es toques

151
1 Inventory Inventory Models Models

Upload: alexsandro-andrade

Post on 30-Nov-2015

12 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Es Toques

1

Inventory Inventory ModelsModels

Page 2: Es Toques

2

Tipos de Demanda

• Demanda independente: são itens que dependem, em sua maioria, dos pedidos de clientes externos, como, por exemplo, produtos acabados em geral.

Page 3: Es Toques

3

• Demanda dependente é aquela de um item cuja quantidade a ser utilizada depende da demanda de um item de demanda independente.

Exemplo: O item pneus em uma montadora é dependente do número de veículos demandados pelo público (5 pneus por carro)

Tipos de Demanda

Page 4: Es Toques

4

Tipos de estoques

• Matérias-primas

• Produtos em processo (WIP - Work In Process)

• Produtos acabados

• Em trânsito

• Em consignação

Page 5: Es Toques

5

Importância dos Estoques

– Melhorar o serviço ao cliente– Economia de escala– Proteção contra mudanças de preço em épocas de

inflação alta– Proteção contra incertezas na demanda e no tempo

de entrega– Proteção contra contingências

Page 6: Es Toques

6

Pressões para Manter Estoque Alto

• Estoque alto = maior probabilidade de atender bem os clientes

Mas

• Estoque alto = certeza de alto custo em carregar estoques

Page 7: Es Toques

7

Fontes de Elevação de Estoque

• Marketing

• Engenharia

• Controle de Qualidade

• Manufatura

• Suprimentos

• Gerentes

Page 8: Es Toques

8

Segmentação de Estoques

• Classificação ABC – é um processo de categorização de Pareto, baseado em algum critério relevante para a priorização dos esforços de gerenciamento.

• Na gestão de materiais, o critério usualmente mais utilizado consiste no consumo médio do item multiplicado pelo seu custo de reposição – conhecido como demanda valorizada.

• A partir do ranking destes itens, que podem ser separados em comprados e produzidos, estratifica-se três categorias através do corte considerando a percentagem acumulada em, por exemplo, 80%, 15% e 5%.

Page 9: Es Toques

9

Classificação ABC

 

Page 10: Es Toques

10

Segmentação de Estoques

•  Classificação XYZ – Nessa classificação segmenta-se os itens baseando-se no critério de criticidade para facilitar as rotinas de planejamento, reposição e gerenciamento.

Page 11: Es Toques

11

Classificação XYZ

Classificação da criticidade dos itens

Classe X

Ordinário: Item de baixa criticidade, cuja falta naturalmente compromete o atendimento de um usuário interno (serviço ou produção) ou externos (clientes finais), mas não implica em maiores conseqüências.

Classe Y

Intercambiável: Apresenta razoável possibilidade de substituição com outros itens disponíveis em estoque sem comprometer os processos críticos, caso seja necessário e em detrimento dos custos envolvidos.

Classe Z

Vital: Item cuja falta acarreta conseqüências críticas, tais como interrupção dos processos da empresa, podendo comprometer a integridade de equipamentos e/ou segurança operacional.

Page 12: Es Toques

12

Segmentação

• Classificação 123 – Essa classificação diz respeito a todo o processo de aquisição, incluindo tanto a identificação e qualificação dos fornecedores como o disparo e atendimento de requisições, em termos do grau de confiabilidade das especificações e prazos.

Page 13: Es Toques

13

Classificação 123Classificação da dificuldade na obtenção dos itens

Classe 1

Complexa: São itens de obtenção muito difícil, pois envolvem diversos fatores complicadores combinados, tais como longos set-ups e lead-times (tempo de resposta, distâncias e variabilidades) e riscos quanto a pontualidade, qualidade, fontes alternativas e sazonalidades.

Classe 2

Difícil: Envolve alguns poucos fatores complicadores relacionados acima, tornando o processo de obtenção relativamente difícil.

Classe 3

Fácil: Fornecimento ágil, rápido e pontual e/ou o item é uma commodity, com amplas alternativas a disposição no mercado fornecedor.

Page 14: Es Toques

14

Inventory can be classified in various ways:

By Process By Importance By Shelf Life Raw materials Perishable Work in progress (A, B, C), (X,Y,Z), (1,2,3) Nonperishable Finished goods

Used typically by accountants at manufacturing firms.Enables management to track the production process.

Items are classified by their relative importancein terms of the firm’s capital needs.

Management of items with short shelf life and long shelf life is very different

Inventory Classifications

Page 15: Es Toques

15

Overview of Inventory Issues

• Proper control of inventory is crucial to the success of an enterprise.

• Typical inventory problems include:– Basic inventory – Planned shortage – Quantity discount – Periodic review– Production lot size – Single period

• Inventory models are often used to develop an optimal inventory policy, consisting of:– An order quantity, denoted Q.– A reorder point, denoted R.

Page 16: Es Toques

16

• Inventory analyses can be thought of as cost-control techniques.

• Categories of costs in inventory models:– Holding (carrying costs)– Order/ Setup costs– Customer satisfaction costs– Procurement/Manufacturing costs

Type of Costs in Inventory Models

Page 17: Es Toques

17

• Holding Costs (Carrying costs): These costs depend on the order size– Cost of capital – Storage space rental cost– Costs of utilities– Labor– Insurance– Security– Theft and breakage– Deterioration or Obsolescence

Ch = Annual holding cost per unit in inventoryH = Annual holding cost rateC = Unit cost of an item

Ch = H * C

Type of Costs in Inventory Models

Page 18: Es Toques

18

• Order/Setup Costs

These costs are independent of the order size.– Order costs are incurred when purchasing a good from a supplier.

They include costs such as• Telephone

• Order checking

• Labor

• Transportation

– Setup costs are incurred when producing goods for sale to others. They can include costs of

• Cleaning machines

• Calibrating equipment

• Training staff

Type of Costs in Inventory Models

Co = Order cost or setup cost

Page 19: Es Toques

19

• Customer Satisfaction Costs– Measure the degree to which a customer is satisfied.– Unsatisfied customers may:

• Switch to the competition (lost sales).• Wait until an order is supplied.

– When customers are willing to wait there are two types of costs incurred:

Type of Costs in Inventory Models

Cb= Fixed administrative costs of an out of stock item ($/stockout unit).Cs = Annualized cost of a customer awaiting an out of stock item

($/stockout unit per year).

Page 20: Es Toques

20

• Procurement/Manufacturing Cost– Represents the unit purchase cost (including transportation)

in case of a purchase.– Unit production cost in case of in-house manufacturing.

Type of Costs in Inventory Models

C = Unit purchase or manufacturing cost.

Page 21: Es Toques

21

• Demand is a key component affecting an inventory policy.

• Projected demand patterns determine how an inventory problem is modeled.

• Typical demand patterns are:– Constant over time (deterministic inventory models)– Changing but known over time (dynamic models)– Variable (randomly) over time (probabilistic models)

Demand in Inventory Models

D = Demand rate (usually per year)

Page 22: Es Toques

22

• Two types of review systems are used:– Continuous review systems.

• The system is continuously monitored.• A new order is placed when the inventory reaches a

critical point.

– Periodic review systems.• The inventory position is investigated on a regular basis.• An order is placed only at these times.

Review Systems

Page 23: Es Toques

23

• Demand occurs at a known and reasonably constant rate.• The item has a sufficiently long shelf life.• The item is monitored using a continuous review system.• All the cost parameters remain constant forever (over an

infinite time horizon).• A complete order is received in one batch.

Economic Order Quantity Model - Assumptions

Page 24: Es Toques

24

• The constant environment described by the EOQ assumptions leads to the following observation:

Optimal EOQ policy consists of same-size orders. This observation results in the following inventory profile:

Q QQ

The EOQ Model – Inventory profile

Page 25: Es Toques

25

Total Annual Inventory Costs

=Total Annual Holding Costs

Total Annual ordering CostsTotal Annual

procurement Costs++

TC(Q) = (Q/2)Ch + (D/Q)Co + DC

2DCo2DCo

Cost Equation for the EOQ Model

Page 26: Es Toques

26

Constructing the total annual variable cost curve

Total Holding Costs

Total ordering costs

Add the two curves to one another

Total annual holding and ordering costs

Q

TV(Q)

Q*

The optimal order size

o* * * * *

TV(Q) = Total annual variable costs and Q*

Note: at the optimal order size total holding

costs and ordering costs are equal

Page 27: Es Toques

27

The curve is reasonably flat around Q*.

Q*

Deviations from the optimal order size cause only small increase in the total cost.

Sensitivity Analysis in EOQ models

Page 28: Es Toques

28

• To find the number of orders per year:

N = D/Q

• Example: The demand for a product is 1000 units per year.

The order size is 250 units under an EOQ policy.• How many orders are placed per year? N = 1000/250 = 4 orders.

Number of Orders per Year

Page 29: Es Toques

29

• The cycle time, T, represents the time that elapses

between the placement of orders.

T = Q/D

Cycle Time

• Example: The demand for a product is 1000 units per year. The order size is 250 units under an EOQ policy.How often orders need to be placed (what is the cycle time)?

T = 250/1000 = ¼ years. {Note: the four orders are equally spaced}.

Page 30: Es Toques

30

• In reality lead time always exists, and must be accounted for when deciding when to place an order.

• The reorder point, R, is the inventory position when an order is placed.

• R is calculated by

L and D must be expressed in the same time unit.

R = L DR = L D

Lead Time and the Reorder Point

Page 31: Es Toques

31

Inventory position

L

R=Reorder Point

R = Inventory at hand at the beginning of lead time

Lead Time and the Reorder Point –Graphical demonstration: Short Lead Time

Page 32: Es Toques

32

Outstanding order

Place the order now

R = inventory at hand at the beginning of lead time + one outstanding order = demand during lead time = LD

Inventory at

hand

L

Lead Time and the Reorder Point –Graphical demonstration: Long Lead Time

Page 33: Es Toques

33

• Safety stocks act as buffers to handle:– Higher than average lead time demand.– Longer than expected lead time.

• With the inclusion of Safety Stock (SS), R is calculated by:

• The size of the safety stock is based on having a desired service level.

R = LD + SS

Safety stock

Page 34: Es Toques

34

LPlace the order now

Reorder Point

R = LD

Safety stockPlanned situation

Actualsituation

Page 35: Es Toques

35

L

R = LD

Safety stock

Actualsituation

+ SS

New Reorder Point

Place the order now

SS=Safety stock

The safety stockprevents excessiveshortages.

LD

Page 36: Es Toques

36

Inventory Costs Including safety stock

Total Annual Inventory Costs

= Total Annual Holding Costs

Total Annual ordering Costs

Total Annual procurement Costs

++

TC(Q) = (Q/2)Ch + (D/Q)Co + DC + ChSS

Safety stockholding cost

Page 37: Es Toques

37

ALLEN APPLIANCE COMPANY (AAC)

• AAC wholesales small appliances.

• AAC currently orders 600 units of the Citron

brand juicer each time inventory drops to 205

units.

• Management wishes to determine an optimal

ordering policy for the Citron brand juicer

Page 38: Es Toques

38

Sales of Juicers over the last 10 weeksWeek 1 2 3 4 5Sales 105 115 125 120 125Week 6 7 8 9 10Sales 120 135 115 110 130

• Data– Co = $12 ($8 for placing an order)+(20 min. to check).($12 per hr)

– Ch = $1.40 [HC = (14%)($10)]

– C = $10.

– H = 14% (10% ann. interest rate)+(4% miscellaneous)

– D = demand information of the last 10 weeks was collected:

ALLEN APPLIANCE COMPANY (AAC)

Page 39: Es Toques

39

• Data

The constant demand rate seems to be a good assumption.

Annual demand = (120/week).(52weeks) = 6240 juicers.

ALLEN APPLIANCE COMPANY (AAC)

Page 40: Es Toques

40

• Current ordering policy calls for Q = 600 juicers.

TV(600)=(600/2)($1.40)+(6240/600)($12) = $544.8

• The EOQ policy calls for orders of size

AAC – Solution:EOQ and Total Variable Cost

Savings of 16%2(6240)(12)1.40 = 327.065 327 =Q*

TV(327) = (327 / 2)($1.40) + (6240 / 327) ( $12) = $457.89

Page 41: Es Toques

41

TC(327) = 457.89 + 6240($10) + (13)($1.40) = $62,876.09

• Under the current ordering policy AAC holds 13 units safety stock (how come? ):

• AAC is open 5 day a week.– The average daily demand = (120/week)/5 = 24 juicers/day.– Lead time is 8 days. Lead time demand is (8)(24) = 192 juicers.– Reorder point without Safety stock = LD = 192.– Current policy: R = 205.– Safety stock = 205 – 192 = 13.

• For safety stock of 13 juicers the total cost is

TV(327) + Procurement + Safety stock cost holding cost

AAC – Solution:Reorder Point and Total Cost

Page 42: Es Toques

42

• Changes in input parameters– Suppose there is a 20% increase in demand. D=7500 juicers.– The new optimal order quantity is Q* = 359.– The new variable total cost = TV(359) = $502 – If AAC still orders Q = 327, its total variable costs becomes

TV(327) = (327/2)($1.40) + (7500/327)($12) = $504.13

Only 0.4% increase

AAC – Solution:Sensitivity of the EOQ Results

• Changing the order size

Suppose juicers must be ordered in increments of 100 (order 300 or 400)AAC will order Q = 300 juicers in each order.There will be a total variable cost increase of $1.71.This is less than 0.5% increase in variable costs.

Page 43: Es Toques

43

• For an order size of 327 juicers we have:

– T = (3276240) = 0.0524 year.

= 0.0524(52)(5) = 14 days.

– This is useful information because:

• Shelf life may be a problem.• Coordinating orders with other items might be desirable.

AAC – Solution:Cycle Time

5 working days per week

Page 44: Es Toques

44

AAC – Excel Spreadsheet

Page 45: Es Toques

45

Service Levels and Safety Stocks

Service Levels and Safety Stocks

Page 46: Es Toques

46

Determining Safety Stock Levels

• Businesses incorporate safety stock requirements when determining reorder points.

• A possible approach to determining safety stock

levels is by specifying desired service level .

Page 47: Es Toques

47

• The unit service level (fill rate)

– The percentage of demands that are filled without incurring any delay.

– Applied when the percentage of unsatisfied demand should be under control.

Two Types of Service Level

• The cycle service level

– The probability of not incurring a stockout during an inventory cycle.

– Applied when the likelihood of a stockout, and not its magnitude, is important for the firm.

Service levels can be viewed in two ways.Comum

Page 48: Es Toques

48

Two Types of Service Level

Juicer Demand and Units on BackorderCycle Number Demand # Units on backorder

1 585 0

2 610 0

3 628 15

4 572 0

5 605 0

Cycle service level = 4/5 = 80%

Unit Service level = 1- 15/3000 = 99,5%

Page 49: Es Toques

49

• In many cases short run demand is variable even though long run demand is assumed constant.

• Therefore, stockout events during lead time may occur unexpectedly in each cycle.

• Stockouts occur only if demand during lead time is greater than the reorder point.

The Cycle Service Level Approach

Page 50: Es Toques

50

• To determine the reorder point we need to know:– The lead time demand distribution.

– The required service level.

• In many cases lead time demand is approximately normally distributed. For the normal distribution case the reorder point is calculated by:

The Cycle Service Level Approach

L = demanda média no lead time e L= desvio padrão da demanda no lead time

Page 51: Es Toques

51

=192

P(DL> R) = P(Z > (R – L)/L) = . SinceP(Z > Z) = , we have Z = (R – L)/L,

which gives…

The Cycle Service Level Approach

P(DL>R) = Service level = P(DL<R) = 1 –

R

R = L + zL

Page 52: Es Toques

52

• Assume that lead time demand is normally distributed.

• Estimation of normal distribution parameters:

– Estimation of the mean weekly demand = 10 weeks average demand = 120 juicers/week.

– Estimation of the variance of the weekly demand = Sample variance = 83.33 juicers2.

AAC - Cycle Service Level Approach

Page 53: Es Toques

53

• To find Land L the parameters (per week)and(per week)must be adjusted since the lead time is longer than one week.

– Lead time is 8 days =(8/5) weeks = 1.6 weeks.

• Estimates for the lead time mean demand and variance of demand

L (1.6)(120) = 192; 2L (1.6)(83.33) = 133.33

AAC - Cycle Service Level Approach

Page 54: Es Toques

54

• Let us use the current reorder point of 205 juicers.

205 = 192 + z (11.55) z = 1.13

• From the normal distribution table we have that a

reorder point of 205 juicers results in an 87% cycle

service level.

133 33.

AAC - Service Level for a given Reorder Point

Page 55: Es Toques

55

• Management wants to improve the cycle service level to 99%.

• The z value corresponding to 1% right hand tail is 2.33.

R = 192 + 2.33(11.55) = 219 juicers.

• Management wants to improve the cycle service level to 99%.

• The z value corresponding to 1% right hand tail is 2.33.

R = 192 + 2.33(11.55) = 219 juicers.

AAC – Reorder Point for a given Service

Level

Page 56: Es Toques

56

• AAC is willing to run out of stock an average of at most one cycle/year with an order quantity of 327 juicers.

• What is the equivalent service level for this strategy?

• AAC is willing to run out of stock an average of at most one cycle/year with an order quantity of 327 juicers.

• What is the equivalent service level for this strategy?

AAC – Acceptable Number of Stockouts per Year

Page 57: Es Toques

57

AAC – Acceptable Number of Stockouts per Year

• There will be an average of

6240/327 = 19.08 cycles (lead times) per year.

• The likelihood of stockouts = 1/19 = 0.0524.

• This translates into a service level of 94.76%

• There will be an average of

6240/327 = 19.08 cycles (lead times) per year.

• The likelihood of stockouts = 1/19 = 0.0524.

• This translates into a service level of 94.76%

Page 58: Es Toques

The Unit Service Level Approach

58

• When lead time demand follows a normal distribution service level can be calculated as follows:– Determine the value of z that satisfy the equation

L(z) = αQ* / sL

– Solve for R using the equation

R = L + zL

L(z) = partial expected value for the standard normal between some z and infinity

Page 59: Es Toques

59

AAC – Cycle Service Level (Excel spreadsheet)

Page 60: Es Toques

60

• Quantity Discounts are Common Practice in Business– By offering discounts buyers are encouraged to increase

their order sizes, thus reducing the seller’s holding costs.

– Quantity discounts reflect the savings inherent in large orders.

EOQ Models with Quantity Discounts

Page 61: Es Toques

61

• Quantity Discount Schedule– This is a list of per unit discounts and their corresponding

purchase volumes.– Normally, the price per unit declines as the order quantity

increases.– The order quantity at which the unit price changes is called

a break point.– There are two main discount plans:

• All unit schedules - the price paid for all the units purchased is based on the total purchase (mais comum).

• Incremental schedules - The price discount is based only on the additional units ordered beyond each break point.

EOQ Models with Quantity Discounts

Page 62: Es Toques

All Units Discount Schedule

62

To determine optimal order quantity, the total purchase cost must be included

TC(Q) = (Q/2)Ch + (D/Q)Co + DCi + ChSS

Ci represents the unit cost at the ith pricing level.

Page 63: Es Toques

63

AAC - All Units Quantity Discounts

Quantity Discount Schedule

1-299 $10,00300-599 $9,75600-999 $9,40

1000-4999 $9,505000 $9,00

• AAC is offering all units quantity discounts to its customers.

• Data

Page 64: Es Toques

64

Should AAC increase its regular order of 327 juicers, to take advantage of the discount?

Should AAC increase its regular order of 327 juicers, to take advantage of the discount?

Page 65: Es Toques

65

AAC – All units discount procedure– Step 1: Find the optimal order Qi

* for each discount level “i”. Use the formula:

– Step 2: For each discount level “i” modify Q i* as follows

• If Qi* is lower than the smallest quantity that qualifies for the i th

discount, increase Qi* to that level.

• If Qi* is greater than the largest quantity that qualifies for the ith

discount, eliminate this level from further consideration.

– Step 3: Substitute the modified Q*i value in the total cost

formula TC(Q*i ).

– Step 4: Select the Q i * that minimizes TC(Q i

*)

Q DC Co h* ( ) / 2 Ch=Ci.0,14

Page 66: Es Toques

66

Step 1: Find the optimal order quantity Qi* for each

discount level “i” based on the EOQ formula

Lowest cost order size per discount levelDiscount Qualifying Price

level order per unit Q*0 1-299 10,00 3271 300-599 9,75 3312 600-999 9,50 3363 1000-4999 9,40 3374 5000 9,00 345

AAC – All units discount procedure

Page 67: Es Toques

67

TC(Q) = (Q2)Ch + (DQ)Co + DCi + ChSS

Page 68: Es Toques

68

– Step 2 : Modify Q i *

Modified Q* and total CostQualified Price Modified Total

Urder per Unit Q* Q* Cost1-299 10,00 327 **** ****

300-599 9,75 331 331 61.292,13600-999 9,50 336 600 59.803,80

1000-4999 9,40 337 1000 59.388,885000 9,00 345 5000 59.324,98

1 299

Q1*Q1*

327

$10/unit

599331Q2*

Q2*

$9.75/unit

999999600

Q3*Q3*

336

$9.50

AAC – All Units Discount Procedure

Page 69: Es Toques

69

– Step 2 : Modify Q i *

1 299

Q1*Q1*

327

$10/unit

331

Q2*Q2*

999999600

Q3*Q3*

336

$9.50

AAC – All Units Discount Procedure

Q3*Q3* Q3

*Q3* Q3

*Q3* Q3

*Q3* Q3

*Q3*Q3

*Q3*

Q3*Q3*

Page 70: Es Toques

70

– Step 3: Substitute Q I * in the total cost function

– Step 4

Modified Q* and total CostQualified Price Modified Total

Urder per Unit Q* Q* Cost1-299 10,00 327 62876,09

300-599 9,75 331 331 61.292,13600-999 9,50 336 600 59.803,80

1000-4999 9,40 337 1000 59.388,885000 9,00 345 5000 59.324,98

AAC should order 5000 juicers

AAC – All Units Discount Procedure

327

Page 71: Es Toques

71

Calculation of Optimal Inventory Policy Under All-Units Quantity Discounts

OPTIMALINPUTS Values OUTPUTS Values

Annual Demand, D = 6240,00 Order quantity, Q* = 5000Per Unit Cost, C = 10,00 Cycle Time (in years), T = 0,801282051Annual Holding Cost Rate, H = 0,14 # of Cycles Per Year, N = 1,248Annual Holding Cost Per Unit, Ch = 1,40 Reorder Point, R = 205,0000Order Cost, Co = 12,00 Total Annual Cost, TC(Q*) = 59341,36Lead Time (in years), L = 0,03077 Safety Stock, SS = 13,00

DISCOUNTSLevel Breakpoint Discount Price Q* TC(Q*) Modified Q*

0 1 10,00 327 62876,09 3271 300 9,75 331 61309,88 3312 600 9,50 336 59821,09 6003 1000 9,40 337 59405,99 10004 5000 9,00 345 59341,36 50005678

AAC – All Units Discount Excel Worksheet

Page 72: Es Toques

72

• .

• Demand rate is constant

• Production rate is larger than demand rate.

• The production lot is not received instantaneously (at

an infinite rate), because production rate is finite.

• There is only one product to be scheduled.

• The rest of the EOQ assumptions stay in place.

Production Lot Size Model - Assumptions

Page 73: Es Toques

73

• The optimal production lot size policy orders the same amount each time.• This observation results in the inventory profile below:

Production Lot Size Model – Inventory profile

Page 74: Es Toques

74

ProductionLot Size = Q = PT1

The inventory increasesat a net rate of P - D

The production increases theinventory at a rate of P.

The demand decreases theinventory at a rate of D.

Production time

T1

Demand accumulationduring production run

Demand accumulationduring production run = DT1

Maximum inventory = (P – D)T1

= (P – D)(Q/P) = Q(1 – D/P)

Maximum inventory

Production Lot Size Model – Understanding the inventory profile

Page 75: Es Toques

75

• The parameters of the total variable costs function are similar to those used in the EOQ model.

• Instead of ordering cost, we have here a fixed setup cost per production run (Co).

• In addition, we need to incorporate the annual production rate (P) in the model.

Production Lot Size Model –Total Variable Cost

Page 76: Es Toques

76

TV(Q) = (Q2)(1 - DP)Ch + (DQ)Co

P is the annual production rateThe average inventory

Production Lot Size Model –Total Variable Cost

Page 77: Es Toques

77

• Cycle time T = Q / D.

• Length of a production run T1 = Q / P.

• Time when machines are not busy producing the product T2 = T - T1 = Q(1/D - 1/P).

• Average inventory = (Q/2)(1-D/P).

Production Lot Size Model –Useful relationships

Page 78: Es Toques

78

FARAH COSMETICS COMPANY

• Farah needs to determine optimal production lot size for its most popular shade of lipstick.

• Data• The factory operates 7 days a week, 24 hours a day.• Production rate is 1000 tubes per hour.• It takes 30 minutes to prepare the machinery for

production.• It costs $150 to setup the line.• Demand is 980 dozen tubes per week.• Unit production cost is $.50• Annual holding cost rate is 40%.

Page 79: Es Toques

79

• Input for the total variable cost function

D = 613,200/year [(980 dozen/week(12) 7](365)

Ch = 0.4(0.5) = $0.20 per tube per year.

Co = $150

P = (1000)(24)(365) = 8,760,000 per year.

Dozens

FARAH COSMETICS COMPANY – Solution

Page 80: Es Toques

80

• Current Policy

Currently, Farah produces in lots of 84,000 tubes.

T = (84,000 tubes per run)(613,200 tubes per year)= 0.137 years (about 50 days).

T1 = (84,000 tubes per lot)(8,760,000 tubes per year)= 0.0096 years (about 3.5 days).

T2 = 0.137 - 0.0096 = 0.1274 years (about 46.5 days).

TV(Q = 84,000) = (84,0002) {1-(613,2008,760,000)}(0.2)

+ 613,20084,000)(150) = $8907.

FARAH COSMETICS COMPANY – Solution

Page 81: Es Toques

81

• The Optimal Policy

Using the input data we find

TV(Q* = 31,499) = (31,499/2) [1-(613,200/8,760,000)](0.2)

+ (613,200/31,499)(150) = $5,850.

The optimal order size

(0.2)(1-613,200/8760,000)Q* =

2(613,200)(150) = 31,499

FARAH COSMETICS COMPANY – Solution

Current cost = $8,907: savings = $3,057 or 34%

Page 82: Es Toques

82

FARAH COSMETICS COMPANY – Production Lot Size Template (Excel)

Page 83: Es Toques

83

Planned Shortage Model

• When an item is out of stock, customers may: – Go somewhere else (lost sales).– Place their order and wait (backordering).

• In this model we consider the backordering case.

• All the other EOQ assumptions are in place.

Page 84: Es Toques

84

• The parameters of the total variable costs function are similar to those used in the EOQ model.

• In addition, we need to incorporate the shortage costs in the model.– Backorder cost per unit per year (loss of goodwill cost) - Cs.

• Reflects future reduction in profitability.• Can be estimated from market surveys and focus groups.

– Backorder administrative cost per unit - Cb• Reflects additional work needed to take care of the backorder.

Planned Shortage Model –Total Variable Cost Equation

Page 85: Es Toques

85

Planned Shortage Model –the Total Variable Cost Equation

• Annual holding cost = Ch[T1T](Average inventory)

= Ch[T1T] (Q-S)2

• Annual shortage cost = Cb(number of backorders per year) + Cs(T2T)(Average number of backorders).

• To calculate the annual holding cost and shortage cost we need to find– The proportion of time inventory is carried, (T1/T)– The proportion of time demand is backordered, (T2/T).

T1 T2

T

Variáveis de controle:

Q = Quantidade pedida, S = Quantidade em backorder quando chega o pedido

Q

S

Q-S

Page 86: Es Toques

86

S

Q - S

QT1 T2

ST

Average inventory = (Q - S) / 2

Average shortage = S / 2

Proportion of time inventory exists = T1T

T1

T

Q - S

Q

Proportion of time shortage exists

= T2T

Finding T1/ T and T2/ T

= (Q - S) / Q

= S / Q

Page 87: Es Toques

87

• Annual holding cost:Ch[T1T](Q-S)2 = Ch[(Q-S) Q](Q-S)2 = Ch(Q-S)22Q

• Annual shortage cost:Cb(Units in short per year) + Cs[T2T](Average number of backorders) = Cb(S)(DQ) + CsS2/2Q

Planned Shortage Model –The Total Variable Cost Equation

Page 88: Es Toques

88

– The total annual variable cost equation

– The optimal solution to this problem is obtained under the following conditions

• Cs > 0 ;

• Cb < \/ 2CoCh / D

TV(Q,S) = (Q -S)2

2Q Ch + DQ

(Co + SCb S2

2QCS

Holding costs

Time dependent backorder costs

Time independent backorder costs

Ordering costs

Planned Shortage Model –The Total Variable Cost Equation

Page 89: Es Toques

89

Planned Shortage Model –The Optimal Inventory Policy

The Optimal Order Size

Ch

(DCb)2

ChCs

2DCo Q* = Ch + Cs

Cs

x

Page 90: Es Toques

90

SCANLON PLUMBING CORPORATION

• Scanlon distributes a portable sauna from Sweden. • Data

– A sauna costs Scanlon $2400.

– Annual holding cost per unit $525.

– Fixed ordering cost $1250 (fairly high, due to costly transportation).

– Lead time is 4 weeks.

– Demand is 15 saunas per week on the average.

Page 91: Es Toques

91

• Scanlon estimates a $20 goodwill cost for each week a

customer who orders a sauna has to wait for delivery.

• Administrative backorder cost is $10.

• Management wishes to know:

– The optimal order quantity.

– The optimal number of backorders.

– Backorder costs

SCANLON PLUMBING CORPORATION

Page 92: Es Toques

92

SCANLON PLUMBING – Solution

• Input for the total variable cost function – D = 780 saunas [(15)(52)]

– Co = $1,250

– Ch = $525

– Cs = $1,040

– Cb = $10

Page 93: Es Toques

93

x(780)(10)2

(525)(1040)5252(780)(1250) 525+1040

1040Q* = 74

• The optimal policy

R = (4 / 52)(780) 20 = 40

_S*= (74)(525) (780)(10)

525 + 104020

SCANLON PLUMBING – Solution

Page 94: Es Toques

94

SCANLON PLUMBING – Spreadsheet Solution

Calculation of Optimal Inventory Policy for a Planned Shortage Model

OPTIMAL ASSIGNEDINPUTS Values OUTPUTS Values OUTPUTS Values

Annual Demand, D = 780,00 Order Quantity, Q* = 74,01 Q = 74,00Per Unit Cost, C = 2400,00 Backorder Level, S* = 19,84 S = 20,00Annual Holding Cost Rate, H = 0,22 Cycle Time (in years), T = 0,0949 T = 0,0949Annual Holding Cost Per Unit, Ch =525,00 # of Cycles Per Year, N = 10,5388 N = 10,5405Order Cost, Co = 1250,00 Reorder Point, R = 40,1531 R = 39,9976Annual Backorder Cost, Cs = 1040,00 Total Annual Variable Cost, TV(Q*) =28438,24 TV(Q) = 28438,51Fixed Admin. Backorder Cost, Cb =10,00 Total Annual Cost, TC(Q*) = 1900438,24 TC(Q) = 1900438,51Lead Time (in years), L = 0,07692 % of Customers Backordered = 26,81 % Back. = 27,03

Page 95: Es Toques

95

Review Systems – Continuous Review

• (R, Q) Policies

– The EOQ, production lot size, and planned

shortage models assume that

• inventory levels are continuously monitored

• Items are sold one at a time.

Page 96: Es Toques

96

• (R, Q) Policies

– The above models call for order point (R)

order quantity (Q) inventory policies.

– Such policies can be implemented by• A point-of-sale computerized system.• The two-bin system.

Review Systems – Continuous Review

Page 97: Es Toques

97

• (R, M) policies

– When items are not necessarily sold one at a

time, the reorder point might be missed, and

out of stock situations might occur more

frequently.

– The order to level (R, M) policy may be

implemented in this situation.

Continuous Review Systems

Page 98: Es Toques

98

• (R,M) policies

– The R, M policy replenishes inventory up to a pre-

determined level M.

Continuous Review Systems

– Order Q = Q* + (R – I) = (M – SS) + (R – I)

each time the inventory falls to the reorder point

R or below. (Order size may vary from one cycle

to another).

Page 99: Es Toques

99

Exemplo da Citron e AAC• AAC usa política (R,M) com R=219 e M = 354 (= Q + SS = 327 + 27)

• Cliente pede 60 juicers quando I = 224 (> R)

• O novo pedido será feito quando estoque = 224 – 60 = 164

• Novo pedido deverá ser =Q = Q* + (R – I) = (M – SS)+(R – I) =

382 = 354 – 27 + 219 –164

• 382 – 327 = 55 = nível de estoque abaixo de R = 219 quando foi colocado o novo pedido.

Page 100: Es Toques

100

• It may be difficult or impossible to adopt a continuous review system, because of:

– The high price of a computerized system.– Lack of space to adopt the two-bin system.– Operations inefficiency when ordering different items

from the same vendor separately.

• The periodic review system may be found more suitable for these situations.

Periodic Review Systems

Page 101: Es Toques

101

• Under this system the inventory position

for each item is observed periodically.

• Orders for different items can be better

coordinated periodically.

Periodic Review Systems

Page 102: Es Toques

102

– (T,M) Policies• In a replenishment cycle policy (T, M), the

inventory position is reviewed every T time units.• An order is placed to bring the inventory level

back up to a maximum inventory level M.• M is determined by

– Forecasting the number of units demanded during the review period T.

– Adding the desired safety stock to the forecasted demand.

Periodic Review Systems

Page 103: Es Toques

103

T =Review periodL = Lead timeSS= Safety stockQ = Inventory positionD = Annual demandI = Inventory position

Periodic Review Systems

• Calculation of the replenishment level and order size

Page 104: Es Toques

104

• Every three weeks AAC receives deliveries of different products from Citron.

• Lead time is eight days for ordering Citron’s juicers.

• AAC is now reviewing its juicer inventory and finds 210 in stock.

• How many juicers should AAC order for a safety stock of 30 juicers?

AAC operates a (T, M) policy

Page 105: Es Toques

105

• Data– Review period T = 3 weeks = 3/52 = .05769 years,– Lead time = L = 8 days = 8/260 = .03077 years,– Demand D = 6240 juicers per year,– Safety stock SS = 30 juicers,– Inventory position I = 210 juicers

AAC operates a (T, M) policy – Solution

AAC operates 260 days a year.(5)(52) = 260.

Page 106: Es Toques

106

• Review period demand = TD = ( 3/52)(6240) = 360 juicers,

• M = TD + SS = 360 + 30 = 390 juicers,

• Q = M + LD – I = 390 + .03077(6240) - 210 = 372 juicers.

AAC operates a (T, M) policy – Solution

Page 107: Es Toques

107

Reviewpoint

Reviewpoint

AAC operates a (T, M) policy – Solution

T

SS SS SS

Inventory position

Order Order

Replenishment level

Inventory position

L

Notice: I + Q is designed to satisfy the demand within an interval of T + L. To obtain the replenishment level add SS to I + Q.

M = maximum inventory

L

Page 108: Es Toques

108

• Demand is stochastic with a known distribution.

• Shelf life of the item is limited.

• Inventory is saleable only within a single time period.

• Inventory is delivered only once during a time period.

Single Period Inventory Model -Assumptions

• At the end of each period, unsold inventory is disposed of for some salvage.

• The salvage value is less than the cost per item.

• Unsatisfied demand may result in shortage costs.

Page 109: Es Toques

109

• To find an optimal order quantity we need to balance

the expected cost of over-ordering and under

ordering.Expected Profit =(Profit for Demand=X) Prob(Demand=X)

• The expected profit is a function of the order size, the

random demand, and the various costs.

The Expected Profit Function

Page 110: Es Toques

110

– Developing an expression for EP(Q)• Notation

p = per unit selling price of the good.

c = per unit cost of the good.

s = per unit salvage value of unsold good.

K = fixed purchasing costs

Q = order quantity.

EP(Q) = Expected Profit if Q units are ordered.

• Scenarios – Demand X is less than the order quantity (X < Q).– Demand X is greater than or equal to the order quantity (X Q).

The Expected Profit Function

Page 111: Es Toques

111

• Scenario 1: Demand X is less than the units stocked, Q.

• Scenario 2: Demand X is greater than or equal to the units stocked.

Profit = pX + s(Q - X) - cQ - K

Profit = pQ - g(X - Q) - cQ - K

X Q

X Q

The Expected Profit Function

Page 112: Es Toques

112

– To maximize the expected profit order Q*

• For the discrete demand case take the smallest value of Q* that satisfies the condition

P(D Q*) (p - c + g)(p - s + g)

• For the continuous demand case find the Q* that solves

F(Q*) = (p - c + g) /(p - s + g)

The Optimal Solution

Nível de serviço ótimo

Nível de serviço ótimo

Page 113: Es Toques

113

THE SENTINEL NEWSPAPER

• Management at Sentinel wishes to know how many newspapers to put in a new vending machine.

• Data– Unit selling price is $0.30– Unit production cost is $0.38.– Advertising revenue is $0.18 per newspaper.– Unsold newspaper can be recycled and net $0.01.– Unsatisfied demand costs $0.10 per newspaper.– Filling a vending machine costs $1.20.

Demand distribution isdiscrete uniform between 30 and 49 newspapers.

Page 114: Es Toques

114

SENTINEL - Solution

• Input to the optimal order quantity formula

p = 0.30

c = 0.20 [0.38-0.18]

s = 0.01

g = 0.10

K = 1.20

The probability of the optimal service level = p+ g - cp+ g - s

0.30 + 0.10 - 0.200.30 + 0.10 - 0.01

= 0.513=

Page 115: Es Toques

115

1.0

0.50

0.55

30 49

0.513

39 40

P(D 39) = 0.50P(D 40) = 0.55

Q* = 40

SENTINEL – SolutionFinding the optimal order quantity Q*

Page 116: Es Toques

116

SENTINEL – Spreadsheet Solution

Page 117: Es Toques

117

WENDELL’S BAKERY

• Management in Wendell’s wishes to determine the number of donuts to prepare for sale, on weekday evenings

• Data– Unit cost is $0.15.– Unit selling price is $0.35.– Unsold donuts are donated to charity for a tax credit

of $0.05 per donut.– Customer goodwill cost is $0.25.– Operating costs are $15 per evening.

Demand is normally distributedwith a mean of 120, and a standard deviation of 20 donuts.

Page 118: Es Toques

118

WENDELL’S BAKERY - Solution

• Input to the optimal order quantity formulap = $0.35

c = $0.15

s = $0.05

g = $0.25

K = $15.00

The optimal service level = p+ g - cp+ g - s

0.35+ 0.25 - 0.150.35+0.25 - 0.05

= 0.8182=

Page 119: Es Toques

119

WENDELL’S BAKERY - SolutionFinding the optimal order quantity

• From the relationship F(Q*) = 0.8182 we find the corresponding z value.

• From the standard normal table we have z = 0.3186.• The optimal order quantity is calculated by

Q* = + z

• For Wendell’s Q* = 120 + (0.3186)(20) 138

.8182

=120 Q*

Page 120: Es Toques

120

• For the normal distribution

L [(Q* - ) / is obtained from the partial expected value table.

• For Wendell’s EP(138) = (0.35 - 0.05)(120) - (0.15 - 0.05)(138) – - (0.35 + 0.25- 0.05)x(20)L[(138 - 120) / 20] - 15 = $6.10

WENDELL’S BAKERY - SolutionCalculating the expected profit

Ver slide 112

EP(Q*) = (p - s) - (c - s)Q* - (p + g - s) ()L[(Q* - ) / - K

L(0.9) = 0.1004 Apêndice B

Page 121: Es Toques

121

WENDELL’S BAKERY -

Spreadsheet Solution

Page 122: Es Toques

122

WENDELL’S – The commission strategy

• When commission replaces fixed wages…

– Compare the maximum expected profit of two

strategies:• $0.13 commission paid per donut sold,

• $15 fixed wage per evening (calculated before).

– Calculate first the optimal quantity for the alternative

policy.

– Check the expected difference in pay for the operator.

Page 123: Es Toques

123

WENDELL’S – The commission strategy - Solution

• The unit selling price changes to

c = 0.35 - 0.13 = $0.22

• The optimal order:

F(Q*) = (0.22 + 0.25 - 0.15) / (0.22 + 0.25 - 0.05)= 0.7616.

• Z = .71

• Q* = + z = 120 + (0.71)(20) 134 donuts.

.7616

=120 Q*

Page 124: Es Toques

124

• Will the bakery’s expected profit increase?EP(134) = (0.22 - 0.05)(20) - (0.15 - 0.05)(134) - (0.22 + 0.25 - 0.05)x(20)L[(134 - 120) / 20] = $5.80 < 6.10

• The bakery should not proceed with the alternative plan.

WENDELL’S – The commission strategy - Solution

Page 125: Es Toques

125

• Comments– The operator expected compensation will

increase, but not as much as the bakery’s expected loss.

– An increase in the mean sales is probable when the commission compensation plan is implemented. This may change the analysis results.

WENDELL’S – The commission strategy - Solution

Page 126: Es Toques

126

Dimensionamento de Lotes Dimensionamento de Lotes ((Lot SizingLot Sizing))

Page 127: Es Toques

127

Introdução

O problema de dimensionamento de lotes consiste em planejar a quantidade de itens a ser produzida em várias (ou única) máquinas, em cada período ao longo de um horizonte de tempo finito, de modo a atender uma certa demanda, podendo estar sujeito a algumas restrições.

Page 128: Es Toques

128

Métodos Básicos de Dimensionamento de Lotes

• Lot for Lot (L4L);• Silver-Meal Heuristic Procedure(SM );• Economic Order Quantity (EOQ);• Periodic Order Quantity (POQ); • Least Unit Cost (LUC);• Least Total Cost (LTC);• Fixed Period Requirements (FPR); • Part Period Balancing (PPB);• Wagner-Whitin Algorithm(WW).

Page 129: Es Toques

129

Lot for Lot

Esta heurística consiste no método mais básico possível, onde a quantidade produzida visa atender somente o período em que o item será utilizado.

Sendo assim, o estoque será sempre nulo e serão feitas preparações de máquina em todos os períodos com demanda positiva.

Page 130: Es Toques

130

Silver-Meal Heuristic Procedure(SM )

Pode ser usado para achar um cronograma de produção perto do ótimo. A heurística do SM é baseado no fato de que a meta é minimizar o custo médio do período.

Page 131: Es Toques

131

Economic Order Quantity (EOQ )Consiste no principio de que

sempre que seja necessário fazer uma encomenda, encomendar uma quantidade igual à EOQ.

Assume-se que a demanda é constante, os itens são independentes, e nenhuma incerteza está envolvida no processo decisório.

Page 132: Es Toques

132

Periodic Order Quantity (POQ)

Uma maneira de reduzir os altos custos de manter inventário associado com tamanhos de lotes fixos é usar a fórmula da EOQ para encontrar um período econômico de encomenda. Faz-se isso dividindo o EOQ pela taxa média de demanda.

Page 133: Es Toques

133

Least Unit Cost (LUC)

Este método tem como objetivo encontrar o tamanho da encomenda que se traduz no menor custo unitário do produto.

O método segue os seguintes passos:

1. Calcular os lançamentos previstos acumulados até que o valor acumulado seja superior à quantidade de desconto.

2. Calcular se é vantajoso aceitar o desconto com base no menor custo unitário.

Page 134: Es Toques

134

Least Total Cost (LTC)

O tamanho da ordem cobrirá os próximos T períodos, onde T é o período onde o custo de transporte e o custo de preparação são muito próximos.

Page 135: Es Toques

135

Fixed Period Requirements (FPR)

Ordena-se uma quantidade suficiente para suprir a demanda de um número fixo de períodos consecutivos.

Page 136: Es Toques

136

Part Period Balancing (PPB)

Usa todas as informações providas pelo cronograma de pedidos, tentando igualar os custos totais de ordens feitas e do transporte de estoque.

Page 137: Es Toques

137

Wagner-Whitin Algorithm (WW)

Procedimento de programação dinâmica para obter o cronograma ótimo

de dimensionamento de lotes no horizonte de planejamento.

Page 138: Es Toques

138

Exemplo

Certa firma que fabrica um determinado produto deseja fazer um planejamento da produção para um horizonte de quatro semanas.

Sabe-se que a demanda para estas quatro semanas será de 104, 174, 46 e 112 unidades.

Suponha que a firma faça no máximo uma preparação de máquina a cada semana e que não haja restrição de capacidade de produção.

Page 139: Es Toques

139

WinQSBWinQSB

Page 140: Es Toques

140

WinQSB

Page 141: Es Toques

141

Solve and Analyze

Page 142: Es Toques

142

Wagner-Whitin (Ótimo!)

Page 143: Es Toques

143

Silver-Meal

Page 144: Es Toques

144

EOQ

Page 145: Es Toques

145

POQ

Page 146: Es Toques

146

LUC

Page 147: Es Toques

147

LTC

Page 148: Es Toques

148

FPR

Page 149: Es Toques

149

PPB

Page 150: Es Toques

150

LOT for LOT

Page 151: Es Toques

151

Comparação entre MétodosMétodo Custo % acima do

ótimo

Wagner-Whitin $ 1368,00

Silver-Meal $ 1368,00 -

EOQ $ 1521,00 11

POQ $ 1458,00 7

LUC $ 1458,00 7

LTC $ 1458,00 7

FPR $ 1472,00 8

PPB $ 1438,00 5

Lot for Lot $ 1472,00 8

Ótimo