curso de tecnÓlogo em manutenÇÃo industrial...

68
CURSO DE TECNÓLOGO EM MANUTENÇÃO INDUSTRIAL IVAN GOMES RIBEIRO LUCAS SEVERIANO DE AZEVEDO RONALDO BASTOS SOARES DINÂMICA DE OPERAÇÃO DO PETRÓLEO PLANO DE MANUTENÇÃO DA ÁRVORE DE NATAL MOLHADA. CAMPOS DOS GOYTACAZES/RJ 2017

Upload: dinhkhuong

Post on 08-Nov-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

CURSO DE TECNÓLOGO EM MANUTENÇÃO INDUSTRIAL

IVAN GOMES RIBEIRO

LUCAS SEVERIANO DE AZEVEDO

RONALDO BASTOS SOARES

DINÂMICA DE OPERAÇÃO DO PETRÓLEO – PLANO DE

MANUTENÇÃO DA ÁRVORE DE NATAL MOLHADA.

CAMPOS DOS GOYTACAZES/RJ

2017

2

IVAN GOMES RIBEIRO

LUCAS SEVERIANO DE AZEVEDO

RONALDO BASTOS SOARES

DINÂMICA DE OPERAÇÃO DO PETRÓLEO – PLANO DE

MANUTENÇÃO DA ÁRVORE DE NATAL MOLHADA.

Monografia apresentada ao Instituto Federal

Fluminense como requisito para conclusão do

Curso de Tecnologia em Manutenção Industrial.

Orientador: Prof. Dr. Sergio Vasconcellos Martins.

Campos dos Goytacazes/RJ

2017

3

IVAN GOMES RIBEIRO

LUCAS SEVERIANO DE AZEVEDO

RONALDO BASTOS SOARES

DINÂMICA DE OPERAÇÃO DO PETRÓLEO – PLANO DE

MANUTENÇÃO DA ÁRVORE DE NATAL MOLHADA.

Monografia apresentada ao Instituto Federal

Fluminense como requisito para conclusão do

Curso de Tecnologia em Manutenção Industrial.

Aprovada em 05 de Junho de 2017.

Banca Avaliadora:

___________________________________________________________________________

Prof. DSc Sergio Vasconcellos Martins

Manutenção Industrial

Doutor em Ciências de Engenharia / UENF

Instituto Federal de Educação, Ciência e Tecnologia Fluminense – Campus Campos Centro

___________________________________________________________________________

Prof. DSc Maycon de Almeida Gomes

Manutenção Industrial

Doutor em Engenharia e Ciência dos Materiais

Instituto Federal de Educação, Ciência e Tecnologia Fluminense – Campus Campos Centro

___________________________________________________________________________

Prof. MSc Clebio de Azevedo Santos

Manutenção Industrial

Mestre em Engenharia e Ciência dos Materiais

Instituto Federal de Educação, Ciência e Tecnologia Fluminense – Campus Campos Centro

4

AGRADECIMENTOS

Agradecemos primeiramente a Deus, que nos proporcionou força e coragem para encarar e

vencer os desafios encontrados durante a elaboração do trabalho e nos possibilitou obter sua

conclusão.

Aos nossos familiares, ao corpo docente do IFF, ao nosso orientador Sérgio e aos amigos, que

nos ajudaram de forma direta e indireta durante toda a nossa caminhada.

Por isso não tema, pois estou com você; não tenha medo, pois sou o seu Deus; Eu o

fortalecerei e o ajudarei; eu o segurarei; com a minha mão direita vitoriosa. Isaías 41:10.

5

RESUMO

Neste trabalho foi elaborado um plano de manutenção da árvore de natal molhada

baseado nas diversas falhas ocorridas no campo. Será apresentado um gerenciamento de

manutenção baseado no plano de serviços, cotação dos serviços, gerenciamento do serviço e

encerramento do serviço além de discorrer sobre a dinâmica da indústria de petróleo nas fases

de exploração, perfuração, completação e produção.

Palavras-chave: Petróleo, Árvore de Natal Molhada, Plano de Manutenção, Falhas.

6

ABSTRACT

This is a work about the maintenance plan of the wet Christmas tree and it was

elaborated based on several failures in the field. You will be presented with a maintenance

based on the service plan, service quotation, service management and closing of the service in

addition to discussing the dynamics of the oil industry in the exploration, drilling, completion

and production.

Keywords: Oil, Wet Christmas Tree, Maintenance Plan, Failures.

7

OBJETIVO

Este trabalho tem por objetivo oferecer um plano para manutenção da Árvore de Natal

Molhada detalhando sua funcionalidade, destacando os defeitos e investigando as falhas que

ocorreram no equipamento em campo e sua respectiva manutenção, além de discorrer de

maneira geral sobre os assuntos pertinentes as áreas de exploração, perfuração, completação e

produção de petróleo.

8

LISTA DE FIGURAS

Figura 1: Cenários para Produção, Consumo e Exportações líquidas de petróleo no Brasil ... 21

Figura 2: Tubo de Perfuração.... ............................................................................................... 24

Figura 3: Broca de diamante natural....................................................................................... 244

Figura 4: Configuração de revestimento de poço petrolífero.. ................................................. 26

Figura 5: Tipo de sondas marítimas... ..................................................................................... .28

Figura 6: Métodos de completação de poço petrolífero... ....................................................... .28

Figura 7: Tipos de completação de poço petrolífero ................................................................ 29

Figura 8: Ilustrativo da vista geral do conjunto ANM.............................................................. 33

Figura 9: Fluxograma básico da ANM. .................................................................................... 34

Figura 10: Imagem de ROV Subsea7 no poço petrolífero. ...................................................... 41

Figura 11: Imagem de ROV Subsea7 no poço petrolífero 2........ .......................................... 432

Figura 12: Imagem de ROV Subsea7 no poço petrolífero 3. ................................................... 43

Figura 13: Ilustrativo da chaveta de travamento do Stab do conector da ANM .................... 443

Figura 14:Imagem do esquema do conjunto ANM (FDR x FIANM). ................................... 464

Figura 15:Foto da ANM em superfície................................................................................... 476

Figura 16:Imagem de ROV Subsea7 no poço petrolífero 4 ................................................... 486

Figura 17:Imagem de ROV Subsea7 no poço petrolífero 5. .................................................. 497

Figura 18:Foto da ANM em superfície 2.................................................................................. 48

Figura 19:Foto da ANM em superfície 3.................................................................................. 48

Figura 20:Foto do suporte de apoio da TCAP na ANM em superfície .................................... 49

Figura 21:Foto do suporte de apoio da TCAP na ANM em superfície 2 ................................. 49

Figura 22:Foto do suporte do Jumper hidráulico da ANM em superfície ................................ 50

Figura 23:Vista Frontal do Bloco da ANM .............................................................................. 51

Figura 24:Local de montagem dos Stab´s do CLF da ANM com desvio do erro.. .................. 52

Figura 25:Ilustrativo do conjunto Stab Fêmea x Stab Macho do CLF da ANM .................... 573

Figura 26:Imagem de ROV Subsea7no poço petrolífero 6 .................................................... 584

Figura 27: Foto do CLF da ANM em superfície......................................................................55

Figura 28: Foto do STAB em superfície................................................................................. 56

Figura 29: Foto do STAB em superfície 2.............................................................................. 57

Figura 30: Foto do item de vedação do STAB em superfície................................................. 58

9

LISTA DE TABELAS

Tabela 1: Classificação pelo grau API. .................................................................................... 22

Tabela 2: Pag.02 do Manual de Instalação, Operação e Manutenção - Árvore de Natal

Molhada de Produção 5” x 2”/ 13.1” - tipo ANM DL-GLL-CVD-3 MCVs Global 10k Leeds.

.................................................................................................................................................. 34

Tabela 3: Plano de Manutenção (Nível de Manutenção X Ferramentas x Tempo de Execução)

das ferramentas do conjunto Árvore de Natal Molhada de Produção 5” x 2”/ 13.1” - tipo

ANM DL-GLL-CVD-3 MCVs Global 10k Leeds. .................................................................. 60

10

LISTA DE ABREVIATURAS

ANM – Árvore de Natal Molhada.

ANC – Árvore de Natal Convencional.

ANP – Agência Nacional de Petróleo.

API - American Petroleum Institute – Instituto Americano de Petróleo.

FIANM – Ferramenta de Instalação da Árvore de Natal Molhada.

FDR – Ferramenta de Destravamento Rápido.

TH – Tubing Hanger – Suspensor de Coluna.

THRT – Tubing Hanger Running Tool – Ferramenta de Instalação e Retirada do Suspensor de

Coluna.

TCAP – TREE CAP – Capa de Vedação da Árvore de Natal Molhada.

BAP – Base Adaptadora de Produção.

FIBAP – Ferramenta de Instalação da Base Adaptadora de Produção.

CLF – Conector das Linhas de Fluxo.

ROV – Remotely Operated Vehicle – Veículo de Operação Remota.

MLF – Mandril das Linhas de Fluxo.

MCV – Módulo de Conexão Vertical.

BCS - Bombeio Centrífugo Submarino.

COT – Coluna de Trabalho.

COP – Coluna de Produção.

JRC – Junta de Riser Cisalhável.

SFT – Surface Flow Tree– Árvore de Fluxo de Superfície.

HCR – High Collapse Resistant Hose – Mangueira de Alta Resistência a Colapso.

GIM/FAM – Gestão Interna de Mudança / Formulário de Análise de Mudança.

LTC – Long Protection Cap – Capa de Longa Proteção.

QH – Quebra de Hidrato.

CO2 – Dióxido de Carbono.

AI – Anular Intervation – Intervenção Anular.

OF – Ordem de Fabricação.

IQ – Injeção Química.

BORE – Furação.

DUMMY – Pórtico.

11

LISTA DE SIGNIFICADOS DE TERMOS TÉCNICOS

M1 – Denominação da válvula mestra da coluna de produção de uma ANM.

M2 – Denominação da válvula mestra da coluna do anular de uma ANM.

S1 – Denominação da válvula de segurança superior da coluna de produção de uma ANM.

S2 – Denominação da válvula de segurança superior da coluna do anular de uma ANM.

W1 – Denominação da válvula de acesso lateral a linha flexível de produção de uma ANM.

W2 – Denominação da válvula de acesso lateral a linha flexível de anular de uma ANM.

XO – Denominação da válvula de interligação entre a coluna de produção e anular de uma

ANM.

ACUMULADOR –Vaso de pressão carregado com gás nitrogênio e utilizado para estocar

fluido hidráulico sob pressão ou potência hidráulica empregada no funcionamento do sistema

de controle remoto do BOP e de ferramentas de instalação dos equipamentos.

AZIMUTE –Ângulo que um determinado alinhamento, de um equipamento, faz com o norte

magnético verdadeiro, no sentido horário.

ROV – Veículo de operação remota, dotado de propulsores, câmeras, braços articulados e

ferramentas. Interligado por meio de umbilical eletro-hidráulico a uma embarcação de apoio,

a partir da qual é controlado. Destinado a realização de diversas tarefas no meio submarino,

em substituição a mergulhadores.

GÁS LIFT – É um método de elevação artificial que utiliza a energia de um gás pressurizado

para elevar um fluido (óleo e água) até a superfície onde ficam as instalações de produção.

LOCK RING – Sistema de travamento residente na camisa do atuador do conector das

ferramentas de instalação submarinas da Árvore de Natal Molhada.

CONECTOR TIPO “FINGER” – O travamento é feito por anel segmentado acionados por

anel atuador, com sistema de expansão e retração no travamento e destravamento, através de

câmara hidráulica. Possui sistema de pistão único que permite a atuação uniforme do

conector.

LOCK RING - Sistema de travamento residente do conector tem a finalidade de impedir o

fechamento inesperado do anel segmentado (tipo “Finger”) durante descida da ferramenta ou

equipamento à profundidade submarina.

MOON POOL – Abertura do casco e/ou convés da sonda utilizada para preparação dos

equipamentos, e através da qual, é possível efetuar a passagem de cargas (juntas de riser,

equipamentos, etc.) do convés de trabalho para o mar e vice-versa.

12

SURFACE FLOW TREE –Equipamento pertencente ao conjunto do riser de completação.

Tem a função de permitir o fechamento e abertura do bore de produção e permite a abertura e

fechamento do bore do anular também.

MCV (MCVA – MCVP – MCVU)

MCVA – Módulo de conexão vertical do anular. Permite a continuidade das linhas flexíveis

da linha anular da ANM (do poço) com a Unidade Estacionária de Produção (UEP).

MCVP – Módulo de conexão vertical de produção. Permite a continuidade da linha de

produção da ANM com a Unidade Estacionária de Produção (UEP).

MCVU –Módulo de conexão vertical do umbilical. Permite a continuidade das linhas

hidráulicas e elétricas de controle da ANM com a Unidade Estacionária de Produção (UEP).

HOT STAB – Dispositivo para conexão hidráulica submarina a ser efetuada por ROV.

HW-525/443 – Fluidos hidráulicos à base d'água, de alto desempenho e com alta temperatura

operacional na faixa de -25°C a 145°C (-13°F a 293°F). Esses fluidos são usados em sistemas

de controle de produção submarina com circuitos abertos ou fechados, são compatíveis entre

si e oferecem o mesmo desempenho técnico excelente.

FLUSHING – Operação de limpeza das linhas e circuitos hidráulicos, através da circulação de

um fluido inerte.

GAVETA CEGA CISALHANTE – Tipo de válvula de grande porte do BOP, dotada de 2

elementos tipo gaveta que, fechados, permite o corte de determinados tipos tubulações em

frente à válvula e, em seguida, o isolamento da cabeça do poço.

OVERRIDE – Atuação mecânica externa de um equipamento submarino por mergulhador ou

ROV, quando não está disponível seu sistema remoto de atuação.

HUB - Consiste de um mandril com perfil apropriado para receber um conector das linhas de

fluxo e de controle hidráulico.

ATUADOR –Composto de câmara hidráulica de acionamento com retorno por mola,

mecanismo de override acionado mecanicamente com compressão das molas e sistema de

indicação de posição contínua quando acionado hidráulico ou mecanicamente. Todos os

atuadores estão interligados através de hastes de acionamento ao painel das ferramentas e

equipamentos com interfaces padronizadas para ROV.

13

JUMPER – Segmento curto de tubo flexível, usado para conectar equipamentos submarinos.

JUMPER HIDRÁULICO – Conjunto de mangueiras envolvidas por uma capa plástica de

proteção que são preenchidas com fluido hidráulico. Utilizado para interligação de

instrumentos submarinos.

OVERPULL –Teste que consiste em tracionar a coluna de riser de modo que se consiga

“puxar” o equipamento em questão com um valor de tração acima do seu peso, testando assim

o travamento do conector.

GIM/FAM – Gestão Interna de Mudança / Formulário de Análise de Mudança – Documento

elaborado para aprovação de qualquer manobra e/ou atividade a ser realizada durante toda e

qualquer operação submarinas, visto que a atividade esteja divergente do

procedimento/manual da ferramenta ou equipamento submarino.

PARKING PLACE / DUMMY – Local de utilização para apoio de jumper hidráulico ou

jumper elétrico com exemplo. São fabricados na estrutura da ferramenta ou equipamento e

utilizados tanto na superfície como em operação submarina.

RECALL – Do inglês "chamar de volta", traduzido para português como "chamamento” ou

recolha de produto é uma solicitação de devolução de um lote ou de uma linha inteira de

produtos feita pelo fabricante do mesmo. Geralmente, isto ocorre pela descoberta de

problemas relativos à segurança do produto.

PART NUMBER – Número de identificação da ferramenta e equipamento conforme controle

na fabricação e classificação das ferramentas e equipamentos conforme sua configuração.

WAG – O sistema WAG permite injeção de MEG diretamente na cavidade das gavetas das

válvulas da ANM. Esse sistema tem finalidade de prevenção de Hidrato, permitindo alternar a

injeção de água e gás na formação.

VÁLVULA DE RETENÇÃO –Válvula que restringe a passagem do fluxo de fluido

hidráulico por determinado lugar ou determinado espaço.

STAB – Conjunto metálico removível utilizado para passagem de fluxo hidráulico entre as

ferramentas e equipamentos submarinos.

STAB DE PASSAGEM PLENA – Conjunto metálico removível com canal para passagem de

fluxo hidráulico entre as ferramentas e equipamentos submarinos livres, sem restrição.

SAX – Parte metálica do conjunto Stab, utilizada para vedação (vedação tipo de borracha).

VGX – Tipo de anel metálico responsável pela vedação nas interfaces dos equipamentos.

14

STAB – Conjunto metálico removível utilizado para passagem de fluxo hidráulico entre as

ferramentas e equipamentos submarinos.

SAX – Parte metálica do conjunto Stab, utilizada para vedação (vedação tipo de borracha).

PDG – Permanent Downhole Gauge - É um sensor cuja função é monitorar continuamente a

pressão e temperatura de fundo do poço, transmitindo sinais para a superfície através de cabos

que afixados externamente à coluna de produção até ao Tubing Hanger, onde através de um

conector especial passa este sinal para a ANM, que com outro conector especial passa este

sinal para outro cabo que segue até a plataforma de produção onde este sinal é interpretado.

TPT – Transmissor de Pressão e Temperatura - Instrumento instalado na ANM para enviar

informações de temperatura e pressão do fluido, na cabeça de poço, para a unidade de

produção. Instalado no lado de produção da ANM.

TP – Transmissor de Temperatura - Instrumento instalado na ANM para enviar informações

de temperatura do fluido, na cabeça de poço, para a unidade de produção. Instalado no lado de

anular da ANM.

DHSV – Downhole Safety Valve - Válvula de segurança instalada na coluna de produção,

abaixo da cabeça de poço, para fechar o poço automaticamente diante de anormalidades nas

pressões de fluxo, servindo como uma barreira de segurança.

CO2 – Dióxido de Carbono - é um gás liquefeito, incolor, inodoro, não inflamável e

levemente ácido, é mais pesado que o ar e é solúvel em água.

15

SUMÁRIO

INTRODUÇÃO ................................................................................................................................... 18

1.0 EXPLORAÇÃO ............................................................................................................................ 20

1.1 PERFURAÇÃO ......................................................................................................................... 20

1.2 PRODUÇÃO .............................................................................................................................. 20

1.3 REFINO ..................................................................................................................................... 21

1.4 GRAU API ................................................................................................................................. 22

1.4.1 FORMULAÇÃO ................................................................................................................ 22

1.4.2 CLASSIFICAÇÃO DO PETRÓLEO SEGUNDO O GRAU API ................................. 23

1.4.3 MEDIDA INTERNACIONAL .......................................................................................... 23

1.5 FASES DA PERFURAÇÃO ..................................................................................................... 23

1.5.1 COLUNA DE PERFURAÇÃO ......................................................................................... 24

1.5.2 BROCA ............................................................................................................................... 24

1.6 FLUIDOS DE PERFURAÇÃO ................................................................................................ 25

1.7REVESTIMENTO ..................................................................................................................... 25

1.7.1 FUNÇÕES DA COLUNA DE REVESTIMENTO .......................................................... 25

1.8 CIMENTAÇÃO ......................................................................................................................... 26

1.9 COMPLETAÇÃO ..................................................................................................................... 26

1.9.1 POSICIONAMENTO DA CABEÇA DE POÇO............................................................. 27

1.9.2 TIPOS DE REVESTIMENTO .......................................................................................... 28

1.9.3 NÚMERO DE ZONAS EXPLORADAS .......................................................................... 29

1.9.4 QUANTO AO MÉTODO DE ELEVAÇÃO .................................................................... 29

1.10 ETAPAS DA COMPLETAÇÃO ........................................................................................... 30

1.11 AVALIAÇÃO DA CIMENTAÇÃO ...................................................................................... 30

1.12 CANHONEIO .......................................................................................................................... 30

1.13 ESTIMULAÇÃO ..................................................................................................................... 30

1.14 INSTALAÇÃO DA COLUNA DE PRODUÇÃO (COP) .................................................... 30

2.0 ANM – CARACTERÍSTICAS E FUNCIONALIDADE ........................................................... 32

2.1 ÁRVORE DE NATAL .............................................................................................................. 32

2.2 CONECTOR DAS LINHAS DE FLUXO (CLF) ................................................................... 36

3.0 SEQUÊNCIAS DE INSTALAÇÂO DE EQUIPAMENTOS SUBMARINOS ........................ 37

16

3.1 BAP (BASE ADAPTADORA DE PRODUÇÃO) ................................................................... 37

3.2 TUBING HANGER (SUSPENSOR DE COLUNA) ............................................................... 38

3.3 ANM (ÁRVORE DE NATAL MOLHADA) ........................................................................... 39

3.4 TCAP (CAPA DE VEDAÇÃO DA ÁRVORE DE NATAL MOLHADA) ........................... 40

4.0 MANUTENÇÃO CORRETIVA / ERRO DE PROJETO ......................................................... 41

4.1 ÁRVORE DE NATAL MOLHADA (ANM)........................................................................... 41

4.1.1 FALHA: VAZAMENTO DE FLUIDO HIDRÁULICO. ................................................ 41

4.1.2 FALHA: DESCONEXÃO DO STAB DE PRODUÇÃO DA ANM. .............................. 42

4.1.3 FALHA: NÃO ESTANQUEIDADE DAS FUNÇÕES DA ANM DURANTE

APERAÇÃO SUBMARINA. ...................................................................................................... 44

4.1.4 FALHA: NÃO ABERTURA DO ATUADOR S2 DA ANM. .......................................... 45

4.1.5 FALHA: VAZAMENTO DO SEAL TEST DO CONECTOR DA ANM. .................... 46

4.1.6 FALHA: IMPOSSIBILIDADE DE ATUAÇÃO DA TRAVA MECÂNICA DO

CONECTOR DA ANM. ............................................................................................................. 47

4.1.7 FALHA: ERRO DE DIMENSIONAMENTO DO PARKING PLACE DA TCAP NA

ANM. ............................................................................................................................................ 48

4.1.8 FALHA: MONTAGEM INVERTIDA A 180° DO PARKING PLACE DO LTC NA

ANM. ............................................................................................................................................ 50

4.1.9 FALHA: QUEDA DE FERRAMENTA MANUAL DO INTERIOR DA ANM. .......... 51

4.2 CONECTOR DAS LINHAS DE FLUXO (CLF) ................................................................... 52

4.2.1 FALHA: DESVIO NO DESENHO DE USINAGEM DO CLF DA ANM. ................... 52

4.2.2 FALHA: INTERCOMUNICAÇÃO ENTRE STABS HIDRÁULICOS CLF DA ANM

X MLF DA BAP. ......................................................................................................................... 54

4.2.3 FALHA: VAZAMENTO VISÍVEL PARA O MEIO EXTERNO NO INTERNO DO

CLF DA ANM.............................................................................................................................. 55

4.2.4 FALHA: IDENTIFICAÇÃO INCORRETA DOS STAB´S DO CLF DA ANM. ......... 56

4.2.5 FALHA: IDENTIFICAÇÃO INCORRETA DOS BATENTES DOS STAB´S DO CLF

DA ANM. ..................................................................................................................................... 57

4.2.6 FALHA: INCOMPATIBILIDADE DE ROSCA DO SAX COM O STAB DO CLF DA

ANM. ............................................................................................................................................ 58

5.0 GERENCIAMENTO DO PLANO DE MANUTENÇÃO DA ANM ........................................ 59

5.1 DEFINIÇÃO DO PLANO DE SERVIÇOS (RECEBIMENTO / MANUTENÇÃO /

PLANO DE MANUTENÇÃO) ...................................................................................................... 59

5.2 COTAÇÃO DOS SERVIÇOS .................................................................................................. 62

5.3 GERENCIAMENTO DO SERVIÇO ...................................................................................... 62

5.4 ENCERRAMENTO DO SERVIÇO ........................................................................................ 64

6.0 CONCLUSÃO ............................................................................................................................... 66

17

7.0 SUGESTÃO ................................................................................................................................... 67

8.0 REFERÊNCIAS BIBLIOGRÁFICAS ........................................................................................ 68

18

INTRODUÇÃO

O Petróleo é um dos recursos natural mais abundante no mundo, responsável por

abastecer fábricas, indústrias, automóveis em geral, além de várias outras funções em todo o

mundo como fornecer energia elétrica. No entanto sua exploração é de extrema

complexibilidade e requer uma divisão de sua exploração a fim de obter a sua extração de sua

bacia sedimentar (processos de perfuração, completação e produção) e a utilização de

tecnologias cada vez mais atualizadas e complexas como, por exemplo, os equipamentos

submarinos destacando a árvore de natal molhada que vamos discorrer neste trabalho visando

elaborar um gerenciamento sobre o seu plano de manutenção após a mesma apresentar falhas

no campo durante o seu processo de instalação que se destaca como um dos processos de

completação de um poço petrolífero conforme mencionado acima.

Ao terminar a perfuração de um poço, é necessário deixá-lo em condições de operar,

de forma segura e econômica, durante toda a sua vida produtiva, sendo assim, o poço deverá

ser equipado com os equipamentos submarinos – Árvore de Natal Molhada entrando no

estágio de completação. (Thomas, 2004, p.137).

Na instalação da Árvore de Natal Molhada deve ocorrer uma sequência operacional

lógica que consiste em instalar a mesma sobre a Base Adaptadora de Produção visando o

controle da produção através da plataforma de processo.

A indústria do petróleo vem tentando padronizar seu serviço a fim de “Garantir a

Disponibilidade da função dos equipamentos e instalações de modo a atender a um processo

de produção ou de serviço com confiabilidade, segurança, preservação do meio ambiente e

custo adequado”. (Alan Kardec & Júlio Nascif, 2003, P.95), assim minimizando os índices de

Down time (tempo perdido de operação). Mesmo com a tentativa de padronização dos

serviços, ainda ocorrem situações adversas como falhas em operação do equipamento e erros

de projeto que por vezes ocorre e deve ser resolvida tão logo, para que a operação não seja

interrompida e não cause ônus à mesma, por isso os equipamentos devem ter um plano de

manutenção bem definidos e efetivos a fim de evitar as paradas de operação e produção.

Os equipamentos de completação apresentados neste trabalho devem ter uma alta

confiabilidade devido ao seu tempo de permanência em operação no poço, e como falhas

indesejadas e não esperadas podem ocorrer, os mesmos devem ter um plano de manutenção e

o gerenciamento bem definido com base no plano de serviços, cotação dos serviços,

19

gerenciamento do serviço e encerramento do serviço a fim de mitigar o tempo de parada de

operação, dano material e ônus financeiros as empresas envolvidas na operação.

20

1.0 EXPLORAÇÃO

O ponto de partida na busca do petróleo é a Exploração, que realiza os estudos

preliminares para a localização de uma jazida. Nesta fase é necessário analisar muito bem o

solo e o subsolo, mediante aplicações de conhecimentos de Geologia e de Geofísica, entre

outros. A geologia realiza estudos na superfície que permitem um exame detalhado das

camadas de rochas onde possa haver acumulação de petróleo. Quando se esgotam as fontes de

estudos e pesquisas de Geologia, iniciam-se, então, as explorações Geofísicas no subsolo. A

Geofísica, mediante o emprego de certos princípios da física, faz uma verdadeira radiografia

do subsolo. Um dos métodos mais utilizados é o da Sísmica. Compreende verdadeiros

terremotos artificiais, provocados, quase sempre, por meios e explosivos, produzindo ondas

que se chocam contra a crosta terrestre e voltam à superfície, sendo captadas por instrumentos

que registram determinadas informações de interesse do Geofísico.

1.1 PERFURAÇÃO

A perfuração é a segunda fase na busca do petróleo. Ela ocorre em locais previamente

determinados pelas pesquisas Geológicas e Geofísicas. Para tanto, perfura-se um poço - o

Poço Pioneiro - mediante o uso de uma sonda (ou Torre de Perfuração) que é o equipamento

utilizado para perfurar poços. Esse trabalho é feito através de uma Torre que sustenta a coluna

de perfuração, formada por vários tubos. Na ponta do primeiro tubo encontra-se a broca, que,

triturando a rocha, abre o caminho das camadas subterrâneas. Comprovada a existência de

petróleo, outros poços são perfurados para se avaliar a extensão da jazida. Essa avaliação é

que vai determinar se é comercialmente viável, ou não, produzir o petróleo descoberto. Caso

positivo, o número de poços perfurados forma um Campo de Petróleo.

1.2 PRODUÇÃO

Após a perfuração e avalição do poço de petróleo, revelando-se comercial, começa a

fase da produção naquele campo. Nesta fase, o óleo pode vir à superfície espontaneamente,

impelida pela pressão interna dos gases. Nesses casos temos os chamados Poços Surgentes.

Para controlar esse óleo usa-se, então, um conjunto de válvulas denominado Árvore de Natal.

21

a) Recuperação primária – Poço Surgente, é aquele que a pressão no reservatório

subterrâneo de petróleo é suficiente para forçar o óleo à superfície.

b) Recuperação secundária - conta com o fornecimento de energia externa para o

reservatório na forma de injeção de fluidos para aumentar a pressão do reservatório.

Figura 1Cenários para Produção, Consumo (eixo esquerdo) e Exportações líquidas (eixo direito) de petróleo no

Brasil – 2010 – 2035 (em milhões de bbl/d)

https://infopetro.wordpress.com/2013/05/20/projecoes-do-pre-sal-o-brasil-sera-um-petro-estado/

c) Recuperação terciária – injeção de vapor, injeção de surfactantes (detergentes),

reduzir viscosidade através do alagamento por dióxido de carbono.

1.3 REFINO

Começa com o fracionamento do petróleo em diferentes partes. Isto é efetuado na

maioria das vezes por destilação. As frações resultantes incluem gasolina, querosene, gasóleo,

lubrificante e outras substâncias.

A instalação de uma Refinaria obedece a diversos fatores técnicos, dos quais se

destacam a sua localização nas proximidades de uma região onde haja grande consumo de

derivados e/ou nas proximidades das áreas produtoras de petróleo.

22

Uma Refinaria é como uma grande fábrica, cheia de equipamentos complexos e

diversificados, pelos quais o petróleo vai sendo submetido a diversos processos para a

obtenção de muitos derivados.

1.4 GRAU API

Uma forma comumente adotada de se caracterizar um petróleo é medindo seu grau

API (API gravity). Trata-se de uma medida definida pelo American Petroleum Institute.

Tabela 1: Classificação pelo grau API.

1.4.1 FORMULAÇÃO

É obtido pela fórmula:

ºAPI = (141,5 ÷ densidade da amostra) - 131,5

Em que a densidade é medida relativamente à densidade da água.

A densidade, portanto, pode ser obtida por:

Grau API do American Petroleum Institute (ºAPI)

Forma de expressar a densidade relativa de um óleo ou derivado. A escala API,

medida em graus, varia inversamente à densidade relativa, isto é, quanto maior a densidade

23

relativa, menor o grau API. O grau API é maior quando o petróleo é mais leve. Petróleos com

grau API maior que 30 são considerados leves; entre 22 e 30 graus API, são médios; abaixo

de 22 graus API, são pesados; com grau API igual ou inferior a 10, são petróleos

extrapesados. Quanto maior o grau API, maior o valor do petróleo no mercado.

1.4.2 CLASSIFICAÇÃO DO PETRÓLEO SEGUNDO O GRAU API

O grau de API permite classificar o petróleo em:

Petróleo leve ou de base Parafínica: Possui ºAPI maior que 30. Contém além

de alcanos, uma porcentagem de 15 a 25% de ciclo alcanos.

Petróleo médio ou de base Naftênica: Possui ºAPI entre 22 e 30.Além de alcanos,

contém também de 25 a 30% de hidrocarbonetos aromáticos.

Petróleo pesado ou de base Aromática: Possui ºAPI menor que 22e é constituído,

praticamente, só de hidrocarbonetos aromáticos.

Quanto maior o grau API, maior o valor do produto no mercado.

1.4.3 MEDIDA INTERNACIONAL

A medida de volume internacionalmente adotada para o petróleo e derivados é o barril,

que contém 159 litros. No Brasil os volumes são preferencialmente referidos em metros

cúbicos. 1 m3 = 6,28 bbl.

1.5FASES DA PERFURAÇÃO

Operação executada a partir do fundo do mar até atingir a rocha reservatório. A

operação de perfuração de um poço é executada em vários estágios, com brocas de diferentes

dimensões e revestimentos de diferentes diâmetros. Posteriormente, os revestimentos são

cimentados para garantir a estanqueidade entre os vários reservatórios e a transmissão da

carga do poço para as camadas de rocha de sub-superfície.

24

1.5.1 COLUNA DE PERFURAÇÃO

Funções: Aplicar peso sobre a broca; transmitir a rotação para a broca; conduzir o

fluido de perfuração; manter o poço calibrado; garantir a inclinação e a direção do poço.

Composição Básica: Tubos de perfuração (Drill Pipe ou DP); Tubos pesados (Heavy-

Weight ou HW); Comandos (Drill Collar ou DC).

Figura 2Tubo de Perfuração. PETROBRAS. Fundamentos de Engenharia de Petróleo, pág. 71.

1.5.2 BROCA

As brocas são equipamentos que têm a função de promover a ruptura e desagregação

das rochas ou formações. O estudo das brocas considerando seu desempenho e economicidade

é um dos fatores importantes na perfuração de poços de petróleo. As brocas podem ser

classificadas de duas maneiras: Draga, Cones e Tricônicas.

Figura 3:Broca de diamante natural. PETROBRAS. Fundamentos de Engenharia de Petróleo, pág. 77.

25

1.6 FLUIDOS DE PERFURAÇÃO

Funções: Garantir segurança operacional e proteção ao meio ambiente; minimizar

problemas de torque e arraste; resfriar a broca; evitar Danos à formação produtora; sustentar

as paredes do poço; carregar os cascalhos perfurados pela broca; prevenir corrosão da coluna

e equipamentos de superfície; inibir a reatividade de formações argilosas; manter sólidos em

suspensão.

1.7REVESTIMENTO

Todo poço perfurado tem a necessidade de ser revestido total ou parcialmente, com a

finalidade de proteger suas paredes, a perfuração é feita em fases, cujo número depende das

características das zonas a serem perfuradas e da profundidade final prevista do poço. Cada

fase é concluída quando, após a perfuração, procede-se a descida de uma coluna de

revestimento, com posterior cimentação do espaço anular exterior à coluna.

1.7.1 FUNÇÕES DA COLUNA DE REVESTIMENTO

Prevenir desmoronamentos de partes do poço;

Evitar contaminação da água potável dos lençóis freáticos;

Permitir retorno do fluido de perfuração à superfície;

Prover meios de controle de pressões dos fluidos, permitindo aplicação de

pressão adicional desde a superfície;

Impedir migrações de fluidos das formações;

Sustentar os equipamentos de segurança de cabeça de poço;

Alojar os equipamentos de elevação artificial;

Confinar a produção ao interior do poço.

26

Figura 4:Configuração de revestimento do poço petrolífero. PETROBRAS.

1.8 CIMENTAÇÃO

O objetivo é preencher o espaço entre o revestimento e a parede do poço e promover a

aderência entre a parede externa do revestimento e formação rochosa / parede interna do

revestimento anterior; deslocar e posicionar a pasta de cimento no anular entre revestimento e

poço; isolar as formações impedindo entrada de fluidos e perdas de circulação; fornecer

suporte mecânico para o revestimento; isolar um poço para abandono.

1.9 COMPLETAÇÃO

Ao terminar a perfuração de um poço, é necessário deixá-lo em condições de operar,

de forma segura e econômica, durante toda a sua vida produtiva. Ao conjunto de operações

destinadas a equipar o poço para sua produção ou injeção é denominado completação.

27

Considerando que a completação tem reflexo em toda a vida produtiva do poço, faz-se

necessário um planejamento criterioso das operações. A operação de completação é realizada

com “riser” rígido vertical.

Há várias maneiras de classificar as completações dos poços, visto que cada poço

possui uma característica peculiar e há várias maneiras de agrupar essas características.

Vamos aqui propor as classificações:

1. Quanto ao posicionamento da cabeça;

2. Quanto ao revestimento de produção;

3. Quanto ao número de zonas exploradas.

1.9.1 POSICIONAMENTO DA CABEÇA DE POÇO

Seguido a classificação da localização das jazidas, em ambiente terrestre ou marinho,

nós também podemos classificar a cabeça de poço como terrestre (seca) ou marinha

(molhada). Essa classificação é muito importante, pois indica qual tipo de árvore de natal será

necessária durante o processo de produção. Para as cabeças de poço de jazidas de águas rasas

é possível instalar árvores secas, para tanto o revestimento vai da plataforma ao Reservatório.

28

Figura 5:Tipo de sondas marítimas. Fundamentos de Engenharia de Petróleo, pág114

1.9.2 TIPOS DE REVESTIMENTO

Figura 6:Métodos de completação: a) Poço aberto; b) Liner Rasgado; c) Revestimento Canhoneado

Fundamentos de Engenharia de Petróleo, pág138.

29

1.9.3 NÚMERO DE ZONAS EXPLORADAS

Sob esse aspecto nós podemos dividi-las em completação simples ou dupla. A

completação simples ocorre quanto uma única tubulação metálica é descida no interior do

revestimento de produção, da superfície até a zona de interesse. Esse tipo de completação

possibilita produzir de modo controlado e independente somente uma zona de interesse.

Na completação dupla nós podemos produzir duas ou mais zonas de interesse.

Figura 7:Tipos de completação: a) Simples; b) Seletiva; c) Dupla. Fundamentos de Engenharia de Petróleo, pág140

1.9.4 QUANTO AO MÉTODO DE ELEVAÇÃO

Levando em consideração a nossa realidade é conveniente separar as completações em

poço surgente, de gás lift e com BCS. Há outros métodos de elevação, porém não convêm

aqui lançar mão deles para classificaras completações mais usadas. Dentre os três, o gás lift é

o mais usado, devido à relação entre as intervenções necessárias e o volume de óleo

explorado.

O BCS (bombeio centrífugo submarino) é o que oferece a melhor vazão, porém é

necessário um número considerável de intervenções para mantê-lo em operação.

30

1.10 ETAPAS DA COMPLETAÇÃO

A completação de um poço envolve um conjunto de operações subsequentes à

perfuração. Podemos genericamente apontar as seguintes operações: Avaliação da

cimentação; Canhoneio; Instalação da coluna de produção.

1.11 AVALIAÇÃO DA CIMENTAÇÃO

A avaliação da qualidade da cimentação é feita através de perfis corridos nos

intervalos cimentados. Esses perfis funcionam basicamente por emissão/propagação de ondas

mecânicas.

1.12 CANHONEIO

O requisito mínimo para que possa haver algum sucesso na completação de um poço é

o estabelecimento de uma comunicação limpa e efetiva entre o poço e a formação.

Dentre as técnicas para a perfuração desse canal de comunicação poço / formação, a

mais comumente utilizada é conhecida como Canhoneio, Gun Perforation ou Jet Perforation

e se refere à perfuração do revestimento, do cimento e da formação através de cargas

explosivas.

1.13ESTIMULAÇÃO

Operação executada durante uma intervenção de investimento com o objetivo de

aumentar a produtividade de poços produtores de óleo e/ou gás, ou aumentar a injetividade

dos poços injetores de água para descarte ou recuperação secundária, alterando as

características de permeabilidade original da rocha reservatório.

1.14 INSTALAÇÃO DA COLUNA DE PRODUÇÃO (COP)

A coluna de produção é constituída basicamente por tubos metálicos, onde são

conectados os demais componentes.

É descida pelo interior do revestimento de produção com as seguintes finalidades:

31

- Conduzir os fluidos produzidos até a superfície;

- Permitir a instalação de equipamentos para a elevação artificial;

- Possibilitar a circulação de fluidos para o amortecimento do poço.

32

2.0 ANM – CARACTERÍSTICAS E FUNCIONALIDADE

Abaixo apresentamos as características e funcionalidade do equipamento submarino

denominado como Árvore de Natal Molhada (ANM). Fazendo interface com a Base

Adaptadora de Produção (BAP), permite acionamento de seus atuadores e dos atuadores da

BAP através da interface MLF x CLF. Através da ANM, obtêm-se o controle do poço

permitindo assim o acesso à coluna de produção / injeção, ao anular do poço para injeção de

gás lift, acesso aos sinais elétricos de temperatura e pressão do PDG, sinais elétricos do TPT e

TP da ANM e acionamento das válvulas instaladas na coluna de produção (DHSV e IQ) via

sonda de processo. Vejamos a seguir as características e particularidades da ANM.

2.1 ÁRVORE DE NATAL

É o conjunto de válvulas na cabeça de poço que possibilitam o seu controle.

Podem ser divididas em dois grupos: Árvore de Natal Convencional (ANC), também

conhecida como árvore seca e Árvore de Natal Molhada (ANM).

A ANM é um equipamento instalado no fundo do mar, constituído basicamente por

um conjunto de válvulas tipo gaveta, um conjunto de linhas de fluxo e um sistema de controle

interligado a um painel localizado na plataforma de produção.

33

Conjunto ANM Convencional - Visão geral

Figura 8:Ilustrativo da vista geral do conjunto ANM.

34

Fluxograma Básico (válvulas) de uma ANM.

Figura 9:Fluxograma básico da ANM.

Tabela 2: pag.02 do Manual de Instalação, Operação e Manutenção - Árvore de Natal Molhada de Produção 5” x

2” / 13.1” - tipo ANM DL-GLL-CVD-3 MCVs Global 10k Leeds.

35

Será instalada sobre a Base Adaptadora visando o controle de produção através da

plataforma de processo. O equipamento permite montagem com navio-sonda ou semi-

submersível de posicionamento dinâmico sem cabos guia.

O Bloco de Válvulas Principal possui uma passagem vertical de produção de 5-1/8”

para receber um conjunto de sedes e gaveta metal-metal da válvula mestra de produção ‘M1’

(Production Master) e um conjunto de sedes e gaveta metal-metal da válvula de pistoneio ‘S1’

(Production Swab) ambas de 5-1/8” x 10.000 psi. Uma saída lateral em flange estojado, entre

as válvulas de 5-1/8” (M1 e S1) para receber o Bloco Lateral de Produção com um conjunto

de sedes e gavetas metal-metal da válvula Wing ‘W1” 5- 1/8” x 10.000 psi.

Uma passagem vertical do anular de 1” para receber um conjunto de sedes e gavetas

metal x metal da válvula mestre de anular ‘M2’ (Annulus Master) de 1” x 10.000 psi. Uma

saída lateral em flange estojado, para receber o Bloco Lateral do Anular com um conjunto de

sedes e gaveta metal-metal válvula pistoneio ‘S2’ (Annulus Swab) 1” x 10.000 psi e um em

conjunto de sedes e gaveta metal-metal da válvula Wing ‘W2’ e ‘XO’ (crossover), ambas de

2-1/16” x 10.000 psi.

Possui quatro vigas telescópicas com capacidade de 18.75 toneladas em cada viga para

apoio da estrutura no Moon Pool, totalizando 75 toneladas para suportar as cargas esforços

que atuarão no momento da descida da mesma com dimensões compatíveis para operar com

sondas com passagem livre de 4600 x 6000 mm no Moon Pool.

Possui Linhas de Fluxo 2-1/16” e 5-1/8” (Anular e Produção) que permitem escoar a

produção de óleo e intervenção no poço, são interligadas entre ANM e BAP através da

interface MLF x CLF. As Linhas de Fluxo são projetadas com metalurgia especial de inconel

e para pressão de trabalho de 10.000 psi.

As Linhas de Fluxo apresentam isolamento térmico de 30 mm de espessura para

atender os requisitos de resfriamento de 6 horas para 55° C até 4º C.

Como característica especial, esta ANM é construída com materiais especiais para

trabalhar com a produção de fluido com alta concentração de CO2 e para receber injeção de

fluidos no sistema WAG, sendo a resistência à corrosão maximizada para proporcionar longa

vida útil ao equipamento.

36

2.2 CONECTOR DAS LINHAS DE FLUXO (CLF)

O Conector das Linhas de Fluxo é utilizado para permitir a interface do Conjunto do

Conector com o hub Fixo da BAP, fazendo a ligação entre a ANM e a BAP. Esta ligação é

feita através de anéis metálicos tipo “SAX” e stabs hidráulicos, montados na face de contato

do conector com o hub da BAP.

O travamento do conector das linhas de fluxo é feito por anel segmentado (finger)

acionados por anel atuador, com sistema de retração no destravamento, através de câmara

hidráulica com pressão de trabalho de 3000 psi. Possui sistema de pistão único que permite a

atuação uniforme do conector, com destravamento hidráulico secundário independente do

sistema hidráulico primário. As áreas de vedação do pistão terão revestimento bissulfeto de

molibdênio para proteção contra corrosão.

Possui sistema de destravamento de emergência através de dois atuadores hidráulicos

com hastes de extração, presas ao anel atuador do conector, provendo assim um

destravamento de emergência, com acionamento hidráulico por hot stab via ROV. Possui

indicação visual através de marcação na haste de extração.

O Conector possui ainda um sistema de travamento residente na camisa do atuador, do

tipo “lock ring”, para impedir o fechamento do anel segmentado (finger) na descida do

módulo.

37

3.0 SEQUÊNCIAS DE INSTALAÇÂO DE EQUIPAMENTOS SUBMARINOS

Abaixo apresentamos em ordem sequencial as atividades, os parâmetros e as

condições de instalação dos equipamentos submarinos que compõe o conjunto ANM, visando

apresentarem a compatibilidade entre os equipamentos, características e os procedimentos

operacionais a fim de se realizar a instalação submarina em condições seguras.

O Assentamento da ANM na BAP é guiado por quatro chavetas na parte inferior do

conector que orienta o conector da ANM através de rasgos na estrutura do funil da BAP, o

ajuste fino do assentamento da ANM na BAP é feito através do castelo no conector da ANM e

castelo do TH. Vejamos a seguir os procedimentos operacionais de todos os equipamentos do

conjunto ANM.

3.1 BAP (BASE ADAPTADORA DE PRODUÇÃO)

Sequência de Preparação na Superfície - BAP

Verificar antecipadamente se a BAP é compatível com a cabeça de poço; Confirmar

orientação (Azimute) de instalação da BAP; Posicionar a BAP sobre a mesa de apoio.

Inspecionar e limpar as vedações e área de vedação do anel do conector da BAP; Instalar o

anel de vedação novo no conector da BAP e realizar registro fotográfico; Realizar testes

funcionais e de estanqueidade do conector e funções hidráulicas da BAP; Limpar e

inspecionar os hubs fixos do MLF e MCV´s da BAP e instalar suas respectivas capas de teste;

Com a FIBAP posicionada no deck da sonda, realizar testes funcionais e de estanqueidade do

conector da FIBAP; Posicionar FIBAP sobre a mesa de apoio com o conector travado, realizar

inspeção no interior do conector e área do anel de vedação da FIBAP e instalar anel de

vedação novo no conector da FIBAP.

Sequência de Operação - BAP

Mover conjunto FIBAP + BAP para o centro do moon pool e conectar o conjunto na

coluna de trabalho; Realizar testes funcionais e de estanqueidade do conector e funções

hidráulicas do conjunto FIBAP + BAP; Iniciar a descida do conjunto FIBAP + BAP até a

profundidade da cabeça do poço; Conferir orientação da BAP em relação à cabeça do poço;

Assentar o conjunto FIBAP + BAP com o conector na posição travado sobre a cabeça do

38

poço; Destravar o conector da BAP efetuando o assentamento definitivo da BAP na cabeça do

poço; Realizar o destravamento da FIBAP com auxílio do ROV e manter a FIBAP assentada

sobre BAP; Realizar o travamento do conector da BAP efetuando o travamento definitivo da

BAP na cabeça do poço; Drenar a pressão de travamento do conector da BAP e realizar o

teste do selo do conector da BAP conforme pressão do poço; Realizar testes funcionais e de

estanqueidade das funções hidráulicas da BAP no fundo; Remover linhas hidráulicas do

painel do conjunto FIBAP + BAP, afastar o ROV para posição segura e desassentar a FIBAP

da BAP; Retirar Coluna de trabalho (COT) com FIBAP e retornar a superfície; Desmobilizar

a FIBAP no moon pool e lavar com água industrial.

3.2 TUBING HANGER (SUSPENSOR DE COLUNA)

Sequência de Preparação na Superfície - TH

Inspecionar o estado geral dos componentes do TH, THRT e JRC, trocando todos os

selos que forem necessários; Realizar teste de correlação e estanqueidade das linhas

hidráulicas e dos bores de produção e anular da THRT e JRC com pressão conforme

programa do poço; Limpar e inspecionar as vedações e áreas de vedações do conjunto JRC +

THRT; Retirar o TH do Box de transporte, inspecionar as vedações, áreas de vedações do

suspensor de coluna e os bores de produção e anular; Mover para plataforma, acoplar e

torquear o Suspensor de Coluna a coluna de produção; Instalar no Suspensor de Coluna; Em

seguida, instalar as linhas das funções hidráulicas do poço, cabo e conector do sensor elétrico

no Suspensor de Coluna; Assentar e trava o conjunto JRC + THRT ao suspensor de coluna;

Realizar testes funcionais e de estanqueidade do TH (suspensor de coluna) e testes de

estanqueidade das funções hidráulicas do poço conectadas ao suspensor de coluna.

Sequência de Operação - TH

Descer conjunto mantendo pressão no travamento da THRT no Suspensor de coluna;

Conectar a SFT (árvore de fluxo de superfície) e linhas hidráulicas de superfície ao centro da

plataforma no último tubo da coluna de trabalho; Realizar o assentamento do TH (Suspensor

de coluna) na BAP; Manter pressurizada a função de travamento da THRT no suspensor de

coluna; Após confirmar o correto assentamento do suspensor de coluna na BAP, liberar todo

peso da coluna de produção; Realizar o destravamento do suspensor de coluna na BAP; Testar

o travamento do suspensor de coluna na BAP puxando acima do peso da coluna de produção,

39

testar os bores de produção e anular e linhas hidráulicas do suspensor de coluna; Pressurizar a

função de destravamento da THRT do suspensor de coluna, tracionar a coluna de produção e

observar o desassentamento da THRT do Suspensor de coluna; Retirar coluna de trabalho até

que a THRT esteja na superfície; Inspecionar a THRT, lavar com água e mover para o skid de

transporte.

3.3 ANM (ÁRVORE DE NATAL MOLHADA)

Sequência de Preparação na Superfície - ANM

Inspecionar e limpar as vedações e área de vedação do anel do conector da ANM e

compatibilidade com a BAP; Instalar anel de vedação novo no conector da ANM; Realizar

testes funcionais e de estanqueidade do conector e funções hidráulicas da ANM; Com a FDR

e a FIANM posicionada no deck da sonda, realizar testes funcionais e de estanqueidade do

conector e funções hidráulicas das respectivas ferramentas; Realizar inspeção no interior do

conector da área do anel de vedação e instalar anel de vedação novo no conector da FDR;

Mover Ferramenta de destravamento rápido (FDR), assentar e travar a FDR na Ferramenta de

instalação da ANM (FIANM); Montar o conjunto FDR + FIANM, realizar inspeção no

interior do conector e área do anel de vedação e instalar anel de vedação novo no conector da

FIANM; Preparar painel hidráulico com jumper hidráulico de funções do conjunto FDR +

FIANM + ANM.

Sequência de Operação - ANM

Com o conjunto FDR + FIANM + ANM ao centro do moon pool, conectar jumper

hidráulico na placa de funções da FDR; Montar os jumper de funções da FIANM para a ANM

e torquear os mesmos nos receptáculos da ANM; Realizar testes funcionais e de

estanqueidade do conector e funções hidráulicas do conjunto FDR + FIANM + ANM;

Realizar check list final verificando o posicionamento de todas as válvulas dos circuitos

hidráulicos do conjunto FDR + FIANM + ANM; Descida do conjunto FDR + FIANM +

ANM até a profundidade da BAP; Assentar o conjunto FDR + FIANM + ANM com o

conector na posição destravado sobre a BAP e realizar o travamento da ANM na BAP;

Realizar o teste do selo do conector da ANM conforme pressão do poço; Realizar o

travamento do Conector das linhas de fluxo (CLF) da ANM; Realizar o teste do selo do

conector das linhas de fluxo (CLF) da ANM conforme pressão do poço; Realizar testes

40

funcionais e de estanqueidade das funções hidráulicas da ANM do poço no fundo; Afastar o

ROV para posição segura, remover os jumper hidráulicos e elétricos da ANM, posicionar os

mesmos na FIANM e desassentar o conjunto FDR + FIANM da ANM; Retirar Coluna de

trabalho (COT) com FDR + FIANM e retornar a superfície; Desmobilizar o conjunto FDR +

FIANM no moon pool e lavar com água industrial.

3.4 TCAP (CAPA DE VEDAÇÃO DA ÁRVORE DE NATAL MOLHADA)

Sequência de Preparação na Superfície - TCAP

Verificar que o sistema de destravamento mecânico da TCAP não esteja acionado;

Realizar o travamento do sistema mecânico dos bores de produção e anular da TCAP sem os

selos; Contar o número de voltas no travamento e lubrificar as hastes para reduzir o torque de

atuação; Realizar o destravamento do sistema mecânico dos bores de produção e anular da

TCAP e remontar os selos; Mover TCAP do deck da sonda para o dummy da TCAP

localizado na ANM.

Sequência de Operação - TCAP

Com auxílio do ROV, abrir as válvulas no painel da ANM referente aos testes dos

bores de produção e anular da TCAP; Remover TCAP do seu receptáculo (dummy) da ANM;

Com auxílio do ROV, mover a TCAP pela alça de transporte do seu receptáculo (dummy) da

ANM para cima do topo da ANM e assentar a TCAP na ANM; Realizar o travamento do

sistema mecânico dos bores de produção e anular da TCAP com auxílio do ROV; Instalar o

hot stab do ROV nos receptáculos das válvulas no painel da ANM referente aos testes dos

bores de produção e anular da TCAP; Pressurizar o bore de anular e produção aplicando

pressão conforme programa do poço e realizar o teste de estanqueidade do selo do bore de

anular e produção da TCAP; Drenar as pressões, remover os hot stab´s dos receptáculos das

válvulas no painel da ANM; Fechar as válvulas de bloqueio referente às funções dos bores de

anular e produção no painel da ANM; Afastar o ROV para posição segura e promover a

subida do ROV à superfície.

41

4.0 MANUTENÇÃO CORRETIVA / ERRO DE PROJETO

Abaixo apresentamos aspectos importantes relacionados às informações das falhas

obtidas no campo com o objetivo de mostrar todas as anormalidades detectadas, as falhas de

planejamento, falhas de fabricação, as tratativas dadas às anormalidades e os impactos que as

anomalias trouxeram para os equipamentos submarinos (conjunto ANM) e para as operações.

Nas falhas a seguir temos todos os dados e informações de como ocorreu, o que foi

detectado como problema durante a elaboração e implantação do projeto, devido a qual

motivo e as ações que foram tomadas para solucionar as anomalias e os erros recorrentes de

ordem cronológica de ocorrências durante as operações de instalação da ANM.

4.1 ÁRVORE DE NATAL MOLHADA (ANM)

4.1.1 FALHA: VAZAMENTO DE FLUIDO HIDRÁULICO.

Durante a pressurização da função de destravamento do conector da ANM houve

deslocamento da câmara de vedação do conector da ANM e vazamento de fluido HW-525

para meio externo.

Figura 10:Imagem de ROV Subsea7no poço 9-RJS-681; Plataforma SS-83. 17 de Agosto de 2014.

42

Desembarcada ANM e enviada para a fábrica para manutenção do conector em

garantia.

4.1.2 FALHA: DESCONEXÃO DO STAB DE PRODUÇÃO DA ANM.

Durante a inspeção no Tubing Hanger, após desassentamento da ANM da BAP, foi

verificado que o stab de Produção (5") da ANM desprendeu do conector da ANM e ficou

aprisionado no Tubing Hanger.

Figura 11: Imagem de ROV Subsea7 no poço 9-RJS-681; Plataforma SS-83. 15 de setembro de 2014.

43

Figura 12: Imagem de ROV Subsea7 no poço 9-RJS-681; Plataforma SS-83. 15 de setembro de 2014.

Figura 13:pag.699 do Manual de Instalação, Operação e Manutenção - Árvore de Natal Molhada de Produção 5” x

2” / 13.1” - tipo ANM DL-GLL-CVD-3 MCVs Global 10k Leeds - *Ilustrativo da chaveta de travamento do Stab do conector da

ANM.

44

Decidido subir o conjunto FDR+FIANM+ ANM à superfície e observado o estado das

chavetas de orientação após a chegada da ANM na superfície. Recuperado o stab de produção

da ANM com ferramenta de pescaria e realizado modificações nas chavetas de sustentação do

stab. Foi calculado e projetado o seguinte cenário: Fabricar as chavetas e utilizar parafuso

existente na sonda conforme foto acima e ao montar a chaveta atentar que os chanfros devem

ficar para fora, ou seja, não em contato com o Stab de Produção (5”) da ANM.

4.1.3 FALHA: NÃO ESTANQUEIDADE DAS FUNÇÕES ENTRE O CONJUNTO

ANM DURANTE APERAÇÃO SUBMARINA.

Antes do assentamento da ANM foi pressurizado a função carrega acumulador das

FDR + FIANM interligada com a função Abre Gaveta de Produção e Anular (5" e 2") da FDR

e observado a não estanqueidade das funções.

Figura 14:Imagem do esquema do conjunto ANM (FDR x FIANM).

45

Realizado assentamento do conjunto FDR + FIANM + ANM na BAP, destravado o

conector FDR da FIANM, retravado o conector FDR na FIANM onde o indicador deslocou

para posição travada. Realizado nova tentativa de pressurização das funções sem êxito.

Decidido pelas gerências de terra em retornar com o conjunto a superfície para análise.

Com o conjunto FDR + FIANM na superfície, verificado que os acumuladores do conjunto se

encontravam íntegros. Pressurizado a função carrega acumuladores da FDR + FIANM

interligada com a função Abre Gaveta de Produção e Anular (5" e 2”) com a pressão de

trabalho, sendo verificado estanqueidade na função.

Decidido pela equipe de terra em descer o conjunto com pressão nas funções da FDR

+ FIANM sendo completada durante a descida, não deixando a mesma baixar da pressão

mínima de 2500psi. Realizado Gestão Interna de Mudança e Formulário de análise de

Mudança para a operação. Operação concluída com êxito.

4.1.4 FALHA: NÃO ABERTURA DO ATUADOR S2 DA ANM.

A fim de realizar a operação de flushing do anular via High Collapse Resistant Hose

(HCR) antes do assentamento do conjunto FDR + FIANM + ANM na BAP foi verificado

acréscimo de pressão da função e não visualizado no painel da ANM a abertura do atuador S2

da ANM.

Realizado tentativa de pressurização com pressão acima da pressão de trabalho da

linha de abertura do atuador S2 da ANM, porém sem êxito. Decidido pelo suporte técnico

operacional assentar o conjunto FDR+FIANM+ANM, com todas as válvulas/atuadores da

ANM abertas menos o atuador S2. Concluído o correto assentamento do conjunto na BAP e

realizado nova tentativa de pressurização de abertura do atuador S2, porém sem êxito.

Aberto o atuador S2 via override com auxílio do ROV, para verificar seu funcional.

Realizado um flushing via High Collapse Resistant Hose (HCR) com as demais válvulas do

conjunto FDR + FIANM + ANM abertas, obtido retorno de fluido para a superfície e

confirmada à total abertura do atuador S2 da ANM.

46

Figura 15:Foto da ANM em superfície, poço 9-LL-19-RJS; Plataforma SS-83. 2 de agosto de 2014.

Figura 16:Imagem de ROV Subsea7no poço 9-LL-19-RJS; Plataforma SS-83. 2 de agosto de 2014.

4.1.5 FALHA: VAZAMENTO DO SEAL TEST DO CONECTOR DA ANM.

Ao realizar o Seal Test do Anel VGX 18 ¾ do conector da ANM, foi verificado perda

de pressão, visualizado no painel da ANM vazamento pela linha do monitor VGX da ANM.

47

Figura 17:Imagem de ROV Subsea7no poço 9-LL-19-RJS; Plataforma SS-83. 2 de agosto de 2014.

Conforme orientação por parte do suporte técnico operacional em terra foi destravado

o conector da ANM com peso arriado com 500 psi na Função Seal Test. Após destravamento

do conector foi verificado queda de pressão do Seal Test a 0 psi. Retravado o conector da

ANM, realizado Overpull e realizado Seal Test da ANM sem êxito. Verificado queda de 1000

psi por 5 minutos e vazamento de fluido pela linha do monitor do VGX;

Acreditando que o conector da ANM estava com algum problema foi decidido trocar a

ANM por outra nova recém montada, logo em seguida decidido pelo cliente por instalar a

ANM recém montada em outro poço. Abortada a operação.

4.1.6 FALHA: IMPOSSIBILIDADE DE ATUAÇÃO DA TRAVA MECÂNICA DO

CONECTOR DA ANM.

Durante teste funcional da trava mecânica do conector da ANM, foi verificado que

com o conector travado, o parafuso do sistema de atuação da trava mecânica do conector da

ANM topa com a haste do indicador de travamento da ANM impossibilitando o seu

acionamento.

48

Figura 18:Imagem da ANM em superfície, poço 9-RJS-681; Plataforma SS-83. 18 de agosto de 2015.

Figura 19:Imagem da ANM em superfície, poço 9-RJS-681; Plataforma SS-83. 18 de agosto de 2015.

Elaborado Gestão Interna de Mudança e Formulário de análise de Mudança

(GIM/FAM) e efetuado corte na estrutura da ANM na sonda possibilitando o acionamento da

haste e obtido êxito ao realizar a atuação da trava mecânica do conector da ANM.

4.1.7 FALHA: ERRO DE DIMENSIONAMENTO DO PARKING PLACE DA TCAP NA ANM.

49

Durante a tentativa de instalação da TCAP no parking place da ANM, verificado que a

mesma não encaixava. A mesma foi testada também em outra ANM e não encaixou devido a

erro de dimensionamento do parking place.

Figura 20:Foto do suporte de apoio da TCAP na ANM em superfície, poço 9-RJS-681; Plataforma SS-83. 18 de

agosto de 2015.

Figura 21:Foto do suporte de apoio da TCAP na ANM em superfície, poço 9-RJS-681; Plataforma SS-83. 18 de

agosto de 2015.

50

Decidido que a TCAP descerá com auxílio do ROV. Relatado no relatório de

instalação da ANM que a TCAP não deveria ser instalada no parking place da ANM devido a

erro de dimensionamento e a TCAP não encaixar.

4.1.8 FALHA: MONTAGEM INVERTIDA A 180° DO PARKING PLACE DO LTC NA

ANM.

Ao tentar instalar o LTC no parking place da ANM, foi observado que o receptáculo

parking place1 veio montado invertido a 180°, impossibilitando a montagem do LTC no

Parking Place1 a bordo da sonda.

Figura 22:Foto do suporte do Jumper hidráulico da ANM em superfície, poço 9-RJS-681; Plataforma SS-83. 18 de

agosto de 2015.

Solicitado autorização ao suporte operacional e realizado a desmontagem e

remontagem na posição correta do Parking Place1 à estrutura da ANM a bordo da sonda.

51

4.1.9 FALHA: QUEDA DE FERRAMENTA MANUAL DO INTERIOR DA ANM.

Durante a inspeção da área de vedação do topo da ANM, ocorreu uma queda de uma

chave Allen de 4mm do bolso do colaborador, assim caindo dentro do bore de anular da

ANM.

Figura 23:Dados da pag.596 do Manual de Instalação, Operação e Manutenção - Árvore de Natal Molhada de Produção 5” x 2” / 13.1” - tipo ANM DL-GLL-CVD-3 MCVs Global 10k Leeds. *Vista Frontal do Bloco da ANM.

Fabricado uma ferramenta adaptada com garra de 4 pontas de acordo com o

dimensional necessário do bloco da ANM. A Utilização desta ferramenta mais a de laço de fio

de aço, com a intervenção da equipe a bordo culminou na recuperação da chave do interior do

bore de anular da ANM.

52

4.2 CONECTOR DAS LINHAS DE FLUXO (CLF)

4.2.1 FALHA: DESVIO NO DESENHO DE USINAGEM DO CLF DA ANM.

Durante o detalhamento do bloco do Conector das linhas de fluxo (CLF), ocorreu um

desvio no desenho de usinagem obtendo um desvio de 4 mm, sendo que o posicionamento da

preparação dos stab´s foi feito a partir da face rebaixada quando o correto seria a partir da face

de contato com o Mandril das linhas de fluxo (MLF) da BAP.

Figura 24: Pag.701-702do Manual de Instalação, Operação e Manutenção - Árvore de Natal Molhada de Produção 5” x 2” / 13.1” - tipo ANM DL-GLL-CVD-3 MCVs Global 10k Leeds - *Local de montagem dos Stab´s do CLF (Conector das Linhas de

Fluxo) da ANM com desvio do erro.

Fabricado e montado os calços e pinos nos stab´s conforme foto abaixo:

53

Figura 25:Ilustrativo do conjunto Stab Fêmea x Stab Macho com demonstração das áreas de vedações e cotas de

instalação do conjunto no CLF (Conector das Linhas de Fluxo) da ANM (Árvore de Natal Molhada de Produção 5” x 2” / 13.1”

- tipo ANM DL-GLL-CVD-3 MCVs Global.

54

Realizado recall nos novos equipamentos com as arruelas e os pinos montados nos

stab’s hidráulicos a fim de proporcionar uma vedação com maior interferência retornando à

condição original do projeto de fabricação/usinagem dos equipamentos.

4.2.2 FALHA: INTERCOMUNICAÇÃO ENTRE STABS HIDRÁULICOS CLF DA

ANM X MLF DA BAP.

Intercomunicação entre stabs hidráulicos de 3/4" da interface entre Conector das linhas

de fluxo / Mandril das linhas de fluxo (CLF / MLF).

Figura 26:Imagem do CLF em superfície; poço 9-RJS-681; Plataforma SS-83. 23 de agosto de 2014.

Desassentado ANM e constatada a presença dos anéis SAX 3/4" e anéis espaçadores

dos stabs do conector das linhas de fluxo (CLF). Após a troca da ANM, foi realizado novo

assentamento do equipamento, sem os o'rings dos pinos guia e o'ring da função Quebra de

Hidrato (QH) do conector das linhas de fluxo (CLF). Realizado o travamento da ANM

conforme procedimento. Elevado pressão de travamento do conector das linhas de fluxo

(CLF) para 4000 psi.

55

Realizado testes das funções dos stab´s sendo verificado estanqueidade das funções.

Constatado a interferência entre os o´ring no conector das linhas de fluxo (CLF).

4.2.3 FALHA: VAZAMENTO VISÍVEL PARA O MEIO EXTERNO NO INTERNO

DO CLF DA ANM.

Durante pressurização da função destrava primário do conector das linhas de fluxo

(CLF), a mesma não apresentou estanqueidade, foi constatado vazamento visível para o meio

externo dentro do conector.

Figura 27:Foto do CLF da ANM em superfície; poço 9-RJS-681; Plataforma SS-83. 18 de agosto de 2015.

Realizado ciclo de trava e destrava do conector das linhas de fluxo (CLF), a função

destrava primário do (CLF) permaneceu sem estanqueidade. Realizado teste do destrava

secundário e destrava de emergência do conector das linhas de fluxo (CLF) e obtido

estanqueidade das funções. Após estanqueidade foi definido em prosseguir com a operação

utilizando as funções de destravamento secundário.

56

4.2.4 FALHA: IDENTIFICAÇÃO INCORRETA DOS STAB´S DO CLF DA ANM.

Part Number tipado na revisão incorreta nos stabs do Conector das Linhas de Fluxo

(CLF) da Árvore de Natal Molhada (ANM).

Figura 28:Foto do STAB em superfície, poço 9-RJS-681; Plataforma SS-83. 18 de agosto de 2015.

57

Instalado componente (stab´s) sem identificação, porém na correta revisão por falta de

ferramentas adequadas para marcar conforme procedimento operacional.

4.2.5 FALHA: IDENTIFICAÇÃO INCORRETA DOS BATENTES DOS STAB´S DO

CLF DA ANM.

Batente da mola do stab da linha de controle dos Atuadores Anular Intervation (AI's)

do Conector das Linhas de Fluxo (CLF) da Árvore de Natal Molhada (ANM) com revisão

antiga.

Figura 29:Foto da STAB em superfície, poço 9-RJS-681; Plataforma SS-83. 18 de Agosto de 2015.

Solicitado stab's sobressalentes dentro da especificação (revisão nova) e recebidos os

mesmos em tempo útil. Realizado a instalação dos mesmos no Conector das Linhas de Fluxo

(CLF) da Árvore de Natal Molhada (ANM).

58

4.2.6 FALHA: INCOMPATIBILIDADE DE ROSCA DO SAX COM O STAB DO CLF

DA ANM.

Incompatibilidade dos filetes de rosca dos SAXs 3/4" com o corpo do stab

identificados no Conector das Linhas de Fluxo (CLF) da Árvore de Natal Molhada (ANM).

Figura 30:Foto item de vedação do STAB em superfície, poço 9-RJS-681; Plataforma SS-83. 18 de agosto de 2015.

Após modificações de projeto orientado, com inserção da arruela roscada, pino

roscado, batente da mola e da criação de um SAX ¾” novo, devido a não funcionalidade dos

mesmos, ficou decidido que seriam utilizados os SAX´s de modelos anteriores no CLF das

ANM´s, que não apresentaram histórico de falhas durante a operação de instalação dos

equipamentos.

59

5.0 GERENCIAMENTODO PLANO DE MANUTENÇÃO DA ANM

Abaixo apresentamos definições contidas para cada processo do plano de

gerenciamento de manutenção, com a finalidade de prover as informações para serviços de

manutenção como definição de carteiras de manutenção, cotações dos serviços a serem

realizados, acompanhamento dos serviços executados e medição para encerramento dos

mesmos.

A seguir em ordem cronológica foram relatados todos os parâmetros a serem seguidos

durante os processos da manutenção com base em estudos e pesquisas realizadas em campo.

5.1 DEFINIÇÃO DO PLANO DE SERVIÇOS (RECEBIMENTO/ MANUTENÇÃO /

PLANO DE MANUTENÇÃO)

Conforme informações levantadas existem duas formas de receber o pedido do cliente:

Plano de manutenção de ferramentas e solicitação de manutenção para embarque;

O plano de manutenção define escopo e periodicidade de uma ferramenta e/ou

equipamento.

Para as ferramentas consideradas críticas deverão ser seguidas a periodicidade do

plano de manutenção, respeitando assim suas quantidades de operações e intervalos de

realização da manutenção medidos em meses, visto que devido a frequência de utilização das

ferramentas para se obter a instalação do equipamento, ou seja, instalação da ANM entre

outros equipamentos submarinos durante a completação, são esperadas que as ferramentas

apresentem falhas, devido as mesmas serem submetidas a condições adversas de trabalhos

com frequências.

Conforme tabela abaixo segue dados de controle do plano de manutenção das

ferramentas de instalação dos equipamentos submarinos do conjunto ANM:

60

Tabela 3: Plano de Manutenção (Nível de Manutenção X Ferramentas x Tempo de Execução) das ferramentas do

conjunto Árvore de Natal Molhada de Produção 5” x 2”/ 13.1” - tipo ANM DL-GLL-CVD-3 MCVs Global 10k Leeds.

Visto que a vida útil do equipamento submarino conforme seja esperada e informada

pelo fabricante de aproximadamente 27 anos, durante o processo de instalação do

equipamento podem ocorrer diversos tipos de falhas que não sejam esperadas e nem

mapeadas dentro do plano de manutenção do fabricante.

Após ocorrer a inesperada falha no equipamento, sendo a falha de diversas

características (falha operacional, falha técnica, falha de projeto, etc.) o fabricante deverá

realizar a manutenção no equipamento como característica de serviço orçado dentro da

garantia do mesmo, assim devendo inicialmente elaborar e posteriormente gerenciar todo o

plano de serviço ao qual será submetido o equipamento que apresentou falha.

Assim iniciaremos o gerenciamento do plano de manutenção da Árvore de Natal

Molhada, subdividindo os serviços, as etapas do serviço e a responsabilidade do mesmo a fim

de obtermos o encerramento do plano de manutenção com a falha apresentada corrigida

aplicando a Manutenção Corretiva diretamente na falha detectada dentro do plano esperado

pelo cliente a fim de mantermos o mesmo satisfeito.

O designado pelo serviço deverá avaliar anualmente a carteira crítica do equipamento,

definindo o tipo e prazo da manutenção para que seja validado o plano;

Após validação da carteira, o responsável pela carteira deverá elaborar um cronograma

anual das manutenções e divulgá-los as partes;

61

O designado deverá negociar o atendimento do cronograma anual, tendo os seguintes

parâmetros:

Escopo com a lista avançada de peças e serviços e demanda independente.

O designado atualiza mensalmente a carteira crítica do equipamento através da

planilha de plano das manutenções que estará em seu poder e controle;

O responsável pela carteira analisa a planilha mensalmente e atualiza o cronograma de

acompanhamento das manutenções;

O responsável pela carteira deverá garantir que o setor responsável libere o escopo do

serviço até 15 dias antes do primeiro dia do mês de vencimento do plano de manutenção,

conforme os requisitos do plano;

Após o plano de serviços elaborado, o responsável pela carteira solicita a elaboração

da análise das peças, para o responsável pela cotação;

O responsável pela carteira deverá garantir que o setor responsável libere o roteiro do

serviço até o primeiro dia do mês de vencimento do plano de manutenção;

O responsável pela carteira deverá garantir que o planejamento de materiais libere a

análise de peças definindo o prazo limite para disponibilidade de materiais no estoque. Esta

deve ser liberada até o primeiro dia do mês de vencimento do plano de manutenção;

O setor responsável deverá confirmar ou não a aquisição de todos os itens necessários,

analisando a situação de cada item individualmente;

O responsável pela carteira deverá definir os dispositivos que deverão ser manutenidos

com o equipamento conforme o plano elaborado;

Após a confirmação das informações mencionadas acima, o responsável pela carteira

negociará o início da manutenção;

Após definição do prazo de início e término da manutenção, o responsável pela

carteira atualiza o cronograma e disponibiliza-o para consulta.

Para os equipamentos, é enviada uma solicitação de manutenção via formal como

início do escopo do serviço;

62

O responsável designado pela atividade deverá negociar as notas de manutenções dos

equipamentos conforme plano de manutenções;

O responsável pela carteira elabora o cronograma das manutenções e realiza as

negociações a fim de elaborar um plano que seja atendido conforme atendimento das

ferramentas.

5.2 COTAÇÃO DOS SERVIÇOS

O responsável pela cotação deverá consultar o cronograma para identificar a demanda

do serviço;

O responsável pela cotação deverá analisar escopo do serviço conforme o plano

elaborado;

O responsável pela cotação deverá elaborar uma liberação para o serviço a ser

realizado incluindo serviços e peças definidos conforme o planejamento;

O responsável pela cotação elabora uma autorização para descarte do material

substituído contendo os itens do Plano de Manutenção;

O responsável pela cotação deverá emitir uma solicitação de material caso haja algum

item conforme plano elaborado que não esteja disponível, assim tendo que realizar a compra

do mesmo.

5.3 GERENCIAMENTO DO SERVIÇO

Após conclusão da fase de cotação, o responsável acompanha a execução dos serviços

defendendo as datas e custos estabelecidos conforme plano;

Para acompanhamento dos serviços, o responsável deverá;

Respeitar os prazos:

Para serviços de montagem: realizar acompanhamento diário pela passagem de serviço

e atualizações das planilhas de informações;

63

Para serviços de manufatura: o responsável deverá fazer reuniões semanais com o

planejamento e com a qualidade para apresentar e cobrar as metas estabelecidas para reparo,

materiais e documentação conforme plano;

O canal de comunicação entre os responsáveis e a fábrica é o planejamento, então as

tratativas de pendências surgidas na fábrica ou demandas específicas de documentos deverão

ser alinhadas com o planejamento para seguir com sua execução física;

Nos casos de não atendimento dos prazos, o responsável deverá negociar melhoria

deles com o Planejamento. No caso de insucesso na melhoria dos prazos, ele deve elaborar

uma segunda tentativa.

Fazer os registros:

De documentos, planilhas e atualização de consumo de material;

Lições aprendidas: ao longo da obra, registrar informações que poderão impactar obras

futuras;

Status das obras e prazos críticos: atualizar a planilha semanalmente para que os

responsáveis pela carteira a usem como fonte de consulta para atualização dos cronogramas.

Manter comunicação com a fiscalização: as negociações devem acontecer entre o

responsável e os fiscais residentes.

Tratar desvios: todo desvio de segurança ou de realização da tarefa deverá ser

reportado e negociado junto ao responsável por meio de um documento contratual conforme

plano elaborado.

Reunir documentações: documentos inerentes ao processo como laudos técnicos,

relatórios da qualidade, entre outros;

Analisar custos: monitorar apontamento de horas, confirmação de operações e baixa

de peças, sendo responsável pelos resultados financeiros (serviços e peças) durante a

manutenção.

Qualquer retirada de peças de Ferramentas/Equipamentos de qualquer propriedade

deverá ser autorizada formalmente pelo responsável e devidamente registrada no sistema;

64

Toda documentação pertinente à aprovação ou não da retirada de peças deverá ser

anexada ao plano da manutenção vigente ou futura pelo responsável e devidamente registrada

no sistema;

Após finalização do plano de manutenção, o responsável deverá concluir o

gerenciamento da manutenção colocando no campo data do plano a data do relatório final.

5.4 ENCERRAMENTO DO SERVIÇO

Periodicamente o responsável processo de embarque dos equipamentos deverá

consultar os recursos que estão com status “processo”;

Após recebimento do relatório de previsão operacional, o responsável pelo processo de

embarque deverá atualizar as datas requeridas e início de operação;

A reunião semanal deverá solicitar o status do atendimento dos equipamentos, e se

caso os mesmos estejam com o status de “planejamento” o responsável pela carteira de

embarque deverá responder pelos recursos não disponíveis;

Caso haja a necessidade de embarcar uma ferramenta ou equipamento com plano de

manutenção vencido, o responsável deverá enviar um e-mail descrevendo a situação da

ferramenta, além de uma análise do cenário ferramenta x operação conforme tópicos abaixo:

Elaboração do plano de comunicação descrevendo a situação da ferramenta e a

necessidade do cliente;

Elaboração de uma análise de risco e aprovação/reprovação;

Avaliar análise de risco e necessidade do cenário ferramenta x operação;

Comunicar o resultado para o responsável através do plano de comunicação,

que deverá ser salvo na programação em conjunto com o plano de manutenção.

Quando aproximar a data requerida, o responsável deverá avaliar junto à programação

a melhor data para emissão e atualização a data requerida para utilização do equipamento ou

ferramenta;

65

O responsável só poderá enviar a programação para a logística, se os gerenciamentos

das manutenções estiverem fechados e se não tiver pendência de recall ou restrição

operacional dos mesmos.

66

6.0 CONCLUSÃO

Buscou-se nesta monografia apresentar algumas técnicas e procedimentos de plano de

manutenção de ferramentas e equipamentos submarinos com ênfase na manutenção da árvore

de natal molhada e sua funcionalidade, utilização, instalação na área industrial offshore

conforme mencionados nos capítulos 4 e 5.

Iniciou-se a abordagem na história e definição do Petróleo no Brasil e em todo o

mundo, as fases do poço petrolífero até a extração do óleo ou gás, seguido pela descrição da

árvore de natal molhada, sua funcionalidade, sequência de instalação submarina, anomalias

detectadas durante a instalação submarina do equipamento e principais técnicas para

elaboração do plano de manutenção a fim de verificar as condições e determinar as ações da

correção da anomalia.

No encerramento da monografia foi traçado o plano para programação do serviço a ser

realizada, a cotação para levantamento do custo, gerenciamento da anomalia a ser corrigida, a

conclusão do serviço com qualidade, atendendo a satisfação do cliente.

Este plano de manutenção contido na monografia contribui com a operação das

diversas empresas que exercem a atividade para equipamentos de completação de poços

petrolíferos, por meio de conhecimento e gerenciamento das principais técnicas de

manutenção.

67

7.0 SUGESTÃO

Como proposta para trabalhos futuros seria interessante uma elaboração de um plano

de monitoramento e acompanhamento para detecção das anomalias antes do embarque do

equipamento nas unidades offshore, visto que com que este plano em execução irá evitar à

perda de tempo da manutenção do equipamento, devido o mesmo ainda se encontrar onshore,

assim sendo mitigado e evitado o tempo de embarque, detecção da anomalia com o

equipamento já em condição offshore e posterior desembarque do equipamento para que

assim seja realizado o plano de manutenção do mesmo.

Finalmente, constatam-se a diversidade de tecnologias operando em conjunto nas

Unidades de Perfuração Offshore, criadas pela busca de novas reservas, localizadas em

distancias e profundidades de operação. Isso resultou na criação e evolução de sistemas

complexos, com equipamentos elétricos, hidráulicos e mecânicos que necessitam de constante

supervisão e geram enormes demandas de manutenção, realizadas por profissionais de

diversas áreas estruturados em seções especificas dentro da Unidade. Por este motivo é

necessário manter ou garantir as boas condições de disponibilidade, tanto de recursos

humanos quanto de equipamentos e serviços é questão de importância decisiva para a

competitividade, pois garante a redução de custos em escalas vitais para qualquer empresa

exercendo a sua respectiva atividade.

68

8.0 REFERÊNCIAS BIBLIOGRÁFICAS

AKER SOLUTIONS. Aker Solutions, 2010. Disponivel

em:<http://www.akersolutions.com/Documents/Drilling%20Technologies/Drilling%20risers/

Upd ated-brochure-with-fold-out-low-res.pdf>.

CASTOR DRILLING. Castor Drilling Solution. Disponível em: http://www.cds.as>.

CORRÊA, Oton Luiz Silva Petróleo: Noções sobre exploração, perfuração, produção, e

microbiologia / Oton Luiz Silva Corrêa. Rio de Janeiro: Interciência, 2003. ISBN: 85-7193-

093-7.

DENHOLM, J. M. Offshore Drilling Operations. Transactions(TM), The Institute of Marine

Engineers, fevereiro 1982. Disponível em: <www.imarest.org>.

MARIHO, Ricardo: Nova cadeia produtiva de petróleo e gás natural, volume I / Ricardo

Marinho. -- 1 ed. – Santa Cruz do Rio Pardo SP: Editora Viena, 2011. (coleção premium; 1)

ISBN: 978-85-371-0232-9.

ONESUBSEA, Árvore de natal molhada de produção com sistema multiplexado global 10K

LEDS. Manual de instalação, operação e manutenção da árvore de natal molhada de produção

com sistema multiplexado global 10K PSI. Taubaté – SP, ONESUBSEA, AGOSTO/2015,

3311.

PETROBRAS. Fundamentos de Perfuração. [S.l.]: [s.n.], 2002.

PINTO, Alan Kardec: Manutenção função estratégica / Alan Kardec e Julio Aquino Nascif

Xavier. – Rio de Janeiro: Quality mark 4º Ed., 2012 ISBN: 978-85-414-0040-4.

THOMAS, José Eduardo. Fundamentos da engenharia do petróleo. Rio de Janeiro:

Interciência: Petrobras, 2001. ISBN:857193099-6.

TRANSOCEAN. Transocean, 3 abril 2000. Disponível

em:<http://www.deepwater.com/_filelib/filecabinet/pdfs/08_transocean_ch_3-4.pdf>.

https://infopetro.wordpress.com.