como a variação espacial das assembleias de peixes...

65
UNIVERSIDADE FEDERAL DO ABC Curso de Pós-Graduação em Evolução e Diversidade Dissertação de Mestrado Gabriela Pastro Como a variação espacial das assembleias de peixes determina a pressão de predação sobre as comunidades incrustantes? Santo André 2015

Upload: others

Post on 01-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

UNIVERSIDADE FEDERAL DO ABC

Curso de Pós-Graduação em Evolução e Diversidade

Dissertação de Mestrado

Gabriela Pastro

Como a variação espacial das assembleias de peixes determina a

pressão de predação sobre as comunidades incrustantes?

Santo André

2015

Page 2: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

ii

UNIVERSIDADE FEDERAL DO ABC

Curso de Pós-Graduação em Evolução e Diversidade

Dissertação de Mestrado

Gabriela Pastro

Como a variação espacial das assembleias de peixes determina a

pressão de predação sobre as comunidades incrustantes?

Trabalho apresentado como requisito parcial

para obtenção do título de Mestre em

Evolução e Diversidade, sob orientação do Professor Doutor

Fernando Zaniolo Gibran e coorientação do

Professor Doutor Gustavo Muniz Diaz.

Santo André

2015

Page 3: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

iii

Page 4: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

iv

Este exemplar foi revisado e alterado em relação à versão original, de acordo com as

observações levantadas pela banca no dia da defesa, sob responsabilidade única do autor

e com a anuência de seu orientador.

Santo André, ____de _______________ de 20___.

Assinatura do autor: _____________________________________

Assinatura do orientador: _________________________________

Assinatura do coorientador: ___________________________________

Page 5: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

v

AGRADECIMENTOS

Ao Prof. Dr. Fernando Zaniolo Gibran pela orientação, conselhos e parceria nos últimos

cinco anos e ao Prof. Dr. Gustavo Muniz Dias que acrescentou ao grupo sua sabedoria e

experiência.

À Universidade Federal do ABC e à Capes pelas bolsas de Mestrado concedidas e ao

Programa de Pós-Graduação em Evolução e Diversidade.

À FAPESP pelo Auxílio à Pesquisa concedido para execução do projeto “Como

diferenças nas condições ambientais em microescala afetam o recrutamento e a

predação sobre a comunidade incrustante e a aptidão e do briozoário Schizoporella

errata?” (2013/11286-2), sob a responsabilidade do coorientador deste trabalho, Prof.

Dr. Gustavo M. Dias – esta dissertação é um dos produtos deste projeto, e os recursos

financeiros e equipamentos foram cruciais para sua realização.

A todo o pessoal do Laboratório de Evolução e Diversidade I da UFABC,

especialmente Felipe Dutra, Felipe T. Oricchio, Karina Kitasawa e Mariane Tavares,

pois sem vocês este projeto não teria sido realizado com tanto sucesso, obrigada.

Ao Yacht Club de Ilhabela (YCI) pelo acolhimento, apoio logístico e incentivo à

pesquisa. Um agradecimento especial ao Júlio Cardoso, Diretor Ambiental, pelo seu

entusiasmo e incentivo à pesquisa na área da marina.

Ao Centro de Biologia Marinha da Universidade de São Paulo (CEBIMar-USP) por

todo o suporte durante as atividades de campo, em especial aos técnicos Alex W. A.

Monteiro, Eduardo Honuma, Joseilto M. de Oliveira e Elso A. da Silva.

Em especial, à minha família que me apoiou durante todo este período, ao Iles pela

paciência e compreensão em todas minhas ausências, devido ao intenso trabalho de

campo. À minha mãe, Heloisa, e minha irmã, Marina, por acreditarem e me apoiarem, e

a todos meu familiares e amigos que, de perto ou de longe, me apoiaram.

Page 6: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

vi

“A coisa mais indispensável a um homem é reconhecer o uso que deve fazer do seu

próprio conhecimento.” Platão

Page 7: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

1

CONTEÚDO

Resumo 02

Abstract 05

Introdução Geral 06

Referências Bibliográficas 09

Capítulo 1: Fish assemblages associated to a man-made habitat in

Southwestern Atlantic

1. Abstract 13

2. Introduction 14

3. Material and Methods 16

4. Results 19

5. Discussion 28

References 31

Capítulo 2: How marina facilities affect the role of fish predation on early-life

stages of benthic organisms?

1. Abstract 35

2. Introduction 36

3. Material and Methods 38

4. Results 41

5. Discussion 51

References 54

Considerações Finais 58

Page 8: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

2

RESUMO

Construções antrópicas podem aumentar a disponibilidade de substrato consolidado, o

que normalmente resulta no desenvolvimento de comunidades incrustantes

diversificadas. Aliada às alterações no hidrodinamismo local, provocadas por quebra-

mares ou molhes, essa nova disponibilidade de recursos espaciais, alimentares e

refúgios pode resultar também em assembleias de consumidores abundantes e

diversificados. Entretanto, este efeito positivo é dependente da intensidade de outros

impactos que normalmente estão associados à submersão dessas estruturas (e.g.

aumento da sedimentação e de poluentes). Um dos principais processos que estruturam

as comunidades de organismos incrustantes é a predação exercida por peixes

actinopterígios de diferentes estágios pós-larvais, podendo causar variações em micro-

escala (i.e. metros), não necessariamente notáveis em escalas maiores (i.e. quilômetros).

Desta forma, a predação pode ser responsável por certa variação temporal e espacial na

estruturação e composição das comunidades recifais. Neste contexto, os objetivos deste

estudo foram caracterizar quali e quantitativamente, e temporalmente, por meio de

censos visuais subaquáticos, a ictiofauna de duas áreas próximas (130 m) em um

mesmo ambiente recifal artificial do Yacht Club de Ilhabela (Canal de São Sebastião,

São Paulo, Brasil) (Capítulo 1), além de investigar, por meio de observações, registros

em vídeos e experimentação in situ, o papel da predação por estes peixes sobre as

comunidades locais incrustantes (Capítulo 2). Diferenças em relação às assembleias de

peixes entre as áreas estudadas foram evidenciadas nas estações quentes e úmidas

(verão e primavera), quando a área abrigada apresentou maior riqueza e abundância. A

área do quebra-mar foi caracterizada pela intensa presença do herbívoro territorialista

Scartella cristata, enquanto a área dentro da marina apresentou dominância de

cardumes de Harengula jaguana e do onívoro generalista Diplodus argenteus. Ao se

avaliar a frequência alimentar das espécies foi registrado um pico de atividade no

período das 12h00-14h00 na área de dentro da marina, o qual pode ter relação direta

com a luminosidade. Cinco espécies de peixes recifais foram registradas predando a

comunidade incrustante estabelecidas em placas de PVC, sendo que D. argenteus foi a

que exerceu maior pressão de predação, atribuindo-se a esta espécie 94% das 1.6652

mordidas registradas. A área do quebra-mar apresentou maior pressão de predação, com

maior número de registros de predação e de mordidas na comunidade incrustante. Os

principais itens alimentares predados foram ascídias (especialmente dideminídeos),

Page 9: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

3

serpulídios e briozoários arborescentes em ambas as áreas. Este estudo monstra que

diferentes áreas podem responder de forma contrastante a um distúrbio ambiental, além

de apresentar estruturas de comunidade variáveis no tempo e espaço. Diferenças em

micro-escala nas condições ambientais, como as causadas pela construção de marinas,

podem afetar a predação por peixes sobre a comunidade incrustante e assim modular

sua estrutura, porém isto também pode ser relacionado à disponibilidade de alimento

(presas).

Page 10: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

4

ABSTRACT

Anthropic constructions can increase the availability of consolidated substrate, which

usually results in the development of diverse incrusting community. Coupled with local

hydrodynamics changes, caused by breakwaters or jetties, this new availability of

shelter, food and space resources can also result in abundant and diverse consumer

assemblages. However, this positive effect is highly dependent on the intensity of other

impacts that are usually associated to the submersion of coastal structures (e.g.

sedimentation and pollution). One of the main processes that structure the communities

of incrusting organisms is predation exerted by Actinopterygii fishes of different post-

larval stages, what may cause variations in micro-scale (i.e. meters), not necessarily

recorded at larger scales (i.e. kilometers). Thus, predation may be responsible for certain

temporal and spatial variation in the structure and composition of reef communities,

especially when it occurs on the recruits of the species with the highest representation in

the larval plankton (higher potential for recruitment) before the interactions of

competition post-settlement entered in progress. In this context, the objectives of this

study were characterize qualitatively and quantitatively, and temporally, fish

populations in two nearby areas (130 m) in the same artificial reef environment

(Chapter 1), and investigate the role of predation by these fishes on local incrusting

communities (Yacht Club de Ilhabela, São Sebastião Channel, São Paulo, Brazil)

(Chapter 2). Differences from the abundance and richness of fishes between the studied

areas were observed in the hot and wet seasons (spring and summer), when the area

inside the marina showed higher richness and abundance than breakwater. The area of

breakwater was characterized by intense presence of territorial herbivore Scartella

cristata, while the area inside the marina presented dominance by schools of Harengula

jaguana and generalist species Diplodus argenteus. When assessing the food frequency,

I recorded a peak of activity during 12h00-14h00. Five reef fish species were recorded

preying on the incrusting community, and D. argenteus exerted the highest predation

pressure, accounting for 94% of the 16,652 registered bites. The area of the breakwater

showed higher predation pressure, but had lower richness of predators. The main food

items preyed were ascidians (especially didemnids), serpulids and arborescent

bryozoans, varying according to the area. The data showed that different areas may

respond differently in relation to an environmental disturbance, with community

Page 11: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

5

structures varying in time and space. Differences in micro-scale environmental

conditions, such as those caused by the construction of marinas, can affect predation by

fish and so modulate the structure of in the incrusting community, but it may also be

related to the availability of food (prey items).

Page 12: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

6

INTRODUÇÃO GERAL

Um dos objetivos dos estudos em Ecologia é entender os padrões de distribuição dos

organismos com relação aos hábitats disponíveis e ao tempo (Anderson & Millar 2004),

os quais podem ser influenciados por vários fatores físico-químicos como, por exemplo,

a temperatura, luz, produtividade, oxigênio e nutrientes disponíveis. Além dos fatores

físicos, há importantes fatores bióticos atuando na sobrevivência e permanência dos

organismos nos hábitats, tais como interações biológicas como competição e predação.

Sabendo que fatores bióticos e abióticos podem variar mais ou menos de acordo com as

escalas espaciais consideradas (e.g. Olff & Ritchie 1998, Wyatt & Silman 2004, Creel

& Winnie 2005), reconhecer quais processos operam em micro-escalas é fundamental

para compreender a dinâmica das populações e comunidades e com isso minimizar os

impactos das atividades antrópicas sobre as comunidades e os ecossistemas.

A predação é um dos principais processos que estruturam as comunidades (Steele

1996) e, em sistemas marinhos, peixes de diferentes estágios pós-larvais (jovens e

adultos) são considerados um dos principais predadores, especialmente em substrato

biogênico ou recifal, habitados por organismos incrustantes coloniais ou solitários

(Choat 1982, Hixon 1997, Connel & Anderson 1999). A presença de substratos

biogênicos em ambientes bentônicos é responsável por aumentar a diversidade local, o

que resulta em maior disponibilidade de micro-habitats e recursos que podem ser

utilizados por diversos organismos (efeito bottom-up), como por assembleias de peixes

(Sebens 1991, Thompson et al. 1996, Morgado & Tanaka 2001), sendo que a presença

destes organismos estabelecidos no substrato consolidado também está suscetível aos

efeitos causados pelos níveis trópicos superiores, como predação por peixes invertívoros

(efeito top-down). Desta forma, a predação por peixes pode ser responsável por certa

variação temporal e espacial na estrutura e composição das comunidades recifais (e.g.

Kingsford 1992, Connel & Kingsford 1998). Distúrbios causados por animais

herbívoros têm sido amplamente estudados em sistemas marinhos bentônicos (Calderon

2008; e.g. Choat & Andrew 1986, McClanahan et al. 1999, Smith et al. 2001,

McClanahan et al. 2001), porém o efeito da predação por carnívoros e invertívoros

sobre a comunidade incrustante tem recebido pouca atenção (Hunt & Scheibling 1997),

assim como são escassos estudos comportamentais destes grupos (Krajewski et al.

2011). Como a predação por peixes pode controlar o recrutamento e/ou a sobrevivência

Page 13: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

7

de diversos organismos bentônicos podemos afirmar que ela pode desempenhar um

papel-chave na organização das comunidades recifais.

Os ambientes recifais brasileiros fazem parte do sistema de recifes do Atlântico

Tropical e apresentam algumas características únicas (Ferreira et al. 2004). Variações na

geografia da costa brasileira, principalmente decorrentes da existência de diferentes

tipos de susbtrato (e.g. recifes de corais, costões rochosos e bancos de algas calcárias),

resultam em diferentes assembleais de peixes (Floeter et al. 2001). Ambientes recifais

da costa Sudeste apresentam um pico de diversidade de peixes das famílias Serranidae e

Labridae, sendo que regiões mais ao sul apresentam um empobrecimento gradual da

fauna, o que é observado entre a costa de São Paulo e Santa Catarina (Evans et al. 1985,

Stramma 1989, Floeter et al. 2001). As regiões Sul e Sudeste do Brasil são desprovidas

de recifes de corais, mas são caracterizadas pela presença de inúmeros ambientes

recifais rochosos, como ilhas, lajes e parcéis, além de, principalmente, costões rochosos

formados por rochas ígneas e metamórficas (Rabelo 2007, Gibran & Moura 2012).

Além destes ambientes recifais naturais há uma série de construções antrópicas que

servem de substrato consolidado, sujeitos as mesmas condições e dinâmicas ambientais

dos ambientes recifais naturais (Mineur et al. 2012).

A ocupação de regiões costeiras promove alterações na estrutura dos ecossistemas

marinhos. O aumento da poluição orgânica e inorgânica, aliado à construção de

estruturas como marinas, píeres, molhes e portos promovem alterações nas condições

ambientais, afetando a distribuição dos organismos e a organização das comunidades e

teias tróficas (i.e. Dugan et al. 2011). Tais construções geralmente aumentam a

disponibilidade de substrato consolidado, o que normalmente resulta no

desenvolvimento de comunidades incrustantes diversificadas. Aliada a reduzida

turbulência provocada por quebra-mares ou molhes, esta nova disponibilidade de

recursos espaciais, alimentares e refúgios podem resultar também em assembleias de

consumidores abundantes e diversificados. Construções antrópicas no ambiente marinho

funcionam, portanto, como recifes artificiais (e.g. Chandler et al. 1985, Rooker et al.

1997, Hackradt & Félix-Hackradt 2009). Entretanto, seu efeito positivo sob os

organismos recifais é dependente da intensidade de outros impactos que normalmente

estão associados à submersão de estruturas costeiras (e.g. sedimentação). Em locais

onde tais estruturas estão associadas a um contexto de poluição e pesca exploratória,

marinas e portos podem funcionar de forma negativa, restringindo a ocorrência de

Page 14: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

8

espécies nativas e muitas vezes facilitando a introdução de espécies exóticas, além das

alterações evidentes na circulação da água e suas consequências locais, como perda de

habitats devido à sedimentação (e.g. Freitas et al. 2009).

Dentre os organismos mais afetados por tais construções estão os organismos

incrustantes e os peixes actinopterígios, cujas assembleias podem variar

significativamente em micro-escala (i.e. metros), diferentemente de quando

consideramos escalas maiores (i.e. quilômetros). Em micro-escala, o hidrodinamismo, o

oxigênio dissolvido, a luminosidade, a composição do plâncton, a produtividade

primária e a disponibilidade e o tipo de substrato podem modular a distribuição desses

organismos (e.g. McGehee 1994, Bellwood & Wainwrogth 2001). Desta forma,

alterações nas condições físico-químicas na costa têm o potencial de afetar a

distribuição, composição, abundância e riqueza dos chamados organismos recifais.

Nos substratos duros, artificiais e naturais, organismos como corais, algas calcárias,

esponjas, ascídias, briozoários e poliquetas, por exemplo, podem assentar e

desenvolver-se em colônias rígidas de estruturas complexas e tridimensionais, o que

aumenta a disponibilidade de alimentos e recursos espaciais no infralitoral e permite a

sucessão ecológica e colonização destes lugares por organismos com mais exigências

ambientais, como peixes e outros vertebrados (Gore et al. 1978, Bradstock & Gordon

1983, Lewis & Snelgrove 1990, Safriel & Bem-Eliahu 1991, Nalesso et al. 1995, Cocito

et al. 2000, Morgado & Tanaka 2001). Ascídias e briozoários são os mais frequentes

organismos da fauna recifal bentônica e costeira do infralitoral, embora ainda

relativamente pouco estudados quando comparados a esponjas, cnidários, crustáceos e

moluscos (McKinney & Jackson 1989, Reed 1991, Migoto 2000, Calderon 2008). Estes

animais têm ampla distribuição espacial e, muitas vezes, dominam locais protegidos,

tanto em substratos naturais como artificiais. Além de lidarem com a competição pelo

espaço, estes organismos incrustantes também estão sujeitos a uma forte pressão por

predadores móveis, principalmente quando recrutas/recém-assentados.

O Yacht Club de Ilhabela (YCI) está localizado no Sudeste da costa brasileira,

região caracterizada pela ocorrência de inúmeros ambientes recifais rochosos e diversas

construções antrópicas. Diferentemente de muitas marinas recreativas, o YCI possui um

rigoroso controle das perturbações causadas pelos seus barcos e frequentadores, pois há

proibição de despejo de dejetos, do uso de produtos não biodegradáveis e da pesca de

arpão e rede. A marina do YCI é formada por plataformas flutuantes de concreto e

Page 15: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

9

isopor, criadas em 2011, as quais funcionam como recifes artificiais. Características

mais similares a ambientes naturais de costões rochosos são encontradas nas áreas

externas da marina, na presença do quebra-mar, com exposição às ondas, maior

visibilidade e menor impacto antrópico; já as áreas internas apresentam águas mais

calmas, com maior acúmulo de matéria orgânica e sedimentação e, consequentemente,

menor luminosidade e maior turbidez, mostrando-se com condições ambientais mais

similares a pequenas baías costeiras. As áreas internas apresentam também intensa

presença de barcos e maior potencial de poluição orgânica e inorgânica. Neste contexto,

os objetivos deste estudo foram caracterizar quali e quantitativamente, e temporalmente,

a ictiofauna de duas localidades em duas áreas recifais artificiais do Yacht Club de

Ilhabela distantes apenas 130 m (Capítulo 1), as quais estão submetidas a condições

ambientais distintas, além de investigar o papel da predação por estes peixes sobre as

comunidades incrustantes locais (Capítulo 2). Trabalhei com as seguintes hipóteses:

duas áreas recifais próximas, porém com condições ambientais distintas, apresentam

assembleias de peixes com estrutura trófica distinta, as quais variam temporalmente, e

tais diferenças resultam em pressões de predação também distintas sobre os organismos

incrustantes, alterando sua composição, riqueza e abundância.

REFERÊNCIAS BIBLIOGRÁFICAS

Anderson, M.J. & R.B. Millar. 2004. Spatial variation and effects of habitat on temperate reef

fish assemblages in northeastern New Zealand. Journal of Experimental Marine Biology and

Ecology, 305(2), 191-221.

Bellwood D.R & P.C. Wainwright P.C. 2001. Swimming ability in labrid fishes: implications

for habitat use and cross- shelf distribution on the Great Barrier Reef. Coral Reefs, 20, 139–

150.

Bradstock, M. & D.P. Gordon. 1983. Coral‐like bryozoan growths in Tasman Bay, and their

protection to conserve commercial fish stocks. New Zealand journal of marine and

freshwater research, 17(2), 159-163.

Calderon, E.C. 2008. Recrutamento e distribuição espacial do briozoário Schizoporella errata

(Waterns, 1878), (Ectoprocta, Gymnolaemata, Cheilostomata), e sua dinâmica na

comunidade de costão rochoso em Arraial do Cabo, RJ, Brasil. PhD Thesis – Instituto de

Biologia da Universidade Federal do Rio de Janeiro, 161p.

Chandler, C.R., Sanders Jr, R.M., & A.M. Landry Jr. 1985. Effects of three substrate variables

on two artificial reef fish communities. Bulletin of Marine Science, 37(1), 129-142.

Page 16: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

10

Choat, J.H. 1982. Fish feeding and the structure of benthic communities in temperate waters.

Annual Review of Ecology, Evolution and Systematics, 13, 423–449.

Choat, J.H. & N.L. Andrew. 1986. Interactions amongst species in a guild of subtidal benthic

herbivores. Oecologia, 66(3), 387-394.

Clarke, R.D. 1977. Habitat distribution and species diversity of chaetodontid and pomacentrid

fishes near Bimini, Bahamas. Marine Biology, 40(3), 277-289.

Cocito, S., Ferdeghini, F., Morri, C., C.N. Bianchi. 2000. Patterns of bioconstruction in the

cheilostome bryozoans Schizoporella errata: the influence of hydrodinamics and associated

biota. Marine Ecology Progress Series, 192, 153-161.

Connell, S.D. & M.J. Anderson. 1999. Predation by fish on assemblages of intertidal epibiota:

effects of predator size and path size. Journal of Experimental Marine Biology and Ecology,

24, 15-29.

Connell, S.D. & M.J. Kingsford. 1998. Spatial, temporal and habitat-related variation in the

abundance of large predatory fish at One Tree Reef, Australia. Coral Reefs, 17(1), 49-57.

Creel, S., & Winnie, J.A. 2005. Responses of elk herd size to fine-scale spatial and temporal

variation in the risk of predation by wolves. Animal Behaviour, 69(5), 1181-1189.

Dugan, J.E.; Airoldi, L.; Chapman, M.G.; Walker, S.J.; & T. Schlacher. 2011. Estuarine and

coastal structures: environmental effects, a focus on shore and nearshore structures. In: Eric

Wolanski, E. & D. McLusky (eds.), Treatise on Estuarine and Coastal Science. Academic

Press, Waltham, pp. 17-41.

Evans, D.L.; Signorini, L.; & B. Miranda. 1985. A note on the transport off the Brazil Current.

Journal of Physical Oceanography, 13, 1732–1738.

Ferreira, C.E.L; Floeter, S.R.; Gasparini, J.L.; Ferreira, B.P.; & J.C. Joyeux. 2004. Trophic

structure patterns of Brazilian reef fishes: a latitudinal comparison. Journal of Biogeography

31(7), 1093–1106.

Floeter, S.R.; Guimaraes, R.Z.; Rocha, L.A.; Ferreira, C.E.L.; Rangel, C.A.; & J.L. Gasparini.

2001. Geographic variation in reef‐fish assemblages along the Brazilian coast. Global

Ecology and Biogeography, 10(4), 423-431.

Fox, R. J. & D.R. Bellwood. 2007. Quantifying herbivory across a coral reef depth gradient.

Marine Ecology Progress Series, 339, 49-59.

Freitas, M.C.D.; Vieira, R.H.S.D.F.; & M.E.D. Araújo. 2009. Impact of the construction of the

harbor at pecém (Ceará, Brazil) upon reef fish communities in tide pools. Brazilian Archives

of Biology and Technology, 52(1), 187-195.

Fulton, C.J. & D.R. Bellwood. 2005. Wave‐induced water motion and the functional

implications for coral reef fish assemblages. Limnology and Oceanography, 50(1), 255-264.

Gibran, F.Z. & R.L. de Moura. 2012. The structure of rocky reef fish assemblages across a

nearshore to coastal islands' gradient in Southeastern Brazil. Neotropical Ichthyology, 10,

369-382.

Gore, R.H.; Scotto, L.E.; & L.J. Becker. 1978. Community composition, stability and trophic

partitioning in decapod crustacean inhabiting some subtropical Sabellariid worm reefs.

Bulletin of Marine Science, 28, 221-248.

Page 17: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

11

Green, A.L. 1996. Spatial, temporal and ontogenetic patterns of habitat use by coral reef fishes

(Family Labridae). Oceanographic Literature Review, 11(43), 1146.

Hackradt, C.W. & F.C. Félix-Hackradt. 2009. Assembleia de peixes associados a ambientes

consolidados no litoral do Paraná, Brasil: uma análise qualitativa com notas sobre sua

bioecologia. Papéis Avulsos de Zoologia (São Paulo), 49(31), 389-403.

Hixon, M.A. 1997. Effects of reef fishes on corals and algae. In: Birkeland, C. (ed.), Life and

Death of Coral Reefs. Chapman and Hall, New York, pp. 230-248.

Hunt, H.L. & R.E. Scheibling. 1997. Role of early post-settlement mortality in recruitment of

benthic marine invertebrates. Marine Ecology Progress Series, 155, 269-301.

Johansen, J.L.; Fulton, C. J.; & D.R. Bellwood. 2007. Avoiding the flow: refuges expand the

swimming potential of coral reef fishes. Coral Reefs, 26(3), 577-583.

Kingsford, M.J. 1992. Spatial and temporal variation in predation on reef fishes by coral trout

(Plectropomus leopardus, Serranidae).Coral Reefs, 11,193-198.

Krajewski, J.P. & S.R. Floeter. 2011. Reef fish community structure of the Fernando de

Noronha Archipelago (Equatorial Western Atlantic): the influence of exposure and benthic

composition. Environmental Biology of Fishes, 92(1), 25-40.

Krajewski, J.P.; Floeter, S.R.; Jones, G.P.; & F.P. Leite. 2011. Patterns of variation in behaviour

within and among reef fish species on an isolated tropical island: influence of exposure and

substratum. Journal of the Marine Biological Association of the United Kingdom, 91(06),

1359-1368.

Lewis, J.B. & P.V.R. Snelgrove. 1990. Corallum morphology and composition of crustacean

cryptofauna of the hematypie coral Madracis mirabilis. Marine Biology, 106, 267-272.

McClanahan, T.R.; McField, M.; Huitric, M.; Bergman, K.; Sala, E.; Nystrõm, M.; Nordemar,

I.; Elfwing, T.; & N. A. Muthiga. 2001. Responses of algae, corals and fish to the reduction

of macroalgae in fished and unfished path reefs of Glovers Reef Atoll, Belize. Coral Reefs,

19, 367-379.

McClanahan, T.R.; Hendrick, V.; Rodrigues, M.J.; & N.V.C. Polunin. 1999. Varying responses

of herbivorous and invertebrate-feeding fishes to macroalgal reduction on a coral reef. Coral

Reefs, 18, 195-203.

McGehee M.A. 1994. Correspondence between assemblages of coral reef fishes and gradients

of water motion, depth and substrate size off Puerto Rico. Marine Ecology Progress Series

105, 243–255

McKinney, F.K. & J.B.C. Jackson. 1989. Bryozoan evolution. The University of Chicago Press,

Chicago, 238p.

Migoto, A.E. 2000. Avaliação do estado do conhecimento da diversidade de invertebrados

marinhos no Brasil. In: Ministério do Meio Ambiente - MMA, Secretaria de Biodiversidade

e Florestas – SBF (ed.), Avaliação do estado do conhecimento da diversidade biológica do

Brasil, MMA-GTB/CNPq-NEPAM/UNICAMP, 75p.

Mineur, F.; Cook, E.J.; Minchin, D.; Bohn, K.; MacLeod, A.; & C. A. Maggs. 2012. Changing

coasts: marine aliens and artificial structures. Oceanography and Marine Biology: An

Annual Review, 50,189-233.

Page 18: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

12

Morgado, E.H. & M.O. Tanaka. 2001. The macrofauna associated with the bryozoan

Schizoporella errata (Waters) in southeastern Brazil. Scientia Marina, 65(3), 173-181.

Nalesso, R.C.; L.F.L. Duarte; I. Pierozzi Jr &; E.F. Enumo. 1995. Tube epifauna of

thepolychaete Phyllochaetopterus socialis Chaparède. Estuarine, Coastal and Shelf Science,

41, 91-100.

Olff, H. & M.E. Ritchie. 1998. Effects of herbivores on grassland plant diversity. Trends in

ecology & evolution, 13(7), 261-265

Rabelo, E.F. 2007. Distribuição espacial e interações competitivas em zoantídeos (Cnidaria:

Zoanthidae) em ambiente de recifes de arenito no nordeste do Brasil. Master’s Thesis.

Instituto de Ciências do Mar da Universidade Federal do Ceará.

Reed, C.G. 1991. Bryozoa. In: Giese, A.C.; Pearse, J.S. & V. B. Pearse (eds.), Reproduction of

marine invertebrates - Vol. VI, echinoderms and lophophorates. The Boxwood Press, Pacific

Grove, California, 807p.

Rooker, J.R.; Dokken, Q.R.; Pattengill, C.V.; & G.J. Holt. 1997. Fish assemblages on artificial

and natural reefs in the Flower Garden Banks National Marine Sanctuary, USA. Coral Reefs,

16(2), 83-92.

Safriel, U.N. & M.N. Ben-Eliahu. 1991. The influence of habitat structure and environmental

stability on the species diversity of polychaetes in vermetid reefs. In: Bell, S. S; McCoy E.

D.; & H.S. Mushinsky (eds.), Habitat structure – the physical arrangement of objects in

space, Chapman and Hall, London, pp.349-369.

Sebens, K.P. 1991. Habitat structure and community dynamics in marine benthic systems. In:

Bell, S. S.; E. D. MsConey & H. R. Mushinsky (eds.), Habitat structure – the physical

arrangement of objects in space. Chapman and Hall, London, pp. 211-234.

Smith, J.E.; Smith, C.M.; & C.L. Hunter. 2001. An experimental analysis of the effects of

herbivory and nutrient enrichment on benthic community dynamics on a Hawaiian reef.

Coral Reefs, 19, 332-342.

Stramma, I. 1989. The Brazil Current transport south of 23°S. Deep Sea Research, 36, 639–646.

Steele, M.A. 1996. Effects of predators on reef fishes: separating cage artifacts from effects of

predation. Journal of Experimental Marine Biology and Ecology, 198, 249-267.

Thompson, R.C.; Wilson, B.J.; Tobin, M.L.; Hill, A.S.; & S. J. Hawkins. 1996. Biologically

generated habitat provisioning and diversity of rocky shore organisms at a hierarchy of

spatial scales. Journal of Experimental Marine Biology and Ecology, 202, 73-84.

Wyatt, J.L. & M.R. Silman. 2004. Distance-dependence in two Amazonian palms: effects of

spatial and temporal variation in seed predator communities. Oecologia, 140(1), 26-35.

Page 19: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

13

CAPÍTULO 1

FISH ASSEMBLAGES ASSOCIATED TO A MAN-MADE HABITAT IN

SOUTHWESTERN ATLANTIC

ABSTRACT

The occupation of the coastal region has promoted major changes in the structure of

marine ecosystems. Marine constructions cause modifications on several physical

factors, by increasing sedimentation, organic and inorganic pollution, but can also

increase the availability of hard substrata. This new habitat available usually results in

the development of a diverse sessile community which can also support a rich reef fish

fauna. In micro-scale, local conditions as action of waves, phytoplankton, light and

habitat complexity, which are directly affected by the construction of marinas, harbors

and piers, can modulate the distribution of fish assemblages. In this context, using a

visual census technique, I compared quali-quantitatively, and temporally, the fish

assemblages between two close areas (130 m of distance) exposed to distinct

environmental conditions: the area inside the marina (protected from waves) and the

breakwater (exposed to waves) of the Yacht Club de Ilhabela. More than 3,350 fish

individuals, from 19 species and 13 families (Actinopterygii), were recorded in the

studied areas. The area inside the marina presented a more abundant and rich

assemblage than the breakwater, during the hot/wet (summer and spring). The reef fish

assemblage from the breakwater was characterized by a higher abundance of the

territorial herbivore Scartella cristata, while the area inside the marina was dominated

by schools of Harengula jaguana and generalist omnivore species as Abudefduf

saxatilis and Diplodus argenteus. These results indicate that such man-made habitat

results in significant structural modifications on local fish assemblages that can be

perceived in micro-scale. The structure of an assemblage is susceptible to spatial and

temporal variations due to fluctuations in environmental factors (mainly hydrodynamics

and turbidity) and biological (mainly predation and competition).

Keywords: artificial reef, reef fishes, visual censuses, Scartella cristata, Diplodus

argenteus, São Sebastião Channel.

Page 20: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

14

INTRODUCTION

In micro-scale, action of waves, depth, temperature, phytoplankton and habitat

complexity can modulate the distribution of fish assemblages (i.e. Ferreira et al. 2001;

Floeter et al. 2007, Pinheiro et al. 2013). Substratum composition is another variable

capable of influencing fish distribution (Jones & Syms 1998, Valdés-Münoz &

Mockeck 2001, Floeter et al 2007, Sabater & Tofaeono 2007). Finally, these structures

may also influence by abundance of their prey (Hobson & Chess 1978, 1986, Bouchon-

Navarro & Bouchoun 1989, Jennings et al. 1996, Floeter et al. 2007) and potential

competitors (Jones 1987, 1988, Robertson 1996, Krajewski & Floeter 2011). As biotic

and abiotic factors are not fixed in each area, the structure of assemblages may suffer

temporal variations (e.g. Choat et al. 1988, Cunha et al. 2007).

The structure of the reef communities is susceptible to environmental changes, such

as through marine constructions. Organic and inorganic pollution combined with the

construction of solid structures, such as marinas, jetties, piers and ports, promote several

changes in environmental conditions which, directly or indirectly, affect the distribution

of organisms and the organization of communities and trophic webs. These man-made

constructions bring with them a range of sedimentological and geomorphological

problems (Freitas et al. 2009), but can be increase the availability of hard substratum,

which usually results in the development of a diverse incrusting organism fauna that can

support rich consumer assemblages. So, anthropic construction in the marine

environment may act as artificial reefs. However, the positive effect under the reef

organisms is highly dependent on the intensity of other impacts that are due to the

submersion of such structures, as sedimentation. On the other hand, these structures can

increase fishing results, boosting the potential for exploitation and increasing the

probability of overexploitation (Grossman et al. 1997), besides increase pollution with

oil from boats and local nutrient enrichment from organic matter waste besides

pollution as oil from boats, and nutrient enrichment (e.g. Rivero et al. 2013). Among the

group of organisms most affected by man-made structures are the incrusting organisms

and bone fishes, which can vary widely in community structure considering micro-scale

(i.e. meters) (e.g. Krajewski & Floeter 2011, Vieira et al. 2012, Anderson & Millar

2014, Oricchio 2015).

Page 21: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

15

Artificial structures may also provide shelter and nursery sites for fishes, frequently

increasing local densities (Coleman & Connell 2001, Rivero et al. 2013). On the other

hand, these artificial structures often facilitate the introduction of exotic species, which

can exclude native ones by competitive exclusion – many studies documented

extinctions of long-term resident species caused by the introduction of predators or

pathogens (King 1984, Gill & Martinson 1991, Kaufman 1992, Fritts & Rodda 1998,

Loope 1999, Davis 2003). Pimentel et al. (2005) studied the effects of alien-species in

diverse groups, including fishes, and concluded that about 42% of the species on the

species lists risk are vulnerable primarily because of alien-invasive species.

Changes in fish assemblages caused by human actions or natural cases can result in

changes in communities at lower trophic levels, as incrusting communities, through top-

down control. Biodiversity is predicted to be greatest at intermediate levels of stress or

disturbance, because at low levels of disturbance (or low environmental stress or

predation), communities are monopolized by a single competitive dominant species,

while where stresses are intense, only few species are tolerant enough to persist

(Stachowicz 2001). This impact alters the dynamics of the fish assemblages, which may

give advantage to a single fish species, through competition and predation, making this

the dominant species. These changes may also result in local extinction of one or more

species (prey or fish competitor). Therefore, fishes have the potential to increase the

resistance of incrusting communities to bioinvasions (Stachowicz 2001), according to

the modulation of structure of biogenic substrate.

Southeastern coast of Brazil is formed predominantly by rocky shores, what

represents the main habitat for reef fishes (Floeter et al. 2001, Gibran & Moura 2012).

However, artificial substrata promote a supply of space for local reef assemblages,

through the settlement and development of larvae of incrusting organisms and

emergence of rich substrate biogenic. The Yacht Club de Ilhabela (YCI) is an example

of this, a marina formed by floating platforms (created in 2011), located inside the São

Sebastião Channel (Southeastern Brazil), which have a high diversity of benthic

incrusting organisms. Unlike many marinas, the YCI is a recreational marina where

human activities are strictly controled to minimize dumping of waste on the water, such

as the prohibition of use of non-biodegradable products and non hook-and-line fisheries

are forbidden. The floating platforms, where the boats are moored, are surrounded by a

breakwater that presents physical conditions more similar to the natural rocky shores

Page 22: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

16

nearby, while the area inside the marina have more calm waters with higher

accumulation of organic matter and sedimentation and lower luminosity, characteristics

more similar to coastal bays, but with high potential to organic and inorganic pollution.

In this context, the objectives of this study were to characterize quali-quantitatively, and

temporally, the reef fish assemblages at these two areas, close to each other (130 m), but

exposed to distinct environmental conditions. To describe the local effect caused by the

construction of the marina I tested the following hypotheses: (1) the same reef with two

closely areas submitted to different environmental conditions have fish assemblages

with distinct trophic structure; and (2) these assemblages vary temporally.

MATERIAL AND METHODS

Study site. São Sebastião Island is the main island of an archipelago with 348.3 km²

which delimits the São Sebastião Channel (23º41’–23º54’S, 45º19’–45º30’W), a 25 km

strait on the northern coast of São Paulo State, in Southeastern Brazil (Figure 1). This

region is under the influence of warm oligotrophic waters from the Brazil Current, cold

nutrient-rich waters from the Falklands Current and is also influenced by cold and

nutrient-rich water intrusions from the South Atlantic Central Water over the shelf and

summer upwelling (Matsuura 1986, Castro-Filho & Miranda 1998, Gibran & Moura

2012). This study was conducted at the floating platforms of the Yacht Club de Ilhabela

(YCI), at Ilhabela City, in two neighbouring areas separated by 130 meters. One area is

at the breakwater, where environmental conditions are similar to those of natural rocky

habitats of the insular margin of the São Sebastião Channel, while the other area is

sheltered from waves, inside the marina, where boats are moored (Figure 1).

Page 23: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

17

Fig. 1. Map of the study region – Yacht Club de Ilhabela - YCI, São Sebastião Channel

(modified from Gibran 2010 and Gibran & Moura 2012). Aerial view (Google Maps) of

the floating platform of YCI: (A) breakwater (area exposed to waves); (B): area inside

the marina (area protected from waves).

Field work. I conducted this study between September 2013 and June 2015, totalling

ten trips to the local of study. The samplings were diurnal and replicated over hot/wet

(October to March) and cold/dry (April to September) months.

Abiotic factors. To characterize the physical condition in both areas, I monthly (August

2014 to March 2015) measured environmental variables that can be vary according to

sheltered area and intensity of anthropic impact: water temperature, redox potential

(ORP), salinity, dissolved oxygen, turbidity, turbulence, and chlorophyll A. The first

five variables were recorded using the multi-parameter equipment Hana HI9829, and

water turbulence was indirectly measured by weight loss of plaster blocks (modified

from Kasten & Flores 2013). To measure primary productivity, chlorophyll A

concentration was measured using CTD JFE Advantec CO.LTD (AAQ127 model)

equipment (three occasions during the study period: November 2014 and January and

March 2015) by sampling water column.

Page 24: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

18

Fish fauna. Fish fauna surveys were performed in floating platforms by non-stationary

visual census technique conducted during daytime by snorkelling; each sample had five

minutes of duration and covered an area of 1 m depth by 12 m width, this depth was

chosen because floating platform of the marina has 1-2 m depth. Visual censures at both

areas were six times replicated during each field trip. During this procedure the diver

swan over transects at a constant speed (1.5 m away from the platform), recording all

fishes displayed, considering fish species and individual size classes (< 2 cm, 2-10 cm,

10-20 cm, 20-30 cm, 30-40 cm and >40 cm of Total Length – TL). Recorders were

conducted from 9:00-16:00 and care was taken to equally distribute samples along the

day. Data from censuses were used to describe fish composition, abundance, species

richness and the trophic structure for each area. During the study period each area was

sampled 44 times, totalling 88 samples in seven occasions (25 during hot/wet months

and 19 during cold/dry months). Species found in transects were classified into trophic

categories following Ferreira et al. (2004) and Halpern & Floeter (2008).

Data analyses. Water temperature, redox potential (ORP), salinity, dissolved oxygen,

turbidity, turbulence were compared between areas (inside the marina vs. breakwater)

and months through multivariate methodologies with normalized data and Euclidian

distance (PERMANOVA: nMDS: SIMPER (Clarke 1993, Clarke & Warnick 2001,

Anderson 2001, McArdle & Anderson 2001), using PRIMER 7. The chlorophyll data

was analyzed separately from the others abiotic factors using univariate analysis. To

compare the species richness and abundance of the two areas considering the sampling

period (nested in season) and season (hot/wet vs. dry/cold) I used analysis of variance

(nested ANOVA) and post-hoc Tukey test, wherein sampling period, season and area

were predictor variables and richness and abundance were variable response. The

interactions studied were: area, season, sampling period (season), area*season and

area*sampling period (season). The difference in fish size class distribution and the

percentage of different feeding habitats between areas were visually explored. To access

the differences in the fish assemblages between areas (inside the marina vs. breakwater)

and months were applied multivariate methodologies with normalized data and the tests

were performed from a matrix of species abundance x samples using Bray-Curtis

distance (PERMANOVA: nMDS: SIMPER).

Page 25: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

19

RESULTS

The two study areas always presented different abiotic conditions within each

sampled month, but the magnitude of this difference ranged in time, resulting in an

interaction between area-month of sampling (Pseudo F7; 143 = 16.51, p <0.001; posteriori

tests for each month: p<0.001; Figure 2). In a few months, this difference was more

pronounced, while in others more discreet, but always with the breakwater and the area

inside the marina exposed to different conditions.

Fig. 2. Non-metric multidimensional scaling (nMDS) showing the differences in environmental

conditions (temperature, redox potential (ORP), salinity, dissolved oxygen, turbidity,

and water turbulence) between the two studied areas (closed symbols = inside the

marina; open symbols = breakwater). Different colors represent different months: light

green: August/2014; black: September/2014; rose: October/2014; blue:

November/2014; orange: December/2014; dark green: January/2015; brown:

February/2015 and red: March/2015.

The abiotic variables that most contributed to the differences between the two areas

were turbulence (higher in breakwater, accounts for 45% of the dissimilarity between

areas); the redox potential (ORP) and turbidity (both higher in the area inside the

marina, accounting for 19.4% and 10.4% of dissimilarity between areas, respectively).

Chlorophyll A concentration was also higher inside the marina, showing that this area

presents higher primary productivity than breakwater (Figure 3).

Page 26: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

20

Fig. 3. Chlorophyll A concentration for each area (breakwater vs. inside the marina). Each point

represents the average monthly values.

I recorded 3,355 fish individuals during the censuses (2,376 inside the marina

and 979 at breakwater), from 19 species and 13 families (Actinopterygii). The most

speciose family was Blennidae, with four species (Scartella cristata, Parablennius

marmoreus, Parablennius pilicornis and Hypleurochilus fissicornis), followed by

Pomacentridae (Adudefduf saxatilis and Stegastes fuscus), Labrisomidae (Labrisomus

nuchipinnis and Malacoctenus delalandii), and Epinephelidae (Epinephelus marginatus

and Mycteroperca acutirostris). The remaining families were represented by only one

species each (Table 1).

Page 27: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

21

Table I. Trophic guilds and abundance of fish species recorded in both areas

(breakwater vs. inside the marina).

Species (abbreviation) Trophic guild Total abundance

Breakwater Inside the marina

Balistidae

Balistes capriscus (Bcap) mobile benthic

invertebrate feeder 0 1

Blennnidae

Hypleurochilus fissicornis (Hfis) omnivore 0 22

Parablennius marmoreus (Pmar) omnivore 3 5

Parablennius pilicornis (Ppil) omnivore 6 18

Scartella cristata (Scri) territorial

herbivore 593 79

Carangidae

Caranx latus (Clat) piscivore 1 0

Clupeidae

Harengula jaguana (Hjan) planctivore 100 1139

Haemulidae

Anisotremus virginicus (Avir) mobile benthic

invertebrate feeder 0 2

Kyphosidae

Kyphosus spp. (Kspp) macroalgal

browser 0 8

Labrisomidae

Labrisomus nuchipinnis (Lnuc) mobile benthic

invertebrate feeder 0 1

Malacoctenus delalandii (Mdel) mobile benthic

invertebrate feeder 0 7

Monacanthidae

Stephanolepsis hispidus (Shis) omnivore 0 1

Mulgilidae

Mugil curema (Mcur) plaktivore 34 0

Pomacanthidae

Pomacanthus paru (Ppar) spongivore 0 3

Pomacentridae

Abudefduf saxatilis (Asax) omnivore 161 611

Stegastes fuscus (Sfus) territorial

herbivore 0 1

Epinephelidae

Epinephelus marginatus (Emar) carnivore 1 0

Mycteroperca acutirostris (Macu) piscivore 0 2

Sparidae

Diplodus argenteus (Darg) omnivore 80 476

Total number of individuals 979 2376

Page 28: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

22

The most abundant species was Harengula jaguana (37%), which forms schools

with more than 100 individuals, followed by Abudefduf saxatilis (23%), Scartella

cristata (20%) and Diplodus argenteus (17%). These species represented 96.5% of total

fish abundance, but different species dominated each locality – while H. jaguana, A.

saxatilis and D. argenteus were more abundant inside the marina, fish assemblages at

the breakwater were dominated by S. cristata. Besides that, 10 of the 19 species

recorded during the study were exclusive of the area inside the marina (Figure 4). These

differences in composition and abundance resulted in distinct fish assemblages (Figure

5; Table II), in which the most abundant species were responsible for the dissimilarity

between localities: S. cristata (24.2%), D. argenteus (20.1%), A. saxatilis (19.4%), and

H. jaguana (18.7%), resulting in 64.6% of average dissimilarity between areas

(SIMPER analysis). The temporal differences in fish assemblages between the two

areas were mainly due to the greater abundance of H. jaguana inside the marina and of

S. cristata in the breakwater area in the hot/wet period (Figure 6).

Fig. 4. Dominance of fish species recorded for the two studied areas (breakwater vs. inside the

marina) (see Table I for abbreviation of species names).

Page 29: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

23

Fig. 5. Non-metric multidimensional scaling (nMDS) for fish assemblages considering the two

studied areas and periods. BW: breakwater; IM: inside the marina; H/W: hot/wet period;

C/D: cold/dry period.

Table II. PERMANOVA comparing fish assemblage composition across areas (breakwater vs.

inside the marina), sampling periods, and seasons (hot/wet vs. cold/dry).

Source of variation df MS Pseudo-F p

Area 1 47109 44.831 0.001

Season 1 13233 12.593 0.001

Sampling period(Season) 5 3540.3 3.3692 0.001

Area*Season 1 2999.4 2.8544 0.028

Area*Sampling period(Season) 5 3128.7 2.9775 0.001

Res 67 1050.8

Total 80

BW (H/W) BW (C/D)

IM (H/W) IM (C/D)

Page 30: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

24

Fig. 6. Mean abundance per sample (transect) for the mains species responsible by

dissimilarities of the two areas (breakwater vs. inside the marina) along the seasons

(hot/wet vs. cold/dry)

The 19 species recorded belong to eight trophic guilds, five in breakwater and

seven inside the marina: carnivores, macroalgal browsers, mobile benthic invertebrate

feeders, omnivores, planktivores, piscivores, spongivores and territorial herbivores

(Table I). Territorial herbivores, omnivores and planktivores were the most abundant

guilds (99% of total fishes recorded). The breakwater was dominated by territorial

herbivores S. cristata, while the area inside the marina was dominated by generalist

omnivores (especially D. argenteus e A. saxatilis) and planktivores (H. jaguana)

(however, planktivores were not very frequent; Figure 7).

Page 31: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

25

Fig. 7. Relative abundance of trophic guilds of fishes presented in the two studied areas

(breakwater vs. inside the marina). Values inside each bar correspond to total

abundance for each guild.

The abundance of fishes changed through seasons and even whitin seasons

(differents sampling periods), but the breakwater showed more abundance than inside

the marina area just during the hot/wet seasons. No differences were found in

abundance between areas during cold/dry months (post-hoc tests, p>0.05) (Tables I-III;

Figure 8). The two areas showed variation on abundance across seasons, with more

fishes in hot/wet period.

593

250

134

1239

1133

Page 32: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

26

Fig 8. Mean abundance (± standard error) of fishes at hot/wet vs. cold/dry months for the two

studied areas (inside the marina vs. breakwater). *p<0.001.

Table III. Analyze of variance (nested ANOVA) on fish abundance considering area

(breakwater vs. inside the marina), sampling period, and seasons (hot/wet vs. cold/dry) effects

(*= p<0.05).

Source df MS F-ratio p-value

Season 1 14167.5 14.07 <0.001

Area 1 21478.6 21.34 <0.001

Season*Area 1 908.6 0.90 0.345

Sampling period(Season) 5 2579.6 2.56 *0.035

Area* Sampling period(Season) 5 820.0 0.82 0.543

Error 70 1006.6

The area inside the marina was richer than breakwater, and there was no

difference between sampling periods within each season. The interaction between

season and area was caused by the larger difference on species richness during the

hot/wet season, no differences were found between areas in cold/dry richness (post-hoc

tests, p>0.05) (Figure 9; Table IV). Both areas showed variation on richness across

seasons, with more fishes in hot/wet periods.

Seasons

*

Page 33: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

27

Fig 9. Mean species richness (± standard error) of fishes at hot/wet vs. cold/dry months for the

two studied areas (inside the marina vs. breakwater) (*= p<0.001).

Table IV. Analysis of variance (nested ANOVA) on species richness of fishes considering the

area (breakwater vs. inside the marina), sampling periods, and seasons (hot/wet vs.

cold/dry) effects (*= p<0.05).

Source df MS F-ratio p-value

Area 1 27.3 25.86 <0.001 Season 1 60.0 56.79 <0.001 Season*Area 1 7.3 6.94 *0.010

Sampling period(Season) 5 1.5 1.49 0.202

Area* Sampling period (Season) 5 1.4 1.41 0.230

Error 70 1.0

Both areas showed high abundance of fishes with 2-10 cm TL (approximately

80% of total individuals recorded), showing that both areas are composed either of

juvenile fish individuals, mainly represented by H. jaguana, D. argenteus and A.

saxatilis, or of small species, as the Blennidae species (Figure 10).

Seasons

*

Page 34: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

28

Fig. 10. Mean abundance of fishes for six size classes of total length (TL) for the two studied

areas (breakwater vs. inside the marina).

DISCUSSION

Although very spatially close, the two studied areas showed clear differences in

environmental conditions. Local assemblages of reef fishes are influenced by

interactions among availability of larval and survival of recruits with abiotic and biotic

factors, as well by event disorders (naturals or caused by human). Within the abiotic

factors turbulence has been cited as the main factor responsible for distribution of

species in reef environments; local with more wave exposure tends to have lower

abundance of fishes (e.g. Floeter et al. 2007, Krajewski et al. 2011, Krajewski & Floeter

2011). Fish species richness and abundance can be associated with food resources (e.g.

phytoplankton abundance) and shelters, what can explain why we observed a more

diverse fish assemblage inside the marina. One reason for the low abundance in areas

with high exposure to waves is because in these areas fishes have to spend a lot of

energy swimming (Johansen et al. 2007, Krajewski et al. 2011). So, these areas may

have a predominance of fishes with morphological characteristics that keep them in

contact with the substrate or make them good swimmers (Krajewski & Floeter 2011); an

example is S. cristata, abundant at the breakwater, that has several morphological (e.g.

junction of pelvic fins) and physiological adaptations that enable it to inhabit areas with

Page 35: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

29

higher hydrodynamics. In other words, the distribution of species is strongly related to

the swimming ability of each species of fish (Fulton & Bellwood 2005, Johansen et al.

2007, Krajewski et al. 2011). Additionally, S. cristata is a territorial herbivore and

because of this is dependent on light, since this fishes depend on algal growth in their

territories to feed on (Barnecle et al. 2008, Krajewski & Floeter 2011).

On the other hand, the low hydrodynamics can make the environment highly turbid,

which affect the orientation of various fishes, such as planktivorous and mobile

invertebrate feeders (Hobson 1991). The higher turbidity and nutrient enrichment inside

the marina is the result of sedimentation of fine particles, including organic material,

due to the calm waters between floating platforms and the presence of many vessels (see

Guiral et al. 1995). Indeed, an increase in algae density or organic material, such as

feces and dead organisms, is usually associated to the inner parts of artificial reefs

(Ambrose & Anderson 1990, Zalmon et al. 2012), and may reduce water transparence.

The high abundance of fishes inside the marina was due, in part, by the presence of

large schools of the scaled herring Harengula jaguana, a planktivore species, which

may be attracted by the potential high concentration of plankton and protection from

pelagic predators. This area also presented more concentration of chlorophyll due to

higher concentration of phytoplankton. Besides being a less productive area, the

breakwater has more turbulence (high hydrodynamism) where planktivores are usually

absent or scarce (Pinheiro et al. 2013), but this was the main habitat for the molly miller

Scartella cristata, a territorial herbivore that rarely exceeds 4 m² during foraging

activities (Mendes, 2006) and may be favored by the availability of turf and calcareous

algae at breakwater and surf zones (Costa 2009, Pinheiro et al. 2013), besides low

density or absence of predators and competitors, what ensures some advantage in terms

of food supply and use of space (see Graham et al. 1985, Mendes 2006, Mendonça-Neto

et al. 2008).

Despite being an artificial reef, the studied areas showed similarity in composition

and species dominance with natural rocky habitats (e.g. Ferreira et al. 2001, Mendonça-

Neto et al. 2008, Gibran & Moura 2012), to be dominated by species with wide

geographic range, as D. argenteus, A. saxatilis and H. jaguana. Besides this, reef

species diversity found here was lower than recorded in other studies along the

Brazilian coast (e.g. Floeter et al. 2001, Ferreira et al. 2004) and at the São Sebastião

region (e.g. Gibran e Moura 2012), but this can be a result of the depth sampled during

Page 36: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

30

visual censuses (only 1 m, very close to the surface, and almost not sampled during

other fish studies). Depth is an important variable for reef fish assemblages, as some

species and trophic groups may occur at specific depth zones on reefs (Clarke 1977,

Green 1996, Fox & Bellwood 2007, Krajewski & Floeter 2011)

Regardless of abiotic factors, biological factors that control these local communities

are related to recruitment, ecological interactions (as predation and competition), as well

as human impacts, which are difficult to measure (Pinheiro et al. 2013). Distinct local

assemblages can be modulated by the abundance of food and their predators, as well as

the presence and abundance of competitors. Marina facilities cause changes in physical

and chemical conditions on the coast that may affect the abundance, composition and

richness of fishes at local assemblages, through impacts, direct or indirect. Nevertheless,

two close areas may be affected in different ways, resulting in different assemblage

structures.

Oricchio (2015) conducted several experiments in these same two areas, and found

that sessile animals usually eaten by fishes (mostly ascidians) are more abundant in the

breakwater than inside the marina. In addition, I found that predation pressure exerted

by fish is much higher in the breakwater than inside the marina (see Chapter 2:

according to personal observations, D. argenteus and A. saxatilis feed mostly on

plankton when inside the marina, but feed almost exclusively on incrusting organisms

on the platforms when at breakwater). Therefore, I suggest that fishes are using different

foraging strategies as a result of the differences of circulation and productivity between

areas. Studies quantifying the source of food eaten by D. argenteus and A. saxatilis

from the two areas can help to the test this hypothesis. When different areas are spatially

close, with no physical barriers between them, fishes are able to swim from one area to

another (two areas need to be at least 0.5 miles or 806 m away to have no flow of reef

fishes; cf. Chang et al. 1977, Cummings 1994). An example are the generalist

omnivores Diplodus argenteus and Abudefduf saxatilis, that probably swim along the

study areas and are able to succeed both in exposed as sheltered areas (e.g. Floeter et al.

2007, Gibran & Moura 2012). However, with the exception of the Blennidae and

Labrisomidae species, all other fish species recorded are able to swim by the whole

studied site.

The use of artificial reefs has been encouraged with enthusiasm in the last decades

(see Pickering et al. 1999, Epstein et al. 2001) but was under extensive discussion (e.g.

Page 37: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

31

Svane & Petersen 2001). These environments can be an important tool to mitigate

environmental stresses, especially if they have a biogenic substratum similar to the

naturally find on adjacencies (Carr & Hixon 1997). However, although floating

platforms may have less impact on local hydrodynamics than no-floating ones, reef

systems are strongly context-dependent due to the influence of a broad array of

ecological processes (see Gibran & Moura 2012). Large ports, as the expected

expansion of the São Sebastião Port, at the continental margin of the São Sebastião

Channel, will greatly alter environmental conditions, impacting a mangrove area that

will be fully covered by platforms preventing light penetration and surface water

circulation (thus reducing productivity and increasing eutrophication), with additional

stressors and severe loss of local biodiversity (see Freitas et al. 2009, Amaral et al.

2010, Gibran & Moura 2012).

REFERENCES

Amaral, A.C. Z.; A.E., Migotto; A., Turra; & Y, Schaeffer-Novelli. 2010. Araçá: biodiversity,

impacts and threats. Biota Neotropica, 10(1), 219-264.

Ambrose, R.F.; & T.W. Anderson. 1990. Influence of an artificial reef on the surrounding

infaunal community. Marine Biology, 107(1), 41-52.

Anderson M.J. 2001. A new method for non-parametric multivariate analysis of variance.

Austral Ecology 26, 32-46.

Anderson, M.J. & Millar, R.B. 2004. Spatial variation and effects of habitat on temperate reef

fish assemblages in northeastern New Zealand. Journal of Experimental Marine Biology and

Ecology, 305(2), 191-221.

Bouchon-Navaro, Y.; & C. Bouchon. 1989. Correlations between chaetodontid fishes and coral

communities of the Gulf of Aqaba (Red Sea). In: Motta, P.J (ed). The butterflyfishes: success

on the coral reef. Springer Netherlands, pp. 47-60.

Carr, M.H. & M.A. Hixon. 1997. Artificial reefs: the importance of comparisons with natural

reefs. Fisheries, 22(4), 28-33.

Castro-Filho, B.M. & L.B. Miranda. 1998. Physical oceonography of the western Atlantic

continental shelf between 4°N and 34°S. In: Brink, K.H. & A.R. Robinson (eds). The global

coastal Oceans: processes and methods. Jonh Wiley & Sons, Inc., Newe York, pp. 209–251.

Chang, K.; Lee, S.C.; & K.T. Shao. 1977. Evaluation of artificial reef efficiency based on the

studies of model reef fish community installed in northern Taiwan. Bulletin of the Institute of

Zoology, Academia Sinica, 16, 23-36.

Choat, J.H.; Ayling, A.M.; & D.R. Schiel. 1988. Temporal and spatial variation in an island fish

fauna. Journal of Experimental Marine Biology and Ecology, 121(2), 91-111.

Page 38: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

32

Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure.

Australian Journal of Ecology, 18, 117-143.

Clarke, K.R. & R.M. Warwick. 2001. Change in marine communities: an approach to statistical

analysis and interpretation. 2nd ed. PRIMER-E, Plymouth.

Coleman, M.A. & S.D. Connell. 2001. Weak effects of epibiota on the abundances of fishes

associated with pier pilings in Sydney harbour. Environmental Biology of Fishes, 61, 231–

239.

Costa, T.J.F. 2009. Estrutura da comunidade bentônica dos recifes rochosos da Ilha dos

Franceses, sudeste do Brasil, utilizando a técnica amostral de fotoquadrate digital. Bacharel

monography. Department of Biology FAESA at Vitória, ES.

Cummings, S.L. 1994. Colonization of a nearshore artificial reef at Boca Ratón (Palm Beach

county), Florida. Bulletin of Marine Science, 55(2-3), 1193-1215.

Cunha, F.E.D.A.; Monteiro-Neto, C.; & M.C. Nottingham. 2007. Temporal and spatial

variations in tidepool fish assemblages of the northeast coast of Brazil. Biota Neotropica,

7(1), 96-102.

Davis, M.A. 2003. Biotic globalization: does competition from introduced species threaten

biodiversity?. Bioscience, 53(5), 481-489.

Epstein, N.; Bak, R.P.M.; & B. Rinkevich. 2001. Strategies for gardening denuded coral reef

areas: the applicability of using different types of coral material for reef restoration.

Restoration Ecology, 9(4), 432-442.

Ferreira, C.E.L; Floeter, S.R.; Gasparini, J.L.; Ferreira, B.P.; & J.C. Joyeux. 2004. Trophic

structure patterns of Brazilian reef fishes: a latitudinal comparison. Journal of Biogeography

31(7), 1093–1106.

Ferreira, C.E.; Gonçalves, J.E.; & R. Coutinho. 2001. Community structure of fishes and habitat

complexity on a tropical rocky shore. Environmental Biology of Fishes, 61(4), 353-369.

Floeter, S.R.; Guimaraes, R.Z.; Rocha, L.A.; Ferreira, C.E.L.; Rangel, C.A.; & J.L. Gasparini.

2001. Geographic variation in reef‐fish assemblages along the Brazilian coast. Global

Ecology and Biogeography, 10(4), 423-431.

Floeter, S.R.; Krohling, W.; Gasparini, J.L.; Ferreira, C.E.L.; & I.R. Zalmon. 2007. Reef fish

community structure on coastal islands of the southeastern Brazil: the influence of exposure

and benthic cover. Environmental Biology of Fishes 78, 147–160.

Freitas, M.C.D.; Vieira, R.H.S.D.F.; & M.E.D. Araújo. 2009. Impact of the construction of the

harbor at Pecém (Ceará, Brazil) upon reef fish communities in tide pools. Brazilian Archives

of Biology and Technology, 52(1), 187-195.

Fritts, T.H. & G.H. Rodda.1998. The role of introduced species in the degradation of island

ecosystems: A case history of Guam. Annual Review of Ecology and Systematics 29, 113–

140.

Gibran, F.Z. 2010. Habitat partitioning, habits and convergence among coastal nektonic fish

species from the São Sebastião Channel, southeastern Brazil. Neotropical Ichthyology, 8(2),

299–310.

Page 39: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

33

Gibran, F.Z & R.L. Moura. 2012. Structure and composition of rocky shore fishes across a

nearshore to open ocean gradient in southeastern Brazil. Neotropical Ichthyology, 10(2),

369–382.

Gill, B. & P. Martinson. 1991. New Zealand’s Extinct Birds. Aukland (New Zealand): Random

Century.

Graham, J.B.; Jones, C.B.; & I. Rubinoff. 1985. Behavioural, physiological, and ecological

aspects of the amphibious life of the pearl blenny Entomacrodus nigricans Gill. Journal of

Experimental Marine Biology and Ecology, 89(2), 255-268.

Grossman, G.D.; Jones, G.P.; & W.J. Seaman Jr. 1997. Do artificial reefs increase regional fish

production? A review of existing data. Fisheries, 22(4), 17-23.

Guiral, D.; Gourbault, N.; & .M.N. Helleouet. 1995. Sediment nature and meiobenthos of an

artificial reef (Acadja) used for extensive aquaculture. Oceanologica Acta. Paris, 18(5), 543-

555.

Halpern B.S. & S.R. Floeter. 2008. Functional diversity responses to changing species richness

in reef fish communities. Marine Ecology Progress Series 364, 147–156.

Hobson, E. S. 1991. Trophic relationships of fishes specialized to feed on zooplankters above

coral reefs. In: Sale, P.F. (ed). The ecology of fishes on coral reefs. Academic Press, San

Diego, pp. 69-95.

Hobson, E.S. & Chess J.R. 1978. Trophic relationships among fishes and plankton in the lagoon

at Enewetak Atoll, Marshall Islands. Fishery Bulletin, 76, 133–153

Jennings, S.; Boullé, D. P.; Polunin V.C. 1996. Habitat correlates of the distribution and

biomass of Seychelles’ reef fishes. Environmental Biology of Fishes, 46, 15–25

Jones, G.P. 1987. Competitive interactions among adults and juveniles in a coral reef fish.

Ecology 68, 1534–1547

Jones, G.P. 1988. Experimental evaluation of the effects of habitat structure and competitive

interactions on the juveniles of two coral reef fishes. Journal of Experimental Marine

Biology and Ecology, 123, 115–127

Kasten, P. & A.A.V. Flores. 2013. Disruption of endogenous tidal rhythms of larval release

linked to food supply and heat stress in an intertidal barnacle. Marine Ecology Progress

Series, 472, 185-198

Kaufman, L. 1992. Catastrophic change in species-rich freshwater ecosystems: The lessons of

Lake Victoria. BioScience, 42, 846–858.

King, C. 1984. Immigrant Killers. Oxford: Oxford University Press.

Krajewski, J.P. & S.R Floeter. 2011. Reef fish community structure of the Fernando de Noronha

Archipelago (Equatorial Western Atlantic): the influence of exposure and benthic

composition. Environmental Biology of Fishes, 92(1), 25-40.

Krajewski, J.P.; Floeter, S.R.; Jones, G.P.; & F.P Leite. 2011. Patterns of variation in behavior

within and among reef fish species on an isolated tropical island: influence of exposure and

substratum. Journal of the Marine Biological Association of the United Kingdom, 91(06),

1359-1368.

Page 40: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

34

Loope, L.L. 1999. Hawaii and the Pacific Islands. In: US Geological Survey. Status and Trends

of the Nation’s Biological Resources. US Government Printing Office, Washington.

McArdle B.H. & M.J. Anderson. 2001. Fitting multivariate models to community data: a

comment on distance-based redundancy analysis. Ecology 82, 290-297.

Matsuura, Y. 1986. Contribuição ao estudo da estrutura oceanográfica da região sudeste entre

Cabo Frio (RJ) e Cabo de Santa Marta Grande (SC). Ciência e Cultura, 38, 1439–1450.

Mendes, L.D.F. 2006. Natural history focus blennies and gobis behaviour (Actinopterygii,

Blennioidei, Gobioidei) from Fernando de Noronha Archipelago. Revista Brasileira de

Zoologia, 23(3), 817-823.

Mendonça-Neto, J.P.D.; Monteiro-Neto, C.; &, L.E. Moraes. 2008. Reef fish community

structure on three islands of Itaipu, Southeast Brazil. Neotropical Ichthyology, 6(2), 267-274.

Oricchio, F.T. 2015. Qual a importância do tamanho dos predadores e da predação sobre

recrutas para a organização de comunidades incrustantes marinhas? Master’s Thesis.

Universidade Federal de São Paulo, Diadema, 61 p.

Pickering, H.; Whitmarsh, D.; & Jensen, A. 1999. Artificial reefs as a tool to aid rehabilitation

of coastal ecosystems: investigating the potential. Marine Pollution Bulletin, 37(8), 505-514.

Pimentel, D.; Zuniga, R.; & D. Morrison. 2005. Update on the environmental and economic

costs associated with alien-invasive species in the United States. Ecological economics,

52(3), 273-288.

Pinheiro, H.T.; Martins, A.S.; & J.C. Joyeux. 2013. The importance of small-scale environment

factors to community structure patterns of tropical rocky reef fish. Journal of the Marine

Biological Association of the United Kingdom, 93(5), 1175-1185.

Rivero, N.K.; Dafforn, K. A.; Coleman, M. A.; & E.L. Johnston. 2013. Environmental and

ecological changes associated with a marina. Biofouling, 29(7), 803-815.

Robertson, D.R. 1996. Interspecific competition controls abundance and habitat use of territorial

Caribbean damselfishes. Ecology 77,885–899

Svane, I. B.; & J.K., Petersen. 2001. On the problems of epibioses, fouling and artificial reefs, a

review. Marine Ecology, 22(3), 169-188.

Stachowicz, J.J. 2001. Mutualism, Facilitation, and the Structure of Ecological Communities

Positive interactions play a critical, but underappreciated, role in ecological communities by

reducing physical or biotic stresses in existing habitats and by creating new habitats on

which many species depend. Bioscience, 51(3), 235-246.

Vieira, E.A.; Duarte, L.F.L.; & Dias, G.M. 2012. How the timing of predation affects

composition and diversity of species in a marine sessile community? Journal of

Experimental Marine Biology and Ecology, 412, 126-133.

Zalmon, I.R., Boina, C.D., & T.C.M. Almeida. 2012. Artificial reef influence on the

surrounding infauna—north coast of Rio de Janeiro State, Brazil. Journal of the Marine

Biological Association of the United Kingdom, 92(6), 1289-1299.

Page 41: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

35

CAPÍTULO 2

HOW MARINE FACILITIES AFFECT THE ROLE OF FISH PREDATION

ON EARLY-LIFE STAGES OF BENTHIC ORGANISMS?

ABSTRACT

Predation is one of the key processes structuring communities. In marine systems, fishes

are the main predators of sessile benthic organisms that dominate hard substrata. The

southern and southeastern Brazil are devoid of coral reefs, but are characterized by

intense presence of rocky reef habitats and diverse man-made structures, like marinas

and piers. In both natural and artificial hard substrata, organisms like calcareous algae,

sponges, ascidians, bryozoans and polychaetes can settle and create a complex

tridimensional structure. These organisms are exposed to predation, especially by reef

fishes (both juveniles as adults) and, thus, may show differences in community structure

when subjected to different predation pressures. In this context, I investigated the

feeding activity and composition of fishes in two close areas (130 m of distance) of the

same artificial reef (a marina), one in breakwater (exposed to waves) and other inside

the marina (protected from waves), and analyzed feeding preferences of invertivore

fishes for both areas. To quantify feeding rates I performed underwater observations

(covering the range of 06:00 to 20:00): each area was sampled twice during hot/wet

(summer and spring) and twice during cold/dry (winter and autumn) months. To

quantify the pressure of predation I performed field experiments, as follow: six PVC

recruitment plates protected against predators by cages of exclusion was disposed at

each studied area for 40 days, when the cages were then removed and the incrusting

communities exposed to predators. Each plate community was video recorded (80 hours

of video for each area) and the numbers of fish bites, as the identification of predator-

prey species were recorded during daytime. Each area was video recorded twice during

hot/wet (summer and spring) and twice during cold/dry (winter and autumn) months.

There was a peak of feeding activity between 12:00-14:00 inside the marina. Five reef

fish species were recorded preying on incrusting animals, but the omnivore Diplodus

argenteus was the main predator among fishes for both areas, accounting for 94% of the

16,652 observed bites. The breakwater had more intense predation than the area inside

the marina. The most preyed items were ascidians (especially didemnids), serpulids and

Page 42: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

36

arborescent bryozoans, varying according to the area. This work shows that different

environmental conditions in micro-scale due to marina facilities affect fish predation on

early-life stages of benthic organisms, which can also be influenced by availability of

prey.

Keywords: artificial reef, reef fishes, recruitment, Dideminidae, ascidian predation,

Diplodus argenteus, São Sebastião Channel.

INTRODUCTION

Predation is one of the key processes structuring communities (Steele 1996).

Nevertheless predation is not a fixed factor and can vary depending on the habitat,

environmental conditions and biotic interactions (e.g. competition). In marine systems,

fishes at different stages of development act as some of the main predators, especially in

biogenic substrata and reef sites, where colonial and solitary benthic organisms

dominate the bottom (Choat 1982, Hixon 1997, Connel & Anderson 1999). Most of

fish’s day is spend either pursuing food or avoiding predators; many fishes exhibit an

active, food-gathering phase, and a relatively inactive, resting phase, linked with

predators avoidance (Helfman 1993), and because of this, predation by fishes may also

vary during the 24h cycle. In addition to variation according to the area, biotic

interactions, environmental conditions, trophic complexity and time of day, predation

may also vary seasonally with relation to temporal fluctuations in environmental

conditions, reflected in the fish assemblages, such as reproductive period and periods of

decreased activity, such as during winter.

Incrusting organisms live on hard substrata and contribute to the composition,

richness and diversity of local communities, because they increase spatial heterogeneity

and complexity (providing more micro-habitats and spatial/feeding resources for other

organisms) (Sebens 1991, Thompson et al. 1996, Morgado & Tanaka 2001), what

results in high presence of benthic and nektobenthic fishes and, consequently, increases

the pressure of fish predation over incrusting organisms. So, fishes can be responsible

for some temporal and spatial variation in reef community structure and composition

(e.g. Kingsford 1992, Connel & Kingsford 1998). Ascidians and bryozoans are the most

frequent benthic organisms of the costal rocky reef fauna, although they are still

Page 43: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

37

underestimated regarding ecological importance, when compared to sponges,

cnidarians, crustaceans and mollusks (McKinney & Jackson 1989, Reed 1991, Migoto

2000, Calderon 2008). These animals are widely distributed and often dominate hard

substrata, where they tend to monopolize space reducing local species diversity (Russ

1980; Vieira et al. 2012). On the other hand, these incrusting organisms are susceptible

to predators, especially during larval stages and during the first hours/days of post-

settlement, when colonies are so small and fragile that can be easily removed from the

community, through predation. The consequences of the disturbances caused by

herbivore fishes in algae communities have been better studied (e.g. Choat & Andrew

1986, McClanahan et al. 1999, McClanahan et al. 2001, Smith et al. 2001, Francini-

Filho et al. 2008) than the role of carnivore and invertivore predators (Hunt &

Scheibling 1997, Calderon 2008). Since predation can affect the establishment and

survival of recruits, it can play a key role in benthic community organization.

The southern and southeastern coast of Brazil are devoid of coral reefs, but are

characterized by intense presence of rocky reef environments, as islands, rocky outcrops

and parcels, besides rocky shores composed by igneous and metamorphic rocks (Rabelo

2007, Gibran & Moura 2012). Beyond these natural reef habitats there are many piers,

marinas, and others man-made structures that serve as artificial reefs, which are exposed

to the same conditions and dynamics than the natural and adjacent ones (Mineur et al.

2012). In these hard substrata, organisms like corals, calcareous algae, sponges,

ascidians, bryozoans and polychaetes growth to create a complex and tridimensional

structure which increases the feeding and spatial resources availability for fishes at the

infralittoral. This structural complexity allows ecological succession and post-

colonization by organisms with more environmental requirements (Gore et al. 1978,

Bradstock & Gordon 1983, Lewis & Snelgrove 1990, Safriel & Bem-Eliahu 1991,

Nalesso et al. 1995, Cocito et al. 2000, Morgado & Tanaka 2001).

Marinas and other marine facilities can change pressure of fish predation in a

positive or negative way (e.g. Chandler et al. 1985). For example, when such

constructions are associated with pollution and fisheries, it can reduce the abundance of

fishes and facilitate the dominance of communities of sessile animals by more resistant

species (inclusive exotic ones). But, when the construction is associated to a good

environmental management, it can increase the abundance and diversity of fishes

resulting in strong predation pressure which can increase local biodiversity (if

Page 44: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

38

predation is focused on the dominant benthic species) or reduce local biodiversity (if

predation is diffuse) (Ruiz et al. 2009). So, an understanding of the effects of anthropic

interferences on top-down control are important in the context of marina facilities, since

marinas and ports are usually highly susceptible to bioinvasions that can threaten native

species. The goals of this study were compare the pressure of predation by fishes at two

close areas (130 m) in a marina with distinct environmental conditions based on data

from feeding activity and preferences of invertivore fish species, testing the following

hypotheses: differences in the trophic structure of fish assemblages and environmental

conditions of two closely reef areas result in different predation pressures by fish of

incrusting organisms.

MATERIAL AND METHODS

Study site. São Sebastião Island is the main island of an archipelago with 348.3 km²

which delimits the São Sebastião Channel (23º41’–23º54’S, 45º19’–45º30’W), a 25 km

strait on the northern coast of São Paulo State, in southeastern Brazil (Figure 1). This

region is under the influence of warm oligotrophic waters from the Brazil Current, cold

nutrient-rich waters from the Falklands Current and also by cold and nutrient-rich water

intrusions from the South Atlantic Central Water over the shelf and summer upwelling

(Matsuura 1986, Castro-Filho & Miranda 1998, Gibran & Moura 2012). This study was

conducted at the floating platforms of the Yacht Club de Ilhabela (YCI), at Ilhabela

City, in two neighbouring areas separated by 130 meters. One area is at the breakwater,

where environmental conditions are similar to those of natural rocky habitats of the

insular margin of the São Sebastião Channel (see Gibran & Moura 2012), while the

other area is protected from waves, inside the marina, where boats are moored, therefore

more susceptible to chemical (organic and inorganic) and physical pollution (Figure 1).

The sessile communities inside the marina are characterized by high densities of

bryozoans, especially Schizoporella errata, while the breakwater presented more

abundance of ascidian, especially Didemnum perlucidum, and serpulids. Because the

artificial reefs are set on floating platforms, all organisms are susceptible to the daily

tidal ranges.

Page 45: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

39

Fig. 1. Map of the study region – Yacht Club de Ilhabela - YCI, São Sebastião Channel

(modified from Gibran 2010 and Gibran & Moura 2012). Aerial view (Google Maps) of

the floating platform of YCI: (A) breakwater (area exposed to waves); (B): inside the

marina (area protected from waves).

Feeding rates. To assess fish feeding rates throughout the diurnal and crepuscular

periods (06:00-20:00), and to detect if there was any peak of feeding activity at the two

studied areas, I did underwater observations on snorkeling on platforms at 1 m depth

(the smaller height of the platforms). This cycle of 14 hours was divided into seven

periods of two hours each. In each period I conducted 15 replicas of three minutes of

observations in which I recorded the species identification and the number of bites

performed by each fish individuals observed feeding on benthic incrusting organisms of

the floating platforms of YCI. Between March 2014 to March 2015 I performed four

cycles of observation (two during hot/wet – October to March – months and two

during cold/dry – April to September – months) for each one of the two studied areas

(i.e. breakwater and the area inside the marina).

Pressure of fish predation. To quantify fish predation on benthic organisms I vertically

hung six PVC plates (30 x 30 x 0.5 cm) on each area, at the floating platforms of the

marina. The plates were installed with a spacing of approximated three meters away and

1.2 m depth (Figure 2). Plates were left in the sea during 40 days, protected against

Page 46: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

40

predators by plastic cages with a mesh of 0.5 cm. This procedure aimed to enable larval

recruitment at these plates, which will be composing by early-life stages of benthic

organism. After this period of time I removed the cages and recorded predation over

incrusting organisms with a high-definition (HD) digital video camera (GoPro Hero3

Black Edition) coupled to each plate. The records were taken simultaneous at the two

areas in two periods of the day, one in the morning (10:00, during 100 minutes) and

another in the afternoon (14:00, during 100 minutes), totaling 20 hours for each area

(200 minutes for each plate). Each area was sampled twice during hot/wet (October to

March) and twice during cold/dry (April to September) months, totaling 80 hours in

each period. Each plate was photographed before and after the exposure to predators, in

order to identify the preyed organisms. Videos were analyzed taking into account the

number of bites performed by each fish individual in each type of benthic prey available

on each plate, also considering the six size classes (< 2 cm, 2-10 cm, 10-20 cm, 20-30

cm, 30-40 cm and >40 cm of Total Length – TL) and species of the predators.

Fig. 2. Ilustration of the six plates installed in each area (breakwater and inside the marina) (left)

and photography of a plate during video redord (right).

Data analyses. To compare the predation pressure along the day of the two studied

areas I used analysis of variance (nested ANOVA) and post-hoc Tukey test, with

log(x+1) transformed data, wherein area and period of day were predictor variables and

bites were response variable. The interactions (with pressure predation – bites) studied

were: area, period of day, and area*period of day. The analysis of variance (nested

ANOVA) and post-hoc Tukey test, on log(x+1) transformed data was also used to

Page 47: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

41

compare predation pressure by fishes (bites) considering sampling period (nested in

season) and season (hot/wet vs. dry/cold), wherein sampling period, season and area

were predictor variables and bites by predator and number of predation records were

response variables. The interactions (with pressure predation – bites) studied were: area,

season, sampling period (season), area*season and area*sampling period (season). The

differences in fish size classes’ distribution and the percentage of different feeding

habitats between areas were visually explored.

RESULTS

I recorded 960 fish individuals from 13 species and nine families of Actinopterygii

feeding on incrusting organisms of the platforms of the YCI. These species included

diverse trophic guilds following Ferreira et al. (2004) and Halpern & Floeter (2008), as

omnivores, piscivores, territorial herbivores, macroalgal browsers and mobile

invertebrate feeders. The more abundant species, considering both studied areas, were

Diplodus argenteus (63%), Abudefduf saxatilis (10.7%), and Scartella cristata (10%)

(Table I).

Page 48: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

42

Table I. Predators (fish species) and abundances (total and relative) for both areas (breakwater

vs. inside the marina).

Species Total abundance (relative

abundance) Trophic guilds

Breakwater

Inside the

marina

Blennnidae

Hypleurochilus fissicornis 4 (0.6 %) 18 (6.1%) omnivore

Parablennius marmoreus 11 (1.6%) 5 (1.7%) omnivore

Parablennius pilicornis 4 (0.6%) 2 (0.7%) omnivore

Scartella cristata 97 (14.6%) 31 (10.5%) territorial herbivore

Carangidae

Caranx latus 0 (0%) 1 (0.3%) piscivore

Kyphosidae

Kyphosus spp. 3 (0.4%) 46 (15.6%) macroalgal browser

Labrisomidae

Labrisomus nuchipinnis 1 (0.1%) 0 (0%) mobile invertebrate feeder

Malacoctenus delalandii 0 (0%) 13 (4.4%) mobile invertebrate feeder

Monacanthidae

Stephanolepsis hispidus 0 (0%) 9 (3%) omnivore

Pomacanthidae

Pomacanthus paru 0 (0%) 6 (2%) spongivore

Pomacentridae

Abudefduf saxatilis 63 (9.5%) 37 (12.5%) omnivore

Epinephelidae

Mycteroperca acutirostris 4 (0.6%) 0 (0%) piscivore

Sparidae

Diplodus argenteus 478 (72%) 127 (43%) omnivore

The fish species with the largest number of predation events observed in the

breakwater were D. argenteus (44%), Kyphosus spp. (37%), A. saxatilis (7%) and

Scartella cristata (5%), while inside the marina was D. argenteus (91%), followed by

A. saxatilis (5%) and S. cristata (2%).

The assemblages of fishes at inside the marina did show a peak of feeding

activity between the 12:00 – 14:00, but at breakwater area they presented higher levels

of feeding activity between the 12:00 – 18:00 (Figure 3; Table II). These results were

used to the next stage (= video records).

Page 49: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

43

Fig. 3. Mean fish bites per hour (± standard error) throughout the diurnal and crepuscular

periods performed by fishes for both studied areas (breakwater vs. inside the marina).

Table II. Analysis of variance of feeding pressure (fish bites on platforms) considering area

(breakwater vs. inside the marina) and period of day (06:00-20:00).

Source df MS F-ratio p-value

Area 1 0.3 3.37 0.067

Period of day 6 1.0 9.62 <0.001

Period of day*Area 6 0.0 0.21 0.971

Error 407 0.1

I recorded six reef fish species preying on the PVC plates (five species per area):

D. argenteus, A. saxatilis and Stephanolepis hispidus in both areas; Hypleurochilus

fissicornis only in breakwater; and Pomacanthus paru only inside the marina. Diplodus

argenteus, the main predator for both areas, had 95% of total fishes recorded and

performed 94% of all bites combined (Figure 4). Diplodus argenteus was the major

predator in the breakwater, but inside the marina were D. argenteus and S. hispidus.

Herbivorous fishes were almost absent from the video records because there was no

significant growth of macroalgae on the PVC plates. The two studied areas were

exposed to different intensity of predation (i.e. number of fish bites). I recorded 13,409

Page 50: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

44

bites (average = 558 ± 114) at breakwater and 3,243 inside the marina (average = 135 ±

75) (F1;11.4 = 17.9; p<0.001; Table III). The high standard error values found is due to

the variability of predation during shooting, approximately 100 hours of 160 hours

(60%) showed no predation record. Considering the fishes recorded, 2,076 were

preying on PVC plates at breakwater and 386 inside the marina (F1;5.1 = 13.7; p<0.001;

Table IV).

Fig. 4. Relative percentage of fish bites for both areas (breakwater vs. inside the marina). Values

inside the bars correspond to the total bites of each species.

Table III. Analysis of variance of predation pressure (fish bites on plates) considering the area

(breakwater vs. inside the marina), sampling period, and season (hot/wet vs. cold/dry

periods) effects (*= p<0.05).

Source df MS F-ratio p-value

Area 1 11.438 17.918 <0.001

Season 1 0.361 0.565 0.456

Season*Area 1 4.377 6.857 *0.012

Sampling period(Season) 2 15.477 24.245 <0.001

Area*Sampling period(Season) 2 1.704 2.67 0.082

Error 40 0.638

13219 2504

687

Page 51: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

45

Table IV. Analysis of variance of fish records (predators) considering the area (breakwater vs.

inside the marina), sampling period, and season (hot/wet vs. cold/dry periods) effects.

Source df MS F-ratio p-value

Area 1 5.1 13.79 <0.001 Season 1 0.04 0.12 0.728

Season*Area 1 0.8 2.16 0.149

Sampling period(Season) 2 7.7 20.63 <0.001 Area*Sampling period(Season) 2 0.4 1.30 0.282

Error 40 0.3

Diplodus argenteus presented different predation pressure between the two

areas, with more bites on the breakwater (Table V, post-hoc tests, p>0.05). I found an

interaction between fish predation pressure and sampling periods. No difference in

predation pressure by S. hispidus was recorded, but it vary according to sampling period

and season, with interactions between season and area, and sampling period and area

(Table VI).

Table V. Analysis of variance of predation pressure (fish bites on plates) by Diplodus argenteus

considering the area (breakwater vs. inside the marina), sampling period, and season (hot/wet vs.

cold/dry periods) effects (*= p<0.05).

Source df MS F-ratio p-value

Area 1 13.9 12.12 <0.001

Season 1 0.01 0.06 0.806

Season*Area 1 1.5 1.33 0.255

Sampling period(Season) 2 8.8 7.67 *0.002

Area*Sampling period(Season) 2 1.0 0.87 0.426

Error 40 1.1

Table VI. Analysis of variance of predation pressure (fish bites on plates) by Stephanolepsis

hispidus considering the area (breakwater vs. inside the marina), sampling period, and season

(hot/wet vs. cold/dry periods) effects (*= p<0.05).

Source df MS F-ratio p-value

Area 1 1.4 7.80 0.008

Season 1 1.8 10.00 *0.003

Season*Area 1 1.2 6.70 *0.013

Sampling period (Season) 2 1.3 7.25 *0.002

Area* Sampling period (Season) 2 1.9 10.67 <0.001

Error 40 0.1

Results of shooting showed that predation on plates of YCI were more intense in

the breakwater, but only during the hot/wet periods (Figure 5). In contrast, predation did

not differ between the two areas during the cold/dry season, but there was large

Page 52: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

46

variation of the predation pressure within this season (Figure 5; Table IV). Considering

each area, any pattern in relation to seasons was detected.

Fig. 5. Mean fish bites (± standard error) per plates for each studied area (breakwater vs. inside

the marina) and during hot/wet vs. cold/dry months (*= p<0.001).

Both areas recorded through filming showed a high abundance of fishes with 10-

20 cm TL (approximately 80% in breakwater and 50% in inside the marina area of total

individuals recorded), showing that both areas are composed by predators of incrusting

organisms during juvenile phase, represented almost exclusively by D. argenteus

(Figure 6).

* *

Page 53: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

47

Fig. 6. Relative abundance of fishes for six size classes of total length (TL) for the two studied

areas (breakwater vs. inside the marina).

The following benthic incrusting organisms were preyed throughout the study:

turf algae, solitary ascidian, colonial ascidian, arborescent bryozoan, incrusting

bryozoan, serpulids, barnacles and oysters. The most preyed taxa on settlement plates

were the colonial ascidians Botrylloides sp., Didemnum sp. (Didemnidae), Distaplia sp.,

Clavelina oblonga, Perophora sp., and Symplegma (Styelidae). Ascidians of

Didemnidae family were the main preyed items in breakwater area, while ascidians of

Didemnidae and serpulid polychaets were the most preyed items inside the marina

(Figures 7-8).

Page 54: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

48

Fig. 7. Percentage of bites on the most preyed benthic organisms (taxa) for both areas

(breakwater vs. inside the marina). Values inside the bars are the total number of bites.

Among the groups heavily preyed, ascidians and bryozoans presented

differences in predation pressure for both areas (F1;7.4=11.20 and F1;9.3=17.69,

respectively; p>0.01), and more consumption of these preys at breakwater (Tukey test

p>0.01). The consumption of ascidians, bryozoans, turf algae and serpulids differ

between different sampling periods (Table VII-X; Figure 8).

Table VII. Analysis of variance of predation pressure (fish bites on plates) on ascidians,

considering area (breakwater vs. inside the marina), sampling period, and season (hot/wet vs.

cold/dry periods) effects (*= p<0.05).

Source df MS F-ratio p-value

Area 1 7.4 11.20 *0.002

Season 1 1.5 2.28 0.139

Season*Area 1 2.7 4.17 *0.048

Sampling period (Season) 2 12.0 17.96 <0.001

Area*Sampling period(Season) 2 1.4 2.17 0.127

Error 40 0.6

1590

5546

3961

954

375

1129

529

Page 55: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

49

Table VIII. Analysis of variance of predation pressure (fish bites on plates) on bryozoan,

considering area (breakwater vs. inside the marina), sampling period, and season (hot/wet vs.

cold/dry periods) effects.

Source df MS F-ratio p-value

Area 1 9.3 17.69 <0.001

Season 1 0.4 0.84 0.364

Season*Area 1 1.7 3.37 0.074

Sampling period(Season) 2 6.8 12.98 <0.001

Area*Sampling period(Season) 2 0.5 1.10 0.342

Error 40 0.5

Table IX. Analysis of variance of predation pressure (fish bites on plates) on turf algae,

considering area (breakwater vs. inside the marina), sampling period, and season (hot/wet vs.

cold/dry periods) effects (*= p<0.05).

Source df MS F-ratio p-value

Area 1 1.2 3.49 0.069

Season 1 1.5 4.33 *0.044

Season*Area 1 0.3 1.00 0.322

Sampling period(Season) 2 1.2 3.40 *0.043

Area*Sampling period(Season) 2 0.3 0.89 0.418

Error 40 0.3

Table X. Analysis of variance of predation pressure (fish bites on plates) on serpulids,

considering area (breakwater vs. inside the marina), sampling period, and season (hot/wet vs.

cold/dry periods) effects (*= p<0.05).

Source df MS F-ratio p-value

Area 1 0.1 0.55 0.461

Season 1 4.1 13.69 *0.001

Season*Area 1 1.2 4.08 0.050

Sampling period(Season) 2 6.4 21.37 <0.001

Area*Sampling period(Season) 2 0.8 2.90 0.067

Error 40 0.3

Page 56: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

50

Fig. 8. Mean fish bites (± standard error) on the most preyed benthic organisms (taxa) for both

areas (inside the marina vs. breakwater) and at different moments.

The main predator on the sessile animal communities in the YCI, D. argenteus,

demonstrated broad consumption of different food items, mainly Didemnid ascidians

(Figure 9). At breakwater, consumption was less varied and showed no significant

difference among the main items consumed.

Page 57: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

51

Fig. 9 Total bites of the silver porgy Diplodus argenteus (Sparidae) on benthic organisms for

the two studied areas (breakwater vs. inside the marina) (*colonial ascidians).

DISCUSSION

Predation pressure depends on the abundance of predators and the availability of

prey, as well as of environmental disturbances caused by human activities. Different

* * * *

* *

* * * * *

*

Breakwater

Inside the marina

*

Page 58: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

52

areas may respond differently to a disturbance, resulting in different predation

pressures. The results found here corroborate to the knowledge that predation may vary

over time and space and can be also a result of differences in local conditions due to the

organism-organism interactions (e.g. top-down and bottom-up effects) and interactions

between organisms and environment. The results of fish feeding activity throughout the

day can be closely related to the availability of light in each studied area, as fish

predators of incrusting organisms depend mainly on visual orientation to feed, with

lighter periods of the day having higher levels of predation (Helfman 1993). on benthic

communities at breakwater along the entire period of the day, but as the area inside the

marina is shaded by boats in high-to-this period, this area had higher fish feeding

activity only at midday.

While fishes foraging inside marina have more protection from predators, fishes at

the breakwater spend more energy swimming due to wave action, but the availability of

ascidians, the main prey consumed, is higher at breakwater than inside marina (personal

observations). On the other hand, the area inside marina has more phytoplankton

concentration, an important resource for omnivore opportunistic species as D. argenteus

and A. saxatilis (see Chapter 1). Diplodus argenteus individuals use to feed mainly on

benthic invertebrates, but when in large groups they also feed on plankton (Ferreira et

al. 2004, Marques & Barreiros 2015). As inside marina has higher abundance of D.

argenteus and more concentration of phytoplankton, plankton consumption were

exclusive at this area (Chapter 1). In other words, changes in surface water circulation

caused by a floating marina seem to change local food web structure, by enhance habitat

heterogeneity and thus, resulting in different communities.

Studies on D. argenteus feeding are rare (but see e.g. Krajewski 2007, Reisser et al.

2010 for cleaning behavior performed by juveniles). Studies of fish diet available,

especially of adult D. argenteus never cite ascidians and bryozoans as important food

items (e.g. Dubiaski-Silva & Masunari 2006), the main items consumed herein for both

areas. However, the consumption of such items differed both between areas as sampling

period.

The sessile communities inside the marina are characterized by high densities of

bryozoans, especially Schizoporella errata, while the breakwater presented more

ascidians, especially Didemnum perlucidum, and serpulids (Oricchio 2015). It is

important to emphasize that the benthic organisms preyed by fishes during this study

Page 59: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

53

were recently settled, with a maximum of 40 days after settlement, when colonies are

more vulnerable because physical and chemical defenses were not established yet.

Besides large colonies are more likely to avoid predation than small ones, older colonies

are more defended by secondary compounds and calcareous spicules than initial

colonies (i.e. Lindquist et al. 1992). So, the importance of predation on community

structuration is underestimated, because the majority of the studies are focused only on

established communities (Sebens 1991). Predation pressor during initial stages of

benthic communities is important to module the composition of species and abundance

in the later stages of community – as an example, when predators remove ascidians in a

community the response is an increase of bryozoan richness (Oricchio 2015).

Ascidians are considered unpalatable as a result of chemical and physical defenses

(e.g. Russel 1983), but the studies that tested the palatability of ascidians were generally

conducted in artificial conditions, selecting only one or just a few potential predators,

besides be based in chemical extracts (e.g. Stoecker 1980, Teo & Ryland 1994).

Another common problem is the lack of accuracy on prey identification in studies based

on stomach content analysis of fishes, always underestimating food items as ascidians,

sponges, briozoans etc.

Another relevant find of this study was that the number of fishes preying on PVC

plates decreased through time, probably as a result of the reduction in the food resources

availability, what is supported by the "Marginal Value Theory", which predicts that the

optimal time of predator permanence should be higher in the most productive spots than

in less productive, and if this productivity is very low the time of permanence would be

zero (Begon et al. 2007). It was observed in plates with low benthic cover, especially

with low coverage of Diplosoma listerianum and Didemnium perlucidum (ascidians

Didemnidae).

This study shows that different environmental conditions in micro-scale due to

marina facilities affect fish predation on early-life stages of benthic organisms in time

and space, which can also be influenced by availability of prey. The abundance of

predators is also relevant, as the feeding plasticity (i.e. use of food) and swimming

abilities (i.e. use of space) by each fish species.

Page 60: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

54

REFERENCES

Barrington, E.J.W. 1957. The alimentary canal and digestion. In: Brown, M.E. (ed). The

Physiology of Fishes. Academic Press, New York, pp. 109-161.

Begon, M.; Townsend, C.R.; & J.L. Harper. 2007. Ecologia: de indivíduos a ecossistemas.

Artmed, São Paulo, 752 p.

Bradstock, M., & D.P.Gordon. 1983. Coral‐like bryozoan growths in Tasman Bay, and their

protection to conserve commercial fish stocks. New Zealand journal of marine and

freshwater research, 17(2), 159-163.

Calderon, E.C. 2008. Recrutamento e distribuição espacial do briozoário Schizoporella errata

(Waterns, 1878), (Ectoprocta, Gymnolaemata, Cheilostomata), e sua dinâmica na

comunidade de costão rochoso em Arraial do Cabo, RJ, Brasil. Tese (Doutorado) – Instituto

de Biologia da Universidade Federal do Rio de Janeiro, 161p.

Castro-Filho, B.M. & L.B. Miranda. 1998. Physical oceonography of the western Atlantic

continental shelf between 4°N and 34°S. In: Brink, K.H. & Robinson A.R. (eds). The global

coastal Oceans: processes and methods. Jonh Wiley & Sons, Inc., New York, pp. 209–251.

Chakrabarti, I.; Gani, M.A.; Chaki, K.K.; Sur, R.; & K.K Misra. 1995. Digestive enzymes in 11

freshwater teleost fish species in relation to food habit and niche segregation. Comparative

Biochemistry and Physiology Part A: Physiology, 112(1), 167-177.

Chandler, C.R.; Sanders Jr, R.M.; & A.M. Landry Jr. 1985. Effects of three substrate variables

on two artificial reef fish communities. Bulletin of Marine Science, 37(1), 129-142.

Choat, J.H., 1982. Fish feeding and the structure of benthic communities in temperate waters.

Annual Review of Ecology Systems, 13, 423–449.

Choat, J.H. & N.L. Andrew. 1986. Interactions amongst species in a guild of subtidal benthic

herbivores. Oecologia, 66(3), 387-394.

Cocito, S.; Ferdeghini, F.; Morri, C.; & C.N. Bianchi. 2000. Patterns of bioconstruction in the

cheilostome bryozoans Schizoporella errata: the influence of hydrodinamics and associated

biota. Marine Ecology Progress Series, 192:153-161.

Connell, S.D. & M.J. Anderson. 1999. Predation by fish on assemblages of intertidal epibiota:

effects of predator size and path size. Journal of Experimental Marine Biology and Ecology,

241, 15-29.

Connell, S.D & M.J. Kingsford. 1998. Spatial, temporal and habitat-related variation in the

abundance of large predatory fish at One Tree Reef, Australia. Coral Reefs, 17(1):49-57.

Dubiaski-Silva, J. & S. Masunari. 2006. Ontogenetic and seasonal variation in the diet of

marimbá, Diplodus argenteus (Valenciennes, 1830)(Pisces, Sparidae) associated with the

beds of Sargassum cymosum C. Agardh, 1820 (Phaeophyta) at Ponta das Garoupas,

Bombinhas, Santa Catarina. Journal of Coastal Research, 1190-1192.

Ferreira, C.E.L.; Floeter, S. R.; Gasparini, J.L.; Ferreira, B.P.; & J.C. Joyeux. 2004. Trophic

structure patterns of Brazilian reef fishes: a latitudinal comparison. Journal of Biogeography,

31(7), 1093-1106.

Francini-Filho, R.B.; Moura, R.L.; Ferreira, C.M.; & Coni, E.O. 2008. Live coral predation by

parrotfishes (Perciformes: Scaridae) in the Abrolhos Bank, eastern Brazil, with comments on

the classification of species into functional groups. Neotropical Ichthyology, 6(2), 191-200.

Page 61: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

55

Gibran, F.Z. 2010. Habitat partitioning, habits and convergence among coastal nektonic fish

species from the São Sebastião Channel, southeastern Brazil. Neotropical Ichthyology, 8(2),

299–310.

Gibran, F.Z. & R.L. de Moura. 2012. The structure of rocky reef fish assemblages across a

nearshore to coastal islands' gradient in Southeastern Brazil. Neotropical Ichthyology, 10,

369-382.

Gore, R.H.; L.E. Scotto & L.J. Becker. 1978. Community composition, stability and trophic

partitioning in decapod crustacean inhabiting some subtropical Sabellariid worm reefs.

Bulletin of Marine Science, 28, 221-248.

Halpern B.S. & S.R. Floeter. 2008. Functional diversity responses to changing species richness

in reef fish communities. Marine Ecology Progress Series 364, 147–156.

Helfman, G.S. 1993. Fish behaviour by day, night and twilight. In: Pitcher, T.J. (ed.), The

behaviour of teleost fishes. Springer, New York, pp. 479-512-387.

Hixon, M.A. 1997. Effects of reef fishes on corals and algae. In: Birkeland, C. (ed.), Life and

Death of Coral Reefs, Chapman and Hall, New York, pp. 230-248.

Hunt, H.L. & R.E. Scheibling. 1997. Role of early post-settlement mortality in recruitment of

benthic marine invertebrates. Marine Ecology Progress Series, 152, 269-301.

Kingsford, M.J. 1992. Spatial and temporal variation in predation on reef fishes by coral trout

(Plectropomus leopardus, Serranidae).Coral Reefs, 11, 193-198.

Lewis, J.B. & P.V.R. Snelgrove. 1990. Corallum morphology and composition of crustacean

cryptofauna of the hematypie coral Madracis mirabilis. Marine Biology, 106, 267-272.

Lindquist, N.; Hay, M.E.; & W. Fenical. 1992. Defense of ascidians and their conspicuous

larvae: adult vs. larval chemical defenses. Ecological Monographs, 62, 547–568.

Marques, S. & Barreiros, J.P. 2015. Opportunistic feeding behavior of Diplodus argenteus

(Perciformes, Sparidae): human-fish interaction in two rocky reefs from SE and S Brazil.

Pan-American Journal of Aquatic Sciences, 10(1), 80-83

Matsuura, Y. 1986. Contribuição ao estudo da estrutura oceanográfica da região sudeste entre

Cabo Frio (RJ) e Cabo de Santa Marta Grande (SC). Ciência e Cultura 38, 1439–1450.

McClanahan, T.R.; M. McField; M. Huitric; K. Bergman; E. Sala; M. Nystrõm; I. Nordemar; T.

Elfwing, & N.A. Muthiga. 2001. Responses of algae, corals and fish to the reduction of

macroalgae in fished and unfished path reefs of Glovers Reef Atoll, Belize. Coral Reefs, 19,

367-379.

McClanahan, T.R.; Hendrick, V.; Rodrigues, M.J. & N.V.C. Polunin. 1999. Varying responses

of herbivorous and invertebrate-feeding fishes to macroalgal reduction on a coral reef. Coral

Reefs, 18, 195-203.

McKinney, F.K. & J.B.C. Jackson. 1989. Bryozoan evolution. The University of Chicago Press,

Chicago, 238p.

Migoto, A.E. 2000. Avaliação do estado do conhecimento da diversidade de invertebrados

marinhos no Brasil. In: Ministério do Meio Ambiente - MMA, Secretaria de Biodiversidade

e Florestas – SBF (ed.), Avaliação do estado do conhecimento da diversidade biológica do

Brasil, MMA-GTB/CNPq-NEPAM/UNICAMP, 75p.

Page 62: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

56

Mineur, F.; Cook, E.J.; Minchin, D.; Bohn, K.; MacLeod, A. & C. A. Maggs. 2012. Changing

coasts: marine aliens and artificial structures. Oceanography and Marine Biology: An

Annual Review, 50, 189-233.

Morgado, E.H. & M.O. Tanaka. 2001. The macrofauna associated with the bryozoan

Schizoporella errata (Waters) in southeastern Brazil. Scientia Marina, 65(3), 173-181.

Nalesso, R.C.; L.F.L. Duarte; I. Pierozzi Jr & E.F. Enumo. 1995. Tube epifauna of

thepolychaete Phyllochaetopterus socialis Chaparède. Estuarine, Coastal and Shelf Science,

41, 91-100.

Oricchio, F.T. 2015. Qual a importância do tamanho dos predadores e da predação sobre

recrutas para a organização de comunidades incrustantes marinhas? Master’s Thesis.

Universidade Federal de São Paulo, Diadema, 61 p.

Rabelo, E.F. 2007. Distribuição espacial e interações competitivas em zoantídeos (Cnidaria:

Zoanthidae) em ambiente de recifes de arenito no nordeste do Brasil. Master’s Thesis.

Instituto de Ciências do Mar da Universidade Federal do Ceará, 104 p.

Reebs, S.G. 2002. Plasticity of diel and circadian activity rhythms in fishes. Reviews in Fish

Biology and Fisheries, 12(4), 349-371.

Reed, C.G. 1991. Bryozoa. In: Giese, A.C.; Pearse, J.S. & V. B. Pearse (eds), Reproduction of

marine invertebrates - Vol. VI, echinoderms and lophophorates. The Boxwood Press, Pacific

Grove, California, 807p.

Ruiz, G.M.; Freestone, A.L.; Fofonoff, P.W.; & C. Simkanin. 2009. Habitat distribution and

heterogeneity in marine invasion dynamics: the importance of hard substrate and artificial

structure. In: Wahl, M., Marine hard bottom communities. Springer, Berlin, pp. 321-332.

Russ G.R. 1980. Effects of predation by fishes, competition, and structural complexity of the

substratum on the establishment of a marine epifaunal community. Journal of Experimental

Marine Biology and Ecology 42, 55-69.

Russell, B.C. 1983. The food and feeding habits of rocky reef fish of north‐eastern New

Zealand. New Zealand Journal of Marine and Freshwater Research, 17(2), 121-145.

Safriel, U.N. & M.N. Ben-Eliahu. 1991. The influence of habitat structure and environmental

stability on the species diversity of polychaetes in vermetid reefs. In: Bell, S.S; McCoy, E.

D.; Mushinsky, H. R. (eds.), Habitat structure – the physical arrangement of objects in

space. Chapman and Hall, London, pp. 349-369.

Sebens, K.P. 1991. Habitat structure and community dynamics in marine benthic systems. In:

Bell, S.S.; MsConey, E.D.; & H. R. Mushinsky (eds.), Habitat structure – the physical

arrangement of objects in space. Chapman and Hall, London, pp. 211-234.

Smith, J.E.; C.M. Smith; & C.L. Hunter. 2001. An experimental analysis of the effects of

herbivory and nutrient enrichment on benthic community dynamics on a Hawaiian reef.

Coral Reefs, 19, 332-342.

Steele, M.A. 1996. Effects of predators on reef fishes: separating cage artifacts from effects of

predation. Journal of Experimental Marine Biology and Ecology, 198, 249-267.

Stoecker, D. 1980. Chemical defenses of ascidians against predators. Ecology, 1327-1334.

Teo, S.M. & J.S. Ryland. 1994. Toxicity and palatability of some British ascidians. Marine

biology, 120(2), 297-303.

Page 63: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

57

Thompson, R.C.; B.J. Wilson; M.L. Tobin; A.S. Hill &; S.J. Hawkins. 1996. Biologically

generated habitat provisioning and diversity of rocky shore organisms at a hierarchy of

spatial scales. Journal of Experimental Marine Biology and Ecology, 202, 73-84.

Vieira, E.A.; Duarte, L.F.L.; & Dias, G.M. 2012. How the timing of predation affects

composition and diversity of species in a marine sessile community? Journal of

Experimental Marine Biology and Ecology, 412, 126-133.

Page 64: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

58

CONSIDERAÇÕES FINAIS

Os resultados deste estudo contribuem para o entendimento da estruturação das

comunidades de organismos incrustantes e das assembleias de peixes recifais, além de

destacar os efeitos ecológicos locais das construções humanas costeiras como marinas e

píeres nessas comunidades. Além disso, fornece dados inéditos sobre o papel da

predação dos peixes nos estágios iniciais das comunidades de organismos incrustantes,

mostrando que ascídias, geralmente ignoradas em análises de dieta, são importantes

itens alimentares para peixes, com detalhes da alimentação e atividade alimentar do

marimbá Diplodus argenteus (Sparidae).

As principais conclusões são:

1. Diferenças em pequena escala nas condições ambientais, como as causadas pela

instalação de marinas, podem tanto afetar as assembleias de peixes quanto as

comunidades incrustantes, assim como também resultar em diferentes pressões

de predação por peixes sobre a comunidade incrustante, modulando sua estrutura

após assentamento.

2. A plasticidade alimentar dos peixes pode ser resultado de dois importantes

fatores que podem operar conjuntamente ou não: o emprego de diferentes táticas

alimentares e a oferta alimentar – D. argenteus, a espécie de peixe recifal mais

abundante em ambas as áreas, preda exclusivamente organismos incrustantes no

quebra-mar, com intensa pressão de predação sobre eles, mas alimenta-se

principalmente de plâncton na área interna, onde é muito mais abundante.

3. Ascídias e briozoários, que normalmente não são considerados como itens

alimentares de peixes (especialmente ascídias, conhecidas por possuírem defesas

químicas e físicas, como espículas calcárias), foram amplamente consumidos,

principalmente pelo marimbá D. argenteus e pelo porquinho Stephanolepis

hispidus.

Por fim, reconhecer quais processos operam em micro-escalas é fundamental para

compreender a dinâmica das populações e comunidades e com isso minimizar os

impactos das atividades antrópicas sobre as comunidades e os ecossistemas.

Page 65: Como a variação espacial das assembleias de peixes ...propg.ufabc.edu.br/evodiv/wp-content/uploads/2019/... · Capítulo 1: Fish assemblages associated to a man-made habitat in

59

Os próximos passos devem incluir a análise da disponibilidade de presas (oferta

alimentar) nas duas áreas de estudo, buscando dados mais adequados para avaliação das

preferências alimentares dos peixes que habitam o quebra-mar e a área interna da

marina do YCI. Cada um dos capítulos desta dissertação será submetido à publicação

como um manuscrito independente, sendo que o segundo (referente ao conteúdo do

capítulo 2) será em conjunto com os resultados de outra dissertação do nosso grupo de

pesquisa (ver Oricchio 2015*), sobre a importância do tamanho dos predadores e da

predação sobre recrutas para a organização de comunidades incrustantes marinhas.

*Oricchio, F.T. 2015. Qual a importância do tamanho dos predadores e da predação sobre recrutas para

a organização de comunidades incrustantes marinhas? Dissertação de Mestrado. Universidade

Federal de São Paulo, Diadema, 61 p.