elaboração de um trilho maglev para experimentos...

50
1 UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso Elaboração de um Trilho MagLev Para Experimentos Didáticos Aluno: Fabrício Oliveira de Carvalho R.A.016022 Orientador: Dirceu da Silva / Mauro M. G. Carvalho Coordenador: Jose Joaquim Lunazzi

Upload: dinhtram

Post on 18-Jan-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

1

UNICAMP ndash Universidade Estadual de Campinas

F 895 ndash Projeto de Curso

Elaboraccedilatildeo de um Trilho MagLevPara Experimentos Didaacuteticos

Aluno Fabriacutecio Oliveira de Carvalho RA016022Orientador Dirceu da Silva Mauro M G Carvalho

Coordenador Jose Joaquim Lunazzi

2

ELABORACcedilAtildeO DE UM TRILHO MAGLEV PARAEXPERIMENTOS DIDAacuteTICOS

Fabriacutecio Oliveira de CarvalhoRA 016022

Orientador Dirceu Silva Mauro M G Carvalho

bull Resumo

Haacute muito a levitaccedilatildeo eacute um objeto de desejo do homem Com astecnologias mais modernas jaacute eacute possiacutevel fazer um trem levitar utilizandoeletroiacutematildes e supercondutores os famosos trens Maglev(1)(2)

A propriedade da supercondutividade foi descoberta em 1911 por HKamerlingh Onnes(3) e um dos experimentos mais famosos eacute a levitaccedilatildeo de umimatilde sobre um supercondutor como mostra a figura 1

Contudo experimentos de levitaccedilatildeo magnetica usando uacutenica eexclusivamente imatildes permanentes natildeo foram desenvolvidos Neste projetoteve-se por objetivo desenvolver um experimento que envolvesse levitaccedilatildeomagneacutetica utilizando apenas imatildes permanentes e mostrarei por que natildeo foipossiacutevel consegui-lo

bull Introduccedilatildeo

Em 1911 o fiacutesico alematildeo H Kamerlingh Onnes descobriu que quando omercuacuterio eacute resfriado agrave temperatura de 42K sua resistecircncia cai a zero ou sejanatildeo haacute dissipaccedilatildeo de energia quando percorrido por uma corrente eleacutetrica (natildeomuito grande)

Durante muitos anos a partir de entatildeo fiacutesicos de todo mundocomeccedilaram a desenvolver esses elementos supercondutores e a estudar suaspropriedades Descobriram entatildeo que um material supercondutor tinha apropriedade de levitar um imatilde permanente que fosse aproximado dele devido agravesua propriedade diamagneacutetica

Entatildeo usando essas propriedades foram desenvolvidos trens flutuantes- mostrado na figura 2 - (MagLev e Transrapid(1)(2)) que jaacute satildeo utilizados naChina e no Japatildeo e vecircm sendo testados desde 1997

Esses trens podem atingir velocidades impressionantes de mais de580kmh na reta(4) podendo atingir mais de 400kmh em uma curva de raio28km

Fig 1 Imatilde flutuando sobre osupercondutor

3

A relevacircncia desses trens eacute o baixo custo do combustiacutevel para resfriar asceracircmicas supercondutoras aleacutem de poluiacuterem muito menos que os trensnormais e atingirem velocidades muito maiores

Todavia para realizar a levitaccedilatildeo desses trens satildeo utilizadossupercondutores que necessitam baixas temperaturas para apresentaremessas caracteriacutesticas

Logo para um experimento de ensino o investimento natildeo compensapor conta dos custos dos materiais

Para tentar resolver esse problema realizei alguns experimentos comimatildes permanentes e elaborei outros para realizar alguns testes Essesexperimentos estatildeo esquematizados na figura 3

Fig 2 Trem MagLeve seu trilho

(a) (b) (c)

(d)

Fig 3 Arranjos experimentais montados Trilhos de imatilde de geladeira e carrinho com o corpo dearame (a) Trilhos de imatilde de geladeira e carrinho com o corpo de madeira (b) Trilhos de imatilde de

geladeira mais proacuteximos e carrinho com o corpo riacutegido de madeira (c) Arranjo experimental comeletroiacutematildes nas laterais e carrinho com imatilde permanente

4

bull Experimento 1 e 2

O experimento 1 e o 2 diferenciaram-se apenas pela inclinaccedilatildeo dos imatildesnos carrinhos Nesses experimentos foram utilizados imatildes permanentes quesatildeo facilmente encontrados na porta de geladeira

Inicialmente montei um trilho de imatilde permanente cuja magnetizaccedilatildeoesta mostrada na figura 4

Montei entatildeo dois carrinhos O primeiro possui quatro imatildes e seu corpofoi feito em madeira como indicado na figura 5(a) Como podemos perceberatraveacutes da figura os imatildes ficaram em uma posiccedilatildeo paralela ao plano do trilho

Jaacute para o segundo carrinho o que tambeacutem possui quatro imatildes o corpofoi feito com o uso de arame e ele ficou com uma inclinaccedilatildeo paralela ao trilhocomo mostra a figura 5(b)

A pequena inclinaccedilatildeo do trilho foi proposital para criar componentes daforccedila magneacutetica de forma a equilibrar os carrinhos no trilho evitando a accedilatildeo detorques nos carrinhos conforme mostrado na figura 6

a b

Fig 5 Carrinho de madeira feito para o experimento 1(a) e carrinho de arame feito para oexperimento 2 (b)

Fig 4 Campomagneacutetico ao redordo imatilde permanente

5

bull Experimento 3

Nesse experimento foi montado um trilho usando imatildes permanentes deporta de geladeira mas o carrinho foi feito de madeira e a distacircncia entre osdois trilhos foi reduzida para tentar aumentar a repulsatildeo entre os trilhos e ocarrinho criando um poccedilo potencial entre os trilhos o que poderia ofereceruma maior estabilidade para o carrinho

O motivo de o carrinho ter sido feito de madeira foi tentar aumentar oseu peso e entatildeo evitar sua rotaccedilatildeo O experimento estaacute mostrado na figura 8

bull Experimento 4

O experimento 4 eacute o mais elaborado poreacutem natildeo foi realizado pormotivos jaacute citados no preacute-relatoacuterio Trata-se de dois trilhos com bobinasacopladas e um carinho com imatilde permanente associados agrave ele

Ele funcionaria com eletroiacutematildes que deveriam repelir os imatildes poreacutemesse sistema natildeo foi possiacutevel de ser conseguido

FmFm Fm Fm

Fig 6 Forccedilas atuando sobre os imatildes dos carrinhos

Fig 7 Foto do trilho montado

Fig 8 Foto do trilho utilizadono experimento 3

6

bull Resultados Experimentais

Apoacutes diversas tentativas os trecircs experimentos natildeo funcionaram Oproblema decorre do fato de toda a forma de equiliacutebrio com imatildes permanentesserem equiliacutebrios instaacuteveis

Dessa forma toda e qualquer interferecircncia externa que atue sobre oscarrinhos proporcionam um deslocamento da posiccedilatildeo de equiliacutebrio

Uma ilustraccedilatildeo disso eacute simples Basta imaginar uma bola no alto de umamontanha como mostrada na figura 9(a) Na posiccedilatildeo indicada ela estaacuteequilibrada poreacutem se essa bola for deslocada um pouco para qualquer ladoela iraacute sair da posiccedilatildeo de equiliacutebrio e iraacute para uma nova posiccedilatildeo conformeilustra a figura 9(b)

No caso dos carrinhos essa posiccedilatildeo de equiliacutebrio forma uma linha aolongo do trilho (Figura 10) Poreacutem como o imatilde de geladeira tem dimensotildeesmuito pequenas seu campo magneacutetico natildeo eacute constante ao longo de sualargura como eacute mostrado tambeacutem na figura 10

Sendo assim qualquer que seja o deslocamento do em relaccedilatildeo a estaposiccedilatildeo de equiliacutebrio faz com que haja um torque atuando sobre os imatildes docarrinho e consequumlentemente faccedila com que ele seja atraiacutedo pelo trilho(figura11)

Fig 9 Bola em equiliacutebrio instaacutevel(a) e bola fora de equiliacutebrio (b)

Linha deEquiliacutebrio

Fig 10 A linha de equiliacutebrio criada devidoao campo natildeo constante do imatilde

7

Essa situaccedilatildeo foi explicada pelo fiacutesico Samuel Earnshaw com seuteorema de Earnshaw(7) o qual afirma que eacute impossiacutevel estabelecer umequiliacutebrio estaacutevel a partir de forccedilas magneacuteticas exclusivamente

Sendo assim como jaacute foi dito anteriormente natildeo eacute possiacutevel haver umequiliacutebrio estaacutevel com imatildes permanentes

bull Os Supercondutores

A levitaccedilatildeo de imatildes sobre supercondutores como jaacute foi comentado eacutemuito conhecida Materiais supercondutores tecircm a propriedade de conduzircorrente eleacutetrica sem perda de energia Sendo assim caso uma corrente fosseaplicada agrave um material supercondutor este poderia conduzi-la infinitamente

Isso ocorre devido a um fenocircmeno quacircntico chamado diamagnetismoEste faz com que os eleacutetrons natildeo gastem energia para mudar de niacutevelenergeacutetico como ocorre nos condutores normais Confinados em seus niacuteveisenergeacuteticos os eleacutetrons natildeo podem colidir com outros aacutetomos e devem sedeslocar infinitamente em trajetoacuterias fixas

A supercondutividade aparece em alguns metais quando resfriados abaixas temperaturas

Nessas circunstacircncias os eleacutetrons se arranjam em pares (os chamadospares de Cooper) Como o momento angular desses pares natildeo eacute afetado pelarede o fluxo de eleacutetrons continua indefinidamente

Nos dias de hoje jaacute existem algumas ceracircmicas em que o fenocircmeno dasupercondutividade aparece a temperaturas mais elevadas Poreacutem a teoriapara explicar este fenocircmeno ainda natildeo eacute bem aceita(8)

Devido a esse fenocircmeno quando um imatilde eacute aproximado de umsupercondutor aparecem correntes superficiais induzidas neste material Estascorrentes por sua vez geram um campo magneacutetico induzido que segundo aLei de Lenz produzem um campo magneacutetico em sentido contraacuterio ao do imatilde oque o repele

Fig 11 Forccedilas que geramtorques nos imatildes

permanentes fora da posiccedilatildeode equiliacutebrio

8

Caso o imatilde sofra um desvio lateral apareceraacute um campo induzido que oforccedilaraacute a ficar em sua posiccedilatildeo original Como o material sob o imatilde eacute umsupercondutor o campo induzido eacute idecircntico ao do imatilde por isso ele se manteacutemem equiliacutebrio estaacutevel Eacute o que se pode perceber na figura 12

bull Trens MagLev[5] [6]

Os trens que funcionam utilizando-se a tecnologia MagLev comeccedilaram aentrar em funcionamento a pouco tempo Uma linha de teste de velocidadefeita no Japatildeo comeccedilou a entrar em funcionamento no ano de1996 Com ostestes realizados o trem MLX01 alcanccedilou uma velocidade de 550kmh

Para funcionar esses trens possuem eletromagnetos feitos de materialsupercondutor Sendo assim um fio de material supercondutor eacute enrolado aoredor de um outro material supercondutor como mostra a figura 13

Esta montagem eacute oacutetima pois com os fios supercondutores natildeo eacutenecessaacuterio utilizar uma fonte externa de energia o tempo todo Enquanto ostrens estatildeo na estaccedilatildeo correntes satildeo introduzidas nessa bobina

Quando possui corrente suficiente essa primeira bobina eacute desligada eligada a uma segunda bobina a qual estaacute ligada a uma terceira e assim pordiante O importante eacute que depois que sai da estaccedilatildeo natildeo eacute mais necessaacuteriomanter as bobinas ligadas a uma fonte

Para fornecer a propulsatildeo do trem eacute necessaacuterio um sistema faacutecil de sercompreender poreacutem difiacutecil de ser feito

Fig 12 Caso uma forccedila F1 horizontal atue no imatilde apareceraacute uma forccedilaFind1 que equilibraraacute a primeira O mesmo vale para a forccedila vertical F2

N

SFig13 Eletromagneto supercondutor Os fios e o

nuacutecleo satildeo materiais supercondutores

9

Como os trilhos possuem as bobinas supercondutoras e o trem possuios imatildes permanentes um sistema eleacutetrico eacute ligado aos trilhos fazendo comque a magnetizaccedilatildeo das bobinas fique alternando Logo enquanto uma bobinarepele o trem a outra o atrai fazendo com que ele comece a se deslocar Esteesquema estaacute indicado na figura 14

Esse mesmo sistema pode ser utilizado para frear o trem utilizando amagnetizaccedilatildeo correta

bull Conclusatildeo

De fato natildeo foi possiacutevel realizar a flutuaccedilatildeo de imatildes utilizando uacutenica eexclusivamente imatildes permanentes mas o estudo relacionado a essastentativas foi muito uacutetil e interessante Ele ajudou no estudo de magnetismo esuperconduccedilatildeo fatos que satildeo relativamente pouco entendidos e extremamenteaplicaacuteveis na motivaccedilatildeo do ensino de fiacutesica A ideacuteia inicial do projeto natildeo foirealizada mas o projeto em geral foi de grande valia

A uacutenica maneira encontrada que possibilitou a levitaccedilatildeo dos carrinhos foicom um apoio lateral introduzido na montagem como mostra a figura 15

N

SN

S

N

SImatildePermanente

N

N

SImatildePermanente

N

S

S(a)

(b)

Fig14 Sistema de propulsatildeo dos trens MagLev A situaccedilatildeo inicial (a) e depois com aspolaridades dos eletromagnetos alternada (b)

Fig15 Levitaccedilatildeo obtida com o auxiacutelio de um apoio lateral

10

Referecircncias Bibliograacuteficas

[1] httpwwwifiunicampbr~knobelFI204maglevpdf - Trabalho feito porCelso Ossamu Kaminishikawahara na poacutes-graduaccedilatildeo da UNICAMP soborientaccedilatildeo do prof Dr Marcelo Knobel analisando trens que utilizam levitaccedilatildeomagneacutetica para funcionar Possui um circuito de demonstraccedilatildeo dofuncionamento do MagLev (pg 11)[2] httpinventabrasilnett5combrtremlevhtm - Um estudo coordenado portrecircs professores da UFRJ no que diz respeito a levitaccedilatildeo magneacutetica e suasvantagens (pg 38)[3] httpptwikipediaorgwikiSupercondutividade - Definiccedilatildeo desupercondutividade da enciclopeacutedia virtual Wikipedia (pg 42)[4] httpnoticiasterracombrcienciainterna0OI226362-EI30000html ndashPequena reportagem a respeito dos trens MagLev e sua velocidade maacutexima(pg 45)[5] httptravelhowstuffworkscommaglev-train3htm - Explicaccedilatildeo de comofuncionam trens que utilizam a tecnologia MagLev em seus trilhos bem como avantagem desses trens (pg 46)[6] BLOOMFIELD LA ldquoHow Things Work The Physics of Everyday Liferdquo pg396-408 Ed Wiley 1996 ndash Explicaccedilatildeo de como funciona a levitaccedilatildeo magneacuteticaa partir de supercondutores[7] ver texto no anexo 5 ndash Texto a respeito de magnetismo e o teorema deEarnshaw (pg 47)[8] ldquoA Concise dictionary of Physicsrdquo Oxford Reference pg 270-2711990 ndashResumo a respeito da superconduccedilatildeo suas explicaccedilatildeo e histoacuteria

11

Anexo 1 Material referente a bibliografia 1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 2: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

2

ELABORACcedilAtildeO DE UM TRILHO MAGLEV PARAEXPERIMENTOS DIDAacuteTICOS

Fabriacutecio Oliveira de CarvalhoRA 016022

Orientador Dirceu Silva Mauro M G Carvalho

bull Resumo

Haacute muito a levitaccedilatildeo eacute um objeto de desejo do homem Com astecnologias mais modernas jaacute eacute possiacutevel fazer um trem levitar utilizandoeletroiacutematildes e supercondutores os famosos trens Maglev(1)(2)

A propriedade da supercondutividade foi descoberta em 1911 por HKamerlingh Onnes(3) e um dos experimentos mais famosos eacute a levitaccedilatildeo de umimatilde sobre um supercondutor como mostra a figura 1

Contudo experimentos de levitaccedilatildeo magnetica usando uacutenica eexclusivamente imatildes permanentes natildeo foram desenvolvidos Neste projetoteve-se por objetivo desenvolver um experimento que envolvesse levitaccedilatildeomagneacutetica utilizando apenas imatildes permanentes e mostrarei por que natildeo foipossiacutevel consegui-lo

bull Introduccedilatildeo

Em 1911 o fiacutesico alematildeo H Kamerlingh Onnes descobriu que quando omercuacuterio eacute resfriado agrave temperatura de 42K sua resistecircncia cai a zero ou sejanatildeo haacute dissipaccedilatildeo de energia quando percorrido por uma corrente eleacutetrica (natildeomuito grande)

Durante muitos anos a partir de entatildeo fiacutesicos de todo mundocomeccedilaram a desenvolver esses elementos supercondutores e a estudar suaspropriedades Descobriram entatildeo que um material supercondutor tinha apropriedade de levitar um imatilde permanente que fosse aproximado dele devido agravesua propriedade diamagneacutetica

Entatildeo usando essas propriedades foram desenvolvidos trens flutuantes- mostrado na figura 2 - (MagLev e Transrapid(1)(2)) que jaacute satildeo utilizados naChina e no Japatildeo e vecircm sendo testados desde 1997

Esses trens podem atingir velocidades impressionantes de mais de580kmh na reta(4) podendo atingir mais de 400kmh em uma curva de raio28km

Fig 1 Imatilde flutuando sobre osupercondutor

3

A relevacircncia desses trens eacute o baixo custo do combustiacutevel para resfriar asceracircmicas supercondutoras aleacutem de poluiacuterem muito menos que os trensnormais e atingirem velocidades muito maiores

Todavia para realizar a levitaccedilatildeo desses trens satildeo utilizadossupercondutores que necessitam baixas temperaturas para apresentaremessas caracteriacutesticas

Logo para um experimento de ensino o investimento natildeo compensapor conta dos custos dos materiais

Para tentar resolver esse problema realizei alguns experimentos comimatildes permanentes e elaborei outros para realizar alguns testes Essesexperimentos estatildeo esquematizados na figura 3

Fig 2 Trem MagLeve seu trilho

(a) (b) (c)

(d)

Fig 3 Arranjos experimentais montados Trilhos de imatilde de geladeira e carrinho com o corpo dearame (a) Trilhos de imatilde de geladeira e carrinho com o corpo de madeira (b) Trilhos de imatilde de

geladeira mais proacuteximos e carrinho com o corpo riacutegido de madeira (c) Arranjo experimental comeletroiacutematildes nas laterais e carrinho com imatilde permanente

4

bull Experimento 1 e 2

O experimento 1 e o 2 diferenciaram-se apenas pela inclinaccedilatildeo dos imatildesnos carrinhos Nesses experimentos foram utilizados imatildes permanentes quesatildeo facilmente encontrados na porta de geladeira

Inicialmente montei um trilho de imatilde permanente cuja magnetizaccedilatildeoesta mostrada na figura 4

Montei entatildeo dois carrinhos O primeiro possui quatro imatildes e seu corpofoi feito em madeira como indicado na figura 5(a) Como podemos perceberatraveacutes da figura os imatildes ficaram em uma posiccedilatildeo paralela ao plano do trilho

Jaacute para o segundo carrinho o que tambeacutem possui quatro imatildes o corpofoi feito com o uso de arame e ele ficou com uma inclinaccedilatildeo paralela ao trilhocomo mostra a figura 5(b)

A pequena inclinaccedilatildeo do trilho foi proposital para criar componentes daforccedila magneacutetica de forma a equilibrar os carrinhos no trilho evitando a accedilatildeo detorques nos carrinhos conforme mostrado na figura 6

a b

Fig 5 Carrinho de madeira feito para o experimento 1(a) e carrinho de arame feito para oexperimento 2 (b)

Fig 4 Campomagneacutetico ao redordo imatilde permanente

5

bull Experimento 3

Nesse experimento foi montado um trilho usando imatildes permanentes deporta de geladeira mas o carrinho foi feito de madeira e a distacircncia entre osdois trilhos foi reduzida para tentar aumentar a repulsatildeo entre os trilhos e ocarrinho criando um poccedilo potencial entre os trilhos o que poderia ofereceruma maior estabilidade para o carrinho

O motivo de o carrinho ter sido feito de madeira foi tentar aumentar oseu peso e entatildeo evitar sua rotaccedilatildeo O experimento estaacute mostrado na figura 8

bull Experimento 4

O experimento 4 eacute o mais elaborado poreacutem natildeo foi realizado pormotivos jaacute citados no preacute-relatoacuterio Trata-se de dois trilhos com bobinasacopladas e um carinho com imatilde permanente associados agrave ele

Ele funcionaria com eletroiacutematildes que deveriam repelir os imatildes poreacutemesse sistema natildeo foi possiacutevel de ser conseguido

FmFm Fm Fm

Fig 6 Forccedilas atuando sobre os imatildes dos carrinhos

Fig 7 Foto do trilho montado

Fig 8 Foto do trilho utilizadono experimento 3

6

bull Resultados Experimentais

Apoacutes diversas tentativas os trecircs experimentos natildeo funcionaram Oproblema decorre do fato de toda a forma de equiliacutebrio com imatildes permanentesserem equiliacutebrios instaacuteveis

Dessa forma toda e qualquer interferecircncia externa que atue sobre oscarrinhos proporcionam um deslocamento da posiccedilatildeo de equiliacutebrio

Uma ilustraccedilatildeo disso eacute simples Basta imaginar uma bola no alto de umamontanha como mostrada na figura 9(a) Na posiccedilatildeo indicada ela estaacuteequilibrada poreacutem se essa bola for deslocada um pouco para qualquer ladoela iraacute sair da posiccedilatildeo de equiliacutebrio e iraacute para uma nova posiccedilatildeo conformeilustra a figura 9(b)

No caso dos carrinhos essa posiccedilatildeo de equiliacutebrio forma uma linha aolongo do trilho (Figura 10) Poreacutem como o imatilde de geladeira tem dimensotildeesmuito pequenas seu campo magneacutetico natildeo eacute constante ao longo de sualargura como eacute mostrado tambeacutem na figura 10

Sendo assim qualquer que seja o deslocamento do em relaccedilatildeo a estaposiccedilatildeo de equiliacutebrio faz com que haja um torque atuando sobre os imatildes docarrinho e consequumlentemente faccedila com que ele seja atraiacutedo pelo trilho(figura11)

Fig 9 Bola em equiliacutebrio instaacutevel(a) e bola fora de equiliacutebrio (b)

Linha deEquiliacutebrio

Fig 10 A linha de equiliacutebrio criada devidoao campo natildeo constante do imatilde

7

Essa situaccedilatildeo foi explicada pelo fiacutesico Samuel Earnshaw com seuteorema de Earnshaw(7) o qual afirma que eacute impossiacutevel estabelecer umequiliacutebrio estaacutevel a partir de forccedilas magneacuteticas exclusivamente

Sendo assim como jaacute foi dito anteriormente natildeo eacute possiacutevel haver umequiliacutebrio estaacutevel com imatildes permanentes

bull Os Supercondutores

A levitaccedilatildeo de imatildes sobre supercondutores como jaacute foi comentado eacutemuito conhecida Materiais supercondutores tecircm a propriedade de conduzircorrente eleacutetrica sem perda de energia Sendo assim caso uma corrente fosseaplicada agrave um material supercondutor este poderia conduzi-la infinitamente

Isso ocorre devido a um fenocircmeno quacircntico chamado diamagnetismoEste faz com que os eleacutetrons natildeo gastem energia para mudar de niacutevelenergeacutetico como ocorre nos condutores normais Confinados em seus niacuteveisenergeacuteticos os eleacutetrons natildeo podem colidir com outros aacutetomos e devem sedeslocar infinitamente em trajetoacuterias fixas

A supercondutividade aparece em alguns metais quando resfriados abaixas temperaturas

Nessas circunstacircncias os eleacutetrons se arranjam em pares (os chamadospares de Cooper) Como o momento angular desses pares natildeo eacute afetado pelarede o fluxo de eleacutetrons continua indefinidamente

Nos dias de hoje jaacute existem algumas ceracircmicas em que o fenocircmeno dasupercondutividade aparece a temperaturas mais elevadas Poreacutem a teoriapara explicar este fenocircmeno ainda natildeo eacute bem aceita(8)

Devido a esse fenocircmeno quando um imatilde eacute aproximado de umsupercondutor aparecem correntes superficiais induzidas neste material Estascorrentes por sua vez geram um campo magneacutetico induzido que segundo aLei de Lenz produzem um campo magneacutetico em sentido contraacuterio ao do imatilde oque o repele

Fig 11 Forccedilas que geramtorques nos imatildes

permanentes fora da posiccedilatildeode equiliacutebrio

8

Caso o imatilde sofra um desvio lateral apareceraacute um campo induzido que oforccedilaraacute a ficar em sua posiccedilatildeo original Como o material sob o imatilde eacute umsupercondutor o campo induzido eacute idecircntico ao do imatilde por isso ele se manteacutemem equiliacutebrio estaacutevel Eacute o que se pode perceber na figura 12

bull Trens MagLev[5] [6]

Os trens que funcionam utilizando-se a tecnologia MagLev comeccedilaram aentrar em funcionamento a pouco tempo Uma linha de teste de velocidadefeita no Japatildeo comeccedilou a entrar em funcionamento no ano de1996 Com ostestes realizados o trem MLX01 alcanccedilou uma velocidade de 550kmh

Para funcionar esses trens possuem eletromagnetos feitos de materialsupercondutor Sendo assim um fio de material supercondutor eacute enrolado aoredor de um outro material supercondutor como mostra a figura 13

Esta montagem eacute oacutetima pois com os fios supercondutores natildeo eacutenecessaacuterio utilizar uma fonte externa de energia o tempo todo Enquanto ostrens estatildeo na estaccedilatildeo correntes satildeo introduzidas nessa bobina

Quando possui corrente suficiente essa primeira bobina eacute desligada eligada a uma segunda bobina a qual estaacute ligada a uma terceira e assim pordiante O importante eacute que depois que sai da estaccedilatildeo natildeo eacute mais necessaacuteriomanter as bobinas ligadas a uma fonte

Para fornecer a propulsatildeo do trem eacute necessaacuterio um sistema faacutecil de sercompreender poreacutem difiacutecil de ser feito

Fig 12 Caso uma forccedila F1 horizontal atue no imatilde apareceraacute uma forccedilaFind1 que equilibraraacute a primeira O mesmo vale para a forccedila vertical F2

N

SFig13 Eletromagneto supercondutor Os fios e o

nuacutecleo satildeo materiais supercondutores

9

Como os trilhos possuem as bobinas supercondutoras e o trem possuios imatildes permanentes um sistema eleacutetrico eacute ligado aos trilhos fazendo comque a magnetizaccedilatildeo das bobinas fique alternando Logo enquanto uma bobinarepele o trem a outra o atrai fazendo com que ele comece a se deslocar Esteesquema estaacute indicado na figura 14

Esse mesmo sistema pode ser utilizado para frear o trem utilizando amagnetizaccedilatildeo correta

bull Conclusatildeo

De fato natildeo foi possiacutevel realizar a flutuaccedilatildeo de imatildes utilizando uacutenica eexclusivamente imatildes permanentes mas o estudo relacionado a essastentativas foi muito uacutetil e interessante Ele ajudou no estudo de magnetismo esuperconduccedilatildeo fatos que satildeo relativamente pouco entendidos e extremamenteaplicaacuteveis na motivaccedilatildeo do ensino de fiacutesica A ideacuteia inicial do projeto natildeo foirealizada mas o projeto em geral foi de grande valia

A uacutenica maneira encontrada que possibilitou a levitaccedilatildeo dos carrinhos foicom um apoio lateral introduzido na montagem como mostra a figura 15

N

SN

S

N

SImatildePermanente

N

N

SImatildePermanente

N

S

S(a)

(b)

Fig14 Sistema de propulsatildeo dos trens MagLev A situaccedilatildeo inicial (a) e depois com aspolaridades dos eletromagnetos alternada (b)

Fig15 Levitaccedilatildeo obtida com o auxiacutelio de um apoio lateral

10

Referecircncias Bibliograacuteficas

[1] httpwwwifiunicampbr~knobelFI204maglevpdf - Trabalho feito porCelso Ossamu Kaminishikawahara na poacutes-graduaccedilatildeo da UNICAMP soborientaccedilatildeo do prof Dr Marcelo Knobel analisando trens que utilizam levitaccedilatildeomagneacutetica para funcionar Possui um circuito de demonstraccedilatildeo dofuncionamento do MagLev (pg 11)[2] httpinventabrasilnett5combrtremlevhtm - Um estudo coordenado portrecircs professores da UFRJ no que diz respeito a levitaccedilatildeo magneacutetica e suasvantagens (pg 38)[3] httpptwikipediaorgwikiSupercondutividade - Definiccedilatildeo desupercondutividade da enciclopeacutedia virtual Wikipedia (pg 42)[4] httpnoticiasterracombrcienciainterna0OI226362-EI30000html ndashPequena reportagem a respeito dos trens MagLev e sua velocidade maacutexima(pg 45)[5] httptravelhowstuffworkscommaglev-train3htm - Explicaccedilatildeo de comofuncionam trens que utilizam a tecnologia MagLev em seus trilhos bem como avantagem desses trens (pg 46)[6] BLOOMFIELD LA ldquoHow Things Work The Physics of Everyday Liferdquo pg396-408 Ed Wiley 1996 ndash Explicaccedilatildeo de como funciona a levitaccedilatildeo magneacuteticaa partir de supercondutores[7] ver texto no anexo 5 ndash Texto a respeito de magnetismo e o teorema deEarnshaw (pg 47)[8] ldquoA Concise dictionary of Physicsrdquo Oxford Reference pg 270-2711990 ndashResumo a respeito da superconduccedilatildeo suas explicaccedilatildeo e histoacuteria

11

Anexo 1 Material referente a bibliografia 1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 3: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

3

A relevacircncia desses trens eacute o baixo custo do combustiacutevel para resfriar asceracircmicas supercondutoras aleacutem de poluiacuterem muito menos que os trensnormais e atingirem velocidades muito maiores

Todavia para realizar a levitaccedilatildeo desses trens satildeo utilizadossupercondutores que necessitam baixas temperaturas para apresentaremessas caracteriacutesticas

Logo para um experimento de ensino o investimento natildeo compensapor conta dos custos dos materiais

Para tentar resolver esse problema realizei alguns experimentos comimatildes permanentes e elaborei outros para realizar alguns testes Essesexperimentos estatildeo esquematizados na figura 3

Fig 2 Trem MagLeve seu trilho

(a) (b) (c)

(d)

Fig 3 Arranjos experimentais montados Trilhos de imatilde de geladeira e carrinho com o corpo dearame (a) Trilhos de imatilde de geladeira e carrinho com o corpo de madeira (b) Trilhos de imatilde de

geladeira mais proacuteximos e carrinho com o corpo riacutegido de madeira (c) Arranjo experimental comeletroiacutematildes nas laterais e carrinho com imatilde permanente

4

bull Experimento 1 e 2

O experimento 1 e o 2 diferenciaram-se apenas pela inclinaccedilatildeo dos imatildesnos carrinhos Nesses experimentos foram utilizados imatildes permanentes quesatildeo facilmente encontrados na porta de geladeira

Inicialmente montei um trilho de imatilde permanente cuja magnetizaccedilatildeoesta mostrada na figura 4

Montei entatildeo dois carrinhos O primeiro possui quatro imatildes e seu corpofoi feito em madeira como indicado na figura 5(a) Como podemos perceberatraveacutes da figura os imatildes ficaram em uma posiccedilatildeo paralela ao plano do trilho

Jaacute para o segundo carrinho o que tambeacutem possui quatro imatildes o corpofoi feito com o uso de arame e ele ficou com uma inclinaccedilatildeo paralela ao trilhocomo mostra a figura 5(b)

A pequena inclinaccedilatildeo do trilho foi proposital para criar componentes daforccedila magneacutetica de forma a equilibrar os carrinhos no trilho evitando a accedilatildeo detorques nos carrinhos conforme mostrado na figura 6

a b

Fig 5 Carrinho de madeira feito para o experimento 1(a) e carrinho de arame feito para oexperimento 2 (b)

Fig 4 Campomagneacutetico ao redordo imatilde permanente

5

bull Experimento 3

Nesse experimento foi montado um trilho usando imatildes permanentes deporta de geladeira mas o carrinho foi feito de madeira e a distacircncia entre osdois trilhos foi reduzida para tentar aumentar a repulsatildeo entre os trilhos e ocarrinho criando um poccedilo potencial entre os trilhos o que poderia ofereceruma maior estabilidade para o carrinho

O motivo de o carrinho ter sido feito de madeira foi tentar aumentar oseu peso e entatildeo evitar sua rotaccedilatildeo O experimento estaacute mostrado na figura 8

bull Experimento 4

O experimento 4 eacute o mais elaborado poreacutem natildeo foi realizado pormotivos jaacute citados no preacute-relatoacuterio Trata-se de dois trilhos com bobinasacopladas e um carinho com imatilde permanente associados agrave ele

Ele funcionaria com eletroiacutematildes que deveriam repelir os imatildes poreacutemesse sistema natildeo foi possiacutevel de ser conseguido

FmFm Fm Fm

Fig 6 Forccedilas atuando sobre os imatildes dos carrinhos

Fig 7 Foto do trilho montado

Fig 8 Foto do trilho utilizadono experimento 3

6

bull Resultados Experimentais

Apoacutes diversas tentativas os trecircs experimentos natildeo funcionaram Oproblema decorre do fato de toda a forma de equiliacutebrio com imatildes permanentesserem equiliacutebrios instaacuteveis

Dessa forma toda e qualquer interferecircncia externa que atue sobre oscarrinhos proporcionam um deslocamento da posiccedilatildeo de equiliacutebrio

Uma ilustraccedilatildeo disso eacute simples Basta imaginar uma bola no alto de umamontanha como mostrada na figura 9(a) Na posiccedilatildeo indicada ela estaacuteequilibrada poreacutem se essa bola for deslocada um pouco para qualquer ladoela iraacute sair da posiccedilatildeo de equiliacutebrio e iraacute para uma nova posiccedilatildeo conformeilustra a figura 9(b)

No caso dos carrinhos essa posiccedilatildeo de equiliacutebrio forma uma linha aolongo do trilho (Figura 10) Poreacutem como o imatilde de geladeira tem dimensotildeesmuito pequenas seu campo magneacutetico natildeo eacute constante ao longo de sualargura como eacute mostrado tambeacutem na figura 10

Sendo assim qualquer que seja o deslocamento do em relaccedilatildeo a estaposiccedilatildeo de equiliacutebrio faz com que haja um torque atuando sobre os imatildes docarrinho e consequumlentemente faccedila com que ele seja atraiacutedo pelo trilho(figura11)

Fig 9 Bola em equiliacutebrio instaacutevel(a) e bola fora de equiliacutebrio (b)

Linha deEquiliacutebrio

Fig 10 A linha de equiliacutebrio criada devidoao campo natildeo constante do imatilde

7

Essa situaccedilatildeo foi explicada pelo fiacutesico Samuel Earnshaw com seuteorema de Earnshaw(7) o qual afirma que eacute impossiacutevel estabelecer umequiliacutebrio estaacutevel a partir de forccedilas magneacuteticas exclusivamente

Sendo assim como jaacute foi dito anteriormente natildeo eacute possiacutevel haver umequiliacutebrio estaacutevel com imatildes permanentes

bull Os Supercondutores

A levitaccedilatildeo de imatildes sobre supercondutores como jaacute foi comentado eacutemuito conhecida Materiais supercondutores tecircm a propriedade de conduzircorrente eleacutetrica sem perda de energia Sendo assim caso uma corrente fosseaplicada agrave um material supercondutor este poderia conduzi-la infinitamente

Isso ocorre devido a um fenocircmeno quacircntico chamado diamagnetismoEste faz com que os eleacutetrons natildeo gastem energia para mudar de niacutevelenergeacutetico como ocorre nos condutores normais Confinados em seus niacuteveisenergeacuteticos os eleacutetrons natildeo podem colidir com outros aacutetomos e devem sedeslocar infinitamente em trajetoacuterias fixas

A supercondutividade aparece em alguns metais quando resfriados abaixas temperaturas

Nessas circunstacircncias os eleacutetrons se arranjam em pares (os chamadospares de Cooper) Como o momento angular desses pares natildeo eacute afetado pelarede o fluxo de eleacutetrons continua indefinidamente

Nos dias de hoje jaacute existem algumas ceracircmicas em que o fenocircmeno dasupercondutividade aparece a temperaturas mais elevadas Poreacutem a teoriapara explicar este fenocircmeno ainda natildeo eacute bem aceita(8)

Devido a esse fenocircmeno quando um imatilde eacute aproximado de umsupercondutor aparecem correntes superficiais induzidas neste material Estascorrentes por sua vez geram um campo magneacutetico induzido que segundo aLei de Lenz produzem um campo magneacutetico em sentido contraacuterio ao do imatilde oque o repele

Fig 11 Forccedilas que geramtorques nos imatildes

permanentes fora da posiccedilatildeode equiliacutebrio

8

Caso o imatilde sofra um desvio lateral apareceraacute um campo induzido que oforccedilaraacute a ficar em sua posiccedilatildeo original Como o material sob o imatilde eacute umsupercondutor o campo induzido eacute idecircntico ao do imatilde por isso ele se manteacutemem equiliacutebrio estaacutevel Eacute o que se pode perceber na figura 12

bull Trens MagLev[5] [6]

Os trens que funcionam utilizando-se a tecnologia MagLev comeccedilaram aentrar em funcionamento a pouco tempo Uma linha de teste de velocidadefeita no Japatildeo comeccedilou a entrar em funcionamento no ano de1996 Com ostestes realizados o trem MLX01 alcanccedilou uma velocidade de 550kmh

Para funcionar esses trens possuem eletromagnetos feitos de materialsupercondutor Sendo assim um fio de material supercondutor eacute enrolado aoredor de um outro material supercondutor como mostra a figura 13

Esta montagem eacute oacutetima pois com os fios supercondutores natildeo eacutenecessaacuterio utilizar uma fonte externa de energia o tempo todo Enquanto ostrens estatildeo na estaccedilatildeo correntes satildeo introduzidas nessa bobina

Quando possui corrente suficiente essa primeira bobina eacute desligada eligada a uma segunda bobina a qual estaacute ligada a uma terceira e assim pordiante O importante eacute que depois que sai da estaccedilatildeo natildeo eacute mais necessaacuteriomanter as bobinas ligadas a uma fonte

Para fornecer a propulsatildeo do trem eacute necessaacuterio um sistema faacutecil de sercompreender poreacutem difiacutecil de ser feito

Fig 12 Caso uma forccedila F1 horizontal atue no imatilde apareceraacute uma forccedilaFind1 que equilibraraacute a primeira O mesmo vale para a forccedila vertical F2

N

SFig13 Eletromagneto supercondutor Os fios e o

nuacutecleo satildeo materiais supercondutores

9

Como os trilhos possuem as bobinas supercondutoras e o trem possuios imatildes permanentes um sistema eleacutetrico eacute ligado aos trilhos fazendo comque a magnetizaccedilatildeo das bobinas fique alternando Logo enquanto uma bobinarepele o trem a outra o atrai fazendo com que ele comece a se deslocar Esteesquema estaacute indicado na figura 14

Esse mesmo sistema pode ser utilizado para frear o trem utilizando amagnetizaccedilatildeo correta

bull Conclusatildeo

De fato natildeo foi possiacutevel realizar a flutuaccedilatildeo de imatildes utilizando uacutenica eexclusivamente imatildes permanentes mas o estudo relacionado a essastentativas foi muito uacutetil e interessante Ele ajudou no estudo de magnetismo esuperconduccedilatildeo fatos que satildeo relativamente pouco entendidos e extremamenteaplicaacuteveis na motivaccedilatildeo do ensino de fiacutesica A ideacuteia inicial do projeto natildeo foirealizada mas o projeto em geral foi de grande valia

A uacutenica maneira encontrada que possibilitou a levitaccedilatildeo dos carrinhos foicom um apoio lateral introduzido na montagem como mostra a figura 15

N

SN

S

N

SImatildePermanente

N

N

SImatildePermanente

N

S

S(a)

(b)

Fig14 Sistema de propulsatildeo dos trens MagLev A situaccedilatildeo inicial (a) e depois com aspolaridades dos eletromagnetos alternada (b)

Fig15 Levitaccedilatildeo obtida com o auxiacutelio de um apoio lateral

10

Referecircncias Bibliograacuteficas

[1] httpwwwifiunicampbr~knobelFI204maglevpdf - Trabalho feito porCelso Ossamu Kaminishikawahara na poacutes-graduaccedilatildeo da UNICAMP soborientaccedilatildeo do prof Dr Marcelo Knobel analisando trens que utilizam levitaccedilatildeomagneacutetica para funcionar Possui um circuito de demonstraccedilatildeo dofuncionamento do MagLev (pg 11)[2] httpinventabrasilnett5combrtremlevhtm - Um estudo coordenado portrecircs professores da UFRJ no que diz respeito a levitaccedilatildeo magneacutetica e suasvantagens (pg 38)[3] httpptwikipediaorgwikiSupercondutividade - Definiccedilatildeo desupercondutividade da enciclopeacutedia virtual Wikipedia (pg 42)[4] httpnoticiasterracombrcienciainterna0OI226362-EI30000html ndashPequena reportagem a respeito dos trens MagLev e sua velocidade maacutexima(pg 45)[5] httptravelhowstuffworkscommaglev-train3htm - Explicaccedilatildeo de comofuncionam trens que utilizam a tecnologia MagLev em seus trilhos bem como avantagem desses trens (pg 46)[6] BLOOMFIELD LA ldquoHow Things Work The Physics of Everyday Liferdquo pg396-408 Ed Wiley 1996 ndash Explicaccedilatildeo de como funciona a levitaccedilatildeo magneacuteticaa partir de supercondutores[7] ver texto no anexo 5 ndash Texto a respeito de magnetismo e o teorema deEarnshaw (pg 47)[8] ldquoA Concise dictionary of Physicsrdquo Oxford Reference pg 270-2711990 ndashResumo a respeito da superconduccedilatildeo suas explicaccedilatildeo e histoacuteria

11

Anexo 1 Material referente a bibliografia 1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 4: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

4

bull Experimento 1 e 2

O experimento 1 e o 2 diferenciaram-se apenas pela inclinaccedilatildeo dos imatildesnos carrinhos Nesses experimentos foram utilizados imatildes permanentes quesatildeo facilmente encontrados na porta de geladeira

Inicialmente montei um trilho de imatilde permanente cuja magnetizaccedilatildeoesta mostrada na figura 4

Montei entatildeo dois carrinhos O primeiro possui quatro imatildes e seu corpofoi feito em madeira como indicado na figura 5(a) Como podemos perceberatraveacutes da figura os imatildes ficaram em uma posiccedilatildeo paralela ao plano do trilho

Jaacute para o segundo carrinho o que tambeacutem possui quatro imatildes o corpofoi feito com o uso de arame e ele ficou com uma inclinaccedilatildeo paralela ao trilhocomo mostra a figura 5(b)

A pequena inclinaccedilatildeo do trilho foi proposital para criar componentes daforccedila magneacutetica de forma a equilibrar os carrinhos no trilho evitando a accedilatildeo detorques nos carrinhos conforme mostrado na figura 6

a b

Fig 5 Carrinho de madeira feito para o experimento 1(a) e carrinho de arame feito para oexperimento 2 (b)

Fig 4 Campomagneacutetico ao redordo imatilde permanente

5

bull Experimento 3

Nesse experimento foi montado um trilho usando imatildes permanentes deporta de geladeira mas o carrinho foi feito de madeira e a distacircncia entre osdois trilhos foi reduzida para tentar aumentar a repulsatildeo entre os trilhos e ocarrinho criando um poccedilo potencial entre os trilhos o que poderia ofereceruma maior estabilidade para o carrinho

O motivo de o carrinho ter sido feito de madeira foi tentar aumentar oseu peso e entatildeo evitar sua rotaccedilatildeo O experimento estaacute mostrado na figura 8

bull Experimento 4

O experimento 4 eacute o mais elaborado poreacutem natildeo foi realizado pormotivos jaacute citados no preacute-relatoacuterio Trata-se de dois trilhos com bobinasacopladas e um carinho com imatilde permanente associados agrave ele

Ele funcionaria com eletroiacutematildes que deveriam repelir os imatildes poreacutemesse sistema natildeo foi possiacutevel de ser conseguido

FmFm Fm Fm

Fig 6 Forccedilas atuando sobre os imatildes dos carrinhos

Fig 7 Foto do trilho montado

Fig 8 Foto do trilho utilizadono experimento 3

6

bull Resultados Experimentais

Apoacutes diversas tentativas os trecircs experimentos natildeo funcionaram Oproblema decorre do fato de toda a forma de equiliacutebrio com imatildes permanentesserem equiliacutebrios instaacuteveis

Dessa forma toda e qualquer interferecircncia externa que atue sobre oscarrinhos proporcionam um deslocamento da posiccedilatildeo de equiliacutebrio

Uma ilustraccedilatildeo disso eacute simples Basta imaginar uma bola no alto de umamontanha como mostrada na figura 9(a) Na posiccedilatildeo indicada ela estaacuteequilibrada poreacutem se essa bola for deslocada um pouco para qualquer ladoela iraacute sair da posiccedilatildeo de equiliacutebrio e iraacute para uma nova posiccedilatildeo conformeilustra a figura 9(b)

No caso dos carrinhos essa posiccedilatildeo de equiliacutebrio forma uma linha aolongo do trilho (Figura 10) Poreacutem como o imatilde de geladeira tem dimensotildeesmuito pequenas seu campo magneacutetico natildeo eacute constante ao longo de sualargura como eacute mostrado tambeacutem na figura 10

Sendo assim qualquer que seja o deslocamento do em relaccedilatildeo a estaposiccedilatildeo de equiliacutebrio faz com que haja um torque atuando sobre os imatildes docarrinho e consequumlentemente faccedila com que ele seja atraiacutedo pelo trilho(figura11)

Fig 9 Bola em equiliacutebrio instaacutevel(a) e bola fora de equiliacutebrio (b)

Linha deEquiliacutebrio

Fig 10 A linha de equiliacutebrio criada devidoao campo natildeo constante do imatilde

7

Essa situaccedilatildeo foi explicada pelo fiacutesico Samuel Earnshaw com seuteorema de Earnshaw(7) o qual afirma que eacute impossiacutevel estabelecer umequiliacutebrio estaacutevel a partir de forccedilas magneacuteticas exclusivamente

Sendo assim como jaacute foi dito anteriormente natildeo eacute possiacutevel haver umequiliacutebrio estaacutevel com imatildes permanentes

bull Os Supercondutores

A levitaccedilatildeo de imatildes sobre supercondutores como jaacute foi comentado eacutemuito conhecida Materiais supercondutores tecircm a propriedade de conduzircorrente eleacutetrica sem perda de energia Sendo assim caso uma corrente fosseaplicada agrave um material supercondutor este poderia conduzi-la infinitamente

Isso ocorre devido a um fenocircmeno quacircntico chamado diamagnetismoEste faz com que os eleacutetrons natildeo gastem energia para mudar de niacutevelenergeacutetico como ocorre nos condutores normais Confinados em seus niacuteveisenergeacuteticos os eleacutetrons natildeo podem colidir com outros aacutetomos e devem sedeslocar infinitamente em trajetoacuterias fixas

A supercondutividade aparece em alguns metais quando resfriados abaixas temperaturas

Nessas circunstacircncias os eleacutetrons se arranjam em pares (os chamadospares de Cooper) Como o momento angular desses pares natildeo eacute afetado pelarede o fluxo de eleacutetrons continua indefinidamente

Nos dias de hoje jaacute existem algumas ceracircmicas em que o fenocircmeno dasupercondutividade aparece a temperaturas mais elevadas Poreacutem a teoriapara explicar este fenocircmeno ainda natildeo eacute bem aceita(8)

Devido a esse fenocircmeno quando um imatilde eacute aproximado de umsupercondutor aparecem correntes superficiais induzidas neste material Estascorrentes por sua vez geram um campo magneacutetico induzido que segundo aLei de Lenz produzem um campo magneacutetico em sentido contraacuterio ao do imatilde oque o repele

Fig 11 Forccedilas que geramtorques nos imatildes

permanentes fora da posiccedilatildeode equiliacutebrio

8

Caso o imatilde sofra um desvio lateral apareceraacute um campo induzido que oforccedilaraacute a ficar em sua posiccedilatildeo original Como o material sob o imatilde eacute umsupercondutor o campo induzido eacute idecircntico ao do imatilde por isso ele se manteacutemem equiliacutebrio estaacutevel Eacute o que se pode perceber na figura 12

bull Trens MagLev[5] [6]

Os trens que funcionam utilizando-se a tecnologia MagLev comeccedilaram aentrar em funcionamento a pouco tempo Uma linha de teste de velocidadefeita no Japatildeo comeccedilou a entrar em funcionamento no ano de1996 Com ostestes realizados o trem MLX01 alcanccedilou uma velocidade de 550kmh

Para funcionar esses trens possuem eletromagnetos feitos de materialsupercondutor Sendo assim um fio de material supercondutor eacute enrolado aoredor de um outro material supercondutor como mostra a figura 13

Esta montagem eacute oacutetima pois com os fios supercondutores natildeo eacutenecessaacuterio utilizar uma fonte externa de energia o tempo todo Enquanto ostrens estatildeo na estaccedilatildeo correntes satildeo introduzidas nessa bobina

Quando possui corrente suficiente essa primeira bobina eacute desligada eligada a uma segunda bobina a qual estaacute ligada a uma terceira e assim pordiante O importante eacute que depois que sai da estaccedilatildeo natildeo eacute mais necessaacuteriomanter as bobinas ligadas a uma fonte

Para fornecer a propulsatildeo do trem eacute necessaacuterio um sistema faacutecil de sercompreender poreacutem difiacutecil de ser feito

Fig 12 Caso uma forccedila F1 horizontal atue no imatilde apareceraacute uma forccedilaFind1 que equilibraraacute a primeira O mesmo vale para a forccedila vertical F2

N

SFig13 Eletromagneto supercondutor Os fios e o

nuacutecleo satildeo materiais supercondutores

9

Como os trilhos possuem as bobinas supercondutoras e o trem possuios imatildes permanentes um sistema eleacutetrico eacute ligado aos trilhos fazendo comque a magnetizaccedilatildeo das bobinas fique alternando Logo enquanto uma bobinarepele o trem a outra o atrai fazendo com que ele comece a se deslocar Esteesquema estaacute indicado na figura 14

Esse mesmo sistema pode ser utilizado para frear o trem utilizando amagnetizaccedilatildeo correta

bull Conclusatildeo

De fato natildeo foi possiacutevel realizar a flutuaccedilatildeo de imatildes utilizando uacutenica eexclusivamente imatildes permanentes mas o estudo relacionado a essastentativas foi muito uacutetil e interessante Ele ajudou no estudo de magnetismo esuperconduccedilatildeo fatos que satildeo relativamente pouco entendidos e extremamenteaplicaacuteveis na motivaccedilatildeo do ensino de fiacutesica A ideacuteia inicial do projeto natildeo foirealizada mas o projeto em geral foi de grande valia

A uacutenica maneira encontrada que possibilitou a levitaccedilatildeo dos carrinhos foicom um apoio lateral introduzido na montagem como mostra a figura 15

N

SN

S

N

SImatildePermanente

N

N

SImatildePermanente

N

S

S(a)

(b)

Fig14 Sistema de propulsatildeo dos trens MagLev A situaccedilatildeo inicial (a) e depois com aspolaridades dos eletromagnetos alternada (b)

Fig15 Levitaccedilatildeo obtida com o auxiacutelio de um apoio lateral

10

Referecircncias Bibliograacuteficas

[1] httpwwwifiunicampbr~knobelFI204maglevpdf - Trabalho feito porCelso Ossamu Kaminishikawahara na poacutes-graduaccedilatildeo da UNICAMP soborientaccedilatildeo do prof Dr Marcelo Knobel analisando trens que utilizam levitaccedilatildeomagneacutetica para funcionar Possui um circuito de demonstraccedilatildeo dofuncionamento do MagLev (pg 11)[2] httpinventabrasilnett5combrtremlevhtm - Um estudo coordenado portrecircs professores da UFRJ no que diz respeito a levitaccedilatildeo magneacutetica e suasvantagens (pg 38)[3] httpptwikipediaorgwikiSupercondutividade - Definiccedilatildeo desupercondutividade da enciclopeacutedia virtual Wikipedia (pg 42)[4] httpnoticiasterracombrcienciainterna0OI226362-EI30000html ndashPequena reportagem a respeito dos trens MagLev e sua velocidade maacutexima(pg 45)[5] httptravelhowstuffworkscommaglev-train3htm - Explicaccedilatildeo de comofuncionam trens que utilizam a tecnologia MagLev em seus trilhos bem como avantagem desses trens (pg 46)[6] BLOOMFIELD LA ldquoHow Things Work The Physics of Everyday Liferdquo pg396-408 Ed Wiley 1996 ndash Explicaccedilatildeo de como funciona a levitaccedilatildeo magneacuteticaa partir de supercondutores[7] ver texto no anexo 5 ndash Texto a respeito de magnetismo e o teorema deEarnshaw (pg 47)[8] ldquoA Concise dictionary of Physicsrdquo Oxford Reference pg 270-2711990 ndashResumo a respeito da superconduccedilatildeo suas explicaccedilatildeo e histoacuteria

11

Anexo 1 Material referente a bibliografia 1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 5: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

5

bull Experimento 3

Nesse experimento foi montado um trilho usando imatildes permanentes deporta de geladeira mas o carrinho foi feito de madeira e a distacircncia entre osdois trilhos foi reduzida para tentar aumentar a repulsatildeo entre os trilhos e ocarrinho criando um poccedilo potencial entre os trilhos o que poderia ofereceruma maior estabilidade para o carrinho

O motivo de o carrinho ter sido feito de madeira foi tentar aumentar oseu peso e entatildeo evitar sua rotaccedilatildeo O experimento estaacute mostrado na figura 8

bull Experimento 4

O experimento 4 eacute o mais elaborado poreacutem natildeo foi realizado pormotivos jaacute citados no preacute-relatoacuterio Trata-se de dois trilhos com bobinasacopladas e um carinho com imatilde permanente associados agrave ele

Ele funcionaria com eletroiacutematildes que deveriam repelir os imatildes poreacutemesse sistema natildeo foi possiacutevel de ser conseguido

FmFm Fm Fm

Fig 6 Forccedilas atuando sobre os imatildes dos carrinhos

Fig 7 Foto do trilho montado

Fig 8 Foto do trilho utilizadono experimento 3

6

bull Resultados Experimentais

Apoacutes diversas tentativas os trecircs experimentos natildeo funcionaram Oproblema decorre do fato de toda a forma de equiliacutebrio com imatildes permanentesserem equiliacutebrios instaacuteveis

Dessa forma toda e qualquer interferecircncia externa que atue sobre oscarrinhos proporcionam um deslocamento da posiccedilatildeo de equiliacutebrio

Uma ilustraccedilatildeo disso eacute simples Basta imaginar uma bola no alto de umamontanha como mostrada na figura 9(a) Na posiccedilatildeo indicada ela estaacuteequilibrada poreacutem se essa bola for deslocada um pouco para qualquer ladoela iraacute sair da posiccedilatildeo de equiliacutebrio e iraacute para uma nova posiccedilatildeo conformeilustra a figura 9(b)

No caso dos carrinhos essa posiccedilatildeo de equiliacutebrio forma uma linha aolongo do trilho (Figura 10) Poreacutem como o imatilde de geladeira tem dimensotildeesmuito pequenas seu campo magneacutetico natildeo eacute constante ao longo de sualargura como eacute mostrado tambeacutem na figura 10

Sendo assim qualquer que seja o deslocamento do em relaccedilatildeo a estaposiccedilatildeo de equiliacutebrio faz com que haja um torque atuando sobre os imatildes docarrinho e consequumlentemente faccedila com que ele seja atraiacutedo pelo trilho(figura11)

Fig 9 Bola em equiliacutebrio instaacutevel(a) e bola fora de equiliacutebrio (b)

Linha deEquiliacutebrio

Fig 10 A linha de equiliacutebrio criada devidoao campo natildeo constante do imatilde

7

Essa situaccedilatildeo foi explicada pelo fiacutesico Samuel Earnshaw com seuteorema de Earnshaw(7) o qual afirma que eacute impossiacutevel estabelecer umequiliacutebrio estaacutevel a partir de forccedilas magneacuteticas exclusivamente

Sendo assim como jaacute foi dito anteriormente natildeo eacute possiacutevel haver umequiliacutebrio estaacutevel com imatildes permanentes

bull Os Supercondutores

A levitaccedilatildeo de imatildes sobre supercondutores como jaacute foi comentado eacutemuito conhecida Materiais supercondutores tecircm a propriedade de conduzircorrente eleacutetrica sem perda de energia Sendo assim caso uma corrente fosseaplicada agrave um material supercondutor este poderia conduzi-la infinitamente

Isso ocorre devido a um fenocircmeno quacircntico chamado diamagnetismoEste faz com que os eleacutetrons natildeo gastem energia para mudar de niacutevelenergeacutetico como ocorre nos condutores normais Confinados em seus niacuteveisenergeacuteticos os eleacutetrons natildeo podem colidir com outros aacutetomos e devem sedeslocar infinitamente em trajetoacuterias fixas

A supercondutividade aparece em alguns metais quando resfriados abaixas temperaturas

Nessas circunstacircncias os eleacutetrons se arranjam em pares (os chamadospares de Cooper) Como o momento angular desses pares natildeo eacute afetado pelarede o fluxo de eleacutetrons continua indefinidamente

Nos dias de hoje jaacute existem algumas ceracircmicas em que o fenocircmeno dasupercondutividade aparece a temperaturas mais elevadas Poreacutem a teoriapara explicar este fenocircmeno ainda natildeo eacute bem aceita(8)

Devido a esse fenocircmeno quando um imatilde eacute aproximado de umsupercondutor aparecem correntes superficiais induzidas neste material Estascorrentes por sua vez geram um campo magneacutetico induzido que segundo aLei de Lenz produzem um campo magneacutetico em sentido contraacuterio ao do imatilde oque o repele

Fig 11 Forccedilas que geramtorques nos imatildes

permanentes fora da posiccedilatildeode equiliacutebrio

8

Caso o imatilde sofra um desvio lateral apareceraacute um campo induzido que oforccedilaraacute a ficar em sua posiccedilatildeo original Como o material sob o imatilde eacute umsupercondutor o campo induzido eacute idecircntico ao do imatilde por isso ele se manteacutemem equiliacutebrio estaacutevel Eacute o que se pode perceber na figura 12

bull Trens MagLev[5] [6]

Os trens que funcionam utilizando-se a tecnologia MagLev comeccedilaram aentrar em funcionamento a pouco tempo Uma linha de teste de velocidadefeita no Japatildeo comeccedilou a entrar em funcionamento no ano de1996 Com ostestes realizados o trem MLX01 alcanccedilou uma velocidade de 550kmh

Para funcionar esses trens possuem eletromagnetos feitos de materialsupercondutor Sendo assim um fio de material supercondutor eacute enrolado aoredor de um outro material supercondutor como mostra a figura 13

Esta montagem eacute oacutetima pois com os fios supercondutores natildeo eacutenecessaacuterio utilizar uma fonte externa de energia o tempo todo Enquanto ostrens estatildeo na estaccedilatildeo correntes satildeo introduzidas nessa bobina

Quando possui corrente suficiente essa primeira bobina eacute desligada eligada a uma segunda bobina a qual estaacute ligada a uma terceira e assim pordiante O importante eacute que depois que sai da estaccedilatildeo natildeo eacute mais necessaacuteriomanter as bobinas ligadas a uma fonte

Para fornecer a propulsatildeo do trem eacute necessaacuterio um sistema faacutecil de sercompreender poreacutem difiacutecil de ser feito

Fig 12 Caso uma forccedila F1 horizontal atue no imatilde apareceraacute uma forccedilaFind1 que equilibraraacute a primeira O mesmo vale para a forccedila vertical F2

N

SFig13 Eletromagneto supercondutor Os fios e o

nuacutecleo satildeo materiais supercondutores

9

Como os trilhos possuem as bobinas supercondutoras e o trem possuios imatildes permanentes um sistema eleacutetrico eacute ligado aos trilhos fazendo comque a magnetizaccedilatildeo das bobinas fique alternando Logo enquanto uma bobinarepele o trem a outra o atrai fazendo com que ele comece a se deslocar Esteesquema estaacute indicado na figura 14

Esse mesmo sistema pode ser utilizado para frear o trem utilizando amagnetizaccedilatildeo correta

bull Conclusatildeo

De fato natildeo foi possiacutevel realizar a flutuaccedilatildeo de imatildes utilizando uacutenica eexclusivamente imatildes permanentes mas o estudo relacionado a essastentativas foi muito uacutetil e interessante Ele ajudou no estudo de magnetismo esuperconduccedilatildeo fatos que satildeo relativamente pouco entendidos e extremamenteaplicaacuteveis na motivaccedilatildeo do ensino de fiacutesica A ideacuteia inicial do projeto natildeo foirealizada mas o projeto em geral foi de grande valia

A uacutenica maneira encontrada que possibilitou a levitaccedilatildeo dos carrinhos foicom um apoio lateral introduzido na montagem como mostra a figura 15

N

SN

S

N

SImatildePermanente

N

N

SImatildePermanente

N

S

S(a)

(b)

Fig14 Sistema de propulsatildeo dos trens MagLev A situaccedilatildeo inicial (a) e depois com aspolaridades dos eletromagnetos alternada (b)

Fig15 Levitaccedilatildeo obtida com o auxiacutelio de um apoio lateral

10

Referecircncias Bibliograacuteficas

[1] httpwwwifiunicampbr~knobelFI204maglevpdf - Trabalho feito porCelso Ossamu Kaminishikawahara na poacutes-graduaccedilatildeo da UNICAMP soborientaccedilatildeo do prof Dr Marcelo Knobel analisando trens que utilizam levitaccedilatildeomagneacutetica para funcionar Possui um circuito de demonstraccedilatildeo dofuncionamento do MagLev (pg 11)[2] httpinventabrasilnett5combrtremlevhtm - Um estudo coordenado portrecircs professores da UFRJ no que diz respeito a levitaccedilatildeo magneacutetica e suasvantagens (pg 38)[3] httpptwikipediaorgwikiSupercondutividade - Definiccedilatildeo desupercondutividade da enciclopeacutedia virtual Wikipedia (pg 42)[4] httpnoticiasterracombrcienciainterna0OI226362-EI30000html ndashPequena reportagem a respeito dos trens MagLev e sua velocidade maacutexima(pg 45)[5] httptravelhowstuffworkscommaglev-train3htm - Explicaccedilatildeo de comofuncionam trens que utilizam a tecnologia MagLev em seus trilhos bem como avantagem desses trens (pg 46)[6] BLOOMFIELD LA ldquoHow Things Work The Physics of Everyday Liferdquo pg396-408 Ed Wiley 1996 ndash Explicaccedilatildeo de como funciona a levitaccedilatildeo magneacuteticaa partir de supercondutores[7] ver texto no anexo 5 ndash Texto a respeito de magnetismo e o teorema deEarnshaw (pg 47)[8] ldquoA Concise dictionary of Physicsrdquo Oxford Reference pg 270-2711990 ndashResumo a respeito da superconduccedilatildeo suas explicaccedilatildeo e histoacuteria

11

Anexo 1 Material referente a bibliografia 1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 6: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

6

bull Resultados Experimentais

Apoacutes diversas tentativas os trecircs experimentos natildeo funcionaram Oproblema decorre do fato de toda a forma de equiliacutebrio com imatildes permanentesserem equiliacutebrios instaacuteveis

Dessa forma toda e qualquer interferecircncia externa que atue sobre oscarrinhos proporcionam um deslocamento da posiccedilatildeo de equiliacutebrio

Uma ilustraccedilatildeo disso eacute simples Basta imaginar uma bola no alto de umamontanha como mostrada na figura 9(a) Na posiccedilatildeo indicada ela estaacuteequilibrada poreacutem se essa bola for deslocada um pouco para qualquer ladoela iraacute sair da posiccedilatildeo de equiliacutebrio e iraacute para uma nova posiccedilatildeo conformeilustra a figura 9(b)

No caso dos carrinhos essa posiccedilatildeo de equiliacutebrio forma uma linha aolongo do trilho (Figura 10) Poreacutem como o imatilde de geladeira tem dimensotildeesmuito pequenas seu campo magneacutetico natildeo eacute constante ao longo de sualargura como eacute mostrado tambeacutem na figura 10

Sendo assim qualquer que seja o deslocamento do em relaccedilatildeo a estaposiccedilatildeo de equiliacutebrio faz com que haja um torque atuando sobre os imatildes docarrinho e consequumlentemente faccedila com que ele seja atraiacutedo pelo trilho(figura11)

Fig 9 Bola em equiliacutebrio instaacutevel(a) e bola fora de equiliacutebrio (b)

Linha deEquiliacutebrio

Fig 10 A linha de equiliacutebrio criada devidoao campo natildeo constante do imatilde

7

Essa situaccedilatildeo foi explicada pelo fiacutesico Samuel Earnshaw com seuteorema de Earnshaw(7) o qual afirma que eacute impossiacutevel estabelecer umequiliacutebrio estaacutevel a partir de forccedilas magneacuteticas exclusivamente

Sendo assim como jaacute foi dito anteriormente natildeo eacute possiacutevel haver umequiliacutebrio estaacutevel com imatildes permanentes

bull Os Supercondutores

A levitaccedilatildeo de imatildes sobre supercondutores como jaacute foi comentado eacutemuito conhecida Materiais supercondutores tecircm a propriedade de conduzircorrente eleacutetrica sem perda de energia Sendo assim caso uma corrente fosseaplicada agrave um material supercondutor este poderia conduzi-la infinitamente

Isso ocorre devido a um fenocircmeno quacircntico chamado diamagnetismoEste faz com que os eleacutetrons natildeo gastem energia para mudar de niacutevelenergeacutetico como ocorre nos condutores normais Confinados em seus niacuteveisenergeacuteticos os eleacutetrons natildeo podem colidir com outros aacutetomos e devem sedeslocar infinitamente em trajetoacuterias fixas

A supercondutividade aparece em alguns metais quando resfriados abaixas temperaturas

Nessas circunstacircncias os eleacutetrons se arranjam em pares (os chamadospares de Cooper) Como o momento angular desses pares natildeo eacute afetado pelarede o fluxo de eleacutetrons continua indefinidamente

Nos dias de hoje jaacute existem algumas ceracircmicas em que o fenocircmeno dasupercondutividade aparece a temperaturas mais elevadas Poreacutem a teoriapara explicar este fenocircmeno ainda natildeo eacute bem aceita(8)

Devido a esse fenocircmeno quando um imatilde eacute aproximado de umsupercondutor aparecem correntes superficiais induzidas neste material Estascorrentes por sua vez geram um campo magneacutetico induzido que segundo aLei de Lenz produzem um campo magneacutetico em sentido contraacuterio ao do imatilde oque o repele

Fig 11 Forccedilas que geramtorques nos imatildes

permanentes fora da posiccedilatildeode equiliacutebrio

8

Caso o imatilde sofra um desvio lateral apareceraacute um campo induzido que oforccedilaraacute a ficar em sua posiccedilatildeo original Como o material sob o imatilde eacute umsupercondutor o campo induzido eacute idecircntico ao do imatilde por isso ele se manteacutemem equiliacutebrio estaacutevel Eacute o que se pode perceber na figura 12

bull Trens MagLev[5] [6]

Os trens que funcionam utilizando-se a tecnologia MagLev comeccedilaram aentrar em funcionamento a pouco tempo Uma linha de teste de velocidadefeita no Japatildeo comeccedilou a entrar em funcionamento no ano de1996 Com ostestes realizados o trem MLX01 alcanccedilou uma velocidade de 550kmh

Para funcionar esses trens possuem eletromagnetos feitos de materialsupercondutor Sendo assim um fio de material supercondutor eacute enrolado aoredor de um outro material supercondutor como mostra a figura 13

Esta montagem eacute oacutetima pois com os fios supercondutores natildeo eacutenecessaacuterio utilizar uma fonte externa de energia o tempo todo Enquanto ostrens estatildeo na estaccedilatildeo correntes satildeo introduzidas nessa bobina

Quando possui corrente suficiente essa primeira bobina eacute desligada eligada a uma segunda bobina a qual estaacute ligada a uma terceira e assim pordiante O importante eacute que depois que sai da estaccedilatildeo natildeo eacute mais necessaacuteriomanter as bobinas ligadas a uma fonte

Para fornecer a propulsatildeo do trem eacute necessaacuterio um sistema faacutecil de sercompreender poreacutem difiacutecil de ser feito

Fig 12 Caso uma forccedila F1 horizontal atue no imatilde apareceraacute uma forccedilaFind1 que equilibraraacute a primeira O mesmo vale para a forccedila vertical F2

N

SFig13 Eletromagneto supercondutor Os fios e o

nuacutecleo satildeo materiais supercondutores

9

Como os trilhos possuem as bobinas supercondutoras e o trem possuios imatildes permanentes um sistema eleacutetrico eacute ligado aos trilhos fazendo comque a magnetizaccedilatildeo das bobinas fique alternando Logo enquanto uma bobinarepele o trem a outra o atrai fazendo com que ele comece a se deslocar Esteesquema estaacute indicado na figura 14

Esse mesmo sistema pode ser utilizado para frear o trem utilizando amagnetizaccedilatildeo correta

bull Conclusatildeo

De fato natildeo foi possiacutevel realizar a flutuaccedilatildeo de imatildes utilizando uacutenica eexclusivamente imatildes permanentes mas o estudo relacionado a essastentativas foi muito uacutetil e interessante Ele ajudou no estudo de magnetismo esuperconduccedilatildeo fatos que satildeo relativamente pouco entendidos e extremamenteaplicaacuteveis na motivaccedilatildeo do ensino de fiacutesica A ideacuteia inicial do projeto natildeo foirealizada mas o projeto em geral foi de grande valia

A uacutenica maneira encontrada que possibilitou a levitaccedilatildeo dos carrinhos foicom um apoio lateral introduzido na montagem como mostra a figura 15

N

SN

S

N

SImatildePermanente

N

N

SImatildePermanente

N

S

S(a)

(b)

Fig14 Sistema de propulsatildeo dos trens MagLev A situaccedilatildeo inicial (a) e depois com aspolaridades dos eletromagnetos alternada (b)

Fig15 Levitaccedilatildeo obtida com o auxiacutelio de um apoio lateral

10

Referecircncias Bibliograacuteficas

[1] httpwwwifiunicampbr~knobelFI204maglevpdf - Trabalho feito porCelso Ossamu Kaminishikawahara na poacutes-graduaccedilatildeo da UNICAMP soborientaccedilatildeo do prof Dr Marcelo Knobel analisando trens que utilizam levitaccedilatildeomagneacutetica para funcionar Possui um circuito de demonstraccedilatildeo dofuncionamento do MagLev (pg 11)[2] httpinventabrasilnett5combrtremlevhtm - Um estudo coordenado portrecircs professores da UFRJ no que diz respeito a levitaccedilatildeo magneacutetica e suasvantagens (pg 38)[3] httpptwikipediaorgwikiSupercondutividade - Definiccedilatildeo desupercondutividade da enciclopeacutedia virtual Wikipedia (pg 42)[4] httpnoticiasterracombrcienciainterna0OI226362-EI30000html ndashPequena reportagem a respeito dos trens MagLev e sua velocidade maacutexima(pg 45)[5] httptravelhowstuffworkscommaglev-train3htm - Explicaccedilatildeo de comofuncionam trens que utilizam a tecnologia MagLev em seus trilhos bem como avantagem desses trens (pg 46)[6] BLOOMFIELD LA ldquoHow Things Work The Physics of Everyday Liferdquo pg396-408 Ed Wiley 1996 ndash Explicaccedilatildeo de como funciona a levitaccedilatildeo magneacuteticaa partir de supercondutores[7] ver texto no anexo 5 ndash Texto a respeito de magnetismo e o teorema deEarnshaw (pg 47)[8] ldquoA Concise dictionary of Physicsrdquo Oxford Reference pg 270-2711990 ndashResumo a respeito da superconduccedilatildeo suas explicaccedilatildeo e histoacuteria

11

Anexo 1 Material referente a bibliografia 1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 7: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

7

Essa situaccedilatildeo foi explicada pelo fiacutesico Samuel Earnshaw com seuteorema de Earnshaw(7) o qual afirma que eacute impossiacutevel estabelecer umequiliacutebrio estaacutevel a partir de forccedilas magneacuteticas exclusivamente

Sendo assim como jaacute foi dito anteriormente natildeo eacute possiacutevel haver umequiliacutebrio estaacutevel com imatildes permanentes

bull Os Supercondutores

A levitaccedilatildeo de imatildes sobre supercondutores como jaacute foi comentado eacutemuito conhecida Materiais supercondutores tecircm a propriedade de conduzircorrente eleacutetrica sem perda de energia Sendo assim caso uma corrente fosseaplicada agrave um material supercondutor este poderia conduzi-la infinitamente

Isso ocorre devido a um fenocircmeno quacircntico chamado diamagnetismoEste faz com que os eleacutetrons natildeo gastem energia para mudar de niacutevelenergeacutetico como ocorre nos condutores normais Confinados em seus niacuteveisenergeacuteticos os eleacutetrons natildeo podem colidir com outros aacutetomos e devem sedeslocar infinitamente em trajetoacuterias fixas

A supercondutividade aparece em alguns metais quando resfriados abaixas temperaturas

Nessas circunstacircncias os eleacutetrons se arranjam em pares (os chamadospares de Cooper) Como o momento angular desses pares natildeo eacute afetado pelarede o fluxo de eleacutetrons continua indefinidamente

Nos dias de hoje jaacute existem algumas ceracircmicas em que o fenocircmeno dasupercondutividade aparece a temperaturas mais elevadas Poreacutem a teoriapara explicar este fenocircmeno ainda natildeo eacute bem aceita(8)

Devido a esse fenocircmeno quando um imatilde eacute aproximado de umsupercondutor aparecem correntes superficiais induzidas neste material Estascorrentes por sua vez geram um campo magneacutetico induzido que segundo aLei de Lenz produzem um campo magneacutetico em sentido contraacuterio ao do imatilde oque o repele

Fig 11 Forccedilas que geramtorques nos imatildes

permanentes fora da posiccedilatildeode equiliacutebrio

8

Caso o imatilde sofra um desvio lateral apareceraacute um campo induzido que oforccedilaraacute a ficar em sua posiccedilatildeo original Como o material sob o imatilde eacute umsupercondutor o campo induzido eacute idecircntico ao do imatilde por isso ele se manteacutemem equiliacutebrio estaacutevel Eacute o que se pode perceber na figura 12

bull Trens MagLev[5] [6]

Os trens que funcionam utilizando-se a tecnologia MagLev comeccedilaram aentrar em funcionamento a pouco tempo Uma linha de teste de velocidadefeita no Japatildeo comeccedilou a entrar em funcionamento no ano de1996 Com ostestes realizados o trem MLX01 alcanccedilou uma velocidade de 550kmh

Para funcionar esses trens possuem eletromagnetos feitos de materialsupercondutor Sendo assim um fio de material supercondutor eacute enrolado aoredor de um outro material supercondutor como mostra a figura 13

Esta montagem eacute oacutetima pois com os fios supercondutores natildeo eacutenecessaacuterio utilizar uma fonte externa de energia o tempo todo Enquanto ostrens estatildeo na estaccedilatildeo correntes satildeo introduzidas nessa bobina

Quando possui corrente suficiente essa primeira bobina eacute desligada eligada a uma segunda bobina a qual estaacute ligada a uma terceira e assim pordiante O importante eacute que depois que sai da estaccedilatildeo natildeo eacute mais necessaacuteriomanter as bobinas ligadas a uma fonte

Para fornecer a propulsatildeo do trem eacute necessaacuterio um sistema faacutecil de sercompreender poreacutem difiacutecil de ser feito

Fig 12 Caso uma forccedila F1 horizontal atue no imatilde apareceraacute uma forccedilaFind1 que equilibraraacute a primeira O mesmo vale para a forccedila vertical F2

N

SFig13 Eletromagneto supercondutor Os fios e o

nuacutecleo satildeo materiais supercondutores

9

Como os trilhos possuem as bobinas supercondutoras e o trem possuios imatildes permanentes um sistema eleacutetrico eacute ligado aos trilhos fazendo comque a magnetizaccedilatildeo das bobinas fique alternando Logo enquanto uma bobinarepele o trem a outra o atrai fazendo com que ele comece a se deslocar Esteesquema estaacute indicado na figura 14

Esse mesmo sistema pode ser utilizado para frear o trem utilizando amagnetizaccedilatildeo correta

bull Conclusatildeo

De fato natildeo foi possiacutevel realizar a flutuaccedilatildeo de imatildes utilizando uacutenica eexclusivamente imatildes permanentes mas o estudo relacionado a essastentativas foi muito uacutetil e interessante Ele ajudou no estudo de magnetismo esuperconduccedilatildeo fatos que satildeo relativamente pouco entendidos e extremamenteaplicaacuteveis na motivaccedilatildeo do ensino de fiacutesica A ideacuteia inicial do projeto natildeo foirealizada mas o projeto em geral foi de grande valia

A uacutenica maneira encontrada que possibilitou a levitaccedilatildeo dos carrinhos foicom um apoio lateral introduzido na montagem como mostra a figura 15

N

SN

S

N

SImatildePermanente

N

N

SImatildePermanente

N

S

S(a)

(b)

Fig14 Sistema de propulsatildeo dos trens MagLev A situaccedilatildeo inicial (a) e depois com aspolaridades dos eletromagnetos alternada (b)

Fig15 Levitaccedilatildeo obtida com o auxiacutelio de um apoio lateral

10

Referecircncias Bibliograacuteficas

[1] httpwwwifiunicampbr~knobelFI204maglevpdf - Trabalho feito porCelso Ossamu Kaminishikawahara na poacutes-graduaccedilatildeo da UNICAMP soborientaccedilatildeo do prof Dr Marcelo Knobel analisando trens que utilizam levitaccedilatildeomagneacutetica para funcionar Possui um circuito de demonstraccedilatildeo dofuncionamento do MagLev (pg 11)[2] httpinventabrasilnett5combrtremlevhtm - Um estudo coordenado portrecircs professores da UFRJ no que diz respeito a levitaccedilatildeo magneacutetica e suasvantagens (pg 38)[3] httpptwikipediaorgwikiSupercondutividade - Definiccedilatildeo desupercondutividade da enciclopeacutedia virtual Wikipedia (pg 42)[4] httpnoticiasterracombrcienciainterna0OI226362-EI30000html ndashPequena reportagem a respeito dos trens MagLev e sua velocidade maacutexima(pg 45)[5] httptravelhowstuffworkscommaglev-train3htm - Explicaccedilatildeo de comofuncionam trens que utilizam a tecnologia MagLev em seus trilhos bem como avantagem desses trens (pg 46)[6] BLOOMFIELD LA ldquoHow Things Work The Physics of Everyday Liferdquo pg396-408 Ed Wiley 1996 ndash Explicaccedilatildeo de como funciona a levitaccedilatildeo magneacuteticaa partir de supercondutores[7] ver texto no anexo 5 ndash Texto a respeito de magnetismo e o teorema deEarnshaw (pg 47)[8] ldquoA Concise dictionary of Physicsrdquo Oxford Reference pg 270-2711990 ndashResumo a respeito da superconduccedilatildeo suas explicaccedilatildeo e histoacuteria

11

Anexo 1 Material referente a bibliografia 1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 8: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

8

Caso o imatilde sofra um desvio lateral apareceraacute um campo induzido que oforccedilaraacute a ficar em sua posiccedilatildeo original Como o material sob o imatilde eacute umsupercondutor o campo induzido eacute idecircntico ao do imatilde por isso ele se manteacutemem equiliacutebrio estaacutevel Eacute o que se pode perceber na figura 12

bull Trens MagLev[5] [6]

Os trens que funcionam utilizando-se a tecnologia MagLev comeccedilaram aentrar em funcionamento a pouco tempo Uma linha de teste de velocidadefeita no Japatildeo comeccedilou a entrar em funcionamento no ano de1996 Com ostestes realizados o trem MLX01 alcanccedilou uma velocidade de 550kmh

Para funcionar esses trens possuem eletromagnetos feitos de materialsupercondutor Sendo assim um fio de material supercondutor eacute enrolado aoredor de um outro material supercondutor como mostra a figura 13

Esta montagem eacute oacutetima pois com os fios supercondutores natildeo eacutenecessaacuterio utilizar uma fonte externa de energia o tempo todo Enquanto ostrens estatildeo na estaccedilatildeo correntes satildeo introduzidas nessa bobina

Quando possui corrente suficiente essa primeira bobina eacute desligada eligada a uma segunda bobina a qual estaacute ligada a uma terceira e assim pordiante O importante eacute que depois que sai da estaccedilatildeo natildeo eacute mais necessaacuteriomanter as bobinas ligadas a uma fonte

Para fornecer a propulsatildeo do trem eacute necessaacuterio um sistema faacutecil de sercompreender poreacutem difiacutecil de ser feito

Fig 12 Caso uma forccedila F1 horizontal atue no imatilde apareceraacute uma forccedilaFind1 que equilibraraacute a primeira O mesmo vale para a forccedila vertical F2

N

SFig13 Eletromagneto supercondutor Os fios e o

nuacutecleo satildeo materiais supercondutores

9

Como os trilhos possuem as bobinas supercondutoras e o trem possuios imatildes permanentes um sistema eleacutetrico eacute ligado aos trilhos fazendo comque a magnetizaccedilatildeo das bobinas fique alternando Logo enquanto uma bobinarepele o trem a outra o atrai fazendo com que ele comece a se deslocar Esteesquema estaacute indicado na figura 14

Esse mesmo sistema pode ser utilizado para frear o trem utilizando amagnetizaccedilatildeo correta

bull Conclusatildeo

De fato natildeo foi possiacutevel realizar a flutuaccedilatildeo de imatildes utilizando uacutenica eexclusivamente imatildes permanentes mas o estudo relacionado a essastentativas foi muito uacutetil e interessante Ele ajudou no estudo de magnetismo esuperconduccedilatildeo fatos que satildeo relativamente pouco entendidos e extremamenteaplicaacuteveis na motivaccedilatildeo do ensino de fiacutesica A ideacuteia inicial do projeto natildeo foirealizada mas o projeto em geral foi de grande valia

A uacutenica maneira encontrada que possibilitou a levitaccedilatildeo dos carrinhos foicom um apoio lateral introduzido na montagem como mostra a figura 15

N

SN

S

N

SImatildePermanente

N

N

SImatildePermanente

N

S

S(a)

(b)

Fig14 Sistema de propulsatildeo dos trens MagLev A situaccedilatildeo inicial (a) e depois com aspolaridades dos eletromagnetos alternada (b)

Fig15 Levitaccedilatildeo obtida com o auxiacutelio de um apoio lateral

10

Referecircncias Bibliograacuteficas

[1] httpwwwifiunicampbr~knobelFI204maglevpdf - Trabalho feito porCelso Ossamu Kaminishikawahara na poacutes-graduaccedilatildeo da UNICAMP soborientaccedilatildeo do prof Dr Marcelo Knobel analisando trens que utilizam levitaccedilatildeomagneacutetica para funcionar Possui um circuito de demonstraccedilatildeo dofuncionamento do MagLev (pg 11)[2] httpinventabrasilnett5combrtremlevhtm - Um estudo coordenado portrecircs professores da UFRJ no que diz respeito a levitaccedilatildeo magneacutetica e suasvantagens (pg 38)[3] httpptwikipediaorgwikiSupercondutividade - Definiccedilatildeo desupercondutividade da enciclopeacutedia virtual Wikipedia (pg 42)[4] httpnoticiasterracombrcienciainterna0OI226362-EI30000html ndashPequena reportagem a respeito dos trens MagLev e sua velocidade maacutexima(pg 45)[5] httptravelhowstuffworkscommaglev-train3htm - Explicaccedilatildeo de comofuncionam trens que utilizam a tecnologia MagLev em seus trilhos bem como avantagem desses trens (pg 46)[6] BLOOMFIELD LA ldquoHow Things Work The Physics of Everyday Liferdquo pg396-408 Ed Wiley 1996 ndash Explicaccedilatildeo de como funciona a levitaccedilatildeo magneacuteticaa partir de supercondutores[7] ver texto no anexo 5 ndash Texto a respeito de magnetismo e o teorema deEarnshaw (pg 47)[8] ldquoA Concise dictionary of Physicsrdquo Oxford Reference pg 270-2711990 ndashResumo a respeito da superconduccedilatildeo suas explicaccedilatildeo e histoacuteria

11

Anexo 1 Material referente a bibliografia 1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 9: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

9

Como os trilhos possuem as bobinas supercondutoras e o trem possuios imatildes permanentes um sistema eleacutetrico eacute ligado aos trilhos fazendo comque a magnetizaccedilatildeo das bobinas fique alternando Logo enquanto uma bobinarepele o trem a outra o atrai fazendo com que ele comece a se deslocar Esteesquema estaacute indicado na figura 14

Esse mesmo sistema pode ser utilizado para frear o trem utilizando amagnetizaccedilatildeo correta

bull Conclusatildeo

De fato natildeo foi possiacutevel realizar a flutuaccedilatildeo de imatildes utilizando uacutenica eexclusivamente imatildes permanentes mas o estudo relacionado a essastentativas foi muito uacutetil e interessante Ele ajudou no estudo de magnetismo esuperconduccedilatildeo fatos que satildeo relativamente pouco entendidos e extremamenteaplicaacuteveis na motivaccedilatildeo do ensino de fiacutesica A ideacuteia inicial do projeto natildeo foirealizada mas o projeto em geral foi de grande valia

A uacutenica maneira encontrada que possibilitou a levitaccedilatildeo dos carrinhos foicom um apoio lateral introduzido na montagem como mostra a figura 15

N

SN

S

N

SImatildePermanente

N

N

SImatildePermanente

N

S

S(a)

(b)

Fig14 Sistema de propulsatildeo dos trens MagLev A situaccedilatildeo inicial (a) e depois com aspolaridades dos eletromagnetos alternada (b)

Fig15 Levitaccedilatildeo obtida com o auxiacutelio de um apoio lateral

10

Referecircncias Bibliograacuteficas

[1] httpwwwifiunicampbr~knobelFI204maglevpdf - Trabalho feito porCelso Ossamu Kaminishikawahara na poacutes-graduaccedilatildeo da UNICAMP soborientaccedilatildeo do prof Dr Marcelo Knobel analisando trens que utilizam levitaccedilatildeomagneacutetica para funcionar Possui um circuito de demonstraccedilatildeo dofuncionamento do MagLev (pg 11)[2] httpinventabrasilnett5combrtremlevhtm - Um estudo coordenado portrecircs professores da UFRJ no que diz respeito a levitaccedilatildeo magneacutetica e suasvantagens (pg 38)[3] httpptwikipediaorgwikiSupercondutividade - Definiccedilatildeo desupercondutividade da enciclopeacutedia virtual Wikipedia (pg 42)[4] httpnoticiasterracombrcienciainterna0OI226362-EI30000html ndashPequena reportagem a respeito dos trens MagLev e sua velocidade maacutexima(pg 45)[5] httptravelhowstuffworkscommaglev-train3htm - Explicaccedilatildeo de comofuncionam trens que utilizam a tecnologia MagLev em seus trilhos bem como avantagem desses trens (pg 46)[6] BLOOMFIELD LA ldquoHow Things Work The Physics of Everyday Liferdquo pg396-408 Ed Wiley 1996 ndash Explicaccedilatildeo de como funciona a levitaccedilatildeo magneacuteticaa partir de supercondutores[7] ver texto no anexo 5 ndash Texto a respeito de magnetismo e o teorema deEarnshaw (pg 47)[8] ldquoA Concise dictionary of Physicsrdquo Oxford Reference pg 270-2711990 ndashResumo a respeito da superconduccedilatildeo suas explicaccedilatildeo e histoacuteria

11

Anexo 1 Material referente a bibliografia 1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 10: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

10

Referecircncias Bibliograacuteficas

[1] httpwwwifiunicampbr~knobelFI204maglevpdf - Trabalho feito porCelso Ossamu Kaminishikawahara na poacutes-graduaccedilatildeo da UNICAMP soborientaccedilatildeo do prof Dr Marcelo Knobel analisando trens que utilizam levitaccedilatildeomagneacutetica para funcionar Possui um circuito de demonstraccedilatildeo dofuncionamento do MagLev (pg 11)[2] httpinventabrasilnett5combrtremlevhtm - Um estudo coordenado portrecircs professores da UFRJ no que diz respeito a levitaccedilatildeo magneacutetica e suasvantagens (pg 38)[3] httpptwikipediaorgwikiSupercondutividade - Definiccedilatildeo desupercondutividade da enciclopeacutedia virtual Wikipedia (pg 42)[4] httpnoticiasterracombrcienciainterna0OI226362-EI30000html ndashPequena reportagem a respeito dos trens MagLev e sua velocidade maacutexima(pg 45)[5] httptravelhowstuffworkscommaglev-train3htm - Explicaccedilatildeo de comofuncionam trens que utilizam a tecnologia MagLev em seus trilhos bem como avantagem desses trens (pg 46)[6] BLOOMFIELD LA ldquoHow Things Work The Physics of Everyday Liferdquo pg396-408 Ed Wiley 1996 ndash Explicaccedilatildeo de como funciona a levitaccedilatildeo magneacuteticaa partir de supercondutores[7] ver texto no anexo 5 ndash Texto a respeito de magnetismo e o teorema deEarnshaw (pg 47)[8] ldquoA Concise dictionary of Physicsrdquo Oxford Reference pg 270-2711990 ndashResumo a respeito da superconduccedilatildeo suas explicaccedilatildeo e histoacuteria

11

Anexo 1 Material referente a bibliografia 1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 11: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

11

Anexo 1 Material referente a bibliografia 1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 12: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 13: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 14: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 15: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 16: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 17: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 18: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 19: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 20: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 21: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 22: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 23: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 24: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 25: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

25

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 26: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

26

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 27: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

27

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 28: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

28

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 29: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

29

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 30: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

30

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 31: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

31

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 32: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

32

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 33: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

33

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 34: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

34

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 35: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

35

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 36: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

36

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 37: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

37

Anexo 2 Material referente a bibliografia 2

Trem bala

Um trem que levita a uma velocidade de 400 quilocircmetros porhora Parece maacutegica mas eacute tecnologia inteiramente nacionalque haacute dois anos vem sendo desenvolvida no Laboratoacuterio deAplicaccedilotildees de Supercondutores (LASUP) da COPPE e daEscola de Engenharia da UFRJ A tecnologia eacute baseada naformaccedilatildeo de um campo magneacutetico de repulsatildeo entre ostrilhos e os moacutedulos de levitaccedilatildeo (pastilhas supercondutorasque substituem as rodas e satildeo compostas de iacutetrio baacuterio ecobre)

Para criar o campo magneacutetico que eacute o que faz o trem levitaros cientistas resfriam os supercondutores a uma temperaturanegativa de 196deg C utilizando nitrogecircnio liacutequido O nitrogecircnioeacute um combustiacutevel que custa menos de R$ 030 e natildeo polui oambiente Mas esta eacute apenas uma das vantagens destatecnologia que vem sendo desenvolvida tendo como principalobjetivo viabilizar a construccedilatildeo do trem brasileiro A utilizaccedilatildeoda ferrita na composiccedilatildeo do iacutematilde eacute outra caracteriacutestica originaldeste projeto pois este material eacute produzido em escalaindustrial no Brasil e custa 10 vezes menos do que os iacutematildescompostos de terras raras Trata-se de um projetotecnoloacutegico inovador coordenado por trecircs professores daUFRJ Richard Stephan da COPPE Rubens de AndradeJuacutenior da Escola de Engenharia e Roberto Nicolsky doInstituto de Fiacutesica

A pesquisa jaacute gerou 26publicaccedilotildees em revistasinternacionais e encontra-se em etapa de conclusatildeoda primeira fase Para issocontou com o investimentode R$ 40 mil da FAPERJ(Fundaccedilatildeo de Amparo agravePesquisa do Estado do Riode Janeiro) e R$ 10 mil da

Fundaccedilatildeo Joseacute Bonifaacutecio da UFRJ A primeira etapa seraacutefinalizada ateacute o final do mecircs de junho com a conclusatildeo dostestes do modelo em um trilho de sete metros de extensatildeopara avaliar o princiacutepio de levitaccedilatildeo em relaccedilatildeo ao equiliacutebriomecacircnico e a carga que o trem poderaacute suportar Ospesquisadores estimam que no periacuteodo de dois anostenham finalizado a construccedilatildeo de carro e trilho em escalareal Ao fim desta etapa o projeto segundo os

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 38: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

38

pesquisadoresestaraacute pronto paraser executado poruma empresaprivada A empresaWEG uma dasmaiores do mundono setor jaacutedemonstrouinteresse emdesenvolver o

motor A INB (Induacutestrias Nucleares do Brasil) jaacute secomprometeu a contribuir na fabricaccedilatildeo do iacutematilde

O Projeto LEVMAG conta com a importante cooperaccedilatildeoteacutecnica do Prof Herbert Weh Diretor do IEMAB - Institut fuumlrElektrische Maschinen Antriebe und Bahnen da TechnischeUniversitaumlt Braunschweig de Braunschweig Alemanha noprojeto do protoacutetipo trilho-veiacuteculo e no desenvolvimento datraccedilatildeo linear siacutencrona O Prof Weh eacute uma autoridade mundialem levitaccedilatildeo magneacutetica e traccedilatildeo linear pesquisando estetema desde a deacutecada de 1960 Na fase preacute-supercondutoresde ATc o IEMAB desenvolveu as bases da tecnologiaTransrapid o trem de levitaccedilatildeo eletromagneacutetica ativa poratraccedilatildeo que alcanccedila 420 kmh jaacute homologado e em fase deiniciar a construccedilatildeo da sua primeira linha operacional ligandoBerlim a Hamburgo

Na MAGLEVrsquo95 - 14th Intrsquol Conf on Magnetically LevitatedSystems and Linear Drives havida em Bremen Alemanhanos uacuteltimos dias de novembro de 1995 o Prof H Wehcriador da tecnologia Transrapid mostrou que odesenvolvimento recente da teacutecnica de fusatildeo texturizadaviabilizava a levitaccedilatildeo magneacutetica baseada no efeito Meissnerincompleto Chamamos entatildeo o processo de SQL(Superconducting Quantum Levitation) pois decorre de umfenocircmeno quacircntico o estado supercondutor misto que natildeoestaacute descrito pelas equaccedilotildees da eletrodinacircmica ecaracteriza-se pela rede de voacutertices ou fluxoacuteides deAbrikosov

Os blocos supercondutores de YBCO de ATc refrigeraacuteveisem LN2 seratildeo fabricados no IPHT - Institut fuumlr PhysikalischeHochtechnologie de Jena Alemanha por fusatildeo texturizada(melt texturing) cujo primeiro lote estaraacute disponiacutevel logo noiniacutecio do Projeto O IPHT cooperaraacute na caracterizaccedilatildeo docomportamento magneacutetico e de levitaccedilatildeo dos blocos antes edepois dos experimentos e na anaacutelise e interpretaccedilatildeo dosresultados

O projeto propotildee-se a pesquisar e desenvolver novasaplicaccedilotildees da levitaccedilatildeo magneacutetica do tipo SQL(Superconducting Quantum Levitation) representando umainovaccedilatildeo efetiva tanto aplicada em sistemas lineares quantoem mancais de maacutequinas rotativas No sistema linear trilho-veiacuteculo em particular representa uma inovaccedilatildeo radical tantoem relaccedilatildeo agrave levitaccedilatildeo EML (ElectroMagnetic Levitation)utilizada na tecnologia alematilde Transrapid e na japonesaHSST quanto agrave EDL (ElectroDynamic Levitation) tecnologiado trem japonecircs Maglev Aleacutem do grupo IEMAB-IPHT na

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 39: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

39

Alemanha tambeacutem na China estaacute sendo estudado umprotoacutetipo semelhante de levitaccedilatildeo SQL com a mesmacooperaccedilatildeo alematilde poreacutem utilizando em um monotrilhomagnetos permanentes de NdFeB de custo muito maiselevado do que a Ferrite que seraacute utilizada neste Projeto Nosmancais de maacutequinas rotativas a proposta eacute substituir osmancais axiais mecacircnicos ou magneacuteticos por mancais auto-estaacuteveis de levitaccedilatildeo SQL

A aplicaccedilatildeo da levitaccedilatildeo magneacutetica SQL em sistemas comtraccedilatildeo linear possibilita o seu uso em transporte desuperfiacutecie com aplicaccedilotildees em transporte industrial emambientes agressivos ou asseacutepticos e transporte raacutepido decarga eou passageiros Nesta uacuteltima aacuterea tanto quantooutras teacutecnicas de levitaccedilatildeo magneacutetica a levitaccedilatildeo SQLoferece as seguintes vantagens se comparada agraves tecnologiaconvencionais 1) o veiacuteculo levmag eacute mais eficiente do que otrem convencional ou o aviatildeo para curtas distacircncias pois eacutemais modulaacutevel do que ambos e aleacutem disso natildeo tem temposoperacionais passivos como os aviotildees (check-in taxiamentocheck-out etc) 2) consome cerca de 30 menos energiapor passageiro-km do que o trem convencional para umtrajeto de 400 km a uma velocidade meacutedia de 400 kmh e60 menos do que o aviatildeo para o mesmo trajeto e 3) temum horizonte de expansatildeo da velocidade se o veiacuteculo forposto em um tubo a vaacutecuo parcial (projeto Swissmetro)enquanto que o trem convencional natildeo pode passar de 400kmh (barreira de traccedilatildeo)

O uso de mancais auto-estaacuteveis SQL elimina a necessidadetanto de eletromagnetos quanto dos seus sensores e da suaeletrocircnica de realimentaccedilatildeo A razatildeo eacute que na levitaccedilatildeo SQLhaacute forccedilas restauradoras que asseguram o auto-equiliacutebrio domancal Axialmente pela repulsatildeo cresce aproximadamentesegundo uma exponencial com a reduccedilatildeo da distacircncia entreo magneto e o bloco supercondutor Os esforccedilos transversaisao eixo de rotaccedilatildeo poreacutem tem resistecircncia devida aoancoramento da rede de voacutertices em inclusotildees e defeitos darede cristalina gerando assim uma forccedila restauradora quese soma agrave accedilatildeo dos mancais magneacuteticos radiais ativos paraestabilizar o rotor O mancal axial SQL representa portantouma ponderaacutevel vantagem para uma utilizaccedilatildeo futura emmaacutequinas rotativas de eixos verticais

O Grupo de Supercondutividade Aplicada do IFUFRJ temcentrado a sua experiecircncia em pesquisa na aacuterea deaplicaccedilotildees do espalhamento de Andreev para a formulaccedilatildeode uma nova concepccedilatildeo em dispositivos eletrocircnicossupercondutores A partir do ano de 1997 iniciou a suaatuaccedilatildeo na aacuterea de levitaccedilatildeo magneacutetica supercondutora eestabeleceu as cooperaccedilotildees internacionais com o objetivodeste Projeto Nos uacuteltimos 5 anos entre os resultadosalcanccedilados encontram-se 2 patentes de invenccedilatildeo emeletrocircnica supercondutora de Andreev solicitadas ao INPIatraveacutes da FUJBUFRJ Desenvolver uma tecnologia eficientee viaacutevel para ser implantada no Brasil eacute o principal desafio daequipe deste projeto que reuacutene cerca de 40 pesquisadoresSatildeo 18 professores da UFRJ dois da UFF quatro da USP etrecircs da Alemanha cinco doutorandos da UFRJ aleacutem dosalunos de mestrado e de graduaccedilatildeo

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 40: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

40

O Estudo de Junccedilotildees Supercondutoras esuas Aplicaccedilotildees eacute uma etapa natural nodesenvolvimento da pesquisa sobre asjunccedilotildees supercondutor-metal normal-supercondutor (SNS) e as suas aplicaccedilotildeescomo substitutos especiacuteficos as junccedilotildeesclaacutessicas de tunelamento Esse tema detrabalho constitui-se em uma vertente depesquisa baacutesica que busca soluccedilatildeo das

equaccedilotildees de Bologiubov-de Gennes dependentes do tempopara diferentes potenciais de pares e configuraccedilotildees dejunccedilotildees SNS em aproximaccedilotildees que simplifiquem amodelagem de junccedilotildees reais com o fim de simular as suascurvas I-V e ajuste de curvas experimentais O mesmomodelo mostrou-se muito bem sucedido na remoccedilatildeo de

pseudo-histerese em curva I-Vde junccedilatildeo supercondutor-semicondutor dopado-supercondutor

O pedido de patente PI9500394-0 de Adir Moyseacutes Luiz Roberto Nicolsky refere-se aum Oscilador harmocircnicousando a resistecircncia diferencial

negativa de uma junccedilatildeo SNS (supercondutor - metal normal -supercondutor) e utiliza a resistecircncia diferencial negativa deuma junccedilatildeo supercondutora do tipo SNS (supercondutor -metal normal - supercondutor) O seu uso mais importante eacutea obtenccedilatildeo de um oscilador harmocircnico (ou gerador deoscilaccedilotildees eletromagneacuteticas) em baixas temperaturas ouseja temperaturas que exigem refrigeraccedilatildeo com heacutelio liacutequidoou heacutelio gasoso (temperaturas menores do que 10K)Tipicamente usa-se uma microponte supercondutora (J) eum circuito tanque RLC ligado em paralelo agrave microponte J Afonte de alimentaccedilatildeo deve possuir uma tensatildeo eleacutetricaconstante (corrente contiacutenua) A tensatildeo corresponde a umvalor situado aproximadamente no ponto de inversatildeo daconcavidade da curva na regiatildeo de RDN (ResistecircnciaDiferencial Negativa) da curva caracteriacutestica da corrente Icontra tensatildeo eleacutetrica V de uma junccedilatildeo SNS A frequecircnciaobtida pelo oscilador eacute igual agrave frequecircncia de ressonacircncia docircuito tanque RLC Aproveitando-se a caracteriacutestica dacurva I-V da junccedilatildeo SNS consegue-se construir um osciladorcom este dispositivo funcionando a baixas temperaturasalgo que o estado da teacutecnica somente conseguiaaproveitando-se do efeito tunel observado em junccedilotildees SIS(supercondutor - isolante - supercondutor) valendo-se efeitoJosephson com niacuteveis de potecircncia bem menores

Com experiecircncia de 20 anos nesse mesmo setor empresarialo fiacutesico nascido em Moscou e radicado no Brasil desde os 8anos de idade tem dedicado esta uacuteltima deacutecada agrave defesa deuma poliacutetica industrial expliacutecita no Paiacutes A posiccedilatildeo deNicolsky eacute a de que a parceria entre universidade e empresaeacute muito complexa e que raramente daacute resultados positivosPortanto ela soacute deveria ocorrer em casos bem especiacuteficos aacademia entraria em accedilatildeo apenas quando for convocadapela iniciativa privada para solucionar um problema pontual

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 41: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

41

que surja no processo produtivo Para o diretor-geral daProtec e professor da Universidade Federal do Rio deJaneiro todo o movimento de inovaccedilatildeo tecnoloacutegica devesempre ser gerido pelo setor empresarial O professoracredita que aleacutem da proacutepria falta de preocupaccedilatildeo brasileiracom patentes algo deve ser mudado no sistema deconcessatildeo no paiacutes Depositei dois pedidos de patentes deeletrocircnica superprodutora um em 97 e um haacute quase seteanos em 95Ateacute agora natildeo tive respostas Nos EstadosUnidos isso eacute resolvido em um ano e meio exemplifica

Fontehttpwwwplanetacoppeufrjbrnoticiasnoticia000076htmlacesso em marccedilo de 2002httpwwwcoeufrjbrlevmag98htmlacesso em outubro de 2002httpwwwinpigovbrnoticiasconteudoclippings27-121htmhttpwwwrevistanexuscombrnex3desta05htmlhttpomnisifufrjbr~barthemMCE14htmlacesso em janeiro de 2003envie seus comentaacuterios para abrantesinpigovbr

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 42: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

42

Anexo 3 Material referente a bibliografia 3

Supercondutividade

Origem Wikipeacutedia a enciclopeacutedia livre

Ir para navegaccedilatildeo pesquisa

Supercondutividade (SC) eacute a caracteriacutestica intriacutenseca de certos materiais quando seesfriam a temperaturas extremamente baixas para conduzir corrente sem resistecircncianem perdas

Esta propriedade foi descoberta em 1911 pelo fiacutesico neerlandecircs H Kamerlingh Onnesquando observou que a resistecircncia eleacutetrica do mercuacuterio desaparecia quando resfriado a4K (-452degF -26915degC)

A supercondutividade existe soacute sob

bull A Temperatura Criacuteticabull A Corrente Criacuteticabull O Campo Magneacutetico Criacutetico

Este fenocircmeno fiacutesico eacute apresentado por certas substacircncias como metais ou ceracircmicasespeciais caracterizado pela diminuiccedilatildeo da resistecircncia eleacutetrica em temperaturas muitobaixas Com isso a corrente eleacutetrica pode fluir pelo material sem perda de energiaTeoricamente a supercondutividade permitiria o uso mais eficiente da energia eleacutetricaO fenocircmeno surge apoacutes determinada temperatura de transiccedilatildeo que varia de acordo como material utillizado O holandecircs Heike Kamerlingh-Onnes faz a demonstraccedilatildeo dasupercondutividade na Universidade de Leiden em 1911 Para produzir a temperaturanecessaacuteria usa heacutelio liacutequido O material eacute mercuacuterio abaixo de 42 K (-2688ordm C)

Ateacute 1986 a temperatura mais elevada em que um material se comporta comosupercondutor eacute apresentada por um composto de germacircnio-nioacutebio temperatura detransiccedilatildeo 232 K (ou -2498ordm C) Para isso tambeacutem se usa heacutelio liacutequido material caro epouco eficiente o que impede seu uso em tecnologias que procurem explorar ofenocircmeno

A partir de 1986 vaacuterias descobertas mostram que ceracircmicas feitas com oacutexidos de certoselementos como baacuterio ou lantacircnio tornam-se supercondutoras a temperaturas bem maisaltas que permitiriam usar como refrigerante o nitrogecircnio liacutequido a uma temperatura de77 K (-196ordm C) As aplicaccedilotildees satildeo vaacuterias embora ainda natildeo tenham revolucionado aeletrocircnica ou a eletricidade como previsto pelos entusiastas Tecircm sido usados empesquisas para criar eletromagnetos capazes de gerar grandes campos magneacuteticos semperda de energia ou em equipamentos que medem a corrente eleacutetrica com precisatildeoPodem ter aplicaccedilotildees em computadores mais raacutepidos reatores de fusatildeo nuclear comenergia praticamente ilimitada trens que levitam e a diminuiccedilatildeo na perda de energiaeleacutetrica nas transmissotildees

[editar]

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 43: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

43

Artigos relacionadosbull Fiacutesicabull Lev Davidovich Landau

[editar]

Bibliografiabull Adir Moyses Luiz - Aplicaccedilotildees da Supercondutividade - Satildeo Paulo - SP - Brasil

- 1992 - Editora Edgard Bluumlcher Ltdabull Joseacute Leite Lopes - Do aacutetomo preacute-socraacutetico agraves partiacuteculas elementares a

estrutura quacircntica da mateacuteria - Rio de Janeiro - RJ - Brasil - 1992 - EditoraUFRJAcademia Brasileira de CiecircnciasEditora Enca

Retirado de httpptwikipediaorgwikiSupercondutividade

Categoria Fiacutesica

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 44: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

44

Anexo 4 Material referente a bibliografia 4

TecnologiaQuarta 3 de dezembro de 2003 09h26

Trem que levita chega a 581 kmhAP

O Maglev estaacute sendo testado desde 1997 e ainda natildeo tem data para entrar em operaccedilatildeoUacuteltimas de Tecnologiaraquo Cientistas criam nadador baseado em espermatozoacuteideraquo China teraacute reator de fusatildeo termonuclear proacuteprioraquo Braccedilo biocircnico movido por pensamento passa em testeraquo Japatildeo cria bateria com glicose para gerar energiaBusca

Saiba mais na Internet sobreAmbiente

Faccedila sua pesquisa na Internet

O trem japonecircs Maglev registrou um novo recorde de velocidade ferroviaacuteria 581 kmh O veiacuteculoque utiliza um mecanismo magneacutetico que o faz levitar sobre os trilhos superou o recorde anteriorem 2 kmh

O Maglev foi testado pela Companhia Ferroviaacuteria Central Japonesa em uma pista de treinos nonorte do Japatildeo Apenas 12 funcionaacuterios da empresa estavam dentro da composiccedilatildeo no momentoda viagem

De acordo com os teacutecnicos o trem fica mais estaacutevel quanto maior for a velocidade da composiccedilatildeoEm operaccedilatildeo a velocidade maacutexima do Maglev seraacute de 500 kmh Atualmente os mais modernastrens-bala japoneses podem ultrapassar os 300 kmh

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 45: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

45

Anexo 5 Material referente a bibliografia 5

Maglev Technology In UseWhile maglev transportation was first proposed more thana century ago the first commercial maglev train made itstest debut in Shanghai China in 2002 (click here to learnmore) using the train developed by German companyTransrapid International The same line made its first open-to-the-public commercial run about a year later inDecember of 2003 The Shanghai Transrapid line currentlyruns to and from the Longyang Road station at the cityscenter and Pudong airport Traveling at an average speedof 267 mph (430 kmh) the 19 mile (30 km) journey takesless than 10 minutes on the maglev train as opposed to anhour-long taxi ride

Despite US interest in maglev trains over the past fewdecades the expense of building a maglev transportationsystem has been prohibitive Estimated costs for building amaglev train system in the United States range from $10million to $30 million per mile However the developmentof room-temperature superconducting supermagnets couldlower the costs of such a system Room-temperaturesuperconductors would be able to generate equally fast speeds with less energy

For more information on magnetic levitation trains and related topics check out the links onthe next page

Big Maglev on CampusThe administration at OldDominion University in Virginahad hoped to have a supershuttle zipping students backand forth across campusstarting back in the fall semesterof 2002 Several semestershave passed and all the whilethe maglev remains motionlessBut that could soon bechanging After being derailedfor more than 18 months themaglev train project at OldDominion is back on trackApproximately $14 million hasalready been spent on theproject and even more moneywill be required to get things upand running

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 46: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

46

Anexo 6 Material referente a bibliografia 7

Magnetism and Earnshaws TheoremSpeaking well about Homer is not a thing you have mastered its a divine power that moves you as aMagnetic stone moves iron rings (Thats what Euripides called it most people call it Heraclian) Thisstone not only pulls those rings if they are iron it also puts power in the rings so they in turn can do justwhat the stone does minus pull other rings minus so that there is sometimes a very long chain of iron pieces hangingfrom one another And the power in all of them depends on this stone minus Socrates in Platos Ion c 380 BC

Magnetism has been known since ancient times The magnetic property of lodestone (Fe3O4) was mentionedby the Greek philosopher Thales (c 500 BC) and the Greeks called this mineral Magnetic after theprovince of Magnesia in Thessaly where it was commonly found It was also found in the nearby provinceof Heraclia which is presumably why Socrates says that most people called the stone HeraclianApparently we have the great dramatist Euripides to thank for not having to pronounce the electro-heraclianfield

About 1000 AD the Chinese began to use lodestone as a compass for finding directions on land and soonafterwards Muslim sailors were using compasses to navigate at sea Europeans began using magneticcompasses for navigation around 1200 AD probably bringing the idea back from the Crusades The firstscientific study of magnets was apparently by the English physician William Gilbert in 1600 who iscredited with discovering that the Earth itself is a magnet After Gilbert the subject languished for almost200 years as the attention of most scientists turned to gravitation and working out the consequences ofNewtons great synthesis of dynamics and astronomy Not until 1785 was the subject taken up again first bythe Frenchman Charles Coulomb then by Poisson Oersted Ampere Henry Faraday Weber and Gaussculminating in Maxwells classical synthesis of electromagnetic theory in 1875

However despite the great achievements of these scientists no satisfactory understanding of the variouskinds of magnetic behavior exhibited by different materials was achieved Only with the advent of quantummechanics in the 1920s did it become possible to give a coherent account of the main magnetic properties ofmaterials Its a surprisingly complex subject but we can give a broad outline of the modern explanations ofmagnetic phenomena

The three main types of magnetic behavior exhibited by material substances are called diamagnetismparamagnetism and ferromagnetism The first two can be explained in terms of the magnetic fieldsproduced by the orbital motions of the electrons in an atom Each electron in an atom can be regarded ashaving some orbital motion about the nucleus and this moving charge represents an electric currentwhich sets up a magnetic field for the atom as shown below

Many atoms have essentially no net magnetic dipole field because the electrons orbit the nucleus aboutdifferent axes so their fields cancel out Thus whether or not an atom has a net dipole field depends on thestructure of the electron shells surrounding the nucleus

In broad terms diamagnetism and paramagnetism are different types of responses to an externally appliedmagnetic field Diamagnetism is a natural consequence of Lenzs law according to which the electriccurrent resulting from an applied field will be in the direction that opposes the applied field In other wordsthe induced current will flow in the direction that creates a field opposite to the applied field as illustratedbelow

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 47: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

47

Conservation of energy implies that a force is required to push the magnet through the ring thereby settingup the flow of current (in the opposite direction of the electron motion) Hence there is a repulsive forcebetween the magnet and the conducting ring Likewise when an atom is subjected to an applied magneticfield there is a tendency for the orbital motions of the electrons to change so as to oppose the field As aresult the atom is repelled from any magnetic field Notice that this is true regardless of the polarity of theapplied field because the induced currents (ie the induced changes in the orbital motions of theelectrons) invariably act to oppose the applied field This phenomenon is present in all substances to somedegree but it is typically extremely small so it is not easily noticed It is most evident for elements whoseatoms have little or no net magnetic moment (absent an externally applied field) Among all the elements atordinary room temperatures bismuth has the strongest diamagnetism but even for bismuth the effect isextremely weak because the currents that can be established by the electron orbital motions are quite smallIts possible however to construct a perfect diamagnet using superconductivity A superconductor is inmany respects like a quantum-mechanical atom but on a macroscopic scale and it can support very largecurrents In accord with Lenzs Law these currents oppose any applied field so its actually possible toachieve stable levitation of a permanent magnet over a superconductor

In view of Lenzs Law it might seem surprising that any material could actually be attracted to a magneticfield but in fact there are many such substances This is due to the phenomena called paramagnetismUnlike the atoms of diamagnetic materials the electrons of atoms in paramagnetic materials are arranged insuch a way that there is a net magnetic dipole due to the orbital motions of the electrons around the nucleusThus each atom is a small permanent magnet but the poles tend to be oriented randomly so a macroscopicsample of the substance usually has no net magnetic field When such a substance is subjected to an externalmagnetic field there is (as always) a small diamagnetic effect on the orbital motions of the electronstending to cause a repulsion (as explained above) but there is also a tendency for the individual atomicdipoles to become aligned with the imposed field rather than being oriented randomly This gives thesubstance an overall net magnetic dipole in the same direction as the applied field so if the substance islocated in a non-uniform magnetic field it will be attracted in the direction of increasing field strength Thisparamagnetic attraction effect is much stronger than the diamagnetic repulsion so paramagnetism usuallymasks the effect of diamagnetism for such substances However even paramagnetism is so weak that itsoften not noticed because the thermal agitation of the atoms (at room temperature) tends to disrupt thealignment

The last major category of magnetic behavior is called ferromagnetism This is the phenomenon responsiblefor the strong magnetic properties of iron and for the existence of permanent magnets ie macroscopicsubstances (such as magnetite) that exhibit an overall net magnetic dipole field even in the absence of anyexternally applied field Many of the early researchers in the science of magnetism thought this was nothingbut a strong and persistent form of paramagnetism but the strength and persistence of ferromagnetism showthat it is the result of a fundamentally different mechanism an effect that is absent in merely paramagneticsubstances Whereas both diamagnetism and paramagnetism are essentially due to the atomic fields resultingfrom the orbital motions of the electrons about the nucleus ferromagnetism is due almost entirely toalignment of the intrinsic spin axes of the individual electrons

An individual electron possesses a quantum property known as spin which is somewhat analogous to thespin of a macroscopic object (This analogy is not exact and can be misleading in some circumstances but

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 48: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

48

its useful for gaining an intuitive understanding of the magnetic properties of materials) According to thisview an electrons charge is distributed around its surface and the surface is spinning about some axis sothere is a tiny current loop setting up a magnetic field as illustrated below

(The contribution of the nucleus itself to the magnetic field of an atom is typically negligible compared withthat of the electrons) In most elements the spin axes of the electrons point in all different directions so thereis no significant net magnetic dipole However in ferromagnetic substances the intrinsic spins of many ofthe electrons are aligned both within atoms and between atoms The key question is what causes all thesedipoles to be aligned especially in the absence of an external field It can be shown that the dipoleinteraction itself is not nearly strong enough to achieve and maintain alignment of the electron spin axes atroom temperatures so some other factor must be at work

Quantum mechanics furnishes the explanation For particular arrangements of certain kinds of atoms in thelattice structure of certain solids the inter-electron distances within atoms and between neighboring atomsare small enough that the wave functions of the electrons overlap significantly As a result there is a verystrong effective coupling force between them due to their indistinguishability This is called an exchangeinteraction and is purely a quantum-mechanical phenomenon There is no classical analogy In essencequantum mechanics tells us that there is a propensity for the identities of neighboring electrons to beexchanged and this locks the spin orientations of the electrons together (This is actually true only undercertain circumstances Its also possible for exchange interactions to lock the spins of neighboring electronsin opposite directions in which case the behavior is called anti-ferromagnetism) In order for the exchangeinteraction to operate the inter-electron distances must be just right and these distances are obviouslyaffected by the temperature so there is a certain temperature called the Curie temperature above whichferromagnetism breaks down

Only five elements have electron shell structures that support ferromagnetism namely iron cobalt nickelgadolinium and dysprosium In addition many compounds based on these elements are also ferromagnetic(One example is the compound Fe3O4 also called lodestone which the ancient Greeks found lying around inMagnesia) These are all transition elements with partially populated 3d inner electron shells Whenmagnetized the spin axes of all the electrons in the 3d shells are aligned not only for one atom but forneighboring atoms as well This gives the overall lattice of atoms a very strong net magnetic dipole Itsworth noting that this is due to the intrinsic spins of the individual electrons not due to the orbital motionsof the electrons (as is the case with diamagnetism and paramagnetism)

Recall that for paramagnetic substances the alignment of atomic dipoles is maintained only as long as theexternal field is applied As soon as the field is removed the atomic dipoles tend to slip back into randomorientations This is because the ordinary dipole field is not nearly strong enough to resist thermal agitationat room temperatures In contrast after a ferromagnetic substance has been magnetized and the externallyapplied field is removed a significant amount of magnetization remains (This effect is called hysteresis) Ingeneral the electron spins of all the atoms with a suitable lattice will be locked in alignment with or withoutan external field but a real large-scale piece of a substance typically cannot be a single perfectly coherentlattice Instead it consists of many small regions of pure lattices within which the exchange interactionkeeps all the electron spins aligned but the exchange interaction does not extend across the boundariesbetween domains In effect these boundaries are imperfections in the lattice As a result although eachsmall domain is perfectly magnetized the domains in an ordinary piece of iron are not aligned so it has nosignificant net magnetic field However when subjected to an external field there is enough extra impetusto trigger a chain reaction of alignment across the boundaries of the individual regions in the iron causingthe overall object to become a magnet This is the phenomenon described by Socrates when he explainedhow a Magnet has the power not only to attract iron but to convey that power to the iron He was describing

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 49: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

49

a purely quantum mechanical effect by which an applied magnetic field causes the intrinsic spin axes ofindividual electrons in the 3d shells of transition elements such as iron to become aligned - although hepresumably wasnt thinking about it in those terms

When the external field is removed the various regions in the iron object will tend to slip back to theirnatural orientations given the imperfections in the lattice structure so much of magnetism of the object willbe lost However there will be typically have been some structural re-organization of the lattice (dependingon the strength of the applied field and the temperature of the iron) so that a higher percentage of thedomains are aligned and this re-structuring of the lattice persists even after the external field is removedThis accounts for the hysteresis effect by which a piece of iron acquires some permanent magnetism afterhaving been exposed to a strong field In order to create a strong permanent magnet a piece of ferrousmaterial is heated to a molten state and then placed in a strong magnetic field and allowed to cool Thiscreates a lattice structure with very few magnetic imperfections in the lattice so the electron spins arenaturally locked in alignment throughout the material Not surprisingly if a magnetized piece of iron isstruck with a hammer its possible to scramble the domains and thereby de-magnetize the object

In summary the three main kinds a magnetism are illustrated schematically in the figures below

One of the most common questions about permanent magnets is whether there exist a stable and staticconfiguration of permanent magnets that will cause an object to be levitated indefinitely Obviously thelevitation itself is not a problem because many magnets have fields strong enough to lift their own weightEquilibrium is also not a problem because there is obviously a configuration at the boundary betweenfalling and rising The problem is stability In order to have stability there must be a restorative forcecounter-acting any displacement away from the equilibrium point

We need to be careful when considering this question because as discussed above there are several kindsof magnetic behavior exhibited by different substances in different circumstances We can certainly achievestable levitation with a superconductor which is really just a perfect diamagnet In fact even at roomtemperatures it is possible to use the diamagnetic property of a substance like bismuth to achieve (marginal)stability for magnetic levitation Of course in such a case the paramagnet is too weak to do the actuallevitating it just provides a small window of stability for an object that is actually being lifted byferromagnetic effects But if we set aside the phenomenon of paramagnetism which is a constantly self-adjusting field and focus strictly on fixed fields as are produced by ferromagnets can we achieve stablestatic levitation

In 1842 Samuel Earnshaw proved what is now called Earnshaws Theorem which states that there is nostable and static configuration of levitating permanent magnets (See Earnshaw S On the nature of themolecular forces which regulate the constitution of the luminiferous ether 1842 Trans Camb Phil Soc 7pp 97-112) The term permanent magnet is meant to specify ferromagnetism which is truly a fixedmagnetic field relative to the magnet In contrast the phenomena of diamagnetism is not really permanentboth because it requires the presence of an externally applied field and more importantly (from thestandpoint of Earnshaws theorem) because the diamagnetic field constantly adapts to changes in the appliedexternal field This is why stable diamagnet levitation (of which superconductors provide the extremeexample) is possible in spite of Earnshaws theorem

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable

Page 50: Elaboração de um Trilho MagLev Para Experimentos Didáticoslunazzi/F530_F590_F690_F809_F895/F530... · UNICAMP – Universidade Estadual de Campinas F 895 – Projeto de Curso

50

Its worth noting that Earnshaws theorem - ruling out the possibility of static stable levitation - presentedscientists at the time with something of a puzzle if not an outright paradox because we observe stableconfigurations of levitating objects every day For example the book sitting on my desk is being levitatedand some force is responsible for this levitation Admittedly it may not have been clear in Earnshaws daythat the books interaction with the desk was via electromagnetic forces but Earnshaws theorem actuallyapplies to any classical particle-based inverse-square force or combination of such forces Since we observestable levitation (not to mention stable atoms and stable electrons) it follows from Earnshaws theorem thatthere must be something else going on viz we cannot account for the stable structures we observe in naturepurely in terms of classical inverse-square forces or even in terms of any kind of classical conservativeforces In order to explain why stable atoms are possible (ie why the electrons dont simply spiral in andcollide with the protons) and why other stable structures are possible its necessary to invoke some otherprinciple(s) Something like quantum mechanics and the exclusion principle is required

The proof of Earnshaws theorem follows closely from Gausss law Indeed this accounts for the generalityof its applicability To consider the simplest case suppose we wish to arrange a set of charged particles insuch a way that a region of stable containment for an electron is established This requires the existence of apoint in empty space such that the force vector everywhere on the surface of an incremental regionsurrounding that point is directed inward But according to Gausss law the integral of the force vector overany closed surface equals the charge contained within the surface Thus the integral of the force over anyclosed surface in empty space is zero which implies that if it points inward on some parts of the surface itmust point outward on other parts so it is clearly not a stable equilibrium point The best we could do ishave a force of zero over the entire surface but this too is not stable because there is no restorative force tooppose any perturbations According to Gauss law the only point that could possibly be a stableequilibrium point for an electron is a point where a positive charge resides eg a proton Classically anelectron would be expected to collapse onto a proton assuming it had no angular momentum In thepresence of angular momentum its possible to have (idealized) stable orbits in the context of Newtoniangravitation because Newtons gravity did not radiate energy when charges (ie masses) are acceleratedHowever electric charges were known classically to radiate energy so even naive orbital models were ruledout This made it clear that some other principles must be invoked to account for stable configurations ofelectrically charged matter (In general relativity simple two-body orbital systems also radiate energy in theform of gravitational waves so the same argument can ultimately be against the possibility of stableconfigurations for inertially charged matter as well although in this case the rate of energy radiation is solow that the configurations are essentially stable for practical purposes)

Incidentally if we dont require a static configuration then it is possible to achieve quasi-stable levitationwith permanent magnets by spinning the levitated object and using the gyroscopic moments to offset theinstability A number of interesting devices of this type have been constructed This form of levitation iscalled quasi-stable (rather than stable) because the rotation of the levitating object results in the emission ofenergy in the form of electromagnetic waves so eventually the rotation will be brought to a stop and thenthe system will go unstable