como escrever um art

71
Como escrever um ar,go cien0fico (Parte 3) Antônio C. Roque Aula baseada nos tópicos descritos pela empresa San Francisco Edit – www.sfedit.net

Upload: hadieu

Post on 10-Jan-2017

222 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Como escrever um art

Como  escrever  um    ar,go  cien0fico  

(Parte  3)  

Antônio  C.  Roque      

Aula  baseada  nos  tópicos  descritos  pela  empresa  San  Francisco  Edit  –  www.sfedit.net  

Page 2: Como escrever um art

Tabelas  e  figuras  

•  O  obje,vo  das  tabelas  e  figuras  é  mostrar  dados  que  sejam  muito  numerosos  ou  complicados  para  serem  descritos  adequadamente  no  texto  e/ou  revelar  tendências  ou  padrões  nos  dados.    

•  As  tabelas  e  figuras  são  crí$cas:  se  o  leitor  for  além  do  Abstract,  é  provável  que  ele  examine  as  tabelas  e  figuras  em  seguida.  

Page 3: Como escrever um art

Estude  como  apresentar  seus    dados  resultados  

•  Nem  todos  os  dados  e  resultados  precisam  ser  mostrados  em  forma  de  tabelas  ou  gráficos.  

•  Alguns  ficam  bem  no  texto,  sumarizados  entre  parênteses:    Seed  produc1on  was  higher  for  plants  in  the  full-­‐sun  treatment  (52.3  ±  6.8  seeds)  than  for  those  receiving  filtered  light  (14.7  ±  3.2  seeds,  t=11.8,  df=55,  p<0.001).  

Exemplo  ,rado  de:  hTp://abacus.bates.edu/~ganderso/biology/resources/wri,ng/HTWtoc.html  

Page 4: Como escrever um art

Como  fazer  boas  tabelas  e  figuras  

•  Decida  que  resultados  ficam  melhor  mostrados  como  tabelas  e  figuras  do  que  como  texto.    

•  Limite  o  número  de  tabelas  e  figuras  àquelas  que  fornecem  informação  essencial.  

•  Inclua  apenas  resultados  relevantes  para  as  questões  colocadas  na  introdução,  independentemente  de  apoiarem  ou  não  as  hipóteses.    

Page 5: Como escrever um art

•  Desenhe  cada  tabela  e  figura  para  que  sejam  inteligíveis  por  si  só,  sem  referência  ao  texto.  

•  Enumere  cada  figura  e  tabela  na  ordem  em  que  elas  são  referidas  no  texto  (as  figuras  e  as  tabelas  têm  numerações  separadas).  

•  Organize  as  tabelas  e  figuras  em  uma  ordem  tal  que  elas  contem  uma  história.  

Page 6: Como escrever um art

•  Verifique  nas  instruções  para  autores  da  revista  onde  colocar  as  tabelas  e  figuras.  

•  Dependendo  da  revista,  elas  devem  vir  em  páginas  separadas  no  fim  do  ar,go  (depois  das  referências)  ou  nos  locais  apropriados  ao  longo  do  texto.  

•  Caso  as  tabelas  e  figuras  sejam  incorporadas  ao  texto,  cer,fique-­‐se  de  que  não  há  uma  quebra  de  página  no  meio  de  uma  delas.    

Page 7: Como escrever um art

•  Faça  um  0tulo  para  cada  tabela  e  uma  legenda  para  cada  figura.    

•  Dependendo  da  revista,  os  0tulos  e  legendas  devem  ser  listados  separadamente  no  fim  ou  colocados  acima  da  tabela  e  abaixo  da  figura,  respec,vamente.  

•  Escreva  os  0tulos  das  tabelas  e  as  legendas  das  figuras  no  tempo  passado.  

•  Os  0tulos  das  tabelas  e  as  legendas  das  figuras  devem  fornecer  informação  sobre  o  que  é  mostrado  nelas,  mas  não  um  resumo  ou  uma  interpretação  dos  resultados.  

Page 8: Como escrever um art

•  Cer,fique-­‐se  de  que  todas  as  figuras  e  tabelas  estejam  referenciadas  no  texto.  

•  Caso  sejam  incluídas  figuras  e  tabelas  previamente  publicadas,  obtenha  as  permissões  dos  proprietários  dos  seus  copyrights  (em  geral  os  editores)  e  coloque  um  agradecimento  a  eles.    

Page 9: Como escrever um art

Como  se  referir  a  tabelas  e  figuras  no  texto  •  Use  frases  que  chamem  a  atenção  do  leitor  para  a  relação  ou  

tendência  que  você  quer  destacar,  com  a  referência  à  tabela  ou  figura  entre  parênteses:  

 Germina1on  rates  were  significantly  higher  aMer  24  h  in    running  water  than  in  controls  (Fig.  4).    DNA  sequence  homologies  for  the  purple  gene  from  the    four  congeners  (Table  1)  show  high  similarity,  differing  by    at  most  4  base  pairs.  

•  Evite  frases  que  apenas  indiquem  ao  leitor  que  os  dados  ou  resultados  ob,dos  estão  mostrados  em  uma  tabela  ou  figura:  

 Table  1  shows  the  summary  results  for  male  and  female    heights  in  the  sample.      

Page 10: Como escrever um art

Tabelas  

•  Tabelas  são  usadas  para  tornar  um  ar,go  mais  agradável  de  se  ler  por  re,rar  dados  numéricos  do  texto.  

•  Tabelas  também  são  usadas  para  sinte,zar  a  literatura  existente,  para  explicar  as  variáveis  ou  para  apresentar  os  termos  usados  em  enquetes  feitas.  

Page 11: Como escrever um art

•  Crie  tabelas  com  a  ferramenta  de  tabela  do  editor  de  texto.  Não  monte  tabelas  a  mão.  

•  Faça  cabeçalhos  (rótulos)  para  as  colunas  das  tabelas  de  maneira  que  o  conteúdo  de  cada  coluna  seja  evidente  sem  necessidade  de  se  consultar  o  texto.  

•  Verifique  nas  instruções  para  autores,  mas  a  maioria  das  revistas  pede  que  cada  tabela  esteja  junto  com  o  seu  0tulo  em  uma  página  separada.      

Page 12: Como escrever um art

Figuras  

•  As  figuras  têm  impacto  visual  e,  portanto,  muitas  vezes  são  a  melhor  maneira  de  se  comunicar  o  resultado  principal.    

•  As  figuras  são  tradicionalmente  usadas  para  mostrar  tendências  e  resultados  de  grupos,  mas  elas  também  podem  ser  usadas  para  ilustrar  processos  ou  mostrar  dados  detalhados  de  forma  simples.  

Page 13: Como escrever um art

•  Rotule  cada  eixo  incluindo  as  unidades  e  iden,fique  claramente  os  dados  mostrados  (por  exemplo,  rotule  cada  linha  mostrada  em  um  gráfico).  

•  Verifique  nas  instruções  para  autores,  mas  a  maioria  das  revistas  pede  que  as  legendas  das  figuras  sejam  listadas  em  ordem  numérica  em  uma  página  separada  e  que  cada  figura  esteja  sozinha  em  uma  página  separada.  

Page 14: Como escrever um art

•  As  figuras  devem  ser  de  alta  qualidade.  Verifique  nas  instruções  para  autores  que  formato  de  imagem  é  preferido  pela  revista.  

•  Em  geral,  as  figuras  são  em  preto  e  branco.  O  uso  de  cor  é  muito  caro  para  os  editores  e  costuma  ser  cobrado  dos  autores.    

•  Figuras  coloridas  só  devem  ser  usadas  quando  essenciais.  

Page 15: Como escrever um art

•  Não  inclua  detalhes  experimentais  nas  legendas  das  figuras.  Esses  detalhes  devem  ficar  na  seção  de  métodos.  

•  Só  inclua  fotos  de  pessoas  caso  tenha  ob,do  autorização  por  escrito  delas.  

Page 16: Como escrever um art

•  Escolha  a  forma  correta  para  cada  figura:  – Se  as  variáveis  independente  e  dependente  forem  numéricas,  use  diagramas  de  dispersão;  

– se  apenas  a  variável  dependente  for  numérica,  use  um  gráfico  de  barras  (inclua  linhas  horizontais  para  indicar  médias,  desvios  padrões  e  intervalos  interquar,s);  

– para  proporções,  use  gráficos  de  barras  ou  de  torta  ou  pizza.  

•  Procure  exemplos  desses  ,pos  de  figuras  nos  ar,gos  que  você  lê.  

Page 17: Como escrever um art

Exemplos  de  Tabelas  e  Figuras  

Page 18: Como escrever um art

MeasuresTo quantify observed spatiotemporal patterning of network activity anddistinguish between various network behaviors, we applied three mea-sures: average frequency ( F), mean phase coherence ( R), and a measureof synchronous bursting ( B). The combination of these three measuresallowed us to compare network dynamics quantitatively, and also detectbehavior switching within a single simulation run.

Frequency. The average frequency of cell n, Fn, was defined as theinverse of the average interspike interval over the duration of the simu-lation run:

Fn !1

"n, "n ! !

k!1

S"1tk#1 # tk

S # 1,

where S is the total number of spikes fired at times tk of cell n. Thenetwork average frequency, F, was the average of Fn over the number ofcells in the network.

Mean phase coherence. To quantify phase locking between cells, weadapted the mean phase coherence, R, of an angular distribution (Mor-mann et al., 2000). The value of R ranged between 0 and 1, and increasedas phase locking increased between cells. We measured the time depen-dence of R with a sliding window of 750 ms. R is defined as follows:

R ! "1

S!j!0

S"1

ei$nm" ,

where S denotes the number of samples in the array of cell n spike times,and $n,m is the phase between cells n and m for interspike interval j. Thiswas determined as follows: the period for interspike interval j,"nj # tnj#1 # tnj, for cell n was taken to be 2%. The cell m spike associatedwith interval j, tmj, was selected such that tnj & tmj#1 & tnj#1 so the phasebetween spikes at time tnj and tmj (interval "nj,mj # tmj # tnj) could becalculated at time tnj by $n,m # $"nj,mj/"nj%2%.

Synchronous bursting. We used an interspike distance synchrony mea-sure (Tiesinga and Sejnowski, 2004) to monitor the degree of spikingsynchrony in the network. The metric, B, is based on the time-ordered,complete set of network spikes and relies on the fact that the variancebetween firing times of all cells in the network during a synchronousevent is smaller than during asynchronous events. B is defined as follows:

B ! $ %&"'2' # &"''2

&"''# 1& 1

%N,

where N is the number of cells in the network. The combined, time-ordered set of network spike times t' was labeled by the index (, whereasthe set of network interspike intervals was labeled "' with "' ! t' # 1 " t'.Note that these interspike intervals are between different cells in thenetwork. Thus, assuming that every neuron fires independently with aconstant rate, the combined spike train for a large asynchronous networkwill have a Poisson spike distribution with the term%&"v

2' # &"v'2/&"v'3 1. However, in the limit of large N and if the net-work is fully synchronized with neurons firing with a period T, the term%&"v

2' # &"v'2/&"v'3 %N. Thus, the relatively atypical form of B pro-vides a normalized measure of degree of synchronized bursting in thenetwork, where low values of B are indicative of asynchronous activity,whereas B ! 1 indicates strong, highly synchronous bursting.

Parametric distance. To determine overall dissimilarity between net-

work states, we formulated a parametric distance, D, between simulationruns 1 and 2 as determined from all three measures:

D2,1 ! %$B2 # B1

B2 ) B1& 2

) $R2 # R1

R2 ) R1& 2

) $F2 # F1

F2 ) F1& 2

.

D was small if the behavior of runs 1 and 2 was similar and was largebetween dissimilar runs.

ResultsModel cell excitability propertiesBy modulating the activation characteristics of the delayed recti-fier K# current and the maximal conductances of the ionic cur-rents, we created four model cells having various membrane ex-citability properties as described by their f–I curves (Fig. 1). Bothcells A and B had characteristic type I membrane excitabilityproperties (Rinzel and Ermentrout, 1998; Izhikevich, 2001).They displayed a continuous f–I curve indicating the appearanceof arbitrarily low firing frequencies at firing threshold. Cells Cand D exhibited type II excitability with a nonzero, “critical”firing frequency at threshold (Rinzel and Ermentrout, 1998). An-other distinguishing characteristic of type I and II excitability isthe slope of the f–I curve at high applied current: uniformity offiring frequency at high input currents is typical of type II cells.Thus, cell B, whose f–I curve at high current tended toward ashallower slope, was less type I-like than cell A, which had asteeper f–I slope typical of type I excitability. However, cell C hada lower critical firing frequency at threshold than cell D and dis-played a steeper f–I slope, reminiscent of type I excitability. Thus,with these four cells types, we were able to explore network effectsresulting from a transition in neuronal excitability from type I totype II behavior. Model parameter values that were varied tocreate the four cell types are listed in Table 1.

Phase response curve analysisFor periodically firing neurons, phase response curves (PRCs)describe how small, brief inputs given at different phases of theperiodic cycle affect the timing of subsequent spikes (see supple-mental material, available at www.jneurosci.org). It has been sug-gested that PRCs may help to elucidate the mechanisms by whichsome cells tend to synchronize when coupled, whereas otherstend toward antisynchrony (Hansel et al., 1995; Ermentrout,1996; Izhikevich, 1999; Ermentrout et al., 2001). To obtain thephase response curves for our model cells, we elicited a fixedbackground firing frequency by injecting an appropriate appliedcurrent (as determined by the f–I curve of the cell). We theninjected small, EPSP-like inputs at different times between peri-odically occurring spikes. Figure 2 shows the PRCs for all cellmodels with background firing at 40 Hz. The EPSP-like stimuluswas a current pulse with amplitude of 0.21 nA/cm 2 and durationof 2 ms.

There was an obvious shift in the shape of the PRC as cellstransitioned from type I-like to type II-like. Type I-like cells A andB had positive PRCs and displayed an advance in spike firing

Table 1. Model cell parameters altered to construct four cell types

Vhalf K#dr (mV) gKdr (S/cm2) gNa (S/cm2) gKa (S/cm2) gh (mS/cm2) EK (mV) ENa (mV) Eh (mV)

Cell A 13 0.2 0.3 0.048 0.5 "90 55 "30Cell B 13 0.5 0.5 0.048 0.1 "77 50 0Cell C 0 0.08 0.3 0.048 0.75 "90 55 "30Cell D 0 0.7 1.5 0.03 0.5 "77 50 0

Changes in the steady-state, half-activation of the Kdr current (Vhalf K#dr) eliminated low-frequency firing at threshold for type II-like cells. Changes in maximal conductances of Na# (gNa) and K#-dr (gKdr) currents promoted spiking.

Changes in maximal conductances of K# A-type (gKa), and h (gh) currents modulated resting membrane potential and rheobase current.

Bogaard et al. • Synergy of Cellular and Network Mechanisms J. Neurosci., February 11, 2009 • 29(6):1677–1687 • 1679

Bogaard et al. (2009), J. Neurosci. 29:1677-1687

Titulo da tabela (Table legend)

Rótulos das colunas

Corpo da tabela (dados)

Linha demarcatória (separa as diferentes partes da tabela) Notas à tabela (Table footnotes)

Isto não faz parte da tabela (é só a referência de onde ela foi tirada)

found only at one side of the central peak, then the CCG was classifiedas group 2. If the negative trough was found at neither side of thecentral peak, then the CCG was classified as group 3. The parametersof the algorithm were chosen so that the automated classificationmatched well with the classification made by visual examination. AnACG was defined to have negative flanks if it had a negative troughwithin the time lags from 5 ms to 25 ms, which undershot by !5 SDsthe mean in the baseline intervals at lags from 25 ms to 125 ms. Wedenoted the time lag of the minimum as Tmin. We admitted ACGnegative flanks only if the value at Tmin was more negative than itstwo nearest neighbors at the side toward time lag zero so that therewas a local maximum between Tmin and zero time lag.

For each pair of neurons, we computed the time course of spike-count noise correlation rsc within a 100-ms time window sliding at a10-ms step. Before computing rsc, we converted the data into z-scoresto normalize spike counts. To avoid some of the possible artifacts ofcorrelation analysis, we removed trials on which the response of eitherneuron of a pair was !5! different from its mean response, and wecomputed rsc only if each neuron of a pair yielded at least 12 distinctvalues of spike count.

For each MT neuron, we also computed the time course of the Fanofactor in 100-ms intervals as the variance of spike count divided bythe mean spike count. For neurons that were tested with random-dotstimuli moving in multiple directions and speeds, the preferred direc-tion (PD) and the PS of the neurons were determined using the samemethods as we described previously (Huang and Lisberger 2009). Thedifference of the PDs and the log ratio of the PSs were used tocharacterize the separations between two neurons’ stimulus preferences.

Computational model. We constructed a simple neural networkmodel using excitatory and inhibitory integrate-and-fire neurons. In agiven experimental trial, the activity of each input neuron was mod-eled as a spike train whose interspike intervals followed a Poissondistribution with a given mean. The membrane potential Vp (p " 1,2)of the excitatory model neurons was determined by

Cm

dVp

dt" #!

j"1

Nex

Gex"Vp(t) # ENa# # !j"1

Nin

Gin"Vp(t) # ECl#

#!j"1

2

Gie"Vp(t) # ECl# # Gleak"Vp(t) # Vrest## GAHP"Vp(t) # EAHP# # Gadp"Vp(t) # Eadp#

(3)

where Gex is the feedforward (FF) excitatory conductance, Gin is theFF inhibitory conductance, and Gie is the intracortical inhibitoryconductance. The membrane potential of the inhibitory model neuronsused the same equation without the last term [adaptation (adp)

conductance Gadp] and with Gie replaced by Gei, the intracorticalexcitatory conductance between the excitatory and inhibitory neurons.We modeled each conductance as

Gx " Gx_max!p

e#(t#tp#td)

$x (4)

where tp is the timing of a spike p in the presynaptic neuron for eachinput conductance, in the postsynaptic neuron for Gleak (leaky con-ductance), GAHP (afterhyperpolarization conductance), and Gadp.Other parameters are: td, a synaptic delay of 2.5 ms for Gex, Gin, Gie,Gei and a time delay of 1 ms for Gleak, GAHP, and Gadp; Gx_max is themaximum conductance. The default values of the model parametersare listed in Table 1 [also see Shadlen and Newsome (1998); Somerset al. (1995, 1998)]. Parameter values that deviated from the defaultvalues are mentioned in RESULTS.

Spikes occurred in a model neuron when its membrane potentialexceeded its spiking threshold Vthresh, with the caveat that 1) an actionpotential could not occur within the absolute refractory period, and2) Vthresh increased after the absolute refractory period and thendecayed exponentially (Eq. 5) to create a relative refractory period[after Somers et al. (1998)]

Vthresh(t) " Vthresh(t0) % Vthresh_elv e#(t#tspk)

$thresh_elv (5)

Because fast-spiking neurons show little spike-frequency adapta-tion (McCormick et al. 1985), we chose not to apply thresholdelevation to the inhibitory cortical neurons and relied on an outwardAHP current (IAHP) to model their modest relative refractory period.

In simulations that examined the effects of intrinsic outwardcurrents on spike-timing correlations, we removed connections fromthe inhibitory to the excitatory model neurons and added a potassium(K#) current

Ik " Gk"Vp(t) # EK# (6)

Here, Gk is determined by Eq. 4 and represents either the calcium(Ca2#)-activated K# current of small (SK) conductance (Stocker2004) or a hypothetical K# conductance Gh. Gh has artificiallydetermined magnitude and kinetics that were not constrained byexperimental data. The goal of introducing Gh was to simulate anAHP that mimicked the time course and amplitude of the inhibitorypostsynaptic potential (ipsp) generated by intracortical inhibition.

We conducted model simulations using Matlab (MathWorks,Natick, MA). Numerical solutions of the differential equations wereobtained using the fourth-order Runge-Kutta method at a time step of

Table 1. Default model parameters

Variable E I Variable E I Variable E and I

Cm 0.33 nF 0.17 nF Gff_e_max 6 nS 6 nS Vrest $70 mvGei_max 6 nS Gff_i_max 11.25 nS 11.25 nS ENa 55 mvGie_max 0 % 30 nS $ 2 ms 4 ms ECl $75 mvGAHP_max 40 nS 20 nS Eadp $90 mv EAHP $90 mvGleak_max 25 nS 20 nS $adp 30 ms EK $90 mvGadp_max 3 nS $spk 0.5 ms 0.25 ms $AHP 1 msNff_ex 100 30 Vthresh_base $55 mv $60 mv APamp 55 mvNff_in 100 30 Vthresh_elv 10 mv (sum &20 mv) Abref 2 msCommonNff_ex 40% 0% $thresh_elv 8 ms td 2.5 or 1 msCommonNff_in 40% 0% FF input rate 2 % 30 Hz 1 Hz

E, excitatory neuron; I, inhibitory neuron; Cm, membrane capacitance. Gx_max, maximum conductance, where Gx can be Gei, conductance of intracorticalexcitation [at the synapse from excitatory (e) neuron to inhibitory (i) neuron]; Gie, conductance of intracortical inhibition; GAHP, afterhyperpolarization (AHP)conductance; Gleak, leaky conductance; Gadp, adaptation (adp) conductance. Nff_ex and Nff_in, number of excitatory and inhibitory feedforward (FF) input; CommonNff_ex and Nff_in, percentage of excitatory and inhibitory FF input that is shared by two neurons; Gff_e and Gff_i, conductance of the excitatory and inhibitory FFinput; $, membrane time constant; $adp and $AHP, time constants of adp and AHP conductance; td, synaptic time delay; APamp and $spk, amplitude and decayingtime constant of action potential; Abref, absolute refractory period; E, reversal potential of sodium (Na), chlorine (Cl), potassium (K), AHP, and adp current; Vrest,resting membrane potential; Vthresh_base, membrane potential of baseline spiking threshold; Vthresh_elv, elevation of spiking threshold; $thresh_elv, decaying timeconstant of elevated spiking threshold; FF input rate, firing rates of the input neurons.

853CIRCUIT MECHANISMS OF SPIKE-TIMING CORRELATIONS

J Neurophysiol • doi:10.1152/jn.00775.2012 • www.jn.org

at CAPES - U

sage on April 19, 2013http://jn.physiology.org/

Dow

nloaded from

Huang and Lisberger (2013), J. Neurophysiol. 109:851-866

Page 19: Como escrever um art

051706-9 Bandos, Rockette, and Gur: Subject-centered free-response ROC (FROC) analysis 051706-9

TABLE II. Estimated power for a comparison of two diagnostic modalitiesunder the paired design using the permutation test. [The estimates are basedon 250 simulated dataset each of which is analyzed based on 250 randompermutations. The number of subjects in the groups with 0, 1, and 2 targets are120, 80, and 40, respectively. FROC parameters in the headings identify thesimulation scenario for the second diagnostic modality. The distribution ofthe output of the first diagnostic modality corresponds to TPF = 0.7 and P(X< Y) = 0.7, hence the corresponding cell provides the estimates for the type Ierror rate. For all scenarios the FPR is 2.0, and all characteristics had the samevalue for both groups of subjects with 1 and 2 targets. Considered values ofthe guessing parameter ! correspond to the probabilities 0.1, 0.3, and 0.6 ofhitting a target with a single mark in a sample with a given composition.]

P(X < Y)

Guessing parameter TPF Method 0.7 0.9

! = 0.11 0.7 Target-centered 0.05 0.10Subject-centered 0.06 0.09

0.8 Target-centered 0.56 0.76Subject-centered 0.48 0.70

! = 0.38 0.7 Target-centered 0.04 0.25Subject-centered 0.05 0.24

0.8 Target-centered 0.52 0.93Subject-centered 0.48 0.90

! = 1.00 0.7 Target-centered 0.04 0.48Subject-centered 0.04 0.48

0.8 Target-centered 0.45 0.98Subject-centered 0.41 0.97

research.15, 16, 32 The general problem is frequently describedas a nonignorable cluster size, which cannot be adequatelyaddressed by the conventional marginal models.15 One ofthe solutions to this problem is to consider subject-specificrather than population-averaged estimates,15 which is asymp-totically equivalent to using marginal estimates weighted ac-cording to the cluster size.16 In this general context our ap-proach can be viewed as a simple model-free subject-centered(i.e., subject-specific) method for analysis of FROC data(which is frequently associated with nonignorable cluster-size), which can be implemented using reweighted target-centered (population-averaged) FROC estimates.

An alternative to the conventional FROC method of perfor-mance analyses in detection and localization task is providedby the region-of-interest (ROI) approach.30, 31 However, dueto the use of marginal probabilities in defining rates for clus-tered ROC data, the summary indices of the ROI approachare also target-centered. The subject-centered reformulationof the ROI performance curve and related indices could bedeveloped using the approach similar to the one applied inthis paper.

The developed overall summary index of the subject-specific FROC curve can also be viewed as a special caseof the general weighted index with weights reflecting relativeimportance of subset of subjects. However, while selection ofweights for the general index could be arbitrary, weights ofsubject-centered FROC curve are determined by the a prioriknown cluster size, and consequently, has an objective prob-abilistic interpretation. Using the derived formulation of thesubject-centered FROC curve, many conventional summaryindices could be derived in a straightforward manner.

We discussed several important properties of the subject-centered approach. In scenarios where the association be-tween the number of targets and performance characteristicsis not substantial, the estimates of subject-centered quantitiescould be numerically similar to their target-centered coun-terparts. In these scenarios, the subject-centered and target-centered differences between modalities are likely to be inthe same direction and of similar magnitude; and a lower sta-tistical power of subject-centered techniques can make themless attractive than conventional target-centered approaches.When statistical power becomes an issue, the subject-centeredapproach could be used for verifying robustness of theinferences.

The approach presented in this paper combines FROCcurves corresponding to groups of subjects with differentnumber of targets by averaging the operating points corre-sponding to the same rating threshold. In practice, the deci-sion threshold regarding a subject could naturally depend onthe number of known targets (which often impacts the numberof reported findings). Hence, it would be natural to combinethe group-specific curves by averaging the points correspond-ing to the same decision threshold, which would most likelycorrespond to different ratings in different groups. Thus, anatural extension of the approach presented here would beto consider vertical averaging as well as other practically rea-sonable types of calibration approaches. Another practicallyuseful direction for future research would be to develop anapproach for the analysis of multireader studies, which arecommonly employed in the evaluation of detection and local-ization systems.

The developed approach most directly impacts diagnostictest evaluation field. Assessment of diagnostic performanceis increasingly more focused on the detection and localizationtechniques used for identifications of multiple targets per sub-ject (e.g., nodules in the lungs, affected lymph nodes, massesin the breast). The analytical method we develop helps ad-dress a frequently relevant question that cannot be answeredby the conventional FROC curve and helps avoid erroneousimpression of the superiority of practically suboptimal diag-nostic techniques. As such, this method can improve multi-ple stages of development, optimization, evaluation, regula-tory approval, and practical utilization of diagnostic systemsby helping identify diagnostic systems that are beneficial intasks where patient-centered characteristics are important.

ACKNOWLEDGMENT

This research was in part supported by the National Insti-tute of General Medical Science of the National Institutes ofHealth under Award No. R01GM098253.

a)Author to whom correspondence should be addressed. Electronic mail:[email protected]; Telephone: +00-412-383-5738; Fax: +00-412-624-2183.

1J. P. Egan, Signal Detection Theory and ROC Analysis (Academic, NewYork, 1975).

2J. A. Swets and R. M. Picket, Evaluation of Diagnostic Systems: Methodsfrom Signal Detection Theory (Academic, New York, 1982).

Medical Physics, Vol. 40, No. 5, May 2013

Bandos et al. (2013), Medical Physics 40:051706-9

Two major themes were highlighted during the interviews aboutthe delivery experiences including thoughts and perception ofdeath and dealing with gaps in memory.

Thoughts and perception of death. Many women men-tioned death repeatedly throughout their interviews and discussedthe impression that death was close and imminent and in somecases thinking that they were already dead.

‘‘I thought I would die… I could die at that time. Especially when thedoctor showed the dress he was wearing… Where I was lying, I sawthat that doctor’s dress was soaked with blood. And then he squeezed, isit gauze or something, and I saw the blood. I was afraid at that timethat I would die.’’ (37 years old, near miss, live birth)

‘‘I thought I was dead, but when I became conscious I realized that Iwasn’t feeling the abdominal pains any longer, and there was a plasteron my belly.’’ (35 years old, near miss, stillbirth)

Table 1. Criteria to identify potentially life-threatening conditions and near miss [16].

POTENTIALLY LIFE-THREATENING CONDITIONS

Severe complications

1. Severe postpartum hemorrhage: genital bleeding after delivery, with at least one of the following perceived abnormal bleeding (1000 mL or more) or any bleedingwith hypotension or blood transfusion.

2. Severe preeclampsia: Persistent systolic blood pressure of 160 mmHg or more or a diastolic blood pressure of 110 mmHg; proteinuria of 5 g or more in 24 hours;oliguria of ,400 ml in 24 hours; and HELLP syndrome or pulmonary edema. Excludes eclampsia.

3. Eclampsia: generalized fits in a patient without previous history of epilepsy. Includes coma in preeclampsia.

4. Sepsis or severe systemic infection: presence of fever (body temperature .38uC), a confirmed or suspected infection (e.g. chorioamnionitis, septic abortion,endometritis, pneumonia), and at least one of the following- heart rate.100, respiratory rate.20, leukopenia (white blood cells ,4000), leukocytosis (white blood cells.12 000)

5. Ruptured uterus: ruptured uterus during labour

Critical Interventions

1. Use of blood products

2. Laparotomy (including hysterectomy, excluding C-section)

3. Admission to Intensive Care Unit/recovery room .= 6 hours

NEAR-MISS CRITERIA

Clinical Organ Dysfunction

1. Acute cyanosis

2. Gasping

3. Respiratory rate .40 or ,6 bpm

4. Shock

5. Cardiac Arrest

6. Oliguria non-responsive to fluids or diuretics

7. Any loss of consciousness lasting .12 hours

8. Stroke

9. Uncontrollable fit/status epilepticus

10. Global paralysis

11. Jaundice in the presence of pre-eclampsia

Laboratory markers of organ dysfunction

12. O2 saturation ,90% for more than 60 min

13. PaO2/FiO2,200 mmHg

14. Creatinine.300umol/ml or .3.5 mg/dL

15. Bilirubin.100umol/L or .6.0 mg/dL

16. pH,7.1

17. Lactate .5mEq/L

18. Acute thrombocytopenia (,50,000 platelets)

Management-based proxies

19. Hysterectomy following infection of hemorrhage

20. Use of continuous vasoactive drugs

21. Cardio-pulmonary resuscitation

22. Dialysis for acute renal failure

23. Any non-anesthetic intubation or ventilation

24. Transfusion of .5 units of blood or red cells

doi:10.1371/journal.pone.0044536.t001

Severe Maternal Morbidity and Quality of Care

PLOS ONE | www.plosone.org 4 August 2012 | Volume 7 | Issue 8 | e44536

Tunçalp et al. (2012), PLoS ONE 7(8):e44536

Sensors 2013, 13 5331

Figure 7. Effect of choice of wavelet.

As with Experiment 1, classifiers are very competent at identifying inertial movement activities(A1–A4), but game activities (A5–A7) pose more of a challenge. The inertial activities are very distinctas the energy during these activities is unique. They range from zero energy output when the player isstationary to maximum energy when the player is sprinting. The confusion encountered between thegame activities is due to the similar motions being performed. In soccer these motions involve lowerleg movement while in hockey these game activities involve the upper arm movement. Table 5 providesthe parameters for the highest classification accuracy attained for each respective sport. Tables 6 and 7display their confusion matrix data. It took 5 ms for this approach to classify the extracted DWT features.

Table 5. Highest classification accuracies attained for Experiment 2.

Device Sport Classifier DWT lvl Mother W. Length (Sec) F-Measure

Smartphone Soccer NaiveBayes 6 rbio1.1 3 0.799Smartphone Hockey MLP 6 bior1.1 7 0.823

Table 6. Confusion matrix for Football Smartphone data for Experiment 2.

Activity A1 A2 A3 A4 A5 A6 A7

A1 28 0 0 0 0 0 0A2 0 30 0 0 0 0 0A3 0 0 30 0 0 0 0A4 0 0 0 30 0 0 0A5 0 1 0 0 24 4 1A6 0 2 0 0 9 12 7A7 0 1 0 0 12 2 15

Mitchell et al. (2013), Sensors 13:5317-5337

Page 20: Como escrever um art

Figuras retiradas de: http://abacus.bates.edu/~ganderso/biology/resources/writing/HTWtablefigs.html

Page 21: Como escrever um art

Copelli et al. (2002), Physical Review E 65:060901(R) denoting some kind of memory effect, a phenomenon ob-served previously by Chialvo et al. !8" and Lewis and Rinzel!9".Due to a chain-reaction mechanism, the spike of a single

receptor cell is able to excite all the other cells. The sensi-tivity per neuron has thus increased by a factor of L. This canbe clearly seen in Fig. 2, which shows the average firing rateper cell F in the coupled system #top panels$, as well as theamplification factor A%F/ f #bottom panels$. This is a some-what expected effect of the coupling: neuron j is excited bysignal events that arrive not only at neuron j but elsewhere inthe network.More surprising is the fact that the dynamic range #the

interval of rates where the neuron produces an appreciablebut still nonsaturating response$ also increases dramatically.This occurs due to a second effect, which we call the self-limited amplification effect. Remember that a single spike ofsome neuron produces a total of L neuronal responses. Thisis valid for small rates, where inputs are isolated in timefrom each other. However, for higher signal rates, a newevent occurs at neuron k before the wave produced by neuronj has disappeared. If the initiation site k is inside the fronts ofthe previous wave !e.g., the events signaled by arrows in Fig.1#b$", then two events produce 2L responses as before. But ifk is situated outside the fronts of the j-initiated wave !as inthe first input events shown in Fig. 1#b$", one of its frontswill run toward the j-wave and both fronts will annihilate.Thus, two events in the array have produced only L exci-

tations #that is, an average of L/2 per input event$. So, in thiscase, the efficiency for two consecutive events #within a win-dow defined by the wave velocity and the size L of the array$has been decreased by half. If more events #say, m) arriveduring a time window, many fronts coexist but the averageamplification of these m events #how many neurons eachevent excites$ is only of order L/m .Therefore, although the amplification for small rates is

very high, saturation is avoided due to the fact that the am-plification factor decreases with the rate in a self-organized

nonlinear way. The amplification factor A shown in Figs.2#c$ and 2#d$ decreases in a sigmoidal way from A!O(L)for very small rates #since a single event produces a globalwave$ to A!1 for large rates, where each cell responds as ifisolated since waves have no time to be created or propagate.The role of the system size L for low input rates becomes

clear in Fig. 2#c$: the larger the system, the lower the rate rhas to be in order for the amplification factor to saturate atO(L). In other words, we can think of a decreasing crossovervalue r1(L) such that the response is well approximated byF(r)!L f (r)&Lr for r"r1(L). In this linear regime con-secutive events essentially do not interact. Larger systemsizes increase not only the overall rate of wave creation!'1#(1#r)L" but also the time it takes for a wave to reachthe borders and disappear. In the opposite limit of large inputrates, the behavior of the response is controlled by the abso-lute refractory period ( , as shown in Fig. 2: F and f saturateat r2%1/( for f$r2, independently of the system size.So what happens for intermediate input rates, i.e., r1"r

%r2? The answer is a slow, Weber-Fechner-like increase inthe response F, as can be seen in Fig. 3. The logarithmicdependence on r is a good fit of the curves for about threedecades.Motivated by results obtained with more realistic ele-

ments !6" we introduced a relative refractory period in ourCA model. We first define a time window M after a spikeduring which no further spikes can occur #absolute refractoryperiod$. In the following n#M#2 steps #relative refractoryperiod$, a single input does not produce a spike but two ormore inputs can elicit a cell spike if they arrive within atemporal summation window ) #details of this model will bedescribed in a forthcoming full paper$. This ingredient pro-duced the appearance of a power law F(r) curve #Stevenslaw !1,2"$, as shown in Fig. 4. Notice that the exponent de-pends on the relative refractory period. The appearence of apower law transfer function is a robust effect also observedin coupled maps systems !6".

FIG. 3. F&( vs input rate r for L!5000 #open symbols$ andL!200 #filled symbols$ for different values of n. A L!25000 curvefor n!50 #crosses$ shows no difference to the L!5000 case.Straight lines are intended as a guide to the eye. Inset: F(r) for theHodgkin-Huxley system.

FIG. 4. Neuronal ‘‘Stevens law’’ F*r+ in automata which takestemporal summation effects into account #see text for details$. Fir-ing rate F vs input rate r for a CA with n states and an absoluterefractory period of M!3 time steps. Filled circles: n!15, )!10, +!0.38; open circles: n!100, )!80, +!0.44.

RAPID COMMUNICATIONS

PHYSICS OF PSYCHOPHYSICS: STEVENS AND . . . PHYSICAL REVIEW E 65 060901#R$

060901-3

Figura inserida dentro da figura (inset)

Shenvi et al. (2011), J. Chem. Phys. 134:144102

Inset

lines of evidence that fusion occurs preferentially in obligatecomplexes, including a lower tendency for fusing subunits tobe observed in isolation and a much higher propensity for corre-latedmessenger RNA (mRNA) expression. Importantly, we showthat the observed assembly conservation does not arise from atendency for fusion to occur in obligate complexes.Taken together, our results provide robust evidence of evolu-

tionary selection for assembly-conserving gene fusion events.Importantly, we emphasize that this is not an absolute rule,and that a slight majority of fusions do in fact disrupt assembly.However, one must consider that random subunit fusions wouldconserve (dis)assembly in only a very small fraction of cases andthus the evolutionary frequency of (dis)assembly-conserving fu-sions is far higher than would be expected by chance.

Optimization of Assembly upon Fusion throughSimplification of Protein Complex TopologiesDespite the strong selection for assembly conservation, it is clearthat many evolutionary fusion events have modulated existingassembly pathways. Thus, we hypothesized that there mayhave been further evolutionary selection for fusion events thatoptimize assembly. For instance, although any fusion event be-tween subunits will reduce the number of assembly steps by atleast one, greater simplification will occur if the fusion involvestwo subunits that both share other interaction partners, as thiswill result in fewer intermolecular interfaces in the fused complex(Figure 4A).We compared the reduction of intersubunit interfaces in pro-

tein complexes upon fusion with what would be expected iffusion occurred randomly between subunits (essentially as inFigure 3C). Interestingly, we observed that gene fusion eventstended to reduce the number of interfaces by considerablymore than would be expected by chance (2.90 versus 2.21,p = 13 10!4; Figure 4B). This strongly implies evolutionary selec-tion for fusions that maximally reduce the number of interfaces in

a protein complex, thereby simplifying their topologies and as-sembly pathways. We suggest that having fewer intersubunit in-terfaces would both lower the risk of misassembly and increasethe speed of assembly.We investigated this phenomenon further by searching high-

throughput interaction data for interacting proteins with evi-dence of fusion occurring between them. Each binding partnershared by a pair of proteins will further reduce the number ofdistinct protein-protein interactions by one upon fusion (Fig-ure 4C). Pairs of proteins from Escherichia coli that undergofusion share a mean of 19.2% of their binding partners,compared with 13.2% expected for random fusions within theinteraction network (p = 3 3 10!4; Figure 4D). Similar trendsare also seen in yeast (14.7% versus 7.1%, p = 0.008), humans(23.2% versus 16.4%, p = 0.04), and a large number of otherspecies (Table S3). Contrary to our structure-based analysis, iftwo proteins share a binding partner in these high-throughputdata, it does not necessarily mean that they are interacting simul-taneously (Kim et al., 2006a). Nevertheless, these results implyevolutionary selection for fusion events that optimize network to-pology by reducing the number of discrete protein interactions,in analogy to the simplification of assembly.

Protein Structural Constraints on FusionBecause gene fusion essentially forces a pair of proteins tointeract permanently with each other, the influence of fusion onassembly may be limited by protein structural constraintsdictating whether or not a fusion event is likely to occur. Uponfusion of two proteins, the C terminus of the first will becomecovalently linked to the N terminus of the second. If these terminiare far apart in the prefusion complex, fusionwould require eitherthe addition of a lengthy linker or a major disruption of the inter-subunit interface. However, if these termini are close in space,fusion would be more likely to conserve the existing quaternarystructure (Figure 5A).

Figure 3. Evolutionary Conservation of Protein Complex (Dis)Assembly Pathways upon Gene Fusion(A) Comparison of the frequency of evolutionary gene fusion events in heteromeric subunits pairs that would either conserve or modify (dis)assembly pathways

upon hypothetical subunit fusion.

(B) Comparison of observed (dis)assembly conservation from in vitro experiments and in silico predictions with the intrinsically expected values for complexes

with the same topologies.

(C) Direct comparison of predicted (dis)assembly conservation and randomly occurring fusions in complexes with more than two unique subunits. Error bars

represent the SEM.

See also Figure S3 and Table S1.

Cell 153, 461–470, April 11, 2013 ª2013 Elsevier Inc. 465

Marsh et al. (2013), Cell 153:461-470

Figura composta. Quando existem gráficos e/ou outros tipos de ilustrações inter-relacionados, pode ser mais eficiente construir uma figura composta a partir deles. Uma figura composta combina vários gráficos e/ou outras ilustrações e uma só figura com uma única legenda. Cada figura e ilustração deve ser indicada claramente por uma letra (maiúscula ou minúscula dependendo da revista ) e, quando referida no texto, deve ser identificada por essa letra, p. ex. (Fig. 3B).

Page 22: Como escrever um art

oftenmore flexible in isolation and tend to undergo larger confor-mational changes upon binding (Marsh and Teichmann, 2011;Marsh et al., 2012). Furthermore, the presence of multipledistinct subunits means that heteromers have far more potentialroutes of assembly, which could complicate predictions.To test the association between interface size and assembly,

we performed nanoelectrospray ionization (nESI)-MS experi-ments (Sobott et al., 2002; Hernandez and Robinson, 2007) onfive of the prefusion complexes identified above in order todetermine their reversible in vitro disassembly pathways. Repre-sentative mass spectra are shown in Figures 2A and S1.

Although the process of disassembly is different from that of as-sembly, the two processes are generally reversible in homomericcomplexes (Levy et al., 2008). To further support this notion, weshow that the prefusion complexes studied here can be reas-sembled from their dissociated states without the formation ofoff-pathway subcomplexes, thus demonstrating the reversibilityof assembly and disassembly in heteromers (Figure S2). There-fore, we refer to ‘‘(dis)assembly’’ as this reversible process wecan probe in solution.In addition to the MS experiments, we also identified four pre-

fusion complexes in which (dis)assembly pathways could be

Figure 2. Experimentally Characterized (Dis)Assembly Pathways of Heteromeric Prefusion Complexes(A) (Dis)assembly pathways of complexes characterized by nESI-MS aswell as representativemass spectra. See Table S2 for a full list of subcomplexes identified

under different solution conditions.

(B) (Dis)assembly pathways of complexes identified from previously published experiments. In the graph representations of protein complexes, interfaces that

undergo fusion are shown in orange.

See also Figure S1.

Cell 153, 461–470, April 11, 2013 ª2013 Elsevier Inc. 463

To illustrate this, we consider the case of the prefusion com-plex Klebsiella aerogenes urease (Jabri and Karplus, 1996),where fusion is known to occur between genes correspondingto the g and b subunits. Because the g subunit fuses upstreamof the b subunit, fusion will result in a linkage between the C ter-minus of the g subunit and the N terminus of the b subunit. Exam-ination of the complex crystal structure reveals that these terminiare in fact quite close, separated by only 16 A (Figure 5B). Wewillrefer to this as the ‘‘fusion distance.’’ The ‘‘reverse distance’’ (iffusion were to occur in the opposite gene order [i.e., b upstreamof g]) is much greater (66 A).

We systematically compared the fusion and reverse dis-tances of all prefusion complexes in our data set in which thesubunits correspond closely to the full-length genes (Figure 5C).We observe that for cases in which fusion has occurred in only asingle gene order, the fusion distances are shorter than thereverse distances in 35/47 (74.5%) fusion events (p = 0.001,binomial test). Furthermore, the mean fusion distance is14.1 A shorter than the mean reverse distance (p = 0.001, Wil-coxon signed-rank test). Importantly, this tendency for fusionto occur between the closer termini is not related to the (dis)as-sembly conservation demonstrated earlier (see ExtendedExperimental Procedures). Therefore, the order of gene fusionis closely related to the structure of protein complexes, with sig-nificant evolutionary selection for fusion events that link moreproximal termini. This is consistent with a previous study inwhich pairs of domains that were observed to interact both in-ter- and intramolecularly, which included several fusions, wereshown to conserve their binding orientations in most cases(Kim et al., 2006b).

Figure 4. Evolutionary Simplification of Pro-tein Complex Assembly via Gene Fusion(A) Graph representation of a prefusion complex

(PDB ID: 1RM6) in which the subunits that fuse (a

and g) share interaction partners, leading to a large

decrease in the number of interfaces upon fusion.

(B) Mean reduction in interfaces (per protomer)

upon fusion for 36 fusion events, compared with

random fusions within the same complexes.

(C) Protein-protein interaction network for the

E. coli proteins cysI and cysJ showing that four out

of nine binding partners (magenta) are shared

between the two; thus, the total number of discrete

interactions will be reduced by four upon fusion.

(D) Comparison of shared binding partners be-

tween proteins that undergo fusion from high-

throughput protein interaction data for E. coli (n =

61), yeast (n = 16), and humans (n = 16). Com-

parisons for 411 other species are provided in

Table S3. Error bars represent the SEM.

See also Table S1.

DISCUSSION

By comparing the identities of assemblyintermediates observed in nESI-MS ex-periments with the structures of proteincomplexes, we were able to gain a funda-

mental mechanistic insight into protein assembly. Essentially,assembly in both homomeric and heteromeric complexes isdriven by the hierarchy of interface sizes within a protein com-plex, such that assembly intermediates will tend to possesslarger intersubunit interfaces. By taking advantage of Nature’sgrand protein engineering experiment, i.e., the large number ofgene fusion events that have occurred throughout evolutionaryhistory, we show that these assembly intermediates are underevolutionary selection. This suggests that modifying existing as-sembly pathways has a significant tendency to lower an organ-ism’s evolutionary fitness.Although numerous functional benefits arise from the forma-

tion of multisubunit complexes, the increased complexity isassociated with a greater risk of misassembly. Our results sug-gest that evolution has selected for protein complexes thatassemble via well-defined, ordered pathways. Presumably, thisleads to faster and more efficient formation of the functionalcomplexes. If these assembly pathways become modified inevolution, the identities of the assembly intermediates willchange, potentially increasing their susceptibility to misassem-bly or aggregation. Thus, the evolutionary conservation and opti-mization of assembly pathways revealed here provide a potentialmeans of minimizing these risks while maintaining the advan-tages of complex formation. Furthermore, our results have prac-tical implications in that the identities of assembly intermediatescan now be predicted from the three-dimensional structures ofprotein complexes. This may provide clues as to howmisassem-bly occurs and how it might be prevented.The assembly and quaternary structure of protein complexes

are highly important for determining which gene fusion events

466 Cell 153, 461–470, April 11, 2013 ª2013 Elsevier Inc.

are selected. Since the vast majority of hypothetical fusionevents would modify existing assembly pathways, this helps torationalize why most protein interactions are not predicted byfusion-basedmethods (e.g., only 3.7%of the nonredundant sub-unit pairs in our data set are associated with evolutionary fusionevents). In addition, we demonstrated further selective pressureupon fusion related to assembly optimization and the require-ment for covalent linkage of termini.These findings provide amore detailed, structural understand-

ing of fusion that should allow one to better interpret and utilizefusion-based predictions. Furthermore, fusion-based strategieshave been gaining prominence in the field of protein engineering(Padilla et al., 2001; Sinclair et al., 2011; Lai et al., 2012). Our in-sights can also potentially guide future protein engineeringapproaches: if covalent fusion of subunits is desired in order tostabilize a complex, success is most likely to be achieved withengineered fusions that conserve existing assembly pathwaysand in which the gene order is chosen to best match the existingquaternary structure.This work also reveals an evolutionary connection between

protein and genome structure. In 13% of the cases we exam-ined, fusion occurred in both orders (i.e., AB and BA), in similarityto previous work showing that the vast majority (!92%) ofdomain pairs occur in only a single order (Apic et al., 2001). Ithas been suggested that the order of domain combinations inmultidomain proteins is due primarily to historical chance, asdomain pairs with the same structure and function can occur inboth orders given the presence of a long interdomain linker(Bashton and Chothia, 2002; Vogel et al., 2004). Thus, multido-main proteins are highly versatile and a short interterminal fusiondistance is not a strict requirement. However, our results suggestthat the formation of a long linker (as required to preserve thequaternary interaction) can be a limiting factor, because weobserve a strong preference for fusions in the order correspond-ing to the shorter interterminal distance. Therefore, our work im-plies that, rather than being an evolutionary artifact, the order in

which genes fuse can be directly related to the structural fea-tures of the proteins they encode, thus demonstrating a simpleway in which protein structure can influence genomicorganization.Finally, our results highlight a fascinating connection between

evolutionary processes, which act over millions of years, and as-sembly, which occurs on the order of seconds. Although the as-sembly pathways of homomeric complexes were previouslyfound to reflect their evolutionary histories (Levy et al., 2008),here we observed an opposite phenomenon in which the evolu-tionary process of gene fusionmimics heteromer assembly in or-der to conserve the existing assembly pathway.

EXPERIMENTAL PROCEDURES

Structural Data SetsWe started with the full set of heteromeric biological units from protein crystal

structures in the RCSB Protein Data Bank (Berman et al., 2000). We filtered

heteromers formed by polypeptide cleavage by identifying different chains

with the same external database reference identifier (db_id, which generally

corresponds to the UniProt sequence) but with a sequence identity of

<90%. Only subunits with at least 50 residues were considered. Protein com-

plexes containing nucleic acids were ignored because we have no way of reli-

ably predicting (dis)assembly for these cases.

We filtered subunit pairs from the protein complexes for redundancy, first by

grouping them by their SUPERFAMILY domain assignments (Gough et al.,

2001) and then by calculating the sequence identities between all pairs in

each group. If both subunits from a pair had >70% sequence identity to

another pair, only the pair from the higher-resolution crystal structure was

kept. After the sequence redundancy filtering was completed, we had a total

of 2,544 nonredundant heteromeric subunit pairs. All subunit pairs used in

this study, along with their various relevant properties, are provided in

Table S1.

For each complex, we calculated the size of the interfaces between all pairs

of subunits using AREAIMOL (Collaborative Computational Project, Number 4,

1994). In complexes containing more than one copy of each subunit, there can

be more than one interface for a given pair of subunit types (e.g., the two

different a-b interfaces in 2F9Y; see Figure 2A). Therefore, in compiling our

nonredundant set of subunit pairs, we only considered the largest interface

Figure 5. Protein Structural Determinants of Gene Fusion(A) Fusion may be unable to occur if the protein termini are too far apart in the prefusion complex. However, if the C terminus of one subunit is close to the N

terminus of the other, a productive fusion is more likely.

(B) Comparison of fusion and reverse distances between the g and b subunits of K. aerogenes urease (PDB ID: 1KRA; only one abg trimer from the full (abg)3nonamer is shown).

(C) Box plot comparison of fusion and reverse distances (in A) in 47 fusion events from full-length proteins in which fusion occurs in only a single gene order; black

bars represent the medians, and boxes and whiskers indicate the distribution quartiles.

See also Table S4.

Cell 153, 461–470, April 11, 2013 ª2013 Elsevier Inc. 467

Exemplos de figuras compostas Marsh et al. (2013), Cell 153:461-470

Page 23: Como escrever um art

Evans et al. (2011), Med. Phys. 38:1448-1458

Evans et al. (2011), Med. Phys. 38:1448-1458

Garcia-Perez et al. (2005), J. Neurosci. 25:2597-2608

Outros exemplos de ilustrações

model remains 60 mm by 60 mm by 30 mm and the length of eachdipole remains 29 mm with a 0.5-mm gap in the middle. Thesubstrates for the front, back, and circuit boards are 1 mm-thickFR4 with relative permittivity 4.6 and loss tangent 0.02. The di-rections of the amplifier MGA53543 are marked by the black ar-rows. The lumped elements mounted on the circuit board aremarked in different colors. C1 ! 100 pF, C2 ! 10 nF, andL1 ! L2 ! 27 nH. Simulation performed at 885.45 MHz for avertically polarized incident wave is shown in Fig. 3C. Alongthe direction from the source to the receiver, the polarization an-gle rotates by "16.75 degrees and !16.75 degrees for front-sideincidence and back-side incidence, respectively. The dc voltage ofthe amplifiers for these results is 0.533 V.

Finally, the Faraday-like rotation of the proposed gyrotropicmetamaterial is confirmed in a transmission measurement experi-

ment. The photo of a metamaterial sample is shown in Fig. 4A,with the top-layer circuit board seen in Fig. 4B. Blue and redarrows indicate the directions of the amplifiers. A two-ridge hornantenna, serving as the source, is polarized along the vertical di-rection and driven with power at 10 dBm by a Hewlett-Packard8350B Sweep Oscillator. A 133 mm-length printed dipole anten-na on a 1 mm-thick FR4 substrate serves as a detector on theother side of the sample and is rotated to measure the polariza-tion of the field through a Hewlett-Packard 8756A Scalar Net-work Analyzer. We first measured the polarization change withthe wave incident from the front side to the back side of the sam-ple, then flipped the sample horizontally and measured the po-larization change with the wave incident from the back side to thefront side. Along the direction from the source to the detector, weidentify the change in the polarization angles, at a dc voltage of

L1 & L2C1 C2Amplifier

DC &GND

B

30

210

60

240

90

270

120

300

150

330

180 0 0.2 0.4 0.6 0.8 1

C

PowerF to BB to F

PolarizationF to BB to F

L2

L2

L2

L2

C1 C2 L1DC

IN

OUT

A

GND

GND

Fig. 3. Gyrotropic metamaterial for vertical polarization and its simulation results. (A) The circuit schematic of a basis assembly. (B) The structure schematic of aunit cell. (C) The simulated polarizations (solid) and power patterns (dashed) at the receiver when a vertically polarized wave at 885.45 MHz is incident in twoopposite directions.

940 942 944 946 948 95045

60

75

90

105

120

135

Frequency (MHz)

Ang

le o

f Max

. Rec

eive

d P

ower

F to BB to F

CA

D

Back

Front

B30

210

60

240

90

270

120

300

150

330

180 0F to BB to F 0.2 0.4 0.6 0.8 1

0.1! 0.1!

0.1!

Front

Fig. 4. Photos of the single-polarization gyrotropic metamaterial sample and its experimental results. (A) The photo of a single-layer gyrotropic metamaterialfor vertical polarization. (B) The photo of the circuit board in the sample. (B, Inset) Photos of themetallic pattern on the front and the back board of the sample.(C) Angles at which the received power is maximized for a given incident frequency. (D) Measured power patterns calibrated from the free-space measurementwith a vertically polarized wave incident at 946 MHz.

13196 " www.pnas.org/cgi/doi/10.1073/pnas.1210923109 Wang et al.

Wang et al. (2012), PNAS 109:13194-13197

Page 24: Como escrever um art

Resumo  gráfico  (graphical  abstract)  •  Algumas  revistas  pedem  que  o  ar,go  seja  acompanhado  de  

um  resumo  gráfico.  •  Normalmente,  o  resumo  gráfico  é  mostrado  nas  versões  

online  do  ar,go  e  do  índice  do  volume  da  revista  (volume  contents).    

•  O  resumo  gráfico  é  uma  única  figura  (simples  ou  composta)  que  descreve  de  forma  visual,  pictórica  e  concisa  a  principal  mensagem  do  ar,go.  

•  A  figura  correspondente  ao  resumo  gráfico  deve  ser  subme,da  como  uma  figura  separada  no  processo  de  submissão.  

•  Veja  a  página  da  Editora  Elsevier  para  exemplos  de  resumos  gráficos:  hTp://www.elsevier.com/authors/graphical-­‐abstract    

Page 25: Como escrever um art

Exemplo da versão online de um artigo recente na revista Cell. Note que além do resumo gráfico e do resumo (summary), há um campo para highlights.

Page 26: Como escrever um art

Exercício  

•  Selecione  as  revistas  cien0ficas  mais  importantes  da  sua  área,  ou  aquelas  em  que  você  gostaria  de  publicar  um  ar,go;  

•  Leia  alguns  ar,gos  dessas  revistas;  •  Preste  atenção  nas  tabelas  e  figuras  dos  ar,gos;  

•  Tente  verificar  se  elas  estão  mais  ou  menos  de  acordo  com  as  sugestões  dadas  nesta  aula.  

Page 27: Como escrever um art

A  escolha  da  revista  

•  A  escolha  da  revista  requer  uma  análise  cuidadosa.  

•  Há  vários  fatores  a  se  considerar  na  hora  de  escolher  a  revista.  

Page 28: Como escrever um art

•  A  revista  tem  revisão  por  pares?    •  A  revista  publica  atualmente  ar,gos  como  o  seu?  

•  Se  es,vesse  procurando  um  ar,go  como  o  seu,  em  que  revista  o  procuraria?  

•  Quais  são  as  revistas  de  melhor  reputação  na  sua  área?  

•  Pergunte  a  colegas  que  revistas  eles  respeitam.  

Page 29: Como escrever um art

•  Dê  uma  olhada  nos  ar,gos  recentes  da  revista  e  julgue  sua  importância.  

•  O  corpo  editorial  é  composto  por  líderes  nos  seus  campos?  

•  Qual  o  fator  de  impacto  da  revista?  •  Quais  são  as  revistas  mais  prováveis  de  serem  citadas  pelos  pesquisadores  na  sua  área?  

Page 30: Como escrever um art

•  A  revista  é  publicada  por  uma  sociedade?    •  As  revistas  de  sociedades  são,  em  geral,  as  de  maior  pres0gio  e  de  maior  circulação.    

•  Tenha  cuidado  com  as  revistas  novas  (impressas  ou  de  acesso  livre  pela  internet),  especialmente  com  aquelas  não  patrocinadas  por  uma  sociedade.  

Page 31: Como escrever um art

•  A  revista  é  indexada  pelas  principais  bases  de  dados  eletrônicas:  Medline,  Biological  Abstracts,  Chemical  Abstracts,  Current  Contents,  etc?  

•  Existem  revistas  cujos  leitores  você  precisa/quer  influenciar?    

•  Que  revistas  poderiam  dar  um  “tratamento  justo”  ao  seu  ar,go?    

Page 32: Como escrever um art

•  Qual  a  periodicidade  da  revista?    •  Qual  o  tempo  médio  entre  a  data  de  recebimento  de  um  ar,go  e  a  data  de  sua  publicação?    

•  Usando  as  informações  dadas  em  “date  submiTed”  e  “date  accepted”  e  com  a  data  de  publicação  do  ar,go  em  mãos  se  pode  es,mar  a  duração  do  processo  de  revisão  e  o  tempo  transcorrido  entre  a  aceitação  e  a  publicação  de  fato.  

Page 33: Como escrever um art

•  Em  que  língua(s)  são  publicados  os  ar,gos  da  revista?  

•  Qual  o  foco  da  revista?    – É  amplo  ou  restrito?  – Que  disciplinas  do  conhecimento  estão  representadas?  

– Qual  a  orientação  de  pesquisa  da  revista:    •  Básica;  •  Teórica;    •  Aplicada?  

Page 34: Como escrever um art

•  Você  gosta  da  aparência  dos  ar,gos  publicados  (formato,  ,po  de  letra  e  es,lo  usado  para  citar  as  referências)?  

•  Caso  relevante,  a  revista  publica  “short  e/ou  rapid  communica,ons”?  

•  As  figuras  publicadas  pela  revista  têm  a  resolução  que  você  precisa?  

Page 35: Como escrever um art

•  A  rapidez  de  publicação  é  importante?    •  Caso  posi,vo,  revistas  mensais  (monthly)  saem  com  mais  frequência  que  revistas  trimestrais  (quarterly).  

•  Caso  a  escolha  recaia  sobre  uma  revista  de  acesso  livre  (open  access),  que  cobra  dos  autores  pela  publicação:  você  ou  o  seu  grupo/ins,tuição/agência  de  fomento  teria  o  dinheiro  necessário  para  pagar?  

Page 36: Como escrever um art

Respondendo  para  os  revisores  

•  Após  a  submissão  do  ar,go,  o  autor  correspondente  receberá  uma  carta  do  editor  da  revista  com  os  comentários  dos  revisores,  cujas  iden,dades  são  man,das  em  segredo.    

•  A  carta  indicará  uma  de  duas  coisas:  – Rejeição  do  ar,go;  ou    – Aceitação  provisória  do  ar,go.  

Page 37: Como escrever um art

Ar,go  rejeitado  

•  Se  o  editor  rejeitar  o  ar,go,  a  carta  deverá  dar  as  razões  para  essa  decisão.    

•  Neste  caso,  os  autores  devem  ler  os  comentários  dos  revisores  para  determinar  se  o  ar,go  poderia  ser  aceito  se  forem  feitas  certas  mudanças.    

Page 38: Como escrever um art

•  Não  se  deve  tomar  os  comentários  dos  revisores  como  crí,cas  pessoais.  

•  Na  maioria  dos  casos,  o  editor  e  os  revisores  estarão  tentando  ajudar  os  autores  a  produzir  um  ar,go  de  melhor  qualidade.    

•  Em  alguns  casos,  a  rejeição  pode  ser  devida  a  um  momento  inadequado  de  submissão:  a  revista  pode  ter  acabado  de  aceitar  ou  de  publicar  um  trabalho  similar.    

Page 39: Como escrever um art

•  Sempre  se  pode  submeter  o  ar,go  a  uma  outra  revista.    

•  Neste  caso,  é  sempre  bom  levar  em  consideração    os  comentários  dos  revisores.  

•  Mesmo  que  os  autores  sintam  que  os  revisores  não  entenderam  algo  no  ar,go,  outros  revisores  também  poderão  não  entender.    

Page 40: Como escrever um art

•  Se  o  editor  acha  que  o  assunto  do  ar,go  não  se  enquadra  no  escopo  da  revista,  não  há  porque  lutar  contra  isso.    

•  Neste  caso,  não  há  outra  escolha  a  não  ser  submeter  o  ar,go  a  outra  revista.  

•  A  submissão  a  outra  revista  deve  ser  feita  rapidamente.  Alguns  dados  podem  perder  relevância  se  levarem  muito  tempo  para  ser  publicados.  

Page 41: Como escrever um art

Ar,go  aceito  provisoriamente  

•  Neste  caso,  os  autores  precisam  planejar  uma  estratégia  de  revisão  do  ar,go  para  que  ele  seja  aceito  em  defini,vo.    

•  Isto  incluirá  a  resubmissão  do  ar,go  revisado  e  de  uma  carta  com  as  respostas  aos  comentários  dos  revisores.  

•  As  seguintes  sugestões  podem  ajudar  na  revisão:  

Page 42: Como escrever um art

•  Deve-­‐se  ler  todos  os  comentários  dos  revisores  e  do  editor.  

•  Nunca  se  deve  responder  imediatamente.  Deve-­‐se  permi,r  alguns  dias  para  reflexão  sobre  os  comentários.  

•  Se  os  comentários  dos  revisores  e  do  editor  puderem  ser  usados  para  melhorar  o  ar,go,  as  mudanças  sugeridas  por  eles  devem  ser  feitas.  

Page 43: Como escrever um art

•  Depois  dos  dias  de  reflexão,  não  se  deve  perder  tempo  em  responder.    

•  Os  autores  devem  começar  a  rascunhar  uma  resposta  clara,  detalhada,  pensada  e  educada.  

•  Deve-­‐se  evitar  um  tom  defensivo  ou  de  confrontação  na  resposta  aos  revisores.  

•  Os  autores  devem  extrair  informações  úteis  dos  comentários,  aceitar  as  sugestões  que  melhorem  o  ar,go  e,  calmamente,  explicar  o  seu  ponto  de  vista  quando  ele  diferir  do  dos  revisores.  

Page 44: Como escrever um art

•  Deve-­‐se  responder  completamente  a  cada  comentário  na  ordem  em  que  eles  foram  feitos.    

•  As  respostas  devem  ser  enumeradas.    •  Se  necessário,  deve-­‐se  copiar  e  colar  na  carta  os  trechos  do  ar,go  que  mudaram  muito.    

•  Não  há  limite  de  páginas  para  a  carta  de  resposta  dos  autores.    

•  A  maioria  dos  editores  gosta  de  respostas  longas  e  completas.    

Page 45: Como escrever um art

•  Deve-­‐se  alterar  o  ar,go  onde  se  achar  que  as  mudanças  sugeridas  fazem  sen,do.    

•  Os  autores  não  são  obrigados  a  fazer  todas  as  mudanças  sugeridas,  mas  eles  têm  que  responder  a  todos  os  comentários.    

•  Se  uma  sugestão  for  rejeitada,  o  editor  irá  querer  uma  boa  razão  para  isso  com  evidências  apoiadas  pelas  referências.    

•  Dizer  apenas  que  os  autores  preferem  do  jeito  que  está  não  é  uma  boa  razão.  

Page 46: Como escrever um art

•  Os  revisores  nem  sempre  concordam  uns  com  os  outros.    

•  Neste  caso,  os  autores  devem  fazer  uma  escolha.    

•  Devem  decidir  quais  das  recomendações  parecem  mais  válidas  e  devem  escrever  em  sua  resposta  ao  editor  que  os  revisores  fizeram  sugestões  conflitantes  e  que  os  autores  escolheram  aquela  que  lhes  parece  a  melhor  sugestão.  

Page 47: Como escrever um art

•  Se  ficar  óbvio  que  um  revisor  cometeu  um  erro,  deve-­‐se  argumentar  contra  a  sugestão  dele  e  fornecer  evidências  para  mostrar  o  erro.  

•  Algumas  vezes  os  revisores  ou  o  editor  pedem  que  o  tamanho  do  ar,go  seja  reduzido  consideravelmente.    

•  Neste  caso,  os  autores  não  devem  se  sen,r  tão  apegados  às  palavras  que  escreveram  e  devem  encurtar  o  ar,go.  

Page 48: Como escrever um art

•  Os  autores  devem  se  cer,ficar  que  o  que  eles  disseram  na  carta  que  foi  mudado  no  ar,go  tenha  sido  de  fato  mudado,  e  também  que  o  ar,go  modificado  con,nua  de  acordo  com  as  guidelines  da  revista.    

•  Os  editores  ficam  irritados  quando  descobrem  que  os  comentários  feitos  na  carta  de  resposta  não  concordam  com  o  que  está  no  ar,go.      

Page 49: Como escrever um art

A  publicação  de  um  ar,go    deve  ser  celebrada  

•  O  processo  que  leva  à  publicação  de  um  ar,go  em  uma  revista  cien0fica  com  revisão  por  pares  é  um  desafio,  mas  no  fim,  depois  que  todo  o  trabalho  foi  feito  e  o  ar,go  foi  publicado,  é  recompensador  ver  o  ar,go  na  revista.      

•  Isso  merece  ser  celebrado!  

Page 50: Como escrever um art

Razões  pelas  quais  um  ar,go  é  rejeitado  

•  Há  várias  razões  diferentes  pelas  quais  um  ar,go  é  rejeitado,  a  maioria  delas  evitáveis.    

•  Algumas  das  principais  razões  para  rejeição  são  listadas  a  seguir.    

•  Cada  uma  delas  é  igualmente  importante,  pois  os  revisores  tendem  a  focar  em  questões  diferentes  dependendo  das  suas  preocupações  e  conhecimentos  individuais.  

Page 51: Como escrever um art

Desenho  experimental  pobre  e/ou  inves,gação  inadequada  

•  Amostras  com  tamanhos  inadequados;    •  Amostragem  enviesada;  •  Um  ou  mais  conceitos  ambíguos;  •  Incorreções  cien0ficas.  

Page 52: Como escrever um art

Ar,go  não  adequado  à  revista  

•  O  foco  do  ar,go  não  está  de  acordo  com  o  escopo  da  revista;  

•  As  guidelines  da  revista  não  foram  seguidas.    •  Isto  pode  ser  facilmente  evitável  consultando-­‐se  previamente  alguns  ar,gos  da  revista  e  as  instruções  para  os  autores.  

Page 53: Como escrever um art

Erros  grama,cais  e  de  es,lo  no  texto  em  inglês  

•  Uma  escrita  pobre  não  implica  em  uma  rejeição  imediata  do  ar,go,  mas  pode  influenciar  bastante  na  impressão  geral  dos  revisores  e  do  editor  sobre  ele.    

•  Estudos  mostram  que  ar,gos  bem  escritos  têm  mais  chances  de  ser  aceitos.  

Page 54: Como escrever um art

Definição  insuficiente  do  problema  

•  É  importante  definir  claramente  e  circunscrever  de  forma  apropriada  a  questão  estudada.  

Page 55: Como escrever um art

Métodos  pouco  detalhados  •  Os  detalhes  descritos  são  insuficientes  para  se  repe,r  os  resultados.    

•  O  desenho  do  estudo,  os  equipamentos  usados  e  os  procedimentos  devem  ser  explicados  de  forma  clara.    

•  Em  alguns  casos,  é  melhor  pôr  informação  em  excesso  na  seção  de  métodos  do  que  pôr  muito  pouca;  a  informação  considerada  desnecessária  sempre  pode  ser  re,rada  antes  da  publicação.  

Page 56: Como escrever um art

Interpretação  exagerada  do  valor  dos  resultados  

•  Uma  abordagem  clara  e  “honesta”  dos  resultados  aumenta  a  probabilidade  do  ar,go  ser  aceito.  

•  Iden,fique  possíveis  viéses  e  variáveis  confusas,  tanto  na  fase  de  desenho  do  estudo  como  na  de  interpretação  dos  resultados.    

•  Seja  conciso  ao  descrever  os  resultados  experimentais.  

Page 57: Como escrever um art

Análise  esta0s,ca    inapropriada  ou  incompleta  

•  Use  testes  esta0s,cos  apropriados  e  não  torne  a  análise  esta0s,ca  muito  complicada.  

•  Quan,fique  e  apresente  os  resultados  com  indicadores  apropriados  de  erro  de  medida  e  de  incerteza  (intervalos  de  confiança,  por  exemplo).  

Page 58: Como escrever um art

Apresentação  insa,sfatória  ou  confusa  de  dados    em  tabelas  e  figuras  

•  Os  es,los  das  tabelas  e  figuras  não  estão  conforme  as  guidelines  da  revista.  

•  As  tabelas  e  figuras  estão  sobrecarregadas  de  números  e  símbolos.    

•  Faça  as  tabelas  e  figuras  fáceis  de  serem  lidas.  

Page 59: Como escrever um art

Conclusões  não  sustentadas    pelos  dados  

•  Cer,fique-­‐se  de  que  as  conclusões  não  são  exageradas,  que  têm  apoio  nos  resultados  e  respondem  às  questões  postas  no  estudo.  

•  Tenha  certeza  de  ter  discu,do  explicações  alterna,vas  e  não  faça  das  conclusões  apenas  uma  repe,ção  dos  resultados  com  palavras  diferentes.  

Page 60: Como escrever um art

Revisão  da  literatura  incompleta,  imprecisa  e  desatualizada  

•  Cer,fique-­‐se  de  ter  feito  uma  revisão  completa  da  literatura  e  liste  apenas  as  referências  relevantes  para  o  estudo.    

•  Os  revisores  do  ar,go  serão  especialistas  no  assunto  e  estarão  cientes  de  todas  as  pesquisas  relevantes  já  feitas.  

Page 61: Como escrever um art

Falta  de  atenção    às  sugestões  dos  revisores  

•  Acatar  as  sugestões  dos  revisores  na  hora  de  revisar  o  ar,go  irá  quase  sempre  resultar  em  um  ar,go  melhor.    

•  Se  o  editor  indicar  uma  predisposição  para  avaliar  uma  versão  revisada  do  ar,go,  isto  significa  que  ele  é  publicável  se  as  preocupações  dos  revisores  forem  atendidas  de  forma  sa,sfatória.  

Page 62: Como escrever um art

Checklist  para  submissão  

•  É  importante  preparar  o  ar,go  de  forma  apropriada,  o  que  implica  seguir  as  guidelines  da  revista.  O  uso  de  um  checklist  ajuda  a  garan,r  a  aceitação  do  ar,go  pela  revista.    

•  Dá-­‐se  a  seguir  um  checklist  genérico  para  garan,r  que  o  ar,go  esteja  de  acordo  com  as  guidelines  da  maioria  das  revistas.  

Page 63: Como escrever um art

Carta de encaminhamento [] Determine se uma carta de encaminhamento (cover letter) é necessária. [] Dirija-se ao editor correto da revista de acordo com o assunto do artigo. [] Use o endereço correto. [] Revise o que é necessário na carta de encaminhamento.

Modelo de carta de encaminhamento Dr. James S. Goodwine Editor-In-Chief, Journal of Random Issues The Chance Institute - NAC 10010 East Vinery Road Barley Bush, CA 92066 USA Dear Dr. Goodwine, Enclosed please find three copies of the article A realistic computer simulation of the effect of the mackerel tail on sea waves to be considered for publication in Journal of Random Issues. A set of original figures is also enclosed. This article is based on an ongoing research aimed at a PhD degree, which the graduate student José Sardinha is doing at the Department of Physics of the University of Caixa-Prego, Brazil, under my supervision. Provided that the article is found to be satisfactory, we would be pleased to provide the source code (in Microsoft Word for Windows XP, version 2003) to expedite its publication. Please send all the correspondence relative to this article to me. Yours Sincerely Dr. Jonas Baleia

Page 64: Como escrever um art

Geral [] Determine que tipo de artigo você está submetendo (letter, review, original scientific paper, etc). [] Use os tipos corretos de fonte e de tamanho para as letras. [] Ajuste os espaçamentos entre linhas (simples ou duplos). [] Verifique os formatos dos títulos das seções. [] Ponha as seções na ordem correta. [] Verifique os limites de números de palavras. [] Use numeração de linhas, caso pedido pela revista. [] Use números nas páginas, caso pedido pela revista. [] Ajuste os tamanhos das margens. [] Confirme se a nomenclatura está correta. [] Verifique a grafia das palavras. [] Determine se as seções de resultados e de discussão estão separadas ou juntas em uma única seção.

Page 65: Como escrever um art

Página do Título [] Verifique se o título está com o tamanho permitido. [] Determine se é necessária a inclusão de um título curto (running title). [] Verifique se são necessárias palavras-chave (keywords). [] Confirme se a revista pede uma lista de abreviações. [] Certifique-se de que todos os autores estão incluídos. [] Verifique se os nomes e endereços dos autores estão com os formatos corretos. [] Inclua todas as informações sobre o autor correspondente. Abstract [] Confirme se está dentro do limite de palavras. [] Determine se a revista pede um abstract estruturado ou não estruturado. Referências [] Confirme que todas as citações feitas no texto estão no formato correto. [] Verifique se todas as referências citadas no texto estão incluídas na lista de referências. [] Confirme que todas as referências na lista de referências estão citadas no texto. [] Determine se as referências estão formatadas corretamente. [] Verifique se os detalhes das referências (volume, ano, páginas, nomes dos autores, etc) estão corretos.

Page 66: Como escrever um art

Tabelas e Figuras [] Verifique se as menções às figuras e tabelas feitas no texto estão formatadas corretamente. [] Determine se as tabelas e figuras estão posicionadas corretamente. [] Verifique se as fontes e tamanhos de fontes das palavras e símbolos nas tabelas e figuras estão corretas. [] Confirme se a numeração das tabelas e figuras está no formato correto (números romanos ou arábicos). [] Verifique se os tamanhos das figuras e tabelas estão corretos. [] Verifique se os arquivos estão nos formatos corretos (pdf, jpeg, gif, etc). [] Determine o tipo de lista para os títulos das tabelas e as legendas das figuras. [] Certifique que todas as tabelas e figuras estão mencionadas no texto. [] Determine se a revista permite linhas verticais nas tabelas. Miscelânea [] Determine se será preciso uma declaração sobre conflito de interesses. [] Verifique se é necessária uma menção às fontes de financiamento. [] Para artigos na área médica: inclua todas as declarações de aprovações pelos comitês de ética e pelos pacientes.

Page 67: Como escrever um art

Promovendo  sua  Publicação  •  A  publicação  de  um  ar,go  em  uma  revista  cien0fica  não  garante  que  ele  será  lido  ou  citado.    

•  A  quan,dade  de  ar,gos  publicados  diariamente  é  tão  grande  que  a  maioria  dos  cien,stas  não  tem  tempo  para  ler  tudo.    

•  Como  eles  saberão  que  você  acabou  de  dar  uma  contribuição  importante  à  área  se  não  es,verem  procurando  especificamente  por  seu  ar,go?  

Page 68: Como escrever um art

•  Após  a  publicação  de  um  ar,go,  há  medidas  a  serem  tomadas  para  garan,r  que  o  ar,go  seja  distribuído  e  atraia  a  atenção  de  pessoas  relevantes  dentro  das  suas  redes  de  contatos  acadêmicos.    

•  Uma  maneira  de  divulgar  o  ar,go  é  mandar  cópias  dele  para  as  pessoas.    

Page 69: Como escrever um art

Envie  cópias  do  ar,go  para:  •  Autores  citados  no  ar,go;  •  Pesquisadores  e  cien,stas  que  publicaram  no  mesmo  assunto  ou  que  estejam  trabalhando  na  mesma  área;  

•  Pessoas/organizações  que  apoiaram  a  sua  pesquisa;  

•  Biblioteca  da  sua  ins,tuição;  •  Grupos  de  discussão  online  voltados  para  a  grande  área  da  pesquisa.  

Page 70: Como escrever um art

•  É  ú,l  ter  uma  lista  dessas  pessoas  e  ir  acrescentando  novos  nomes  à  medida  que  for  expandindo  sua  rede  de  contatos.  

•  A  maioria  das  revistas  oferece  um  serviço  de  reprints  (enviam  um  número  solicitado  de  cópias  extras  do  ar,go  mediante  pagamento);  se  você  ,ver  uma  lista  de  pessoas,  saberá  quantos  reprints  pedir.  

•  Se  for  mandar  cópias  para  administradores  e  pessoal  de  polí,ca  cien0fica,  deve  preparar  uma  carta  de  encaminhamento  resumindo  o  ar,go  em  linguagem  não  técnica  explicando  sua  importância.    

Page 71: Como escrever um art

•  É  importante  ter  uma  página  web  em  sua  ins,tuição  ou  por  conta  própria  onde  colocar  seus  ar,gos  publicados  de  uma  forma  baixável.    

•  Esta  é  uma  maneira  de  economizar  no  custo  dos  reprints.