ecofisiologia de plantas forrageiras

46
ECOFISIOLOGIA DE PLANTAS FORRAGEIRAS Aluno: Daniel Staciarini Corrêa Orientador: Dr. Aldi Fernandes de Souza França UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE VETERINÁRIA E ZOOTECNIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA ANIMAL

Upload: daniel-staciarini-correa

Post on 19-Jun-2015

3.596 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Ecofisiologia de plantas forrageiras

ECOFISIOLOGIA DE PLANTAS FORRAGEIRAS

Aluno: Daniel Staciarini CorrêaOrientador: Dr. Aldi Fernandes de Souza França

UNIVERSIDADE FEDERAL DE GOIÁSESCOLA DE VETERINÁRIA E ZOOTECNIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA ANIMAL

Page 2: Ecofisiologia de plantas forrageiras

Introdução

Ecofisiologia Respostas morfofisiológicas das plantas

ao meio ambiente; Interações entre as plantas e seu meio

físico, químico e biótico; Conhecer respostas morfogênicas e

estruturais das plantas aos diversos manejos a que são submetidas.

Page 3: Ecofisiologia de plantas forrageiras

Objetivos

Enfocar as respostas morfofisiológicas das plantas forrageiras às várias situações a que são submetidas durante todo o seu ciclo produtivo, como a desfolhação, o sombreamento e os manejos.

Abordar o sistema de classificação de acordo com o tipo funcional da planta.

Page 4: Ecofisiologia de plantas forrageiras

Interações planta-ambiente

FIGURA 1 – Modelo conceitual das relações planta-animal no ecossistema pastagem.Fonte: DA SILVA & NASCIMENTO JR., (2007).

Page 5: Ecofisiologia de plantas forrageiras

Estratégias de Crescimento

Ciclo Fenológico

Curto

Rápida captura de nutrientes

Alta produção de MS

Rápido declínio da qualidade

Médio

Longo

Captura lenta de nutrientes

Declínio gradual da qualidade

Maior flexibilidade no

manejo

Page 6: Ecofisiologia de plantas forrageiras

Ciclo vegetativo

Ciclo fenológico Fertilidade PMS

(t.ha-1)DMO(g.g-1)

PB(g.kg-1)

1º ciclo

Curto Alta 5,02a 0,66 102,7a

Médio Alta 4,11a 0,64 126,4b

Longo Baixa 2,42b 0,66 122,4b

2º ciclo

Curto Alta 2,92a 0,69 106,8a

Médio Alta 2,28b 0,69 134,2b

Longo Baixa 1,53c 0,68 141,4b

3º ciclo

Curto Alta 1,13a 0,74a 138,6a

Médio Alta 0,62b 0,71b 147,9b

Longo Baixa 0,59b 0,67c 139,0a

FONTE: Adaptado de MICHAUD et al. (2012).

TABELA 1 – Produção de matéria seca (PMS), digestibilidade da matéria orgânica (DMO) e proteína bruta (PB) dos três tipos de pastagens em três ciclos vegetativos.

Page 7: Ecofisiologia de plantas forrageiras

DM

O (g

.g-1

)

PB (g

.kg-1

)

Temperatura (oC) Temperatura (oC)

FIGURA 2 – Digestibilidade da matéria orgânica (DMO) e teores de proteína bruta (PB) das pastagens EF (•), MF ( ) e LP ( ) de acordo com o tempo de ■ ▲crescimento (temperatura) no primeiro ciclo fenológico.Adaptado de MICHAUD et al. (2012).

Page 8: Ecofisiologia de plantas forrageiras

DM

O (g

.g-1

)

PB (g

.kg-1

)

FIGURA 3 – Digestibilidade da matéria orgânica (DMO) e teores de proteína bruta (PB) das pastagens EF (•), MF ( ) e LP ( ) de acordo com o tempo de crescimento (dias) no segundo (b) e terceiro (c) ■ ▲ciclos fenológicos.Adaptado de MICHAUD et al. (2012).

Dias de crescimento Dias de crescimento

Page 9: Ecofisiologia de plantas forrageiras

Estratégias de Crescimento

P. maximum MombaçaP. maximum AruanaB. brizantha Marandu

M. minutiflora GorduraB. brizantha XaraésH. rufa JaraguáPanicum spp. Massai

RODRIGUES et al. (2011)

VERÃO

Page 10: Ecofisiologia de plantas forrageiras

Estratégias de Crescimento

Mombaça, Aruana e Marandu acumulam menos massa que os demais, pois priorizam a taxa de alongamento de folhas em detrimento do perfilhamento;

Gordura, Xaraés, Jaraguá e Massai investem no desenvolvimento de novas folhas e novos perfilhos, o que faz com que estas cultivares apresentem maiores taxas de crescimento.RODRIGUES et al. (2011)

Page 11: Ecofisiologia de plantas forrageiras

Índice de Área Foliar (IAF)Interceptação Luminosa (IL)

• IAF = relação entre área foliar e perfilhos.• IL = diferença entre a quantidade de luz que chega

no dossel e a quantidade de luz que atinge o solo.• IAF crítico = situação em que 95% da luz incidente é

interceptada.– Máximo balanço entre os processos de crescimento e

senescência - maior taxa de acúmulo de forragem.• IAF ótimo = 100% de interceptação luminosa.

– Balanço de carbono nulo - não existe produção líquida.

DA SILVA & NASCIMENTO JÚNIOR (2007); DA SILVA et al. (2008); SBRISSIA (2004)

Page 12: Ecofisiologia de plantas forrageiras

Ponto de CorteMassa Total Massa de

FolhasMassa de Colmos

Kg MS/ha95% IL 2.230b 1.940b 205b

100% IL 4.800a 3.650a 845a

28 dias 2.510b 2.040b 274b

TABELA 2 - Massa total, de folhas e de colmos na forragem pré-pastejo em capim-xaraés submetido a três estratégias de desfolhação.

Médias seguidas da mesma letra minúscula na coluna não diferem entre si (P>0,10) pelo teste TukeyFonte: Adaptado de PEDREIRA et al. (2009).

86,99% de folhas

76,04% de folhas

81,27% de folhas

Page 13: Ecofisiologia de plantas forrageiras

ÍtemInterceptação Luminosa

95% 100%

Resíduo Pós-pastejo (cm) 30 50 30 50

Massa ForragemPré-pastejo (kg MS ha-1) 4.580 6.127 7.403 8.260

Massa ForragemPós-pastejo (kg MS ha-1) 1.770 4.000 3.750 4.927

Consumido (kg MS ha-1) 2.810 2.127 3.653 3.333

Lâmina Foliar (%) 70,9 57,7 60,3 57,5

Colmo (%) 14,7 18,9 26,4 22,1

Disp. Total de Folhas (kg MS ha-1) 1.992 1.227 2.202 1.916

Ciclos de Pastejo 7,0 8,3 6,0 5,8

Eficiência de pastejo (%) 63,2 53,7 56,8 48,3

Fonte: Adaptado de CARNEVALLI et al. (2006).

TABELA 3 – Características do capim-mombaça sob duas interceptações luminosas e duas intensidades de pastejo.

Page 14: Ecofisiologia de plantas forrageiras

ForrageiraPeríodo de

descanso 95% IL (dias)

Período de descanso 100%

IL (dias)

Resíduo pós-pastejo (cm)

Observação Autor

Mombaça

22 40

30

PrimaveraCARNEVALLIet al. (2006)

24 37 Verão

95 115 Out-Inv.

Mombaça

23 35

50

PrimaveraCARNEVALLIet al. (2006)

25 31 Verão

140 186 Out-Inv.

Xaraés 22 31 15Set.-2005 a Fev.-

2006PEDREIRA

et al. (2007)

Marandu

42 48

10

PrimaveraGIACOMINIet al. (2009)

59 60 Verão

210 234 Out-Inv.

Marandu

24 56

15

PrimaveraGIACOMINIet al. (2009)

30 61 Verão

215 214 Out-Inv.

Page 15: Ecofisiologia de plantas forrageiras

Parâmetro¹Interceptação Luminosa (%)

85 95 97Carboidratos totais (%) 74,9 76,1 76,6Carboidratos não fibrosos (%) 4,9 5,9 4,9FDN (%) 70,1 70,2 71,7FDA (%) 39,9 40,1 40,5Hemicelulose (%) 30,2 30,1 31,2Lignina (%) 3,4 4,1 3,7Proteína bruta (%) 11,6 10,9 10,0Extrato etéreo (%) 3,2 2,8 2,7Digestibilidade da MS (%) 58,8 50,3 37,1

TABELA 4 – Composição bromatológica e digestibilidade aparente da matéria seca do capim-tanzânia de acordo com a frequência de desfolhação.

¹Todos os valores são médias do capim colhido no primeiro e quarto dias de ocupação dos piquetes.Fonte: Adaptado de VALENTE et al. (2010).

Page 16: Ecofisiologia de plantas forrageiras

Interceptação Luminosa em 95%

Maior número de perfilhos; Mecanismo de compensação.

Maior digestibilidade; Maior eficiência de pastejo; Mais ciclos de pastejo;

(BARBOSA et al., 2011); (CARNEVALLI et al., 2006); (GIACOMINI et al., 2009); (PEDREIRA et al., 2007)

Page 17: Ecofisiologia de plantas forrageiras

Desfolha Lotação contínua ou intermitente; Reduz a área foliar, a taxa de

fotossíntese e o estoque de carbono da planta;

Permite a entrada de mais luz no dossel do pasto e reduz a competição entre indivíduos;

As plantas desenvolveram estratégias para se adaptarem ao pastejo (preterimento ou escape e tolerância) (DA SILVA & NASCIMENTO JÚNIOR, 2006).

Page 18: Ecofisiologia de plantas forrageiras

Após uma desfolhação severa, o suprimento de carbono da planta torna-se inferior à sua demanda para a manutenção e crescimento, o balanço de carbono torna-se temporariamente negativo e as reservas orgânicas passam a ser utilizadas para respiração e restituição da área foliar até que novas folhas se desenvolvam e a capacidade fotossintética do dossel seja restabelecida.

A principal adaptação fisiológica das plantas após a desfolhação é a alocação preferencial de carbono para os meristemas apicais de perfilhos e zonas de expansão foliar com o objetivo de maximizar o aparecimento e alongamento de novas folhas.

Tolerância

SILVA & NASCIMENTO JR. (2006).

Page 19: Ecofisiologia de plantas forrageiras

FIGURA 4 – Fotomicrografia de meristema apical.

Fonte: SILVA et al. (2008).

MeristemaApical

Região de alocação preferencial de carbono nas plantas após a desfolhação:

Meristema apical dos perfilhos e zonas de expansão foliar (Fitômeros 1 – 8) com o objetivo de maximizar o aparecimento e alongamento de novas folhas.

Adaptação: Tolerância

Page 20: Ecofisiologia de plantas forrageiras

Preterimento ou escape

Mudanças morfológicas ou fisiológicas que as tornarão menos atrativas aos animais; Forma de crescimento Desenvolvimento de estruturas

Page 21: Ecofisiologia de plantas forrageiras

Pastejo Rotacionado

Período descanso

Pré-pastejo Pós-pastejo

Altura (cm)

IAF IL (%) MS(kg ha-1)

F/C TCC Perf. m-2 Altura (cm)

IAF

2,5 (25) 79,1C 9,1B 95,6A 4.571B 4,6A 182,8A 240,0A 40,7 2,1

3,5 (33) 97,9B 8,9B 96,5A 5.584AB 3,7B 159,5B 176,5B 44,2 1,5

4,5 (43) 117,2A 10,9A 96,4A 7.340A 1,7C 163,1B 148,4C 50,0 1,4

CV (%) 12,5 15,4 1,5 19,2 21,9 11,3 22,4 - -

TABELA 5 – Valores médios de características estruturais e da biomassa de forragem em pastos de capim-mombaça no pré e pós-pastejo, submetidos a períodos de descanso (folhas por perfilho)(1).

(1)Médias seguidas pela mesma letra na coluna não diferem entre si pelo teste Tukey, a 5% de probabilidade; IAF, índice de área foliar; IL, interceptação luminosa; MS, matéria seca por ciclo de pastejo; F/C, relação folha/colmo; TCC, taxa de crescimento da cultura; Perf. m-2, quantidade de perfilhos por área.Fonte: GOMIDE et al. (2007).

A IL não diferiu entre os tratamentos;•Intenso alongamento do colmo, permitindo maior penetração da luz;•Maior densidade de perfilhos e seu crescimento prostrado nos piquetes sob período de descanso mais curto, tornando a interceptação luminosa mais eficiente.

Período de descanso

Ganho de peso(kg animal dia-1)

2,5 0,638A

3,5 0,473AB

4,5 0,375B

Page 22: Ecofisiologia de plantas forrageiras

Nas

cim

ento

e

mor

te

de

perfi

lhos

Nas

cim

ento

e

mor

te

de

perfi

lhos

Nas

cim

ento

e

mor

te

de

perfi

lhos

Nas

cim

ento

e

mor

te

de

perfi

lhos

Tempo (temperatura acumulada) Tempo (temperatura acumulada)

Tempo (temperatura acumulada) Tempo (temperatura acumulada)

FIGURA 6 – Contribuição do nascimento (valores positivos) e da morte (valores negativos) de perfilhos à densidade populacional de perfilhos de Chloris gayana sujeito à quatro tratamentos.

80H=80% de IL e resíduo de 1,75 IAF; 80L=80% de IL e resíduo de 0,6 de IAF; 100H=100% de IL e resíduo de 1,75 de IAF; 100L=100% de IL e resíduo de 0,6 de IAF.Fonte: MARTÍNEZ CALCINA et al. (2012).

Page 23: Ecofisiologia de plantas forrageiras

Idade de corte MS (t/ha) PB (%) FDN (%) FDA (%) Hcel. (%) Cel. (%) Lig. (%)

CASTRO et al. (2010) – Capim-tanzânia

42 NA NA 69,98b 36,10b 33,85 29,79b 6,22ab

63 NA NA 71,75b 37,00b 34,66 31,78ab 4,84b

84 NA NA 73,95ab 39,73b 34,02 33,64ab 5,82ab

107 NA NA 73,32ab 39,95b 33,84 33,15ab 6,20ab

126 NA NA 76,64a 43,60a 32,81 34,15a 8,93a

SOARES et al. (2009) – Capim-elefante

30 12,8 11,4a 62,9b 32,6 NA NA NA

45 15,9 10,5ab 65,5ab 33,2 NA NA NA

60 18,2 9,1b 70,1a 35,8 NA NA NA

TORO VELÁSQUEZ et al. (2010) – Capim-tifton 85 (Janeiro – Março)

28 NA 11,58a 68,33b 31,60 NA NA 3,55a

35 NA 11,69a 69,59a 31,60 NA NA 3,65a

42 NA 10,93b 69,02b 31,75 NA NA 2,74b

TORO VELÁSQUEZ et al. (2010) – Capim-tifton 85 (Abril – Junho)

28 NA 13,42b 68,88 34,07a NA NA 4,87a

35 NA 15,19a 68,94 30,34c NA NA 3,52c

42 NA 13,44b 70,27 31,86b NA NA 3,90b

Page 24: Ecofisiologia de plantas forrageiras

Pastejo Rotacionado O capim-tanzânia e o capim-elefante

apresentaram elevação nos teores de fibra à medida que a idade de corte avançou

Tifton sofreu redução do teor de proteína bruta, revelando que a idade da planta influencia seu valor nutritivo;

É natural a diminuição na qualidade da forragem com o avanço da idade devido à presença de maior percentual de colmo e de folhas mortas, em relação às folhas verdes.

(CASTRO et al., 2010; GOMIDE & GOMIDE, 2001, SANTOS et al., 2010)SOARES et al., 2009; TORO VELÁSQUEZ et al., 2010)

Page 25: Ecofisiologia de plantas forrageiras

Fonte: Adaptado de CEPLAC.GOV.BR e de DIAS-FILHO (2011)

Gênero Capim Entrada (cm) Saída Maior fertilidade (cm)

Saída Menor fertilidade (cm)

Pennisetum purpureum Elefante 110-120 40-50 ----

Panicum Aruana 30 10 15

Massai 45 20 30

Mombaça 90 30 50

Tanzânia 70 30 50

Tobiatã 90 30 40

Brachiaria Braquiária 20 5 10

Humidicola 20 5 10

Marandu 25 15 20

Mulato 30 15 20

Piatã 35 15 20

Xaraés 30 15 20

Cynodon Estrela 35 15 25

Tífton-85 25 10 15

Andropogon A. gayanus 50 25 35

Alturas médias do capim indicadas para entrada e saída dos animais em sistema rotacionado.

Page 26: Ecofisiologia de plantas forrageiras

Pastejo Contínuo

A qualidade da pastagem é influenciada: Pela intensidade de pastejo (altura); Pela estação do ano; Fertilidade do solo; Etc.

Page 27: Ecofisiologia de plantas forrageiras

VariávelAltura do pasto (cm)

15 30 45FDN folhas (%) 70,9b 72,5a 72,9a

LDA folhas (%) 2,7b 3,0a 3,1a

PB colmos (%) 5,0a 4,2b 3,7c

FDN colmos (%) 78,2c 79,5b 80,9a

LDA colmos(%) 4,0c 4,7b 5,3a

DIVMO colmos (%) 47,3a 43,0b 41,1b

Lâmina foliar pasto (kg ha-1 de MS) 1.170b 1.510a 1.790a

Oferta de MS pasto (kg MS 100kg PV-1) 13,4c 28,6b 58,7a

Ingestão MS (kg MS 100kg PV-1) 2,07b 3,04a 2,7ab

GMD (kg) 0,615a 0,765a 0,775a

Lotação (UA/ha) 2,8a 2,5ab 2,0b

Produtividade (kg ha-1.período) 330a 335a 240b

TABELA 6 – Características nutricionais e morfológicas da forrageira e desempenho de animais em de pastos capim-marandu sob lotação contínua mantidos a 15, 30 ou 45 cm de altura.

Médias seguidas por letras iguais nas linhas não diferem entre si pelo teste Tukey a 5% de probabilidade.Fonte: Adaptado de PAULA et al. (2012).

95% IL (GIACOMINI et al., 2009)

Page 28: Ecofisiologia de plantas forrageiras

Altura do pastoEstação do ano

Inverno Primavera Verão

Comprimento da lâmina foliar (cm)

25 10,3bA 13,2aA 13,3aA

15 – 25 7,0cB 12,1bB 13,9aA

Comprimento do pseudocolmo (cm)

25 18,3bA 23,6aA 19,5bA

15 – 25 8,7bB 17,0aB 20,0aA

Taxa de senescência foliar (cm/perfilho.dia)

25 0,34bA 0,51aA 0,25bA

15 – 25 0,18bB 0,29aB 0,19abA

Filocrono (dia/folha)

25 98,4aA 10,5bA 8,9bA

15 – 25 53,0aB 9,2bA 8,0bA

Médias seguidas de mesma letra minúscula na linha (Tukey) e maiúscula na coluna (F) não diferem (P>0,10) entre si.Fonte: SANTOS et al. (2011).

TABELA 7 – Comprimento (cm) da lâmina foliar e do pseudocolmo, taxa de senescência foliar e filocrono em pastos de capim-braquiária manejado sob lotação contínua e com altura fixa ou variável durante as estações do ano.

Diferentes taxas de alongamento foliar:0,1; 1,4 e 1,5 cm/dia Inverno, Primavera e Verão.E de pseudocolmo:0,01; 0,2 e 0,3 cm/dia Inverno, Primavera e Verão

0,560,80

Page 29: Ecofisiologia de plantas forrageiras

Capim Altura de pastejo (cm)

Aruana 20

Massai 35

Mombaça e Tobiatã 60

Tanzânia 50

Humidicola e Braquiária 15

Marandu 20

Mulato, Piatã e Xaraés 25

Estrela 25

Tífton-85 15

A. gayanus 40

Alturas médias do capim indicadas em sistema de pastejo contínuo com lotação variável.

Fonte: Adaptado de DIAS-FILHO (2011).

Page 30: Ecofisiologia de plantas forrageiras

Sombreamento

A resposta das forrageiras ao sombreamento é dependente da cultivar e se dá em função da intensidade ou da duração desse sombreamento, ou seja, da quantidade de radiação fotossinteticamente ativa (RFA) que a planta deixa de absorver por estar sombreada ou pela quantidade de horas que ela fica sombreada durante o dia.

Para DA SILVA et al. (2008), a quantidade de carbono fixado pelo dossel forrageiro depende da qualidade da RFA absorvida e da eficiência de absorção, que por sua vez depende do IAF e do ângulo da folha, além de características ópticas das folhas.

Page 31: Ecofisiologia de plantas forrageiras

Tratamento

Horas

RFA (μmol fóton s-1 m-2)

6 7 8 9 10 11 12 13 14 15 16 17 Média

Sombreado 43 90 497 726 - 425 952 685 803 575 345 84 475

Pleno Sol 257 605 939 1732 - 2254 2045 1699 1610 1197 782 204 1211

Sombra (%) 83 85 47 58 - 81 54 60 50 52 56 59 62

Tratamento PMS(ton/ha)

PB(kg/ha)

MS(%)

PB(%MS)

FDN(%MS)

FDA(%MS)

MM (%MS)

Sombreado 1.1 b 92.0 a 25.8 b 7.1 a 68.4 a 32.7 a 7.6 a

Pleno Sol 1.3 a 58.3 b 29.4 a 5.8 b 69.7 a 33.0 a 6.4 a

CV (%) 14.5 15.9 3.3 7.5 2.4 5.7 9.5

TABELA 8 – Radiação fotossinteticamente ativa (RFA), produção de matéria seca (PMS) e proteína bruta (PB), níveis de MS, PB, fibra em detergente neutro (FDN), fibra em detergente ácido (FDA) e matéria mineral (MM) dos sistemas com aroeira (Sombreado) e controle (Pleno Sol).

Valores acompanhados de letras diferentes na mesma coluna são diferentes de acordo com o teste Tukey (P<0,05)Fonte: Adaptado de SOUSA et al. (2010).

TratamentoDIVMS

(%)DIVMO

(%)DEMS

(k=0,02) (%)

Sombreado 67.3 a 70.6 a 42.7 a

Sol Pleno 67.8 a 71.6 a 41.9 a

Page 32: Ecofisiologia de plantas forrageiras

EstaçãoGrau de sombreamento (%)

50 18 Pleno SolTaxa de alongamento de folhas (mm perfilho-1 por dia)

Verão 16,1aA 11,8bA 14,2abAOutono 16,7aA 11,6bA 7,7cBInverno 6,1aB 5,5aB 4,0aCPrimavera 17,9aA 10,0bA 8,2bB

Taxa de alongamento de colmos (mm perfilho-1 por dia)Verão 5,3aA 3,4bA 3,8bAOutono 4,1aA 2,5bA 3,2abAInverno 0,49aB 0,33aB 0,24aBPrimavera 5,5aA 2,4bA 3,5bA

Comprimento final das lâminas foliares (cm)Verão 17,3aB 13,7bB 14,7bABOutono 25,6aA 20,1bA 17,2bAInverno 13,6aB 13,8aB 12,2aBPrimavera 23,3aA 14,9bB 12,4bAB

Densidade populacional de perfilhos (perfilhos m-2)Verão 390bA 552aA 552aAOutono 447bA 560aA 554aAInverno 224bB 273abB 310aBPrimavera 429cA 498bA 602aA

Produção de matéria seca (kg ha-1 por dia)MSLF média 23,9a 21,5a 21,8aMSC média 17,2a 10,7b 16,3aMST média 41,2a 32,2b 38,1ab

TABELA 9 – Características morfológicas e produção de matéria seca do capim-braquiária sob graus de sombreamento.

MSLF=matéria seca de lâmina foliar; MSC=matéria seca de colmos; MST=matéria seca total.Médias seguidas por letras iguais, minúsculas nas linhas e maiúsculas nas colunas, não diferem entre si pelo teste Tukey, a 5% de probabilidade.Fonte: Adaptado de PACIULLO et al. (2008).

Sombreamento excessivo prejudica o perfilhamento

58,01% folhas41,75% colmos

F/C = 1,39

66,77% folhas33,23% colmos

F/C = 2,01

57,22% folhas42,78% colmos

F/C = 1,34

Page 33: Ecofisiologia de plantas forrageiras

Classificação por tipo funcional Grande variabilidade de espécies de plantas pode

limitar a escala dos estudos, limitando sua relevância à região onde são realizados.

A classificação por tipo funcional simplifica essa diversidade ao categorizar as plantas com base em características fisiológicas e morfológicas semelhantes. (ANDERSON & HOFFMAN, 2011).

Num país de dimensões continentais, como o Brasil, com ecossistemas e padrões climáticos variados, a classificação das forrageiras por tipo funcional permitiria maior alcance das pesquisas por permitir a extrapolação de dados obtidos em uma região para outras regiões, especialmente nos estudos conduzidos com pastagens nativas.

Page 34: Ecofisiologia de plantas forrageiras

Plantas de clima temperado (CRUZ et al., 2002)

Tipo A: Vegetação precoce, com altas taxas de crescimento inicial, mas que não produzem grandes quantidades de massa. Sua alta precocidade permite intensa e freqüente desfolhação (alta pressão de pastejo) e a obtenção de feno de alta qualidade. Alta área foliar específica (AFE), folhas de curto período de vida, tecidos pobres em lignina e compostos secundários, ciclo fenológico curto. Exemplos: Azevém (Lolium perenne) e Sabre (Poa trivialis);

Tipo B: Vegetação um pouco tardia que acumula grande quantidade de biomassa. Permitem flexibilidade no manejo e produzem feno de alta qualidade quando novas. Alta AFE, teor de água nas folhas alto, período de vida de folhas longo. Exemplos: Pé-de-galo (Dactylis glomerata) e Aveia-falsa (Arrhenatherum elatius).

Tipo C: Vegetação tardia e de menor qualidade. Produz feno de baixa qualidade, pode ser utilizada em sistemas intensivos, mas são possuem alta qualidade. Baixa AFE e teor de água nas folhas, período de vida das folhas longo, tecidos ricos em lignina e compostos secundários, ciclo fenológico tardio. Exemplo: Red fescue (nome em inglês) (Festuca rubra).

Tipo D: Vegetação de ciclo fenológico longo, que leva à seleção pelo animal. Permite flexibilidade no pastejo devido ao longo período de vida das folhas. Produzem alta quantidade de biomassa e não são adequadas para fenação. Baixa AFE e teor de água nas folhas, período de vida das folhas muito longo. Exemplos: Bole-bole (Briza media) e Tor-grass (inglês) (Brachypodium pinnatum).

Page 35: Ecofisiologia de plantas forrageiras

Captação de recursos(ambientes ricos)

Conservação de recursos(ambientes pobres)

Tipo A Tipo CTaxa de crescimento elevada;Pico de crescimento atingido rapidamente;Digestibilidade e teores de nutrientes elevada;Eficiência de utilização dos minerais do solo baixa.

Baixa taxa de crescimento;Pico de crescimento atingido tardiamente;Baixa digestibilidade e teores de nutrientes;Alta eficiência de utilização dos minerais do solo.

Tipo B Tipo DTaxa de crescimento elevada;Pico de crescimento atingido tardiamente;Digestibilidade e teores de minerais satisfatórios;Eficiência de utilização dos minerais do solo moderada.

Baixa taxa de crescimento;Pico de crescimento atingido tardiamente;Baixíssima digestibilidade e teores de nutrientes;Altíssima eficiência de utilização dos minerais do solo.

Fonte: Adaptado de CRUZ et al. (2002).

Características das plantas de acordo com seu tipo funcional.

Page 36: Ecofisiologia de plantas forrageiras

Pastagens compostas por forrageiras tipo A ou B: Alto valor nutritivo no início do primeiro ciclo

vegetativo; Rápido declínio desse valor nutritivo com a maturidade

precoce das plantas. Pastagens compostas por forrageiras tipo C e D:

Baixo valor nutritivo no início de seu ciclo; Declínio menos acentuado do valor nutritivo devido à

acumulação mais lenta de biomassa e maturidade mais tardia.

MICHAUD et al. (2012) relatam que recentemente um novo tipo funcional foi definido, o tipo “b”, que se caracteriza por plantas com média exigência em fertilidade e que possuem ciclo fenológico intermediário entre os tipo B e C.

MICHAUD et al. (2012)

Page 37: Ecofisiologia de plantas forrageiras

Cultivar TApF Filo. TAlF TAlC CFF FVP LF

Tanzânia 0.09bc 10.28abc 5.23ª 1.74ab 54.44ª 6.00abcd 72.08abcde

Mombaça 0.11bc 9.45abcd 5.79a 1.13bc 52.26ab 6.70abc 73.59abcde

Piatã 0.09bc 12.72ab 3.03cd 1.39abc 34.66d 5.80bcde 77.83abc

Marandu 0.09bc 11.56abc 2.54cde 1.33abc 35.61d 5.20de 54.88cde

Xaraés 0.09bc 12.88ab 3.42bc 0.92cd 47.12b 5.50bcde 73.99abcde

Capiporã 0.08c 13.68a 2.43cde 0.33d 42.03c 4.56de 63.13abcde

Arapoty 0.12bc 9.62bc 2.78cde 1.18bc 21.97e 5.31cde 45.01de

Basilisk 0.09bc 12.19abc 1.72ef 1.49abc 14.41f 3.40e 51.06cde

Comum 0.12b 9.02cd 1.29f 1.14bc 12.39f 4.10bcde 46.90de

Tupi 0.22a 5.50d 2.05def 2.01a 11.65f 8.00a 43.24e

TABELA 10 - Características morfológicas das cultivares avaliadas sob crescimento livre.

TApF=taxa de aparecimento foliar (folhas.perfilho-1.dia-1); Filo.=filocrono (dias.folha-1.perfilho-1); TAlF=taxa de alongamento de folhas (cm.prefilho-1.dia-1); TAlC=taxa de alongamento de colmos (cm.prefilho-1.dia-1); CFF=comprimento final da folha (cm); FVP=folhas vivas porperfilho; LF=longevidade da folha (dias).Médias seguidas pelas mesmas letras nas colunas não são diferentes (P>0,05).Fonte: Adaptado de SILVEIRA et al. (2010).

GRUPO 1: P. maximum Tanzânia e Mombaça e B. brizantha Xaraés, que apresentaram TApF, filocrono e longevidade de folhas semelhantes.GRUPO 2: B. brizantha Capiporã, menor TApF, consequentemente, o maior filocrono. Também teve a menor taxa de alongamento de colmos, é a cultivar de crescimento mais lento, entre as avaliadas.GRUPO 3: B. brizantha Piatã, Marandu e Arapoty, que têm em comum a TApF, filocrono, TAlF, FVP e LF.GRUPO 4: B. humidicola Tupi, menor filocrono, a maior TApF, e a maior taxa de alongamento de colmos.GRUPO 5: formado por B. decumbens Basilisk e B. humidicola Comum, que possuem as menores taxas de alongamento de folhas (TAlF).

Page 38: Ecofisiologia de plantas forrageiras

VERÃO: Grupo 1: B. brizantha Xaraés e Marandu, P.

maximum e P. infestum Massai, P. maximum Mombaça;

Grupo 2: M. minutiflora Gordura e P maximum Aruana;

Grupo 3: H. rufa Jaraguá; OUTONO:

Grupo 1: Mombaça, Massai, Xaraés, Marandu e Gordura;

Grupo 2: Jaraguá; Grupo 3: Aruana.

RODRIGUES et al. (2012)

Page 39: Ecofisiologia de plantas forrageiras

As divergências entre estudos mostram que a metodologia deve ser aprimorada e unificada: RODRIGUES et al. (2012) avaliaram, também, a

taxa de senescência, a taxa de aparecimento de perfilhos aéreos e basilares, a taxa de aparecimento total de perfilhos, mortalidade de pefilhos aéreos e basilares e a taxa de mortalidade total de perfilhos.

Isto pode explicar, por exemplo, a alocação da cultivar Marandu no mesmo grupo da cultivar Mombaça no estudo de RODRIGUES et al. (2012), o que não ocorreu no trabalho de SILVEIRA et al. (2010).

Page 40: Ecofisiologia de plantas forrageiras

Considerações Finais Plasticidade Fenotípica:

As plantas forrageiras tropicais possuem grande capacidade de adaptação às várias condições ambientais e de manejo a que são submetidas, no entanto, existem práticas que são mais favoráveis às plantas, pois permitirem que elas expressem todo seu potencial produtivo e valor nutricional;

A expressão das características das plantas é o resultado de várias interações que ocorrem entre a planta, o meio ambiente e o animal, incluindo, também, as práticas de manejo adotadas.

Interceptação Luminosa: A interceptação de 95% da radiação luminosa é o ponto onde

ocorre alta produtividade de biomassa com alta qualidade nutricional.

A partir desse ponto, a produção de MS/ha aumenta, mas a qualidade nutricional é drasticamente reduzida devido ao acúmulo de colmos e material senescente, que reduzem a digestibilidade e a eficiência de pastejo, diminuem os ciclos de pastejo.

A altura do dossel possui alta correlação com esta característica, o que facilita o manejo no campo pelos produtores rurais.

Page 41: Ecofisiologia de plantas forrageiras

Considerações Finais Manejo do Pastejo:

O superpastejo pode levar ao desaparecimento da planta, enquanto o subpastejo pode levar rapidamente à diminuição da sua qualidade nutricional.

Pode ser facilmente monitorado pelos produtores pela mensuração do resíduo pós-pastejo.

Em pastejo rotacionado é desejável que o resíduo pós-pastejo seja mais alto, enquanto nos sistemas de lotação contínua, as pastagens devem ser mantidas mais baixas, independente da cultivar utilizada.

Sombreamento: Plantas do gênero Panicum e Brachiaria se adaptam bem ao

sombreamento moderado, lançando mão de estratégia de aumento da área foliar para conseguirem absorver maior quantidade de radiação fotossinteticamente ativa. Nessas condições, muitas vezes, ocorre redução na produção total (MS/ha), porém ocorre aumento no valor nutritivo.

Page 42: Ecofisiologia de plantas forrageiras

Considerações Finais

Classificação pelo Tipo Funcional Pode facilitar os estudos e o entendimento

das pesquisas pelos produtores rurais, reúne em um mesmo grupo, plantas de espécies distintas, mas que possuem características facilmente avaliáveis.

Ecofisiologia O estudo da ecofisiologia das plantas

forrageiras permite avaliar e predizer sua qualidade nutricional e definir práticas de manejo adequadas que são de fácil adoção pelos produtores.

Page 43: Ecofisiologia de plantas forrageiras

OBRIGADO

Page 44: Ecofisiologia de plantas forrageiras

Perfilho aéreo

Perfilho aéreo novo

Perfilho basilar

Perfilho basilar novo

Mersitema ApicalEsquema de uma gramínea caracterizando os perfilhos basilares e aéreos. Adaptado de Langer (1972) e Jewiss (1972) In: BARBOSA et al. (2002).

44

Page 45: Ecofisiologia de plantas forrageiras
Page 46: Ecofisiologia de plantas forrageiras

TT = (T Tb) x 1day, where T is the mean daily air temperature, calculated from the average of daily minimum ‑and maximum air temperatures, and Tb is the base temperature for leaf temperature in sugarcane, assumed as 10°C (Sinclair et al., 2004). The accumulated thermal time (ATT, °C day) from emergence was calculated by accumulating TT, i.e., ATT = Σ TT.

Na quantificação do filocrono, o tempo pode ser expresso em dias, porém as plantas têm seu crescimento e desenvolvimento fortemente influenciados por variáveis ecológicas, principalmente a temperatura do ar (McMaster, 2005). Assim, deve-se incluir a temperatura na contabilização do tempo vegetal, e a maneira clássica de se fazer essa inclusão é pelo uso da soma térmica, cuja unidade é o grau dia (Gilmore Junior & Rogers, 1958), definido como a soma diária de unidades térmicas acima de uma temperatura base inferior, abaixo da qual a planta não se desenvolve ou seu desenvolvimento é tão lento que pode ser desprezado (McMaster & Wilhelm, 1997). Assim, o filocrono tem como unidade o °C dia folha 1.‑

A soma térmica diária (STd, °C dia) foi calculada pelos métodos (Gilmore Junior & Rogers, 1958; Streck et al., 2007a,b): STd = (Tméd Tb).1 dia‑ ,se Tméd<Tb, então Tméd = Tb.

Exemplo: Tb= 10oCTmédia = 20oCSTd= 20 – 10 x 1=10oC/diaEntão, se temos 800oC = 80 dias.