conversão da biomassa

30

Click here to load reader

Upload: ctbe-brazilian-bioethanol-scitech-laboratory

Post on 11-May-2015

889 views

Category:

Business


1 download

DESCRIPTION

Presentation of Cesar A. M. Abreu for the "Workshop Virtual Sugarcane Biorefinery"Apresentação de Cesar A. M. Abreu realizada no "Workshop Virtual Sugarcane Biorefinery "Date / Data : Aug 13 - 14th 2009/ 13 e 14 de agosto de 2009 Place / Local: ABTLus, Campinas, Brazil Event Website / Website do evento: http://www.bioetanol.org.br/workshop4

TRANSCRIPT

Page 1: Conversão da Biomassa

UNIVERSIDADE FEDERAL DE PERNAMBUCODEPARTAMENTO DE ENGENHARIA QUÍMICALABORATÓRIO DE PROCESSOS CATALÍTICOS

RECIFE, PERNAMBUCO

CONVERSÃO DA BIOMASSACesar A. M. Abreu

Page 2: Conversão da Biomassa

CONVERSÃO DA BIOMASSA

CONVERSÃO DA BIOMASSA COM VALORIZAÇÃO

Conversão da biomassaProcessos de conversãoNatureza químicaFracionamentoFuncionalização ou degradaçãoIntermediáriosProdutos finais

Page 3: Conversão da Biomassa

CONVERSÃO DA BIOMASSA

BIOMASSA LIGNOCELULÓSICA

Principais componentes: celulose, hemicelulose, ligninaOutros componentes: cinzas, fenois , acidos graxos, ….

Celulose: polissacarídeo de D-glucose, unidades associadas via β-1,4-glucosidic ligações.Hemicelulose: polissacarídeo de xilose, arabinose, manose, promovendo interações entre a celulose e a ligninaLignina: polímero baseado em fenilpropano, estruturado em grupos guaiacil, siringil and p-hidroxifenylpropano

Page 4: Conversão da Biomassa

CONVERSÃO DA BIOMASSA

CONVERSÃO DA BIOMASSA (CANA-DE-AÇÚCAR)

1 EXTRAÇÃO SACAROSE

(MELAÇO)

BIOMASSA

L-CEL

(BAGAÇO)

QUÍMICO

BIOQUÍMICO

PRÉ-TRAT.

FRACIONAMENTO

GLUCOSE,FRUTOSE

AÇÚCAR INVERTIDO

CELULOSE

HEMICELULOSE

LIGNINA

2 HIDRÓLISE CELULOSEHEMICELULOSE

ÁCIDO DILUÍDO

ÁCIDO CATALÍTICO

ENZIMÁTICO

GLUCOSE

HMF, DMF

XILOSE, ARABINOSE,

FURFURAL,

Page 5: Conversão da Biomassa

CONVERSÃO DA BIOMASSA

CONVERSÃO DA BIOMASSA (CANA-DE-AÇÚCAR)

3 OXIDAÇÃO LIGNINA QUÍMICO

CATALÍTICO

ALDEÍDOS AROMÁTICOS

ÁCIDOS DERIVADOS

4 HIDROGENAÇÃO

HIDROGENÓLISE

OXIDAÇÃO

ESTERIFICAÇÃO

SACAROSE

GLUCOSE

FRUTOSE

XILOSE

(MELAÇO, HIDROLISADOS)

QUÍMICO

CATALÍTICO

POLIÓIS

ÁCIDOS DERIVADOS

ÉSTERES

Page 6: Conversão da Biomassa

CONVERSÃO DA BIOMASSA

CONVERSÃO DO BAGAÇO DE CANA-DE-AÇÚCAR

ACETATODE

CELULOSE

SORBITOL /MANITOL

CELULOSE

FURFURAL XILITOL

HEMICELULOSE

RESINASFENÓLICAS

PLÁSTICOS VANILINA

LIGNINA

BAGAÇO DE

CANA-DE-AÇÚCAR

Page 7: Conversão da Biomassa

The acid hydrolysis processDilute acid hydrolysis, Low acid consumptionMaximum monosaccharide yields reached at high temperatures and short residence times, Fast reaction ratesYields circa of 50-60% of the theoretical valueConcentrated acid hydrolysis,Processed decomposing and dissolving the polysaccharidesOccurs with water deficiencyProduction of oligosaccharides

Page 8: Conversão da Biomassa

The acid hydrolysis processLimitations,Severe conditions (e.g. higher temperature, low pH) Formations of degradation by-products Furans and organic acids Monomeric hexoses and pentoses transformed into HMF and furfural,Further degradation into organic acids (e.g. levulinic, humic acids) and condensation reactions Dissolved lignin result in the formation of inhibiting phenolic compounds Corrosion of the equipment

Page 9: Conversão da Biomassa

The acid hydrolysis processProduction process of saccharidic mixtures to further processing,Degradation of corn starch or sugarcane hemicellulose in acid mediaQuantification of the oligomeric decompositions Selection of saccharidic mixtures to further catalytic treatementsKinetics of starch and pentosane depolymerization Consecutive evolutions of the oligomeric components Identification by the degree of polymerizations (DP6, DP5, DP4, DP3, DP2, DP1 = glucose, xylose,..).

Page 10: Conversão da Biomassa

The acid hydrolysis processStarch and sugar cane bagasse hydrolysis,Native corn starch solutions were hydrolyzed at temperatures ranging 343 K to 373 K, producing glucose with yield circa 70% Sugar cane bagasse was hydrolised at 393 K, producing xylose, with approximate yield of 60%

Abreu, C. A. M. et al. (1995) Biomass and Bioenergy Vol 9, No. 6, 487-492

Page 11: Conversão da Biomassa

The acid hydrolysis processMechanism Kinetics

H -Ac AcH

G G n OHHDP

Ac HDPn AcH DP

- ---------------------------GDP2OHHDP

AcHDP2 AcH DP

GDP1OHSH

Ac SH1 AcH S

'

21

-12

1n

'

2n

nn

n

'

2

-

++⇔

+→+

+→+

+→+

+→+

+→+

+→+

( )

−−−= GS

'

S'S C(C

kk1Ck

dtdC

O

( ) ( )GSo

1/2

GSo'AcH'G CCCC

kk1Kk

dtdC

−−=

( ) ( )

−−−= GSo'S

O CCkk1Ck

dtdC L

GC

Page 12: Conversão da Biomassa

CONVERSION OF CARBOHYDRATESProcessing of raw materials rich in saccharides (sugarcane, starch, molasse, bagasse,…), Products with industrial application as polyols and organic acidsCarbohydrate hydrogenations (saccharides → monosaccharides → polyols)

Carbohydrate oxidations (saccharides → monosaccharides + acids → acids)

Heterogeneous processes with supported catalysts based on nickel, chromium, ruthenium to hydrogenate glucose, fructose and sucrose to sorbitol and mannitol

Page 13: Conversão da Biomassa

Hydrogenation of carbohydratesHeterogeneous mechanism

Page 14: Conversão da Biomassa

1st Brazilian Workshop on Green Chemistry

Hydrogenation of carbohydratesHeterogeneous mechanism

Page 15: Conversão da Biomassa

Hydrogenation of carbohydratesSaccharide hydrogenation process,Polyol production in a batch three-phase reactor Glucose conversions of 85% with a selectivity in sorbitol of 99.05% at 413K, under 24 bar, after 3 hours of reaction with a nickel catalyst (14.75 % weight)/activated carbon Saccharose conversions of 52% after 3 hours of reaction Production of glucose and fructose and sorbitol and mannitol

L. C. A. Maranhão, F. G. Sales, J. A. F. R. Pereira, C. A. M. Abreu (2004) React. Kinet. Catal. Lett. 81, 169-175

Page 16: Conversão da Biomassa

Hydrogenolysis of carbohydrates

Saccharide hydrogenolysis process,More drastic temperature and hydrogen pressure conditionsSplitting of carbon-carbon and carbon-oxygen carbohydrate bonds Polyols obtained from hydrogenations can be hydrogenolysedProducts: other polyols, glycols and alcoholsCatalysts: noble metals

Page 17: Conversão da Biomassa

Continuous production of fine polyols

Scale-up of carbohydrate hydrogenations,Fine polyols from biomass resources are traditionally produced in discontinuous processesApparatus of great volume in relation to the small quantity of the obtained productsScale-up from discontinuous operations to continuous oneDevelopment of the saccharide hydrogenation process into a continuous operationContinuous polyol production

Page 18: Conversão da Biomassa

Continuous production of fine polyols

Continuous hydrogenation in a three-phase reactor,Trickle-bed reactor under moderate operation conditions (1.22 MPa, 413 K)Glucose conversions of 44% with a polyol selectivity of 99.31%Yield of 24% in sorbitol and mannitol for the saccharose hydrogenation Possibility to develop a process (pressures up to 2.54MPa, low liquid flow rates) to obtain high conversions

Maranhão, L. A., Abreu, C. A. M. (2005) Industrial and Engineering Chemistry Research. v. 44, p. 9642-9645

Page 19: Conversão da Biomassa

Continuous production of fine polyols

0,0 0,1 0,2 0,3 0,4 0,5 0,6

0,0

0,1

0,2

0,3

0,4

0,5

glucose sorbitol model

C (m

ol L-1 )

Axial position (m)

Hydrogenation of glucose at 1.22MPa and 413K in trickle-bed reactor

012 =+

′−−

GG

GGGGL

Gax CK

Ckdz

dCu

dzdC

( ) ( )[ ]( ) ( ) ( )[ ]GeLG

GeGeG fSh

ff

Gφφφ

φφφη

3f3coth13f3coth

eG

eG

−+−

=

Page 20: Conversão da Biomassa

Continuous production of fine polyols

0,0 0,1 0,2 0,3 0,4 0,5 0,6

0,0

0,1

0,2

0,3

saccharose monosaccharides polyols modelC

(mol

L-1)

Axial position (m)

Hydrogenation of saccharose at 1.22MPa and 413K in trickle-bed reactor.

02

2

=′−− SacSacSacSac

LSac

ax Ckdz

dCu

dzCd

D η

012

2

=

+′

−′+−MoMo

MoMoSacSacMo

MoMoax CK

CkCk

dzdC

udzCd

D η

012

2

=+′

+−MoMo

MoMoPo

PoPoax CK

Ckdz

dCu

dzCd

D η

Page 21: Conversão da Biomassa

Continuous production of fine polyols

An up grade of the discontinuous to the continuous process for saccharide hydrogenation may be compared in the following terms: Discontinuous process (slurry reactor) Continuous process (trickle-bed

reactor) Ni/C catalyst; 413 K, 2.44 MPa Ni/C catalyst; 413 K, 1.22 MPa Operation time = 3 hours Operation time = 3 hours Concentration of the saccharide feed = 100.00 g/L

Concentration of the saccharide feed = 100.00 g/L

Production = 42.50 g in polyol Acumulated production = 749.35 g in polyol

Page 22: Conversão da Biomassa

LIGNIN FROM BIOMASS

Biomass conversion into aldehydes and acids,Lignin degradation: break up into fragments producing aromatic aldehydesPolifenate ions, precursors of the aromatic aldehyde formationsAldehyde conversion into organic acids

Page 23: Conversão da Biomassa

LIGNIN PROCESSING FROM SUGARCANE BAGASSE

Lignin oxidation,Wet air oxidation process (WAO) as an alternative technology Valorization of lignocellulosic materialsProduction of a mixture of aromatic aldehydes of industrial interestCatalytic wet air oxidation (CWAO) process using air and catalysts Treatment of effluents and by-product of the biomass industry

Page 24: Conversão da Biomassa

Catalytic wet oxidation of lignin

→ − 322 OAl / γPd / O → − 322 OAl / γPd / O → − 322 OAl / γPd / O2

OH

C

R2R1

HO O

CO

H3COO

C

O

CH

OCH3H3CO

OCH3

OCH3

O

C

C

OOCH3

CH

H2COH

H2COH

H

HC

CHO

H2COH

H

H2COH

H1

2

3

4

(a)

H2COH

H

2

C

O

CH

OCH3H3CO

C

OH

C

R2R1

OHHO H

H

2

H2COH

[ Lignin ] [ Aldehydes ] [ Acids ]

(b)

2

OH

C

R2R1

OH

+ AcH + AcH

Basic structure of lignin and degradation/oxidation mechanism. (a) basic unit of the Fagus silvatic lignin. (b) degradation/oxidation reaction steps. R1= H, OCH3 ; R2 = OCH3 .

Page 25: Conversão da Biomassa

Catalytic wet oxidation of lignin

Reaction scheme of the catalytic wet oxidation of lignin

CWAO of lignin from sugar-cane bagasse was evaluated to produce aromatic aldehydesLignin (L) is depolymerized with the productions of aldehydes, acids and other products of low molecular weights The aromatic aldehydes vanillin (V), syringaldehyde (S) and p-hydroxibenzaldehyde (P) were submitted to subsequent oxidationsOther products (R), such as organic acids can degrade into carbon dioxide

Page 26: Conversão da Biomassa

Operations in a slurry reactor,Palladium catalyst, 373-413 K, 2-10 bar/ PO2 Lignin as a by-product from sugarcane bagasse by the DFH (Dedine Fast Hydrolysis) Yields of the aromatic aldehydes associated with lignin consumption and their oxidations to acidsAromatic aldehyde yields approximately ten to twenty times higher then with the noncatalytic oxidation process

Sales, F. G. , Maranhão, L. A. , Lima Filho, N. M. , Abreu, C. A. M.( 2006). Industrial & Engineering Chemistry Research. v. 45, p. 6627-6631

Process operations

Page 27: Conversão da Biomassa

Processo continuo de produção de aldeídosaromáticos

Scale-up of process,From batch to continuous operations

Aromatic aldehyde productions operated in a continuous fluidized-bed reactor

Lignin as a by-product from sugarcane bagasse

Yields of the aromatic aldehydes associated with the lignin consumption and their oxidations to acids

Page 28: Conversão da Biomassa

Processo continuo de produção de aldeídosaromáticos

Three-phase fluidized-bed reactor

Page 29: Conversão da Biomassa

Processo continuo de produção de aldeídosaromáticos

Escalonamento,

Batch operation: 56.24x10-2g of vanillin and 50.01x10-2g of syringaldehyde from a 0.50L-lignin solution (60.00g/L), 2 h of reaction at 5.00 bar and 393 KContinuous operation: 65.10x10-1g of vanillin and 114.84x10-1g of syringaldehyde, with a feed concentration of lignin of 30.00 g/L, 2 h of reaction, at 5.00 bar and 393 K, liquid-phase flow rate of 5.00 L/h

F. G. Sales, L. C.A. Maranhão, N. M. Lima Filho, C. A.M. Abreu (2007) Chemical Engineering Science 62, 5386 – 5391

Page 30: Conversão da Biomassa

Recent technology developments done in the scope of the biorefinery concept have emerged as alternatives, making production of chemicals from ligno-cellulosic feedstocks become a reality.

Biomass conversions employ hydrolysis and pretreatments of hemicellulose and lignin, and acid or enzymatic hydrolysis of cellulose to break the polymeric structures to their saccharides and lignin components.

In the presence of homogeneous or heterogeneous catalysts the oligomeric mixtures selected may be processed in order to produce valuable chemicals.

Through catalytic hydrogenation, hydrogenolysis or oxidation these mixtures can be converted to polyols, glycols, monoalcohols, aldehydes and organic acids.

Conclusions