

Os sistemas com armaduras pré-tracionadas são mais adequados para instalações fixas (fábricas). Os sistemas com armaduras pós-tracionadas são mais utilizados quando a protensão é realizada na obra.

Fig. 3 – a) as armaduras de aço (1) são esticadas entre dois encontros (2), ficando ancoradas provisoriamente nos mesmos; b) o concreto (3) é colocado dentro das fôrmas, envolvendo as armaduras; c) após o concreto haver atingido resistência suficiente, soltam-se as ancoragens dos mesmos (2), transferindo-se a força para a viga, por aderência (4) entre o aço e o concreto.

Page 15: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

11

SISTEMAS COM ARMADURAS PRÉ-TRACIONADAS

Os sistemas com armaduras pré-tracionadas são geralmente utilizados em

fábricas, onde a concretagem se faz em instalações fixas, denominados leitos de protensão. Os leitos são alongados, permitindo a produção simultânea de diversas peças.

A Fig.4 mostra a seqüência construtiva de vigas com armaduras pré-tracionadas, em um leito alongado com capacidade para três vigas. A ancoragem das armaduras no concreto faz-se por aderência, num comprimento de ancoragem lbp (Fig.5). Quando a

tensão na armadura é reduzida, ela tende a voltar ao seu diâmetro sem carga (∅o); o aumento do diâmetro mobiliza atrito no concreto, o que auxilia a ancoragem.

Fig.4 – As armaduras (1) são colocadas atravessando os montantes (2), e fixando-se em placas de ancoragem (3), por meio de dispositivos mecânicos (4), geralmente constituídos por cunhas. A placa de ancoragem da esquerda é fixa, a da direita é móvel. Com auxílio de macacos de longo curso, esticam-se as armaduras, empurrando-se a placa de ancoragem móvel, até se alcançar o esforço de protensão desejado; a placa de ancoragem móvel é então fixada por meio de calços(5) mantendo as armaduras esticadas. O concreto (6) é compactado dentro das fôrmas, envolvendo as armaduras protendidas, que ficam aderentes. Após a cura do concreto, os macacos são recolocados em carga na placa de ancoragem móvel, retirando-se lentamente a tensão nas armaduras. A seguir, as armaduras são cortadas, junto às faces de viga. Como o encurtamento das armaduras é impedido pela aderência das mesmas com o concreto, resulta que as vigas ficam protendidas. No desenho da figura, são fabricadas simultaneamente três vigas de concreto protendido (6).

Page 16: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

12

lbp

Fig.5 – Esquema de um fio pré-tracionado ancorado no concreto (lbp = comprimento de ancoragem por aderência; Ø0 diâmetro da armadura sem carga; Ø1 = diâmetro da armadura protendida).

O comprimento da ancoragem (lbp) varia com a qualidade do concreto, a superfície da armadura, a tensão de protensão etc. Os comprimentos obtidos experimentalmente variam de 100 Ø a 140 Ø para fios entalhados, 45 Ø a 90 Ø para cordoalhas de sete fios.

O esquema de protensão da Fig. 4 com armaduras retilíneas, pode ser modificado de modo que as armaduras tenham uma trajetória poligonal no interior de cada viga (Fig.6).

As vigas com armadura poligonal são mais eficientes, pois a excentricidade da armadura é maior no meio do vão, onde atuam maiores momentos fletores.

Fig.6 – Esquema de execução de vigas com armaduras pré-tracionadas poligonais em leito alongado, permitindo a execução simultânea de várias vigas, em série. 1 – armaduras pré-tracionadas; 2 – placa de ancoragem; 3 – concreto de viga; 4 – pontos de apoio das armaduras poligonais; 5 – pontos de rebaixamento das amaduras poligonais.

Page 17: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

13

SISTEMAS COM ARMADURAS PÓS-TRACIONADAS

Nos sistemas com armaduras pós-tracionadas, as armaduras de protensão são esticadas após o endurecimento de concreto, ficando ancoradas na face do mesmo.

Estes sistemas podem apresentar uma grande variedade, dependendo dos tipos de cabos, percursos dos mesmos na viga, tipos e posicionamentos das ancoragens etc.

CLASSIFICAÇÃO DOS SISTEMAS DE ARMADURAS PÓS-TRACIONADAS

Quanto à posição relativa entre os cabos e a peça de concreto, podem ser distinguidas duas categorias: cabos internos e cabos externos à viga.

Os cabos internos podem apresentar uma trajetória qualquer, sendo geralmente

projetados com uma seqüência trechos retilíneos e curvilíneos. Os cabos externos são geralmente retilíneos ou poligonais; neste último caso, os

desvios do cabo são feitos em selas de apoio, colocados lateralmente à viga. Quanto à ligação entre as armaduras protendidas e o concreto, existem duas

categorias de cabos: cabos aderentes e cabos não-aderentes.

Nos cabos internos aderentes, utilizam-se bainhas metálicas, que podem ser lisas ou onduladas.

Os cabos internos com bainhas de papel ou de plástico (lisos) são considerados não-aderentes.

Os cabos externos, sem ligação direta com a viga ao longo do cabo, são

evidentemente do tipo não-aderente; esse tipo de cabo é muito utilizado em projeto de reforço de obras.

Page 18: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

14

MATERIAIS UTILIZADOS EM CONCRETO PROTENDIDO Os principais materiais utilizados em concreto protendido são:

- Concreto - Armaduras não-protendidas - Armaduras protendidas

CONCRETO

As principais propriedades mecânicas do concreto acham-se relacionadas com

sua resistência à compressão simples (fck). Essa resistência é usualmente determinada em ensaios de ruptura de corpos de prova padronizados.

A resistência à tração simples do concreto (fct) pode ser determinada em ensaios

de tração simples de corpos de prova prismáticos em cujas extremidades são coladas peças metálicas onde se prendem as garras da máquina de ensaio.

ARMADURAS NÃO-PROTENDIDAS

As armaduras não protendidas são realmente formadas pelos vergalhões usualmente empregados em concreto armado. Em estruturas protendidas, essas armaduras recebem as designações de convencionais ou suplementares.

Os aços empregados como armadura suplementar são designados pelas letras

CA (concreto armado) seguidos do valor característico do limite de escoamento em kgf/mm².

As armaduras não protendidas podem também ser constituídas por aços de alta

resistência (designação CP), aplicados sem protensão. Esse emprego é, entretanto, pouco corrente, devido ao maior custo dos aços tipo CP.

Page 19: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

15

ARMADURAS PROTENDIDAS

Os aços utilizados como armaduras de protensão podem ser divididos em três categorias:

-Fios trefilados de aço carbono, com diâmetros variando entre 3mm e 8mm, fornecidos em rolos ou bobinas com grande comprimento de fio. -Cordoalhas, constituídas por fios trefilados, enrolados em forma de hélice, como uma corda; são também fornecidas em bobinas, com grande comprimento. -Barras de aço baixa liga, laminadas a quente, fornecidas em peças retilíneas de comprimento limitado.

As principais propriedades mecânicas dos aços de protensão são as seguintes:

-Limite de elasticidade, maior tensão. O limite de elasticidade é definido, convencionalmente, como a tensão que produz uma deformação unitária de 0,01%.

-Limite de escoamento convencional à tração, igual à tensão para a qual o aço apresenta uma deformação unitária residual de 0,2%, após descarga.

- Módulo de elasticidade, inclinação da parte elástica do diagrama.

- Resistência à ruptura por tração, igual ao esforço de ruptura da barra dividido pela área de seção inicial (área da seção com carga zero).

- Alongamento unitária de ruptura.

Os aços de protensão são geralmente designados pelas letras CP (Concreto Protendido), seguidas da resistência característica à ruptura por tração, em kgf/mm².

As armaduras protendidas, ancoradas com tensões elevadas apresentam, com o passar do tempo, uma perda de tensão devida à relaxação normal (RN).

Nos fios e cordoalhas pode-se fazer um tratamento termo-mecânico que reduz a perda por relaxação, sendo o aço denominado de relaxação baixa (RB). O tratamento consiste em aquecimento a 400° C e tracionamento até a deformação unitária de 1%.

Os aços de protensão devem sempre ser instalados com tensões elevadas, a fim de que as inevitáveis perdas de protensão representem um percentual moderado da tensão aplicada (em geral 20% a 30%). Nessas condições, os esforços de protensão efetivos, atuando sobre o concreto, representarão cerca de 70% a 80% do esforço inicial instalado.

Page 20: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

16

As tensões nas armaduras protendidas são, entretanto limitadas a certos valores máximos, a fim de se reduzir o risco de ruptura dos cabos, e também de evitar perdas exageradas por relaxação do aço.

EQUIPAMENTOS DE PROTENSÃO

EQUIPAMENTOS PARA ARMADURAS PRÉ-TRACIONADAS

Nas peças de concreto protendido com armaduras pré-tracionadas, a ancoragem se faz por aderência com o concreto. As armaduras são tracionadas, por meio de macacos ou talhas; o concreto é compactado envolvendo as armaduras protendidas; após a cura do concreto, soltam-se as amarras que prendem as armaduras, transferindo-se os esforços para o concreto, por aderência.

EQUIPAMENTOS PARA ARMADURAS PÓS-TRACIONADAS

Tipos mais usuais de armaduras pós tracionadas. No estágio atual de industrialização dos processos de protensão, as armaduras

mais usuais são formadas por cordoalhas ou por barras. As armaduras pós-tracionadas são geralmente colocadas no interior do concreto,

ficando isoladas do mesmo por meio de bainhas; as bainhas permitem o alongamentos das armaduras, na ocasião da protensão, que é realizada após a cura do concreto. Uma vez esticados e ancorados os cabos, as bainhas são geralmente injetadas com nata de cimento, a qual desempenha duas funções essenciais:

a) Estabelecer um grau de aderência mais ou menos eficaz, entre as armaduras

protendidas e o concreto; b) Oferecer protensão mecânica e química para as armaduras, impedindo a corrosão

das mesmas.

Page 21: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

17

BAINHAS PARA ARMADURAS PÓS-TRACIONADAS

As bainhas são geralmente fabricadas com chapas metálicas, podendo ser lisas ou

onduladas. As bainhas onduladas são de uso mais corrente, permitindo realizar com facilidade as curvas indicadas no projeto. As bainhas devem atender as seguintes condições:

a) Terem resistência e estanqueidade suficientes para impedir entrada de nata de

cimento em seu interior, durante a concretagem. b) Permitem os alongamentos dos cabos, durante a protensão com atrito reduzido. c) Terem área suficiente para permitir boa acomodação dos cabos e passagem da nata

de injeção.

CABOS DE FIOS TREFILADOS

Os primeiros cabos utilizados para protensão foram feitos com fios trefilados. O engenheiro francês Eugene Freyssinet inventou as famosas ancoragens com cunha central, que constituíram o produto básico da indústria de protensão durante muitos anos.

CABOS E CORDOALHAS

As cordoalhas de uso mais corrente são as de 7 fios, com diâmetro nominal 1/2” ou 5/8”. Os cabos são constituídos por cordoalhas, colocadas lado a lado, no interior das bainhas. Nas ancoragens, cada cordoalha é presa individualmente por meio de cunhas encaixadas em furos cônicos.

A protensão é feita por meio de macacos furados, que se apóiam na placa de ancoragem ou na placa de apoio.

As ancoragens que permitem o esticamento dos cabos denominam-se ancoragens vivas ou ativas. Quando os cabos são protendidos nas duas extremidades, utiliza-se em ambas ancoragens ativas. Muitas vezes a protensão é efetuada apenas em uma extremidade do cabo, o que permite o emprego de apenas um macaco. As ancoragens dos lados não protendidos denomina-se ancoragens mortas ou passivas, que podem ser constituídas por ancoragens ativas com cunhas pré-cravadas, por laços ou alças nas cordoalhas, ou por aderência e atrito entre as cordoalhas e o concreto.

Page 22: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

18

ARMADURAS DE PROTENSÃO EM BARRAS

As barras de protensão são utilizadas individualmente, cada cabo formado por

uma barra dentro de uma bainha. As operações de protensão e injeção dos cabos de barras são análogas as dos

cabos de cordoalhas. As barras são fabricadas em comprimentos limitados a cerca de 12 m, para fins de transportes, de modo que, em cabos longos, é necessário emendar as barras, com auxílio de luvas rosqueadas.

INJEÇÃO DOS CABOS PÓS-TRACIONADOS

Os cabos protendidos no interior de bainhas são injetados com uma nata de

cimento, que protege as armaduras e estabelece um grau de aderência entre os cabos e o concreto.

A nata de injeção deve ser homogênea, com consistência de tinta espessa. Em geral, obtém-se uma nata adequada misturando-se cimento e água, na proporção de 1:0,4 em peso, acrescentando-se um aditivo plastificante e expansor.

TRAÇADO GEOMÉTRICO DAS ARMADURAS DE PROTENSÃO

PEÇAS PROTENDIDAS COM ARMADURAS PRÉ-TRACIONADAS

Nas peças protendidas com armaduras pré-tracionadas, o traçado geométrico das

armaduras é, em geral, muito simples, em decorrência do próprio processo construtivo. As armaduras são retilíneas ou poligonais.

PEÇAS PROTENDIDAS COM ARMADURAS PÓS-TRACIONADAS

Nas peças protendidas com armaduras pós-tracionadas, colocadas no interior de bainhas flexíveis, os cabos podem assumir uma forma qualquer, evitando-se entretanto um grande número de curvas, para limitar as perdas por atrito.

Page 23: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

19

Fig. 7 – Tipos de cabos de protensão utilizados em vigas simplesmente apoiadas:

1- cabo retilíneo, ancorado nas faces extremas da viga. 2- Cabo curvo, ou parte retilíneo e parte curvilíneo, ancorado nas faces extremas da viga.

3- Nicho de ancoragem ativa, na face extrema da viga. 4- Cabo curvo, ou parte retilíneo e parte curvilíneo, ancorado na parte superior da viga. 5- Nicho de ancoragem ativa, na face superior da viga. APLICAÇÕES PRÁTICAS DO CONCRETO PROTENDIDO CONCRETO PROTENDIDO COM ARMADURAS PRÉ-TRACIONADAS

As peças protendidas com armaduras pré-tracionadas são geralmente fabricadas em usinas, havendo grande interesse em padronizar os tipos construtivos, para economia de formas.

Geralmente, as peças são fabricadas sem blocos de ancoragem, o que constitui uma simplificação muito conveniente para as formas metálicas, permitindo a produção de elementos com comprimentos variáveis sem modificar as formas laterais.

Painel Premo Struder Painel Duplo T

Page 24: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

20

Telhas Premo Viga I

Fig. 8 - Exemplo de seção de peças com armaduras pré-tracionadas.

CONCRETO PROTENDIDO COM ARMADURAS PÓS-TRACIONADAS

O concreto protendido é usado com maior freqüência na construção de vigas para

edifícios, pontes etc. O número de aplicações do concreto protendido é tão grande, que não se pode

mencionar todas elas num trabalho elementar. Como estruturas protendidas de grande porte, podem ser citadas as plataformas marítimas de exploração de gás ou petróleo, os invólucros de proteção de centrais atômicas, as torres de concreto e as pontes estaiadas. A introdução de tirantes de ancoragem protendidos, em rochas e solos, causou profundas alterações nos projetos de engenharia de solos.

VANTAGENS DO CONCRETO, RESTRIÇÕES E PROVIDÊNCIAS

Como material estrutural, o concreto apresenta várias vantagens em relação a

outros materiais. Serão relacionadas também algumas de suas restrições e as providências que podem ser adotadas para contorná-las.

Page 25: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

21

Vantagens do Concreto Armado Suas grandes vantagens são: • É moldável, permitindo grande variabilidade de formas e de concepções arquitetônicas. • Apresenta boa resistência à maioria dos tipos de solicitação, desde que seja feito um correto dimensionamento e um adequado detalhamento das armaduras. • A estrutura é monolítica, fazendo com que todo o conjunto trabalhe quando a peça é solicitada. • Baixo custo dos materiais - água e agregados graúdos e miúdos. • Baixo custo de mão-de-obra, pois em geral não exige profissionais com elevado nível de qualificação. • Processos construtivos conhecidos e bem difundidos em quase todo o país. • Facilidade e rapidez de execução, principalmente se forem utilizadas peças pré-moldadas. • O concreto é durável e protege a armação contra a corrosão. • Os gastos de manutenção são reduzidos, desde que a estrutura seja bem projetada e adequadamente construída. • O concreto é pouco permeável à água, quando executado em boas condições de plasticidade, adensamento e cura. • É um material seguro contra fogo, desde que a armadura seja convenientemente protegida pelo cobrimento. • É resistente a choques e vibrações, efeitos térmicos, atmosféricos e a desgastes mecânicos. Restrições do Concreto

O concreto apresenta algumas restrições, que precisam ser analisadas Devem ser tomadas as providências adequadas para atenuar suas conseqüências. As principais são: • Baixa resistência à tração, • Fragilidade, • Fissuração, • Peso próprio elevado, • Custo de formas para moldagem, • Corrosão das armaduras.

Page 26: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

22

Providências

Para suprir as deficiências do concreto, há várias alternativas. A baixa resistência à tração pode ser contornada com o uso de adequada armadura, em geral constituída de barras de aço, obtendo-se o concreto armado.

Além de resistência à tração, o aço garante ductilidade e aumenta a resistência à compressão, em relação ao concreto simples. A fissuração pode ser contornada ainda na fase de projeto, com armação adequada e limitação do diâmetro das barras e da tensão na armadura.

Também é usual a associação do concreto simples com armadura ativa, formando o concreto protendido. A utilização de armadura ativa tem como principal finalidade aumentar a resistência da peça, o que possibilita a execução de grandes vãos ou o uso de seções menores, sendo que também se obtém uma melhora do concreto com relação à fissuração.

O concreto de alto desempenho – CAD – apresenta características melhores do que o concreto tradicional – como resistência mecânica inicial e final elevada, baixa permeabilidade, alta durabilidade, baixa segregação, boa trabalhabilidade, alta aderência, reduzida exsudação, menor deformabilidade por retração e fluência, entre outras.

O CAD é especialmente apropriado para projetos em que a durabilidade é condição indispensável para sua execução. A alta resistência é uma das maneiras de se conseguir peças de menores dimensões, aliviando o peso próprio das estruturas.

Ao concreto também podem ser adicionadas fibras, principalmente de aço, que aumentam a ductilidade, a absorção de energia, a durabilidade, etc.

A corrosão da armadura é prevenida com controle da fissuração e com o uso de adequado de cobrimento, cujo valor depende do grau de agressividade do ambiente em que a estrutura for construída.

A padronização de dimensões, a pré-moldagem e o uso de sistemas construtivos adequados permite a racionalização do uso de formas, permitindo economia neste quesito. A argamassa armada é adequada para pré-moldados leves, de pequena espessura. APLICAÇÕES DO CONCRETO

É o material estrutural mais utilizado no mundo. Seu consumo anual é da ordem de uma tonelada por habitante. Entre os materiais utilizados pelo homem, o concreto perde apenas para a água. Outros materiais como madeira, alvenaria e aço também são de uso comum e há situações em que eles são imbatíveis. Porém, suas aplicações são bem mais restritas. Algumas aplicações do concreto são relacionadas a seguir.

Page 27: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

23

• Edifícios: mesmo que a estrutura principal não seja de concreto, alguns elementos, pelo menos, o serão; • Galpões e pisos industriais ou para fins diversos; • Obras hidráulicas e de saneamento: barragens, tubos, canais, reservatórios, estações de tratamento etc.; • Rodovias: pavimentação de concreto, pontes, viadutos, passarelas, túneis, galerias, obras de contenção etc.; • Estruturas diversas: elementos de cobertura, chaminés, torres, postes, mourões, dormentes, muros de arrimo, piscinas, silos, cais, fundações de máquinas etc. USP – EESC – Dep. Eng. de Estruturas 7 Introdução ESTRUTURAS DE EDIFÍCIOS

Estrutura é a parte resistente da construção e tem as funções de resistir as ações e as transmitir para o solo. Em edifícios, os elementos estruturais principais são: • Lajes: são placas que, além das cargas permanentes, recebem as ações de uso e as transmitem para os apoios; travam os pilares e distribuem as ações horizontais entre os elementos de contraventamento; • Vigas: são barras horizontais que delimitam as lajes, suportam paredes e recebem ações das lajes ou de outras vigas e as transmitem para os apoios;

• Pilares: são barras verticais que recebem as ações das vigas ou das lajes e dos andares superiores as transmitem para os elementos inferiores ou para a fundação;

Page 28: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

24

• Fundação: são elementos como blocos, lajes, sapatas, vigas, estacas etc., que transferem os esforços para o solo.

Pilares alinhados ligados por vigas formam os pórticos, que devem resistir às ações do vento e às outras ações que atuam no edifício, sendo o mais utilizado elemento de contraventamento.

Em edifícios esbeltos, o travamento também pode ser feito por pórticos treliçados, paredes estruturais ou núcleos. Os dois primeiros situam-se, em geral, nas extremidades do edifício. Os núcleos costumam envolver a escada ou da caixa de elevadores.

Nos andares constituídos por lajes e vigas, a união desses elementos pode ser denominada tabuleiro. Os termos piso e pavimento devem ser evitados, pois podem ser confundidos com pavimentação.

É crescente o emprego do concreto em pisos industriais e em pavimentos de vias urbanas e rodoviárias, principalmente nos casos de tráfego intenso e pesado. Nos edifícios com tabuleiros sem vigas, as lajes se apóiam diretamente nos pilares, sendo denominadas lajes lisas.

Se nas ligações das lajes com os pilares houver capitéis, elas recebem o nome de lajes-cogumelo.

Nas lajes lisas, há casos em que, nos alinhamentos dos pilares, uma determinada faixa é considerada como viga, sendo projetada como tal − são as denominadas vigas-faixa. São muito comuns as lajes nervuradas. Se as nervuras e as vigas que as suportam têm a mesma altura, o uso de um forro de gesso, por exemplo, dão a elas a aparência de lajes lisas.

Nesses casos elas são denominadas lajes lisas nervuradas. Nessas lajes, também são comuns as vigas-faixa e os capitéis embutidos. Nos edifícios, são considerados elementos estruturais complementares: escadas, caixas d’água, muros de arrimo, consolos, marquises etc.

Page 29: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

25

EDIFÍCIOS DE PEQUENO PORTE

Como foi visto no início, este é o primeiro texto de uma série, cujos objetivos são: apresentar os fundamentos do concreto, as bases para cálculo e a rotina do projeto estrutural para edifícios de pequeno porte.

Em um exemplo simples, serão dimensionadas e detalhadas as lajes, as vigas e os pilares. As fundações serão estudadas em uma fase posterior.

Serão considerados edifícios de pequeno porte aqueles com estruturas regulares muito simples, que apresentem: • até quatro pavimentos; • ausência de protensão; • cargas de uso nunca superiores a 3kN/m2; • altura de pilares até 4m e vãos não excedendo 6m; • vão máximo de lajes até 4m (menor vão) ou 2m, no caso de balanços.

O efeito do vento poderá ser omitido, desde que haja contraventamento em duas direções. ESTRUTURAS DE CONCRETO CARACTERÍSTICAS DO CONCRETO

Como foi visto no capítulo anterior, a mistura em proporção adequada de cimento, agregados e água resulta num material de construção – o concreto –, cujas características diferem substancialmente daquelas apresentadas pelos elementos que o constituem.

Este capítulo tem por finalidade destacar as principais características e propriedades do material concreto, incluindo aspectos relacionados à sua utilização. MASSA ESPECÍFICA

Serão considerados os concretos de massa específica normal (ρc), compreendida entre 2000 kg/m3 e 2800 kg/m3.

Para efeito de cálculo, pode-se adotar para o concreto simples o valor 2400 kg/m3 e para o concreto armado 2500 kg/m3.

Quando se conhecer a massa específica do concreto utilizado, pode-se considerar, para valor da massa específica do concreto armado, aquela do concreto simples acrescida de 100 kg/m3 a 150 kg/m3.

Page 30: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

26

PROPRIEDADES MECÂNICAS

As principais propriedades mecânicas do concreto são: resistência à compressão, resistência à tração e módulo de elasticidade. Essas propriedades são determinadas a partir de ensaios, executados em condições específicas.

Geralmente, os ensaios são realizados para controle da qualidade e atendimento às especificações. Resistência à compressão

A resistência à compressão simples, denominada fc, é a característica mecânica mais importante. Para estimá-la em um lote de concreto, são moldados e preparados corpos-de-prova para ensaio segundo a NBR 5738 – Moldagem e cura de corpos-de-prova cilíndricos ou prismáticos de concreto, os quais são ensaiados segundo a NBR 5739 – Concreto – Ensaio de compressão de corpos-de-prova cilíndricos.

O corpo-de-prova padrão brasileiro é o cilíndrico, com 15cm de diâmetro e 30cm de altura, e a idade de referência para o ensaio é 28 dias.

Após ensaio de um número muito grande de corpos-de-prova, pode ser feito um gráfico com os valores obtidos de fc versus a quantidade de corpos-de-prova relativos a determinado valor de fc, também denominada densidade de freqüência. A curva encontrada denomina-se Curva Estatística de Gauss ou Curva de Distribuição Normal para a resistência do concreto à compressão (Figura 2.1).

Figura 2.1 – Curva de Gauss para a resistência do concreto à compressão

Na curva de Gauss encontram-se dois valores de fundamental importância:

resistência média do concreto à compressão, fcm, e resistência característica do concreto à compressão, fck.

O valor fcm é a média aritmética dos valores de fc para o conjunto de corpos-deprova ensaiados, e é utilizado na determinação da resistência característica, fck, por meio da fórmula: fck = fcm −1,65s

Page 31: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

27

O desvio-padrão s corresponde à distância entre a abscissa de fcm e a do ponto de inflexão da curva (ponto em que ela muda de concavidade).

O valor 1,65 corresponde ao quantil de 5%, ou seja, apenas 5% dos corpos-de-prova possuem fc < fck, ou, ainda, 95% dos corpos-de-prova possuem fc ≥ fck. Portanto, pode-se definir fck como sendo o valor da resistência que tem 5% de probabilidade de não ser alcançado, em ensaios de corpos-de-prova de um determinado lote de concreto.

Como será visto posteriormente, a NBR 8953 define as classes de resistência em função de fck. Concreto classe C30, por exemplo, corresponde a um concreto com fck = 30MPa.

Nas obras, devido ao pequeno número de corpos-de-prova ensaiados, calcula-se fck,est, valor estimado da resistência característica do concreto à compressão. Resistência à Tração

Os conceitos relativos à resistência do concreto à tração direta, fct, são análogos aos expostos no item anterior, para a resistência à compressão. Portanto, tem-se a resistência média do concreto à tração, fctm, valor obtido da média aritmética dos resultados, e a resistência característica do concreto à tração, fctk ou simplesmente ftk, valor da resistência que tem 5% de probabilidade de não ser alcançado pelos resultados de um lote de concreto.

A diferença no estudo da tração encontra-se nos tipos de ensaio. Há três normalizados: tração direta, compressão diametral e tração na flexão. Ensaio de tração direta

Neste ensaio, considerado o de referência, a resistência à tração direta, fct, é determinada aplicando-se tração axial, até a ruptura, em corpos-de-prova de concreto simples (Figura 2.2). A seção central é retangular, medindo 9cm por 15cm, e as extremidades são quadradas, com 15cm de lado.

Figura 2.2 – Ensaio de tração direta

Page 32: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

28

Ensaio de tração na compressão diametral (spliting test)

É o ensaio mais utilizado. Também é conhecido internacionalmente como Ensaio Brasileiro. Foi desenvolvido por Lobo Carneiro, em 1943. Para a sua realização, um corpo-de-prova cilíndrico de 15cm por 30 cm é colocado com o eixo horizontal entre os pratos da prensa (Figura 2.3), sendo aplicada uma força até a sua ruptura por tração indireta (ruptura por fendilhamento).

Figura 2.3 – Ensaio de tração por compressão diametral

O valor da resistência à tração por compressão diametral, fct,sp, encontrado neste

ensaio, é um pouco maior que o obtido no ensaio de tração direta. O ensaio de compressão diametral é simples de ser executado e fornece resultados mais uniformes do que os da tração direta. Ensaio de tração na flexão

Para a realização deste ensaio, um corpo-de-prova de seção prismática é submetido à flexão, com carregamentos em duas seções simétricas, até à ruptura (Figura 2.4). O ensaio também é conhecido por “carregamento nos terços”, pelo fato das seções carregadas se encontrarem nos terços do vão.

Analisando os diagramas de esforços solicitantes (Figura 2.5) pode-se notar que na região de momento máximo tem-se cortante nula. Portanto, nesse trecho central ocorre flexão pura. Os valores encontrados para a resistência à tração na flexão, fct,f, são maiores que os encontrados nos ensaios descritos anteriormente.

Figura 2.4 – Ensaio de tração na flexão

Page 33: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

29

Figura 2.5 – Diagramas de esforços solicitantes (ensaio de tração na flexão)

Relações entre os resultados dos ensaios

Como os resultados obtidos nos dois últimos ensaios são diferentes dos relativos ao ensaio de referência, de tração direta, há coeficientes de conversão.

Considera-se a resistência à tração direta, fct, igual a 0,9 fct,sp ou 0,7 fct,f, ou seja, coeficientes de conversão 0,9 e 0,7, para os resultados de compressão diametral e de flexão, respectivamente.

Na falta de ensaios, as resistências à tração direta podem ser obtidas a partir da resistência à compressão fck:

Nessas equações, as resistências são expressas em MPa. Será visto oportunamente que cada um desses valores é utilizado em situações específicas. Módulo de elasticidade

Outro aspecto fundamental no projeto de estruturas de concreto consiste na relação entre as tensões e as deformações. Sabe-se da Resistência dos Materiais que a relação entre tensão e deformação, para determinados intervalos, pode ser considerada linear (Lei de Hooke), ou seja, σ = E ε , sendo σ a tensão, ε a deformação específica e E o Módulo de Elasticidade ou Módulo de Deformação Longitudinal (Figura 2.6).

Page 34: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

30

Figura 2.6 - Módulo de elasticidade ou de deformação longitudinal

Para o concreto a expressão do Módulo de Elasticidade é aplicada somente à

parte retilínea da curva tensão-deformação ou, quando não existir uma parte retilínea, a expressão é aplicada à tangente da curva na origem. Neste caso, tem-se o Módulo de Deformação Tangente Inicial, Eci (Figura 2.7).

Figura 2.7 - Módulo de deformação tangente inicial (Eci)

O módulo de deformação tangente inicial é obtido segundo ensaio descrito na

NBR 8522 – Concreto – Determinação do módulo de deformação estática e diagrama tensão-deformação. Quando não forem feitos ensaios e não existirem dados mais precisos sobre o concreto, para a idade de referência de 28 dias, pode-se estimar o valor do módulo de elasticidade inicial usando a expressão: Eci = 5600 fck¹/² Eci e fck são dados em MPa.

O Módulo de Elasticidade Secante, Ecs, a ser utilizado nas análises elásticas do projeto, especialmente para determinação de esforços solicitantes e verificação de limites de serviço, deve ser calculado pela expressão:

Page 35: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

31

Ecs = 0,85 Eci Na avaliação do comportamento de um elemento estrutural ou de uma seção transversal, pode ser adotado um módulo de elasticidade único, à tração e à compressão, igual ao módulo de elasticidade secante (Ecs). Coeficiente de Poisson

Quando uma força uniaxial é aplicada sobre uma peça de concreto, resulta uma deformação longitudinal na direção da carga e, simultaneamente, uma deformação transversal com sinal contrário (Figura 2.8).

Figura 2.8 – Deformações longitudinais e transversais

A relação entre a deformação transversal e a longitudinal é denominada coeficiente de Poisson e indicada pela letra ν. Para tensões de compressão menores que 0,5 fc e de tração menores que fct, pode ser adotado ν = 0,2.

Módulo de elasticidade transversal

O módulo de elasticidade transversal pode ser considerado Gc = 0,4 Ecs. Estados múltiplos de tensão

Na compressão associada a confinamento lateral, como ocorre em pilares Cintados, por exemplo, a resistência do concreto é maior do que o valor relativo à compressão simples. O cintamento pode ser feito com estribos, que impedem a expansão lateral do pilar, criando um estado múltiplo de tensões. O cintamento também aumenta a ductilidade do elemento estrutural.

Na região dos apoios das vigas, pode ocorrer fissuração por causa da força cortante. Essas fissuras, com inclinação aproximada de 45°, delimitam as chamadas bielas de compressão. Portanto, as bielas são regiões comprimidas com tensões de tração na direção perpendicular, caracterizando um estado biaxial de tensões.

Nesse caso tem-se uma resistência à compressão menor que a da compressão simples.

Page 36: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

32

Portanto, a resistência do concreto depende do estado de tensão a que ele se encontra submetido. 9.4 ESTRUTURA INTERNA DO CONCRETO

Na preparação do concreto, com as mistura dos agregados graúdos e miúdos com cimento e água, tem início a reação química do cimento com a água, resultando gel de cimento, que constitui a massa coesiva de cimento hidratado.

A reação química de hidratação do cimento ocorre com redução de volume, dando origem a poros, cujo volume é da ordem de 28% do volume total do gel.

Durante o amassamento do concreto, o gel envolve os agregados e endurece com o tempo, formando cristais. Ao endurecer, o gel liga os agregados, resultando um material resistente e monolítico – o concreto.

A estrutura interna do concreto resulta bastante heterogênea: adquire forma de retículos espaciais de gel endurecido, de grãos de agregados graúdo e miúdo de várias formas e dimensões, envoltos por grande quantidade de poros e capilares, portadores de água que não entrou na reação química e, ainda, vapor d’água e ar. Fisicamente, o concreto representa um material capilar pouco poroso, sem continuidade da massa, no qual se acham presentes os três estados da agregação – sólido, líquido e gasoso. DEFORMAÇÕES

As deformações do concreto dependem essencialmente de sua estrutura interna. Retração

Denomina-se retração à redução de volume que ocorre no concreto, mesmo na ausência de tensões mecânicas e de variações de temperatura. As causas da retração são: • Retração química: contração da água não evaporável, durante o endurecimento do concreto. • Retração capilar: ocorre por evaporação parcial da água capilar e perda da água adsorvida. A tensão superficial e o fluxo de água nos capilares provocam retração. • Retração por carbonatação: Ca(OH)2 + CO2 → CaCO3 + H2O (ocorre com diminuição de volume).

Page 37: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

33

Expansão

Expansão é o aumento de volume do concreto, que ocorre em peças submersas. Nessas peças, no início tem-se retração química. Porém, o fluxo de água é de fora para dentro. As decorrentes tensões capilares anulam a retração química e, em seguida, provocam a expansão da peça. Deformação Imediata

A deformação imediata se observa por ocasião do carregamento. Corresponde ao comportamento do concreto como sólido verdadeiro, e é causada por uma acomodação dos cristais que formam o material. Fluência

Fluência é uma deformação diferida, causada por uma força aplicada. Corresponde a um acréscimo de deformação com o tempo, se a carga permanecer. Ao ser aplicada uma força no concreto, ocorre deformação imediata, com uma acomodação dos cristais. Essa acomodação diminui o diâmetro dos capilares e aumenta a pressão na água capilar, favorecendo o fluxo em direção à superfície.

Tanto a diminuição do diâmetro dos capilares quanto o acréscimo do fluxo aumentam a tensão superficial nos capilares, provocando a fluência.

No caso de muitas estruturas reais, a fluência e a retração ocorrem ao mesmo tempo e, do ponto de vista prático, é conveniente o tratamento conjunto das duas deformações. Deformações Térmicas

Define-se coeficiente de variação térmica αte como sendo a deformação correspondente a uma variação de temperatura de 1°C. Para o concreto armado, para variações normais de temperatura, a NBR 6118 permite adotar αte = 10-5 /°C.

Page 38: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

34

FATORES QUE INFLUEM

Os principais fatores que influem nas propriedades do concreto são:

• Tipo e quantidade de cimento; • Qualidade da água e relação água-cimento; • Tipos de agregados, granulometria e relação agregado-cimento; • Presença de aditivos e adições; • Procedimento e duração da mistura; • Condições e duração de transporte e de lançamento; • Condições de adensamento e de cura; • Forma e dimensões dos corpos-de-prova; • Tipo e duração do carregamento; • Idade do concreto; umidade; temperatura etc. ESTRUTURAS DE CONCRETO - AÇOS PARA ARMADURAS DEFINIÇÃO E IMPORTÂNCIA

Aço é uma liga metálica composta principalmente de ferro e de pequenas quantidades de carbono (em torno de 0,002% até 2%).

Os aços estruturais para construção civil possuem teores de carbono da ordem de 0,18% a 0,25%. Entre outras propriedades, o aço apresenta resistência e ductilidade, muito importantes para a Engenharia Civil. Como o concreto simples apresenta pequena resistência à tração e é frágil, é altamente conveniente a associação do aço ao concreto, obtendo-se o concreto armado. Este material, adequadamente dimensionado e detalhado, resiste muito bem à maioria dos tipos de solicitação. Mesmo em peças comprimidas, além de fornecer ductilidade, o aço aumenta a resistência à compressão. OBTENÇÃO DO PRODUTO SIDERÚRGICO

Para a obtenção do aço são necessárias basicamente duas matérias-primas: minério de ferro e coque. O processo de obtenção denomina-se siderurgia, que começa com a chegada do minério de ferro e vai até o produto final a ser utilizado no mercado. O minério de ferro de maior emprego na siderurgia é a hematita (Fe2O3), sendo o Brasil um dos grandes produtores mundiais.

Page 39: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

35

Coque é o resíduo sólido da destilação do carvão mineral. É combustível e possui carbono. Em temperaturas elevadas, as reações químicas que ocorrem entre o coque e o minério de ferro, separam o ferro do oxigênio. Este reage com o carbono do coque, formando dióxido de carbono (CO2), principalmente. Também é utilizado um fundente, como o calcário, que abaixa o ponto de fusão da mistura. Minério de ferro, coque e fundente são colocados pelo topo dos altos-fornos, e na base é injetado ar quente. Um alto forno chega a ter altura de 50m a 100m. A temperatura varia de 1000°C no topo a 1500°C na base.

A combinação do carbono do coque com o oxigênio do minério libera calor. Simultaneamente, a combustão do carvão com o oxigênio do ar fornece calor para

fundir o metal. O ponto de fusão é diminuído pelo fundente. Na base do alto forno obtém-se ferro gusa, que é quebradiço e tem baixa

resistência, por apresentar altos teores de carbono e de outros materiais, entre os quais silício, manganês, fósforo e enxofre.

A transformação de gusa em aço ocorre nas aciarias, com a diminuição do teor de carbono. São introduzidas quantidades controladas de oxigênio, que reagem com o carbono formando CO2. TRATAMENTO MECÂNICO DOS AÇOS

O aço obtido nas aciarias apresenta granulação grosseira, é quebradiço e de baixa resistência. Para aplicações estruturais, ele precisa sofrer modificações, o que é feito basicamente por dois tipos de tratamento: a quente e a frio. Tratamento a quente

Este tratamento consiste na laminação, forjamento ou estiramento do aço, realizado em temperaturas acima de 720°C (zona crítica). Nessas temperaturas há uma modificação da estrutura interna do aço, ocorrendo homogeneização e recristalização com redução do tamanho dos grãos, melhorando as características mecânicas do material. O aço obtido nessa situação apresenta melhor trabalhabilidade, aceita solda comum, possui diagrama tensão-deformação com patamar de escoamento, e resiste a incêndios moderados, perdendo resistência, apenas, com temperaturas acima de 1150 °C (Figura 3.1). Estão incluídos neste grupo os aços CA-25 e CA-50.

Page 40: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

36

Figura 3.1 - Diagrama tensão-deformação de aços tratados a quente

Na Figura 3.1 tem-se: P: força aplicada; A: área da seção em cada instante; A0: área inicial da seção; a: ponto da curva correspondente à resistência convencional; b: ponto da curva correspondente à resistência aparente; c: ponto da curva correspondente à resistência real. Tratamento a frio ou encruamento Neste tratamento ocorre uma deformação dos grãos por meio de tração, compressão ou torção, e resulta no aumento da resistência mecânica e da dureza, e diminuição da resistência à corrosão e da ductilidade, ou seja, decréscimo do alongamento e da estricção.

O processo é realizado abaixo da zona de temperatura crítica (720 °C). Os grãos permanecem deformados e diz-se que o aço está encruado.

Nesta situação, os diagramas de tensão-deformação dos aços apresentam patamar de escoamento convencional, torna-se mais difícil a solda e, à temperatura da ordem de 600°C, o encruamento é perdido (Figura 3.2). Está incluído neste grupo o aço CA-60.

Figura 3.2 - Diagrama tensão-deformação de aços tratados a frio

Page 41: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

37

Na Figura 3.2, tem-se:

P: força aplicada; A: área da seção em cada instante;

A0: área inicial da seção; a: ponto da curva correspondente à resistência convencional; b: ponto da curva correspondente à resistência aparente;

c: ponto da curva correspondente à resistência real. BARRAS E FIOS

A NBR 7480 (1996) fixa as condições exigíveis na encomenda, fabricação e fornecimento de barras e fios de aço destinados a armaduras para concreto armado.

Essa Norma classifica barras os produtos de diâmetro nominal 5 ou superior, obtidos exclusivamente por laminação a quente, e como fios aqueles de diâmetro nominal 10 ou inferior, obtidos por trefilação ou processo equivalente, como por exemplo estiramento. Esta classificação pode ser visualizada na Tabela 3.1. Tabela 3.1 – Diâmetros nominais conforme a NBR 7480 (1996)

O comprimento normal de fabricação de barras e fios é de 11m, com tolerância de 9%, mas nunca inferior a 6m. Porém, comercialmente são encontradas barras de 12m, levando-se em consideração possíveis perdas que ocorrem no processo de corte. CARACTERÍSTICAS MECÂNICAS

As características mecânicas mais importantes para a definição de um aço são o limite elástico, a resistência e o alongamento na ruptura. Essas características são determinadas através de ensaios de tração.

O limite elástico é a máxima tensão que o material pode suportar sem que se produzam deformações plásticas ou remanescentes, além de certos limites.

Page 42: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

38

Resistência é a máxima força de tração que a barra suporta, dividida pela área de seção transversal inicial do corpo-de-prova.

Alongamento na ruptura é o aumento do comprimento do corpo-de-prova correspondente à ruptura, expresso em porcentagem.

• Os aços para concreto armado devem obedecer aos requisitos: • Ductilidade e homogeneidade; • Valor elevado da relação entre limite de resistência e limite de escoamento; • Soldabilidade; • Resistência razoável a corrosão.

A ductilidade é a capacidade do material de se deformar plasticamente sem romper. Pode ser medida por meio do alongamento (ε) ou da estricção. Quanto mais dúctil o aço, maior é a redução de área ou o alongamento antes da ruptura. Um material não dúctil, como por exemplo, o ferro fundido, não se deforma plasticamente antes da ruptura. Diz-se, então, que o material possui comportamento frágil. O aço para armadura passiva tem massa específica de 7850 kg/m3, coeficiente de dilatação térmica α = 10-5 /°C para -20°C < T < 150°C e módulo de elasticidade de 210 GPa. ADERÊNCIA

A própria existência do material concreto armado decorre da solidariedade existente entre o concreto simples e as barras de aço. Qualitativamente, a aderência pode ser dividida em: aderência por adesão, aderência por atrito e aderência mecânica.

A adesão resulta das ligações físico-químicas que se estabelecem na interface dos dois materiais, durante as reações de pega do cimento.

O atrito é notado ao se processar o arrancamento da barra de aço do bloco de concreto que a envolve. As forças de atrito dependem do coeficiente de atrito entre aço e o concreto, o qual é função da rugosidade superficial da barra, e decorrem da existência de uma pressão transversal, exercida pelo concreto sobre a barra.

A aderência mecânica é decorrente da existência de nervuras ou entalhes na superfície da barra. Este efeito também é encontrado nas barras lisas, em razão da existência de irregularidades próprias originadas no processo de laminação das barras.

As nervuras e os entalhes têm como função aumentar a aderência da barra ao concreto, proporcionando a atuação conjunta do aço e do concreto.

A influência desse comportamento solidário entre o concreto simples e as barras de aço é medida quantitativamente através do coeficiente de conformação superficial das barras (η). A NBR 7480 (1996) estabelece os valores mínimos para η1, apresentados na tabela 3.2.

Page 43: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

39

Tabela 3.2 – Valores mínimos de η para φ ≥ 10mm

As barras da categoria CA–50 são obrigatoriamente providas de nervuras transversais ou oblíquas.

Os fios de diâmetro nominal inferior a 10mm (CA–60) podem ser lisos (η = 1,0), mas os fios de diâmetro nominal igual a 10mm ou superior devem ter obrigatoriamente entalhes ou nervuras, de forma a atender o coeficiente de conformação superficial η. DIAGRAMA DE CÁLCULO

O diagrama de cálculo, tanto para aço tratado a quente quanto tratado a frio, é o indicado na Figura 3.3.

Figura 3.3 - Diagrama tensão-deformação para cálculo

fyk: resistência característica do aço à tração fyd: resistência de cálculo do aço à tração, igual a fyk / 1,15 fyck: resistência característica do aço à compressão; se não houver determinação experimental: fyck = fyk fycd: resistência de cálculo do aço à compressão, igual a fyck /1,15 εyd: deformação específica de escoamento (valor de cálculo)

Page 44: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

40

O diagrama indicado na Figura 3.3 representa um material elastoplástico perfeito. Os alongamentos (εs) são limitados a 10%o e os encurtamentos a 3,5%o, no caso de flexão simples ou composta, e a 2%o, no caso de compressão simples. Esses encurtamentos são fixados em função dos valores máximos adotados para o material concreto. ESTRUTURAS DE CONCRETO - CONCEPÇÃO ESTRUTURAL

A concepção estrutural, ou simplesmente estruturação, também chamada de lançamento da estrutura, consiste em escolher um sistema estrutural que constitua a parte resistente do edifício.

Essa etapa, uma das mais importantes no projeto estrutural, implica em escolher os elementos a serem utilizados e definir suas posições, de modo a formar um sistema estrutural eficiente, capaz de absorver os esforços oriundos das ações atuantes e transmiti-los ao solo de fundação.

A solução estrutural adotada no projeto deve atender aos requisitos de qualidade estabelecidos nas normas técnicas, relativos à capacidade resistente, ao desempenho em serviço e à durabilidade da estrutura. DADOS INICIAIS

A concepção estrutural deve levar em conta a finalidade da edificação e atender, tanto quanto possível, às condições impostas pela arquitetura. O projeto arquitetônico representa, de fato, a base para a elaboração do projeto estrutural. Este deve prever o posicionamento dos elementos de forma a respeitar a distribuição dos diferentes ambientes nos diversos pavimentos. Mas não se deve esquecer de que a estrutura deve também ser coerente com as características do solo no qual ela se apóia.

O projeto estrutural deve ainda estar em harmonia com os demais projetos, tais como: de instalações elétricas, hidráulicas, telefonia, segurança, som, televisão, ar condicionado, computador e outros, de modo a permitir a coexistência, com qualidade, de todos os sistemas.

Os edifícios podem ser constituídos, por exemplo, pelos seguintes pavimentos: subsolo, térreo, tipo, cobertura e casa de máquinas, além dos reservatórios inferiores e superiores.

Existindo pavimento-tipo, o que em geral ocorre em edifícios de vários andares, inicia-se pela estruturação desse pavimento. Caso não haja pavimentos repetidos, parte-se da estruturação dos andares superiores, seguindo na direção dos inferiores.

A definição da forma estrutural parte da localização dos pilares e segue com o posicionamento das vigas e das lajes, nessa ordem, sempre levando em conta a compatibilização com o projeto arquitetônico.

Page 45: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

41

SISTEMAS ESTRUTURAIS

Inúmeros são os tipos de sistemas estruturais que podem ser utilizados. Nos edifícios usuais empregam-se lajes maciças ou nervuradas, moldadas no local, pré-fabricadas ou ainda parcialmente pré-fabricadas.

Em casos específicos de grandes vãos, por exemplo, pode ser aplicada protensão para melhorar o desempenho da estrutura, seja em termos de resistência, seja para controle de deformações ou de fissuração.

Alternativamente, podem ser utilizadas lajes sem vigas, apoiadas diretamente sobre os pilares, com ou sem capitéis, casos em que são denominadas lajes-cogumelo, e lajes planas ou lisas, respectivamente. No alinhamento dos pilares, podem ser consideradas vigas embutidas, com altura considerada igual à espessura das lajes, sendo também denominadas vigas-faixa.

A escolha do sistema estrutural depende de fatores técnicos e econômicos, dentre eles: capacidade do meio técnico para desenvolver o projeto e para executar a obra, e disponibilidade de materiais, mão-de-obra e equipamentos necessários para a execução.

Nos casos de edifícios residenciais e comerciais, a escolha do tipo de estrutura é condicionada, essencialmente, por fatores econômicos, pois as condições técnicas para projeto e construção são de conhecimento da Engenharia de Estruturas e de Construção.

Este trabalho tratará dos sistemas estruturais constituídos por lajes maciças de concreto armado, moldadas no local e apoiadas sobre vigas. Posteriormente, serão consideradas também as lajes nervuradas e as demais ora mencionadas. CAMINHO DAS AÇÕES

O sistema estrutural de um edifício deve ser projetado de modo que seja capaz de resistir não só às ações verticais, mas também às ações horizontais que possam provocar efeitos significativos ao longo da vida útil da construção.

As ações verticais são constituídas por: peso próprio dos elementos estruturais; pesos de revestimentos e de paredes divisórias, além de outras ações permanentes; ações variáveis decorrentes da utilização, cujos valores vão depender da finalidade do edifício, e outras ações específicas, como por exemplo, o peso de equipamentos.

As ações horizontais, onde não há ocorrência de abalos sísmicos, constituem-se, basicamente, da ação do vento e do empuxo em subsolos.

O percurso das ações verticais tem início nas lajes, que suportam, além de seus pesos próprios, outras ações permanentes e as ações variáveis de uso, incluindo, eventualmente, peso de paredes que se apóiem diretamente sobre elas.

As lajes transmitem essas ações para as vigas, através das reações de apoio. As vigas suportam seus pesos próprios, as reações provenientes das lajes, peso de paredes e, ainda, ações de outros elementos que nelas se apóiem, como, por exemplo, as reações de apoio de outras vigas. Em geral as vigas trabalham à flexão e ao cisalhamento e transmitem as ações para os elementos verticais − pilares e paredes estruturais − através das respectivas reações.

Page 46: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

42

Os pilares e as paredes estruturais recebem as reações das vigas que neles se apóiam, as quais, juntamente com o peso próprio desses elementos verticais, são transferidas para os andares inferiores e, finalmente, para o solo, através dos respectivos elementos de fundação.

As ações horizontais devem igualmente ser absorvidas pela estrutura e transmitidas para o solo de fundação. No caso do vento, o caminho dessas ações tem início nas paredes externas do edifício, onde atua o vento. Esta ação é resistida por elementos verticais de grande rigidez, tais como pórticos, paredes estruturais e núcleos, que formam a estrutura de contraventamento. Os pilares de menor rigidez pouco contribuem na resistência às ações laterais e, portanto, costumam ser ignorados na análise da estabilidade global da estrutura.

As lajes exercem importante papel na distribuição dos esforços decorrentes do vento entre os elementos de contraventamento, pois possuem rigidez praticamente infinita no seu plano, promovendo, assim, o travamento do conjunto.

Neste trabalho, não serão abordadas as ações horizontais, visto que trata apenas de edifícios de pequeno porte, em que os efeitos de tais ações são pouco significativos. POSIÇÃO DOS PILARES

Recomenda-se iniciar a localização dos pilares pelos cantos e, a partir daí, pelas áreas que geralmente são comuns a todos os pavimentos (área de elevadores e de escadas) e onde se localizam, na cobertura, a casa de máquinas e o reservatório superior. Em seguida, posicionam-se os pilares de extremidade e os internos, buscando embuti-los nas paredes ou procurando respeitar as imposições do projeto de arquitetura.

Deve-se, sempre que possível, dispor os pilares alinhados, a fim de formar pórticos com as vigas que os unem. Os pórticos, assim formados, contribuem significativamente na estabilidade global do edifício.

Usualmente os pilares são dispostos de forma que resultem distâncias entre seus eixos da ordem de 4 m a 6 m. Distâncias muito grandes entre pilares produzem vigas com dimensões incompatíveis e acarretam maiores custos à construção (maiores seções transversais dos pilares, maiores taxas de armadura, dificuldades nas montagens da armação e das formas etc.). Por outro lado, pilares muito próximos acarretam interferência nos elementos de fundação e aumento do consumo de materiais e de mão-de-obra, afetando desfavoravelmente os custos.

Deve-se adotar 19cm, pelo menos, para a menor dimensão do pilar e escolher a direção da maior dimensão de maneira a garantir adequada rigidez à estrutura, nas duas direções.

Posicionados os pilares no pavimento-tipo, deve-se verificar suas interferências nos demais pavimentos que compõem a edificação. Assim, por exemplo, deve-se verificar se o arranjo dos pilares permite a realização de manobras dos carros nos andares de garagem ou se não afetam as áreas sociais, tais como recepção, sala de estar, salão de jogos e de festas etc.

Page 47: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

43

Na impossibilidade de compatibilizar a distribuição dos pilares entre os diversos pavimentos, pode haver a necessidade de um pavimento de transição.

Nesta situação, a prumada do pilar é alterada, empregando-se uma viga de transição, que recebe a carga do pilar superior e a transfere para o pilar inferior, na sua nova posição. Nos edifícios de muitos andares, devem ser evitadas grandes transições, pois os esforços na viga podem resultar exagerados, provocando aumento significativo de custos. POSIÇÕES DE VIGAS E LAJES

A estruturação segue com o posicionamento das vigas nos diversos pavimentos. Além daquelas que ligam os pilares, formando pórticos, outras vigas podem ser necessárias, seja para dividir um painel de laje com grandes dimensões, seja para suportar uma parede divisória e evitar que ela se apóie diretamente sobre a laje.

É comum, por questões estéticas e com vistas às facilidades no acabamento e ao melhor aproveitamento dos espaços, adotar larguras de vigas em função da largura das alvenarias. As alturas das vigas ficam limitadas pela necessidade de prever espaços livres para aberturas de portas e de janelas.

Como as vigas delimitam os painéis de laje, suas disposições devem levar em consideração o valor econômico do menor vão das lajes, que, para lajes maciças, é da ordem de 3,5 m a 5,0 m. O posicionamento das lajes fica, então, praticamente definido pelo arranjo das vigas. DESENHOS PRELIMINARES DE FORMAS

De posse do arranjo dos elementos estruturais, podem ser feitos os desenhos preliminares de formas de todos os pavimentos, inclusive cobertura e caixa d’água, com as dimensões baseadas no projeto arquitetônico.

As larguras das vigas são adotadas para atender condições de arquitetura ou construtivas. Sempre que possível, devem estar embutidas na alvenaria e permitir a passagem de tubulações. O cobrimento mínimo das faces das vigas em relação às das paredes acabadas variam de 1,5cm a 2,5cm, em geral. Costuma-se adotar para as vigas no máximo três pares de dimensões diferentes para as seções transversais. O ideal é que todas elas tenham a mesma altura, para simplificar o cimbramento.

Em edifícios residenciais, é conveniente que as alturas das vigas não ultrapassem 60cm, para não interferir nos vãos de portas e de janelas.

A numeração dos elementos (lajes, vigas e pilares) deve ser feita da esquerda para a direita e de cima para baixo. Inicia-se com a numeração das lajes – L1, L2, L3 etc. –, sendo que seus números devem ser colocados próximos do centro delas. Em seguida são numeradas as vigas – V1, V2, V3 etc. Seus números devem ser colocados no meio do primeiro tramo. Finalmente, são colocados os números dos pilares – P1, P2, P3 etc. –, posicionados embaixo deles, na forma estrutural.

Page 48: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

44

Devem ser colocadas as cotas parciais e totais em cada direção, posicionadas fora do contorno do desenho, para facilitar a visualização. Ao final obtém-se o anteprojeto de todos os pavimentos, inclusive cobertura e caixa d’água, e pode-se prosseguir com o pré-dimensionamento de lajes, vigas e pilares. PRÉ-DIMENSIONAMENTO

O pré-dimensionamento dos elementos estruturais é necessário para que se

possa calcular o peso próprio da estrutura, que é a primeira parcela considerada no cálculo das ações.

O conhecimento das dimensões permite determinar os vãos equivalentes e as rigidezes, necessários no cálculo das ligações entre os elementos. PRÉ-DIMENSIONAMENTO DAS LAJES

A espessura das lajes pode ser obtida com a expressão (Figura 5.1):

Figura 5.1 - Seção transversal da laje

Page 49: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

45

Cobrimento da armadura

Cobrimento nominal da armadura (c) é o cobrimento mínimo (cmin) acrescido de uma tolerância de execução (∆c): c = cmin + ∆c

O projeto e a execução devem considerar esse valor do cobrimento nominal para assegurar que o cobrimento mínimo seja respeitado ao longo de todo o elemento.

Nas obras correntes, ∆c ≥ 10mm. Quando houver um controle rigoroso da

qualidade da execução, pode ser adotado ∆c = 5mm. Mas a exigência desse controle rigoroso deve ser explicitada nos desenhos de projeto.

O valor do cobrimento depende da classe de agressividade do ambiente. Algumas

classes estão indicadas na Tabela 5.1.

Tabela 5.1 – Classes de agressividade ambiental

Tabela 5.2 – Cobrimento nominal para ∆c = 10mm

Page 50: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

46

b) Altura útil da laje Para lajes com bordas apoiadas ou engastadas, a altura útil pode ser estimada

por meio da seguinte expressão:

Para lajes com bordas livres, como as lajes em balanço, deve ser utilizado outro processo. c) Espessura mínima

A NBR 6118 (2001) especifica que nas lajes maciças devem ser respeitadas as seguintes espessuras mínimas:

• 5 cm para lajes de cobertura não em balanço • 7 cm para lajes de piso ou de cobertura em balanço • 10 cm para lajes que suportem veículos de peso total menor ou igual a 30 kN • 12 cm para lajes que suportem veículos de peso total maior que 30 kN PRÉ-DIMENSIONAMENTO DAS VIGAS

Uma estimativa grosseira para a altura das vigas é dada por: • tramos internos: hest = l0 12 • tramos externos ou vigas biapoiadas: hest = l0 10 • balanços: hest = l0 5

Page 51: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

47

Num tabuleiro de edifício, não é recomendável utilizar muitos valores diferentes para altura das vigas, de modo a facilitar e otimizar os trabalhos de cimbramento. Usualmente, adotam-se, no máximo, duas alturas diferentes. Tal procedimento pode, eventualmente, gerar a necessidade de armadura dupla em alguns trechos das vigas.

Os tramos mais críticos, em termos de vãos excessivos ou de grandes carregamentos, devem ter suas flechas verificadas posteriormente. Para armadura longitudinal em uma única camada, a relação entre a altura total e a altura útil é dada pela expressão (Figura 5.2):

Figura 5.2 – Seção transversal da viga PRÉ-DIMENSIONAMENTO DOS PILARES

Inicia-se o pré-dimensionamento dos pilares estimando-se sua carga, por exemplo, através do processo das áreas de influência. Este processo consiste em dividir a área total do pavimento em áreas de influência, relativas a cada pilar e, a partir daí, estimar a carga que eles irão absorver.

A área de influência de cada pilar pode ser obtida dividindo-se as distâncias entre seus eixos em intervalos que variam entre 0,45l e 0,55l, dependendo da posição do pilar na estrutura, conforme o seguinte critério (ver Figura 5.3):

Page 52: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

48

Figura 5.3 - Áreas de influência dos pilares

• 0,45l: pilar de extremidade e de canto, na direção da sua menor dimensão; • 0,55l: complementos dos vãos do caso anterior; • 0,50l: pilar de extremidade e de canto, na direção da sua maior dimensão.

No caso de edifícios com balanço, considera-se a área do balanço acrescida das

respectivas áreas das lajes adjacentes, tomando-se, na direção do balanço, largura igual a 0,50l, sendo l o vão adjacente ao balanço.

Convém salientar que quanto maior for a uniformidade no alinhamento dos pilares

e na distribuição dos vãos e das cargas, maior será a precisão dos resultados obtidos. Há que se salientar também que, em alguns casos, este processo pode levar a resultados muito imprecisos.

Após avaliar a força nos pilares pelo processo das áreas de influência, é

determinado o coeficiente de majoração da força normal (α) que leva em conta as excentricidades da carga, sendo considerados os valores:

α = 1,3 → pilares internos ou de extremidade, na direção da maior dimensão; α = 1,5 → pilares de extremidade, na direção da menor dimensão; α = 1,8 → pilares de canto.

A seção abaixo do primeiro andar-tipo é estimada, então, considerando-se compressão simples com carga majorada pelo coeficiente α, utilizando-se a seguinte expressão:

Page 53: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

49

A existência de caixa d’água superior, casa de máquina e outros equipamentos não pode ser ignorada no pré-dimensionamento dos pilares, devendo-se estimar os carregamentos gerados por eles, os quais devem ser considerados nos pilares que os sustentam. ADERÊNCIA E ANCORAGEM

Aderência (bond, em inglês) é a propriedade que impede que haja escorregamento de uma barra em relação ao concreto que a envolve. É, portanto, responsável pela solidariedade entre o aço e o concreto, fazendo com que esses dois materiais trabalhem em conjunto.

A transferência de esforços entre aço e concreto e a compatibilidade de

deformações entre eles são fundamentais para a existência do concreto armado. Isto só é possível por causa da aderência.

Ancoragem é a fixação da barra no concreto, para que ela possa ser interrompida. Na ancoragem por aderência, deve ser previsto um comprimento suficiente para que o esforço da barra (de tração ou de compressão) seja transferido para o concreto. Ele é denominado comprimento de ancoragem.

Além disso, em peças nas quais, por disposições construtivas ou pelo seu

comprimento, necessita-se fazer emendas nas barras, também se deve garantir um comprimento suficiente para que os esforços sejam transferidos de uma barra para outra, na região da emenda. Isto também é possível graças à aderência entre o aço e o concreto.

Page 54: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

50

TIPOS DE ADERÊNCIA

Esquematicamente, a aderência pode ser decomposta em três parcelas: adesão, atrito e aderência mecânica. Essas parcelas decorrem de diferentes fenômenos que intervêm na ligação dos dois materiais. Aderência por Adesão

A aderência por adesão caracteriza-se por uma resistência à separação dos dois materiais. Ocorre em função de ligações físico-químicas, na interface das barras com a pasta, geradas durante as reações de pega do cimento. Para pequenos deslocamentos relativos entre a barra e a massa de concreto que a envolve, essa ligação é destruída.

A Figura 10.1 mostra um cubo de concreto moldado sobre uma placa de aço. A

ligação entre os dois materiais se dá por adesão. Para separá-los, há necessidade de se aplicar uma ação representada pela força Fb1. Se a força fosse aplicada na horizontal, não se conseguiria dissociar a adesão do comportamento relativo ao atrito. No entanto, a adesão existe independente da direção da força aplicada.

Figura 10.1 – Aderência por adesão

Page 55: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

51

Aderência por Atrito

Por meio do arrancamento de uma barra em um bloco concreto (Figura 10.2), verifica-se que a força de arrancamento Fb2 é maior do que a força Fb1 mobilizada pela adesão. Esse acréscimo é devido ao atrito entre a barra e o concreto.

Figura 10.2 – Aderência por atrito

O atrito manifesta-se quando há tendência ao deslocamento relativo entre os materiais. Depende da rugosidade superficial da barra e da pressão transversal σ, exercida pelo concreto sobre a barra, em virtude da retração (Figura 10.2). Em barras curvas ou em regiões de apoio de vigas em pilares, aparecem acréscimos dessas pressões de contato, que favorecem a aderência por atrito.

O coeficiente de atrito entre aço e concreto é alto, em função da rugosidade da

superfície das barras, resultando valores entre 0,3 e 0,6 (LEONHARDT, 1977). Na Figura 10.2, a oposição à ação Fb2 é constituída pela resultante das tensões

de aderência (τb) distribuídas ao longo da barra. Aderência Mecânica

A aderência mecânica é devida à conformação superficial das barras. Nas barras de alta aderência (Figura 10.3), as saliências mobilizam forças localizadas, aumentando significativamente a aderência.

Figura 10.3 – Aderência mecânica em barras nervuradas

Page 56: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

52

A Figura 10.4 (LEONHARDT, 1977) mostra que mesmo uma barra lisa pode apresentar aderência mecânica, em função da rugosidade superficial, devida à corrosão e ao processo de fabricação, gerando um denteamento da superfície. Para efeito de comparação, são apresentadas superfícies microscópicas de: barra de aço enferrujada, barra recém laminada e fio de aço obtido por laminação a quente e posterior encruamento a frio por estiramento. Nota-se que essas superfícies estão muito longe de serem efetivamente lisas.

Portanto, a separação da aderência nas três parcelas - adesão, atrito e aderência

mecânica - é apenas esquemática, pois não é possível quantificar isoladamente cada uma delas.

Figura 10.4 - Rugosidade superficial de barras e fios lisos (LEONHARDT, 1977) TENSÃO DE ADERÊNCIA

Para uma barra de aço imersa em uma peça de concreto, como a indicada na figura 10.5, a tensão média de aderência é dada por:

Figura 10.5 – Tensão de aderência

Page 57: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

53

SITUAÇÕES DE ADERÊNCIA

Na concretagem de uma peça, tanto no lançamento como no adensamento, o

envolvimento da barra pelo concreto é influenciado pela inclinação dessa barra. Sua inclinação interfere, portanto, nas condições de aderência. Por causa disso, a NBR 6118 (2003) considera em boa situação quanto à aderência os trechos das barras que estejam com inclinação maior que 45º em relação à horizontal (figura 10.6 a).

Page 58: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

54

FIGURA 10.6 – Situações de boa e de má aderência (PROMON, 1976)

As condições de aderência são influenciadas por mais dois aspectos:

• Altura da camada de concreto sobre a barra, cujo peso favorece o adensamento, melhorando as condições de aderência; • Nível da barra em relação ao fundo da forma; a exsudação produz porosidade no concreto, que é mais intensa nas camadas mais altas, prejudicando a aderência.

Essas duas condições fazem com que a NBR 6118 (2003) considere em boa situação quanto à aderência os trechos das barras que estejam em posição horizontal ou com inclinação menor que 45º, desde que: • para elementos estruturais com h < 60cm, localizados no máximo 30cm acima da face inferior do elemento ou da junta de concretagem mais próxima (Figuras 10.6b e 10.6c); • para elementos estruturais com h ≥ 60cm, localizados no mínimo 30cm abaixo da face superior do elemento ou da junta de concretagem mais próxima (Figura 10.6d).

Page 59: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

55

Em outras posições e quando do uso de formas deslizantes, os trechos das barras devem ser considerados em má situação quanto à aderência.

No caso de lajes e vigas concretadas simultaneamente, a parte inferior da viga

pode estar em uma região de boa aderência e a parte superior em região de má aderência. Se a laje tiver espessura menor do que 30cm, estará em uma região de boa aderência. Sugere-se, então, a configuração das figuras 10.6e e 10.6f para determinação das zonas aderência. RESISTÊNCIA DE ADERÊNCIA

A resistência de aderência de cálculo entre armadura e concreto é dada pela expressão (NBR 6118, 2003, item 9.3.2.1):

Page 60: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

56

COMPRIMENTO DE ANCORAGEM

Todas as barras das armaduras devem ser ancoradas de forma que seus esforços sejam integralmente transmitidos para o concreto, por meio de aderência, de dispositivos mecânicos, ou por combinação de ambos.

Na ancoragem por aderência, os esforços são ancorados por meio de um

comprimento reto ou com grande raio de curvatura, seguido ou não de gancho. Com exceção das regiões situadas sobre apoios diretos, as ancoragens por aderência devem ser confinadas por armaduras transversais ou pelo próprio concreto, considerando-se este caso quando o cobrimento da barra ancorada for maior ou igual a 3φ e a distância entre as barras ancoradas também for maior ou igual a 3φ.

Nas regiões situadas sobre apoios diretos, a armadura de confinamento não é

necessária devido ao aumento da aderência por atrito com a pressão do concreto sobre a barra. Comprimento de Ancoragem Básico

Define-se comprimento de ancoragem básico lb (Figura 10.5) como o comprimento reto necessário para ancorar a força limite Rs = As fyd, admitindo, ao longo desse comprimento, resistência de aderência uniforme e igual a fbd, obtida conforme o item 10.4.

O comprimento de ancoragem básico lb é obtido igualando-se a força última de aderência lb πφ fbd com o esforço na barra Rs = As fyd (ver Figura 10.5):

De maneira simplificada, pode-se dizer que, a partir do ponto em que a barra não for mais necessária, basta assegurar a existência de um comprimento suplementar lb que garanta a transferência das tensões da barra para o concreto.

Page 61: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

57

Comprimento de Ancoragem Necessário

Nos casos em que a área efetiva da armadura Αs,ef é maior que a área calculada As,calc, a tensão nas barras diminui e, portanto, o comprimento de ancoragem pode ser reduzido na mesma proporção. A presença de gancho na extremidade da barra também permite a redução do comprimento de ancoragem, que pode ser calculado pela expressão:

Ancoragem de Barras Comprimidas

Nas estruturas usuais de concreto armado, pode ser necessário ancorar barras compridas, nos seguintes casos: • em vigas - quando há barras longitudinais compridas (armadura dupla); • nos pilares - nas regiões de emendas por traspasse, no nível dos andares ou da fundação.

As barras exclusivamente compridas ou que tenham alternância de solicitações (tração e compressão) devem ser ancoradas em trecho reto, sem gancho (Figura 10.7). A presença do gancho gera concentração de tensões, que pode levar ao fendilhamento do concreto ou à flambagem das barras.

Em termos de comportamento, a ancoragem de barras comprimidas e a de barras

tracionadas é diferente em dois aspectos. Primeiramente, por estar comprimido na região da ancoragem, o concreto apresenta maior integridade (está menos fissurado) do que se estivesse tracionado, e poder-se-ia admitir comprimentos de ancoragem menores.

Um segundo aspecto é o efeito de ponta, como pode ser observado na Figura

10.7. Esse fator é bastante reduzido com o tempo, pelo efeito da fluência do concreto. Na prática, esses dois fatores são desprezados. Portanto, os comprimentos de ancoragem de barras comprimidas são calculados como no caso das tracionadas. Porém, nas comprimidas não se usa gancho.No cálculo do comprimento de traspasse

Page 62: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

58

l0c de barras comprimidas, adota-se a seguinte expressão (NBR 6118, 2003, item 9.5.2.3): l0c = lb,nec ≥ l0c,min l0c,min é o maior valor entre 0,6 lb , 15 φ e 200 mm.

Figura 10.7 Ancoragem de barras comprimidas (FUSCO, 1975) ANCORAGEM NOS APOIOS

De acordo com a NBR 6118 (2003), item 18.3.2.4, a armadura longitudinal de tração junto aos apoios deve ser calculada para satisfazer a mais severa das seguintes condições:

a) no caso de ocorrência de momentos positivos, a armadura obtida através do dimensionamento da seção; b) em apoios extremos, para garantir ancoragem da diagonal de compressão, armadura capaz de resistir a uma força de tração Rs dada por:

Page 63: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

59

c) em apoios extremos e intermediários, por prolongamento de uma parte da armadura de tração do vão (As,vão), correspondente ao máximo momento positivo do tramo (Mvão), de modo que:

Comprimento Mínimo de Ancoragem em Apoios Extremos

Em apoios extremos, para os casos (b) e (c) anteriores, a NBR 6118 (2003) prescreve que as barras devem ser ancoradas a partir da face do apoio, com comprimento mínimo dado por:

Page 64: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

60

A NBR 6118 (2003), item 18.3.2.4.1, estabelece que quando houver cobrimento da barra no trecho do gancho, medido normalmente ao plano do gancho, de pelo menos 70 mm, e as ações acidentais não ocorrerem com grande freqüência com seu valor máximo, o primeiro dos três valores anteriores pode ser desconsiderado, prevalecendo as duas condições restantes. Esforço a Ancorar e Armadura Calculada

Na flexão simples, o esforço a ancorar é dado por:

A armadura para resistir esse esforço, com tensão σs = fyd, é dada por:

Page 65: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

61

Armadura necessária em apoios extremos

Na expressão do comprimento de ancoragem necessário (item 10.5.2),

A área das barras ancoradas no apoio não pode ser inferior a As, nec. ANCORAGEM FORA DE APOIO

Algumas barras longitudinais podem ser interrompidas antes dos apoios. Para determinar o ponto de início de ancoragem dessas barras, há necessidade de se deslocar, de um comprimento al, o diagrama de momentos fletores de cálculo. Deslocamento al do diagrama O valor do deslocamento al é dado por (item 17.4.2.2c da NBR 6118, 2003):

em que α é o ângulo de inclinação da armadura transversal em relação ao eixo longitudinal da peça (45° ≤ α ≤ 90). O valor de Vc para flexão simples, flexo-tração com a linha neutra cortando a seção ou para flexo-compressão em vigas não protendidas é dado por: Vc= Vco= 0,6.fctd.bw.d Vale ressaltar que, nos casos usuais, nos quais a armadura transversal (estribos) é normal ao eixo da peça, α = 90o e a expressão de l a resulta:

Page 66: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

62

O deslocamento al é fundamentado no comportamento previsto para resistência da viga à força cortante, em que se considera que a viga funcione como uma treliça, com banzo comprimido e diagonais (bielas) formados pelo concreto, e banzo tracionado e montantes constituídos respectivamente pela armadura longitudinal e pelos estribos. Nesse modelo há um acréscimo de esforço na armadura longitudinal de tração, que é considerado através de um deslocamento AL do diagrama de momentos fletores de cálculo. Trecho de Ancoragem Será calculado conforme o item 18.3.2.3.1 da NBR 6118, 2003 (Figura 10.9).

Figura 10.9 – Ancoragem de barras em peças fletidas

O trecho da extremidade da barra de tração, considerado como de ancoragem,

tem início na seção teórica onde sua tensão σs começa a diminuir, ou seja, o esforço a armadura começa a ser transferido para o concreto. A barra deve prolongar-se pelo menos 10φ além do ponto teórico de tensão σs nula, não podendo em nenhum caso ser inferior ao comprimento de ancoragem necessário, calculado conforme o item 10.5.2 deste texto.

Page 67: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

63

Assim, na armadura longitudinal de tração das peças fletidas, o trecho de ancoragem da barra terá início no ponto A (Figura 10.8) do diagrama de forças Rs = Md/z deslocado. Se a barra não for dobrada, o trecho de ancoragem deve prolongar-se além de B, no mínimo 10φ. Se a barra for dobrada, o início do dobramento poderá coincidir com o ponto B (Figura 10.9). Ancoragem em Apoios Intermediários

Se o ponto A de início de ancoragem estiver na face do apoio ou além dela (Figura 10.10a) e a força Rs diminuir em direção ao centro do apoio, o trecho de ancoragem deve ser medido a partir dessa face, com a força Rs dada no item 10.6.2. Quando o diagrama de momentos fletores de cálculo não atingir a face do apoio, as barras prolongadas até o apoio (Figura 10.10b) devem ter o comprimento de ancoragem marcado a partir do ponto A e, obrigatoriamente, deve ultrapassar 10φ da face de apoio.

Quando houver qualquer possibilidade da ocorrência de momentos positivos nessa região, provocados por situações imprevistas, particularmente por efeitos de vento e eventuais recalques, as barras deverão ser contínuas ou emendadas sobre o apoio.

Figura 10.10 – Ancoragem em apoios intermediários

GANCHOS DAS ARMADURAS DE TRAÇÃO

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser (item 9.4.2.3 da NBR 6118, 2003): • semicirculares, com ponta reta de comprimento não inferior a 2φ (Figura 10.11a);

Page 68: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

64

• em ângulo de 45º (interno), com ponta reta de comprimento não inferior a 4φ (Figura 10.11b); • em ângulo reto, com ponta reta de comprimento não inferior as 8φ (Figura 10.11c).

Para barras lisas, os ganchos devem ser semicirculares. Vale ressaltar que, segundo as recomendações da NBR 6118 (2003), as barras lisas deverão ser sempre ancoradas com ganchos.

Figura 10.11 - Tipos de ganchos

Ainda segundo a NBR 6118 (2003), o diâmetro interno da curvatura dos ganchos

das armaduras longitudinais de tração deve ser pelo menos igual ao estabelecido na tabela 10.1.

Tabela 10.1 - Diâmetros dos pinos de dobramento

GANCHOS DOS ESTRIBOS

A NBR 6118 (2003), item 9.4.6, estabelece que a ancoragem dos estribos deve necessariamente ser garantida por meio de ganchos ou barras longitudinais soldadas. Os ganchos dos estribos podem ser:

Page 69: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

65

• semicirculares ou em ângulo de 45o (interno), com ponta reta de comprimento igual a 5φ, porém não inferior a 5cm; • em ângulo reto, com ponta reta de comprimento maior ou igual a 10φ, porém não inferior a 7cm (este tipo de gancho não deve ser utilizado para barras e fios lisos).

O diâmetro interno da curvatura dos estribos deve ser, no mínimo, igual ao valor dado na Tabela 10.2. Tabela 10.2 - Diâmetros dos pinos de dobramento para estribos

RESUMINDO: Pode-se constatar que as edificações comerciais, residenciais e de serviços existentes em todo o território nacional são construídas, na sua quase totalidade, com estruturas de concreto armado e protendido. O Brasil tem uma larga tradição em tecnologias, procedimentos e normas técnicas aplicadas a este tipo de estrutura. Também, e do conhecimento de todos que, ao longo dos últimos 20 anos, os recursos da informática tiveram uma notável evolução. O hardware básico se tornou milhares de vezes mais potente, com preços mais convidativos. Os softwares para a engenharia estrutural, nacionais e internacionais, também evoluíram de forma notável. Os sistemas computacionais voltados para os projetos de engenharia avançaram em abrangência de problemas resolvidos, velocidade de processamento, precisão e sofisticação de modelagem, elaboração de desenhos, etc. Hoje em dia, termos como PLT, DWG, DXF, PDF fazem parte do dia-a-dia de qualquer projetista.

Page 70: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

66

Os traçadores gráficos ou ploters, baseados na tecnologia das impressoras a jato de tinta, banalizaram a tarefa de emissão de desenhos de engenharia. A prancheta tradicional praticamente desapareceu dos escritórios de projeto. O projeto das estruturas de concreto armado e protendido, acompanhando a evolução da informática, tornou-se fortemente dependente do emprego de sistemas computacionais voltados a esta finalidade. Praticamente em todo o pais não mais se elaboram projetos estruturais sem o emprego e auxilio da informática. Um novo ambiente de trabalho foi criado e uma nova forma de projetar ainda esta sendo descoberta e em curso. Os softwares para a engenharia de estruturas, notadamente aqueles que, alem da analise estrutural, também realizam o dimensionamento, detalhamento e desenho, ganharam uma importância acima do que, talvez, fosse o limite recomendável. Não e incomum ouvir o engenheiro estrutural afirmar que o projeto foi elaborado com os critérios padrões do fornecedor do software e, portanto, ele tem a devida qualidade.

RECENTES ACONTECIMENTOS

Paralelamente a evolução e ao emprego intensivo dos recursos da informatica alguns casos relacionados a patologia estrutural tem sido encontrados. Vejamos alguns exemplos reais:

a) Deformações excessivas em lajes

Num projeto real já executado, as lajes apresentaram deformações além dos limites. Empregou-se um método para calculo de deformações baseado em regime elástico puro. Foram adotadas hipóteses simplificadoras para as bordas das lajes (indeformáveis).

b) Solução estrutural inovadora

Projeto em execução, com diversos pilares se apoiando diretamente nas lajes com reduzida espessura. Os pilares praticamente não tem a função de resistir as cargas verticais que, são transferidas pelas vigas adjacentes a outros pilares, que, por sua vez, não foram adequadamente dimensionados para tal.

c) Armadura insuficiente em viga de transição

Obra ja na fase final de entrega. A viga de transição foi detalhada com um terço da armadura principal necessária, apresentando deformações alem dos limites recomendados pela norma vigente. Todos os casos acima relatados foram projetados com o uso intensivo dos recursos da informática. Nestes três exemplos, não estavam sendo atendidos diversos requisitos de normas técnicas brasileiras, normas regulamentadoras para a elaboração de projetos. Paralelamente a este fato, também e fácil de se constatar exatamente o oposto, isto e, inúmeros exemplos bem sucedidos de projetos estruturais arrojados, esbeltos, elevados, complexos, inovadores, todos

Page 71: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

67

elaborados com o emprego de avançados softwares para a analise, dimensionamento, detalhamento e desenho de estruturas obedecendo as normas técnicas em vigor. Fica então a questão: projetar estruturas de concreto armado e protendido utilizando os softwares modernos do mercado e uma garantia implícita da qualidade do projeto? Este assunto será melhor abordado a seguir.

O emprego de software significa qualidade?

Para elucidar melhor este tópico,

seria importante tentar responder a algumas questões:

a) O software garante o cumprimento de normas?

Pode-se responder que não. Todo software precisa conviver com diversas normas (atuais e anteriores) simultaneamente. Alguns valores prescritos em normas precisam ser alimentados diretamente pelo usuário do sistema. Alem disso, o software e apenas uma ferramenta de trabalho e o usuário, baseado na sua experiência ou na sua necessidade, pode selecionar algum critério que não atende plenamente a um requisito de norma. E o caso clássico do emprego de coeficientes diferentes dos prescritos em normas para a certificação da qualidade de projetos em obras já executadas. Portanto, pode-se afirmar que qualquer software possibilita a elaboração de projetos não totalmente conforme as normas técnicas, dependendo da forma de operação realizada pelo usuário.

b) Apenas o emprego do software é sinônimo de qualidade?

Certamente esta questão e respondida negativamente. Haja vista os exemplos anteriormente citados com o uso intensivo de softwares e com os devidos problemas apresentados. E importante ressaltar que o modelo estrutural adotado pelo engenheiro já é um forte condicionante para, em alguns casos, nao se atingir a qualidade desejada no projeto final da estrutura.

c) Software auxilia na qualidade do projeto?

Evidentemente que sim. Desde que corretamente empregado, o software e uma poderosa ferramenta para elaboração dos projetos. Hoje em dia, seria muito difícil projetar estruturas complexas sem o auxilio de softwares avançados.

d) O que faz na verdade um software ?

Pode-se responder que apenas a automatização de cálculos sofisticados, desenhos e relatórios alfanuméricos. Os desenhos e relatórios gerados somente se tornam projetos de engenharia apos uma criteriosa analise, verificação, adaptação, conferencia e validação dos resultados.

Page 72: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

68

Fica então a questão: quais os requisitos básicos que um engenheiro deve seguir para a elaboração de projetos estruturais com os avançados softwares disponíveis? Validando resultados do processamento dentro de inúmeras modalidades de validação de resultados de um processamento, vale a pena destacar algumas verificações básicas, simples, que devem ser realizadas com o objetivo de buscar uma ordem de grandeza. Geralmente estas verificações são muito aproximadas, mas permitem a realização de certo controle de qualidade nos resultados apos todo o complexo processamento geral. Dentre dezenas de índices básicos que o engenheiro estrutural deve dispor, podem-se citar alguns:

a) Somatória de cargas verticais

Todas as cargas verticais foram corretamente alimentadas e interpretadas pelo software? O resultado esta próximo de um numero básico que pode ser 1.200 kgf/m2?

Se sim, este item pode ser validado. Se o resultado for muito diferente, e preciso uma explicação lógica pela discrepância de resultados.

b) Somatória de cargas horizontais

Para a grande maioria das regiões do pais, a somatória de cargas horizontais da edificação dividida pela área de obstrução lateral fornece resultados próximos de 70 kgf/m2? Se o resultado não estiver próximo deste valor, a região possui velocidades baixas de vento? Ou muito elevadas? Em função da região, e facílimo validar os resultados apresentados.

c) Momento fletor positivo em vigas

Uma viga bi-apoiada com carga uniformemente distribuída de intensidade [q] e comprimento [l] possui o valor do momento fletor no meio do vão igual a Mk=q*l2/8. Este numero e fundamental. O engenheiro deve procurar descobrir os [q*l2/8] da sua estrutura, fazendo aproximações usando o bom senso, e validar os resultados obtidos.

d) Arma dura de vigas a flexão simples

Em vigas usuais, o resultado da expressão simplificada, As=0.40*Mk/d, fornece uma excelente aproximação do valor calculado para o As necessário. E o antigo coeficiente K6=b*d2/Mk? Valores abaixo de 30 indicam que a viga tem dimensões insuficientes.

e) Intensidade de cargas nos pilares

Como conferir? Basta adotar uma área de influencia aproximada para o pilar, multiplicar pela carga media de 1.200 kgf/m2 e verificar com o resultado obtido para o caso de carregamento vertical total. E a tensão atuante nos pilares, em kgf/cm2? Deve ficar, em boa parte dos casos em torno de 100 kgf/cm2. O pilar esta muito comprimido? Basta calcular ou examinar o coeficiente Ni=Nsd/(Ac*fcd) para cada lance do pilar.

Page 73: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

69

f) Taxas de Armaduras

Para edificações similares, as taxas de armaduras para vigas, pilares e lajes são semelhantes com certa margem de discrepância. É possível armazenar estes índices e apenas comparar a dispersão da taxa de armadura real com a taxa padrão. Com isto e possível examinar os pontos críticos do projeto sob o ponto de vista das armaduras.

g) Comparando elementos similares

Uma regra extremamente simples e a comparação de resultados em elementos (vigas, lajes e pilares) que devem possuir praticamente a mesma resposta. Sempre questionar o porque um elemento tem mais carga que o outro. Por que um pilar possui uma solicitação maior do que o outro quando isto não deveria ocorrer? Por que uma laje praticamente igual a outra possui uma armadura bem maior? São regras simples, mas de fundamental importância na validação dos resultados.

h) Quando os resultados divergem dos esperados

Muitas vezes, em modelos complexos, tem-se algumas dificuldades para analisar os resultados. Neste caso pode-se recorrer a um artifício simples que e o de duplicar e simplificar o modelo estrutural, reduzir o numero de elementos, impor condições de contorno adequadas ao entendimento e estudar um ponto especifico do modelo onde as dúvidas estão ocorrendo. Em inúmeras situações, o software também exerce a função de despertar e aprimorar a intuição do engenheiro estrutural. Devido a sofisticação dos processamentos que resolvem sistemas de equações com centenas de milhares de incógnitas, o aprendizado do engenheiro estrutural e constante. O engenheiro que ja teve a oportunidade de realizar estas verificações periodicamente nos seus projetos pode constatar a importância da adoção desta metodologia. Frequentemente, vem a tona problemas de modelagem, entrada de dados, interpretação de dados fornecidos ao software etc, totalmente não esperados. Algumas conclusões como já apresentado, os resultados produzidos por um software para engenharia estrutural, mesmo em edificações convencionais, não podem ser considerados, em hipótese alguma, como sendo um projeto estrutural, embora os desenhos técnicos emitidos automaticamente pelos sistemas possam ser similares aos de um projeto acabado.

É de fundamental importância que os engenheiros estruturais analisem os resultados obtidos, façam uma validação criteriosa dos principais resultados comparando-os com os obtidos por expressões simplificadas, facilmente calculadas de forma manual, e com uma perfeita comprovação teórica e prática. Os índices que cada profissional adota para validar o seu modelo e os resultados podem variar para cada engenheiro. O importante e que cada um tenha os seus indicadores próprios, acumulados ao longo de anos de experiência e que cada resultado seja devidamente analisado e conferido. Como o jovem engenheiro ainda não tem a devida experiência para a criação destes índices e, como estes são necessários e fundamentais para a devida validação, a solução neste caso e sempre recorrer, inicialmente, a um profissional mais experiente ate que ele se capacite para tal função.

Page 74: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional

Técnico em Edificações

PROJETOS DE ESTRUTURAS I e II

70

A segurança necessária para se projetar uma estrutura provem, primordialmente, deste trabalho de conferencia e validação com modelos e regras simples. E importante reafirmar que não existe projeto estrutural sem este trabalho de certificação da qualidade dos resultados emitidos por qualquer um dos softwares disponíveis no mercado.

Os desenhos somente podem ser emitidos como projetos e entregues para a execução apos a sua completa e segura validação.

BIBLIOGRAFIA

Novo curso de concreto armado – Volume I e II: Anderson Moreira da Rocha

Normas Brasileiras: NB – 1, NB – 5 e NB – 16

ABCP – Manual de Estruturas de Concreto Armado. Associação Brasileira de Cimento Portland. Versão Preliminar. 2002

______.NBR 14931 – Execução de Estrutura de Concreto – Procedimento

______.NBR 6618:2003 – Projeto de Estrutura de Concreto – Procedimento

______.NBR 7480:1996 – Barras e Fios de Aço destinados a Armadura de Concreto Armado – Especificações

ROCHA, Anderson Moreira da. Novo curso de concreto armado – Volume I e II:

Normas Brasileiras: NB – 1, NB – 5 e NB – 16

THOMAZ. E. Tecnologia, Gerenciamento e Qualidade na Construção. São Paulo: Editora PINI, co-edição IPT/EPUSP/PINI, 2001

Page 75: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral
Page 76: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral

Hino do Estado do Ceará

Poesia de Thomaz LopesMúsica de Alberto NepomucenoTerra do sol, do amor, terra da luz!Soa o clarim que tua glória conta!Terra, o teu nome a fama aos céus remontaEm clarão que seduz!Nome que brilha esplêndido luzeiroNos fulvos braços de ouro do cruzeiro!

Mudem-se em flor as pedras dos caminhos!Chuvas de prata rolem das estrelas...E despertando, deslumbrada, ao vê-lasRessoa a voz dos ninhos...Há de florar nas rosas e nos cravosRubros o sangue ardente dos escravos.Seja teu verbo a voz do coração,Verbo de paz e amor do Sul ao Norte!Ruja teu peito em luta contra a morte,Acordando a amplidão.Peito que deu alívio a quem sofriaE foi o sol iluminando o dia!

Tua jangada afoita enfune o pano!Vento feliz conduza a vela ousada!Que importa que no seu barco seja um nadaNa vastidão do oceano,Se à proa vão heróis e marinheirosE vão no peito corações guerreiros?

Se, nós te amamos, em aventuras e mágoas!Porque esse chão que embebe a água dos riosHá de florar em meses, nos estiosE bosques, pelas águas!Selvas e rios, serras e florestasBrotem no solo em rumorosas festas!Abra-se ao vento o teu pendão natalSobre as revoltas águas dos teus mares!E desfraldado diga aos céus e aos maresA vitória imortal!Que foi de sangue, em guerras leais e francas,E foi na paz da cor das hóstias brancas!

Hino Nacional

Ouviram do Ipiranga as margens plácidasDe um povo heróico o brado retumbante,E o sol da liberdade, em raios fúlgidos,Brilhou no céu da pátria nesse instante.

Se o penhor dessa igualdadeConseguimos conquistar com braço forte,Em teu seio, ó liberdade,Desafia o nosso peito a própria morte!

Ó Pátria amada,Idolatrada,Salve! Salve!

Brasil, um sonho intenso, um raio vívidoDe amor e de esperança à terra desce,Se em teu formoso céu, risonho e límpido,A imagem do Cruzeiro resplandece.

Gigante pela própria natureza,És belo, és forte, impávido colosso,E o teu futuro espelha essa grandeza.

Terra adorada,Entre outras mil,És tu, Brasil,Ó Pátria amada!Dos filhos deste solo és mãe gentil,Pátria amada,Brasil!

Deitado eternamente em berço esplêndido,Ao som do mar e à luz do céu profundo,Fulguras, ó Brasil, florão da América,Iluminado ao sol do Novo Mundo!

Do que a terra, mais garrida,Teus risonhos, lindos campos têm mais flores;"Nossos bosques têm mais vida","Nossa vida" no teu seio "mais amores."

Ó Pátria amada,Idolatrada,Salve! Salve!

Brasil, de amor eterno seja símboloO lábaro que ostentas estrelado,E diga o verde-louro dessa flâmula- "Paz no futuro e glória no passado."

Mas, se ergues da justiça a clava forte,Verás que um filho teu não foge à luta,Nem teme, quem te adora, a própria morte.

Terra adorada,Entre outras mil,És tu, Brasil,Ó Pátria amada!Dos filhos deste solo és mãe gentil,Pátria amada, Brasil!

Page 77: Escola Estadual de Educação Profissional - EEEP€¦ · adequada, de: aglomerantes, agregados e água. AGLOMERANTES Unem os fragmentos de outros materiais. No concreto, em geral